Exploring Intrinsic Structures of Hyperedges as Point Clouds

Lige Zhang Dongmian Zou
Duke Kunshan University Duke Kunshan University
1z2450@duke . edu dongmian.zou@duke.edu
Abstract

Hypergraph neural networks (HNNs) provide a powerful framework for modeling
high-order relationships in complex data. However, existing approaches often
overlook the intrinsic patterns carried by hyperedges. Some methods simplify
a hyperedge as a fully connected subgraph or treat it as an intermediate node-
like entity, which limits the expressivity of the resulting models and neglects
the potentially rich information of hyperedges. In this work, we offer a new
perspective for hypergraph modeling by modeling a hyperedge as a point cloud
with learnable features. Building on this view, we present a novel Hypergraph
Kernel Network (HypKN) framework for hypergraph representation learning,
which fully exploits the intrinsic hypergraph structure. The core component in
HypKN is a Kernel Attention Message Passing (KAMP) module, which mimics
the classical convolution operation defined for non-Euclidean data structures
and enjoys provable stability results. We evaluate HypKN on ten real-world
and synthetic hypergraph datasets for node classification, where it consistently
outperforms classical HNN baselines and achieves state-of-the-art performance
on several benchmarks.

1 Introduction

Most existing hypergraph neural networks (HNNs) fall into two broad categories: Vertex-Centric
HNNs (VC-HNNs), Vertex-Hyperedge HNNs (VH-HNNG) [1], which is reviewed in detail in Ap-
pendix A. These models are designed specifically for hypergraphs and include foundational works
such as [2] and [3]. In contrast, a separate line of research focuses on Unified HNNs (U-HNNs),
which are designed to operate on both graphs and hypergraphs, with recent examples including
UniGEncoder [4]. In this work, we focus primarily on pure hypergraph methods, with a goal of
finding natural and intrinsic representations for propagating the hypergraph structures.

While prior approaches have led to important advances in hypergraph modeling, they are grounded in
different underlying assumptions. VC-HNNSs typically represent a hyperedge as a fully connected
subgraph, usually referred to as clique expansion [5, 6]. However, this formulation creates a bias
about the topology of nodes connected by the hyperedge. VH-HNN, on the other hand, treats each
hyperedge as a node-like entity—an approach commonly known as star expansion [7]. Introduced in
HGNN [2] and later extended in HGNN+ [8], this formulation enables a message-passing mechanism
where nodes communicate with their associated hyperedges, which in turn aggregate and return
information back to the nodes. Building on this foundation, a number of powerful variants have
been developed, such as Hypergraph Attention [9], AllSetTransformer [10] and Equivariant Diffusion
HNN [11], achieving impressive results across standard hypergraph benchmarks. It is also possible to
consider a spectral view for building VH-HNNs [12, 13]. Although VH-HNNs capture the intrinsic
information flow over hypergraph topology, existing implementations of node-to-hyperedge message
passing, by either simple averaging or attention-based averaging, is still over-simplification of the
underlying pattern. This limitation becomes particularly evident in heterophilic hypergraph-related
tasks, where existing VH-HNN-based methods may struggle to learn meaningful representations.

Intuitively, hyperedges can be naturally interpreted as unordered sets of nodes, each representing a
unique combination of elements with potentially rich internal structure. This perspective motivates
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us to draw inspiration from point cloud processing, where similar unordered sets are common. In
particular, we build on the idea of point kernels for convolution, particularly KPConv [14], which
learns spatially-aware kernels over 3D point clouds in a way that generalizes classical convolution
[15]. We adapt this concept to hypergraphs by proposing a kernel that can be transported to different
hyperedges. This kernel then serves as a learnable aggregator that passes messages from nodes to
their corresponding hyperedges. Based on this idea, we proposed a novel framework, called the
Hypergraph Kernel Network (HypKN), which provides a novel perspective on HNNs. We outline our
key contributions as follows:

» We propose interpreting hyperedges as unordered point sets, and propose using kernel points to
learn the latent patterns contained in the hyperedges. Specifically, we develop a kernel attention
message passing (KAMP) module for hypergraph nueral networks (HNN). We prove that KAMP
is a stable feature extractor.

