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ABSTRACT

Macromolecules are large, complex molecules composed of covalently bonded
monomer units, existing in different stereochemical configurations and topolo-
gies. As a result of such chemical diversity, representing, comparing, and learning
over macromolecules emerge as critical challenges. To address this, we devel-
oped a macromolecule graph representation, with monomers and bonds as nodes
and edges, respectively. We captured the inherent chemistry of the macromolecule
by using molecular fingerprints for node and edge attributes. For the first time, we
demonstrated computation of chemical similarity between 2 macromolecules of
varying chemistry and topology, using exact graph edit distances and graph ker-
nels. We also trained graph neural networks for a variety of glycan classification
tasks, achieving state-of-the-art results. Our work has two-fold implications –
it provides a general framework for representation, comparison, and learning of
macromolecules; and enables quantitative chemistry-informed decision-making
and iterative design in the macromolecular chemical space.

1 INTRODUCTION

Macromolecules are ubiquitous and indispensable, from constituting what we are made up of to
being present in almost everything we use. As biological macromolecules, they form the basis of
life, serving as drivers of survival and growth functions. As synthetic macromolecules, humans have
engineered the composition and topology to design structural components, sensors, shape-memory
materials, drugs, encode messages, and much more (Lutz et al., 2016; Romio et al., 2020; Boydston
et al., 2020; Thompson & Korley, 2020).

An individual macromolecule is a result of its monomer composition, connecting bonds, and their
spatial arrangement. Monomer and bond are functions of atomic composition, stereochemistry, and
arrangement, while spatial arrangement dictates the topology. Experimentalists and theoreticians
have explored a vast chemical space by varying monomers, bonds, and topologies – linear and non-
linear such as branched, star, and bottle-brush (Figure A.1) (Hiemenz & Lodge, 2007; Johnson et al.,
2011; Alvaradejo et al., 2019).

In this work, we propose a graph representation for macromolecules. We use graph edit distances
(GEDs) with Tanimoto chemical similarity matrices and propagation graph kernels to compute graph
similarity. Further, we train a suite of graph neural network models on different tasks, achieving
state-of-the-art results on a data set of glycans.

2 RELATED WORK

Representation. Macromolecules can be represented in line notation similar to simplified
molecular-input line-entry system (SMILES) used for small molecules (Lin et al., 2019). Linear
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biological macromolecules, such as proteins and DNA/RNA, are an exception, and represented
as sequences of one/three-letter monomer codes. In a recent attempt, glycans (non-linear macro-
molecules) were represented as sequences, where groups of monosaccharides were clubbed into
’glycowords’ and placed in hierarchical brackets (Bojar et al., 2021). Hierarchical fingerprinting
is another approach, which follows a hierarchy of atomic, physicochemical, and morphological de-
scriptors (Kim et al., 2018). However, these representations are limited by their coverage of chemical
space, ability to support all topologies, and require significant customization for different monomers.

Similarity computation. In recent times, there have been significant advances in similarity compu-
tation using GED and graph kernels (Borgwardt et al., 2020; Blumenthal & Gamper, 2020). Devel-
opment of software packages, such as graphkernels and GraKeL, has provided fast implementations
of graph kernels (Sugiyama et al., 2018; Siglidis et al., 2020).

For linear biological macromolecules, such as proteins, DNA/RNA and linear glycans, there are sev-
eral works for computation of sequence similarities.(Altschul et al., 1990; Bojar et al., 2021) Usually,
sequence alignment is done using Smith-Waterman or Needleman-Wunsch algorithm, and scored
with substitution matrices, such as BLOSUM62 (Smith & Waterman, 1981; Needleman & Wunsch,
1970; Eddy, 2004). The substitution matrices are based on evolutionary statistics thereby biasing
the scoring towards the statistical frequency of a particular monomer’s occurrence in the course of
evolution, rather than chemical similarity. Apart from sequence alignment in linear macromolecules,
edit distances, linear kernels and deep learning methods have been proposed to compute similarity
(Jaakkola et al., 2000; Riesen & Bunke, 2009; Bileschi et al., 2019). In the case of non-linear macro-
molecules, alignment of glycans has been explored using q-grams, tree matching methods and tree
kernels (Li et al., 2010; Hosoda et al., 2017; Coff et al., 2020). Unfortunately, the aforementioned
methods are limited to biological macromolecules, and do not extend to the general macromolecular
chemical space. Moreover, existing tools for biological macromolecules do not allow incorporation
of unnatural monomers, and cannot handle non-linear topologies (except for glycan-specific tools).

Machine learning. The field of graph neural networks (GNN) has seen substantial developments in
both model architecture and attribution. Different model architectures, such as graph convolutional
network (GCN), graph attention network (GAT), message passing neural network (MPNN), SchNet,
and Attentive FP, have demonstrated state-of-the-art results across various domains (Zhou et al.,
2018; Schütt et al., 2017; Kearnes et al., 2016; Xiong et al., 2020). In a recent work, graph attribution
has been studied quantitatively across four metrics – accuracy, stability, faithfulness and consistency
- for a wide variety of tasks and model architectures (Sanchez-lengeling et al., 2020).

