The Role of Feedback in Inference-Time AI Agent Alignment

Anonymous ACL submission

Abstract

Inference-time alignment through scaling test-
time compute is a promising approach for im-
proving the performance of Al agents. Such
approaches typically involve three key com-
ponents: sampling, evaluation, and feedback.
While the role of sampling and evaluation are
well studied in the literature, the role of feed-
back on inference-time alignment is relatively
under-explored. We address this gap by in-
troducing Iterative Agent Decoding (IAD), a
general sequential framework that enables the
integration of different forms of feedback to
improve the performance. We analyze how
feedback impacts agent performance across
four dimensions: (1) accuracy vs compute -
budget controlled scaling (2) impact of adap-
tive feedback beyond sampling diversity (3)
impact of feedback modalities, (4) sensitiv-
ity to feedback quality. Our evaluations on
Sketch2Code, Text2SQL, Intercode and Web-
shop demonstrate that feedback plays a cru-
cial role in inference-time alignment, yielding
performance gains of up to 10% over strong
baselines. Our findings provide a unified under-
standing of the role of feedback mechanisms in
inference-time alignment.

1 Introduction

Al agents demonstrate remarkable potential across
a wide range of applications, but still face chal-
lenges in tasks that require multimodal understand-
ing, strategic planning, and reasoning. For example,
in complex agentic tasks such as Sketch2Code (Li
et al., 2024b), Text2SQL (Li et al., 2024a), Inter-
code (Yang et al., 2023) and Webshop (Yao et al.,
2023), state-of-the-art Al agents can only achieve
20-30% accuracy. Post-training via SFT and RL
(Ouyang et al., 2022a,b; Bai et al., 2022) has been
an effective tool to enhance the capabilities of gen-
erative models; however, it is not directly applica-
ble to Al agents due to their inherently black box
nature because of their operation in environments

Inference-time Alignment of Al Agent

Sampling — Evaluation

‘\ Feedback /

Figure 1: General Pipeline for inference alignment ap-
proaches for agents

prompt response
—> e

with no access to the internals (Liu et al., 2024; Fu
et al., 2024). Hence, we focus on inference-time
approaches which are (i) API-friendly (applicable
to closed-source models accessible via commercial
APIs) and (ii) compatible with various underlying
models.

Inference-time AI agent alignment: Broadly,
such approaches consist of iteration over three key
components: sampling, evaluation, and feedback
as illustrated in Figure 1. A typical inference-time
iteration involves sampling one or more outcomes
from the generative model, evaluating them using
a judge/reward, and then generating feedback to
improve subsequent outcomes.

The role of sampling and evaluation is well-
studied in literature with efficient and scalable al-
gorithms based on best-of-N (BoN) approaches
(Nakano et al., 2021; Beirami et al., 2024). BoN-
based approaches operate by sampling multiple
responses and selecting the best according to a
verifier, effectively leveraging the sampling and
evaluation steps. However, a key limitation of BoN
approaches is their inability to incorporate feed-
back mechanisms for iterative refinement.

Hence, recently several sequential approaches
have emerged that aim to integrate feedback
mechanisms primarily using self-LLMs as judges
(Madaan et al.,, 2023), or leveraging heuristi-
cally driven refinement and verification techniques.
However, existing works often lack a focused analy-
sis of how feedback should be designed, integrated,

ITERATION: O

SKETCH

1
1
1
]
]
1
1
]
1
1
1
]
1
1
1
1
1
7

0

USER

*_ Y
it
I] I||

VERIFIER/REWARD

ITERATION: 1:T

Figure 2: Demonstrates the high-level schematic of - Iterative Decoding of Al Agents - Sequential framework to

study the role of feedback for Inference alignment.

or optimized. As a result, the role of feedback in
inference-time alignment, especially in black box
agentic environments, remains under-examined.
We aim to address this gap by focusing on feed-
back and systematically understanding its impact
on inference-time alignment for agents.
Understanding the role of feedback: To under-
stand the role and impact of feedback on inference-
time alignment, we require a unified framework
that flexibly integrates diverse forms of feedback,
guided by a verifier, without relying heavily on
prompt engineering, which can be costly and frag-
ile. To this end, we introduce Iterative Agent De-
coding (IAD), a sequential framework designed
to incorporate various forms of feedback to under-
stand the role of feedback in inference-time align-
ment of agents. Through IAD we uncover several
intriguing results, detailed below.

1. Accuracy vs compute - budget controlled scal-
ing: We demonstrate that feedback plays a critical
role in budget-constrained settings, achieving up
to a 10% accuracy gain over strong feedback-free
baselines. However, this margin narrows with in-
creased budget—either through higher N or more
capable models.

2. Impact of adaptive feedback beyond sampling
gain: We perform controlled experiments that iso-
late the effect of sampling, and demonstrate that the
gains in IAD arise from adaptive, feedback-guided
refinement rather than stochastic sampling alone.
3. Design and role of feedback form: We investi-
gate the impact of different forms of feedback on
inference alignment. When feedback is textual, it
is relatively easy to integrate as is. However, de-
signing effective feedback from scalar rewards and
preferences remains underexplored. In IAD, we
focus on various methods to extract useful signal
from scalar rewards and demonstrate performance
gains crucially depend on the design of proper feed-

back. However, how to map different feedback
forms into textual feedback remains an interesting
and open research direction.

4. Sensitivity to feedback quality: We study the
sensitivity and robustness of inference alignment to
feedback quality via controlled sparsity and noise
in feedback signals. We see that IAD remains ef-
fective under moderate degradation, but its perfor-
mance declines with increasing noise, especially
when reward is sparse.

2 Inference-time Agent Alignment

In the black box agentic settings, we only have ac-
cess to a reference policy mo(-|x), whose internals
are inaccesible. The core challenge is to optimize
inference-time decisions such that the generated
response from 7o(-|x) is better aligned with the
outputs of optimal policy 7*(-|x). We assume ac-
cess to a verifier function R(x,y), which evaluates
the quality of a response y (further details in Ap-
pendix). With this formalization, we identify three
core components of inference-time alignment for
black-box agents: 1. Sampling : Generate one or
more candidate response from the reference pol-
icy y1,y2- - yn ~ mo(-|z), where the sampling
diversity can be controlled with parameters such
as temperature, nucleus sampling etc. 2. Evalu-
ation : Evaluate each candidate using the verifier
R(x,y;) which serves as a proxy for how well y;
aligns with 7*(-|) and 3. Feedback : Generate
feedback from the verification scores—either scalar
or judge-based—to iteratively refine the prompt or
guide subsequent generations, enabling adaptive
alignment over inference rounds.

2.1 Iterative Agent Decoding

To study the role of feedback, we introduce Itera-
tive Agent Decoding (IAD), a general sequential

30
IAD 24 D

BON I BON

fffff Baselinle { I I

|

N
A O

Layout Similarity
N N
N

Text IOU
N
o
—
_—

N
N

son 1

N
©

Y

N
o
'
i
i
]
w
Q
"
o
=
@
—_—
—_—

Image 10U
firy
(22}
—
-
.
;
|
_—
—_—
—_—

20 T 18 -1+ I 14
- l o
16 16
1 2 3 4 6 1 2 3 4 6 0y 2 3 4 6
No of responses (N) No of responses (N) No of responses (N)
(a) (©
34 38
- IAD % IAD IAD
BON 34 O % BON
230 —- Baseline 23|55 Baseline Z34 —— Baseline
S =2 S
E28 E30 E
& @ 32
526 5 28 =
S > 230
B ©26 &
824 4 ©
---------------------- o4 28
el B B B S e mee mae B B e R R R e
22 26
20y 2 4 6 8 1 2 4 6 8 1 2 4 6 8
No of responses (N) No of responses (N) No of responses (N)
(@) ®

Figure 3: Sketch2code: This figure provides a comparison of IAD (ours) against Best-of-N sampling (SoTA)
and single-turn generation with Gemini-1.5-Pro w.r.t metrics - (a) Layout Similarity (b) TextloU (c) ImageloU
across varying the number of generations (N). Figure demonstrates IAD outperforms BoN consistently across N,
but as N increases the gap reduces. Fig(d, e, f) provides a comparison with improved model capabilities from
Gemini-2.0-Flash, Gemini-2.5-Flash, Gemini-2.5-Pro respectively.

framework designed to incorporate various feed-
back forms for understanding the role of feedback
in inference-time alignment of agents.

Step 1: Sampling. At each step ¢, we sample a can-
didate response with the reference policy 7o(-|x)
and iteratively refine its outputs.

Yir1 ~ 7o(-|T, U, S, Pt), (D

where ¥, is the best response from previous itera-
tions, and p; encodes prompt-based guiding instruc-
tions for ex: Surpass the best response, avoiding
previous mistakes.

Step 2: Verifier-guided selection. Among the
generated response and the previous best response,
we select the one maximizing the reward function:

Ji+1 = arg max R(z,y) ?)
yE(ye,9¢)
IAD has the flexibility to incorporate critique-based
feedback, such as LLM-judge, which identifies spe-
cific areas needing improvement. This extends to

Yir1 ~ 7o (|, U, pe, fbr) 3)

where fb; highlights specific components (e.g., in-
correct tags in HTML, invalid SQL joins), guiding
refinement at a more granular level in an iterative
fashion.

