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Swallowing the Bitter Pill: Simplified Scalable Conformer Generation
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Abstract
We present a novel way to predict molecular
conformers through a simple formulation that
sidesteps many of the heuristics of prior works
and achieves state of the art results by using the
advantages of scale. By training a diffusion gen-
erative model directly on 3D atomic positions
without making assumptions about the explicit
structure of molecules (e.g. modeling torsional
angles) we are able to radically simplify struc-
ture learning, and make it trivial to scale up the
model sizes. This model, called Molecular Con-
former Fields (MCF), works by parameterizing
conformer structures as functions that map ele-
ments from a molecular graph directly to their 3D
location in space. This formulation allows us to
boil down the essence of structure prediction to
learning a distribution over functions. Experimen-
tal results show that scaling up the model capacity
leads to large gains in generalization performance
without enforcing inductive biases like rotational
equivariance. MCF represents an advance in ex-
tending diffusion models to handle complex scien-
tific problems in a conceptually simple, scalable
and effective manner.

1. Introduction
In this paper we tackle the problem of molecular conformer
generation, i.e. predicting the diverse low-energy three-
dimensional conformers of molecules. Molecular conformer
generation is a fundamental problem in computational drug
discovery and chemo-informatics, where understanding the
intricate interactions between molecular and protein struc-
tures in 3D space is critical, affecting aspects such as charge
distribution, potential energy, etc. (Batzner et al., 2022).
The core challenge associated with conformer generation
is the vast complexity of the 3D structure space, encom-
passing factors such as bond lengths and torsional angles.
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Despite the molecular graph dictating potential 3D conform-
ers through specific constraints, such as bond types and
spatial arrangements determined by chiral centers, the con-
formational space experiences exponential growth with the
expansion of the graph size and the number of rotatable
bonds (Axelrod & Gomez-Bombarelli, 2022). This compli-
cates brute force and exhaustive approaches, making them
virtually unfeasible for even moderately small molecules.

Systematic methods, like OMEGA (Hawkins et al., 2010),
offer rapid processing through rule-based generators and
curated torsion templates. Despite their efficiency, these
models typically fail on complex molecules, as they of-
ten overlook global interactions and are tricky to extend to
inputs like transition states or open-shell molecules. Clas-
sic stochastic methods, like molecular dynamics (MD) and
Markov chain Monte Carlo (MCMC), rely on extensively ex-
ploring the energy landscape to find low-energy conformers.
Such techniques suffer from sampling inefficiency for large
molecules and struggle to generate diverse representative
conformers (Hawkins, 2017; Wilson et al., 1991; Grebner
et al., 2011). In the domain of learning-based approaches,
several works have looked at conformer generation prob-
lems through the lens of probabilistic modeling, using either
normalizing flows (Xu et al., 2021a) or diffusion models
(Xu et al., 2022; Jing et al., 2022). These approaches tend to
use equivariant network architectures to deal with molecular
graphs (Xu et al., 2022) or model domain-specific factors
like torsional angles (Ganea et al., 2021; Jing et al., 2022).
However, explicitly enforcing these domain-specific induc-
tive biases come at a cost. For example, Torsional Diffu-
sion models rely on rule-based methods to find rotatable
bonds which may fail especially for complex molecules.
Ultimately, the quality of generated conformers is destined
to suffer from errors of the non-differentiable cheminfor-
matic methods used to predict local substructures. On the
other hand, recent works have proposed domain-agnostic ap-
proaches for generative modeling of data in function space
(Du et al., 2021; Dupont et al., 2022b;a; Zhuang et al., 2023)
obtaining great performance. As an example, Zhuang et al.
(2023) use a diffusion model to learn a distribution over
functions f , showing great results on different data domains
like images (i.e. f : R2 → R3) or 3D geometry (i.e.
f : R3 → R1), where the domain of the function Rn is
fixed across functions. Such frameworks provide a valuable
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Swallowing the Bitter Pill: Simplified Scalable Conformer Generation

Figure 1. Overview of proposed MCF. The structure of molecular graph is encoded through eigenvectors of Laplacian eigen-decomposition
φ(V) and atomic features A. MCF directly operates on atom coordinates in 3D space and trains the diffusion model to denoise the
function in 3D coordinates. The score network is developed with attention-based PerceiverIO architecture. Context pairs Ct attend to a
latent array of learnable parameters via cross attention and the latent array goes through several self attention blocks. Finally, the query
pairs Qt cross-attend to the latent array to produce the final noise prediction ϵ̂q in 3D space.

paradigm to investigate whether domain-agnostic methods
with little to no inductive biases can be successfully trans-
ferred to solve scientific problems (e.g. molecular conformer
generation).

To this end, we present Molecular Conformer Fields (MCF),
a simple and scalable approach to learn generative models
of molecular conformers. We leverage a domain-agnostic
architecture that makes no assumptions about molecular
structures and trivially benefits from scale. We formulate
the molecular conformer generation problem as learning
a distribution over functions/fields (we use both terms ex-
changeably), an approach that has been applied widely to
various data domains (Zhuang et al., 2023). Specifically,
conformers are interpreted as functions that map points on
graph Gi to atom coordinates in R3, fi : Gi → R3, which
we call a conformer field. Unlike many prior efforts that
shoe-horn inductive biases of molecular structures into the
model (e.g. developing equivariant diffusion process, mod-
eling torsional angles, etc.) (Xu et al., 2022; Ganea et al.,
2021; Jing et al., 2022), MCF operates directly on 3D atom
coordinates, without enforcing molecular constraints explic-
itly, letting the model learn these directly from the data.

Instead of using Graph Neural Networks with intricate equiv-
ariance designs, MCF builds a score network using Perceive-
rIO (Jaegle et al., 2022) (see Fig. 1) which is a scalable and
efficient variant of the Transformer architecture. Our model
is simple to implement and efficient to scale. Experiments
on recent conformer generation benchmarks show MCF sur-
passes strong baselines by a gap that gets larger as we scale
model capacity, potentially revealing a bitter lesson (Sut-
ton, 2019) moment for conformer generation, when large

models with fewer domain-specific architectural inductive
biases lead to better performance. Superior performance of
MCF on molecular conformation generation highlights the
potential for building a singe domain-agnostic method that
is simple and scalable to work on many different problems.

Our contributions are summarized as follows:

• We introduce a novel approach for molecular con-
former generation that has strong scaling properties
and surpasses previous methods by a large margin on
standard benchmarks.

• Our approach directly predicts the 3D position of atoms
as opposed to domain-specific variables, providing a
simple and scalable training recipe.

• MCF shows that enforcing inductive biases like rota-
tional equivariance or modeling torsional angles is not
required for generalization.