For macromolecular property prediction, Polymer Genome and similar works using hierarchical
fingerprints predict glass transition temperature, dielectric point and other properties (Kim et al.,
2018). There have been attempts to extrapolate macromolecular property by training over monomer
features (St John et al., 2019; Qiao et al., 2020). GCN over macromolecule graphs with one-hot
attributes has been shown to outperform fingerprint-based models (Zeng et al., 2018). In a similar
vein, algorithms for graph-representation learning have also been ported to periodic crystals (Xie &
Grossman, 2018). While fingerprint-based models are limited by representation capacity, the GCN
model, not having been trained on chemical information, cannot extrapolate for unknown monomers.

3 MACROMOLECULE GRAPH REPRESENTATION

We used a generalized text file format to convert a macromolecule structure into machine-readable
format (Figure 1A, Appendix C). The text file has 3 sections – SMILES, MONOMERS and BONDS.
Under SMILES, monomer and bond codes followed by the stereochemical SMILES are noted (Fig-
ure A.5). MONOMERS enumerate an index of all nodes numbered from 1 to n, where n is the total
number of monomers, followed by the monomer code. BONDS enumerate an index of connections
between monomer indices, followed by bond code.

The macromolecule is represented as a graph, with monomers as nodes and bonds as edges (Figure
A.6). Starting from text files, we parsed the macromolecules into NetworkX graphs with node and
edge attributes (Hagberg et al., 2008). The monomer and bond molecules were featurized using
stereochemical extended connectivity fingerprints (Appendix D) (Rogers & Hahn, 2010). The fin-
gerprint is a unique barcode that captures inherent chemistry of the monomer/bond molecule, by
topological exploration of the molecular graph (different from the macromolecule graph). This rep-
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Figure 1: Macromolecules represented as graphs, enable similarity computation and better
machine learning. A. Macromolecular structures are converted into a text file. The text files are
parsed into NetworkX graphs. The text file enumerates SMILES for monomers and bonds, node
indices corresponding to monomers, and pairs of node indices for bonds. Node and edge attributes
are fingerprints of respective molecules. B. Pair-wise similarity matrix is obtained for the library
of macromolecules. Dimensionality reduction followed by clustering of similarity vectors shows
chemically similar regions. C. GNNs learn over macromolecule graphs for a variety of tasks.

resentation enables the depiction of macromolecules in their native state with explicit featurization
of the stereochemistry and topology, and provides a single framework to represent both natural and
synthetic, linear and non-linear macromolecules.

4 SIMILARITY COMPUTATION USING GRAPH EDIT DISTANCE AND GRAPH
KERNEL

Leveraging this unique representation, we used exact GED scored with Tanimoto similarity substi-
tution matrices, and graph kernel, to compute similarity between 2 or more macromolecule graphs
(Figure 1B). GED computes the similarity between two graphs by assigning scores for node and edge
substitution, similar to local sequence alignment for protein and DNA/RNA sequences (Abu-Aisheh
et al., 2015; Altschul et al., 1990). Instead of evolutionary statistics-based substitution matrices, we
use Tanimoto similarity matrices that compute the similarity between molecular fingerprints (Figure
2A, B). Tanimoto similarity is also applicable for unnatural monomers and provides an accurate
measure of chemical similarity, without any evolutionary bias. Since, computing GEDs is costly,
we use propagation attribute kernel to obtain similarity matrices for large data sets (Neumann et al.,
2016; Siglidis et al., 2020).

We computed similarity matrices and analyzed similarity vectors for a data set of glycans. Propaga-
tion attribute kernel, implemented in GraKeL, was used to compute similarity (Figure 2C) (Siglidis
et al., 2020) (Appendix E). This kernel makes for an excellent choice for macromolecule graphs as
they capture local node information and iteratively propagate this information along the edges. In
this manner, the kernel captures the local monomer chemistry and the global topology of the macro-
molecule. 2-components uniform manifold approximation and projection (UMAP) was used for
dimensionality reduction of the similarity vectors, where a similarity vector is the vector listing the
similarity of a single macromolecule with the entire library (McInnes et al., 2018). We optimized
hyperparameters for UMAP and benchmarked against dimensionality reduction using t-stochastic
neighbor embeddings (Appendix F) (Van Der Maaten & Hinton, 2008).

Dimensionality reduction is influenced more by taxonomic classification, such as domain, than im-
munogenicity. In the plot, colored by domain (Figure 2D), we observed that the arrangement of
domains is similar to the evolutionary process, starting from bacteria at the center, then eukarya,
followed by viruses at the fringes (Figure A.11). As can be seen, immunogenicity is a result of the
glycan belonging to a specific domain, such as bacteria being immunogenic (Figures 2E, F).
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Figure 2: Glycans have a broad range of chemical similarity. A. The monomers in glycans are
chemically dissimilar, as depicted by low Tanimoto similarity. B. Similarity between two glycans
was computed using exact graph edit distance, scored with Tanimoto substitution matrices. C. Over-
lay of histograms of similarity vectors for 8899 glycans in the curated data set. The vectors were
normalized to the maximum in the respective vector. 2-component UMAP, colored by D. domains,
and E. immunogenicity, for 1313 glycans with immunogenicity labels. F. Immunogenic glycans
usually belong to bacteria, while non-immunogenic glycans are from eukarya and virus domains.

5 GRAPH NEURAL NETWORKS FOR CLASSIFICATION OF GLYCANS

We trained 5 GNN model architectures over fingerprint and one-hot node and edge attributes to clas-
sify glycans for immunogenicity and 8 taxonomic levels (Appendix G). For each task, we evaluated
classification metrics obtained by averaging over models retrained for at least top 5 hyperparameter
sets with 5 random initialization seeds (Table 1; Tables A.1, A.2). Our models obtained state-of-the-
art results and outperformed metrics reported in the literature (Table A.3) (Bojar et al., 2021).