Step 3: Acceptance Criterion. A new response
Y41 1s accepted if it provides an improvement over
the previous best, R(x,y;) — R(z, §¢) > 0 (where
0 = 0 is the special case)

Step 4: Iterative Refinement. The accepted re-
sponse §; updates the context for subsequent gen-
erations, progressively re-weighting the proposal
distribution toward higher-quality outputs. By con-
ditioning on g, the sampling process is guided to-
wards responses with higher rewards, reducing the
gap between the reference distribution o (+|z, 9;)
and the optimal distribution 7*(+|z), as shown in
experimental results.

For instance, in an SQL code generation task, the
model might initially produce a non-functional or
erroneous SQL statement. However, in the next
iteration, it generates a different SQL code, and
through verifier comparisons, we determine which
version is better—e.g., if the later version passes
more test cases, we infer that the model should
move in that direction. Using an LLM as a judge
makes this refinement process more targeted, as it
can provide explicit feedback on errors like "This
condition is incorrect”, "Fix the syntax here", or
"This table join is unnecessary” and suggest im-
provements at each iteration.

0.69

0.69

0.76 IAD IAD IAD
0.74 Few-shot ICL 0.68 Few-shot ICL 0.68 BON
¥0.72 —é) rk?0.67
90.70 20.67 0.66
£o.65 5 g
: Z0.66 <0.65
0.66 0.64
0.64 0.65 0.63
1 2 4 6 8 10 1 2 4 6 8 10 1 2 4 6 8 10
Number of Candidates (k) Number of Candidates (k) Number of Candidates (k)
(@) (b) (©
0.78 0.69 0.69
IAD IAD IAD
0.76 Few-shot ICL i
€w-sho 0.68 Few-shot ICL 0.68 BON
0.74
- $ >
®0.72 20.67 £0.67
&V‘;O 70 é g
' 20.66 <0.66
0.68
0.66 0.65 0.65

1 1

2 4 6 8 10
Number of Candidates (k)

(@)

2 4 6 8 10
Number of Candidates (k)

(e)

1 2 4 6 8 10
Number of Candidates (k)

®

Figure 4: Text2SQL Experiments: (a) Pass@K performance comparison between queries generated using our
approach and Few-shot ICL with Gemini-1.5-flash. (b) Majority @K performance comparison between queries
generated using our approach and Few-shot ICL with Gemini-1.5-flash. (¢) Accuracy comparison between the
best-of-N method and our approach for Gemini-1.5-flash. (d) Pass@K performance comparison between queries
generated using our approach and Few-shot ICL with Gemini-1.5-pro. (e) Majority @K performance comparison
between queries generated using our approach and Few-shot ICL with Gemini-1.5-pro. (f) Accuracy comparison
between the best-of-N method and our approach for Gemini-1.5-pro. IAD consistently outperforms all the baselines

across the settings.

84
82 == Baseline
React
80 BON
k) IAD
578
76
74
P - B om0
70 3 5 10

No of responses (N)

Figure 5: Intercode : Comparison of IAD with base-
lines on the accuracy—compute trade-off shows that [AD,
with appropriate feedback, enables more effective test-
time scaling

3 Experiment Setup

In this section, we provide detailed discussion on
the experimental analysis with respect to the agen-
tic tasks below. For all our experiments, we have
utilized NVIDIA A100-SXM4-40GB GPU with
40GB of VRAM, running on CUDA 12.4 and driver
version 550.90.07.

3.1 Environmental Details and Setup

To understand the role of feedback and evaluate
IAD across the 4 keypoints, we perform empiri-
cal analysis on 4 challenging agentic environment
benchmarks inclduing Text2SQL, Sketch2code, In-
tercode and Webshop.

Text2SQL tasks map natural language questions to
executable SQL queries over structured databases.
These tasks require deep reasoning to interpret user
intent and generate syntactically and semantically
correct queries. We use the BIRD benchmark (Li
et al., 2024a), which includes 12,751 question-SQL
pairs spanning 95 databases and 37 professional
domains. Performance is evaluated using execution
accuracy (EX), where a prediction is correct if it
yields the same results as the ground truth query
when executed.

Sketch2code (Li et al., 2024b) tests the multi-
modal abilities of agents by converting wireframe
sketches into functional HTML prototypes. The
task requires aligning visual cues with structured
code, handling layout ambiguities, and generat-
ing precise Ul structures. Evaluation is based on

Model Layout. TxtIoU ImgIoU
Single-Turn Approaches

Llava-1.6-8b* 8.01 9.26 1.95

Claude-3-Sonnet* 14.22 15.85 6.62
Gemini-1.5-Flash 17.85 17.50 10.77
Gemini-1.5-Pro 18.25 18.20 12.69
GPT-40* 19.20 17.12 16.19
Gemini-1.5-Flash (CoT) 19.84 19.13 10.02

Multi-Turn Approaches (Gemini-1.5-Flash)

Sk2code (N=2)** 19.41 20.45 11.81
Self-Refine (N=2) 19.51 19.35 10.71
BoN (N=2) 21.45 20.1 13.5
IAD (N=2) 24.78 23.01 15.29
IAD-fb (N=2, K=2) 24.86 234 14.69
Self-Refine (N=4) 19.97 19.11 11.74
Sk2code (N=4)** 20.41 21.46 12.67
BoN (N=4) 24.02 22.59 15.91
IAD (N=4) 25.97 24.13 16.98
IAD-fb (N=4, K=4) 26.61 24.62 17.36
Self-Refine (N=6) 19.89 18.91 11.61
Sk2code (N=6) 21.43 21.53 13.78
BoN (N=6) 25.75 2291 17.67
IAD (N=6) 26.75 2491 19.12
IAD-fb (N=6, K=6) 27.95 24.99 19.01

Table 1: Sketch2Code: Performance comparison be-
tween single-turn and multi-response generation meth-
ods with Layout score as the evaluation metric. IAD
consistently outperforms SoTA baseline by an absolute
margin of 3—-4% with lesser budget, showing the impor-
tance of feedback.

three metrics: Layout Similarity (IoU over Ul com-
ponents), Text IoU (text alignment accuracy) and
Image IoU (CLIP-based visual similarity). These
metrics strongly correlate with human judgment.
Intercode (Yang et al., 2023) evaluates agents in
structured programming tasks across four domains:
Bash, Python, SQL, and CTF. Each task involves
a series of agent decisions, including command
execution and error handling, requiring both syn-
tactic precision and logical planning. Performance
is measured using reward signals derived from task
execution correctness. We focus on the Bash do-
main for our experiments, where agents must gen-
erate correct shell commands based on natural lan-
guage instructions.

Webshop (Yao et al., 2023) simulates a real-world
online shopping environment, requiring agents to
perform long-horizon, language-guided decision-
making. Given product queries, agents interact
with webpages (search, click, select) to find match-
ing items. Key evaluation metrics include: Success
Rate (SR): whether the selected item satisfies all
constraints. Progress Rate (PR): how closely the
agent’s actions align with task goals.

We study the effect of feedback in IAD along five
key dimensions: (1) Accuracy vs compute - Budget
controlled scaling (2) Impact of adaptive feedback
beyond sampling diversity (3) Impact of feedback
modalities, (4) sensitivity to feedback quality under
varying levels of noise and sparsity

4 Experiment Results and Analysis

4.1 Accuracy vs Compute for
Budget-Controlled Scaling

We analyze how IAD with appropriate and accu-
rate feedback, improves performance under varying
computational budgets and the demonstrate scaling
behaviour across Sketch2Code, Text2SQL, Inter-
code and Webshop environments and benchmarks.
We observe that IAD with appropriate feedback
with limited achieving up 10% accuracy gain over
strong feedback-free baselines like BON. How-
ever, as the computational budget increases either
in terms of sample or model capability, the per-
formance gap with and without feedback reduces
and this finding is consistent across all the tasks.
Sketch2Code: Layout Similarity, Text IoU, and
Image IoU show consistent improvement with in-
creasing iterations. IAD with just N=2 outperforms
BoN and single-turn baselines by 3—4% absolute
gain with weaker models like Gemini-1.5-Pro as
seen in Figure 3, Table 1. However, as the model
capability increases from Gemini-1.5-Pro, Gemini-
2.0, Gemini-2.5-Flash and Gemini-2.5-Pro, the gap
with and without feedback reduces which shows
as model capability improves, parallel sampling
can do well. Text2SQL: We evaluate IAD against
few-shot chain-of-thought prompting and Best-of-
N baselines under identical model settings (Gemini-
1.5-Flash, Gemini-1.5-Pro). IAD, through iterative
feedback and refinement, achieves higher execu-
tion accuracy using a comparable or smaller num-
ber of LLM calls Figure 4. With just three rounds
of feedback, it effectively corrects syntactic and
semantic errors in generated SQL queries, demon-
strating how feedback enables more efficient use
of the compute budget. To assess generality, we
also compare IAD with diverse approaches—MCS-
SQL, DIN-SQL, DAIL-SQL, and MAC-SQL—that
do not rely on fine-tuning the BIRD train set, Table
3. The consistent gains across these comparisons
illustrate that integrating feedback,is a key driver of
improved performance under test-time budget con-
straints. Similar trend is observed in Intercode Fig-
ure 5 which shown sequential refinement with ap-

