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Abstract

Inference-time alignment through scaling test-001
time compute is a promising approach for im-002
proving the performance of AI agents. Such003
approaches typically involve three key com-004
ponents: sampling, evaluation, and feedback.005
While the role of sampling and evaluation are006
well studied in the literature, the role of feed-007
back on inference-time alignment is relatively008
under-explored. We address this gap by in-009
troducing Iterative Agent Decoding (IAD), a010
general sequential framework that enables the011
integration of different forms of feedback to012
improve the performance. We analyze how013
feedback impacts agent performance across014
four dimensions: (1) accuracy vs compute -015
budget controlled scaling (2) impact of adap-016
tive feedback beyond sampling diversity (3)017
impact of feedback modalities, (4) sensitiv-018
ity to feedback quality. Our evaluations on019
Sketch2Code, Text2SQL, Intercode and Web-020
shop demonstrate that feedback plays a cru-021
cial role in inference-time alignment, yielding022
performance gains of up to 10% over strong023
baselines. Our findings provide a unified under-024
standing of the role of feedback mechanisms in025
inference-time alignment.026

1 Introduction027

AI agents demonstrate remarkable potential across028

a wide range of applications, but still face chal-029

lenges in tasks that require multimodal understand-030

ing, strategic planning, and reasoning. For example,031

in complex agentic tasks such as Sketch2Code (Li032

et al., 2024b), Text2SQL (Li et al., 2024a), Inter-033

code (Yang et al., 2023) and Webshop (Yao et al.,034

2023), state-of-the-art AI agents can only achieve035

20–30% accuracy. Post-training via SFT and RL036

(Ouyang et al., 2022a,b; Bai et al., 2022) has been037

an effective tool to enhance the capabilities of gen-038

erative models; however, it is not directly applica-039

ble to AI agents due to their inherently black box040

nature because of their operation in environments041

Figure 1: General Pipeline for inference alignment ap-
proaches for agents

with no access to the internals (Liu et al., 2024; Fu 042

et al., 2024). Hence, we focus on inference-time 043

approaches which are (i) API-friendly (applicable 044

to closed-source models accessible via commercial 045

APIs) and (ii) compatible with various underlying 046

models. 047

Inference-time AI agent alignment: Broadly, 048

such approaches consist of iteration over three key 049

components: sampling, evaluation, and feedback 050

as illustrated in Figure 1. A typical inference-time 051

iteration involves sampling one or more outcomes 052

from the generative model, evaluating them using 053

a judge/reward, and then generating feedback to 054

improve subsequent outcomes. 055

The role of sampling and evaluation is well- 056

studied in literature with efficient and scalable al- 057

gorithms based on best-of-N (BoN) approaches 058

(Nakano et al., 2021; Beirami et al., 2024). BoN- 059

based approaches operate by sampling multiple 060

responses and selecting the best according to a 061

verifier, effectively leveraging the sampling and 062

evaluation steps. However, a key limitation of BoN 063

approaches is their inability to incorporate feed- 064

back mechanisms for iterative refinement. 065

Hence, recently several sequential approaches 066

have emerged that aim to integrate feedback 067

mechanisms primarily using self-LLMs as judges 068

(Madaan et al., 2023), or leveraging heuristi- 069

cally driven refinement and verification techniques. 070

However, existing works often lack a focused analy- 071

sis of how feedback should be designed, integrated, 072
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Figure 2: Demonstrates the high-level schematic of - Iterative Decoding of AI Agents - Sequential framework to
study the role of feedback for Inference alignment.

or optimized. As a result, the role of feedback in073

inference-time alignment, especially in black box074

agentic environments, remains under-examined.075

We aim to address this gap by focusing on feed-076

back and systematically understanding its impact077

on inference-time alignment for agents.078

Understanding the role of feedback: To under-079

stand the role and impact of feedback on inference-080

time alignment, we require a unified framework081

that flexibly integrates diverse forms of feedback,082

guided by a verifier, without relying heavily on083

prompt engineering, which can be costly and frag-084

ile. To this end, we introduce Iterative Agent De-085

coding (IAD), a sequential framework designed086

to incorporate various forms of feedback to under-087

stand the role of feedback in inference-time align-088

ment of agents. Through IAD we uncover several089

intriguing results, detailed below.090

1. Accuracy vs compute - budget controlled scal-091

ing: We demonstrate that feedback plays a critical092

role in budget-constrained settings, achieving up093

to a 10% accuracy gain over strong feedback-free094

baselines. However, this margin narrows with in-095

creased budget—either through higher N or more096

capable models.097

2. Impact of adaptive feedback beyond sampling098

gain: We perform controlled experiments that iso-099

late the effect of sampling, and demonstrate that the100

gains in IAD arise from adaptive, feedback-guided101

refinement rather than stochastic sampling alone.102

3. Design and role of feedback form: We investi-103

gate the impact of different forms of feedback on104

inference alignment. When feedback is textual, it105

is relatively easy to integrate as is. However, de-106

signing effective feedback from scalar rewards and107

preferences remains underexplored. In IAD, we108

focus on various methods to extract useful signal109

from scalar rewards and demonstrate performance110

gains crucially depend on the design of proper feed-111

back. However, how to map different feedback 112

forms into textual feedback remains an interesting 113

and open research direction. 114

4. Sensitivity to feedback quality: We study the 115

sensitivity and robustness of inference alignment to 116

feedback quality via controlled sparsity and noise 117

in feedback signals. We see that IAD remains ef- 118

fective under moderate degradation, but its perfor- 119

mance declines with increasing noise, especially 120

when reward is sparse. 121

2 Inference-time Agent Alignment 122

In the black box agentic settings, we only have ac- 123

cess to a reference policy π0(·|x), whose internals 124

are inaccesible. The core challenge is to optimize 125

inference-time decisions such that the generated 126

response from π0(·|x) is better aligned with the 127

outputs of optimal policy π∗(·|x). We assume ac- 128

cess to a verifier function R(x, y), which evaluates 129

the quality of a response y (further details in Ap- 130

pendix). With this formalization, we identify three 131

core components of inference-time alignment for 132

black-box agents: 1. Sampling : Generate one or 133

more candidate response from the reference pol- 134

icy y1, y2 · · · yN ∼ π0(·|x), where the sampling 135

diversity can be controlled with parameters such 136

as temperature, nucleus sampling etc. 2. Evalu- 137

ation : Evaluate each candidate using the verifier 138

R(x, yj) which serves as a proxy for how well yj 139

aligns with π∗(·|x) and 3. Feedback : Generate 140

feedback from the verification scores—either scalar 141

or judge-based—to iteratively refine the prompt or 142

guide subsequent generations, enabling adaptive 143

alignment over inference rounds. 144

2.1 Iterative Agent Decoding 145

To study the role of feedback, we introduce Itera- 146

tive Agent Decoding (IAD), a general sequential 147
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Figure 3: Sketch2code: This figure provides a comparison of IAD (ours) against Best-of-N sampling (SoTA)
and single-turn generation with Gemini-1.5-Pro w.r.t metrics - (a) Layout Similarity (b) TextIoU (c) ImageIoU
across varying the number of generations (N). Figure demonstrates IAD outperforms BoN consistently across N,
but as N increases the gap reduces. Fig(d, e, f) provides a comparison with improved model capabilities from
Gemini-2.0-Flash, Gemini-2.5-Flash, Gemini-2.5-Pro respectively.

framework designed to incorporate various feed-148

back forms for understanding the role of feedback149

in inference-time alignment of agents.150

Step 1: Sampling. At each step t, we sample a can-151

didate response with the reference policy π0(·|x)152

and iteratively refine its outputs.153

yt+1 ∼ π0(·|x, ŷt, st, pt), (1)154

where ŷt is the best response from previous itera-155

tions, and pt encodes prompt-based guiding instruc-156

tions for ex: Surpass the best response, avoiding157

previous mistakes.158

Step 2: Verifier-guided selection. Among the159

generated response and the previous best response,160

we select the one maximizing the reward function:161

ŷt+1 = arg max
y∈(yt,ŷt)