2. Preliminaries
2.1. Diffusion Probabilistic Fields

Diffusion Probabilistic Fields (DPF) (Zhuang et al., 2023)
belongs to the broad family of latent variable models
(Everett, 2013) and can be consider a generalization of
DDPMs (Ho et al., 2020) to deal with functions f : M → Y
which are infinite dimensional. Conceptually speaking,
DPF (Zhuang et al., 2023) parameterizes functions f
with a set of context pairs containing input-outputs to
the function. Using these context pairs as input to DPF,
the model is trained to denoise any query coordinate (e.g.
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query pairs) in the domain of the function at timestep
t (as shown in Fig. 1). In order to learn a parametric
distribution over functions pθ(f0) from an empirical
distribution of functions s q(f0), DPF reverses a diffusion
Markov Chain that generates function latents f1:T by
gradually adding Gaussian noise to (context) input-output
pairs randomly drawn from f ∼ q(f0) for T time-steps as
follows: q(ft|ft−1) := N (ft−1;

√
ᾱtf0, (1− ᾱt)I). Here,

ᾱt is the cumulative product of fixed variances αt with a
handcrafted scheduling up to time-step t. DPF (Zhuang
et al., 2023) follows the training recipe in Ho et al. (2020)
in which: i) The forward process adopts sampling in closed
form. ii) reversing the diffusion process is equivalent to
learning a sequence of denoising (or score) networks ϵθ,
with tied weights. Reparameterizing the forward process as
ft =

√
ᾱtf0+

√
1− ᾱtϵ results in the “simple” DDPM loss:

Et∼[0,T ],f0∼q(f0),ϵ∼N (0,I)

[
∥ϵ− ϵθ(

√
ᾱtf0 +

√
1− ᾱtϵ, t)∥2

]
,

which makes learning of the data distribution pθ(f0) both
efficient and scalable. At inference time, DPF computes
f0 ∼ pθ(f0) via ancestral sampling (Zhuang et al., 2023).
Concretely, DPF starts by sampling dense query coordinates
and assigning a gaussian value to them fT ∼ N (0, I).
Then, it iteratively applies the score network ϵθ to denoise
fT , thus reversing the diffusion Markov Chain to obtain f0.
In practice, DPFs have obtained amazing results for signals
living in an Euclidean geometry.

2.2. Conformers as Functions on Graphs

Following the setting in previous work (Xu et al., 2022;
Ganea et al., 2021; Jing et al., 2022) a molecule with n atoms
is represented as an undirected graph G = ⟨V, E⟩, where
V = {vi}ni=1 is the set of vertices representing atoms and
E = {eij |(i, j) ⊆ |V|×|V|} is the set of edges representing
inter-atomic bonds. We further use A to denote atomic
features which also are leveraged by our generative model.
In this paper, we parameterize a molecule’s conformer as a
function f : G → R3 that takes atoms (e.g. vertices) in the
molecular graph G and maps them to 3D space, we call this
function a conformer field. The training set is composed of
conformer fields fi : Gi → R3, where each field maps atoms
of a different molecule Gi to a 3D point. We then formulate
the task of conformer generation as learning a prior over a
training set of conformer fields. We drop the subscript i in
the remainder of the text for notation simplicity.

We learn a denoising diffusion generative model
(Ho et al., 2020) over conformer fields f . In par-
ticular, given conformer field samples f0 ∼ q(f0)
the forward process takes the form of a Markov
Chain with progressively increasing Gaussian noise:
q(f1:T |f0) =

∏T
t=1 q(ft|ft−1), q(ft|ft−1) :=

N (ft−1;
√
ᾱtf0, (1− ᾱt)I). We train MCF using

the denoising objective function in (Ho et al., 2020):
Et∼[0,T ],f0∼q(f0),ϵ∼N (0,I)

[
∥ϵ− ϵθ(

√
ᾱtf0 +

√
1− ᾱtϵ, t)∥2

]
.

2.3. Equivariance in Conformer Generation

Equivariance has become an important topic of study in
generative models (Abbott et al., 2023; 2022; Kanwar et al.,
2020). In particular, enforcing equivariance as an explicit
inductive bias in neural networks can lead to improved gen-
eralization (Köhler et al., 2020) by constraining the space of
functions that can be represented by a model. On the other
hand, recent literature shows that models that can learn these
symmetries from data rather than explicitly enforcing them
(e.g. Transformers vs CNNs) tend to perform better as they
are more amenable to optimization (Bai et al., 2021).

Equivariance also plays an interesting role in conformer
generation. On one hand, it is important when training likeli-
hood models of conformers, as the likelihood of a conformer
is invariant to roto-translations (Köhler et al., 2020). On the
other hand, when training models to generate conformers
given a molecular graph, explicitly baking roto-translation
equivariance might not be as necessary. This is because
the intrinsic structure of the conformer encodes far more
information about its properties than the extrinsic coordinate
system (eg. rotation and translation) in which the conformer
is generated (Ruddigkeit et al., 2012). In addition, recent
approaches for learning simulations on graphs (Sanchez-
Gonzalez et al., 2020) or pre-training models for molecular
prediction tasks (Zaidi et al., 2022) have successfully relied
on non-equivariant architectures.

In this paper, we ask whether inductive biases like rotational
equivariance can be traded for model scale in general pur-
poses architectures like Transformers. Our empirical results
show that explicitly enforcing roto-translation equivariance
is not a strong requirement for generalization. Furthermore,
we show that scalable approaches that do not explicitly
enforce roto-translation equivariance (like ours) can outper-
form approaches that do by a large margin .

3. Method
MCF is a diffusion generative model that captures distri-
butions over conformer fields. We are given observations
in the form of an empirical distribution f0 ∼ q(f0) over
fields where a field f0 : G → R3 maps vertices v ∈ G on a
molecular graph G to 3D space R3.

To tackle the problem of learning a diffusion generative
model over conformer fields we extend the recipe in DPF
(Zhuang et al., 2023), generalizing from fields defined in am-
bient Euclidean space to functions on graphs (e.g. conformer
fields). In order to do this, we compute the k leading eigen-
vectors of the normalized graph Laplacian ∆G (Maskey
et al., 2022; Sharp et al., 2022) as positional encoding for
points in the graph. The eigen-decomposition of the nor-
malized graph Laplacian can be computed efficiently using
sparse eigen-problem solvers (Hernandez et al., 2009) and
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Algorithm 1 Training
1: ∆Gφi = φiλi // Compute Laplacian eigenvectors
2: repeat
3: (C0,Q0) ∼ Uniform(q(f0))
4: t ∼ Uniform({1, . . . , T})
5: ϵc ∼ N (0, I), ϵq ∼ N (0, I)
6: Ct = [φ(Vc),

√
ᾱtY(c,0) +

√
1− ᾱtϵc]

7: Qt = [φ(Vq),
√
ᾱtY(q,0) +

√
1− ᾱtϵq]

8: Take gradient descent step on
9: ∇θ ∥ϵq − ϵθ(Ct, t,Qt)∥2

10: until converged
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f0 ⇠ q(f0), f0 : G ! R3

Figure 2. Left: MCF training algorithm. Right: Visual depiction of a training iteration for a conformer field. See Sect. 3 for definitions (.