* We implement a novel Hypergraph Kernel Network (HypKN), which achieves state-of-the-art
performance on several benchmark hypergraph datasets. In particular, HypKN is good for
heterophilic hypergraph learning.

2 Method: Hypergraph Kernel Networks
2.1 Kernel Points

We propose a variant of kernel points, which achieves the geometry-aware feature extraction for
hypergraphs. It is built upon the pioneering work for 3D point clouds [14] and its non-Euclidean
variant [16]. The kernel configuration adheres to their principles, which require: Dispersion, that
kernel points should maintain a large pairwise distance to capture diverse local patterns, and Central
proximity, that kernel points should remain within a bounded distance from the center to preserve lo-
cality. This design enhances the kernel’s capability to perceive structural variations across hyperedges
by distributing kernel points over distinct sub-regions.

In our framework, kernel points are initialized at the origin and translated to align with individual
hyperedges, facilitating node-to-edge message propagation. Let {z }#_; denote the kernel points.
We first fix z; = 0 as the origin, and then obtain the remaining kernel points by minimizing the
following loss function:

K

Lz} = szzl 2oy T2 d(0.z0), (1)

k=1 l#£k k=1

where d(-, -) denotes the Euclidean distance. A more detailed discussion on kernel points, including
its geometric shape and properties, can be found in Appendix B.1

2.2 KAMP: Kernel Attention Message Passing

We propose a Kernel Attention Message Passing (KAMP) to extract information about hyperedges
from nodes contained within. This process involves three sequential steps. First, the kernel is
translated from its initialized position, the origin, to the geometric centroids of the hyperedges. Second,
at each hyperedge, we perform attention-based aggregation between the kernel points and transformed
node features within the hyperedge group. This step enables the kernel to dynamically perceive
distinct node characteristics within the hyperedge group. Finally, we take a simple aggregation of
perceptions on individual nodes, and we utilize the resulting integrated signal to iteratively refine the
hyperedge representation. We illustrate each step in detail in the following contents.

Step 1 (kernel translation). Let the kernel points {Z; } 5, be initialized and centered at the origin.
We first need to translate them to an hyperedge e € £ via following translation operation:

Zer, = Transoox, (Zk) = 2k +Xe, k=1,--- K, 2)

where X, represents the centroid of node features {xev}zzgd"‘l for hyperedge e, which can be directly
calculated by taking average.
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1. Kernel Translation 2. Individual Contribution Extraction 3. Information Aggregation
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Figure 1: A visualization that illustrates our KAMP mechanism.

Step 2 (individual contribution extraction). We denote nodes within an hyperedge e € £ as a set
{Xew }Uzlde | Before extracting features, we perform K independent learnable linear transformations

for eacvh node X, :

Xevk :Tk(xev), k= ].,...,K. (3)
Then we calculate the correlation between kernel points z.; and the transformed node embedding
Xepk- We consider the following alternatives: either adopting the self-attention regime of a transformer

[17], or directly using the distance between kernel points and nodes. Specifically:

¢ Attention-based:

ap = M; corr(zek,xevk) = Kevxpﬂ (4)
VD > k1 exp(ax)
where D, , represents the embedding dimension.
¢ Distance-based:
exp(—d?
i = ||Zer — Xeor|l; cOrT(Zer; Xeuk) = (=di) )

S exp(—d?)

Finally, we use the above correlation weights to aggregate the transformed node features and produce
the the message that a particular node v passes to the corresponding hyperedge e, of which we have
placed a kernel on top. Specifically, the message from v to e is:

K

mye = > COrT(Zek, Xeok ) Xevk, U E €. (6)
k=1

Step 3 (information aggregation). In the final step, we aggregate all the messages that an edge e

receives from its resident nodes {v € e}. A simple implementation will be averaging the messages

from individual nodes. 1
Ii'le = di‘g Z Mye. (7)

KAMP summary. Altogether, we can represent the KAMP module as a function KAMP
RN*C 5 REXC "which is summarized as the following:

K
1
KAMP({‘TU}UGG) = d7K Z Z COI‘I"(Zek, Xvk)ka’ @®)

vee k=1

where KAMP takes a set of nodes {x;, },,c. on the same hyperedge to generate messages to be passed
to the corresponding hyperedge e. The procedure of KAMP is also visualized in Figure 1.