R(x, y) (2)162

IAD has the flexibility to incorporate critique-based163

feedback, such as LLM-judge, which identifies spe-164

cific areas needing improvement. This extends to165

yt+1 ∼ π0(·|x, ŷt, pt, fbt) (3)166

where fbt highlights specific components (e.g., in-167

correct tags in HTML, invalid SQL joins), guiding168

refinement at a more granular level in an iterative169

fashion.170

Step 3: Acceptance Criterion. A new response 171

yt+1 is accepted if it provides an improvement over 172

the previous best, R(x, yt)−R(x, ŷt) > 0 (where 173

δ = 0 is the special case) 174

Step 4: Iterative Refinement. The accepted re- 175

sponse ŷt updates the context for subsequent gen- 176

erations, progressively re-weighting the proposal 177

distribution toward higher-quality outputs. By con- 178

ditioning on ŷt, the sampling process is guided to- 179

wards responses with higher rewards, reducing the 180

gap between the reference distribution π0(·|x, ŷt) 181

and the optimal distribution π∗(·|x), as shown in 182

experimental results. 183

For instance, in an SQL code generation task, the 184

model might initially produce a non-functional or 185

erroneous SQL statement. However, in the next 186

iteration, it generates a different SQL code, and 187

through verifier comparisons, we determine which 188

version is better—e.g., if the later version passes 189

more test cases, we infer that the model should 190

move in that direction. Using an LLM as a judge 191

makes this refinement process more targeted, as it 192

can provide explicit feedback on errors like "This 193

condition is incorrect", "Fix the syntax here", or 194

"This table join is unnecessary" and suggest im- 195

provements at each iteration. 196
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Figure 4: Text2SQL Experiments: (a) Pass@K performance comparison between queries generated using our
approach and Few-shot ICL with Gemini-1.5-flash. (b) Majority@K performance comparison between queries
generated using our approach and Few-shot ICL with Gemini-1.5-flash. (c) Accuracy comparison between the
best-of-N method and our approach for Gemini-1.5-flash. (d) Pass@K performance comparison between queries
generated using our approach and Few-shot ICL with Gemini-1.5-pro. (e) Majority@K performance comparison
between queries generated using our approach and Few-shot ICL with Gemini-1.5-pro. (f) Accuracy comparison
between the best-of-N method and our approach for Gemini-1.5-pro. IAD consistently outperforms all the baselines
across the settings.
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Figure 5: Intercode : Comparison of IAD with base-
lines on the accuracy–compute trade-off shows that IAD,
with appropriate feedback, enables more effective test-
time scaling

3 Experiment Setup197

In this section, we provide detailed discussion on198

the experimental analysis with respect to the agen-199

tic tasks below. For all our experiments, we have200

utilized NVIDIA A100-SXM4-40GB GPU with201

40GB of VRAM, running on CUDA 12.4 and driver202

version 550.90.07.203

3.1 Environmental Details and Setup 204

To understand the role of feedback and evaluate 205

IAD across the 4 keypoints, we perform empiri- 206

cal analysis on 4 challenging agentic environment 207

benchmarks inclduing Text2SQL, Sketch2code, In- 208

tercode and Webshop. 209

Text2SQL tasks map natural language questions to 210

executable SQL queries over structured databases. 211

These tasks require deep reasoning to interpret user 212

intent and generate syntactically and semantically 213

correct queries. We use the BIRD benchmark (Li 214

et al., 2024a), which includes 12,751 question-SQL 215

pairs spanning 95 databases and 37 professional 216

domains. Performance is evaluated using execution 217

accuracy (EX), where a prediction is correct if it 218

yields the same results as the ground truth query 219

when executed. 220

Sketch2code (Li et al., 2024b) tests the multi- 221

modal abilities of agents by converting wireframe 222

sketches into functional HTML prototypes. The 223

task requires aligning visual cues with structured 224

code, handling layout ambiguities, and generat- 225

ing precise UI structures. Evaluation is based on 226
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Model Layout. Txt IoU Img IoU
Single-Turn Approaches

Llava-1.6-8b∗ 8.01 9.26 1.95
Claude-3-Sonnet∗ 14.22 15.85 6.62
Gemini-1.5-Flash 17.85 17.50 10.77
Gemini-1.5-Pro 18.25 18.20 12.69
GPT-4o∗ 19.20 17.12 16.19
Gemini-1.5-Flash (CoT) 19.84 19.13 10.02

Multi-Turn Approaches (Gemini-1.5-Flash)
Sk2code (N=2)∗∗ 19.41 20.45 11.81
Self-Refine (N=2) 19.51 19.35 10.71
BoN (N=2) 21.45 20.1 13.5
IAD (N=2) 24.78 23.01 15.29
IAD-fb (N=2, K=2) 24.86 23.4 14.69
Self-Refine (N=4) 19.97 19.11 11.74
Sk2code (N=4)∗∗ 20.41 21.46 12.67
BoN (N=4) 24.02 22.59 15.91
IAD (N=4) 25.97 24.13 16.98
IAD-fb (N=4, K=4) 26.61 24.62 17.36
Self-Refine (N=6) 19.89 18.91 11.61
Sk2code (N=6) 21.43 21.53 13.78
BoN (N=6) 25.75 22.91 17.67
IAD (N=6) 26.75 24.91 19.12
IAD-fb (N=6, K=6) 27.95 24.99 19.01

Table 1: Sketch2Code: Performance comparison be-
tween single-turn and multi-response generation meth-
ods with Layout score as the evaluation metric. IAD
consistently outperforms SoTA baseline by an absolute
margin of 3–4% with lesser budget, showing the impor-
tance of feedback.

.
three metrics: Layout Similarity (IoU over UI com-227

ponents), Text IoU (text alignment accuracy) and228

Image IoU (CLIP-based visual similarity). These229

metrics strongly correlate with human judgment.230

Intercode (Yang et al., 2023) evaluates agents in231

structured programming tasks across four domains:232

Bash, Python, SQL, and CTF. Each task involves233

a series of agent decisions, including command234

execution and error handling, requiring both syn-235

tactic precision and logical planning. Performance236

is measured using reward signals derived from task237

execution correctness. We focus on the Bash do-238

main for our experiments, where agents must gen-239

erate correct shell commands based on natural lan-240

guage instructions.241

Webshop (Yao et al., 2023) simulates a real-world242

online shopping environment, requiring agents to243

perform long-horizon, language-guided decision-244

making. Given product queries, agents interact245

with webpages (search, click, select) to find match-246

ing items. Key evaluation metrics include: Success247

Rate (SR): whether the selected item satisfies all248

constraints. Progress Rate (PR): how closely the249

agent’s actions align with task goals.250

We study the effect of feedback in IAD along five 251

key dimensions: (1) Accuracy vs compute - Budget 252

controlled scaling (2) Impact of adaptive feedback 253

beyond sampling diversity (3) Impact of feedback 254

modalities, (4) sensitivity to feedback quality under 255

varying levels of noise and sparsity 256

4 Experiment Results and Analysis 257

4.1 Accuracy vs Compute for 258

Budget-Controlled Scaling 259

We analyze how IAD with appropriate and accu- 260

rate feedback, improves performance under varying 261

computational budgets and the demonstrate scaling 262

behaviour across Sketch2Code, Text2SQL, Inter- 263

code and Webshop environments and benchmarks. 264

We observe that IAD with appropriate feedback 265

with limited achieving up 10% accuracy gain over 266

strong feedback-free baselines like BON. How- 267

ever, as the computational budget increases either 268

in terms of sample or model capability, the per- 269

formance gap with and without feedback reduces 270

and this finding is consistent across all the tasks. 271

Sketch2Code: Layout Similarity, Text IoU, and 272

Image IoU show consistent improvement with in- 273

creasing iterations. IAD with just N=2 outperforms 274

BoN and single-turn baselines by 3–4% absolute 275

gain with weaker models like Gemini-1.5-Pro as 276

seen in Figure 3, Table 1. However, as the model 277

capability increases from Gemini-1.5-Pro, Gemini- 278

2.0, Gemini-2.5-Flash and Gemini-2.5-Pro, the gap 279

with and without feedback reduces which shows 280

as model capability improves, parallel sampling 281

can do well. Text2SQL: We evaluate IAD against 282

few-shot chain-of-thought prompting and Best-of- 283

N baselines under identical model settings (Gemini- 284

1.5-Flash, Gemini-1.5-Pro). IAD, through iterative 285

feedback and refinement, achieves higher execu- 286

tion accuracy using a comparable or smaller num- 287

ber of LLM calls Figure 4. With just three rounds 288

of feedback, it effectively corrects syntactic and 289

semantic errors in generated SQL queries, demon- 290

strating how feedback enables more efficient use 291

of the compute budget. To assess generality, we 292

also compare IAD with diverse approaches—MCS- 293

SQL, DIN-SQL, DAIL-SQL, and MAC-SQL—that 294

do not rely on fine-tuning the BIRD train set, Table 295

3. The consistent gains across these comparisons 296

illustrate that integrating feedback,is a key driver of 297

improved performance under test-time budget con- 298

straints. Similar trend is observed in Intercode Fig- 299

ure 5 which shown sequential refinement with ap- 300
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Figure 6: Sketch2code: (a) Compares the performance of IAD at low temperature across varying number of
generations to disentangle the effect of stochasticity and the improvement from iterative feedback based on IAD.(b)
Comparison with BON at temperature = 0.1, which shows BON improvement ceases after 2 iterations Both (a, b)
highlights the improvement due to adaptive refinement with verifier(c) Text2SQL :Compares the accuracy of IAD
on BIRD development set at low temperature across varying number of generations to highlight the improvement
from iterative feedback based on IAD.