Algorithm 2 Sampling
1: ∆Gφi = φiλi // LBO eigen-decomposition
2: QT = [φ(Vq),Y(q,t) ∼ N (0q, Iq)]
3: CT ⊆ QT {Random subset}
4: for t = T, . . . , 1 do
5: z ∼ N (0, I) if t > 1, else z = 0

6: Y(q,t−1) = 1√
αt

(
Y(q,t) − 1−αt√

1−ᾱt
ϵθ(Ct, t,Qt)

)
+ σtz

7: Qt−1 = [φ(Vq),Y(q,t−1)]
8: Ct−1 ⊆ Qt−1 {Same subset as in step 2}
9: end for

10: return f0 evaluated at coordinates φ(Vq)
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t = t � 1

<latexit sha1_base64="3hmjZlxtFnYxOLbBHRSyaB+OHdE=">AAACCHicdVDLSgNBEJyN7/iKevTgYBA8hd0YNXoKePGYQB5CNoTZSa8Ozj6Y6RXDkqMXf8WLB0W8+gne/BtnkwgqWtBQVHXT3eXFUmi07Q8rNzM7N7+wuJRfXlldWy9sbLZ1lCgOLR7JSF14TIMUIbRQoISLWAELPAkd7/os8zs3oLSIwiYOY+gF7DIUvuAMjdQv7LgIt5g2ElBDqgFP6Yi6AcMrz08bo36zXyjapYOyY1eq1C7ZYxhy4jgnFYc6U6VIpqj3C+/uIOJJACFyybTuOnaMvZQpFFzCKO8mGmLGr9kldA0NWQC6l44fGdE9owyoHylTIdKx+n0iZYHWw8AzndmN+reXiX953QT9ai8VYZwghHyyyE8kxYhmqdCBUMBRDg1hXAlzK+VXTDGOJru8CeHrU/o/aZdLzlHpsFEp1qrTOBbJNtkl+8Qhx6RGzkmdtAgnd+SBPJFn6956tF6s10lrzprObJEfsN4+AfKtmes=</latexit>

Query set: QT

<latexit sha1_base64="/A2Z8MJVCYg8adp9bpXnifsFTYg=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBDiJeyKr2PQi8cI5oHJEmYns8mQ2dllpjcQQv7CiwdFvPo33vwbJ8keNLGgoajqprsrSKQw6Lrfzsrq2vrGZm4rv72zu7dfODismzjVjNdYLGPdDKjhUiheQ4GSNxPNaRRI3ggGd1O/MeTaiFg94ijhfkR7SoSCUbTSU3tIddIXpeFZp1B0y+4MZJl4GSlChmqn8NXuxiyNuEImqTEtz03QH1ONgkk+ybdTwxPKBrTHW5YqGnHjj2cXT8ipVbokjLUthWSm/p4Y08iYURTYzohi3yx6U/E/r5VieOOPhUpS5IrNF4WpJBiT6fukKzRnKEeWUKaFvZWwPtWUoQ0pb0PwFl9eJvXzsndVvny4KFZuszhycAwnUAIPrqEC91CFGjBQ8Ayv8OYY58V5dz7mrStONnMEf+B8/gAkkpCV</latexit>

'(v)

<latexit sha1_base64="/A2Z8MJVCYg8adp9bpXnifsFTYg=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBDiJeyKr2PQi8cI5oHJEmYns8mQ2dllpjcQQv7CiwdFvPo33vwbJ8keNLGgoajqprsrSKQw6Lrfzsrq2vrGZm4rv72zu7dfODismzjVjNdYLGPdDKjhUiheQ4GSNxPNaRRI3ggGd1O/MeTaiFg94ijhfkR7SoSCUbTSU3tIddIXpeFZp1B0y+4MZJl4GSlChmqn8NXuxiyNuEImqTEtz03QH1ONgkk+ybdTwxPKBrTHW5YqGnHjj2cXT8ipVbokjLUthWSm/p4Y08iYURTYzohi3yx6U/E/r5VieOOPhUpS5IrNF4WpJBiT6fukKzRnKEeWUKaFvZWwPtWUoQ0pb0PwFl9eJvXzsndVvny4KFZuszhycAwnUAIPrqEC91CFGjBQ8Ayv8OYY58V5dz7mrStONnMEf+B8/gAkkpCV</latexit>

'(v)

<latexit sha1_base64="VwKJE/6pcHZ/2tGHDrNjwaotRmQ="></latexit>

Context set: CT

<latexit sha1_base64="C+loXZMmWCXEZE9Orz/dowajGL8="></latexit>

Context set: Ct�1

<latexit sha1_base64="K/aIrDWDwKe3cYq1FXmXsW5hsKY=">AAACDHicdVDLSgMxFM34rPVVdekmWAQ3lolWbV0V3LhswarQlpJJ77TBzIPkjliG+QA3/oobF4q49QPc+TemtYKKHggczjmX3Hu8WEmDrvvuTE3PzM7N5xbyi0vLK6uFtfVzEyVaQFNEKtKXHjegZAhNlKjgMtbAA0/BhXd1MvIvrkEbGYVnOIyhE/B+KH0pOFqpWyi2EW4wbSSgh9QAHtOMtgOOA89PG1k3xV2W2ZRb2t9jbrlC3ZI7hiVVxqplRtlEKZIJ6t3CW7sXiSSAEIXixrSYG2Mn5RqlUJDl24mBmIsr3oeWpSEPwHTS8TEZ3bZKj/qRti9EOla/T6Q8MGYYeDY52tP89kbiX14rQb/SSWUYJwih+PzITxTFiI6aoT2pQaAaWsKFlnZXKgZcc4G2v7wt4etS+j853yuxw9JBo1ysVSZ15Mgm2SI7hJEjUiOnpE6aRJBbck8eyZNz5zw4z87LZ3TKmcxskB9wXj8A8LmbiQ==</latexit>

Query set: Qt�1

Figure 3. Left: MCF sampling algorithm. Right: Visual depiction of the sampling process of a conformer field.

only needs to be computed once before training. We use the
term φ(v) =

√
n[φ1(v), φ2(v), . . . , φk(v)] ∈ Rk to denote

the normalized Laplacian eigenvector representation of a
vertex v ∈ G.

We adopt an explicit field parametrization where a field is
characterized by uniformly sampling a set of vertex-signal
pairs {(φ(vc),y(c,0))}, vc ∈ G,y(c,0) ∈ R3, which is de-
noted as context set. We row-wise stack the context set and
refer to the resulting matrix via C0 = [φ(Vc), Y(c,0)].
Here, φ(Vc) denotes the Laplacian eigenvector represen-
tation context vertices and Y(c,0) denotes the 3D position
of context vertices at time t = 0. We define the forward
process for the context set by diffusing the 3D positions and
keeping Laplacian eigenvectors fixed:

Ct = [φ(Vc),Y(c,t) =
√
ᾱtY(c,0) +

√
1− ᾱtϵc], (1)

where ϵc ∼ N (0, I) is a noise vector of the appropriate size.
We now turn to the task of formulating a score network for
fields. The score network needs to take as input the context
set (i.e. the field parametrization), and needs to accept

being evaluated for any point in G. We do this by sampling
a query set of vertex-signal pairs {φ(vq),y(q,0)}. Equiva-
lently to the context set, we row-wise stack query pairs and
denote the resulting matrix as Q0 = [φ(Vq), Y(q,0)]. Note
that the forward diffusion process is equivalently defined
for both context and query sets:

Qt = [φ(Vq),Y(q,t) =
√
ᾱtY(q,0) +

√
1− ᾱtϵq], (2)

where ϵq ∼ N (0, I) is a noise vector of the appropriate size.
The underlying field is solely defined by the context set, and
the query set are the function evaluations to be de-noised.
The resulting score field model is formulated as follows,
ϵ̂q = ϵθ(Ct, t,Qt).

