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ABSTRACT

Sharpness-Aware Minimization (SAM) has emerged as a powerful method for im-
proving generalization in machine learning models by minimizing the sharpness
of the loss landscape. However, despite its success, several important questions re-
garding the convergence properties of SAM in non-convex settings are still open,
including the benefits of using normalization in the update rule, the dependence
of the analysis on the restrictive bounded variance assumption, and the conver-
gence guarantees under different sampling strategies. To address these questions,
in this paper, we provide a unified analysis of SAM and its unnormalized vari-
ant (USAM) under one single flexible update rule (Unified SAM), and we present
convergence results of the new algorithm under a relaxed and more natural as-
sumption on the stochastic noise. Our analysis provides convergence guarantees
for SAM under different step size selections for non-convex problems and func-
tions that satisfy the Polyak-Lojasiewicz (PL) condition (a non-convex generaliza-
tion of strongly convex functions). The proposed theory holds under the arbitrary
sampling paradigm, which includes importance sampling as special case, allow-
ing us to analyze variants of SAM that were never explicitly considered in the
literature. Experiments validate the theoretical findings and further demonstrate
the practical effectiveness of Unified SAM in training deep neural networks for
image classification tasks.

1 INTRODUCTION

Consider the classical finite-sum optimization problem

min
x∈Rd

[
f(x) =

1

n

n∑
i=1

fi(x)

]
. (1)

where each fi is differentiable, Li-smooth and lower bounded. Let X∗ be the set of minimizers
of f , which we assume is non-empty. In practical scenarios, the variable x represents the model
parameters, n is the total number of training instances and the functions fi are loss functions that
measure how close our model is to the i-th training data point. The goal is to minimize the average
loss of all training instances.

Understanding the generalization capabilities of overparameterized deep neural networks is a cen-
tral concern in machine learning research, (Zhang et al., 2021). The training objective function f
has numerous global optima that perfectly fit the training data, (Liu et al., 2020); however, these
different global optima can lead to dramatically varying generalization performances. Empirical
observations indicate that stochastic gradient descent (SGD) tends to converge to solutions with
good generalization properties, even in the absence of regularization methods (Zhang et al., 2021).
This phenomenon suggests that minimizing the training objective using a specific algorithm and
initialization strategy can lead to convergence toward a solution with better generalization.

Recent studies have observed that the sharpness of the training loss, that is how rapidly it changes
in a neighborhood around the model’s parameters, correlates strongly with the generalization error
(Keskar et al., 2016; Jiang et al., 2019). Additionally, generalization bounds related to sharpness
have been derived (Dziugaite & Roy, 2018). This observation has motivated recent works (Foret
et al., 2021; Zheng et al., 2021; Wu et al., 2020) aiming to minimize sharpness to improve gener-
alization. More specifically, building on these ideas Foret et al. (2021), proposed reformulating the
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optimization problem in (1) into a min-max problem of the following form:

min
x∈Rd

max
∥ε∥≤ρ

f(x+ ε)

where ε represents the radius of the desired neighborhood. The merits of such a formulation reside
in the fact that essentially we minimize the empirical sharpness measure max∥ε∥≤ρ f(x+ε)−f(x),
which inevitably will lead to flatter minima. The objective now is to find x that minimizes f not just
at a specific point but across the entire ε-neighborhood. By taking the first-order Taylor expansion of
f around x and solving for the optimal ε∗, the (Normalized) Sharpness-Aware Minimization (SAM)
update rule is obtained:

xt+1 = xt − γt∇fSt

(
xt + ρt

∇fSt(x
t)

∥∇fSt
(xt)∥

)
, (SAM)

where St ⊆ [n] is a random subset of data points (mini-batch) with cardinality τ sampled in-
dependently at each iteration t. The normalization of the inner gradient ensures that the point
x̃t = xt + ρt

∇fSt (x
t)

∥∇fSt (x
t) is a good approximation of xt, since ∥x̃t − xt∥ = ρt. This leads to a

more stable optimization process, as explained in Dai et al. (2023).

In an orthogonal direction and building upon SAM, Unnormalized Sharpness-Aware Minimization
(USAM) was introduced by Andriushchenko & Flammarion (2022) and further investigated in Shin
et al. (2024); Dai et al. (2023). The update rule for USAM is defined as follows:

xt+1 = xt − γt∇fSt

(
xt + ρt∇fSt(x

t)
)
. (USAM)

In contrast to SAM, USAM omits the normalization thus the point x̃t can be potentially far from xt

making the x̃t’s of USAM updates much larger. This means that the removal of normalization can
lead to much more aggressive steps making the USAM potentially more unstable.

Although the two variants appear closely related, the proof techniques and upper bounds used in
the convergence analysis of SAM are substantially different from those in USAM. Furthermore, the
convergence guarantees of the two variants vary significantly. For example, in the deterministic
setting (full-batch), SAM guarantees convergence only to a neighborhood of the solution, whereas
USAM does not. Additionally, the step sizes γt and ρt used in the two update rules to guarantee
convergence are very different. All of these differences motivate the importance and necessity of a
novel general analysis of SAM-type algorithms, unifying the two main variants (SAM and USAM)
and providing the ability to design and analyze new SAM-like methods filling existing gaps in the
theoretical understanding of the update rules.

In this work we develop such unified framework that allows the combination of the two approaches
and, at the same time, obtains the best-known convergence guarantees under relaxed assumptions.

Main Contributions. Our main contributions are summarized below.

⋄ Unified Framework. We propose the Unified SAM, an update rule that is a convex combination
of SAM and USAM, given by:

xt+1 = xt − γt∇fSt

(
xt + ρt

(
1− λt +

λt

∥∇fSt
(xt)∥

)
∇fSt

(xt)

)
(Unified SAM)

where λ ∈ [0, 1]. The new formulation captures both USAM and SAM as special cases (λ = 0
and λ = 1, respectively), but more importantly, it opens up a wide range of possible update rules
beyond these traditional settings. The unified framework offers the flexibility to adjust the degree of
normalization (using different values for λ) based on specific model needs, offering a more versatile
approach to SAM.

⋄ Technical Assumptions on the Stochastic Noise. Existing convergence analyses of stochastic
SAM rely heavily on the bounded variance assumption, that is, there exists a σ ≥ 0 such that
E ∥∇fSt

(x) − ∇f(x)∥2 ≤ σ2, (Andriushchenko & Flammarion, 2022; Si & Yun, 2023; Li &
Giannakis, 2023; Harada & Iiduka, 2024; Mi et al., 2022; Zhuang et al., 2022) or sometimes to
the much stronger bounded gradient condition E ∥∇fSt

(x)∥2 ≤ q2, where q ≥ 0 (Mi et al., 2022;
Zhuang et al., 2022). While these assumptions have been crucial in previous analyses, they can be
overly restrictive. In the literature of convergence analysis for stochastic gradient descent (SGD),
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Work Assumptions Arbitrary
Sampling?

SAM Variant

PL functions

(Andriushchenko & Flammarion, 2022) BV ✗ USAM
(Shin et al., 2024) Interpolation ✗ USAM
(Dai et al., 2023) Deterministic ✗ USAM
Theorems 3.2 and 3.5 ER ✓ Unified SAM

General Non-convex functions

(Mi et al., 2022) BV, BG ✗ SAM/SSAM
(Zhuang et al., 2022) BV, BG ✗ GSAM
(Andriushchenko & Flammarion, 2022) BV ✗ USAM
(Li & Giannakis, 2023) BV ✗ SAM
(Si & Yun, 2023) BV ✗ SAM
Theorem 3.7 ER ✓ Unified SAM

Table 1: Summary of the convergence results in the SAM literature. In all works, smoothness is
assumed. The top part of the table is for PL functions and the lower part is for general non-convex
functions. Here BV = Bounded Variance, BG = Bounded Gradients.

there have been a lot of efforts recently on relaxing such assumptions (Gower et al., 2019; Khaled &
Richtárik, 2020; Gower et al., 2021), but, to date, no work has successfully used similar ideas for the
analysis of SAM. In our analysis, we relax the bounded gradients/variance assumptions by utilizing
the recently proposed Expected Residual (ER) condition Gower et al. (2021); Khaled & Richtárik
(2020). As we explain later, in several scenarios, including smooth non-convex problems, ER holds
for free and allows us to provide step sizes for SAM related to the sampling strategies.

⋄ Convergence guarantees for Unified SAM. We provide tight convergence guarantees for Uni-
fied SAM, for smooth functions satisfying the Polyak-Lojasiewicz (PL) condition (Polyak, 1987;
Lojasiewicz, 1963; Karimi et al., 2016) and for general non-convex functions. See also Table 1 for
a summary of our results and comparison with closely related works.