propriate feedback outperforms baselines with low301

budget. Webshop: IAD outperforms BoN-SC and302

strong baselines like GPT-4o and Gemini. For ex-303

ample, SR improves from 29.3% (Gemini-1.5-Pro)304

and 41.09% (BoN-SC + GPT-4o) to 44.68% (IAD305

+ GPT-4o), a 3–4% absolute gain. In weaker mod-306

els like Gemini-1.5-Flash, iterative refinement sig-307

nificantly boosts performance where BoN plateaus.308

Models (PR) (SR)
Lemur-70b 71 11
Mistral-7b 68.2 13.9
Vicuna-13b-16k 73 21
Gemini-1.5-Flash 71.3 26.5
Gemini-1.5-Pro 71.9 29.3
BoN-SC + Gemini-1.5-Pro 72.12 30.31
IAD + Gemini-1.5-Pro 71 38.3
GPT-4 75.8 38.5
GPT-4o 73.1 40.3
BoN-SC + GPT-4o 74.21 41.09
IAD + GPT-4o 74.6 44.68

Table 2: Webshop- Progress Rate (PR) and Success
Rate (SR) for Models in the Webshop Environment(Yao
et al., 2023). Perform a comparison of IAD against
Baselines for the Webshop with the evaluation similar
to followed in Agentboard (Ma et al., 2024)

4.2 Impact of Adaptive Feedback Beyond309

Sampling Diversity310

Prior works lack a clear experimental setup to dis-311

entangle the true source of improvement in their ap-312

proaches. A key concern thus exists is whether the313

gains arise from sampling diversity, or from the ac-314

tual effectiveness of the feedback. However, most315

prior methods do not include comparisons against316

stochastic sampling baselines like BON, leaving it317

unclear whether their feedback mechanisms mean-318

ingfully contribute to performance improvements. 319

To answer this, we conduct a controlled experi- 320

ment to isolate the effect of adaptive feedback in 321

IAD from sampling diversity. Specifically, we re- 322

duce the generation temperature (to 0.1, 0.05, and 323

0.0), thereby minimizing randomness in the gener- 324

ation process. We then evaluate the performance 325

of both IAD and BON over multiple iterations un- 326

der these low-stochasticity settings. Sketch2Code: 327

BoN saturates at layout score ~21.9 even with N=6, 328

while IAD surpasses 26 with 6 iterations. Figure 6 329

confirms that adaptive refinement—not random- 330

ness—drives gains. Text2SQL: Accuracy increases 331

steadily with IAD even at low temperature settings 332

(Figure 6). This validates feedback’s role in seman- 333

tic correction. 334

Key Insight: The results demonstrate that the gains 335

from IAD are not merely due to diversity in gener- 336

ation/sampling, but rather from the verifier-guided 337

adaptive feedback-driven refinement. This also 338

highlights a critical insight that when the diver- 339

sity in the policy is low, feedback based sequential 340

approaches can perform significantly better than 341

sampling based BON approaches. 342

4.3 Design and role of feedback form 343

We investigate the impact of different forms of 344

feedback on inference alignment. When feedback 345

is textual, it is relatively easy to integrate as is. 346

However, designing effective feedback from scalar 347

rewards and preferences remains underexplored. 348

In IAD, we focus on various methods to extract 349

useful signal from scalar rewards and demonstrate 350

performance gains crucially depend on the design 351

of proper feedback. We analyze both the scenar- 352

ios -1. Textual feedback from LLM as a judge 353
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Figure 7: Sketch2code: (a) Represents the performance of IAD with N = 2 w.r.t Layout score with varied sparsity
NS (No Sparsity), LS (Low Sparsity) HS (High Sparsity) and ES (Extreme) (b) Performance comparison of IAD
with BON with N = 2 at varied sparsity levels which shows the gains over BON reduces with high sparsity (c)
Performance comparison of IAD with BON with N = 2 at varied noise levels of reward score which shows gains
reduces over BON. However, IAD still improves over baselines under Sparse and Noisy feedback.

2. Scalar rewards. Majority of the prior sequen-354

tial approaches including (Madaan et al., 2023)355

have been designed with a focus on approach 1 i.e356

LLM as a judge and taking feedback from the same.357

However, we demonstrate that directly using off-358

the-shelf LLMs as judges fails to deliver consistent359

or monotonic improvements in complex scenarios360

(Figure ). Our experiments reveal that performance361

often plateaus, fluctuates, or even degrades across362

iterations. To highlight this, we include both quan-363

titative and qualitative examples (Appendix) where364

self-LLM feedback is repetitive and uninforma-365

tive—failing to identify or correct meaningful is-366

sues. This supports our central claim: for effective367

inference-time optimization, near-optimal verifiers368

are essential, especially in complex agentic scenar-369

ios like Sketch2code, text2sql.370

How to design feedback from a scalar reward?371

A crucial challenge lies in designing meaningful372

and informative feedback from scalar reward or373

preference, since the eventual feedback needs to374

be in textual form. Thus IAD is designed to ex-375

tract as much signal as possible from the avail-376

able feedback. Rather than relying solely on ab-377

solute reward scores, IAD transforms score-based378

or comparative feedback into structured guidance379

by identifying the best and worst responses at each380

iteration. These are explicitly fed back into the381

model through prompt conditioning, providing a382

clear directional signal for improvement. This pro-383

cess not only reinforces the distinction between384

good and bad outputs but also enables the use of385

dense feedback—even from weak or indirect su-386

pervision sources—turning minimal signals into387

effective updates. Intuitively, this approach is anal-388

ogous to zeroth-order optimization where two sam-389

pled values from the objective function are suffi- 390

cient to guide the optimization process toward the 391

maximum. Similarly, feedback on the best and 392

worst responses helps steer the model. We com- 393

pare IAD with the above feedback for Sketch2code 394

and show that it performs almost comparable with 395

LLM judge with the reference 396

4.4 Sensitivity to feedback quality 397

We study the sensitivity and robustness of infer- 398

ence alignment to feedback quality via controlled 399

sparsity and noise in feedback signals. 400

Sparse Rewards. In many agentic tasks, dense 401

reward signals may not be available. We study this 402

setting in the context of Sketch2code where we 403

systematically sparsify our verifier/reward model 404

by varying the level of feedback sparsity and com- 405

paring the performance of IAD against the BON 406

baseline under Low, High, and Extreme Sparsity 407

conditions. Sparsification was achieved by provid- 408

ing feedback only when the verifier score exceeded 409

a threshold t; the higher the threshold, the sparser 410

the reward signal. We define three such sparsity 411

levels and evaluate the performance of IAD versus 412

BON with N=2 responses per prompt. 413

We observe that as the level of sparsity increases, 414

the performance gap between IAD and BON nar- 415

rows. Both inference-time approaches—BON and 416

IAD—show a decline in performance, approach- 417

ing the baseline under extreme sparsity conditions. 418

The primary hypothesis behind the drop in IAD 419

performance is that IAD relies on adaptive feed- 420

back: the LLM is conditioned on the best and worst 421

responses from previous iterations, akin to a zeroth- 422

order optimization method. Feedback on both ends 423

(positive and negative) helps steer the model to- 424
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Figure 8: Sketch2code: (a) Represents the performance of Self-Refine (Madaan et al., 2023) based approaches
across iterations using LLM as a judge. (b) Represents the performance of IAD with scalar score which shows
monotonic improvements, highlighting the importance of optimality of feedback and verification

ward reward-maximizing generations through up-425

dates to the system prompt. However, under ex-426

treme sparsity, most responses—regardless of qual-427

ity—receive zero reward. This results in random se-428

lection and noisy update directions, limiting IAD’s429

ability to effectively adapt and improve.430

Noisy Verification. To further investigate the ef-431

fect of noisy verification and how it impacts the432

performance of IAD compared to BON, we intro-433

duce varying levels of noise into the reward signal.434

Specifically, we add Gaussian noise with different435

variances to the reward scores, simulating imper-436

fect or noisy verifier conditions. We then run both437

IAD and BON with N=2 responses per prompt and438

evaluate their performance under these noisy set-439

tings. This setup allows us to assess the robustness440

of IAD to reward noise and compare its stability441

and effectiveness relative to BON when the verifi-442

cation signal is noisy.443

We observe trends similar to those in the sparse444

reward setting. Notably, IAD remains reasonably445

robust to mild noise in the reward signal. This is446

because IAD relies on adaptive feedback, where447

the LLM is conditioned on the best and worst re-448

sponses from previous iterations—effectively lever-449

aging pairwise comparisons rather than absolute450

scores. As long as the noise is limited, the rel-451

ative preference between responses is preserved.452

For instance, if one layout score is 0.5 and another453

is 0.3, mild noise might shift them to 0.55 and454

0.24, respectively—maintaining the same ordering.455

Therefore, IAD continues to improve under rea-456

sonable noise levels. However, as noise increases457

significantly, it can flip these preferences, leading458

to unstable updates and a decline in performance.459

Method Exe Acc
DIN-SQL + GPT-4 50.72
DAIL-SQL + GPT-4 54.76
MAC-SQL + GPT-4 57.56
MCS-SQL + GPT-4 63.36
E-SQL + GPT-4o 65.58
IAD (Ours) + GPT-4o 65.97
IAD (Ours) + Gemini-1.5-pro 68.05