N
o
N
(=}

IAD (Temp = 0.1) IAD > Temperature 0.0

25 IAD (Temp = 0.05) BON ©0.68 Temperature 0.1
o 24 IAD (Temp = 0.0) ?24 — = Baseline 20.67 Temperature 0.25
§23 == Baseline % <
(2] =
L2 %2 $ 066
201 3 20.6
3 220 £ 0.65

20 5 £

19 = BB OB OB OB E) 0.64

18 0.63

1 2 4 6 8 1 2 4 8 1 3 5 7 9 11 13

No of responses (N)

(a) (b)

6
No of responses (N)

Number of LLM Calls

(©)

Figure 6: Sketch2code: (a) Compares the performance of IAD at low temperature across varying number of
generations to disentangle the effect of stochasticity and the improvement from iterative feedback based on IAD.(b)
Comparison with BON at temperature = 0.1, which shows BON improvement ceases after 2 iterations Both (a, b)
highlights the improvement due to adaptive refinement with verifier(c) Text2SQL :Compares the accuracy of IAD
on BIRD development set at low temperature across varying number of generations to highlight the improvement

from iterative feedback based on IAD.

propriate feedback outperforms baselines with low
budget. Webshop: 1AD outperforms BoN-SC and
strong baselines like GPT-40 and Gemini. For ex-
ample, SR improves from 29.3% (Gemini-1.5-Pro)
and 41.09% (BoN-SC + GPT-40) to 44.68% (IAD
+ GPT-40), a 3-4% absolute gain. In weaker mod-
els like Gemini-1.5-Flash, iterative refinement sig-
nificantly boosts performance where BoN plateaus.

Models (PR) (SR)
Lemur-70b 71 11

Mistral-7b 682 139
Vicuna-13b-16k 73 21

Gemini-1.5-Flash 71.3 26.5
Gemini-1.5-Pro 719 293
BoN-SC + Gemini-1.5-Pro 72.12 30.31
IAD + Gemini-1.5-Pro 71 38.3
GPT-4 75.8 385
GPT-40 73.1 403
BoN-SC + GPT-4o0 7421 41.09
IAD + GPT-40 74.6 44.68

Table 2: Webshop- Progress Rate (PR) and Success
Rate (SR) for Models in the Webshop Environment(Yao
et al., 2023). Perform a comparison of IAD against
Baselines for the Webshop with the evaluation similar
to followed in Agentboard (Ma et al., 2024)

4.2 Impact of Adaptive Feedback Beyond
Sampling Diversity

Prior works lack a clear experimental setup to dis-
entangle the true source of improvement in their ap-
proaches. A key concern thus exists is whether the
gains arise from sampling diversity, or from the ac-
tual effectiveness of the feedback. However, most
prior methods do not include comparisons against
stochastic sampling baselines like BON, leaving it
unclear whether their feedback mechanisms mean-

ingfully contribute to performance improvements.
To answer this, we conduct a controlled experi-
ment to isolate the effect of adaptive feedback in
IAD from sampling diversity. Specifically, we re-
duce the generation temperature (to 0.1, 0.05, and
0.0), thereby minimizing randomness in the gener-
ation process. We then evaluate the performance
of both IAD and BON over multiple iterations un-
der these low-stochasticity settings. Sketch2Code:
BoN saturates at layout score ~21.9 even with N=6,
while IAD surpasses 26 with 6 iterations. Figure 6
confirms that adaptive refinement—not random-
ness—drives gains. Text2SQL: Accuracy increases
steadily with IAD even at low temperature settings
(Figure 6). This validates feedback’s role in seman-
tic correction.

Key Insight: The results demonstrate that the gains
from IAD are not merely due to diversity in gener-
ation/sampling, but rather from the verifier-guided
adaptive feedback-driven refinement. This also
highlights a critical insight that when the diver-
sity in the policy is low, feedback based sequential
approaches can perform significantly better than
sampling based BON approaches.

4.3 Design and role of feedback form

We investigate the impact of different forms of
feedback on inference alignment. When feedback
is textual, it is relatively easy to integrate as is.
However, designing effective feedback from scalar
rewards and preferences remains underexplored.
In IAD, we focus on various methods to extract
useful signal from scalar rewards and demonstrate
performance gains crucially depend on the design
of proper feedback. We analyze both the scenar-
ios -1. Textual feedback from LLM as a judge

25 IAD 25 IAD
fffff Baseline BON
—~—=- Baseline

[N]

=
t
[N
=

N
DY

Average Layout Scores
N N N
o - N
—
Layout Similarity
N
—

©
—
o

©

NS LS HS ES NS

(a) b)

25 IAD
BON
——= Baseline

N
153

N
N

—
—
NN
S R
—_—
—_—

(©

Figure 7: Sketch2code: (a) Represents the performance of IAD with N = 2 w.r.t Layout score with varied sparsity
NS (No Sparsity), LS (Low Sparsity) HS (High Sparsity) and ES (Extreme) (b) Performance comparison of IAD
with BON with N = 2 at varied sparsity levels which shows the gains over BON reduces with high sparsity (c)
Performance comparison of IAD with BON with N = 2 at varied noise levels of reward score which shows gains
reduces over BON. However, IAD still improves over baselines under Sparse and Noisy feedback.

2. Scalar rewards. Majority of the prior sequen-
tial approaches including (Madaan et al., 2023)
have been designed with a focus on approach 1 i.e
LLM as a judge and taking feedback from the same.
However, we demonstrate that directly using off-
the-shelf LLMs as judges fails to deliver consistent
or monotonic improvements in complex scenarios
(Figure). Our experiments reveal that performance
often plateaus, fluctuates, or even degrades across
iterations. To highlight this, we include both quan-
titative and qualitative examples (Appendix) where
self-LLLM feedback is repetitive and uninforma-
tive—failing to identify or correct meaningful is-
sues. This supports our central claim: for effective
inference-time optimization, near-optimal verifiers
are essential, especially in complex agentic scenar-
ios like Sketch2code, text2sql.

How to design feedback from a scalar reward?
A crucial challenge lies in designing meaningful
and informative feedback from scalar reward or
preference, since the eventual feedback needs to
be in textual form. Thus IAD is designed to ex-
tract as much signal as possible from the avail-
able feedback. Rather than relying solely on ab-
solute reward scores, IAD transforms score-based
or comparative feedback into structured guidance
by identifying the best and worst responses at each
iteration. These are explicitly fed back into the
model through prompt conditioning, providing a
clear directional signal for improvement. This pro-
cess not only reinforces the distinction between
good and bad outputs but also enables the use of
dense feedback—even from weak or indirect su-
pervision sources—turning minimal signals into
effective updates. Intuitively, this approach is anal-
ogous to zeroth-order optimization where two sam-

pled values from the objective function are suffi-
cient to guide the optimization process toward the
maximum. Similarly, feedback on the best and
worst responses helps steer the model. We com-
pare IAD with the above feedback for Sketch2code
and show that it performs almost comparable with
LLM judge with the reference

4.4 Sensitivity to feedback quality

We study the sensitivity and robustness of infer-
ence alignment to feedback quality via controlled
sparsity and noise in feedback signals.

Sparse Rewards. In many agentic tasks, dense
reward signals may not be available. We study this
setting in the context of Sketch2code where we
systematically sparsify our verifier/reward model
by varying the level of feedback sparsity and com-
paring the performance of IAD against the BON
baseline under Low, High, and Extreme Sparsity
conditions. Sparsification was achieved by provid-
ing feedback only when the verifier score exceeded
a threshold t; the higher the threshold, the sparser
the reward signal. We define three such sparsity
levels and evaluate the performance of IAD versus
BON with N=2 responses per prompt.

We observe that as the level of sparsity increases,
the performance gap between IAD and BON nar-
rows. Both inference-time approaches—BON and
IAD—show a decline in performance, approach-
ing the baseline under extreme sparsity conditions.
The primary hypothesis behind the drop in IAD
performance is that IAD relies on adaptive feed-
back: the LLM is conditioned on the best and worst
responses from previous iterations, akin to a zeroth-
order optimization method. Feedback on both ends
(positive and negative) helps steer the model to-

—=— Example 1
40 —— Example 2
Example 3

w
o

-

1.0 1.5 2.0 25 3.0 35 40 45 5.0
Iterations

(a)

Layout Score
8

N
[6)]

N
o

40

%)
535

50 —=— Example 1
—— Example 2

Example 3 ! S S S

B

45

&30
-

25

20

1.0 1.5 2.0 25 3.0 35 40 45 50
Iterations

(b)

Figure 8: Sketch2code: (a) Represents the performance of Self-Refine (Madaan et al., 2023) based approaches
across iterations using LLM as a judge. (b) Represents the performance of IAD with scalar score which shows
monotonic improvements, highlighting the importance of optimality of feedback and verification

ward reward-maximizing generations through up-
dates to the system prompt. However, under ex-
treme sparsity, most responses—regardless of qual-
ity—receive zero reward. This results in random se-
lection and noisy update directions, limiting IAD’s
ability to effectively adapt and improve.

Noisy Verification. To further investigate the ef-
fect of noisy verification and how it impacts the
performance of IAD compared to BON, we intro-
duce varying levels of noise into the reward signal.
Specifically, we add Gaussian noise with different
variances to the reward scores, simulating imper-
fect or noisy verifier conditions. We then run both
IAD and BON with N=2 responses per prompt and
evaluate their performance under these noisy set-
tings. This setup allows us to assess the robustness
of IAD to reward noise and compare its stability
and effectiveness relative to BON when the verifi-
cation signal is noisy.