KAMP provides a specialized implementation of the aggregation function ¢y, distinct from existing
approaches. Such a design enables KAMP to extract richer patterns from the node embeddings
instead of simply relying on graph topology. This significantly improves expressivity in tasks that
models high-order relations. This component can also be explained as a Mixture-of-Experts (MoE)
[18-20] module. Each kernel point can be viewed as an expert, where the associated transformations
act as distinct expert functions. The node-kernel correlation acts as the routing score, like [21]. The
final aggregation resembles the weighted mixture of outputs of individual expert.
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Table 1: Hypergraph node classification results, presented as mean accuracy (%) + standard deviation.
Best result is highlighted in bold and results within one standard deviation of the best are underlined.

Method Cora-CC Citeseer-CC  Pubmed-CC Cora-CA ModelNet40 NTU2012 Zoo 20Newsgroups House Senate ‘ R
HGNN 7939 £ 136 7245+ 1.16 86.44+044 82.64+1.65 95444033 87.72+1.35 9550+4.58 80334+042 61.39+296 4859+452]| 9
HCHA 79.14 £1.02 7242+142 8641036 82554097 9448 +0.28 8748+ 1.87 93.65+6.15 8033+£080 61364253 48624441 | 12
HNHN 76.36 £1.92  72.64 £1.57 8690030 77.19+ 149 97.84+0.25 89.11+ 144 9359588 81.35+£0.61 67.80 £2.59 50.93+6.33 | 10
AllDeepSets 76.88 £1.80 70.83 £1.63 88.75+£0.33 81.97+1.50 9698+£026 88.09+1.52 9539+477 81.06+£0.54 6782240 48.17+£567 | 8
AllSetTransformer 7858 £1.47 73.08+1.20 88.72+037 83.634+ 147 98204020 88.69+ 124 97504359 81.38+0.58 69.33+220 51.83+522| 4
ED-HNN 8031+ 135 7370+ 138 89.56+0.62 8397 +1.55 9835+0.20 88074128 9577+337 81.904+055 7245+228 64794514 | 2
HyperGCN 7845 +£1.26 7128 +082 82844867 79484208 75894526 56.36+4.86 85.38+6.23 81.05+£059 48324293 42454367 | 14
LE-GCN 7734 £1.10 7341 +£1.15 8853+048 76.60+048 96.68+0.16 89.16+ 1.13 95.00 £4.81 81.84 +£0.34 7839+ 1.64 8070567 | 5
MLP 7517 £121 7267156 8747051 7431 +£1.89 96.14+£0.36 8552+1.49 B87.18+4.44 8142+049 77214+325 7887+3.11 | 11
UniGCNII 78.81 £1.05 73.05+£221 8825040 83.60+1.14 98.07+£023 89.30+133 93.65+437 81.12+£0.67 6725257 4930+£425| 7
UniGEncoder 80.49 £1.30 7449 £1.02 8871 £0.54 84.17+1.19 9841+023 89.11+£0.85 9577 +423 81.51+039 77.12+£280 7859+397| 3
HypKN (Ours) 7927 £1.38 7401149 8887+046 8271+172 9844+021 90.12+1.14 9654 +284 81.95+043 77.64+275 80.85+431 | I

Ablationl:
HKN-base (HGNN++)  77.49 & 144 72.02+ 145 87.85+034 8146+147 9798+027 89.38+0.89 9385+3.72 81524027 7731+£275 7972+£259| 6
HKN w/o Self_State 5451 +£1.66 39.67+279 48.06+0.65 71.49+1.75 92.14+0.55 8568+ 147 98.08+2.03 80.75+0.31 56.78 £1.93 54.65+5.67 | 13

2.3 HypKN: Hypergraph Kernel Network

The proposed model is built upon a previous baseline HGNN+ [8], which is a simple implementation
of the framework of (9). First, we add a self-state residual sum to obtain a new baseline model,
namely HGNN++. Then, we replace the naive message generator ¢y in (9) with the proposed KAMP
module, which we refer to as the Hypergraph Kernel Network (HypKN). The overall architecture can
be summarized by the following update steps:

mgﬂ) = wmgl) +(1- z,u)KAMP(xSf))7 (node to hyperedge)
1

Xgﬂ) = @Xg) +(1-0)—= Z m&””, (hyperedge to node)
Y eeN(v)

where w,@ € [0, 1] are the weights for fusion. To initialize, mgo) is taken to be the centroid of

initial node attributes XSJO) for v € e. Although HypKN is primarily designed for hypergraph node
classification, it actually focuses on producing meaningful representations for hyperedges.