Table 3: Text2SQL - Execution accuracy comparison
of previous works with our proposed approach

5 Conclusion 460

In this work, we explore the underexplored role of 461

feedback in inference-time alignment for black box 462

AI agents. To understand the effect of feedback in 463

inference alignment, we introduce Iterative Agent 464

Decoding (IAD), a general sequential framework. 465

Our study analyzes feedback through four lenses: 466

(1) accuracy vs. compute trade-offs, (2) gains be- 467

yond sampling diversity, (3) feedback modality in- 468

tegration, and (4) sensitivity to feedback quality. 469

Empirically, we find that feedback is especially 470

valuable under constrained budgets—achieving up 471

to 10% gains over feedback-free baselines. We also 472

highlight the challenge of integrating diverse feed- 473

back modalities into sequential designs, not criti- 474

cally explored in literature. While textual feedback 475

integrates naturally, representing scalar or prefer- 476

ence signals remains an open challenge. We also 477

observe that IAD’s benefits diminish under highly 478

sparse or noisy feedback, underscoring the impor- 479

tance of feedback fidelity for effective alignment. 480
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Limitations481

While IAD – our iterative decoding approach – im-482

proves upon prior baselines by better leveraging483

verifier feedback, it is inherently sequential, lead-484

ing to increased user facing latency compared to485

easily parallizable BoN approaches. Addressing486

this tradeoff between quality improvement, com-487

putational cost, and user facing latency remains488

an important area for future research, which may489

require properly combining these techniques with490

adaptive stopping, controlled decoding (Mudgal491

et al., 2024), speculative decoding (Leviathan et al.,492

2023). Additionally, more efficient verifier-guided493

selection could improve the efficiency in iterative494

decoding for agentic tasks. As we learnt, the veri-495

fier (or judge) plays a crucial role in our approach.496

Thus a more concrete investigation and selection497

of a judge for these challenging tasks is a valid and498

crucial next step of our work. We highlight that499

this work is of academic nature and has no direct500

or immediate harmful impacts to society. However,501

since this work deals with improving AI agents, it502

should be done under safety protocols and guide-503

lines. We want to highlight that this study is limited504

to English language text primarily due to the nature505

of open-source datasets used.506

References507

Afra Amini, Tim Vieira, and Ryan Cotterell.508
2024. Variational best-of-n alignment. Preprint,509
arXiv:2407.06057.510

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda511
Askell, Anna Chen, Nova DasSarma, Dawn Drain,512
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.513
2022. Training a helpful and harmless assistant with514
reinforcement learning from human feedback. arXiv515
preprint arXiv:2204.05862.516

Ahmad Beirami, Alekh Agarwal, Jonathan Berant,517
Alexander D’Amour, Jacob Eisenstein, Chirag Nag-518
pal, and Ananda Theertha Suresh. 2024. Theoret-519
ical guarantees on the best-of-n alignment policy.520
Preprint, arXiv:2401.01879.521

Souradip Chakraborty, Soumya Suvra Ghosal, Ming522
Yin, Dinesh Manocha, Mengdi Wang, Amrit Singh523
Bedi, and Furong Huang. 2024. Transfer q star:524
Principled decoding for llm alignment. Preprint,525
arXiv:2405.20495.526

Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull527
Sohn, Lajanugen Logeswaran, Kyunghoon Bae,528
and Honglak Lee. 2024. Autoguide: Automated529
generation and selection of context-aware guide-530
lines for large language model agents. Preprint,531
arXiv:2403.08978.532

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin 533
Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao Hong, 534
Zhiling Luo, et al. 2024. Xiyan-sql: A multi- 535
generator ensemble framework for text-to-sql. arXiv 536
preprint arXiv:2411.08599. 537

Kevin G. Jamieson, Robert D. Nowak, and Benjamin 538
Recht. 2012. Query complexity of derivative-free 539
optimization. Preprint, arXiv:1209.2434. 540

Yaniv Leviathan, Matan Kalman, and Yossi Matias. 541
2023. Fast inference from transformers via spec- 542
ulative decoding. In International Conference on 543
Machine Learning, pages 19274–19286. PMLR. 544

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua 545
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying 546
Geng, Nan Huo, et al. 2024a. Can llm already serve 547
as a database interface? a big bench for large-scale 548
database grounded text-to-sqls. Advances in Neural 549
Information Processing Systems, 36. 550

Ryan Li, Yanzhe Zhang, and Diyi Yang. 2024b. 551
Sketch2code: Evaluating vision-language models 552
for interactive web design prototyping. Preprint, 553
arXiv:2410.16232. 554

Yanming Liu, Xinyue Peng, Jiannan Cao, Shi Bo, Yuwei 555
Zhang, Xuhong Zhang, Sheng Cheng, Xun Wang, 556
Jianwei Yin, and Tianyu Du. 2024. Tool-planner: 557
Task planning with clusters across multiple tools. 558
Preprint, arXiv:2406.03807. 559

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, 560
Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng 561
Kong, and Junxian He. 2024. Agentboard: An an- 562
alytical evaluation board of multi-turn llm agents. 563
Preprint, arXiv:2401.13178. 564

Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz, 565
and Amine Mhedhbi. 2024. The death of schema 566
linking? text-to-sql in the age of well-reasoned lan- 567
guage models. arXiv preprint arXiv:2408.07702. 568

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler 569
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, 570
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, 571
Shashank Gupta, Bodhisattwa Prasad Majumder, 572
Katherine Hermann, Sean Welleck, Amir Yazdan- 573
bakhsh, and Peter Clark. 2023. Self-refine: It- 574
erative refinement with self-feedback. Preprint, 575
arXiv:2303.17651. 576

Youssef Mroueh. 2024. Information theoretic guaran- 577
tees for policy alignment in large language models. 578
Preprint, arXiv:2406.05883. 579

Sidharth Mudgal, Jong Lee, Harish Ganapathy, 580
YaGuang Li, Tao Wang, Yanping Huang, Zhifeng 581
Chen, Heng-Tze Cheng, Michael Collins, Trevor 582
Strohman, Jilin Chen, Alex Beutel, and Ahmad 583
Beirami. 2024. Controlled decoding from language 584
models. Preprint, arXiv:2310.17022. 585

9

https://arxiv.org/abs/2407.06057
https://arxiv.org/abs/2401.01879
https://arxiv.org/abs/2401.01879
https://arxiv.org/abs/2401.01879
https://arxiv.org/abs/2405.20495
https://arxiv.org/abs/2405.20495
https://arxiv.org/abs/2405.20495
https://arxiv.org/abs/2403.08978
https://arxiv.org/abs/2403.08978
https://arxiv.org/abs/2403.08978
https://arxiv.org/abs/2403.08978
https://arxiv.org/abs/2403.08978
https://arxiv.org/abs/1209.2434
https://arxiv.org/abs/1209.2434
https://arxiv.org/abs/1209.2434
https://arxiv.org/abs/2410.16232
https://arxiv.org/abs/2410.16232
https://arxiv.org/abs/2410.16232
https://arxiv.org/abs/2406.03807
https://arxiv.org/abs/2406.03807
https://arxiv.org/abs/2406.03807
https://arxiv.org/abs/2401.13178
https://arxiv.org/abs/2401.13178
https://arxiv.org/abs/2401.13178
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2406.05883
https://arxiv.org/abs/2406.05883
https://arxiv.org/abs/2406.05883
https://arxiv.org/abs/2310.17022
https://arxiv.org/abs/2310.17022
https://arxiv.org/abs/2310.17022


Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,586
Long Ouyang, Christina Kim, Christopher Hesse,587
Shantanu Jain, Vineet Kosaraju, William Saunders,588
et al. 2021. Webgpt: Browser-assisted question-589
answering with human feedback. arXiv preprint590
arXiv:2112.09332.591

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-592
roll L. Wainwright, Pamela Mishkin, Chong Zhang,593
Sandhini Agarwal, Katarina Slama, Alex Ray, John594
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,595
Maddie Simens, Amanda Askell, Peter Welinder,596
Paul Christiano, Jan Leike, and Ryan Lowe. 2022a.597
Training language models to follow instructions with598
human feedback. Preprint, arXiv:2203.02155.599

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-600
roll L. Wainwright, Pamela Mishkin, Chong Zhang,601
Sandhini Agarwal, Katarina Slama, Alex Ray, John602
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,603
Maddie Simens, Amanda Askell, Peter Welinder,604
Paul Christiano, Jan Leike, and Ryan Lowe. 2022b.605
Training language models to follow instructions with606
human feedback. Preprint, arXiv:2203.02155.607

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,608
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok609
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and610
Sercan O Arik. 2024. Chase-sql: Multi-path reason-611
ing and preference optimized candidate selection in612
text-to-sql. arXiv preprint arXiv:2410.01943.613

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen614
Chang, Azalia Mirhoseini, and Amin Saberi. 2024.615
Chess: Contextual harnessing for efficient sql synthe-616
sis. arXiv preprint arXiv:2405.16755.617

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,618
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and619
Denny Zhou. 2022. Self-consistency improves chain620
of thought reasoning in language models. arXiv621
preprint arXiv:2203.11171.622

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,623
Quoc V. Le, Denny Zhou, and Xinyun Chen. 2024.624
Large language models as optimizers. Preprint,625
arXiv:2309.03409.626

John Yang, Akshara Prabhakar, Karthik Narasimhan,627
and Shunyu Yao. 2023. Intercode: Standardizing628
and benchmarking interactive coding with execution629
feedback. Preprint, arXiv:2306.14898.630

Shunyu Yao, Howard Chen, John Yang, and Karthik631
Narasimhan. 2023. Webshop: Towards scalable real-632
world web interaction with grounded language agents.633
Preprint, arXiv:2207.01206.634

10

https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2306.14898
https://arxiv.org/abs/2306.14898
https://arxiv.org/abs/2306.14898
https://arxiv.org/abs/2306.14898
https://arxiv.org/abs/2306.14898
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206


A Appendix 635

A.1 Detailed Environment Description 636

1. Text-to-SQL Text-to-SQL serves as a critical interface between natural language and structured query 637

languages by enabling users to translate natural language queries into executable SQL commands. This 638

functionality empowers individuals without SQL expertise to interact with complex databases, thereby 639

facilitating data exploration, informed decision-making, automated analytics, and advanced feature 640

extraction for machine learning. Generally, a Text-to-SQL system receives a natural language question and 641

any pertinent metadata about the tables and columns, which serves as external knowledge to aid in database 642

comprehension. Consequently, such systems are responsible not only for interpreting user intent and 643

identifying relevant information from a potentially vast set of tables and columns but also for generating 644

SQL queries that may include multiple conditions—a process that is inherently reasoning intensive. To 645

evaluate our proposed framework, we employ the BIRD benchmark (Li et al., 2024a), a challenging and 646

widely used dataset in the Text-to-SQL domain. BIRD comprises an extensive collection of 12,751 unique 647

question-SQL pairs drawn from 95 large databases with a total size of 33.4 GB. The benchmark spans 648

more than 37 professional domains, including blockchain, hockey, healthcare, and education, making it a 649

comprehensive resource for assessing the robustness and generalizability of Text-to-SQL systems. The 650

primary metric for model comparison in this domain is execution accuracy (EX), where the ground truth 651

SQL query and the predicted SQL query are both executed over the target database, if they both generate 652

same sets of results the accuracy for the predicted SQL query is considered as accurate. 653

(a) Sketch2Code Environment (b) Text-to-SQL Environment

(c) Webshop Environment

Figure 9: These three figures given an overview of three diverse and challenging agentic tasks that we consider
to evaluate the performance of agents with our proposed approach vs baselines -(a) Sketch2code(Li et al., 2024b)
(b)Text2SQL (Li et al., 2024a) and (c) Webshop (Yao et al., 2023)

2. Sketch2code: Sketch2code (Li et al., 2024b) challenges and evaluates the multi-modal capabilities 654

of agent where the objective is transform wireframe-style rough userk sketches into functional HTML 655

prototypes with embedded CSS. Sketch2Code uniquely tests multi-modality, requiring structured code 656

generation from imprecise visual input, often leading to misaligned text, incorrect spacing, and structural 657
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Figure 10: Sketch2code: This figure provides a comparison of IAD (ours) with Best-of-N sampling (SoTA) and
single-turn generation with Gemini-1.5-Flash for the metrics - (a, d) Layout Similarity (b, e) TextIoU (c, f) ImageIoU
across varying the number of generations (N). Top 3 rows, the optimization is done taking Text IOU as the verifier
and the bottom 3 rows with Image IOU as the verifier. So, this also shows both the generalisability and performance
improvement of IAD over baselines.

inconsistencies. This leads to challenges such as misaligned text, incorrect spacing, missing components,658

structural inconsistencies, making it an extremely challenging benchmark for multimodal LLMs. The659

complexity of this task arises from: ambiguity in hand-drawn sketches, where component boundaries,660

spacing, and positioning are not precisely defined. The evaluation of the generation is done primarily661

with three key metrics : Layout Similarity, Text IOU, Image IOU. Layout Similarity (IoU-based metrics):662

Intersection-over-Union (IoU) is computed for different UI components (e.g., buttons, images, text blocks)663

to measure how well their positions match the reference. Intersection-over-Union (IoU) is computed for664

different UI components (e.g., buttons, images, text blocks) to measure how well their positions match the665

reference implementation. Text-IOU similarly measures how accurately the generated text aligns with the666

reference design. Image IOU uses CLIP embeddings to compare the visual appearance of the generated667

webpage with the reference design and evaluates color similarity, element positioning, and component668

rendering. These metrics provide a reliable way to measure the quality of the generated response and669

strongly correlates with human judgement. Evaluations are done also with LLM as judge to compare the670

performance.671

3. Webshop is a large-scale, web-based interactive environment designed to test an AI agent’s capability672

to perform sequential decision-making in an online shopping scenario under sparse feedback (Yao et al.,673

2023). The environment is modeled as a partially observable Markov decision process, where the agent674

navigates a simulated e-commerce platform to fulfill a user’s product request based on natural language675

instructions. At each step, the agent receives an observation in the form of a webpage—such as search676

results, product details, or checkout options—and must decide on an action, including searching for a677

product, clicking on an item, or selecting options. The evaluation is based on success rate (SR), which678

measures whether the agent successfully selects a product that matches all specified criteria (attributes,679

price, and options), and task score, which represents the overall alignment of the final selection with the680

given instruction. The WebShop environment presents significant challenges, including sparse rewards681

(since feedback is only provided at the end of an episode), the need for strategic backtracking and682

exploration, and handling noisy or ambiguous natural language instructions. This setup makes WebShop a683
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Algorithm 1 Proposed Approach: Iterative Decoding black box Inference with AI Agents

Require: Proposal distribution π0(·|x, ŷt), input prompt x, reward function R(x, y), threshold δ > 0,
number of iterations T

Ensure: Final accepted response ŷT
1: Initialize: Sample an initial response y0 ∼ π0(·|x)
2: Compute its reward r0 = R(x, y0)
3: Accept the initial response: ŷ0 ← y0 and r∗ ← r0
4: for t = 1, 2, . . . , T do
5: Sample a new candidate response yt ∼ π0(·|x, ŷt−1)
6: Compute its reward rt = R(x, yt)
7: if rt − r∗ > δ then
8: Accept the candidate: ŷt ← yt and r∗ ← rt
9: else

10: Reject the candidate: ŷt ← ŷt−1

11: end if
12: end for
13: return ŷT

rigorous benchmark for evaluating long-horizon reasoning, language understanding, and decision-making 684

in real-world-like online navigation scenarios. 685

Remark (Why it works?). The generation of better responses occurs through stochastic sampling in 686

each iteration from the base model, conditioned on the best response so far (and the worst candidate), 687

followed by a pairwise comparison from the verifier. This feedback mechanism helps guide the generator 688

to sample responses with higher expected rewards over the iterations. Practically, we achieve this by 689

incorporating prompts like “Improve upon the best response while avoiding mistakes from the worst 690

response.” Additionally, explicit feedback from a judge (e.g., verifier critiques or an LLM acting as a 691

judge) accelerates the improvement process by providing targeted guidance. Intuitively, this approach 692

is analogous to zeroth-order optimization (Jamieson et al., 2012; Yang et al., 2024), where two sampled 693

values from the objective function are sufficient to guide the optimization process toward the maximum. 694