We observe trends similar to those in the sparse
reward setting. Notably, IAD remains reasonably
robust to mild noise in the reward signal. This is
because IAD relies on adaptive feedback, where
the LLM is conditioned on the best and worst re-
sponses from previous iterations—effectively lever-
aging pairwise comparisons rather than absolute
scores. As long as the noise is limited, the rel-
ative preference between responses is preserved.
For instance, if one layout score is 0.5 and another
is 0.3, mild noise might shift them to 0.55 and
0.24, respectively—maintaining the same ordering.
Therefore, IAD continues to improve under rea-
sonable noise levels. However, as noise increases
significantly, it can flip these preferences, leading
to unstable updates and a decline in performance.

Method Exe Acc
DIN-SQL + GPT-4 50.72
DAIL-SQL + GPT-4 54.76
MAC-SQL + GPT-4 57.56
MCS-SQL + GPT-4 63.36
E-SQL + GPT-40 65.58
IAD (Ours) + GPT-40 65.97
IAD (Ours) + Gemini-1.5-pro 68.05

Table 3: Text2SQL - Execution accuracy comparison
of previous works with our proposed approach

5 Conclusion

In this work, we explore the underexplored role of
feedback in inference-time alignment for black box
Al agents. To understand the effect of feedback in
inference alignment, we introduce Iterative Agent
Decoding (IAD), a general sequential framework.
Our study analyzes feedback through four lenses:
(1) accuracy vs. compute trade-offs, (2) gains be-
yond sampling diversity, (3) feedback modality in-
tegration, and (4) sensitivity to feedback quality.
Empirically, we find that feedback is especially
valuable under constrained budgets—achieving up
to 10% gains over feedback-free baselines. We also
highlight the challenge of integrating diverse feed-
back modalities into sequential designs, not criti-
cally explored in literature. While textual feedback
integrates naturally, representing scalar or prefer-
ence signals remains an open challenge. We also
observe that IAD’s benefits diminish under highly
sparse or noisy feedback, underscoring the impor-
tance of feedback fidelity for effective alignment.

Limitations

While IAD - our iterative decoding approach — im-
proves upon prior baselines by better leveraging
verifier feedback, it is inherently sequential, lead-
ing to increased user facing latency compared to
easily parallizable BoN approaches. Addressing
this tradeoff between quality improvement, com-
putational cost, and user facing latency remains
an important area for future research, which may
require properly combining these techniques with
adaptive stopping, controlled decoding (Mudgal
et al., 2024), speculative decoding (Leviathan et al.,
2023). Additionally, more efficient verifier-guided
selection could improve the efficiency in iterative
decoding for agentic tasks. As we learnt, the veri-
fier (or judge) plays a crucial role in our approach.
Thus a more concrete investigation and selection
of a judge for these challenging tasks is a valid and
crucial next step of our work. We highlight that
this work is of academic nature and has no direct
or immediate harmful impacts to society. However,
since this work deals with improving Al agents, it
should be done under safety protocols and guide-
lines. We want to highlight that this study is limited
to English language text primarily due to the nature
of open-source datasets used.

References

Afra Amini, Tim Vieira, and Ryan Cotterell.
2024. Variational best-of-n alignment. Preprint,
arXiv:2407.06057.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2022. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

Ahmad Beirami, Alekh Agarwal, Jonathan Berant,
Alexander D’ Amour, Jacob Eisenstein, Chirag Nag-
pal, and Ananda Theertha Suresh. 2024. Theoret-
ical guarantees on the best-of-n alignment policy.
Preprint, arXiv:2401.01879.

Souradip Chakraborty, Soumya Suvra Ghosal, Ming
Yin, Dinesh Manocha, Mengdi Wang, Amrit Singh
Bedi, and Furong Huang. 2024. Transfer q star:
Principled decoding for llm alignment. Preprint,
arXiv:2405.20495.

Yao Fu, Dong-Ki Kim, Jaeckyeom Kim, Sungryull
Sohn, Lajanugen Logeswaran, Kyunghoon Bae,
and Honglak Lee. 2024. Autoguide: Automated
generation and selection of context-aware guide-
lines for large language model agents. Preprint,
arXiv:2403.08978.

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin
Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao Hong,
Zhiling Luo, et al. 2024. Xiyan-sql: A multi-
generator ensemble framework for text-to-sql. arXiv
preprint arXiv:2411.08599.

Kevin G. Jamieson, Robert D. Nowak, and Benjamin
Recht. 2012. Query complexity of derivative-free
optimization. Preprint, arXiv:1209.2434.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274-19286. PMLR.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024a. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Ryan Li, Yanzhe Zhang, and Diyi Yang. 2024b.
Sketch2code: Evaluating vision-language models
for interactive web design prototyping. Preprint,
arXiv:2410.16232.

Yanming Liu, Xinyue Peng, Jiannan Cao, Shi Bo, Yuwei
Zhang, Xuhong Zhang, Sheng Cheng, Xun Wang,
Jianwei Yin, and Tianyu Du. 2024. Tool-planner:
Task planning with clusters across multiple tools.
Preprint, arXiv:2406.03807.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang,
Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng
Kong, and Junxian He. 2024. Agentboard: An an-
alytical evaluation board of multi-turn llm agents.
Preprint, arXiv:2401.13178.

Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz,
and Amine Mhedhbi. 2024. The death of schema
linking? text-to-sql in the age of well-reasoned lan-
guage models. arXiv preprint arXiv:2408.07702.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: It-
erative refinement with self-feedback. Preprint,
arXiv:2303.17651.

Youssef Mroueh. 2024. Information theoretic guaran-
tees for policy alignment in large language models.
Preprint, arXiv:2406.05883.

Sidharth Mudgal, Jong Lee, Harish Ganapathy,
YaGuang Li, Tao Wang, Yanping Huang, Zhifeng
Chen, Heng-Tze Cheng, Michael Collins, Trevor
Strohman, Jilin Chen, Alex Beutel, and Ahmad
Beirami. 2024. Controlled decoding from language
models. Preprint, arXiv:2310.17022.

https://arxiv.org/abs/2407.06057
https://arxiv.org/abs/2401.01879
https://arxiv.org/abs/2401.01879
https://arxiv.org/abs/2401.01879
https://arxiv.org/abs/2405.20495
https://arxiv.org/abs/2405.20495
https://arxiv.org/abs/2405.20495
https://arxiv.org/abs/2403.08978
https://arxiv.org/abs/2403.08978
https://arxiv.org/abs/2403.08978
https://arxiv.org/abs/2403.08978
https://arxiv.org/abs/2403.08978
https://arxiv.org/abs/1209.2434
https://arxiv.org/abs/1209.2434
https://arxiv.org/abs/1209.2434
https://arxiv.org/abs/2410.16232
https://arxiv.org/abs/2410.16232
https://arxiv.org/abs/2410.16232
https://arxiv.org/abs/2406.03807
https://arxiv.org/abs/2406.03807
https://arxiv.org/abs/2406.03807
https://arxiv.org/abs/2401.13178
https://arxiv.org/abs/2401.13178
https://arxiv.org/abs/2401.13178
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2406.05883
https://arxiv.org/abs/2406.05883
https://arxiv.org/abs/2406.05883
https://arxiv.org/abs/2310.17022
https://arxiv.org/abs/2310.17022
https://arxiv.org/abs/2310.17022

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022a.
Training language models to follow instructions with
human feedback. Preprint, arXiv:2203.02155.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022b.
Training language models to follow instructions with
human feedback. Preprint, arXiv:2203.02155.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and
Sercan O Arik. 2024. Chase-sql: Multi-path reason-
ing and preference optimized candidate selection in
text-to-sql. arXiv preprint arXiv:2410.01943.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen
Chang, Azalia Mirhoseini, and Amin Saberi. 2024.
Chess: Contextual harnessing for efficient sql synthe-
sis. arXiv preprint arXiv:2405.16755.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,
Quoc V. Le, Denny Zhou, and Xinyun Chen. 2024.
Large language models as optimizers. Preprint,
arXiv:2309.03409.

John Yang, Akshara Prabhakar, Karthik Narasimhan,
and Shunyu Yao. 2023. Intercode: Standardizing
and benchmarking interactive coding with execution
feedback. Preprint, arXiv:2306.14898.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2023. Webshop: Towards scalable real-
world web interaction with grounded language agents.
Preprint, arXiv:2207.01206.