6 DISCUSSION AND FUTURE WORK

Macromolecule graph representation combined with molecular fingerprints, with graph similarity
and GNNs provides for a framework to represent, compute similarity and machine learn macro-
molecules. This work enables a chemistry-informed approach for the computational study of macro-
molecules. In the near future, we aim to demonstrate the applicability of our framework on a wide
range of macromolecule datasets, including proteins and DNA/RNA.

Table 1: Metrics obtained for most optimal model-attribute combination on test data set.
Task Model, Attribute ROC-AUC F1 Recall Precision Accuracy CE Loss

Immunogenicity GCN, FP 0.99 0.95 0.95 0.95 0.95 0.11
Domain Attentive FP, FP 0.99 0.94 0.94 0.94 0.93 0.09

Kingdom Attentive FP, FP 0.99 0.91 0.89 0.93 0.89 0.06
Phylum GCN, FP 0.99 0.84 0.80 0.89 0.80 0.03
Class GCN, FP 0.99 0.74 0.67 0.84 0.67 0.02
Order GCN, FP 0.98 0.64 0.54 0.78 0.55 0.02
Family GAT, FP 0.98 0.56 0.46 0.72 0.47 0.01
Genus GCN, One-hot 0.96 0.51 0.40 0.72 0.41 0.01

Species GCN, FP 0.97 0.49 0.38 0.68 0.40 0.01
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APPENDIX

A MACROMOLECULAR TOPOLOGIES

Linear

Non-Linear

Branched Dendritic

Star Bottlebrush

Figure A.1: Macromolecules exist in a diverse array of topologies, including both linear and non-
linear, such as branched, dendritic, star, and bottlebrush, architectures.

B GLYCANS DATASET PROCESSING

B.1 DATASET DOWNLOAD

A dataset of 19299 glycans was accessed and downloaded from GlycoBase (accessed on November
2, 2020) (Bojar et al., 2021). The file contained GlycoBase ID, sequence, link (N, O, free, or none),
species, and immunogenicity information for each glycan.

For each glycan sequence string the brackets denote branches, with the point of attachment/bonding
of the branch as the monomer immediately after the brackets. The first element within the bracket
is the monomer most distant from the point of attachment, and the last element within the bracket
is the abbreviation of the bond that connects the branch to the original main chain. Nested brackets
indicate additional sub-branches off of branches, and multiple sets of brackets next to each other
indicate several branches off of the same monomer.

B.2 DATASET PRE-PROCESSING

7 modifications and 152 deletions of glycan sequences were made before the process for situations
such as an unequal number of opening and closing brackets and dangling branches without specified
connectivity. Additional glycan sequences were removed due to missing SMILES sequences for a
number of monomers. The original GlycoBase.csv file was curated to reflect the modification and
deletion changes, resulting in a total of 19147 glycans.

Using the curated database, we visualized the distribution of species of origin, link, and immuno-
genicity of the glycans (Figures A.2, A.3, A.4).
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Figure A.2: Top 50 most common glycan species of origin, sorted in descending order of count with
y-axis on a logarithmic scale.
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Figure A.3: Four types of glycan links sorted in descending order of count with y-axis on a logarith-
mic scale.

B.3 SMILES COMPILATION

The chemical composition and formula of the 959 monomers (also known as glycoletters in Gly-
coBase) and 53 bonds were expressed as isomeric simplified molecular-input line-entry system
(SMILES) sequences.

In the dataset retrieved from GlycoBase, all position-specific information about monomer modifi-
cations was removed. The supplementary information of SweetTalk contains all the raw glycan se-
quences before position-specific modification information was removed (Bojar et al., 2021). While
insufficient information is provided to directly match the raw sequences with the corresponding
edited sequences, the raw sequences can be used to look for trends and most common modifica-
tion positions for each monomer. A dictionary was created to describe the number of times each
monomer appears in all the raw sequences. A couple of terms should be defined for consistency:

• “Monosaccharides” refer to the individual glycoletters without any modifications, such as
D-glucose (D-Glu) and galactose (D-Gal). The term “monosaccharide” is simplistic be-
cause it also covers alcohols, acids, and other classes of molecules, but the term will be
employed for the sake of consistency and clarity.

• “Modifications” refer to substitutions or additions to the original monosaccharide sequence
such as a nitrogen-linked acetyl group (NAc) and oxygen-linked methyl group (OMe). In
this dataset, monosaccharides can have between 0-4 modifications.

• “Monomers” refer to the combination of the monosaccharide and modification(s), also
known as glycoletters in GlycoBase.
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Figure A.4: Three different types of glycan immunogenicity labels sorted in descending order of
count, with y-axis on a logarithmic scale.

Using the raw monomers dictionary, the positions of the modifications for each monomer in the
corresponding SMILES were set using a list of consistent rules outlined below. The rules are listed
in order of priority.

1. For each monomer/glycoletter, if at least one monomer with the same monosaccharide and
set of modifications exists in the raw monomers dictionary, assume the set of positions with
the highest frequency. If no monomer exists in the raw monomers dictionary with the same
monosaccharide and set of modifications, proceed to the following steps.

2. If the monomer has a hydroxyl group at the 2 position, is not a furanose or ketose, and
contains a nitrogen-linked modification (N, NBut, NMe, etc.), assign the first occurrence
of a nitrogen-linked modification to the 2 position.