Similarly, feedback on the best and worst responses helps steer the model toward generating responses 695

that maximize rewards, reinforced through system prompts. 696

A.2 Limitation of Single-turn Approach 697

In this section we characterize the performance gap ∆ as the difference between the reward the optimal or 698

ground-truth agent is achieving vs the reward achieved by the reference achieved by the reference agent 699

policy. 700

∆ = Ey∼π∗(·|x)[R(x, y)]− Ey∼π0(·|x)[R(x, y)] 701

≤ sup
R∈R

Ey∼π∗(·|x)[R(x, y)]− Ey∼π0(·|x)[R(x, y)] 702

≤ ∥R∥maxdTV(π
∗(·|x), π0(·|x)), 703

where R(x, y) represents the reward function measuring the quality of the generated response, and 704

dTV(π
∗(·|x), π0(·|x)) is the total variation (TV) distance between the optimal policy π∗(·|x) and the 705

reference policy π0(·|x) (Mroueh, 2024). This result demonstrates that the performance gap ∆ is 706

inherently limited by the quality of the reference agent policy π0(·|x), as measured by its divergence from 707

the optimal policy. Thus, if π0(·|x) is close to π∗(·|x) (in terms of TV distance), the performance gap will 708

be small, resulting in near-optimal responses and viceversa. 709

A.3 Limitation of Prior approaches 710

In this section, we first provide a brief description of the baseline approaches and then discuss their pros 711

and cons in this context. 712
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Single-turn Approaches: In single-turn approaches, the response y ∼ π0(·|x) is directly generated from713

the reference agent policy. his method is straightforward, fast, and does not rely on a verifier, making it714

applicable even in verifier-agnostic settings. However, as evident from Figure 1, direct generation—even715

with SoTA models like Gemini-1.5-Pro, Gemini-1.5-Flash, GPT-4, and Claude—remains highly sub-716

optimal for complex tasks like Sketch2Code and Text2SQL, also highlighting the difficulty of these tasks.717

Thus in single-turn generation, the performance is limited by the quality of the reference policy π0(·|x))718

where larger f-divergence indicates greater misalignment.719

BoN sampling: Best-of-N sampling improves upon single-turn generation by drawing N i.i.d samples720

from the reference policy π0(·|x) and selecting the highest-reward response based on the verifier R(x, y).721

BoN is simple, parallelizable, and computationally efficient and doesn’t rely on logits/model access thus722

applicable to black box agentic scenarios. It works even with scalar rewards and has been shown to723

achieve near-optimal tradeoffs between win rate and KL divergence (Beirami et al., 2024; Amini et al.,724

2024). Despite its advantages, BoN remains limited by the quality of the reference policy lacks the ability725

to iteratively refine responses based on verifier feedback. For example: BoN cannot incorporate targeted726

feedback, such as refining specific HTML structures in Sketch2Code or correcting systematic SQL errors727

in Text2SQL (further details in exp section)728

Controlled decoding: Majority of prior decoding-based methods (Mudgal et al., 2024; Chakraborty et al.,729

2024) rely on access to logits for controlled generation , making them inapplicable in black box inference730

settings. While block-wise decoding (Mudgal et al., 2024) can be applied without logits as well however731

improper block selection disrupts syntax and semantics for structured generation (Appendix).732

(a)

Figure 11: Sketch2code: Qualitative evaluation of the generated HTMLs with BoN sampling (N=4) corresponding
to the user-sketch (left-bottom) and reference html (left-top). The figures show that BoN performs much better in
matching the reference HTML but still misses specific properties like rectangular structue, position of text, relative
positioning of smaller blocks etc.

A.4 Detailed Experimental Analysis733

A.5 Text-to-SQL Detailed Results and Analysis734

In this section, we detail the experiments conducted on the BIRD text-to-SQL benchmark (Li et al.,735

2024a). For these experiments, we employed the Gemini-1.5-pro and Gemini-1.5-flash models both736

to generate actions at each state and as judge models to predict the reward. At each state, the LLM is737

provided with the database schema and the user’s query, based on which it generates a draft SQL query.738

This draft query is then evaluated by the judge model, which also produces feedback on how to improve739
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Sketch2code : Oracle Judge Prompt for providing Feedback

Input: Act as you are a front-end designer working with a code agent to implement an HTML
webpage . You are provided with two images : the first image is the reference webpage,
and the second one is the current implementation from the code agent . Note that images
have already been replaced with blue rectangles as the placeholder. The task is to carefully
compare the agent ’s implementation against the reference webpage , and provide feedback
to help the agent make its implementation closer to the reference webpage . Your feedback
should be specific to the differences in layouts and visual components on the two webpages. If
required provide small code snippets to help the user-agent but provide very few lines. Don’t
focus on the style components too much and focus on layout similarity and visual match with
the reference webpage.

the draft. The LLM uses this feedback to generate a revised query, establishing a self-correction loop. 740

Finally, the answer with the highest reward value is selected as the candidate output. This process can be 741

repeated to generate multiple candidate SQL queries. We then apply self-consistency (Wang et al., 2022) 742

by executing all candidate queries over the database, grouping them based on their execution results, and 743

selecting a query from the largest result cluster as the final answer. In the following sections, we first 744

compare our proposed method with the widely used few-shot prompting approach in terms of Pass@k 745

performance and final accuracy after self-consistency (Majority@K) using execution accuracy as the 746

metric in order to demonstrate that using our method we can generate a pool of candidates with a higher 747

quality. Subsequently, we compare our approach with the best-of-N approach which is one of the strong 748

baselines as a test-time compute approaches to demonstrate the effectiveness of the proposed framework. 749

Finally, we compare our method with all previously proposed test-time methods on the BIRD development 750

set benchmark, excluding works that rely heavily on fine-tuning LLMs (Pourreza et al., 2024; Talaei et al., 751

2024; Maamari et al., 2024; Gao et al., 2024) for a fair comparison. 752

Comparing with Few-shot prompting We compared our method with the widely used few-shot 753

in-context learning approach for text-to-SQL tasks. We evaluated and reported the Pass@K and self- 754

consistency performance for up to 10 candidates using both the Gemini-1.5-flash-002 and Gemini-1.5-pro- 755

002 models, as illustrated in the Figure 4. As demonstrated by these figures, our approach consistently 756

outperforms the few-shot in-context learning method by a significant margin on both pass@K and 757

self-consistency scores. 758

Comparing with Best-of-N In this section, we compare our proposed framework with the well- 759

established best-of-N method to highlight the importance of searching through possible answers based on 760

their rewards. For this comparison, we generated up to 20 candidate queries for each sample in the BIRD 761

development set and utilized the model itself to select the best answer from the candidates. As shown in 762

the Figure 4, our proposed method outperformed the best-of-N approach for both the Gemini-1.5-pro and 763

Gemini-1.5-flash models, demonstrating the significance of incorporating a feedback loop to enhance the 764

quality of candidate responses. 765

Comparison with Previous works In this section, we compare our approach with Gemini-1.5-Pro 766

and other previous methods that rely on test-time computation. As shown in the Table 3, our method 767

outperforms all previous approaches, demonstrating the effectiveness of the proposed framework in 768

leveraging test-time computations to enhance model performance on the BIRD benchmark development 769

set. 770

A.6 Sketch2code 771

For Sketch2code (Li et al., 2024b), we provide a detailed comparison of our approach against SoTA 772

baselines on several evaluation criterion and metrics. We used the hyperparameter setting of temperature 773

= 0.5, max tokens = 4096, top p = 1.0, frequency/repetition penalty = 0.0, and presence penalty = 0.0 774
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Figure 12: Sketch2code: Provides a qualitative verification of layout score as a metric and corresponding correlation
to human judgement. It is evident that HTMLs with higher match with the reference layout (right-top) and user
sketch(right-bottom) has higher layout score and vice-versa showing that its a valid metric.

for all our results. For the metrics, we consider metrics centring 1.Layout Similarity, 2. Visual IoU, 3.775

Text IoU with reference HTML following (Li et al., 2024b). These metrics offer a comprehensive and776

reliable assessment of HTML generation quality, demonstrating a strong correlation (9̃0%) with human777

satisfaction, as shown in (Li et al., 2024b) (further details in Appendix). Hence, we use Layout similarity778

as a verifier along with LLM-as-judge (Li et al., 2024b) to guide the generations for both BoN (Beirami779

et al., 2024) and IAD. We report comparison with baseline single-turn approaches including SotA models780