10

https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2306.14898
https://arxiv.org/abs/2306.14898
https://arxiv.org/abs/2306.14898
https://arxiv.org/abs/2306.14898
https://arxiv.org/abs/2306.14898
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206

A Appendix

A.1 Detailed Environment Description

1. Text-to-SQL Text-to-SQL serves as a critical interface between natural language and structured query
languages by enabling users to translate natural language queries into executable SQL commands. This
functionality empowers individuals without SQL expertise to interact with complex databases, thereby
facilitating data exploration, informed decision-making, automated analytics, and advanced feature
extraction for machine learning. Generally, a Text-to-SQL system receives a natural language question and
any pertinent metadata about the tables and columns, which serves as external knowledge to aid in database
comprehension. Consequently, such systems are responsible not only for interpreting user intent and
identifying relevant information from a potentially vast set of tables and columns but also for generating
SQL queries that may include multiple conditions—a process that is inherently reasoning intensive. To
evaluate our proposed framework, we employ the BIRD benchmark (Li et al., 2024a), a challenging and
widely used dataset in the Text-to-SQL domain. BIRD comprises an extensive collection of 12,751 unique
question-SQL pairs drawn from 95 large databases with a total size of 33.4 GB. The benchmark spans
more than 37 professional domains, including blockchain, hockey, healthcare, and education, making it a
comprehensive resource for assessing the robustness and generalizability of Text-to-SQL systems. The
primary metric for model comparison in this domain is execution accuracy (EX), where the ground truth
SQL query and the predicted SQL query are both executed over the target database, if they both generate
same sets of results the accuracy for the predicted SQL query is considered as accurate.

3 Whatis theaver alary of the worst performing managers?
7
Webpages Sketches e T ®
= FROM e AS 11 JomN A5 T2 ON Ti.p
= = — Reasoned Database:
- N
(Employees
| ——
== <
- 0000 Milgrom Milgrom US$57,500.00
. e 2222 Adams Sandy US$19,500.00
6543 Wood Emily US$69,000.00
L e I e R [R L L
\
(a) Sketch2Code Environment (b) Text-to-SQL Environment

A tem-detail

WebShop seazeh
Instruction:
i'm looking for a small portable folding desk that i

already fully assembled; it should have a khaki
wood finish, and price lower than 140.00 dollars.

1) IS

K knoki wood

'MENHG Folding Lebtop Table Bed Desk i tem
PBC Lap Desk with,Drawer Book Stand

<_. Trdy Foldable Lagy Table Breakfast
T v7<; Desk Sofa Small Desk for Smal Space
mputer rce: 000 .

v e
Color

black whi(e@ o

B Tastruction: v
I'm looking for a small portable folding desk
that is already fully assembled [...]

[btn] Back to Search [/btn

Page 1 (Total results: 50) [btn] Next [/btn]
[btn] MENEG Folding Breakfast Tray [...] [/btn]
109.0

U (Instruction): I'm looking for a small portable

7J (Description): MENHG Folding Laptop Table Bed..
Yprice : $109.0

Yopt (Options): { black, khaki, white

Y (Attributes): { steel pipe, no as:

[btn) KPSP Folding Study Desk Bed [...] [/btn]

(c) Webshop Environment

Figure 9: These three figures given an overview of three diverse and challenging agentic tasks that we consider
to evaluate the performance of agents with our proposed approach vs baselines -(a) Sketch2code(Li et al., 2024b)
(b)Text2SQL (Li et al., 2024a) and (c) Webshop (Yao et al., 2023)

2. Sketch2code: Sketch2code (Li et al., 2024b) challenges and evaluates the multi-modal capabilities
of agent where the objective is transform wireframe-style rough userk sketches into functional HTML
prototypes with embedded CSS. Sketch2Code uniquely tests multi-modality, requiring structured code
generation from imprecise visual input, often leading to misaligned text, incorrect spacing, and structural

11

N
[}
N
©
-
w
o

IAD IAD IAD
24 SoTA 26 SoTA 125 SoTA
2 == Baseline 24 == Baseline == Baseline
& 922 -12.0
E 3 o
£ 222
n o ©11.5
520 % g
=2
g 0 E110
—1 18 = mr e — T == — === 18- memm— SN SEUNE SN .0 ___ _ _NEEEN U SUUEE
10.5
16 16
1 2 4 6 1 2 4 6 100y 2 4 6
No of responses (N) No of responses (N) No of responses (N)
(a) (b) (©
22 22
24 IAD 9 IAD IAD
Sen SoTA 20 SoTA
-'§'22 —— Baseline 20 == Baseline 18 T Baseline
K 2
E 319 o
@ 20 = 216
5 318 g
[S) = £
& =14
S18 = puin = S TR - 17" mahE-T T T
12
16 &N B B B e | B B
1 2 4 6 By 2 4 6 0y 2 4 6
No of responses (N) No of responses (N) No of responses (N)
(d) ©) ®

Figure 10: Sketch2code: This figure provides a comparison of IAD (ours) with Best-of-N sampling (SoTA) and
single-turn generation with Gemini-1.5-Flash for the metrics - (a, d) Layout Similarity (b, e) TextloU (c, f) ImageloU
across varying the number of generations (N). Top 3 rows, the optimization is done taking Text IOU as the verifier
and the bottom 3 rows with Image IOU as the verifier. So, this also shows both the generalisability and performance
improvement of IAD over baselines.

inconsistencies. This leads to challenges such as misaligned text, incorrect spacing, missing components,
structural inconsistencies, making it an extremely challenging benchmark for multimodal LLMs. The
complexity of this task arises from: ambiguity in hand-drawn sketches, where component boundaries,
spacing, and positioning are not precisely defined. The evaluation of the generation is done primarily
with three key metrics : Layout Similarity, Text IOU, Image IOU. Layout Similarity (IoU-based metrics):
Intersection-over-Union (IoU) is computed for different UI components (e.g., buttons, images, text blocks)
to measure how well their positions match the reference. Intersection-over-Union (IoU) is computed for
different UI components (e.g., buttons, images, text blocks) to measure how well their positions match the
reference implementation. Text-IOU similarly measures how accurately the generated text aligns with the
reference design. Image IOU uses CLIP embeddings to compare the visual appearance of the generated
webpage with the reference design and evaluates color similarity, element positioning, and component
rendering. These metrics provide a reliable way to measure the quality of the generated response and
strongly correlates with human judgement. Evaluations are done also with LLM as judge to compare the
performance.

3. Webshop is a large-scale, web-based interactive environment designed to test an Al agent’s capability
to perform sequential decision-making in an online shopping scenario under sparse feedback (Yao et al.,
2023). The environment is modeled as a partially observable Markov decision process, where the agent
navigates a simulated e-commerce platform to fulfill a user’s product request based on natural language
instructions. At each step, the agent receives an observation in the form of a webpage—such as search
results, product details, or checkout options—and must decide on an action, including searching for a
product, clicking on an item, or selecting options. The evaluation is based on success rate (SR), which
measures whether the agent successfully selects a product that matches all specified criteria (attributes,
price, and options), and task score, which represents the overall alignment of the final selection with the
given instruction. The WebShop environment presents significant challenges, including sparse rewards
(since feedback is only provided at the end of an episode), the need for strategic backtracking and
exploration, and handling noisy or ambiguous natural language instructions. This setup makes WebShop a

12

Algorithm 1 Proposed Approach: Iterative Decoding black box Inference with Al Agents

Require: Proposal distribution 7g(-|z, ¢;), input prompt x, reward function R(x,y), threshold § > 0,
number of iterations T’
Ensure: Final accepted response ¢
1: Inmitialize: Sample an initial response yo ~ mo(+|z)

2: Compute its reward ro = R(z, yo)

3: Accept the initial response: ¢y < o and r* < rg
4: fort =1,2,...,T do

5: Sample a new candidate response y; ~ 7o (|z, Ji—1)
6: Compute its reward r; = R(x, y;)

7. ifry —r* > 6 then

8: Accept the candidate: ; < y; and r* < ry
9: else

10: Reject the candidate: ¢j; < :—1

11: endif

12: end for

13: return yr

rigorous benchmark for evaluating long-horizon reasoning, language understanding, and decision-making
in real-world-like online navigation scenarios.

Remark (Why it works?). The generation of better responses occurs through stochastic sampling in
each iteration from the base model, conditioned on the best response so far (and the worst candidate),
followed by a pairwise comparison from the verifier. This feedback mechanism helps guide the generator
to sample responses with higher expected rewards over the iterations. Practically, we achieve this by
incorporating prompts like “Improve upon the best response while avoiding mistakes from the worst
response.” Additionally, explicit feedback from a judge (e.g., verifier critiques or an LLM acting as a
judge) accelerates the improvement process by providing targeted guidance. Intuitively, this approach
is analogous to zeroth-order optimization (Jamieson et al., 2012; Yang et al., 2024), where two sampled
values from the objective function are sufficient to guide the optimization process toward the maximum.
Similarly, feedback on the best and worst responses helps steer the model toward generating responses
that maximize rewards, reinforced through system prompts.

A.2 Limitation of Single-turn Approach

In this section we characterize the performance gap A as the difference between the reward the optimal or
ground-truth agent is achieving vs the reward achieved by the reference achieved by the reference agent
policy.

A= Eyww*(-\x) [R(x’ y)] - Ey~w0(~\m) [R(l‘, y)]

< sup }Eywﬂ*(-\x) [R(Q?, y)] - Eywﬂo(-\x) [R(CC, y)]
RER

< [Rllmaxdry (7" (-]), 7o (-[)),

where R(z,y) represents the reward function measuring the quality of the generated response, and
dry(7*(+|x), mo(-|z)) is the total variation (TV) distance between the optimal policy 7*(-|x) and the
reference policy mo(-|z) (Mroueh, 2024). This result demonstrates that the performance gap A is
inherently limited by the quality of the reference agent policy 7o(+|z), as measured by its divergence from
the optimal policy. Thus, if mo(-|z) is close to 7*(-|x) (in terms of TV distance), the performance gap will
be small, resulting in near-optimal responses and viceversa.