• PL functions: For constant step-sizes γ and ρ we prove linear convergence for Unified SAM to a
neighborhood of the solution. Our theorem holds without requiring the much stronger assumptions
of interpolation condition or the bounded variance assumption of previous works (Andriushchenko
& Flammarion, 2022; Shin et al., 2024). Additionally, we prove that for decreasing step sizes γt
and ρt, the Unified SAM converges to the exact solution with a sublinear O(1/t) rate (under
the ER condition). Our theoretical results hold under the arbitrary sampling paradigm and, as
such, can capture tight convergence guarantees in the deterministic setting. For PL functions in
the deterministic setting (full-batch SAM), we show that USAM converges to the exact solution,
while SAM does not. This observation was first noted by Si & Yun (2023) for deterministic
algorithms. To the best of our knowledge, our work is the first that provides tight convergence
guarantees, showing this behaviour as a special case of stochastic algorithms.

• Non-convex functions: Under the ER condition, we show that for general non-convex func-
tions Unified SAM with step sizes that depend on T (the total number of iterations) achieves
E ∥∇f(xT )∥ < ε for a given ε at a sublinear rate. This is the first result that drops the bounded
variance assumption for both USAM and SAM, (Andriushchenko & Flammarion, 2022; Li &
Giannakis, 2023), and substitutes it with the Expected Residual condition.

Finally, as corollaries of the main theorems for the above two classes of problems, we obtain the
state-of-the-art convergence guarantees for SGD (a special case of SAM with ρ = 0), showing the
tightness of our analysis.

⋄ Arbitrary Sampling. Via a stochastic reformulation of the finite sum problem (1), firstly in-
troduced in Gower et al. (2019), we explain how our convergence guarantees of Unified SAM hold
under the arbitrary sampling paradigm. This allows us to cover a wide range of samplings for USAM
and SAM (and their convex combination via λ ∈ [0, 1]) that were never considered in the literature
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before, including uniform sampling and importance sampling as special cases. In this sense, our
analysis of Unified SAM is unified for different sampling strategies.

⋄ Numerical Evaluation. In Section 4, we present extensive experiments validating different as-
pects of our theoretical results (behavior of methods in the deterministic setting, importance sam-
pling, and different step-size selections). We also assess the performance of Unified SAM in training
deep neural networks for multi-class image classification problems. The code for reproducing all
experiments is included as supplementary material with our submission.

2 UNIFIED SAM WITH ARBITRARY SAMPLING

In this work, we provide a theoretical analysis of Unified SAM that allows us to obtain convergence
guarantees of any minibatch and reasonable sampling selection.

We are able to do that by leveraging the recently proposed “stochastic reformulation” of the
minimization problem (1) from Gower et al. (2019; 2021). Following an identical setting to
Gower et al. (2021), we assume that we have access to unbiased gradient estimates g(x) ∈ Rd

such that E[g(x)] = ∇f(x). For example, we can have g(x) = 1
τ

∑
i∈S ∇fi(x) to be a

mini-batch, where S ⊆ [n] is chosen uniformly at random with |S| = τ . To accommo-
date any form of mini-batching, we utilize the arbitrary sampling notation g(x) = ∇fv(x) :=
1
n

∑n
i=1 vi∇fi(x), where v ∈ Rn

+ is a random sampling vector drawn from a distribution D
such that ED[vi] = 1, for i = 1, . . . , n. Then the original problem (1) can be reformulated as
minx∈Rd ED

[
fv(x) :=

1
n

∑n
i=1 vifi(x)

]
. Note that it follows immediately from the definition of

sampling vector that E[g(x)] = 1
n

∑n
i=1 E[vi]∇fi(x) = ∇f(x). Using this reformulation of the

original problem, the update rule of Unified SAM can be rewritten as follows:

xt+1 = xt − γtg

(
xt + ρt

(
1− λt +

λt

∥g(xt)∥

)
g(xt)

)
, (Unified SAM)

where g(xt) ∼ D is sampled i.i.d at each iteration and ρt ≥ 0, γt > 0 and λt ∈ [0, 1]. The name
unified stems from the fact that the update rule indeed unifies both USAM and SAM, however, we
acknowledge that there exist other SAM-like variants that our approach does not cover.

Arbirtary Sampling. Using the stochastic reformulation, the update rule of Unified SAM includes
several variants of the algorithm, each related to different sampling, by simply varying the distri-
bution D (that satisfies ED[vi] = 1,∀i ∈ [n]). This flexibility implies that different choices of D
lead to distinct SAM-type methods (never proposed in the literature before) for solving the original
problem (1). In this work we focus on two representative sampling distributions, without aiming to
be exhaustive:

1. Single element sampling: We choose only singleton sets S = {i} for i ∈ [n], i.e. P[|S| = 1] =
1. Each number i is sampled with probability pi ∈ [0, 1] or more formally the vector v ∈ Rn

is defined via P[v = ei/pi] = pi, where
∑n

i=1 pi = 1. It is clear that E[vi] = 1. For example,
when pi = 1/n for all i then this reduces to the well-known uniform sampling.

2. τ -nice Sampling: Let τ ∈ [n]. We generate a random subset S ⊆ [n] by choosing uniformly
from all subsets of size τ . More formally, the vector v ∈ Rn is defined by P[v = n

τ

∑
i∈S ei] :=

1/
(
n
τ

)
= τ !(n−τ)!

n! for any subset S ⊆ [n] with |S| = τ . Using a double counting argument, one
can show that E[vi] = 1, see Gower et al. (2019).

Importantly, our analysis applies to all forms of mini-batching and supports various choices of sam-
pling vectors v. Later in Section 3.4, we provide additional details on non-uniform single element
sampling strategies. In addition, it is clear that if τ = n in the τ -nice sampling then we recover the
full batch or deterministic regime. Later in Section 3.2, we further demonstrate how our analysis
encompasses deterministic SAM and USAM as special cases.

3 CONVERGENCE ANALYSIS

In this section, we present our main convergence results. Firstly, we introduce the main assumption
for our results, namely the Expected Residual (ER) condition. Then we focus on PL functions,
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where we demonstrate a linear convergence rate using constant step sizes, and also provide a variant
with decreasing step sizes for convergence to the exact solution. Moreover, we extend the analysis
to general non-convex functions. Lastly, we discuss the use of importance sampling.

3.1 MAIN ASSUMPTION

In all our theoretical results, we rely on the Expected Residual condition.

Assumption 3.1 (Expected Residual Condition). Let f inf = infx∈Rn f(x). We say the Expected
Residual condition holds if there exist parameters A,B,C ≥ 0 such that for an unbiased estimator
g(x) of ∇f(x), we have that for all x ∈ Rd

ED ∥g(x)∥2 ≤ 2A[f(x)− f inf ] +B∥∇f(x)∥2 + C. (ER)

Most prior works in the SAM literature assume either bounded gradients (e.g., Mi et al. (2022);
Zhuang et al. (2022)) or bounded variance (e.g., Andriushchenko & Flammarion (2022); Harada &
Iiduka (2024)). Both conditions are stronger assumptions than ER. Note that the bounded gradients
assumption is captured by ER for A = B = 0, C > 0, while the bounded variance is obtained for
A = 0, B = 1, and C > 0. For a detailed analysis of other conditions that automatically satisfy
ER, see Gower et al. (2021) and Khaled & Richtárik (2020). Finally, when each fi is Li-smooth
under mild assumptions on the distribution D, one can show that ER holds immediately (not an
assumption but property of the problem) and has closed-from expressions for the constants A, B,
and C. For more details on the expressions A, B, and C in this scenario, please check Appendix B.

3.2 PL FUNCTIONS

One of the popular generalizations of strong convexity in the literature is the Polyak-Lojasiewicz
(PL) condition, (Karimi et al., 2016; Lei et al., 2019). We formally define this condition in Defini-
tion A.2 and here we establish linear convergence of Unified SAM for functions that satisfy it.

Theorem 3.2. Assume that each fi is Li-smooth, f is µ-PL and the ER is satisfied. Set Lmax =
maxi∈[n] Li and let

ρt = ρ ≤ µ

Lmax (µ+ 2[Bµ+A](1− λ)2)
, γt = γ ≤

µ− Lmaxρ
(
µ+ 2[Bµ+A](1− λ)2

)
2Lmax(Bµ+A) [2L2

maxρ
2(1− λ)2 + 1]

.

Then for Unified SAM it holds

E[f(xt)− f(x∗)] ≤ (1− γµ)t
[
f(x0)− f(x∗)

]
+N,

where N = Lmax

µ

(
Cγ + ρ(1 + 2γL2

maxρ)
[
λ2 + C(1− λ)2

])
.

As an immediate corollary of Theorem 3.2 we get the following guarantees for USAM and
SAM.

Corollary 3.3. Make the same assumptions as Theorem 3.2.

• USAM: Let ρ ≤ µ
Lmax(µ+2[Bµ+A]) and γ ≤ µ−Lmaxρ(µ+2[Bµ+A])

2Lmax(Bµ+A)[2L2
maxρ

2+1] . Then for USAM it holds

E[f(xt)− f(x∗)] ≤ (1− γµ)t
[
f(x0)− f(x∗)

]
+

LmaxC

µ

(
γ + ρ(1 + 2γL2

maxρ)
)
.