Using the explicit field characterization and the score field
network, we obtain the training and inference procedures
in Alg. 1 and Alg. 2, respectively, which are accompanied
by illustrative examples of sampling a conformer field. For
training, we uniformly sample context and query sets from
f0 ∼ Uniform(q(f0)) and only corrupt their signal using
the forward process in Eq. equation 1 and Eq. equation 2.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Swallowing the Bitter Pill: Simplified Scalable Conformer Generation

We train the score field network ϵθ to denoise the signal por-
tion of the query set, given the context set. During sampling,
to generate a conformer fields f0 ∼ pθ(f0) we first define a
query set QT = [φ(Vq), Y(q,T ) ∼ N (0, I)] of random
atom positions to be de-noised. We set the context set to be
a random subset of the query set. We use the context set to
denoise the query set and follow ancestral sampling as in the
vanilla DDPM (Ho et al., 2020). Note that during inference
the eigen-function representation φ(v) of the context and
query sets does not change, only their corresponding signal
value (e.g. their 3D position).

3.1. Score Field Network ϵθ

In MCF, the score field’s design space covers all architec-
tures that can process irregularly sampled data, such as
Transformers (Vaswani et al., 2017) and their correspond-
ing Graph counterparts (Maskey et al., 2022; Sharp et al.,
2022; He et al., 2022; Dwivedi et al., 2020) which have
recently gained popularity in the supervised learning setting.
The score field network ϵθ is primarily implemented using
PerceiverIO (Jaegle et al., 2022), an effective Transformer
encoder-decoder architecture. A PerceiverIO is chosen due
to its nature of a general-purposed architecture that can han-
dle data of a wide variety domains. It provides a suitable
test bed for evaluating how well models without domain-
specific inductive bias (e.g. equivariance) perform in solving
scientific problems (e.g. molecular conformer generation
as investigated in this work). PerceiverIO encodes interac-
tions between elements in sets using attention, which has
been demonstrated to be scalable in many previous works
(Brown et al., 2020). Fig. 1 demonstrates how these sets are
used within the PerceiverIO architecture. To elaborate, the
encoder maps the context set into latent arrays (i.e. a group
of learnable vectors) through a cross-attention layer, while
the decoder does the same for query set. For a more de-
tailed analysis of the PerceiverIO architecture refer to (Jae-
gle et al., 2022).The time-step t is incorporated into the
score computation by concatenating a positional embedding
representation of t to both context and query sets.

4. Experiments
We use two popular datasets: GEOM-QM9 and GEOM-
DRUGS (Axelrod & Gomez-Bombarelli, 2022). Datasets
are preprocessed and split as described in Ganea et al.
(2021). We deploy PerceiverIO with small (S), base (B)
and large (L) sizes, which contain 13M, 64M and 242M
parameters respectively. More implementation details can
be found in Appendix A.3. We provide additional experi-
ments that validate the design choices for the score network
architecture, as well as empirically validating the chemical
properties of generated conformers in the Appendix A.4.

Recall Precision

COV ↑ AMR ↓ COV ↑ AMR ↓
mean median mean median mean median mean median

CGCF 69.5 96.2 0.425 0.374 38.2 33.3 0.711 0.695
GeoDiff 76.5 100.0 0.297 0.229 50.0 33.5 0.524 0.510
GeoMol 91.5 100.0 0.225 0.193 87.6 100.0 0.270 0.241
Tor. Diff. 92.8 100.0 0.178 0.147 92.7 100.0 0.221 0.195

MCF 95.0 100.0 0.103 0.044 93.7 100.0 0.119 0.055

Table 1. Molecule conformer generation results on GEOM-QM9.
MCF obtains better results than the state-of-the-art baselines.

4.1. GEOM-QM9

Following the standard setting for molecule conformer pre-
diction we use the GEOM-QM9 dataset which contains
∼ 130K molecules ranging from 3 to 29 atoms. We report
our results with base size model (i.e. MCF-B) in Tab. 1
and compare with CGCF (Xu et al., 2021a), GeoDiff (Xu
et al., 2022), GeoMol (Ganea et al., 2021) and Torsional
Diff. (Jing et al., 2022). Note that all baselines make strong
assumptions about the geometric structure of molecules.
They either develop equivariant diffusion process (Xu et al.,
2022) or model domain-specific characteristics like inter-
atomic distances (Xu et al., 2021a) and torsional angles of
rotatable bonds (Ganea et al., 2021; Jing et al., 2022). In
contrast, MCF simply models the distribution of 3D coordi-
nates of atoms without making any assumptions about the
underlying structure. Finally we report the same metrics as
Torsional Diff. (Jing et al., 2022) to compare the generated
and ground truth conformer ensembles: average minimum
RMSD (AMR) and coverage (COV). These metrics are re-
ported both for precision, measuring the accuracy of the
generated conformers, and recall, measuring how well the
generated ensemble covers the ground-truth ensemble (de-
tails about metrics can be found in Appendix A.3.4). We
generate 2K conformers for a molecule with K ground truth
conformers.

Tab. 1 shows that MCF outperforms previous approaches by
a substantial margin. In addition, it is important to note that
MCF is a general approach for learning functions on graphs
that does not make any assumptions about the intrinsic geo-
metric factors important in conformers like torsional angles.
This makes MCF simpler to implement and applicable to
other settings in which intrinsic geometric factors are not
known or expensive to compute.

4.2. GEOM-DRUGS

To test the capacity of MCF to deal with larger molecules we
also report experiments on GEOM-DRUGS, the largest and
most pharmaceutically relevant part of the GEOM dataset
(Axelrod & Gomez-Bombarelli, 2022) — consisting of 304k
drug-like molecules (average 44 atoms). We report our re-
sults in Tab. 2 and compare with GeoDiff (Xu et al., 2022),
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(a) (b) (c)

Figure 4. (a) Recall coverage and (b) precision coverage as a function of the threshold distance. MCF outperforms Torsional Diff. across
the full spectrum of thresholds. (c) Averaged AMR of recall and precision as a function of the number of atoms in molecules.

Recall Precision

COV ↑ AMR ↓ COV ↑ AMR ↓
mean median mean median mean median mean median

GeoDiff 42.1 37.8 0.835 0.809 24.9 14.5 1.136 1.090
GeoMol 44.6 41.4 0.875 0.834 43.0 36.4 0.928 0.841
Tor. Diff. 72.7 80.0 0.582 0.565 55.2 56.9 0.778 0.729

MCF-S 79.4 87.5 0.512 0.492 57.4 57.6 0.761 0.715
MCF-B 84.0 91.5 0.427 0.402 64.0 66.2 0.667 0.605
MCF-L 84.7 92.2 0.390 0.247 66.8 71.3 0.618 0.530

Table 2. Molecule conformer generation results on GEOM-
DRUGS. MCF surpasses state-of-the-art baselines by large mar-
gin.