3. If the monomer is a hexose or deoxy-hexose and contains a pyruvate acetal (OPyr), assume
that the acetal connects the 4 and 6 positions.

4. If the monomer contains an O-linked phosphate (OP) or sulfate (OS) modification, search
the raw monomers dictionary for instances of the monosaccharide with only the OP/OS
modification and assume the most frequent position.

5. If the monomer contains a variant of the O-linked phosphate modification (OPEtn, OPPEtn,
etc.), assign the OP-variant modification the same position as the most common position
for the OP modification on the monosaccharide.

6. If the monomer contains two modifications, search the raw glycans dictionary for instances
of the monosaccharide with only each modification separately but not at the same time.
Assign each modification the position of highest frequency. If either monosaccharide and
modification combination does not exist in the raw monomers dictionary and the monomer
is a hexose, assign positions in the following order: 2, 4, 3, 6. If the position is already
occupied from previous steps or does not exist in a deoxy hexose, skip to the position with
next highest priority.

7. If the monomer is a hexose or deoxy-hexose and contains more than two modifications,
assign positions in the following order: 2, 3, 4, 6. If the position is already occupied from
previous steps or does not exist in a deoxy hexose, skip to the position with next highest
priority.

8. Assume all amino acids are connected to the monosaccharide via the oxygen on the car-
boxyl. If the connectivity is not specified for a group following the amino acid (CysAc,
AlaFo), assume that the group following the amino acid is connected to the amino acid via
the amine group.

9. For neuraminic acid (Neu), ketodeoxynononic acid (Kdn), pseudaminic acid (Pse), legion-
aminic acid (Leg), and other similar ketose-based acids, assign modification positions in
the following order: 1, 4.

10. For fructofuranose and similar furanoses for which the 1-position is not part of the ring,
assign modifications in the following order: 1, 3, 4.

10
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11. For alcohols, follow the same rules that apply to the oxidized form of the alcohol. For
example, for glucitol follow the same rules that apply to glucose.

12. Assume all rare monosaccharides (denoted as Sug) are hexoses with no specified stereo-
chemistry.

Because the 959 monomers contained some repeat SMILES sequences with different monomer
names, 13 redundant names were deleted so that each distinct monomer SMILES only appears once
in the SMILES compilation.

The SMILES for the 53 bond types differ in stereochemistry alone (alpha, beta, or unspecified) but
all have the same chemical composition of a glycosidic bond. Each bond is expressed as a variation
of the SMILES sequence CC(OC)CC, which consists of the glycosidic bond C-O-C with one of
the C atoms also connected to both a methyl and ethyl group. The chiral C with the four different
attached groups is used to specify the alpha or beta stereochemistry displayed in the bond name.
The stereochemistry at the tetrahedral C is consistently S for all alpha bonds, R for all beta bonds,
and not specified for all unspecified bonds. The 53 bond names were condensed into 3 distinct bond
types differing in stereochemistry alone.

C TEXT FILE SYSTEM

C.1 FORMAT

The text files to convert each macromolecule structure into machine-readable format consist of three
sections: the SMILES sequences for each unique monomer or bond, the positions of each monomer,
and the two monomer positions connected by each bond. Each section starts with a header to indicate
the start of a new part. The first section contains the abbreviation of each unique monomer or bond
in the glycan followed by the corresponding SMILES sequence, with each entry on a separate line.
The monomers section consists of the monomer position followed by the monomer abbreviation.
The bonds section contains the two connectivity positions in the glycan for the bond separated by a
space, followed by the bond abbreviation (Figure A.5).

SMILES of unique monomers and bonds

Monomer positions and abbreviations

Bond connectivities and abbreviations

Figure A.5: Standard text file format with three sections: SMILES of unique monomers and bonds,
monomer positions and abbreviations, and bond connectivities and abbreviations.
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C.2 TEXT FILE PARSER

A text file parser converts the macromolecule information stored in the .txt file to a NetworkX graph
with monomers expressed as nodes and bonds expressed as edges. The parser goes through the
.txt file line by line, stores the monomer information in a dictionary with keys as integer positions
and values as monomer abbreviations, and stores the bond information in a dictionary with keys as
tuples containing bond connectivities and values as bond abbreviations. Afterwards, the reader uses
NetworkX to add each key in the monomer dictionary as a node and each key in the bond dictionary
as an edge, storing the abbreviations as attributes for the corresponding node or edge. The resulting
NetworkX graphs include both linear and highly branched architectures (Figure A.6).

Linear Branched

Figure A.6: NetworkX graph representations of glycans that consist of both linear and highly
branched architectures of varying molecular weights and complexities.