• SAM: Let ρ ≤ 1
Lmax

and γ ≤ µ(1−Lmaxρ)
2Lmax(Bµ+A) . Then for SAM it holds

E[f(xt)− f(x∗)] ≤ (1− γµ)t
[
f(x0)− f(x∗)

]
+

Lmax

µ

(
Cγ + ρ(1 + 2γL2

maxρ)
)
.

To the best of our knowledge, all prior convergence results for (stochastic) SAM have relied on
the strong assumption of bounded variance, as seen in works like Andriushchenko & Flammarion
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(2022), Si & Yun (2023), Li & Giannakis (2023) and Harada & Iiduka (2024). In contrast, the above
theorem is the first to establish convergence for SAM without relying on this assumption. The closest
related works on the convergence of constant step size SAM for PL functions are Shin et al. (2024)
and Dai et al. (2023). The former provides a linear convergence rate for USAM in the interpolated
regime, while the latter establishes a linear convergence rate for USAM in the deterministic regime.
Our result is the first to demonstrate linear convergence in the fully stochastic regime. Additionally,
when ρ = 0, Unified SAM reduces to SGD, and Theorem 3.2 recovers the step sizes and rates (up
to constants) of Theorem 4.6 from Gower et al. (2021), demonstrating the tightness of our results.

Notice that the constant C from the ER and the parameter λ control the neighborhood of the con-
vergence. In particular, in the deterministic regime, the ER holds trivially with A = 0, B = 1 and
C = 0. Under these conditions, Theorem 3.2 simplifies as follows.

Corollary 3.4 (Deterministic SAM). Let f be L-smooth and µ-PL function. Let ρ ≤
1

L(1+2(1−λ)2) and γ ≤ 1−Lρ(1+2(1−λ)2)
2L[2L2

maxρ
2(1−λ)2+1] . Then for Unified SAM it holds

E[f(xt)− f(x∗)] ≤ (1− γµ)t
[
f(x0)− f(x∗)

]
+

Lρ(1 + 2γL2ρ)λ2

µ
.

First, observe that the PL parameter µ no longer appears in the step sizes ρ and γ. Additionally,
when λ = 0, i.e. USAM, the method converges to the exact solution at a linear rate. However,
for λ > 0, and in particular when λ = 1 (SAM), convergence is only up to a neighborhood. This
suggests that even in the deterministic setting, SAM does not fully converge to the minimum. This
was first investigated in Si & Yun (2023) and a similar result appear in Dai et al. (2023). We illustrate
this phenomenon experimentally in Section 4.1.

Finally, as an extension of Theorem 3.2, we also show how to obtain convergence to exact solution
with an O(1/t) rate for Unified SAM using decreasing step sizes.

Theorem 3.5. Assume that each fi is Li-smooth, f is µ-PL and the ER is satisfied. Let ρt =

min
{

1
2t+1 , ρ

∗
}

and γt = min
{

2t+1
(t+1)2µ , γ

∗
}

, where ρ∗ and γ∗ are the upper bounds of ρ and γ,

respectively, in Theorem 3.2. Then for Unified SAM it holds E[f(xt)− f(x∗)] ≤ O
(
1
t

)
.

The detailed expression hidden under the big O notation can be found in Appendix C. A similar
result appears in Andriushchenko & Flammarion (2022) where they provide decreasing step size
selection for USAM for PL functions and prove a convergence rate of O(1/t). However, their result
relies on the additional assumption of bounded variance. In contrast, our theorem does not require
this assumption and is valid for any λ ∈ [0, 1]. Notably, to the best of our knowledge, this is the first
decreasing step size result for SAM.

3.3 GENERAL NON-CONVEX FUNCTIONS

In this section, we remove the PL assumption and work with general non-convex functions for
Unified SAM. First, we start with a general proposition that upper bounds the quantity E ∥∇f(xt)∥.
Our approach follows a similar derivation to the analysis of SGD in the same setting by Khaled &
Richtárik (2020).

Proposition 3.6. Assume that each fi is Li-smooth and the ER is satisfied. Let ρ ≤
min

{
1

8Lmax
, 1
BLmax(1−λ)2

}
and γ ≤ 1

8BLmax
. Then for Unified SAM it holds

min
t=0,...,T−1

E ∥∇f(xt)∥2 ≤
2
(
1 + 2AγLmax

[
ρ(1− λ)2(1 + 2γρL2

max) + γ
])T

Tγ
[f(x0)− f inf ]

+ 2Lmax

[
Cγ + ρ(1 + 2γρL2

max)(λ
2 + C(1− λ)2)

]
.

In order to control the exponential convergence term of the previous theorem we need to carefully
select the step sizes ρ and γ. This is what the following theorem achieves.
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Theorem 3.7. Let ε > 0 and set δ0 = f(x0)− f inf ≥ 0. For any ρ ≤ ρ and γ ≤ γ. Provided that

T ≥ δ0Lmax

ε2
max

{
96B, 24(1− λ)

√
3LmaxA,

5184LmaxA
2(1− λ)4δ0
ε2

,
864δ0A

ε2
,
144C

ε2
,

288L2
max(1− λ)2

ε2

}
the iterates of Unified SAM satisfy mint=0,...,T−1 E ∥∇f(xt)∥ ≤ ε.

For the precise expressions of ρ and γ we refer to Theorem C.4. The results in Proposition 3.6
and Theorem 3.7 are tight, as setting ρ = 0 Unified SAM reduces in SGD and these simplify to the
step sizes and rates (up to constants) of Theorem 2 and Corollary 1 from Khaled & Richtárik (2020).
Other results for general non-convex functions can be found in Mi et al. (2022), Zhuang et al. (2022)
and Li & Giannakis (2023) for SAM and in Andriushchenko & Flammarion (2022) for USAM.
However, as mentioned earlier, all these analyses rely on the strong assumption of bounded variance
and/or bounded gradients. In contrast, our result uses weaker assumptions and offers guarantees for
any λ ∈ [0, 1]. Furthermore, Khanh et al. (2024) have results for general non-convex functions in the
deterministic setting though all their results are asymptotic. Another closely related work is Nam
et al. (2023), where they also assume the expected residual condition, however, they additionally
assume bounded gradient of f and their results are only asymptotic and hold almost surely.

3.4 BEYOND UNIFORM SAMPLING: IMPORTANCE SAMPLING

In our contributions, we highlighted that this work is the first to offer a theoretical justification
for applying importance sampling in SAM. Importance sampling refers to selecting probabilities
that optimize convergence rates, with our focus being on single-element sampling. To derive the
importance sampling probabilities, we substitute the bounds for A, B, and C from Proposition B.2
into the sample complexity obtained in Theorem 3.7, resulting in the following:

T ≥ δ0Lmax

ε2
max

{
24(1− λ)

√
3Lmax

nτ
max

i

Li

pi
,

5184Lmax

n2τ2 (maxi
Li

pi
)2(1− λ)4δ0

ε2
,

864δ0
nτ maxi

Li

pi

ε2
,

288
nτ maxi

Li

pi
σ∗

ε2
,
288L2

max(1− λ)2

ε2

}
Now we need to optimize the quantity maxi

Li

npi
over the probabilities (pi). Thus we get

pi =
Li∑n
j=1 Lj

, (2)

which is precisely the Importance Sampling, see also Gower et al. (2019).

4 NUMERICAL EXPERIMENTS

In this section, we evaluate our proposed step sizes for Unified SAM on both deterministic and
stochastic PL problems, with experiments designed to illustrate our theoretical findings. Addition-
ally, we explore different values of λ when training deep neural networks to improve accuracy.

4.1 VALIDATION OF THE THEORY

In this part, we empirically validate our theoretical results and illustrate the main properties of
Unified SAM that our theory suggests in Section 3. In these experiments, we focus on ℓ2-regularized
regression problems (problems with strongly convex objective f and components fi and thus PL)
and we evaluate the performance of Unified SAM on synthetic data. The loss function of the ℓ2-
regularized ridge regression is given by

f(x) =
1

2
∥Ax− b∥2 + λr∥x∥2 =

1

2n

n∑
i=1

(A[i, :]x− bi)
2
+

λr

2
∥x∥2
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and the loss function of the ℓ2-regularized logistic regression is given by

f(x) =
1

2n

n∑
i=1

log (1 + exp (−biA[i, :]x)) +
λr

2
∥x∥2.

In both problems A ∈ Rn×d, b ∈ Rn are the given data and λr ≥ 0 is the regularization parameter.
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Figure 1: Deterministic Unified SAM
for various values of λ applied to the
ridge regression problem. USAM (λ =
0) converges to the exact solution while
the other variants λ > 0 converge to a
neighborhood of the solution.

Normalized SAM converges only in neighborhood. In
Corollary 3.4 we highlight that our theoretical results in-
dicate that in the deterministic case, USAM achieves lin-
ear convergence to the exact solution. In contrast, when
λ > 0, and specifically for SAM (λ = 1), convergence
is only to a neighborhood of the solution, an unusual out-
come for deterministic optimization methods. We vali-
date this observation experimentally in Figure 1. We run a
ridge regression problem with n = 100, d = 100, λr = 0.
The matrix A has been generated according to Lenard
& Minkoff (1984) such that the condition number of A
is 10 and the vector b has been sampled from the stan-
dard Gaussian distribution. We have used the determin-
istic Unified SAM for λ = 0.0, . . . , 1.0 and we run each
algorithm for 50 epochs. Indeed we can see that USAM
(λ = 0) converges all the way to the exact solution while
the other choices of λ converge to a neighborhood. It is
also noteworthy that the neighborhood increases as λ ap-
proaches 1.