GeoMol (Ganea et al., 2021) and Torsional Diff. (Jing et al.,
2022). Note again that all baseline approaches make strong
assumptions about the geometric structure of molecules and
model domain-specific characteristics like torsional angles
of bonds. MCF simply models the distribution of 3D coor-
dinates of atoms without making any assumptions about the
underlying structure.

Results on Tab. 2 are where we see MCF outperforms strong
baseline approaches by substantial margins. All MCF mod-
els achieve better performance than previous state-of-the-art
Torsional Diff. model. On both recall and precision, MCF
of small size (MCF-S) surpasses Torsional Diff. by approx-
imately 15%. This indicates that our proposed MCF not
only generates high-quality conformers that are close with
ground truth but also covers a wide variety of conform-
ers in the distribution. In addition, it is important to note

that MCF does not make any assumptions about the intrin-
sic geometric factors in conformers like torsional angles
and thus provides a simple recipe to scale up the model.
With growing number of parameters, larger MCF constantly
achieves better performance than smaller counterpart in all
metrics. In particular, when compared with MCF-S, MCF-
B shows approximately 15% improvement on precision and
even larger MCF-L improves it by approximately 20%. The
experimental results demonstrate the power of scaling up
proposed MCF in better solving conformer generation prob-
lem. Since our proposed method simply operates on 3D
atomic positions, it provides a straightforward recipe for
scaling up the model. This sheds light on how scaling law
could potentially benefit applications of deep generative
models to scientific domains.

In Fig. 4, we further show a breakdown of the performance
on GEOM-DRUGS of MCF with different sizes vs. Tor-
sional diffusion (Jing et al., 2022) as a function of the thresh-
old distance, as well as a function of the number of atoms in
molecules. MCF outperforms Torsional Diff. across the full
spectrum of thresholds in both recall and precision. When
looking at the break-down AMR on different number of
atoms in Fig. 4(c), MCF also demonstrates its superior per-
formance for molecules of different sizes. It is indicated that
MCF better captures the fine intrinsic geometric structure
of conformers and scaling up the model helps improve the
performance of proposed model. Also, as the number of pa-
rameters increases, MCF demonstrates better performance
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AMR-P ↓ AMR-R ↓ # mols

mean median mean median

GeoDiff 2.92 2.62 3.35 3.15 -
GeoMol 2.47 2.39 3.30 3.14 -
Tor. Diff. 2.05 1.86 2.94 2.78 -
MCF-S 2.22 1.97 3.17 2.81 102
MCF-B 2.01 1.70 3.03 2.64 102
MCF-L 1.97 1.60 2.94 2.43 102

Tor. Diff. (our eval) 1.93 1.86 2.84 2.71 77
MCF-S 2.02 1.87 2.9 2.69 77
MCF-B 1.71 1.61 2.69 2.44 77
MCF-L 1.64 1.51 2.57 2.26 77

Table 3. Generalization results on GEOM-XL.

across all threshold levels in terms of both recall and pre-
cision. This provides further evidence on the performance
gain from increasing the models size of MCF which is de-
signed to be scalable in a straightforward way. We further
investigate the ensemble properties of generated conformers
in Appendix A.4.3. Fig. 10 in the Appendix shows examples
of MCF generated conformers in GEOM-DRUGS.

4.3. Generalization to GEOM-XL

We now turn to the task of evaluating how well a model
trained on GEOM-DRUGS transfers to unseen molecules
with large numbers of atoms. Following Jing et al.
(2022), we use the GEOM-XL dataset, a subset of GEOM-
MoleculeNet that contains 102 molecules with more than
100 atoms. Note that this evaluation not only tests the ca-
pacity of models to generalize to larger and more complex
molecules but also serves as an out-of-distribution general-
ization experiment.

In Tab. 3 we report AMR for both precision and recall and
compare with GeoDiff (Xu et al., 2022), GeoMol (Ganea
et al., 2021) and Torsional Diff. (Jing et al., 2022). In
particular, when taking the numbers directly from Jing et al.
(2022), MCF-B achieves better or comparable performance
than Torsional Diff. Further, in running the checkpoint
provided by Torsional Diff. and following their validation
process we found that 25 molecules failed to be generated,
this is due to the fact that Torsional Diff. generates torsional
angles conditioned on the molecular graph G and the local
structures obtained from RDKit. And RDKit can fail to
find local structures and Torsional Diff. cannot generate
conformers in these cases. In our experiments with the
same 77 molecules in GEOM-XL from our replica, MCF
surpasses Torsional Diff. by a large margin. Leveraging
little or no inductive bias in modeling molecular conformers,
our proposed method is adaptable to wider variety of data.

Results also show that scaling up the model size to MCF-L
further improves the generalizability to large and unseen
molecules in GEOM-XL. In our replica, MCF-L demon-

(a) (b)

Figure 5. (a) Mean Coverage and (b) mean AMR of different ro-
tation augmentation strategies on GEOM-QM9 when compared
with training on original dataset.

strates better performance than smaller model counterparts
(i.e. MCF-S and MCF-B) and surpasses Torsional Diff. by
a large margin. The results highlight the generalizability of
MCF to large and complex molecules, which may shed a
light on pre-training molecular conformer generation model.

4.4. Why does MCF generalize?

A natural question to ask is why does MCF generalize given
its non-equivariant design. To answer this question we de-
vised an experiment to understand if conformers in training
and validation sets share a canonical coordinate system. In
our experiment we apply different rotation transformations
to GEOM-QM9 and train MCF on this transformed training
set, while keeping the validation set unchanged. Three ro-
tation transformations are investigated: 1) “Fixed” applies
a single random rotation to all conformers, 2) “Variable”
applies a different rotation to each conformer and keeps it
through training, 3) “Random” applies a different random
rotation to each conformer in each training epoch. Fig. 5
shows the results in these different settings.

Not surprisingly, applying a fixed rotation to the training
set minimally affects performance. This is because a fixed
rotation does not break relative SO(3) relations between
conformers in the training set. However, rotating each con-
former independently once during training (e.g. “Variable”)
negatively impacts performance. This finding points to the
fact that the DFT simulations used to generate the data might
be implicitly encoding a canonical coordinate system, which
affects generalization if broken. Finally, applying a random
rotation to each conformer on each training epoch forces
the model to be invariant to any coordinate system, which is
a more challenging task. Notably, though randomly rotating
each conformer leads to worse results in recall, the perfor-
mance drop is still marginal. Finally, by training a bigger
model on this randomly rotated training set (i.e. Random-L)
we can recover most of the performance gap in comparison
with training on the original dataset.

These experiments show that inductive biases like roto-
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(a) (b)

(c) (d)

Figure 6. Inference wall clock time v.s. (a) precision coverage,
(b) recall coverage, (c) precision AMR, and (d) recall AMR with
Torsional Diff. and our MCF.

equivariance can be traded for scale in general-purpose mod-
els. Our results highlight that a domain-agnostic model at
scale can achieve better performance than intricate models
with strong domain-specific inductive biases in molecular
conformer generation. We hope our findings will inspire
the community to develop simple models that are prone
to benefit from “scaling laws” especially when taking into
account the fast growth of available scientific data.