D NODE AND EDGE ATTRIBUTES

D.1 FINGERPRINTS – GENERATION AND OPTIMIZATION OF HYPERPARAMETERS

We used RDKit to generate stereochemical extended connectivity fingerprints (Landrum, 2006;
Rogers & Hahn, 2010). Radius and number of bits were optimized by calculating mean and stan-
dard deviation, and visualizing the distribution of Tanimoto similarity of all monomers in the glycans
dataset (Figure A.7A-C). We aimed to obtain fingerprints with lower number of bits and optimal ra-
dius that could represent the monomer aptly in both similarity computation and graph neural network
models. For 64 bits, we observed that the mean similarity was as high as 0.4 and standard deviation
for similarity went up after radius 3 indicating higher hash collision and lesser differentiability. For
128 bits, the mean and standard deviation plateaued around 0.3 and 0.08, respectively. Further, the
similarity distribution was qualitatively spread over a larger range, as compared to fingerprints with
larger number of bits. For fingerprint bits longer than 128, we observed lower mean and standard
deviation, and decreasing spread in the similarity distribution. The decreasing trend indicates that
the fingerprints with bits higher than 128 are equally dissimilar, thus, if used, will lead to glycans
with equally high dissimilar scores. Hence, we chose fingerprints with 128 bits and radius 3 to gen-
erate node attributes for glycans. For edge attributes, we had 3 types of glycosidic bonds differing
by the stereochemistry alone, hence, we chose fingerprints with 16 bits and radius 3.
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We observed that there were 3 sets with 7 glycans which had exact fingerprints (Figure A.7D). Since,
the difference was in the number of carbon atoms in the aliphatic chain, we used the fingerprints as
is.
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Figure A.7: A. Mean, B. standard deviation and C. distribution of Tanimoto similarity of all
monomers in the glycans dataset, calculated using stereochemical extended connectivity fingerprints
of different radii and bits. D. Glycans in the same box have the exact fingerprint for radius 3 and
128 bits.

D.2 ONE-HOT ENCODING BENCHMARK

One-hot encodings of the 946 monomer and 3 bond types were also employed as feature types for
benchmarking with featurization using molecular fingerprints. The dimensions of the node and edge
one-hot encoding features are 946 and 3, respectively.

E SIMILARITY COMPUTATION

E.1 ANALYSIS OF GRAPHS

Most glycan graphs are sparse (Figure A.8). Complete graphs have density of 1, while graphs with
density > 0.5 have been defined as dense (Borgwardt et al., 2020). The density has been calculated
using -

d =
2m

n(n− 1)

E.2 SIMILARITY MATRIX

We computed the (n × n) similarity matrix for all glycans with labels on at least one taxonomic
level using propagation attribute kernel in GraKeL (Figure A.8) (Siglidis et al., 2020). Each pair of
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A B C

Figure A.8: Distribution of number of A. nodes, B. edges and C. density for glycan graphs.

graph similarity was computed for a maximum of 100 iterations. This resulted in 5% of the pairs
being assigned a 0 similarity (10% of all indices in the similarity matrix are 0).

It may be noted that the computation of similarity using graph kernels is way more accessible than
graph edit distances. The current computation was done on in minutes (wall time), parallelized
across 24 cores. From visual inspection using htop, only about 30% of 2 cores were being used
at any particular time, and less than 5% of all other cores were used, although there were 24 jobs
running in parallel.
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Figure A.9: 2D plot for the (n×n) similarity matrix of glycans. This is not symmetric because each
row is normalized by its maximum.
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F DIMENSIONALITY REDUCTION

F.1 HYPERPARAMETER OPTIMIZATION FOR UNIFORM MANIFOLD APPROXIMATION AND
PROJECTION (UMAP)

Number of neighbors was optimized for 2-component UMAP dimensionality reduction of similarity
vectors (Figure A.10) (McInnes et al., 2018). From visual inspection, UMAP with 128 neighbors
seems to resolve into optimal size and number of clusters. The subplot shows distinct regions for the
immunogenic and non-immunogenic glycans. We note that there is more to similarity than graph
kernel distances, and observe that it has been effectively captured using the GNN models (Appendix
G).
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Figure A.10: Visualization of scatter plots for UMAP components, obtained by dimensionality re-
duction of similarity vectors. The number of neighbors for each UMAP computation has been noted
in the title of the respective sub-plot. Coloration is by immunogenicity (red: immunogenic, blue:
non-immunogenic glycans).

UMAP dimensionality reduction for higher number of components does not provide more informa-
tion. The 3 components UMAP looked similar to the 2 components, with slightly more disentangled
families (Figure A.11). We limited our visual analysis to 3 components. To check if more compo-
nents can help in finding distinct clusters, we did dimensionality reduction for {2, 3, 5, 10, 30, 50}
components and let HDBSCAN - an unsupervised clustering algorithm – to figure out how many
clusters are there (McInnes et al., 2017). We noted that the number of clusters are pretty similar, and
in low 400s (Figure A.12). The high number of clusters indicates the diversity of the space, and the
differences in terms of taxonomy. As a further check to see if the distribution of glycans in different
clusters is different, we plotted the histograms of the glycans assigned to each cluster. Across all
the components, the histograms seem to be consistent with the number of glycans in each of them
(Figure A.13).

F.2 T-SNE BENCHMARK

We benchmarked the dimensionality reduction results obtained from UMAP against a broad range of
t-stochastic neighbor embeddings (t-SNE) models (Van Der Maaten & Hinton, 2008). For the differ-
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Figure A.11: Visualization of A. 2 and B. 3 components UMAP, colored by domain. C. Glycans
corresponding to individual domains are shown, with the text noting the domain, number of glycans,
and transparency (α) of each point on a scale of 0 to 1, where 1 is opaque
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Figure A.12: Number of HDBSCAN unsupervised clusters obtained from UMAP dimensionality
reduction for different components.

ent models, we varied perplexity as {2, 5, 30, 50, 100}, and number of steps as {500, 1000, 5000}.
From the scatter plot, colored by immunogenicity labels, we noted that dimensionality reduction us-
ing t-SNE was not able to deduce the differences and getting the glycans into distinct areas (Figure
A.14).