Constant vs Decreasing Step size. In this part, we compare the performance of Unified SAM
under both constant and decreasing step size regimes, as described in Theorem 3.2 and Theorem 3.5,
respectively. For this experiment, we consider a logistic regression task with n = 100, d = 100,
and λr = 3/n. As before the matrix A has been generated such that its condition number is 10 and
the vector b has been sampled from the standard Gaussian distribution. We run Unified SAM with
λ = 0.0, 0.5, 1.0, using uniform single-element sampling for 10, 000 epochs across 5 trials. The
average results of these trials, along with one standard deviation, are shown in Figure 2. Initially,
the trajectory of the decreasing step size follows that of the constant step size. However, as the
constant step size version of Theorem 3.2 approaches a neighborhood near optimality, it stagnates.
In contrast, the decreasing step size from Theorem 3.5 allows for continued improvement, leading
to better overall accuracy.
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Figure 2: Comparison between constant and decreasing step size regimes of Unified SAM. From
left to right we have λ = 0.0, 0.5, 1.0

Uniform vs Importance Sampling. In this experiment, we demonstrate the benefit of using im-
portance sampling compared to uniform sampling. We consider a ridge regression problem with
n = 100, d = 100, and λr = 3/n. The eigenvalues of matrix A are sampled uniformly from the
interval [1.0, 10.0], and the vector b is drawn from a standard Gaussian distribution. We run Unified
SAM with λ = 0.0, 0.5, 1.0, employing single-element uniform sampling for 3, 000 epochs across
five trials. For importance sampling, the probabilities are set as pi = Li/

∑n
j=1 Lj . The averaged

results with one standard deviation are presented in Figure 3. The results clearly show that impor-
tance sampling enhances the convergence of Unified SAM for all values of λ, which is consistent
with the discussion in Section 3.4.
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Figure 3: Comparison between uniform and importance sampling for Unified SAM. From left to
right we have λ = 0.0, 0.5, 1.0

4.2 IMAGE CLASSIFICATION

In this section, we evaluate the generalization performance of Unified SAM using the classic image
classification task. The models are trained on the CIFAR-10 and CIFAR-100 datasets, (Krizhevsky
et al., 2009). For data augmentation, we apply standard techniques such as random crop, random
horizontal flip, and normalization (DeVries, 2017). All experiments are conducted on NVIDIA RTX
6000 Ada GPUs.

Models. We use several models in our experiments, including ResNet-18 (RN-18) (He et al., 2016a),
and PreActResNet-18 (PRN-18) (He et al., 2016b). To demonstrate the scalability of Unified SAM,
we also include Wider ResNet (WRN-28-10) (Zagoruyko & Komodakis, 2016).

Different values of λ. This subsection explores how varying λ in the Unified SAM update rule af-
fects generalization performance. We experiment with the PRN-18 and WRN-28-10 models trained
on CIFAR-10 and CIFAR-100. The Unified SAM method is trained using ρ = 0.1, 0.2, 0.3, 0.4 and
λt = 0.0, 0.5, 1.0, 1/t, 1 − 1/t. The last two choices of λt can be intuitively explained as follows:
for λt = 1 − 1/t, the algorithm starts as USAM (λ1 = 0) and gradually transitions toward SAM
as λt → 1 when t → ∞, meaning it begins with USAM and approaches SAM. Conversely, for
λt = 1/t, the algorithm behaves the other way around, starting closer from SAM and converging to
USAM over time. Following Pang et al. (2021) and Zhang et al. (2024), we set the weight decay to
5 × 10−4, the momentum to 0.9, and train for 100 epochs. The step size γ is initialized at 0.1 and
reduced by a factor of 10 at the 75-th and 90-th epochs.

Each experiment is repeated three times, and we report the averages and standard errors in Tables 2
and 3 and Tables 8 and 9 in appendix. The results indicate that, for a fixed ρ, the optimal λ value is
not always λ = 0 or λ = 1. Overall, λt = 1− 1/t appears to be a reliable choice. In particular, we
observe that USAM (λ = 0) does not have the best performance in any of these experiments. On
the contrary in the CIFAR10 dataset the value λt = 1−1/t is a good choice while in the CIFAR100
dataset both λt = 1 and λt = 1− 1/t offer strong performance.

Table 2: Test accuracy (%) of Unified SAM for WRN-28-10 on CIFAR10, evaluated across different
values of ρ and λ. With bold we highlight the best performance for fixed ρ.

Unified SAM λ = 0.0 λ = 0.5 λ = 1.0 λ = 1/t λ = 1− 1/t
ρ = 0.1 95.7±0.01 95.68±0.11 95.9±0.08 95.84±0.07 95.81±0.03

ρ = 0.2 95.8±0.05 95.77±0.09 95.93±0.07 95.71±0.13 95.98±0.1

ρ = 0.3 95.35±0.3 95.88±0.1 95.95±0.09 95.68±0.02 95.99±0.06

ρ = 0.4 95.46±0.02 95.76±0.1 95.62±0.05 95.46±0.27 95.79±0.07

SGD 95.35±0.06

Unified VaSSO. The Variance-Suppressed Sharpness-Aware Optimization (VaSSO) method, intro-
duced in Li & Giannakis (2023), is an extension of SAM designed to reduce variance in gradient esti-
mates. VaSSO adjusts the direction of gradient updates using a combination of past gradients and the
current gradient, controlled by a parameter θ, aiming to suppress noise during training and enhance
generalization, particularly in overparameterized models. In their work, they prove that VaSSO con-
verges at the same asymptotic rate as SAM, under the bounded variance assumption. The update rule

9
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Table 3: Test accuracy (%) of Unified SAM for WRN-28-10 on CIFAR100, evaluated across differ-
ent values of ρ and λ. With bold we highlight the best performance for fixed ρ.

Unified SAM λ = 0.0 λ = 0.5 λ = 1.0 λ = 1/t λ = 1− 1/t
ρ = 0.1 80.84±0.08 81.01±0.11 80.69±0.11 80.81±0.24 80.88±0.31

ρ = 0.2 81.12±0.18 81.45±0.23 81.53±0.09 81.31±0.21 81.22±0.19

ρ = 0.3 80.94±0.13 81.64±0.16 81.62±0.16 81.03±0.14 81.71±0.17

ρ = 0.4 80.1±0.22 81.31±0.16 81.70±0.06 80.39±0.07 81.59±0.05

SGD 79.79±0.18

of VaSSO is defined as follows: dt = (1− θ)dt−1 + θ∇fi(x
t), xt+1 = xt − γt∇fi

(
xt + ρt

dt

∥dt∥

)
.

We can incorporate our unification approach, initially designed for SAM, into VaSSO. This leads to
the following modified update rule:

dt = (1− θ)dt−1 + θ∇fi(x
t)

xt+1 = xt − γt∇fi

(
xt + ρt

(
1− λt +

λt

∥dt∥

)
dt

)
(Unified VaSSO)

Note that when λt = 1 then we recover VaSSO as introduced in Li & Giannakis (2023).

In this section, we conduct experiments to evaluate the performance of Unified VaSSO. All models
are trained for 200 epochs with a batch size of 128. A cosine scheduler is employed in all cases, with
an initial step size of 0.05. The weight decay is set to 0.001. For VaSSO, we use θ = 0.4, as this
value provides the best accuracy according to Li & Giannakis (2023). For the CIFAR-10 dataset, we
set ρ = 0.1, while for CIFAR-100, we use ρ = 0.2. Each experiment is repeated three times, and
we report the average of the maximum test accuracy along with the standard error. The numerical
results are presented in Tables 4 and 5.

The results show that, for the WideResNet-28-10 model the value λt = 1 − 1/t produces the best
accuracy. For the ResNet-18 model the best values for λ appear to be λ = 0.5 and λ = 1 − 1/t.
Thus, the choice λt = 1−1/t appears to be a strong overall choice. In any cases, a λ value different
from 1 achieves the best performance.

Table 4: Test accuracy (%) of Unified VaSSO on various neural networks trained on CIFAR10.

Model λ = 0.0 λ = 0.5 λ = 1.0 λ = 1/t λ = 1− 1/t
ResNet-18 96.12±0.02 96.10±0.05 96.22±0.11 96.03±0.04 96.34±0.01

WideResNet-28-10 96.77±0.07 96.93±0.03 97.03±0.06 96.71±0.06 97.06±0.09

Table 5: Test accuracy (%) of Unified VaSSO on various neural networks trained on CIFAR100.