4.5. Sampling

In this section, we investigate the performance of our MCF
under limited computation budget in inference. To this end,
we report COV and AMR of MCF with respect to differ-
ent wall-clock sampling times. DDIM (Song et al., 2021),
an efficient sampler, is applied, which uses a significantly
smaller number of sampling steps than vanilla DDPM (i.e.
1000 sample steps). Specifically, we sample conformers
with 3, 5, 10, 20, and 50 sampling steps with DDIM and
compare the performance as well as inference time with
Torsional Diff. (Jing et al., 2022). All models are bench-
marked on a single A100 GPU for comparison. It is shown
that MCF is more efficient than Torsional Diffusion, which
means that for the same inference time in seconds, MCF
always outperforms Torsional Diffusion across all metrics
and all model sizes. Notably, due to application of equiv-
ariant operations, Torsional Diff. can be time consuming in
inference. Even when using a very limited sampling steps
(e.g. 5 steps) MCF achieves comparable or better COV and
AMR than Torsional Diff. using 50 sampling steps, while
being more efficient in wall-clock inference time. MCF
with different sizes achieves Pareto frontier of performance
(i.e. COV and AMR) and sampling efficiency compared

with Torsional Diff. This further indicates rotational or
translational equivariance may not be a strong requirement
while simple and scalable framework like MCF can own the
merits in efficiency. Examples of MCF sampled conformers
with different sampling steps can be found in Fig. 9 in the
Appendix.

5. Conclusions
In this paper we introduced MCF, where we formulate
the problem of molecular conformer generation as learn-
ing a diffusion model over functions on molecular graphs.
MCF achieves state-of-the-art performance across different
molecular generation benchmarks, surpassing models with
hard-coded inductive biases by a large margin. Notably,
MCF uses general-purpose Transformer-based score net-
work rather than a model designed with specific inductive
biases for molecules. MCF achieves superior results with-
out explicitly modeling geometric properties of molecules
like torsional angles, which makes it simpler to understand
and scale. We believe MCF represents an exciting first step
for future research on scaling conformer generation to pro-
teins and other macro molecular structures. We hope our
work serves as a reminder to the community to carefully
consider the interplay between baking inductive biases in
architectures while also considering the benefits of efficient
and scalable approaches.
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A. Appendix
A.1. Related Works

Recent works have tackled the problem of molecular conformer generation using learning-based generative models. Simm
& Hernández-Lobato (2019) and Xu et al. (2021b) develop two-stage methods which first generate interatomic distances
following VAE framework and then predict conformers based on the distances. Guan et al. (2021) propose neural energy
minimization to optimize low-quality conformers. In Xu et al. (2021a), a normalizing flow approach is proposed as an
alternative to VAEs. To avoid the accumulative errors from two-stage generation, Shi et al. (2021) implement score-based
generative model to directly model the gradient of logarithm density of atomic coordinates. In GeoDiff (Xu et al., 2022), a
diffusion model is used which focuses on crafting equivariant forward and backward processes with equivariant graph neural
networks. In GeoMol (Ganea et al., 2021), the authors first predict 1-hop local structures and then propose a regression
objective coupled with an Optimal Transport loss to predict the torsional angles that assemble substructures of a molecule.
Following this, Torsional Diffusion (Jing et al., 2022) proposed a diffusion model on the torsional angles of the bonds rather
than a regression model used in Ganea et al. (2021).

Our approach extends recent efforts in generative models for functions in Euclidean space (Zhuang et al., 2023; Dupont et al.,
2022b;a; Du et al., 2021), to functions defined over graphs (e.g. chemical structure of molecules). Different approaches have
been proposed to learn distributions over fields in Euclidean space; GASP (Dupont et al., 2022b) leverages a GAN whose
generator produces field data whereas a point cloud discriminator operates on discretized data and aims to differentiate real
and generated functions. Two-stage approaches (Dupont et al., 2022a; Du et al., 2021) adopt a latent field parameterization
(Park et al., 2019) where functions are parameterized via a hyper-network (Ha et al., 2017) and a generative model is learnt
in latent space. MCF presents a generalization over these approaches to deal with training sets where each function fi is
defined on a different graph Gi, as opposed to in Euclidean space. In addition, MCF also related to recent work focusing on
fitting a function on a manifold using an intrinsic coordinate system (Koestler et al., 2022; Grattarola & Vandergheynst,
2022), and generalizes it to the problem of learning a probabilistic model over multiple functions defined on different graphs.
Intrinsic coordinate systems have also been used in Graph Transformers to tackle supervised learning tasks (Maskey et al.,
2022; Sharp et al., 2022; He et al., 2022; Dwivedi et al., 2020).

Recent strides in the domain of protein folding dynamics have witnessed revolutionary progress, with modern methodologies
capable of predicting crystallized 3D structures solely from amino-acid sequences using auto-regressive models like
AlphaFold (Jumper et al., 2021). However, transferring these approaches seamlessly to general molecular data is fraught
with challenges. Molecules present a unique set of complexities, manifested in their highly branched graphs, varying bond
types, and chiral information, aspects that make the direct application of protein folding strategies to molecular data a
challenging endeavor.

A.2. Limitations and Future Work

While MCF shows competitive performance in molecular conformer generation, it does encounter limitations and potential
improvements for future explorations. One limitation is that our proposed method is computationally expensive. Extensive
computations first stem from the Transformer-based (Vaswani et al., 2017) score network. In MCF, we use a PerceiverIO
(Jaegle et al., 2022) as score network, an efficient Transformer that allows for sub-quadratic compute, as well as FlashAtten-
tion (Dao et al., 2022) in implementation. Other efficient Transformer architectures and tricks like Jabri et al. (2022) can
be used to improve training efficiency. The other factor is computational cost during inference. In MCF, we iterate 1000
timesteps to sample a conformer following DDPM (Ho et al., 2020). Experiments in Section 4.5 show that efficient sampling
strategies, i.e. DDIM (Song et al., 2021), can help significantly increase inference efficiency while maintain high-quality
in sampled conformers. Other efficient variants of diffusion models like consistency model (Song et al., 2023) as well as
distillation approaches (Berthelot et al., 2023) may be adapted to further decrease the sampling to single step. Also, recent
works have demonstrated that diffusion generative model can generate samples following Boltzmann distributions when
provided with Boltzmann-distributed training data (Arts et al., 2023). Driven by this, our proposed MCF can be adapted to
generate molecular conformers that follow Boltzmann distributions when trained with corresponding data. Besides, recent
flow matching generative model (Lipman et al., 2022) provides the flexibility of mapping between arbitrary distributions
and access to exact log-likelihood estimation. Integrating flow matching framework could help sample molecular conformer
from Boltzmann distribution instead of standard Gaussian. Some recent works (Flam-Shepherd & Aspuru-Guzik, 2023;
O Pinheiro et al., 2024; Gruver et al., 2022) also show that expressive models can learn equivariance from data, but they
have not thoroughly investigated molecular conformer generation.
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Another limitation could be how well MCF performs in low data regime. The propsed method may not perform as well as
conformer generation when applied to problems with limited data or related to sequential problems like molecular dynamics
(MD) simulations. In future work, we plan to extend MCF to conditional inference. For example, molecular docking can be
formulated as conformer generation problem conditioned on proteins (Corso et al., 2022). Also, current framework can be
expanded to de novo drug designs where no molecule information is provided (Hoogeboom et al., 2022). Besides, scaling up
our model to large molecules, like proteins, can be of great interest. MCF by nature provides the flexibility to generate from
partially observed sample, which can be suitable for designing proteins with known functional motifs (Watson et al., 2023).