A.3 Limitation of Prior approaches

In this section, we first provide a brief description of the baseline approaches and then discuss their pros
and cons in this context.

13

Single-turn Approaches: In single-turn approaches, the response y ~ mo(+|z) is directly generated from
the reference agent policy. his method is straightforward, fast, and does not rely on a verifier, making it
applicable even in verifier-agnostic settings. However, as evident from Figure 1, direct generation—even
with SoTA models like Gemini-1.5-Pro, Gemini-1.5-Flash, GPT-4, and Claude—remains highly sub-
optimal for complex tasks like Sketch2Code and Text2SQL, also highlighting the difficulty of these tasks.
Thus in single-turn generation, the performance is limited by the quality of the reference policy 7o (-|z))
where larger f-divergence indicates greater misalignment.

BoN sampling: Best-of-N sampling improves upon single-turn generation by drawing /N i.i.d samples
from the reference policy o(+|x) and selecting the highest-reward response based on the verifier R(z,y).
BoN is simple, parallelizable, and computationally efficient and doesn’t rely on logits/model access thus
applicable to black box agentic scenarios. It works even with scalar rewards and has been shown to
achieve near-optimal tradeoffs between win rate and KL divergence (Beirami et al., 2024; Amini et al.,
2024). Despite its advantages, BoN remains limited by the quality of the reference policy lacks the ability
to iteratively refine responses based on verifier feedback. For example: BoN cannot incorporate targeted
feedback, such as refining specific HTML structures in Sketch2Code or correcting systematic SQL errors
in Text2SQL (further details in exp section)

Controlled decoding: Majority of prior decoding-based methods (Mudgal et al., 2024; Chakraborty et al.,
2024) rely on access to logits for controlled generation , making them inapplicable in black box inference
settings. While block-wise decoding (Mudgal et al., 2024) can be applied without logits as well however
improper block selection disrupts syntax and semantics for structured generation (Appendix).

Security Wall Products

Security Wall Products

forem ipsum...

Security Wall Products

forom ipsum.
forem Ipsum...

Security Wall Products

Figure 11: Sketch2code: Qualitative evaluation of the generated HTMLs with BoN sampling (N=4) corresponding
to the user-sketch (left-bottom) and reference html (left-top). The figures show that BoN performs much better in
matching the reference HTML but still misses specific properties like rectangular structue, position of text, relative
positioning of smaller blocks etc.

A.4 Detailed Experimental Analysis
A.5 Text-to-SQL Detailed Results and Analysis

In this section, we detail the experiments conducted on the BIRD text-to-SQL benchmark (Li et al.,
2024a). For these experiments, we employed the Gemini-1.5-pro and Gemini-1.5-flash models both
to generate actions at each state and as judge models to predict the reward. At each state, the LLM is
provided with the database schema and the user’s query, based on which it generates a draft SQL query.
This draft query is then evaluated by the judge model, which also produces feedback on how to improve

14

Sketch2code : Oracle Judge Prompt for providing Feedback

Input: Act as you are a front-end designer working with a code agent to implement an HTML
webpage . You are provided with two images : the first image is the reference webpage,
and the second one is the current implementation from the code agent . Note that images
have already been replaced with blue rectangles as the placeholder. The task is to carefully
compare the agent ’s implementation against the reference webpage , and provide feedback
to help the agent make its implementation closer to the reference webpage . Your feedback
should be specific to the differences in layouts and visual components on the two webpages. If
required provide small code snippets to help the user-agent but provide very few lines. Don’t
focus on the style components too much and focus on layout similarity and visual match with
the reference webpage.

the draft. The LLM uses this feedback to generate a revised query, establishing a self-correction loop.
Finally, the answer with the highest reward value is selected as the candidate output. This process can be
repeated to generate multiple candidate SQL queries. We then apply self-consistency (Wang et al., 2022)
by executing all candidate queries over the database, grouping them based on their execution results, and
selecting a query from the largest result cluster as the final answer. In the following sections, we first
compare our proposed method with the widely used few-shot prompting approach in terms of Pass @k
performance and final accuracy after self-consistency (Majority @K) using execution accuracy as the
metric in order to demonstrate that using our method we can generate a pool of candidates with a higher
quality. Subsequently, we compare our approach with the best-of-N approach which is one of the strong
baselines as a test-time compute approaches to demonstrate the effectiveness of the proposed framework.
Finally, we compare our method with all previously proposed test-time methods on the BIRD development
set benchmark, excluding works that rely heavily on fine-tuning LLMs (Pourreza et al., 2024; Talaei et al.,
2024; Maamari et al., 2024; Gao et al., 2024) for a fair comparison.

Comparing with Few-shot prompting We compared our method with the widely used few-shot
in-context learning approach for text-to-SQL tasks. We evaluated and reported the Pass@XK and self-
consistency performance for up to 10 candidates using both the Gemini-1.5-flash-002 and Gemini-1.5-pro-
002 models, as illustrated in the Figure 4. As demonstrated by these figures, our approach consistently
outperforms the few-shot in-context learning method by a significant margin on both pass@K and
self-consistency scores.

Comparing with Best-of-N In this section, we compare our proposed framework with the well-
established best-of-N method to highlight the importance of searching through possible answers based on
their rewards. For this comparison, we generated up to 20 candidate queries for each sample in the BIRD
development set and utilized the model itself to select the best answer from the candidates. As shown in
the Figure 4, our proposed method outperformed the best-of-N approach for both the Gemini-1.5-pro and
Gemini-1.5-flash models, demonstrating the significance of incorporating a feedback loop to enhance the
quality of candidate responses.

Comparison with Previous works In this section, we compare our approach with Gemini-1.5-Pro
and other previous methods that rely on test-time computation. As shown in the Table 3, our method
outperforms all previous approaches, demonstrating the effectiveness of the proposed framework in
leveraging test-time computations to enhance model performance on the BIRD benchmark development
set.

A.6 Sketch2code

For Sketch2code (Li et al., 2024b), we provide a detailed comparison of our approach against SoTA
baselines on several evaluation criterion and metrics. We used the hyperparameter setting of temperature
= 0.5, max tokens = 4096, top p = 1.0, frequency/repetition penalty = 0.0, and presence penalty = 0.0

15

Security Wall Products

Products designed for applications where
high impact wall strength are required

Layout Score : 0.13 Layout Score : 0.09

Security Wall Products

Security Wall Products

lorem ipsum..

Our Products —_———

lorem ipsum..

3033 S Wil s -

Layout Score : 0.24 Layout Score : 0.31 e, T

. [— 3

Figure 12: Sketch2code: Provides a qualitative verification of layout score as a metric and corresponding correlation
to human judgement. It is evident that HTMLs with higher match with the reference layout (right-top) and user
sketch(right-bottom) has higher layout score and vice-versa showing that its a valid metric.

for all our results. For the metrics, we consider metrics centring /.Layout Similarity, 2. Visual IoU, 3.
Text IoU with reference HTML following (Li et al., 2024b). These metrics offer a comprehensive and
reliable assessment of HTML generation quality, demonstrating a strong correlation (90%) with human
satisfaction, as shown in (Li et al., 2024b) (further details in Appendix). Hence, we use Layout similarity
as a verifier along with LLM-as-judge (Li et al., 2024b) to guide the generations for both BoN (Beirami
et al., 2024) and IAD. We report comparison with baseline single-turn approaches including SotA models
GPT-40, Claude-3, InternVL2, Gemini-1.5-Flash, CoT and variants along with multi-response generation
approaches including BoN, Sk2code and IAD (Ours). Single turn approaches even from SoTA models
fail to match the layout structure, position of blocks, textual content, size of the blocks etc in the given
user-sketch, causing a mismatch w.r.t to the reference layout as can be clearly seen in Figure and achieves a
low score in-terms of all the three metrics in-comparison with multi-response generation approaches even
with N=2. Best-of-N sampling (BoN) with a weaker model Gemini-1.5-Flash improves over single-turn
approaches and , with N = 4 generations, it outperforms SOTA models with single-turn responses by
a margin of 15-18%, by correctly identifying the block position, title block, overall layout structures
etc. We see monotonic improvement in performance over the number of responses as the layout score
improves from 20.41 to 25.7 with 6 responses. However, BoN struggles in incorporating fine-grained
details about layout structure and makes some-times makes repetitive mistakes in the position of block in
all the IV generation for the prompts (as shown in Fig). Our proposed approach IAD, mitigates this gap by
iteratively improving the responses and as shown in Table 1, it achieves a major improvement of 15%
from BoN as well as single-turn SoTA Claude with just 2 iterations (eq : N=2) even with simpler model
Gemini-1.5-Flash. At each iteration, we pass the best and worst HTML as a context along with instruction,
for generating the next iteration. We observe IAD is able to learn fine-grained layout components, image
semantics over iterations with the context of the Best and Worst HTML. We see that with increased
iterations, performance of IAD improves reaching to a very high layout score of 26.75, outperforming all
baselines with same generations. We also report the Image and Text IoU scores while optimizing with the

16

Sketch2code : Feedback from LLM as a Judge (Self Verification)

Feedback provided : Iterl : The HTML structure and CSS styling do not reflect the provided
wireframe. Iter2 :The layout needs to be revised to accurately represent the sketch’s two-
column image section and the distribution of text blocks. Iter 3: The layout of the text blocks
and image containers does not accurately reflect the provided wireframe. The layout uses
flexbox but doesn’t accurately reflect the sketch’s proportions and image placement. The
large image should be centered and the smaller images should be positioned to the left of their
respective text blocks. Iter4 : Implement a more precise grid-based layout using CSS grid
or flexbox to achieve the correct positioning and sizing of all elements. Iter 5: The provided
HTML closely resembles the wireframe but still needs significant layout adjustments. Use
CSS Grid to precisely position and size all elements according to the wireframe’s proportions.