GPT-4o, Claude-3, InternVL2, Gemini-1.5-Flash, CoT and variants along with multi-response generation781

approaches including BoN, Sk2code and IAD (Ours). Single turn approaches even from SoTA models782

fail to match the layout structure, position of blocks, textual content, size of the blocks etc in the given783

user-sketch, causing a mismatch w.r.t to the reference layout as can be clearly seen in Figure and achieves a784

low score in-terms of all the three metrics in-comparison with multi-response generation approaches even785

with N=2. Best-of-N sampling (BoN) with a weaker model Gemini-1.5-Flash improves over single-turn786

approaches and , with N = 4 generations, it outperforms SoTA models with single-turn responses by787

a margin of 15-18%, by correctly identifying the block position, title block, overall layout structures788

etc. We see monotonic improvement in performance over the number of responses as the layout score789

improves from 20.41 to 25.7 with 6 responses. However, BoN struggles in incorporating fine-grained790

details about layout structure and makes some-times makes repetitive mistakes in the position of block in791

all the N generation for the prompts (as shown in Fig). Our proposed approach IAD, mitigates this gap by792

iteratively improving the responses and as shown in Table 1, it achieves a major improvement of 15%793

from BoN as well as single-turn SoTA Claude with just 2 iterations (eq : N=2) even with simpler model794

Gemini-1.5-Flash. At each iteration, we pass the best and worst HTML as a context along with instruction,795

for generating the next iteration. We observe IAD is able to learn fine-grained layout components, image796

semantics over iterations with the context of the Best and Worst HTML. We see that with increased797

iterations, performance of IAD improves reaching to a very high layout score of 26.75, outperforming all798

baselines with same generations. We also report the Image and Text IoU scores while optimizing with the799
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Sketch2code : Feedback from LLM as a Judge (Self Verification)

Feedback provided : Iter1 : The HTML structure and CSS styling do not reflect the provided
wireframe. Iter2 :The layout needs to be revised to accurately represent the sketch’s two-
column image section and the distribution of text blocks. Iter 3: The layout of the text blocks
and image containers does not accurately reflect the provided wireframe. The layout uses
flexbox but doesn’t accurately reflect the sketch’s proportions and image placement. The
large image should be centered and the smaller images should be positioned to the left of their
respective text blocks. Iter4 : Implement a more precise grid-based layout using CSS grid
or flexbox to achieve the correct positioning and sizing of all elements. Iter 5: The provided
HTML closely resembles the wireframe but still needs significant layout adjustments. Use
CSS Grid to precisely position and size all elements according to the wireframe’s proportions.

Figure 13: Sketch2code : Top row shows the user sketch, reference image and the performance of IAD over
iterations. The figure highlights improvement of IAD over 4-turns w.r.t Layout similarity score (1/100) for 3
examples. It shows clear improvement over iterations. We also qualitatively analyse the snapshots of the HTMLs
generated by the agent, which demonstrates that over iteration the qualitative performance improves and matches
the input sketch/reference HTML.

layout-score, to check for reward-overoptimization of the metric. 800

However, as can be observed in Table 1 and Figure-3, that text and image similarities are also improving 801

over the iterations and our findings regarding comparison with baseline BoN are consistent with the 802

same. However, we observe that with increase number of generations the performance gets closer to 803

BoN. We also consider sensitivity of the token-length of the context plays a critical role in this case, 804

where providing the entire HTMLs can affect the entropy of the distribution, and thus over-conditioning 805

can hinder structured generation by reducing diversity and exploration (as shown in Figure ). Thus, 806

we provide only the top 100-200 tokens of the best (and worst) HTMLs. However, it is clear that if 807

there would be a judge to highlight which portion of the code needs to be updated that will be more 808

targeted. Hence, we incorporate LLM-judge (Gemini-1.5-Pro) which has the reference policy and it 809

checks with the current response and provide feedback on improvement and sometimes snippets of HTML 810

as well (however, we restrict that to 100 tokens 5-8% of the original HTML). This leads to a significant 811

improvement of 36% for the layout score with just two iteration and final score of 31.98 with 6 iterations, 812

demonstration the important of iterative approaches for agent performance. However, Sk2code (Li et al., 813
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2024b) also performs feedback based design with LLM as a judge, however their approach doesn’t yield814

major improvements for several models like Gemini-1.5, which we hypothesize can be due to the incorrect815

design of the method and also issues in the GPT-4 judge. Overall, in all our ablation our findings remain816

consistent where IAD outperforms baseline by a major margin.817

A.7 Importance of Verifier and Reward functions818

In this section, we provide a motivation and importance of the verifier in ensuring monotonic improvement819

with our proposed approach. We define π∗(·|x) as the target policy generating y∗ ∼ π∗(·|x). At820

each step t, we sample yt+1 ∼ π0(·|x, ŷt), where ŷt is the best response so far, and update ŷt+1 =821

argmax y ∈ (yt, ŷt)R(x, y), accepting yt+ 1 if R(x, yt) − R(x, ŷt) > 0. If R(x, y) incorporates the822

information of π∗(y|x) (upto a normalization i.e R(x, y) = f(π∗(y|x))
Z , f being a monotonic function), we823

show that our iterative refinement never deteriorates performance. In other words, we assume that for any824

two responses y1, y2, if the reward function satisfies R(x, y1) > R(x, y2) then it implies that the optimal825

policy assigns a higher probability to y1 than y2, i.e π∗(y1|x) > π∗(y2|x). A natural way to measure826

closeness to the optimal response is by estimating the distance under the true probability distribution (i.e827

target policy) π∗(·|x), defined as828

d(ŷt+1, y
∗) = π∗(y∗|x)− π∗(ŷt+1|x) (4)829

where the difference captures that how good the quality of the response is under optimal policy. If the830

response ŷt+1 is highly optimal, then d(ŷt+1, y
∗) will be low and viceversa, when ŷt+1 = y∗, the gap will831

be zero.832

d(ŷt, y
∗) = π∗(y∗|x)− π∗(ŷt|x) (5)833

= π∗(y∗|x)− π∗(ŷt|x)− (π∗(ŷt+1|x)− π∗(ŷt|x))834

≤ π∗(y∗|x)− π∗(ŷt|x) = d(ŷt, y
∗)835

where, we first add and subtract the term π∗(ŷt|x). Then by definition of our acceptance rule, we ensure836

that π∗(ŷt+1|x)−π∗(ŷt|x) ≥ 0, where equality occurs when ŷt+1 = ŷt. Thus we have d(ŷt) <= d(ŷt−1)837

i.e we ensure that the responses over the iteration are either improving or remain the same over iteration838

and won’t deteriorate over iterations. However, it is important to note that this is based on the assumption839

that the reward function is aligned with the optimal distribution, meaning that selecting responses based840

on maximizing R(x, y) leads to responses that are increasingly closer to the ground-truth distribution841

π∗(·|x).842

Verifier and Reward function: We provide qualitative evaluation of considering layout similarity as a843

verifier due to its Interpretability and also correlation with human judgements also shown in (Li et al.,844

2024b). Additionally, we want to highlight that Sketch2code represents an extremely complex and845

challenging task for using self-LLM as a judge (Madaan et al., 2023) (without significant prompting)846

to compare between two generated HTMLs (by the agent) with its similarity to the input sketch and847

prompt. The input sketch has entirely different distribution than the image snapshot of the generated848

HTML which makes it harder for LLM as a judge to perform which is one of the reason we hypothesize849

that Self-refine (Madaan et al., 2023) type approaches doesn’t provide improvements as shown in Table 1.850

On the other-hand, although LLM judge (oracle) provides more meaningful feedback when it has access851

to the reference HTML, however needs to be prompted efficiently to generate meaningful responses.852

We accept the fact that our judge (oracle) for the feedback was allowed to provide more context853

than the one used in (Li et al., 2024b). However, the performance improvement in (Li et al., 2024b)854

feedback approch is very less and we hypothesize major reasons can be not performing IAD type approach,855

where we take previous best response (HTML) in the context along with specific instructions. Even for856

LLM-judge (oracle), we leverage feedback along with the previous best and worst HTMLs, which helps857

in providing more meaningful context to the agent in generating the correct HTML.858
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Figure 14: Qualitative (Left) and Quantitative (Right) illustration of the performance benefit of IAD (Ours) over
Single-turn response generations using Gemini-1.5 (Base) Text2SQL task. IAD improves performance by correctly
handling query logic and joins, improving the accuracy over baseline and BoN (Best-of-N). move it to appendix

Figure 15: Text2SQL: An example of two responses is presented: the first response, generated using our proposed
approach, is correct, while the second response, produced using the best-of-N method, is incorrect.