A.3. Implementation details

In this section we describe implementation details for all our experiments. We also provide hyper-parameters and settings
for the implementation of the score field network ϵθ and compute used for each experiment in the paper. In our experiments,
we split GEOM-QM9 and GEOM-DRUGS randomly based on molecules into train/validation/test (80%/10%/10%). At the
end, for each dataset, we report the performance on 1000 test molecules. Thus, the splits contain 106586/13323/1000 and
243473/30433/1000 molecules for GEOM-QM9 and GEOM-DRUGS, respectively. We follow the exact same training splits
for all baselines (Ganea et al., 2021; Jing et al., 2022).

A.3.1. SCORE FIELD NETWORK IMPLEMENTATION DETAILS

The time-step t is incorporated into the score computation by concatenating a positional embedding representation of t to
the context and query sets. The specific PerceiverIO settings used in all quantitatively evaluated experiments are presented
in Tab. 4. An AdamW (Loshchilov & Hutter, 2017) optimizer is employed during training with a learning rate of 1e− 4.
Cosine learning rate decay is deployed with 30K warmup steps. We use EMA with a decay of 0.999. Models are trained for
300K steps on GEOM-QM9 and 750K steps on GEOM-DRUSG. All models use an effective batch size of 512. A modified
version of the publicly available repository is used for PerceiverIO 1. Since molecules have different number of atoms, we
set the number of context and query sets as the number of atoms during training and inference.

Hyper-parameter Small Base Large

num freq pos embed 128 128 128
num latent 128 512 1024
d latennt 256 512 1024
d model 512 1024 1024
num enc block 6 8 12
num dec block 2 2 2
num self attn per block 2 2 2
num self attn head 4 4 8
num cross attn head 4 4 8

# param 13M 64M 242M

Table 4. Hyperparameters and settings for MCF on different datasets.

A.3.2. ATOMIC FEATURES

We include atomic features alongside the graph Laplacians to model the key descriptions of molecules following previous
works (Ganea et al., 2021; Jing et al., 2022). Detailed features are listed in Tab. 5. The atomic features are concatenated
with graph Laplacian eigenvectors in both context and query inputs.

A.3.3. COMPUTE

For GEOM-QM9, we train models using a machine with 4 Nvidia A100 GPUs using precision BF16. For GEOM-DRUGS,
we train models using precision FP32, where MCF-B is trained with 8 Nvidia A100 GPUs and MCF-L is trained with 16
Nvidia A100 GPUs.

1https://huggingface.co/docs/transformers/model_doc/perceiver
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Name Description Range

atomic Atom type one-hot of 35 elements in dataset
degree Number of bonded neighbors {x : 0 ≤ x ≤ 6, x ∈ Z}
charge Formal charge of atom {x : −1 ≤ x ≤ 1, x ∈ Z}
valence Implicit valence of atom {x : 0 ≤ x ≤ 6, x ∈ Z}
hybrization Hybrization type {sp, sp2, sp3, sp3d, sp3d2, other}
aromatic Whether on a aromatic ring {True, False}
num rings number of rings atom is in {x : 0 ≤ x ≤ 3, x ∈ Z}

Table 5. Atomic features included in MCF.

A.3.4. EVALUATION METRICS

Following previous works (Xu et al., 2022; Ganea et al., 2021; Jing et al., 2022), we apply Average Minimum RMSD (AMR)
and Coverage (COV) to measure the performance of molecular conformer generation. Let Cg denote the sets of generated
conformations and Cr denote the one with reference conformations. For AMR and COV, we report both the Recall (R) and
Precision (P). Recall evaluates how well the model locates ground-truth conformers within the generated samples, while
precision reflects how many generated conformers are of good quality. The expressions of the metrics are given in the
following equations:

AMR-R(Cg, Cr) =
1

|Cr|
∑

R∈Cr

min
R̂∈Cg

RMSD(R, R̂), (3)

COV-R(Cg, Cr) =
1

|Cr|
|{R ∈ Cr|RMSD(R, R̂) < δ, R̂ ∈ Cg}|, (4)

AMR-P(Cr, Cg) =
1

|Cg|
∑

R̂∈Cg

min
R∈Cr

RMSD(R̂,R), (5)

COV-P(Cr, Cg) =
1

|Cg|
|{R̂ ∈ Cg|RMSD(R̂,R) < δ,R ∈ Cr}|, (6)

where δ is a threshold. In general, a lower AMR scores indicate better accuracy and a higher COV score indicates a
better diversity for the generative model. Following (Jing et al., 2022), δ is set as 0.5Å for GEOM-QM9 and 0.75Å for
GEOM-DRUGS.

A.4. Additional experiments

In this section we include additional experiments ablating architecture choices, as well as prediction the ensemble properties
of generated conformers.

A.4.1. ABLATION EXPERIMENTS

In this section we provide an ablation study over the key design choices of MCF. We run all our ablation experiments on
the GEOM-QM9 dataset following the settings in GeoMol (Ganea et al., 2021) and Torsional Diff. (Jing et al., 2022). In
particular we study: (i) how does performance behave as a function of the number of Laplacian eigenvectors used in φ(v).
(ii) How does the model perform without atom features (e.g. how predictable conformers are given only the graph topology,
without using atom features). Results in Tab. 6 show that the graph topology G encodes a surprising amount of information
for sampling reasonable conformers in GEOM-QM9, as shown in row 2. In addition, we show how performance of MCF
changes as a function of the number of eigen-functions k. Interestingly, with as few as k = 2 eigen-functions MCF is able
to generate consistent accurate conformer.

A.4.2. ARCHITECTURAL CHOICES

To further investigate the design choices of architecture in proposed MCF, we include additional experiments on GEOM-
QM9 as shown in Tab. 6. To investigate the effectiveness of using Laplacian eigenvectors from LBO eigen-decomposition
as positional embedding, we leverage SignNet (Lim et al., 2022) as the positional embedding, which explicitly models
symmetries in eigenvectors. Using SignNet does not benefit the performance when compared with the standard MCF.
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Though adding edge attributes in SignNet achieves better performance than SignNet alone, the performance is still not rival.
Also, it’s worth mentioning that SignNet includes graph neural networks (Xu et al., 2018) and Set Transformer (Lee et al.,
2019) which makes training less efficient.