3 Experiments

We evaluate the performance of HypKN on multiple hypergraph benchmark datasets, with a primary
focus on hypergraph node classification. All experiments were executed on a GPU server with
NVIDIA GeForce RTX 3090 GPUs (24G memory). We perform each experiment using only a single
GPU. We use cross-entropy loss with L2-regularization to train each model. We provide a detailed
description for the benchmark datasets and baseline models in Appendix C.

Table 1 shows HypKN’s performance on ten benchmark datasets, where the proposed model has
achieved state-of-the-art performance on four of them. In particular, HypKN has achieved significant
improvement on heterophilic hypergraph datasets over existing classical methods. We also assign a cu-
mulative rank to different models based on their performance across multiple datasets, which follows
the convention in this field [10, 13].Our proposed HypKN is ranked the first, indicating the overall
best performance. Futher, ablation studies can be found in Appendix D. Specific hyperparameter
searching and settings are illustrated in detail in Appendix F.

4 Conclusion

In this work, we introduced a novel perspective on hypergraph neural network design by treating
hyperedges as point clouds with latent geometric structures, rather than as intermediate node-like
entities solely for message passing, as is common in prior approaches. Based on this insight, we
developed the KAMP module, which forms the core of our proposed HypKN architecture. HypKN
consistently outperforms a range of classical and strong baseline HNN models across multiple
benchmarks. Beyond empirical results, we also provided a theoretical analysis that proves the
stability of our model. One limitation of this work is the use of a fixed kernel applied uniformly
across all hyperedges.
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5 Future Work

While our current implementation employs a fixed kernel uniformly applied across all hyperedges,
such rigidity may fail to capture the diverse geometric structures inherent in complex hypergraphs.
In future work, one potential direction is to explore adaptive kernel deformation strategies that
dynamically reshape kernels during translation to better align with the unique geometry of individual
hyperedges. Additionally, extending KAMP’s evaluation to broader hypergraph learning tasks,
particularly hyperedge prediction as established in [22, 23], would provide crucial insights into its
practical utility.
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A Notions and Preliminaries
A.1 Notation for Hypergraphs

A hypergraph generalizes a classical graph by allowing a single edge to connect more than two nodes.
Let G = (V, &, X) denote an attributed hypergraph, where V represents the set of nodes, £ represents
the set of hyperedges where each hyperedge e € £ connects (and is represented by) a subset of 1, and
X =[..,x",...] € RV*C denotes node attributes. Since each hyperedge could connect more than
two nodes, a hypergraph utilizes an incidence matrix H € {0, 1}/V*IZl to represents its topological
structure rather than a classical adjacency matrix, where H;; = 1 if and only if node 4 is contained in
hyperedge j. For a node v, we use N'(v) := {e € £ : v € e} to denote the set of hyperedges that
contain v. Let d,, = | (v)| denote the node degree for any v € V, and d. = |[{v : v € e}| denote the
edge degree for any e € £. We define node degree matrix D,, and edge degree matrix D, as diagonal
matrices whose entries are given by node degrees and edge degrees, respectively.

A.2 Message Passing on Hypergraphs

Hypergraph neural networks primarily adopt two types of message-passing regimes: Vertex-Centric
HNNs (VC-HNNs) and Vertex-Hyperedge HNNs (VH-HNNGs) [1]. Despite their differences, both
frameworks rely on converting hypergraphs into conventional graphs, through either clique expansion
or star expansion [5, 6]. These approaches can be summarized as follows:

¢ VC-HNN:s treat hyperedges as connected subgraphs. In each layer, the node features are updated
according to passing messages from vertices sharing the same hyperedge. That is, for the I-th
layer,

B = 0O (WD, 00 ({h) < {v,u} C B})).

where ¢() is a permutation-invariant aggregation function, and ¢(") combines the self-state
value hg,l) with messages received from neighbors.