G SUPERVISED LEARNING WITH GRAPH NEURAL NETWORKS

G.1 DEEP GRAPHS LIBRARY (DGL) GRAPHS

Following featurization, NetworkX graphs were converted into undirected, unweighted, and ho-
mogenous DGL graphs (Wang et al., 2019). For GCN and GAT model architectures, self-loops
were added to the DGL graphs to prevent silent performance regression due to zero-in-degree nodes
during training.

G.2 MODEL ARCHITECTURES

We performed graph classification using five distinct graph neural network model architectures de-
tailed below:
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Figure A.13: Distribution of glycans in each cluster for HDBSCAN unsupervised clusters obtained
from UMAP dimensionality reduction for different components. The components have been noted
as titles for the sub-plots.
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Figure A.14: Visualization of scatter plots for t-SNE components, obtained by dimensionality reduc-
tion of similarity vectors. The (perplexity, number of steps) for each t-SNE computation has been
noted in the title of the respective sub-plot. Coloration is by immunogenicity (red: immunogenic,
blue: non-immunogenic glycans).

• Weave (Kearnes et al., 2016)

• Message Passing Neural Networks (MPNNs) (Gilmer et al., 2017)

• Attentive FP (Xiong et al., 2020)

• Graph convolutional networks (GCN) (Kipf & Welling, 2019)
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• Graph Attention Networks (GAT) (Velickovic et al., 2017)

While Weave, MPNN, and Attentive FP utilize both node and edge attributes in prediction, GCN
and GAT only consider node attributes. The models were trained using implementations in the DGL
LifeSci library (Wang et al., 2019). The optimization was done by minimization of average cross-
entropy loss between batches and additional metrics such as F1 score, recall, precision and accuracy
were noted.

G.3 GLYCAN GRAPHS CLASSIFICATION

G.3.1 IMMUNOGENICITY

Dataset. 1313 glycans in the database have immunogenicity labels, 631 of which are immunogenic
and 682 of which are not immunogenic. The training was performed on 60%, validated on 20%, and
tested on held-out 20% data.

Models. We classified immunogenicity using 5 model architectures combined with 2 different node
and edge featurization types, for a total of 10 model architecture-attribute pairs. For each benchmark,
hyperparameter optimization against minimization of binary cross entropy loss was performed on
SigOpt, a standardized hyperparameter optimization platform, for 1000 observations and the 10 best
sets of hyperparameters were extracted. Each model architecture and featurization combination was
trained using the 10 best sets of hyperparameters from SigOpt using 10 distinct random seeds for
splitting the dataset into train-validation-test datasets, for a total of 100 trainings per model per
attribute type. The tables below report the metrics for the most optimal set of hyperparameters,
the values of the most optimal hyperparameters, and mean metrics for each training across all 100
runs. All models achieve stellar performance on all metrics, with little meaningful difference in
performance between fingerprint and one-hot encoding featurization (Figures A.15-A.17 ; Table
A.1).

A B

Figure A.15: ROC-AUC curves for fingerprint and one-hot encoding-featurized graphs. A. Mean
ROC-AUC curve of all 50 fingerprint-featurized experiments (5 model architectures with 10 sets of
hyperparameters for each architecture), with the standard deviation shaded in light blue too insignif-
icant to be visible in the graph. B. Mean ROC-AUC curve of all 50 one-hot encoding-featurized
experiments.

G.3.2 TAXONOMY

Dataset. The taxonomy of the glycans was considered on eight levels: domain, kingdom, phylum,
class, order, genus, and species. First, the classification of each species into the other seven taxo-
nomic levels was obtained from the supplementary tables of SweetOrigins (Bojar et al., 2021). For
each glycan with species information, taxonomic information was added in a new .csv file, with mul-
tiple labels on the same taxonomic level separated by commas. Afterwards, any labels with fewer
than five glycans were removed, and any species names ending with “sp” that are therefore genus
labels in disguise were filtered out to produce the final dataset for taxonomic training. The final
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Weave MPNN Attentive FP

GCN GAT

Figure A.16: Mean ROC-AUC curves for fingerprint-featurized experiments for each of the five
model architectures (Weave, MPNN, Attentive FP, GCN, and GAT), with the standard deviation
shaded in light blue too insignificant to be visible. A standard deviation of 0.000 denotes a value
of <0.001.

Weave MPNN Attentive FP

GCN GAT

Figure A.17: Mean ROC-AUC curves for one-hot encoding-featurized experiments for each of the
five model architectures (Weave, MPNN, Attentive FP, GCN, and GAT), with the standard deviation
shaded in light blue too insignificant to be visible. A standard deviation of 0.000 denotes a value
of <0.001.

dataset consists of 8899 unique glycans with labels on at least one taxonomic level encompassing 4
domains, 9 kingdoms, 33 phyla, 70 classes, 144 orders, 253 families, 400 genus, and 567 species.
The training was performed on 60%, validated on 20%, and tested on held-out 20% data.

Graph labels were generated as one-hot encodings for each taxonomic level, with the length of each
one-hot encoding tensor corresponding with the number of unique labels in the taxonomic level.
The taxonomy labels accommodate cases in which glycans possess multiple labels within the same
taxonomic level.

Models. Benchmarks of multi-label classification were performed using a similar process as with
immunogenicity classification for 5 different model architectures, 2 different node and edge attribu-
tion types, and 8 different taxonomic levels for a total of 80 model architecture–attribute–taxonomic
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Table A.1: Test dataset metrics for the most optimal set of hyperparameters, or the set of hyper-
parameters that results in the lowest loss. For each metric, the mean µ and standard deviation σ
are displayed across all 10 random seeds. “FP” denotes condensed fingerprint featurization, and
“One-hot” denotes one-hot encoding featurization.