In addition, we also report results using a vanilla Transformer encoder-decoder (TF) (Vaswani et al., 2017) as the backbone
instead of PerceiverIO (PIO) (Jaegle et al., 2022). TF-base model contains 6 encoder layers and 6 decoder layers with
4 attention heads while TF-large contains 12 encoder layers and 12 decoder layers. The number of parameters match
approximately with base and large sized PerceiverIO investigated in this work. Tab. 6 shows that TF-base is performing
significantly worse than PIO-base with similar number of parameters. When increasing the model size, TF-large achieves on
par performance as PIO-base, which validates the design choice of architecture in MCF.

Precision Recall

COV ↑ AMR ↓ COV ↑ AMR ↓
k atom feat. PE backbone mean median mean median mean median mean median

28 YES LBO PIO-base 95.00 100.00 0.103 0.044 93.67 100.00 0.119 0.055
28 NO LBO PIO-base 90.70 100.00 0.187 0.124 79.82 93.86 0.295 0.213
16 YES LBO PIO-base 94.87 100.00 0.139 0.093 87.54 100.00 0.220 0.151
8 YES LBO PIO-base 94.28 100.00 0.162 0.109 84.27 100.00 0.261 0.208
4 YES LBO PIO-base 94.57 100.00 0.145 0.093 86.83 100.00 0.225 0.151
2 YES LBO PIO-base 93.15 100.00 0.152 0.088 86.97 100.00 0.211 0.138
28 YES SignNet PIO-base 94.10 100.00 0.153 0.098 87.50 100.0 0.222 0.152
28 YES SignNetattr PIO-base 95.30 100.00 0.143 0.091 90.20 100.00 0.197 0.135
28 YES LBO TF-base 94.92 100.00 0.131 0.083 89.33 100.00 0.194 0.132
28 YES LBO TF-large 95.49 100.00 0.110 0.061 93.48 100.00 0.135 0.073

Table 6. Ablation study with different network architectures on GEOM-QM9.

A.4.3. ENSEMBLE PROPERTIES

To fully assess the quality of generated conformers we also compute chemical property resemblance between the synthesized
and the authentic ground truth ensembles. We select a random group of 100 molecules from the GEOM-DRUGS and
produce a minimum of 2K and a maximum of 32 conformers for each molecule following (Jing et al., 2022). Subsequently,
we undertake a comparison of the Boltzmann-weighted attributes of the created and the true ensembles. To elaborate,
we calculate the following characteristics using xTB (as documented by (Bannwarth et al., 2019)): energy (E), dipole
moment (µ), the gap between HOMO and LUMO (∆ϵ), and the lowest possible energy, denoted as Emin. Since we don’t
have the access to the exact subset of DRUGS used in (Jing et al., 2022), we randomly pick three subsets and report the
averaged and standard deviation over three individual runs with different random seeds. The results are listed in Tab. 7.
Our model achieves the lowest error on Emin when compared with other baselines, which demonstrates that MCF succeeds
at generating stable conformers that are very close to the ground states. This could root from the fact that MCF doesn’t
rely on rule-based cheminfomatics methods and the model learns to better model stable conformers from data. Besides,
MCF achieves competitive performance on µ and ∆ϵ. However, the error of E is high compared to the rest of approaches,
meaning that though MCF performs well in generating samples close to ground states, it may also generate conformers with
high energy that are not plausible in the dataset.

To further evaluate the performance on ensemble properties, we randomly pick 10 molecules from test set of GEOM-DRUGS
and compare MCF with our replica Torsional Diff. on the subset as shown in the last two rows of Tab. 7. We use the
checkpoints from the public GitHub repository2 of Torsional Diff. to sample conformers. Unlike previous setting which
only sample 32 conformers, we sample 2K conformers for a molecule with K ground truth conformers. We report the
average and standard deviation of errors over the 10 molecules. It is indicated that MCF generates samples with ensemble
properties that are closer to the ground truth. Fig. 7 shows the conformers with lowest and highest energy in ground truth,
MCF samples, and Torsional Diff. samples.
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E µ ∆ϵ Emin

OMEGA 0.68 0.66 0.68 0.69
GeoDiff 0.31 0.35 0.89 0.39
GeoMol 0.42 0.34 0.59 0.40
Tor. Diff. 0.22 0.35 0.54 0.13
MCF 0.68±0.06 0.28±0.05 0.63±0.05 0.04±0.00

Tor. Diff. (our eval) 3.07±2.32 0.61±0.38 1.71±1.69 4.11±7.91
MCF 1.00±0.70 0.44±0.36 1.32±1.40 1.16±2.02

Table 7. Median averaged errors of ensemble properties between sampled and generated conformers (E, ∆ϵ, Emin in kcal/mol, and µ in
debye).

(a) (b)

(c) (d)

Figure 7. Examples of conformers with lowest and highest energies in ground truth, MCF samples, and Torsional Diff. samples for
different molecules.

Figure 8. Continuously evaluating generated conformer fields for different molecules in GEOM-QM9.
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A.5. Continuous conformers

Molecular conformers are defined as discrete atomic positions in 3D Euclidean space. Since MCF encodes continuous
conformer field, it can be continuously evaluated in G, which maps arbitrary points in G to 3D positional spaceR3. In order
to do this, for a point p in a bond connecting atoms (vi, vj) we linearly interpolate the Laplacian eigenvector representation
of it’s endpoints φ(p) = αφ(vi) + (1− α)φ(vj), we then feed this interpolated Laplacian eigenvector into the model to
sample its 3D position in the conformer field. We visualize results in Fig. 1 and 8. We generated this visualizations an MCF
model trained on GEOM-QM9 without atom features. Note that while MCF is never trained on points along molecular
bonds, it manages to generate plausible 3D positions for such points.

Here, the experiment conceptually investigates the flexibility of defining conformer generation problem as a field. It is
shown that MCF can generate feasible conformers even when the input interpolated eigenfunctions have never been seen
during training. Such that MCF is not over-fitted to certain eigenfunctions and learns to generate distributional aspects of
atomic positions purely from correlations in training data. Also, when provided molecular conformer data with distribution
of electron density from Quantum Monte Carlo methods (Nightingale & Umrigar, 1998), MCF may be extended to predict
electron density beyond atomic positions in future works as well. We recognize this is highly speculative and needs further
empirical investigation to substantiate in future works.

A.6. Additional visualization

Fig. 9 show some examples of sampled conformers from MCF with different sampling steps. It is illustrated that even
with very limited sample steps, MCF can still generate plausible conformers especially for the heavy atoms. We also
show examples of conformers from ground truth, Torsional Diff., and our MCF. Fig. 10 and 11 depict samples from
GEOM-DRUGS and GEOM-XL, respectively. We found the samples that are most aligned with ground truth and plot them
side by side.

2https://github.com/gcorso/torsional-diffusion
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Figure 9. Examples of conformers with different sampling steps.
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Figure 10. Examples of conformers of ground truth, Torsional Diff. samples, and MCF samples from GEOM-DRUGS.
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Figure 11. Examples of conformers of ground truth, Torsional Diff. samples, and MCF samples from GEOM-XL.
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