* VH-HNN:S treat hyperedges as node-like entities and design message passing according to
information flow between nodes and edges along hyperpaths V — £ — V [24] as follows:

R =) (h0. 0y ({n) v eel)).

pHD — g0 (hff)ﬁ(é) ({hg” ‘ve e})) , ©)

where qi)g) passes messages from nodes to edges and ¢%> passes messages from edges to nodes.
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A.3 Point Kernels and Simplices

One natural way of generalizing classical convolution [15] to non-Euclidean domain is to replace
conventional two-dimensional kernels that reside on grids with point kernels that are defined on
kernel points. Thomas et al. [14] introduced a point kernel in R? for tasks that involve point clouds.
Their empirical results suggested that the dispositions of their proposed kernel points form regular
polyhedra in R3.

In our method for hypergraph tasks, we identify a hyperedge as an arbitrary high-dimensional point
cloud, which requires generalizing point kernels to higher dimensions. This generalization naturally
leads us to consider simplices as the higher-dimensional analogues of regular polyhedra. In this
section, we provide a brief review of relevant concepts that are needed for later sections.

Definition A.1 (Simplex [25]). Let {s1,82, - ,Snt1} be a set of n + 1 affinely independent points,

i.e, rank[so —s1, - ,Sp41 — 81| = n. Their convex hull S, defined as:
n+1 n+1
S = {pGRD p:Zmisi, x; >0, Zmizl},
i=1 i=1
is called an n-simplex embedded in RPD. {81,892, ,Sn+1} are called the vertices of S and the line

segment connecting a pair of vertices is called an edge of S. Further, if all edges of S have the same
lengths, then we say that S is a regular simplex.

A regular simplex, like regular polyhedra in R3, can be inscribed in a sphere, as thoroughly discussed
in [26]. The following lemma presents the relationship between the radius of the sphere and the edge
length of the inscribed simplex.

Lemma A.2 (cf. proof of Theorem 1 in [26]). Let a regular n-simplex be inscribed in a sphere of
radius R. The relationship between the simplex edge length | and sphere radius R is given by:

2(n+1)'

=R

Proof. Denote the vertices of the regular n-simplex as vy, ..., v,, € R”, and suppose the simplex is
inscribed in a ball of radius R. We place the centroid of the simplex at the origin. That is,

ka =0, and |vg|]|=R forallk.

Since the edge length / is the same in a regular simplex, we have:

02
Hvifvj||2:€2:>vi.vj:RQ—E, forallz#]

Taking the squared norm of the centroid term yields

Z|\Vk||2+2 > viev

0<i<j<n

By expressing ||vi/| and v; - v; in terms of R and ¢, we have:

1 Iz
(n+1)R*+2- <n;r > <R2—2> =0,

é(n+1)R2+2~2!(.n(:_1)i)!(R2€22>0,

= (n+1)R*+n(n+1)R? — M

n+1
n+1

2 =0,
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B Properties for Proposed Methods
B.1 Properties of Kernel Points
B.1.1 Theoretical Analysis

In R?, minimizing the loss function (1) has been empirically shown to produce kernel point configu-
rations that resemble regular polyhedra [14]. In our case, the kernel points are in R™. We begin by
presenting the following result, which characterizes a class of critical points of the loss function (1):
Proposition B.1. Let K < n. Suppose that the kernel points {zy }_, C R" form a regular (K — 1)-
simplex centered at the origin. Then with a proper choice of radius for the circumscribed sphere, the
gradient of the loss function in (1) vanishes at all kernel points, that is: Vzkﬁ({zk}ff:l) = 0 for all
k.