Model Attribute Type ROC-AUC F1 Recall Precision Accuracy Loss

µ σ µ σ µ σ µ σ µ σ µ σ

Weave FP 0.990 0.005 0.956 0.011 0.955 0.012 0.957 0.011 0.956 0.011 0.133 0.106

One-hot 0.992 0.005 0.962 0.007 0.962 0.007 0.962 0.007 0.962 0.007 0.105 0.055

MPNN FP 0.985 0.009 0.955 0.012 0.955 0.012 0.957 0.012 0.955 0.012 0.137 0.100

One-hot 0.988 0.006 0.953 0.010 0.953 0.010 0.954 0.010 0.953 0.010 0.123 0.052

AttentiveFP FP 0.990 0.005 0.954 0.011 0.953 0.011 0.955 0.012 0.954 0.011 0.125 0.104

One-hot 0.990 0.005 0.951 0.011 0.951 0.012 0.952 0.011 0.952 0.011 0.120 0.084

GCN FP 0.992 0.004 0.953 0.013 0.953 0.013 0.954 0.012 0.953 0.012 0.110 0.086

One-hot 0.990 0.006 0.955 0.012 0.956 0.012 0.956 0.013 0.956 0.012 0.123 0.110

GAT FP 0.991 0.006 0.954 0.014 0.954 0.013 0.954 0.014 0.954 0.014 0.109 0.081

One-hot 0.991 0.004 0.954 0.011 0.954 0.011 0.955 0.010 0.955 0.011 0.119 0.085

Table A.2: The most optimal model architecture and node/edge attribute type that results in the
lowest loss for prediction of all taxonomic levels. For each metric, the mean µ and standard deviation
σ are displayed across all 5 random seeds. “FP” denotes condensed fingerprint featurization, and
“One-hot” denotes one-hot encoding featurization.
Taxonomic Level Model, Attribute Type ROC-AUC F1 Recall Precision Accuracy Loss Hamming Loss

µ σ µ σ µ σ µ σ µ σ µ σ µ σ

Domain Attentive FP, FP 0.993 0 0.938 0.002 0.935 0.004 0.941 0.001 0.925 0.001 0.087 0.002 0.03 0.001

Kingdom Attentive FP, FP 0.994 0 0.912 0.001 0.891 0.003 0.934 0.002 0.892 0.005 0.056 0.003 0.019 0

Phylum GCN, FP 0.99 0 0.84 0.009 0.8 0.011 0.885 0.009 0.802 0.01 0.029 0.001 0.009 0

Class GCN, FP 0.986 0.001 0.741 0.008 0.666 0.01 0.836 0.006 0.67 0.009 0.022 0 0.007 0

Order GCN, FP 0.979 0.001 0.638 0.012 0.541 0.023 0.778 0.018 0.548 0.016 0.017 0 0.004 0

Family GAT, FP 0.975 0.003 0.557 0.015 0.456 0.017 0.715 0.015 0.469 0.019 0.013 0 0.003 0

Genus GCN, One-hot 0.963 0.003 0.513 0.015 0.397 0.015 0.723 0.020 0.412 0.010 0.009 0 0.002 0

Species GCN, FP 0.968 0.003 0.487 0.021 0.382 0.031 0.675 0.018 0.395 0.020 0.007 0 0.002 0

level combination. For each combination, hyperparameter optimization against minimization of
binary cross entropy loss was performed on SigOpt for 1000 observations and the 5 best sets of
hyperparameters were extracted. Each model architecture, featurization, and taxonomic level com-
bination was trained using the 5 best sets of hyperparameters from SigOpt using 5 distinct random
seeds for splitting the dataset into train-validation-test datasets, for a total of 25 trainings per com-
bination. The pipeline and models achieve state-of-the-art performance on multilabel taxonomic
classification on all taxonomic levels (Figures A.18-A.25, Table A.2).

G.4 BENCHMARKING TOP GNN MODELS AGAINST RESULTS REPORTED IN LITERATURE

For the top-performing models in SI Tables A.1 and A.2, hyperparameter optimization on SigOpt
was performed again using the same method as the benchmarks in the work by Bojar et al. (2021)
training on 80% of the dataset and reporting metrics on the remaining 20% used as a validation
dataset (Table A.3). The experiment on SigOpt was optimized through minimization of the loss,
and the remaining metrics (ROC-AUC, F1, recall, precision, and accuracy) were obtained as stored
metrics in the SigOpt experiment.
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Attentive FP Weave GCN GAT

Figure A.18: ROC-AUC curves for classification on the domain level for each of four model archi-
tectures (Weave, Attentive FP, GCN, and GAT), with the standard deviation shaded in light blue too
insignificant to be visible. A standard deviation of 0.000 denotes a value of <0.001. A. Mean ROC-
AUC curves for fingerprint-featurized experiments, with each graph displaying the mean and stan-
dard deviation across 5 sets of hyperparameters. B. Mean ROC-AUC curves for one-hot encoding-
featurized experiments.