Model λ = 0.0 λ = 0.5 λ = 1.0 λ = 1/t λ = 1− 1/t
ResNet-18 79.82±0.15 80.01±0.07 79.76±0.03 79.93±0.13 79.86±0.04

WideResNet-28-10 83.07±0.25 83.29±0.33 83.51±0.09 82.83±0.18 83.66±0.19

5 CONCLUSION

In this paper, we introduced the Unified SAM framework, which generalizes both SAM and USAM
by using a convex combination parameter λ. We also relaxed the common assumption of bounded
variance used in previous analyses by using the ER condition, allowing us to prove convergence
under weaker assumptions. In particular, we established convergence guarantees for Unified SAM
for both PL and general non-convex functions under this condition. Our analysis also covered im-
portance sampling for SAM. Future work could explore extending this unified approach to adaptive
step size choices for SAM or analyzing Unified SAM in the distributed and/or federated learning
settings. Another interesting direction is to explore how our results help minimize the sharpness-
aware loss (using for example the hessian-regularized version proposed in Wen et al. (2023) and
Bartlett et al. (2023).
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Ahmed Khaled and Peter Richtárik. Better theory for sgd in the nonconvex world. arXiv preprint
arXiv:2002.03329, 2020.

Pham Duy Khanh, Hoang-Chau Luong, Boris S Mordukhovich, and Dat Ba Tran. Fundamental
convergence analysis of sharpness-aware minimization. arXiv preprint arXiv:2401.08060, 2024.

Alex Krizhevsky et al. Learning Multiple Layers of Features from Tiny Images. Technical report,
University of Toronto, 2009.

Yunwen Lei, Ting Hu, Guiying Li, and Ke Tang. Stochastic gradient descent for nonconvex learn-
ing without bounded gradient assumptions. IEEE transactions on neural networks and learning
systems, 31(10):4394–4400, 2019.

Melanie L Lenard and Michael Minkoff. Randomly generated test problems for positive definite
quadratic programming. ACM Transactions on Mathematical Software (TOMS), 10(1):86–96,
1984.

Bingcong Li and Georgios Giannakis. Enhancing sharpness-aware optimization through variance
suppression. In NeurIPS, 2023.

Shengchao Liu, Dimitris Papailiopoulos, and Dimitris Achlioptas. Bad global minima exist and
SGD can reach them. NeurIPS, 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Stanislaw Lojasiewicz. A topological property of real analytic subsets. Coll. du CNRS, Les équations
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Supplementary Material
The Supplementary Material is organized as follows: In Appendix A, we give the basic definitions
and lemmas that we need for the proofs. Appendix C presents the proofs of the theoretical guarantees
from the main paper. In Appendix D, we provide additional experiments.
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A TECHNICAL PRELIMINARIES

A.1 BASIC DEFINITIONS

In this section, we present some basic definitions we use throughout the paper.

Definition A.1 (L-smooth). A differentiable function f : Rd → R is L-smooth if there exists a
constant L > 0 such that

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥,

or equivalently

f(x)− f(y) ≤ ⟨∇f(y), x− y⟩+ L

2
∥x− y∥2

for all x, y ∈ Rd.

Definition A.2 (µ-PL). We say that a differentiable function f : Rd → R satisfies the Polyak-
Lojasiewicz condition if

∥∇f(x)∥2 ≥ 2µ(f(x)− f(x∗)),

for all x ∈ Rd.

It can be proven that PL functions admit a unique minimizer x∗ and moreover, it holds that x∗ ∈
argmin f ⇔ ∇f(x∗) = 0, see Lemma 2.18, 2.13 and 2.22 in Garrigos & Gower (2023). Thus
f inf = f(x∗).

Definition A.3 (Interpolation). We say that the interpolation condition holds if there exists x∗ ∈
X ∗ such that

min
x∈Rn

fi(x) = fi(x
∗)

for all i = 1, . . . , n.

A.2 BASIC LEMMAS

Lemma A.4. Let f be an L-smooth function. Then for all x ∈ Rn we have

∥∇f(x)∥2 ≤ 2L[f(x)− f inf ].

Lemma A.5 (Young’s Inequality). For any a, b ∈ Rn and β ̸= 0 we have

⟨a, b⟩ ≤ 1

2β
∥a∥2 + β

2
∥b∥2.

Completing the square we have

∥a+ b∥2 ≤ (1 + β−1)∥a∥2 + (1 + β)∥b∥2.

For β = 1 we get

∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2.

Lemma A.6. Assume that each fi is Li-smooth and consider the iterates of Unified SAM. Then it
holds

ED

∥∥∥∥g(xt + ρt

(
1− λt +

λt

∥g(xt)∥

)
g(xt)

)∥∥∥∥2
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≤ 4L2
maxρ

2
tλ

2
t + 2

[
2L2

maxρ
2
t (1− λt)

2 + 1
]
ED ∥g(xt)∥2.

Proof. We have

ED

∥∥∥∥g(xt + ρt

(
1− λt +

λt

∥g(xt)∥

)
g(xt)

)∥∥∥∥2
= ED

∥∥∥∥g(xt + ρt

(
1− λt +

λt

∥g(xt)∥

)
g(xt)

)
− g(xt) + g(xt)

∥∥∥∥2
Lemma A.5

≤ 2ED

∥∥∥∥g(xt + ρt

(
1− λt +

λt

∥g(xt)∥

)
g(xt)

)
− g(xt)

∥∥∥∥2 + 2ED ∥g(xt)∥2

smoothness
≤ 2L2

maxρ
2
t ED

∥∥∥∥(1− λt)g(x
t) +

λt

∥g(xt)∥
g(xt)

∥∥∥∥2 + 2ED ∥g(xt)∥2

Lemma A.5
≤ 4L2

maxρ
2
t (1− λt)

2 ED ∥g(xt)∥2 + 4L2
maxρ

2
tλ

2
t + 2ED ∥g(xt)∥2

= 4L2
maxρ

2
tλ

2
t + 2

[
2L2

maxρ
2
t (1− λt)

2 + 1
]
ED ∥g(xt)∥2

Lemma A.7. Assume that each fi is Li-smooth and consider the iterates of Unified SAM. Then
for any β > 0 it holds

ED

〈
g

(
xt + ρt

(
1− λt +

λt

∥g(xt)∥

)
g(xt)

)
,∇f(xt)

〉
≥

(
1− β

2

)
∥∇f(xt)∥2 − L2

maxρ
2
tλ

2
t

β
− L2

maxρ
2
t (1− λt)

2

β
ED ∥g(xt)∥2.

In particular, for β = Lmaxρt we get

ED

〈
g

(
xt + ρt

(
1− λt +

λt

∥g(xt)∥

)
g(xt)

)
,∇f(xt)

〉
≥

(
1− Lmaxρt

2

)
∥∇f(xt)∥2 − Lmaxρtλ

2
t − Lmaxρt(1− λt)

2 ED ∥g(xt)∥2.

Proof. We have

ED

〈
g

(
xt + ρt

(
1− λt +

λt

∥g(xt)∥

)
g(xt)

)
,∇f(xt)

〉
= ED

〈
g

(
xt + ρt

(
1− λt +

λt

∥g(xt)∥

)
g(xt)

)
− g(xt),∇f(xt)

〉
+ ED⟨g(xt),∇f(xt)⟩

= ED

〈
g

(
xt + ρt

(
1− λt +

λt

∥g(xt)∥

)
g(xt)

)
− g(xt),∇f(xt)

〉
+ ∥∇f(xt)∥2.

Now

− ED

〈
g

(
xt + ρt

(
1− λt +

λt

∥g(xt)∥

)
g(xt)

)
− g(xt),∇f(xt)

〉
Lemma A.5

≤ 1

2β
ED

∥∥∥∥g(xt + ρt

(
1− λt +

λt

∥g(xt)∥

)
g(xt)

)
− g(xt)

∥∥∥∥2
+

β

2
ED ∥∇f(xt)∥2

smoothness
≤ L2

maxρ
2
t

2β
ED

∥∥∥∥(1− λt)g(x
t) +

λt

∥g(xt)∥
g(xt)

∥∥∥∥2 + β

2
∥∇f(xt)∥2
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Lemma A.5
≤ L2

maxρ
2
t

2β
2(1− λt)

2 ED ∥g(xt)∥2 + L2
maxρ

2
t

2β
2λ2

t +
β

2
∥∇f(xt)∥2

=
L2
maxρ

2
tλ

2
t

β
+

L2
maxρ

2
t (1− λt)

2

β
ED ∥g(xt)∥2 + β

2
∥∇f(xt)∥2,

thus

ED⟨g(xt + ρtg(x
t)),∇f(xt)⟩

≥ −L2
maxρ

2
tλ

2
t

β
− L2

maxρ
2
t (1− λt)

2

β
ED ∥g(xt)∥2 − β

2
∥∇f(xt)∥2 + ∥∇f(xt)∥2

=

(
1− β

2

)
∥∇f(xt)∥2 − L2

maxρ
2
tλ

2
t

β
− L2

maxρ
2
t (1− λt)

2

β
ED ∥g(xt)∥2.

Lemma A.8. Let (rt)t≥0 and (δt)t≥0 be sequences of non-negative real numbers and let g > 1
and N ≥ 0. Assume that the following recursive relationship holds:

rt ≤ gδt − δt+1 +N (3)

Then it holds

min
0≤t≤T−1

rt ≤
gT

T
δ0 +N.