Sketch _ _ Reference . Performance

_— Example 1

—_— 07} s
0.6
o 0.5

i e L:: 0.4 //}
I
0.1
s S R 0.0
1 7 3 3
— Iterations
Iteration 1 Iteration 2 Iteration 3 Iteration 4

Securty Wil Products [ora—— e

Seeurity Wall Products

Ours

Figure 13: Sketch2code : Top row shows the user sketch, reference image and the performance of IAD over
iterations. The figure highlights improvement of IAD over 4-turns w.r.t Layout similarity score (1/100) for 3
examples. It shows clear improvement over iterations. We also qualitatively analyse the snapshots of the HTMLs
generated by the agent, which demonstrates that over iteration the qualitative performance improves and matches
the input sketch/reference HTML.

layout-score, to check for reward-overoptimization of the metric.

However, as can be observed in Table 1 and Figure-3, that text and image similarities are also improving
over the iterations and our findings regarding comparison with baseline BoN are consistent with the
same. However, we observe that with increase number of generations the performance gets closer to
BoN. We also consider sensitivity of the token-length of the context plays a critical role in this case,
where providing the entire HTMLs can affect the entropy of the distribution, and thus over-conditioning
can hinder structured generation by reducing diversity and exploration (as shown in Figure). Thus,
we provide only the top 100-200 tokens of the best (and worst) HTMLs. However, it is clear that if
there would be a judge to highlight which portion of the code needs to be updated that will be more
targeted. Hence, we incorporate LLM-judge (Gemini-1.5-Pro) which has the reference policy and it
checks with the current response and provide feedback on improvement and sometimes snippets of HTML
as well (however, we restrict that to 100 tokens 5-8% of the original HTML). This leads to a significant
improvement of 36% for the layout score with just two iteration and final score of 31.98 with 6 iterations,
demonstration the important of iterative approaches for agent performance. However, Sk2code (Li et al.,

17

2024b) also performs feedback based design with LLM as a judge, however their approach doesn’t yield
major improvements for several models like Gemini-1.5, which we hypothesize can be due to the incorrect
design of the method and also issues in the GPT-4 judge. Overall, in all our ablation our findings remain
consistent where IAD outperforms baseline by a major margin.

A.7 Importance of Verifier and Reward functions

In this section, we provide a motivation and importance of the verifier in ensuring monotonic improvement
with our proposed approach. We define 7*(:|z) as the target policy generating y* ~ 7*(-|z). At
each step t, we sample y;4+1 ~ mo(-|x,), where g, is the best response so far, and update g1 =
argmaxy € (y, 9¢)R(x,y), accepting yt + 1 if R(xz,y:) — R(xz,9:) > 0. If R(x,y) incorporates the
information of 7*(y|z) (upto a normalization i.e R(x,y) = M, f being a monotonic function), we
show that our iterative refinement never deteriorates performance. In other words, we assume that for any
two responses ¥, y2, if the reward function satisfies R(z,y;) > R(x,y2) then it implies that the optimal
policy assigns a higher probability to y; than ys, i.e 7*(y1|z) > 7*(y2|x). A natural way to measure
closeness to the optimal response is by estimating the distance under the true probability distribution (i.e
target policy) 7*(+|z), defined as

d(Gi1,y") =7 (Y |x) — 7 (Gg1|2) 4)

where the difference captures that how good the quality of the response is under optimal policy. If the
response 1 is highly optimal, then d(g;1, y*) will be low and viceversa, when 911 = y*, the gap will
be zero.

d(Ge,y™) = 7 (y"|w) — 7 (G|) ®)
=7 (%) = 7 (Gelw) = (7" (Geralw) — 7" (Gel2))
<7 (y) — 7 (Gele) = d(Ge, y™)

where, we first add and subtract the term 7*(¢;|x). Then by definition of our acceptance rule, we ensure
that 7 (g+1|x) — 7" (9¢|x) > 0, where equality occurs when g1 = ¥;. Thus we have d(9;) <= d(g1—1)
i.e we ensure that the responses over the iteration are either improving or remain the same over iteration
and won’t deteriorate over iterations. However, it is important to note that this is based on the assumption
that the reward function is aligned with the optimal distribution, meaning that selecting responses based
on maximizing R(x,y) leads to responses that are increasingly closer to the ground-truth distribution
Verifier and Reward function: We provide qualitative evaluation of considering layout similarity as a
verifier due to its Interpretability and also correlation with human judgements also shown in (Li et al.,
2024b). Additionally, we want to highlight that Sketch2code represents an extremely complex and
challenging task for using self-LLM as a judge (Madaan et al., 2023) (without significant prompting)
to compare between two generated HTMLs (by the agent) with its similarity to the input sketch and
prompt. The input sketch has entirely different distribution than the image snapshot of the generated
HTML which makes it harder for LLM as a judge to perform which is one of the reason we hypothesize
that Self-refine (Madaan et al., 2023) type approaches doesn’t provide improvements as shown in Table 1.
On the other-hand, although LLM judge (oracle) provides more meaningful feedback when it has access
to the reference HTML, however needs to be prompted efficiently to generate meaningful responses.

We accept the fact that our judge (oracle) for the feedback was allowed to provide more context
than the one used in (Li et al., 2024b). However, the performance improvement in (Li et al., 2024b)
feedback approch is very less and we hypothesize major reasons can be not performing IAD type approach,
where we take previous best response (HTML) in the context along with specific instructions. Even for
LLM-judge (oracle), we leverage feedback along with the previous best and worst HTMLs, which helps
in providing more meaningful context to the agent in generating the correct HTML.

18

SELECT

Diree i ?‘IIE I;Ec:rhero name i SHCHICICL T,
generation ! rrom. - ! height_cm, 1
snssnnunnnn P superhero AS T1 | QRANKOOVERI(ORDERIBY
i INNER JOIN 1 height_cm DESC) AS 4 69%
i " i HeightRank
i publisher AS T2 ! FROM ® . 63%
. . O f PP i superhero % 60%
[— | ipublisher id =I2id | INNERJOIN s
Question: Rank heroes ey publisher_name = ! publisher _)
published by Marvel | Marvel’ i ON superhero.publisher_id
Comics by their height ! ORDER BY { = publisherid R
_in descending order.) : T1.height_cm ASC | publisher.publisher_name = Base BoN IAD

‘Marvel Comics';

tv

IAD (proposed)

I
* NS
Figure 14: Qualitative (Left) and Quantitative (Right) illustration of the performance benefit of IAD (Ours) over

Single-turn response generations using Gemini-1.5 (Base) Text2SQL task. IAD improves performance by correctly
handling query logic and joins, improving the accuracy over baseline and BoN (Best-of-N). move it to appendix

r)
DB_SCHEMA:
CREATE TABLE satscores (

sname TEXT NULL, -- Example: 'FAME Public Charter’

AvgScrRead INTEGER NULL, -- Example: 418

AvgScrMath INTEGER NULL, -- Example: 418

NumTstTakr INTEGER NOT NULL, -- Example: 88

enroll12 INTEGER NOT NULL, -- Example: 398

cds TEXT NOT NULL PRIMARY KEY
|H

CREATE TABLE frpm (
SchoolName TEXT NULL, -- Example: 'FAME Public Charter'
PercentEligibleFRPM REAL NULL, -- Example: 0.656
FRPMCount REAL NULL, -- Example: 702
Enrolilment REAL NULL, -- Example: 1087

CDSCode TEXT NOT NULL PRIMARY KEY
|H

CREATE TABLE schools (
School TEXT NULL, -- Example: '"FAME Public Charter'
County TEXT NOT NULL, -- Example: 'Alameda’
Latitude REAL NULL, -- Example: 37.658212
Longitude REAL NULL, -- Example: -122.09713

CDSCode TEXT NOT NULL PRIMARY KEY
)

Question: List the top five schools, by descending order, from the highest
to the lowest, the most number of Enrollment (Ages 5-17). Please give their
NCES school identification number.

- S

v v

SELECT DISTINCT T2.NCESSCHOOL FROM FRPM AS T{
INNER JOIN SCHOOLS AS T2 ON T1.CDSCODE =
T2.CDSCODE WHERE T1.'ENROLLMENT (AGES 5-17)" IS
NOT NULL ORDER BY T1.'ENROLLMENT (AGES 5-17)
DESC LIMIT 5

SELECT T1.’NCESSCHOOL’, T2'ENROLLMENT (AGES 5-17)
FROM SCHOOLS AS T1 INNER JOIN FRPM AS T2 ON
T1.CDSCODE = T2.CDSCODE ORDER BY

T2 ENROLLMENT (AGES 5-17)° DESC LIMIT 5

BEST OF N:
INCORRECT ANSWER

OUR METHOD:
CORRECT ANSWER

Figure 15: Text2SQL: An example of two responses is presented: the first response, generated using our proposed
approach, is correct, while the second response, produced using the best-of-N method, is incorrect.