Proof. We first take the gradient of L:

K

1
V£ =V S — P
el = Y g;nzz—zzcn Z;é 2 — 2]
=2V, S Mz — 7t + Vi 2
1#£k
— Z
=23 Vo, [ —m) - (2 — )]+
ar 2]
Zy,
—2 .
;llzk—zzll?’ [z

For a regular (' — 1)-simplex inscribed in a sphere of radius R, with centroid placed at the origin,

we have
|lzx|| = R for all &,

2K
|z — zi|| = d := Rw/Ki1 forall k # [.

Substituting these into the gradient expression yields

Z, — 27 Z
Val=-2) ——+ 4
I#k

and, by Lemma A.2,

Using the property Zfil z; = 0 for a centered simplex, we can simplify
sz—zl ZZk—ZZl— —lzk—(—Zk):KZk,
£k I#k 1#k

which leads to

sz Zj
Vzkﬁ == 72 d3 E

_g (L 2K
“\rRT @)

The critical point condition V,, £ = 0 requires:

1 2K
R &
We substitute the value d = R4/ +7=7 and solve for R, it yields a unique radius
1
K—1)3\1"
po (-0
2K
with which the gradient vanishes for all zy,. O
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While a regular simplex centered at the origin provides a symmetric and stationary configuration
of kernel points, the asymmetric configuration used in our framework can improve optimization.
Namely, prefixing one kernel point at the origin not only simplifies the optimization problem but also
yields a lower loss value, as stated in Proposition B.2. Note that under a fixed configuration, the loss
function can be viewed as a function of the radius of the circumscribed sphere.

Proposition B.2. Let K > 3. The minimum value of the loss function L defined in (1) under the
asymmetric configuration, with z; = 0 and the remaining K — 1 points forming a regular K — 2
simplex, is strictly smaller than the minimum under a symmetric configuration, where all points are
equidistant from the origin on a common sphere. That is,

Easym (’I“*) < ACsym (R* ) )

where r* and R* denote the optimal radius for both configurations, respectively.

Proof. First, we consider the symmetric kernel configuration, where K points form a regular (X —1)-
simplex inscribed in a sphere of radius R*. From Lemma A.2 and Proposition B.1, the optimal edge
length d* and radius R* satisfy:

* _ ok 2K . * (K_l)ffo%
TERYE-T R_<2K>

Therefore, a direct calculation yields

K\ 1
Lsym—( ) +KR*

d*
K(K —1)
A
2dr
1 [K(K-1)
=— .y =———L L KR*
R* 8 *

Now, we consider the asymmetric kernel configuration, where one point is fixed at the origin and
other K — 1 points form a K — 2 regular simplex inscribed in a sphere of radius r*.

between the values of the two losses in Figure 2. O

We conclude that Leym > Lasym after a direct calculation. For clarity, we visualize the comparison

B.1.2 Kernel Points Empirical Validation

While we have provided a theoretical analysis of the kernel point disposition, we further validate our
findings through two empirical experiments. Specifically, we generate two sets of kernel points near
the origin by minimizing the following loss function as proposed:

{Zk}k 1 sz +Zd0zk

k=1 l#k
In the first setup, we optimize 5 kernel points in a 16-dimensional space; in the second, we use 16
kernel points in a 32-dimensional space. The pairwise distances among kernel points in both settings
are visualized in Figure 4.

l»k

The results empirically confirm our theoretical prediction regarding the geometric disposition of
kernel points. We also provide a simple visulization of the kernel’s shape in Figure 3.

10



Exploring Intrinsic Structures of Hyperedges as Point Clouds

Comparison of Symmetric vs Asymmetric Loss

12 b Lsym - Lasym

10

Difference
[}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
K

Figure 2: The comparison between Lgyn and Lagym.

Kernel Points = 5 Kernel Points = 7

> @

Figure 3: Illustration of kernel points, viewed from 2D. Each kernel consists of a center point and
other points that form vertices of a simplex.
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Figure 4: The result of minimizing the loss function.
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B.2 Properties on KAMP

One critical aspect of kernel construction is that the optimizer of the loss function £ in (1) is not
unique. Even fixing the z; = 0, there are infinitely many possible positions for the remaining kernel
points to form a regular simplex. For example, a rotation or reflection operation can be applied to the
kernel:
R € O(n), where O(n) = {R € R"*"RR" =T}.