Proof. Set γt = g−t for any t ∈ Z. Then multiply both sides of (3) with gt. This yields

gtrt ≤ gt−1δt − gtδt+1 +Ngt.

Summing for t = 0, . . . , T and telescoping we get

T−1∑
t=0

gtrt ≤ g−1δ0 − gT−1δT +N

T−1∑
t=0

gt

≤ g−1δ0 +N

T−1∑
t=0

gt. (4)

Now let G =
∑T−1

t=0 gt. Note that the sequence (gt) is decreasing for t ≥ 0, thus G ≥ TgT−1. Now
dividing (4) by G we get

min
0≤t≤T−1

rt ≤
1

G

T−1∑
t=0

gtrt

≤ g−1δ0
G

+N

≤ g−1δ0
TgT−1

+N

=
gT δ0
T

+N,

as wanted.
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B MORE ON THE EXPECTED RESIDUAL CONDITION

In this section, we introduce several assumptions under which the ER is automatically satisfied.
Specifically, we consider the following cases:

• Assuming bounded gradients, i.e.

ED ∥g(x)∥2 ≤ σ2, ∀x ∈ Rn,

then the ER holds with A = 0, B = 0, C = σ2.
• Assuming bounded variance, i.e.

ED ∥g(x)−∇f(x)∥ ≤ σ2, ∀x ∈ Rn,

then the ER holds with A = 0, B = 1, C = σ2.
• Assuming expected smoothness, i.e.

ED ∥g(x)−∇f(x)∥ ≤ 2L[f(x)− f inf ], ∀x ∈ Rn,

then the ER holds with A = 2L, B = 0, C = 0.
• Assuming the relaxed strong growth condition, i.e.

ED ∥g(x)∥ ≤ ρ∥∇f(x)∥+ σ2, ∀x ∈ Rn,

then the ER holds with A = 0, B = ρ, C = σ2.
• Assuming the relaxed strong growth condition, i.e.

ED ∥g(x)∥ ≤ α[f(x)− f inf ] + σ2, ∀x ∈ Rn,

then the ER holds with A = α, B = 0, C = σ2.

Additionally, if we have more information about the problem and the distribution D, we can derive
stronger bounds on A, B, and C. The more assumptions we make, the tighter these bounds become,
as demonstrated in the following propositions.

Proposition B.1 (Prop. 2, (Khaled & Richtárik, 2020)). Assume that each fi is Li-smooth and
that ED[v

2
i ] < ∞ for all i ∈ [n]. Let σ∗ = 1

n

∑n
i=1 fi(x

∗)− f∗
i ≥ 0, where f∗

i = infx∈Rn fi(x).
Then ER holds with A = maxi Li ED[v

2
i ], B = 0 and C = 2Aσ∗.

This proposition indicates that if each fi is Li-smooth and minimal assumptions hold for the distri-
bution D, then ER is satisfied. As an immediate corollary of Proposition B.1, if the problem further
satisfies the interpolation assumption (see Definition A.3), then C = 0. The next proposition gives
much tighter constants for A, B, and C in the context of the sampling strategies considered in this
paper.

Proposition B.2 (Prop. 3, (Khaled & Richtárik, 2020)). Assume that each fi is Li-smooth.

1. For the single element sampling ER holds with A = 1
nτ maxi

Li

pi
, B = 0 and C = 2Aσ∗.

2. For the τ -nice sampling ER holds with A = n−τ
τ(n−1)Lmax, B = n(τ−1)

τ(n−1) and C = 2Aσ∗,
where Lmax = maxi Li.

Lastly, if we assume x∗-convexity with τ -nice sampling, we obtain the following constants:

Proposition B.3 (Prop. 3.3, (Gower et al., 2021)). Assume that each fi is Li-smooth and
that there exists x∗ ∈ X ∗ such that fi is x∗–convex. In addition, assume that D is the τ -
nice sampling. Then ER holds with A = n−τ

τ(n−1)Lmax, B = 1 and C = 2(n−τ)
τ(n−1)σ1, where

σ1 = supx∗∈X∗
1
n

∑n
i=1 ∥∇fi(x

∗)∥2.
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C PROOFS OF THE MAIN RESULTS

In this section we present the proofs of the main theoretical results presented in the main paper, i.e.,
the convergence guarantees of Unified SAM for PL and smooth functions and general non-convex
and smooth functions. We restate the main theorems here for completeness.

In all cases, we use the convention 1/0 = ∞.

C.1 PROOF OF THEOREM 3.2
Theorem C.1. Assume that each fi is Li-smooth, f is µ-PL and the ER is satisfied. Set Lmax =
maxi∈[n] Li and let

ρt = ρ ≤ µ

Lmax (µ+ 2[Bµ+A](1− λ)2)
, γt = γ ≤

µ− Lmaxρ
(
µ+ 2[Bµ+A](1− λ)2

)
2Lmax(Bµ+A) [2L2

maxρ
2(1− λ)2 + 1]

.

Then for Unified SAM it holds

E[f(xt)− f(x∗)] ≤ (1− γµ)t
[
f(x0)− f(x∗)

]
+

Lmax

µ

(
Cγ + ρ(1 + 2γL2

maxρ)
[
λ2 + C(1− λ)2

])
.

Proof of Theorem 3.2. By combining the smoothness of function f with the update rule of Unified
SAM we obtain:

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+ Lmax

2
∥xt+1 − xt∥2

= f(xt)− γt

〈
∇f(xt), g

(
xt + ρt

(
1− λt +

λt

∥g(xt)∥

)
g(xt)

)〉
+

Lmaxγ
2
t

2

∥∥∥∥g(xt + ρt

(
1− λt +

λt

∥g(xt)∥

)
g(xt)

)∥∥∥∥2 .
By taking expectation conditioned on xt we obtain:

E[f(xt+1)− f(x∗)|xt]− [f(xt)− f(x∗)]

≤ −γt ED

〈
g

(
xt + ρt

(
1− λt +

λt

∥g(xt)∥

)
g(xt)

)
,∇f(xt)

〉
+

Lmaxγ
2
t

2
ED

∥∥∥∥g(xt + ρt

(
1− λt +

λt

∥g(xt)∥

)
g(xt)

)∥∥∥∥2
Lemmas A.6and A.7

≤ −γt

[(
1− Lmaxρt

2

)
∥∇f(xt)∥2 − Lmaxρtλ

2
t − Lmaxρt(1− λt)

2 ED ∥g(xt)∥2
]

+
γ2
tLmax

2

[
4L2

maxρ
2
tλ

2
t + 2

[
2L2

maxρ
2
t (1− λt)

2 + 1
]
ED ∥g(xt)∥2

]
= −γt

(
1− Lmaxρt

2

)
∥∇f(xt)∥2 + γtLmax

[
ρt(1− λt)

2 + 2γtL
2
maxρ

2
t (1− λt)

2 + γt
]
ED ∥g(xt)∥2

+ γtLmaxρtλ
2
t (1 + 2γtL

2
maxρt)

ER
≤ −γt

(
1− Lmaxρt

2

)
∥∇f(xt)∥2 + 2AγtLmax

[
ρt(1− λt)

2 + 2γtL
2
maxρ

2
t (1− λt)

2 + γt
] [

f(xt)− f(x∗)
]

+BγtLmax

[
ρt(1− λt)

2 + 2γtL
2
maxρ

2
t (1− λt)

2 + γt
]
∥∇f(xt)∥2

+ CγtLmax

[
ρt(1− λt)

2 + 2γtL
2
maxρ

2
t (1− λt)

2 + γt
]
+ γtLmaxρtλ

2
t (1 + 2γtL

2
maxρt)

= −γt

(
1− Lmaxρt

2
−BLmax

[
ρt(1− λt)

2 + 2γtL
2
maxρ

2
t (1− λt)

2 + γt
])

∥∇f(xt)∥2

+ 2AγtLmax

[
ρt(1− λt)

2 + 2γtL
2
maxρ

2
t (1− λt)

2 + γt
] [
f(xt)− f(x∗)

]
+ γtLmax

[
Cρt(1− λt)

2 + 2CγtL
2
maxρ

2
t (1− λt)

2 + Cγt + ρtλ
2
t + 2γtL

2
maxρ

2
tλ

2
t

]
. (5)
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Now by the condition on ρt and γt it is easy to show that the coefficient of ∥∇f(xt)∥2 is non-
negative so we can use the fact that f is µ-PL to get

E[f(xt+1)− f(x∗)|xt]− [f(xt)− f(x∗)]

≤ −2γtµ

(
1− Lmaxρt

2
−BLmax

[
ρt(1− λt)

2 + 2γtL
2
maxρ

2
t (1− λt)

2 + γt
])

[f(xt)− f(x∗)]

+ 2AγtLmax

[
ρt(1− λt)

2 + 2γtL
2
maxρ

2
t (1− λt)

2 + γt
] [

f(xt)− f(x∗)
]

+ γtLmax

[
Cρt(1− λt)