Webshop - Task Execution Flow - IAD (Success)

Search: "blue color toothbrushes” —— ProductList Found —— Selected: Hoomall
Kids U-Shaped Toothbrush (Blue, $10.95) —— Clicked on Product —— Purchased
— Task Completed (Reward: 1.0)

Model Layout. TxtIoU ImgIoU
Single-Turn Approaches

InternVL2-8b* 4.01 4.89 1.41

Llava-1.6-8b* 8.01 9.26 1.95
Claude-3-Sonnet* 14.22 15.85 6.62
GPT-40-Mini* 16.29 20.84 0.72
Claude-3-Opus* 17.11 18.09 8.32
Claude-3-Haiku* 17.52 20.60 2.72
Gemini-1.5-Flash 17.85 17.50 10.77
Gemini-1.5-Pro 18.25 18.20 12.69
GPT-40* 19.20 17.12 16.19
Gemini-1.5-Flash (CoT) 19.84 19.13 10.02
Claude-3.5-Sonnet* 22.26 25.33 9.21

Multi-Turn Approaches (Gemini-1.5-Flash)

Sk2code (N=2)** 19.41 20.45 11.81
Self-Refine (N=2) 19.51 19.35 10.71
BoN (N=2) 21.45 20.1 13.5

IAD (N=2) 24.78 23.01 15.29
IAD-fb (N=2, K=2) 24.86 234 14.69
Self-Refine (N=4) 19.97 19.11 11.74
Sk2code (N=4)** 20.41 21.46 12.67
BoN (N=4) 24.02 22.59 15.91
IAD (N=4) 25.97 24.13 16.98
IAD-fb (N=4, K=4) 26.61 24.62 17.36
Self-Refine (N=6) 19.89 18.91 11.61
Sk2code (N=6) 21.43 21.53 13.78
BoN (N=6) 25.75 2291 17.67
IAD (N=6) 26.75 2491 19.12
IAD-fb (N=6, K=6) 27.95 24.99 19.01

Table 4: Sketch2Code: Performance comparison between single-turn and multi-response generation approaches.
For each of the multi-response generation method Layout score acts as the reference metric (temperature =0.6).
Table demonstrate that IAD (Ours) consistently outperform SoTA baseline by >3-4% margin (absolute). N denotes
the number of LLM calls for generating the HTML (>2000 tokens) and K represents the calls to LLM judge for
getting feedback (<200 tokens).

Webshop - Task: Buy a Folding Storage Box Ottoman- IAD (Success)

Size: 60x40x40cm Material: Faux Leather Price: Under $170

* Search — "folding storage box ottoman faux leather 60x40x40cm"

¢ Product List — Found 50 results

— Ottoman Footstool (40x40x40cm) - $149.97
— Other options did not match size or price

¢ Click — Select "Ottoman Footstool"
* Size Selection — Click "60x40x40cm"
* Buy Now — Proceed to checkout

* Task Completed

20

Query

Search Attempts

Results Found

Final Outcome

Men’s Black Loafers (Size
10.5, Rubber Soles, <60)

Multiple searches, clicked
"Next" repeatedly, found
unrelated shoes (sneakers,
sandals, pumps)

None matched the require-
ment

Task Failed - No

suitable options
found (Reward:
0.0)

Blue Diamond Almonds
(Gluten-Free, Pecan, 12
Pack)

Repeated searches, en-
countered "No Search but-
ton" error multiple times,
retrieved irrelevant snack
items

Nut Thins Crackers, Keto
Bars, M&M’s Chocolate

Task Failed - No rel-
evant product found
(Reward: 0.0)

Folding Storage Box
Ottoman (Faux Leather,
60x40x40cm, <170)

Initial product matched
but had incorrect size, next
searches returned irrele-
vant furniture items

Found an ottoman, but
wrong size & overpriced

Task Failed - No
exact match found
(Reward: 0.0)

Official Cleveland Uni-

Search led to incorrect

No official Cleveland Uni-

Task Failed - No

versity Drawstring Shorts results (Marvel T-Shirts, versity shorts found suitable options
(Small, Charcoal, Ma- Women’s Yoga Shorts), found (Reward:
chine Washable, <60) agent attempted refine- 0.0)

ment but couldn’t find ex-

act product
Organic Hair Growth Search retrieved some Found a set, but incorrect Task Failed - No

Serum Roller Set (For All
Hair Types, <60)

serums but none matched
exact request (wrong
quantity or expensive)

product version

exact match found
(Reward: 0.0)

Table 5: Webshop : Highlights several Failure Cases of the Baseline Agent (Gemini-1.5-Pro) in Retrieving Relevant
products given the task. This represents the challenge of current model in performing strategic exploration in
Webshop.

Webshop - Task: Buy a Vegan, Gluten-Free Protein Shake - IAD (Success)

Requirements: 100% Vegan, Gluten-Free, Soy-Free Price: Under $40
* Search — "gluten free vegan plant based protein shake"

¢ Product List — Found 50 results

— OWYN Protein Shake (Cold Brew Coffee, 120z) - $11.07
— Other products exceeded price or dietary restrictions

e Click — Select "OWYN Protein Shake"
* Buy Now — Proceed to checkout

* Task Completed

A.8 Text2SQL

In this section we provide some example responses of Best of N approach and our proposed method on
the BIRD development set samples.

21

Text2SQL : Generated queries for best of N approach (Wrong answer)

DB schema:

CREATE TABLE satscores (
enroll12 INTEGER not null,
dname TEXT null,

)z

CREATE TABLE frpm(

IRC INTEGER null,

‘Free Meal Count (K-12)° REAL null,

¥

CREATE TABLE schools(
GSserved TEXT null,
Street TEXT null,

);

Question: Which active district has the highest average score in Reading?

Predicted Query: SELECT T1.District FROM schools AS T1 INNER JOIN satscores AS T2 ON
T1.CDSCode = T2.cds WHERE T1.StatusType = *Active’ GROUP BY T1.District ORDER BY
AVG(T2.AvgScrRead) DESC LIMIT 1

Text2SQL : Generated queries for our method (Correct answer)

DB schema:

CREATE TABLE satscores (
enroll12 INTEGER not null,
dname TEXT null,

i

CREATE TABLE frpm(

IRC INTEGER null,

‘Free Meal Count (K-12)° REAL null,

¥

CREATE TABLE schools(
GSserved TEXT null,
Street TEXT null,

);

Question: Which active district has the highest average score in Reading?

Predicted Query: SELECT T1.dname FROM satscores AS T1 INNER JOIN schools AS T2 ON
T1.cds = T2.CDSCode WHERE T2.StatusType = ’Active’ AND T1.AvgScrRead IS NOT NULL
GROUP BY T1.dname ORDER BY MAX(T1.AvgScrRead) DESC LIMIT 1

22

Text2SQL : Generated queries for best of N approach (Wrong answer)

DB schema:

CREATE TABLE satscores (
enroll12 INTEGER not null,
dname TEXT null,

i

CREATE TABLE frpm(

IRC INTEGER null,

‘Free Meal Count (K-12)° REAL null,

i

CREATE TABLE schools(
GSserved TEXT null,
Street TEXT null,

);

Question: Among the schools with the average score in Math over 560 in the SAT test, how many
schools are directly charter-funded?

Predicted Query: SELECT COUNT(T1.CDSCode) FROM schools AS T1 INNER JOIN satscores
AS T2 ON T1.CDSCode = T2.CDSCode WHERE T2.AvgScrMath > 560 AND T1.FundingType
= ’Directly funded’

Text2SQL : Generated queries for our method (Correct answer)

DB schema:

CREATE TABLE satscores (
enroll12 INTEGER not null,
dname TEXT null,

);

CREATE TABLE frpm(

IRC INTEGER null,

‘Free Meal Count (K-12)° REAL null,

i

CREATE TABLE schools(
GSserved TEXT null,
Street TEXT null,

);

Question: Among the schools with the average score in Math over 560 in the SAT test, how many
schools are directly charter-funded?

Predicted Query: SELECT COUNT(DISTINCT T1.CDSCode) FROM schools AS T1 INNER
JOIN satscores AS T2 ON T1.CDSCode = T2.cds INNER JOIN frpm AS T3 ON T3.CDSCode
= T2.cds WHERE T2.AvgScrMath > 560 AND T3.‘Charter Funding Type* = ’Directly funded’
AND T3.‘Charter Funding Type* IS NOT NULL

23

	Introduction
	Inference-time Agent Alignment
	Iterative Agent Decoding

	Experiment Setup
	Environmental Details and Setup

	Experiment Results and Analysis
	Accuracy vs Compute for Budget-Controlled Scaling
	Impact of Adaptive Feedback Beyond Sampling Diversity
	Design and role of feedback form
	Sensitivity to feedback quality

	Conclusion
	Appendix
	Detailed Environment Description
	Limitation of Single-turn Approach
	Limitation of Prior approaches
	Detailed Experimental Analysis
	Text-to-SQL Detailed Results and Analysis
	Sketch2code
	Importance of Verifier and Reward functions
	Text2SQL