It is clear that {z;}/* | and {Rz;}X | yield the same value for £. Fixing other parameters in
KAMP, the output will be generally different if we replace {z } 2, with {Rz;}/< . Nevertheless,
other parameters are learned given the kernel points, so the learning regime will also select different
parameters under such replacement. Further, we systematically quantify the variation in predictions
induced by different kernel configurations. In the following proposition, we establish a theoretical
upper bound on the norm of the difference of output of KAMP.

Proposition B.3. Let {z;,} 1 | and {2, }X_, be two distinct point kernels that achieve the same value
on Lin (1). Let A denote the difference in their output produced by the KAMP module, specifically,

A= HKAMP{ik}({XU}UEe) - KAMP{Zk}({Xv}UEG)H .

We have the following bounds on A respectively for the distance-based and attention-based correla-
tions:

e Distance-based correlation:
A <A4Ryazv/ RK(Rmax + R) HJ%CX 1%k l;

o Attention-based correlation:

A< 2R\/§ma}ex %0k |,
v,

where K is the number of kernel points, R is the radius of the circumscribed sphere for the (K — 1)-
simplex, Ryax = max, i ||z — Xy || denotes the maximal kernel-node distance.

Before establishing the upper-bound, we need to prove the following additional lemma.
Lemma B.4. Let 0 : RX — RX denote the softmax function, and let v € RY be an arbitrary vector
where o (r) represents the k-th component of the output. Define the squared distance mapping
D :RE — RE gs:

D(I‘) = (_T%a _TS, ceey _T%()v
with coordinates bounded by 0 < r; < Ryax foralli € {1,...,K}. Then for any r,T € RE | the
following inequality holds:

K
ok (D(r)) = o1 (D(E))] < 2Rmaxy | D |77 = 72|.
i=1
Proof. First, we bound the normed difference of D as
K 1/2 % 1/2
|D(r) — D(x)]]2 = <Z r? - 7:Qi|2) = (Z [(rs +73)(ri — 77i)|2>
i=1 i=1

X 1/2
< 2Rmax (Z ‘ri - Fi|2> = 2RmaXHr _F|‘2'
=1

Accordingly, the composition o o D satisfies
ok (D(r)) — o (D(¥))| < [lo(D(r)) — o(D(x))ll2 < [|D(r) = D(r)ll2

where the second line follows from the fact that o is a 1-Lipschitz function [27]. O
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Now we are ready to prove the main proposition. We deal with the two cases separately.

For Distance-based correlation.

Proof. For convenience, we denote:

de = |2k — xorll;  di = ||z — Xk -

Also assume that the distance between linear transformed node feature and kernel points are also
bounded by R, .x, that is:

Riax = max |z — Xpkl|-
From the triangle inequality, we have:
|y, — die| < |2k — xokll = llzr —xuill| < |2k — zxl] < 2R.
For squared distances:
|di — di| < (di + di)|di — di| < (2dy, + dy, — di)|di — d].
= |d? — d2| < (2Rmax + 2R)2R.
Recall that the correlation coefficients are computed as the following:

_exp(=d})  _ exp(=d})
T en(-d) T Y exp(—d)

Letd = (di,...,d;) and d = (dy, ..., dy). Also let D : R¥ — R¥ as:
D(I’) = (_d%7 _d§7 LR _d%()

Then, Gy, = 0 (D(d)) and vy, = 0 (D(d)). Following lemma B.4, we get:

‘dv,k - O‘U,k| = |Uk(D(d)) - O'k(D(d))‘ < 2R,0x Z |J i ‘

< 2RmazV/ K (2Rmax + 2R)2R.

Now that we bound the correlation, we can bound the difference in the KAMP output under different
kernels.

= KAMP{zk}({Xv}ve.e) — KAMP 14,3 ({%0 Juee) |

— Oy k Xvk”
vEek 1
< d67K Zk |G — o | [ %ok
1
< 2R e/ K (2R mar + 2R)2R ||x,
wKﬂ}; VE QR ey + 2R2R o

max \/ RK max + R
Z [0l

<4RpmazV/ RK(Rpaz + R) mz}cx |x0k]|-
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For Attention-based correlation.