Webshop - Task Execution Flow - IAD (Success)

Search: "blue color toothbrushes" −→ Product List Found −→ Selected: Hoomall
Kids U-Shaped Toothbrush (Blue, $10.95) −→ Clicked on Product −→ Purchased
−→ Task Completed (Reward: 1.0)
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Model Layout. Txt IoU Img IoU
Single-Turn Approaches

InternVL2-8b∗ 4.01 4.89 1.41
Llava-1.6-8b∗ 8.01 9.26 1.95
Claude-3-Sonnet∗ 14.22 15.85 6.62
GPT-4o-Mini∗ 16.29 20.84 0.72
Claude-3-Opus∗ 17.11 18.09 8.32
Claude-3-Haiku∗ 17.52 20.60 2.72
Gemini-1.5-Flash 17.85 17.50 10.77
Gemini-1.5-Pro 18.25 18.20 12.69
GPT-4o∗ 19.20 17.12 16.19
Gemini-1.5-Flash (CoT) 19.84 19.13 10.02
Claude-3.5-Sonnet∗ 22.26 25.33 9.21

Multi-Turn Approaches (Gemini-1.5-Flash)
Sk2code (N=2)∗∗ 19.41 20.45 11.81
Self-Refine (N=2) 19.51 19.35 10.71
BoN (N=2) 21.45 20.1 13.5
IAD (N=2) 24.78 23.01 15.29
IAD-fb (N=2, K=2) 24.86 23.4 14.69
Self-Refine (N=4) 19.97 19.11 11.74
Sk2code (N=4)∗∗ 20.41 21.46 12.67
BoN (N=4) 24.02 22.59 15.91
IAD (N=4) 25.97 24.13 16.98
IAD-fb (N=4, K=4) 26.61 24.62 17.36
Self-Refine (N=6) 19.89 18.91 11.61
Sk2code (N=6) 21.43 21.53 13.78
BoN (N=6) 25.75 22.91 17.67
IAD (N=6) 26.75 24.91 19.12
IAD-fb (N=6, K=6) 27.95 24.99 19.01

Table 4: Sketch2Code: Performance comparison between single-turn and multi-response generation approaches.
For each of the multi-response generation method Layout score acts as the reference metric (temperature =0.6).
Table demonstrate that IAD (Ours) consistently outperform SoTA baseline by >3-4% margin (absolute). N denotes
the number of LLM calls for generating the HTML (>2000 tokens) and K represents the calls to LLM judge for
getting feedback (<200 tokens).

.

Webshop - Task: Buy a Folding Storage Box Ottoman- IAD (Success)

Size: 60x40x40cm Material: Faux Leather Price: Under $170

• Search→ "folding storage box ottoman faux leather 60x40x40cm"

• Product List→ Found 50 results

– Ottoman Footstool (40x40x40cm) - $149.97
– Other options did not match size or price

• Click→ Select "Ottoman Footstool"

• Size Selection→ Click "60x40x40cm"

• Buy Now→ Proceed to checkout

• Task Completed
860
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Query Search Attempts Results Found Final Outcome

Men’s Black Loafers (Size
10.5, Rubber Soles, <60)

Multiple searches, clicked
"Next" repeatedly, found
unrelated shoes (sneakers,
sandals, pumps)

None matched the require-
ment

Task Failed - No
suitable options
found (Reward:
0.0)

Blue Diamond Almonds
(Gluten-Free, Pecan, 12
Pack)

Repeated searches, en-
countered "No Search but-
ton" error multiple times,
retrieved irrelevant snack
items

Nut Thins Crackers, Keto
Bars, M&M’s Chocolate

Task Failed - No rel-
evant product found
(Reward: 0.0)

Folding Storage Box
Ottoman (Faux Leather,
60x40x40cm, <170)

Initial product matched
but had incorrect size, next
searches returned irrele-
vant furniture items

Found an ottoman, but
wrong size & overpriced

Task Failed - No
exact match found
(Reward: 0.0)

Official Cleveland Uni-
versity Drawstring Shorts
(Small, Charcoal, Ma-
chine Washable, <60)

Search led to incorrect
results (Marvel T-Shirts,
Women’s Yoga Shorts),
agent attempted refine-
ment but couldn’t find ex-
act product

No official Cleveland Uni-
versity shorts found

Task Failed - No
suitable options
found (Reward:
0.0)

Organic Hair Growth
Serum Roller Set (For All
Hair Types, <60)

Search retrieved some
serums but none matched
exact request (wrong
quantity or expensive)

Found a set, but incorrect
product version

Task Failed - No
exact match found
(Reward: 0.0)

Table 5: Webshop : Highlights several Failure Cases of the Baseline Agent (Gemini-1.5-Pro) in Retrieving Relevant
products given the task. This represents the challenge of current model in performing strategic exploration in
Webshop.

Webshop - Task: Buy a Vegan, Gluten-Free Protein Shake - IAD (Success)

Requirements: 100% Vegan, Gluten-Free, Soy-Free Price: Under $40

• Search→ "gluten free vegan plant based protein shake"

• Product List→ Found 50 results

– OWYN Protein Shake (Cold Brew Coffee, 12oz) - $11.07
– Other products exceeded price or dietary restrictions

• Click→ Select "OWYN Protein Shake"

• Buy Now→ Proceed to checkout

• Task Completed
861

A.8 Text2SQL 862

In this section we provide some example responses of Best of N approach and our proposed method on 863

the BIRD development set samples. 864
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Text2SQL : Generated queries for best of N approach (Wrong answer)

DB schema:
CREATE TABLE satscores (
enroll12 INTEGER not null,
dname TEXT null,
...
);
CREATE TABLE frpm(
IRC INTEGER null,
‘Free Meal Count (K-12)‘ REAL null,
...
);
CREATE TABLE schools(
GSserved TEXT null,
Street TEXT null,
...
);
Question: Which active district has the highest average score in Reading?
Predicted Query: SELECT T1.District FROM schools AS T1 INNER JOIN satscores AS T2 ON
T1.CDSCode = T2.cds WHERE T1.StatusType = ’Active’ GROUP BY T1.District ORDER BY
AVG(T2.AvgScrRead) DESC LIMIT 1

Text2SQL : Generated queries for our method (Correct answer)

DB schema:
CREATE TABLE satscores (
enroll12 INTEGER not null,
dname TEXT null,
...
);
CREATE TABLE frpm(
IRC INTEGER null,
‘Free Meal Count (K-12)‘ REAL null,
...
);
CREATE TABLE schools(
GSserved TEXT null,
Street TEXT null,
...
);
Question: Which active district has the highest average score in Reading?
Predicted Query: SELECT T1.dname FROM satscores AS T1 INNER JOIN schools AS T2 ON
T1.cds = T2.CDSCode WHERE T2.StatusType = ’Active’ AND T1.AvgScrRead IS NOT NULL
GROUP BY T1.dname ORDER BY MAX(T1.AvgScrRead) DESC LIMIT 1

22



Text2SQL : Generated queries for best of N approach (Wrong answer)

DB schema:
CREATE TABLE satscores (
enroll12 INTEGER not null,
dname TEXT null,
...
);
CREATE TABLE frpm(
IRC INTEGER null,
‘Free Meal Count (K-12)‘ REAL null,
...
);
CREATE TABLE schools(
GSserved TEXT null,
Street TEXT null,
...
);
Question: Among the schools with the average score in Math over 560 in the SAT test, how many
schools are directly charter-funded?
Predicted Query: SELECT COUNT(T1.CDSCode) FROM schools AS T1 INNER JOIN satscores
AS T2 ON T1.CDSCode = T2.CDSCode WHERE T2.AvgScrMath > 560 AND T1.FundingType
= ’Directly funded’

Text2SQL : Generated queries for our method (Correct answer)

DB schema:
CREATE TABLE satscores (
enroll12 INTEGER not null,
dname TEXT null,
...
);
CREATE TABLE frpm(
IRC INTEGER null,
‘Free Meal Count (K-12)‘ REAL null,
...
);
CREATE TABLE schools(
GSserved TEXT null,
Street TEXT null,
...
);
Question:Among the schools with the average score in Math over 560 in the SAT test, how many
schools are directly charter-funded?
Predicted Query: SELECT COUNT(DISTINCT T1.CDSCode) FROM schools AS T1 INNER
JOIN satscores AS T2 ON T1.CDSCode = T2.cds INNER JOIN frpm AS T3 ON T3.CDSCode
= T2.cds WHERE T2.AvgScrMath > 560 AND T3.‘Charter Funding Type‘ = ’Directly funded’
AND T3.‘Charter Funding Type‘ IS NOT NULL
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