A

B

Attentive FP Weave GCN GAT

Attentive FP Weave GCN GAT

Figure A.19: ROC-AUC curves for classification on the kingdom level for each of four model archi-
tectures (Weave, Attentive FP, GCN, and GAT), with the standard deviation shaded in light blue too
insignificant to be visible. A standard deviation of 0.000 denotes a value of <0.001. A. Mean ROC-
AUC curves for fingerprint-featurized experiments, with each graph displaying the mean and stan-
dard deviation across 5 sets of hyperparameters. B. Mean ROC-AUC curves for one-hot encoding-
featurized experiments.
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B

Attentive FP Weave GCN GAT

Attentive FP Weave GCN GAT

Figure A.20: ROC-AUC curves for classification on the phylum level for each of four model archi-
tectures (Weave, Attentive FP, GCN, and GAT), with the standard deviation shaded in light blue too
insignificant to be visible. A standard deviation of 0.000 denotes a value of <0.001. A. Mean ROC-
AUC curves for fingerprint-featurized experiments, with each graph displaying the mean and stan-
dard deviation across 5 sets of hyperparameters. B. Mean ROC-AUC curves for one-hot encoding-
featurized experiments.
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Figure A.21: ROC-AUC curves for classification on the class level for each of four model architec-
tures (Weave, Attentive FP, GCN, and GAT), with the standard deviation shaded in light blue too
insignificant to be visible. A standard deviation of 0.000 denotes a value of <0.001. A. Mean ROC-
AUC curves for fingerprint-featurized experiments, with each graph displaying the mean and stan-
dard deviation across 5 sets of hyperparameters. B. Mean ROC-AUC curves for one-hot encoding-
featurized experiments.
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Figure A.22: ROC-AUC curves for classification on the order level for each of four model architec-
tures (Weave, Attentive FP, GCN, and GAT), with the standard deviation shaded in light blue too
insignificant to be visible. A standard deviation of 0.000 denotes a value of <0.001. A. Mean ROC-
AUC curves for fingerprint-featurized experiments, with each graph displaying the mean and stan-
dard deviation across 5 sets of hyperparameters. B. Mean ROC-AUC curves for one-hot encoding-
featurized experiments.
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Figure A.23: ROC-AUC curves for classification on the family level for each of four model archi-
tectures (Weave, Attentive FP, GCN, and GAT), with the standard deviation shaded in light blue too
insignificant to be visible. A standard deviation of 0.000 denotes a value of <0.001. A. Mean ROC-
AUC curves for fingerprint-featurized experiments, with each graph displaying the mean and stan-
dard deviation across 5 sets of hyperparameters. B. Mean ROC-AUC curves for one-hot encoding-
featurized experiments.
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Figure A.24: ROC-AUC curves for classification on the genus level for each of four model archi-
tectures (Weave, Attentive FP, GCN, and GAT), with the standard deviation shaded in light blue too
insignificant to be visible. A standard deviation of 0.000 denotes a value of <0.001. A. Mean ROC-
AUC curves for fingerprint-featurized experiments, with each graph displaying the mean and stan-
dard deviation across 5 sets of hyperparameters. B. Mean ROC-AUC curves for one-hot encoding-
featurized experiments.
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Figure A.25: ROC-AUC curves for classification on the species level for each of four model archi-
tectures (Weave, Attentive FP, GCN, and GAT), with the standard deviation shaded in light blue too
insignificant to be visible. A standard deviation of 0.000 denotes a value of <0.001. A. Mean ROC-
AUC curves for fingerprint-featurized experiments, with each graph displaying the mean and stan-
dard deviation across 5 sets of hyperparameters. B. Mean ROC-AUC curves for one-hot encoding-
featurized experiments.
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Table A.3: Validation metrics of the top-performing model architecture and attribute combinations
for immunogenicity and taxonomic levels obtained from SigOpt using a 0.8, 0.2 train-validation
split of the dataset. The subset accuracy values are compared directly with the results for augmented
models presented in Table 1 of Bojar et al. (2021). The higher value is bolded for each task.

Class Paper Model + Attribute Type ROC-AUC F1 Recall Precision Accuracy CE Loss Hamming Loss

Immunogenicity This Work Weave, one-hot 0.999 0.989 0.989 0.989 0.989 0.018 -

Bojar, et. al. - - 0.929 0.929 0.933 0.931 0.162 -

Domain This Work Attentive FP, fp 0.994 0.950 0.945 0.955 0.940 0.081 0.025

Bojar, et. al. - - - - - 0.931 0.191 -

Kingdom This Work Attentive FP, fp 0.997 0.936 0.895 0.922 0.921 0.043 0.014

Bojar, et. al. - - - - - 0.895 0.325 -

Phylum This Work GCN, fp 0.992 0.841 0.804 0.882 0.808 0.028 0.010

Bojar, et. al. - - - - - 0.801 0.754 -

Class This Work GCN, FP 0.986 0.775 0.718 0.841 0.724 0.022 0.006

Bojar, et. al. - - - - - 0.715 1.173 -

Order This Work GCN, fp 0.982 0.663 0.589 0.760 0.574 0.017 0.005

Bojar, et. al. - - - - - 0.533 2.113 -

Family This Work GAT, fp 0.983 0.622 0.527 0.760 0.544 0.011 0.003

Bojar, et. al. - - - - - 0.466 2.707 -

Genus This Work GCN, fp 0.975 0.561 0.470 0.697 0.470 0.009 0.002

Bojar, et. al. - - - - - 0.385 3.408 -

Species This Work GCN, fp 0.976 0.510 0.403 0.694 0.438 0.007 0.002

Bojar, et. al. - - - - - 0.365 3.955 -
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