2 + 2CγtL
2
maxρ

2
t (1− λt)

2 + Cγt + ρtλ
2
t + 2γtL

2
maxρ

2
tλ

2
t

]
so

E[f(xt+1)− f(x∗)|xt] ≤
(
1− 2γtµ

(
1− Lmaxρt

2
−BLmax

[
ρt(1− λt)

2 + 2γtL
2
maxρ

2
t (1− λt)

2 + γt
])

+ 2AγtLmax

[
ρt(1− λt)

2 + 2γtL
2
maxρ

2
t (1− λt)

2 + γt
]) [

f(xt)− f(x∗)
]

+ γtLmax

[
Cρt(1− λt)

2 + 2CγtL
2
maxρ

2
t (1− λt)

2 + Cγt + ρtλ
2
t + 2γtL

2
maxρ

2
tλ

2
t

]
≤ (1− γtµ)[f(x

t)− f(x∗)]

+ γtLmax

[
Cρt(1− λt)

2 + 2CγtL
2
maxρ

2
t (1− λt)

2 + Cγt + ρtλ
2
t + 2γtL

2
maxρ

2
tλ

2
t

]
,

where the last inequality follows from the conditions posed on ρt and γt Taking expectation again
and using the tower property we get

E[f(xt+1)− f(x∗)]

≤ (1− γµ)E[f(xt)− f(x∗)]

+ γLmax

[
Cρ(1− λ)2 + 2CγL2

maxρ
2(1− λ)2 + Cγ + ρλ2 + 2γL2

maxρ
2λ2

]
= (1− γµ)E[f(xt)− f(x∗)] + γLmax

(
Cγ + ρ(1 + 2γL2

maxρ)
[
λ2 + C(1− λ)2

])
. (6)

Recursively applying the above and summing up the resulting geometric series gives:

E[f(xt+1)− f(x∗)] ≤ (1− γµ)
t
[f(x0)− f(x∗)]

+ γLmax

(
Cγ + ρ(1 + 2γL2

maxρ)
[
λ2 + C(1− λ)2

]) t∑
j=0

(1− γµ)j .

Using the fact that
∑t

j=0(1− γµ)j ≤ 1
γµ we get what we wanted.

C.2 PROOF OF THEOREM 3.5
Theorem C.2. Assume that each fi is Li-smooth, f is µ-PL and the ER is satisfied. Let ρt =

min
{

1
2t+1 , ρ

∗
}

and γt = min
{

2t+1
(t+1)2µ , γ

∗
}

, where ρ∗ and γ∗ are the upper bounds of ρ and γ,
respectively, in Theorem 3.2. Then for Unified SAM it holds

E[f(xt)− f(x∗)] ≤ O

(
1

t

)
.

Proof of Theorem 3.5. Since γt = min
{

2t+1
(t+1)2µ , γ

∗
}

≤ γ∗ and ρt = min
{

1
2t+1 , ρ

∗
}

≤ ρ∗ we
get that inequality (6) holds for any t ≥ 0, hence we have:

E[f(xt+1)− f(x∗)] ≤ (1− γtµ)E[f(xt)− f(x∗)] + γtLmax

(
Cγt + ρt(1 + 2γtρtL

2
max)

[
λ2 + C(1− λ)2

])
= (1− γtµ)E[f(xt)− f(x∗)] + CLmaxγ

2
t + γtρtL

2
max(1 + 2γtρtL

2
max)

[
λ2 + C(1− λ)2

]
≤ (1− γtµ)E[f(xt)− f(x∗)] + CLmaxγ

2
t + γtρtL

2
max

(
1 +

2L2
max

µ

)[
λ2 + C(1− λ)2

]
,

(7)
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where the last inequality follows from γt ≤ 2t+1
(t+1)2µ and ρt ≤ 1

2t+1 , and thus γtρt ≤ 1
(t+1)2µ ≤ 1

µ .

Now set δt = E[f(xt) − f(x∗)], R = CLmax and Q = L2
max

(
1 +

2L2
max

µ

) [
λ2 + C(1− λ)2

]
.

Then the inequality (7) takes the following form:

δt+1 ≤ (1− γtµ)δt +Qγtρt +Rγ2
t . (8)

Now since the sequences 2t+1
(t+1)2µ and 1

2t+1 are clearly decreasing there exists an integer t∗ ∈ N such
that for any t ≥ t∗ we have γt =

2t+1
(t+1)2µ and ρt

1
2t+1 . Substituting in (8) we get that for any t ≥ t∗

we have

δt+1 ≤ t2

(t+ 1)2
δt +

Q

µ(t+ 1)2
+

R(2t+ 1)2

µ2(t+ 1)4

≤ t2

(t+ 1)2
δt +

Qµ+ 4R

µ2(t+ 1)2
,

because (2t+1)2

(t+1)4 ≤ 4(t+1)2

(t+1)4 = 4
(t+1)2 . Multiplying both sides with (t+ 1)2 and rearranging we have

(t+ 1)2δt+1 − t2δt ≤
Qµ+ 4R

µ2
.

Summing for t = t∗, . . . , T − 1 and telescoping we have

T 2δT ≤ (t∗)2δt∗ +
Qµ+ 4R

µ2
(T − t∗ − 1).

Changing notation from T to t we get

E[f(xt)− f(x∗)] ≤ (t∗)2δt∗

t2
+

Qµ+ 4R

µ2

t− t∗ − 1

t2

≤ (t∗)2δt∗

t2
+

Qµ+ 4R

µ2

1

t

= O

(
1

t

)
,

as wanted.

C.3 PROOF OF PROPOSITION 3.6
Proposition C.3. Assume that each fi is Li-smooth and the ER is satisfied. Let

ρ ≤ min

{
1

8Lmax
,

1

BLmax(1− λ)2

}
and γ ≤ 1

8BLmax
,

where Lmax = maxi∈[n] Li. Then for Unified SAM it holds

min
t=0,...,T−1

E ∥∇f(xt)∥2 ≤
2
(
1 + 2AγLmax

[
ρ(1− λ)2(1 + 2γρL2

max) + γ
])T

Tγ
[f(x0)− f inf ]

+ 2Lmax

[
Cγ + ρ(1 + 2γρL2

max)(λ
2 + C(1− λ)2)

]
.

Proof of Proposition 3.6. From Equation (5) we have

E[f(xt+1)− f inf |xt]− [f(xt)− f inf ]

≤ −γt

(
1− Lmaxρt

2
−BLmax

[
ρt(1− λt)

2 + 2γtL
2
maxρ

2
t (1− λt)

2 + γt
])

∥∇f(xt)∥2

+ 2AγtLmax

[
ρt(1− λt)

2 + 2γtL
2
maxρ

2
t (1− λt)

2 + γt
] [

f(xt)− f inf
]

+ γtLmax

[
Cρt(1− λt)

2 + 2CγtL
2
maxρ

2
t (1− λt)

2 + Cγt + ρtλ
2
t + 2γtL

2
maxρ

2
tλ

2
t

]
≤ −γt

2
∥∇f(xt)∥2 + 2AγtLmax

[
ρt(1− λt)

2 + 2γtL
2
maxρ

2
t (1− λt)

2 + γt
] [

f(xt)− f inf
]

+ γtLmax

[
Cρt(1− λt)

2 + 2CγtL
2
maxρ

2
t (1− λt)

2 + Cγt + ρtλ
2
t + 2γtL

2
maxρ

2
tλ

2
t

]
,
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where the last inequality follows by the conditions posed in ρt and γt. After taking expectation,
using the tower property and some algebraic manipulations we get
γ

2
E ∥∇f(xt)∥2 ≤

(
1 + 2AγLmax

[
ρ(1− λ)2 + 2γL2

maxρ
2(1− λ)2 + γ

])
E[f(xt)− f inf ]

− E[f(xt+1)− f inf ] + γLmax

[
Cρ(1− λ)2 + 2CγL2

maxρ
2(1− λ)2 + Cγ + ρλ2 + 2γL2

maxρ
2λ2

]
.

Now set

δt =
2

γ
E[f(xt)− f inf ] ≥ 0

rt = E ∥∇f(xt)∥2 ≥ 0

g =
(
1 + 2AγLmax

[
ρ(1− λ)2 + 2γL2

maxρ
2(1− λ)2 + γ

])
> 1

N = 2Lmax

[
Cρ(1− λ)2 + 2CγL2

maxρ
2(1− λ)2 + Cγ + ρλ2 + 2γL2

maxρ
2λ2

]
≥ 0

and the previous inequality takes the following form:
γ

2
rt ≤ gδt − δt+1 +N.

Now apply Lemma A.8 and we get what we wanted.

C.4 PROOF OF THEOREM 3.7
Theorem C.4. Let ε > 0 and set δ0 = f(x0)− f inf ≥ 0. For any

ρ ≤ min

{
1

8Lmax
,

1

BLmax(1− λ)2
,

1√
T
,

ε2

12Lmax(C(1− λ)2 + λ2)

}
and

γ ≤ min

{
1

8BLmax
,

1

2L(1− λ)
√
3ALmax

,
1

6LmaxA(1− λ)2
√
T
,

1√
6ALT

,

ε2

24L3
max (C(1− λ)2 + λ2)

,
ε2

12LmaxC

}
Then provided that

T ≥ δ0Lmax

ε2
max

{
96B, 24(1− λ)

√
3LmaxA,

5184LmaxA
2(1− λ)4δ0
ε2

,
864δ0A

ε2
,
144C

ε2
,

288L2
max(1− λ)2

ε2

}
we have mint=0,...,T−1 E ∥∇f(xt)∥ ≤ ε.

Proof of Theorem 3.7. From Proposition C.3 under the condition that ρ ≤
min

{
1

8Lmax
, 1
BLmax(1−λ)2

}
and γ ≤ 1

8BLmax
we have

min
t=0,...,T−1

E ∥∇f(xt)∥2 ≤
2
(
1 + 2AγLmax

[
ρ(1− λ)2 + 2γL2

maxρ
2(1− λ)2 + γ

])T
Tγ

[f(x0)− f inf ]

(9)

+ 2Lmax

[
Cρ(1− λ)2 + 2CγL2

maxρ
2(1− λ)2 + Cγ + ρλ2 + 2γL2

maxρ
2λ2

]
.

(10)

Using the fact that 1 + x ≤ exp(x), we have that(
1 + 2AγLmax

[
ρ(1− λ)2 + 2γL2

maxρ
2(1− λ)2 + γ

])T
≤ exp

(
2LmaxATγ

[
ρ(1− λ)2 + 2γL2

maxρ
2(1− λ)2 + γ

])
≤ exp(1) < 3.

For the second inequality to hold it is enough to assume that
2TALmaxγ

[
ρ(1− λ)2 + 2γL2

maxρ
2(1− λ)2 + γ

]
≤ 1

For this to hold it is enough to have
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• 2TALmaxγρ(1− λ)2 ≤ 1/3

• 4TAL3
maxγρ

2(1− λ)2 ≤ 1/3

• 2TALmaxγ
2 ≤ 1/3

Posing the restriction ρ ≤ 1√
T

it is enough to have (solving for γ):

• γ ≤ 1
6LmaxA(1−λ)2

√
T

• γ ≤ 1
2L(1−λ)

√
3ALmax

• γ ≤ 1√
6ALT

Then substituting in (9) we get

min
t=0,...,T−1

E ∥∇f(xt)∥2 ≤ 6δ0
Tγ

+ 2Lmax

[
Cρ(1− λ)2 + 2CγL2

maxρ
2(1− λ)2 + Cγ + ρλ2 + 2γL2

maxρ
2λ2

]
.

(11)

To make the right hand side of (11) smaller than ε2, we require that the second term satisfies

2Lmax

[
Cρ(1− λ)2 + 2CγL2

maxρ
2(1− λ)2 + Cγ + ρλ2 + 2γL2

maxρ
2λ2

]
≤ ε2

2
⇔

2Lmax

[
ρ
(
C(1− λ)2 + λ2

)
+ 2L2

maxγρ
2
(
C(1− λ)2 + λ2

)
+ Cγ

]
≤ ε2

2

For this to hold it is enough to have

• 2Lmaxρ(C(1− λ)2 + λ2) ≤ ε2

6 ⇐ ρ ≤ ε2

12Lmax(C(1−λ)2+λ2)

• 4L3
maxγρ

2
(
C(1− λ)2 + λ2

)
≤ ε2

6

ρ<1⇐ γ ≤ ε2

24L3
max(C(1−λ)2+λ2)

• 2LmaxCγ ≤ ε2

6 ⇐ γ ≤ ε2

12LmaxC

Similarly, for the first term, we get that the number of iterations must satisfy:

6δ0
Tγ

≤ ε2

2
⇔ T ≥ 12δ0

γε2
(12)

Hence so far we need the following restrictions on ρ and γ:

• ρ ≤ min
{

1
8Lmax

, 1
BLmax(1−λ)2

}
and γ ≤ 1

8BLmax
(by the restrictions of Proposition C.3)

• ρ ≤ 1√
T

and ρ ≤ ε2

12Lmax(C(1−λ)2+λ2)

• γ ≤ 1
6LmaxA(1−λ)2

√
T

and γ ≤ 1
2L(1−λ)

√
3ALmax

and γ ≤ 1√
6ALT

and γ ≤
ε2

24L3
max(C(1−λ)2+λ2) and γ ≤ ε2

12LmaxC

Plugging each of the previous bounds of γ into (12) we get

• T ≥ 96BLmaxδ0
ε2

• T ≥ 24Lmaxδ0(1−λ)
√
3LmaxA

ε2

• T ≥ 5184L2
maxA

2(1−λ)4δ20
ε4
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• T ≥ 864δ20ALmax

ε4

• T ≥ 144LmaxCδ0
ε4

• T ≥ 288L3
maxδ0(1−λ)2

ε4

Finally, collecting all the terms into a single bound we have:

ρ ≤ min

{
1

8Lmax
,

1

BLmax(1− λ)2
,

1√
T
,

ε2

12Lmax(C(1− λ)2 + λ2)

}
γ ≤ min

{
1

8BLmax
,

1

2L(1− λ)
√
3ALmax

,
1

6LmaxA(1− λ)2
√
T
,

1√
6ALT

,

ε2

24L3
max (C(1− λ)2 + λ2)

,
ε2

12LmaxC

}
T ≥ δ0Lmax

ε2
max

{
96B, 24(1− λ)

√
3LmaxA,

5184LmaxA
2(1− λ)4δ0
ε2

,
864δ0A

ε2
,
144C

ε2
,

288L2
max(1− λ)2

ε2

}
,

as wanted.
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D ADDITIONAL EXPERIMENTS

In this section, we present additional experimental evaluations of Unified SAM, following the same
setup as in Li & Giannakis (2023). Specifically, we train ResNet-18 and WRN-28-10 on CIFAR10
and CIFAR100 datasets. Standard data augmentation techniques, including random cropping, ran-
dom horizontal flipping, and normalization DeVries (2017), are employed. The models are trained
for 200 epochs with a batch size of 128, using a cosine scheduler starting from 0.05. Weight decay
is set to 0.001. For SAM, we use ρ = 0.1 for CIFAR10 and ρ = 0.2 for CIFAR100. Each exper-
iment is repeated three times, and we report the average of the maximum test accuracy along with
the standard error. The numerical results are presented in Tables 6 and 7, demonstrate that Unified
SAM consistently improves the test accuracy over both USAM and SAM across all tested models.
Lastly, we also observe that careful tuning of the parameter λ is essential for achieving optimal
performance.

Table 6: Test accuracy (%) of Unified SAM on various neural networks trained on CIFAR10.

Model λ = 0.0 λ = 0.5 λ = 1.0 λ = 1/t λ = 1− 1/t
ResNet-18 96.13±0.05 96.16±0.03 96.33±0.03 96.20±0.05 96.22±0.09

WideResNet-28-10 97.26±0.44 96.98±0.08 97.05±0.05 96.73±0.04 96.63±0.35

Table 7: Test accuracy (%) of Unified SAM on various neural networks trained on CIFAR100.

Model λ = 0.0 λ = 0.5 λ = 1.0 λ = 1/t λ = 1− 1/t
ResNet-18 80.21±0.02 80.28±0.16 80.14±0.07 80.27±0.09 80.19±0.06

WideResNet-28-10 83.49±0.23 83.71±0.03 83.55±0.19 83.55±0.10 83.62±0.16

Table 8: Test accuracy (%) of Unified SAM for PRN-18 on CIFAR10, evaluated across different
values of ρ and λ. With bold we highlight the best performance for fixed ρ.

Unified SAM λ = 0.0 λ = 0.5 λ = 1.0 λ = 1/t λ = 1− 1/t
ρ = 0.1 95.29±0.09 95.32±0.02 95.59±0.09 95.24±0.03 95.53±0.11

ρ = 0.2 95.25±0.14 95.48±0.05 95.5±0.02 95.38±0.11 95.58±0.07

ρ = 0.3 95.25±0.11 95.24±0.02 95.18±0.04 95.12±0.19 95.26±0.1

ρ = 0.4 94.76±0.09 94.98±0.07 94.7±0.02 94.64±0.03 94.61±0.09

SGD 94.82±0.02

Table 9: Test accuracy (%) of Unified SAM for PRN-18 on CIFAR100, evaluated across different
values of ρ and λ. With bold we highlight the best performance for fixed ρ.

Unified SAM λ = 0.0 λ = 0.5 λ = 1.0 λ = 1/t λ = 1− 1/t
ρ = 0.1 78.28±0.15 78.28±0.06 78.32±0.22 78.33±0.32 78.39±0.31

ρ = 0.2 78.98±0.18 78.68±0.13 78.96±0.12 78.87±0.02 78.79±0.1

ρ = 0.3 79.0±0.05 78.95±0.07 79.21±0.08 78.73±0.06 79.27±0.08

ρ = 0.4 78.57±0.26 78.76±0.3 79.05±0.16 78.36±0.09 78.79±0.13

SGD 76.9±0.23
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