Proof. First, we define

u= (z?xvl, .. ,z;xvK) € REX,
and
0= (2 Xp1,..., 2%, ) € RF.
Since
|z Xor — 24 Xok | = | (21 — 2) "ok | < l|zi — 2| |%0k]] < 2R %0l
we have
K , K
la—all = | > (0% — 2[x)" < || Y CRIxul)? = 2R|xu | VE.
k=1 k=1

Accordingly, we can bound the softmax output as follows:
j77:(w) = o (@)] < o (u) — o (@)l < [[u—al, < 2R |xu| VE.
Applying it to the node-kernel correlation
exp (z;ka)

Zf:l exp (z;'—xvj) )

Ayl =

we have:
|Gk — o] < 2R %ok || VK.
Finally, we obtain
A = ||[KAMP;,; ({x0}) = KAMPy,, ; ({x,})]|

1 B 2LRVK )
deK Zk |a1),k - av,k| ||X1)k|| S deT Zk Hka,H

<

< 2LR\/Em%€xHkaH2.
O

Summary of Proposition B.3. Proposition B.3 indicates that the output is more stable if the number
of kernel points K is smaller, and if the kernel radius R is smaller. This result is intuitive because
in the extreme case, if only one kernel point is used, then the kernel’s “shape” is indeed invariant
under rotations; if the kernel radius is 0, then all kernel points collapse to a single point, leading to
the same case. Therefore, we believe that Proposition B.3 illustrates a trade-off between expressivity
and stability. On one hand, we wish to use more kernels to capture the complex patterns intrinsically
contained in a hyperedge. On the other hand, if we use too many kernels, the result might become
less stable.

C Benchmarks and Baselines

Node classification on hypergraphs is a classical semi-supervised learning task, where the model
classifies each node as some known labels. In the following sections, we briefly introduce some
representative hypergraph datasets and existing baselines.

C.1 Datasets

We test the proposed model on both homophilic and heterophilic hypergraph datasets. Homophilic
hypergraph datasets, including cocitation networks and coauthorship networks including Cocitation-
Cora, Cocitation-Citeseer, Cocitaion-Pubmed, and Coauthorship-Cora, are all obtained from [3].
Other homophilic hypergraphs, ModelNet40 [28] and NTU2012 [29], comes from 3D object datasets
widely used in computer vision tasks. Group-View Convolutional Neural Network (GVCNN) [30]
and Multi-View Convolutional Neural Network (MVCNN) [31] are used for feature extraction, and
then hypergraphs are constructed following the methods described in [2] and [32]. Heterophilic
hypergraph datasets, including 20Newsgroups and Zoo are obtained from [33]. The remaining
House and Senate datasets are introduced in [10] [34]. The detailed information about the datasets is
summarized in Table 2.

14
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Table 2: Statistics of the benchmark datasets

Dataset Cora-CC Citeseer-CC Pubmed-CC Cora-CA ModelNet40

[V 2,708 3,312 19,717 2,708 12,311
€] 1,579 1,079 7,963 1,072 12,311
#Features 1,433 3,703 500 1,433 100
#Classes 7 6 3 7 40
Homophily 0.897 0.893 0.952 0.803 0.853
Dataset NTU2012 Zoo 20Newsgroups House Senate
V| 2,012 101 16,242 1,290 282
€] 2,012 42 100 341 315
#Features 100 16 100 100 2
#Classes 67 7 4 2 2
Homophily 0.752 0.241 0.461 0.509 0.498

C.2 Baselines

We compare our HypKN model with three categories of baselines. (1) Representative models
specifically designed for hypergraph neural network, including HGNN [2], HCHA [9], HNHN [35],
AllDeepSets & AllSetTransformer [10], ED-HNN [11], HyperGCN [3], and LE-GCN [32]; (2)
MLP; (3) General framework that operates on both graph and hypergraph, including UniGCNII [36],
and UniGEncoder [4]. To make a fair comparison, we adopt the same experimental condition of
AllSetTransformer and ED-HNN. Therefore, we also divide the dataset into train, validation, and test
sets by a proportion of 50:25:25. We also use mean accuracy and standard deviation, based on ten
random trails as the evaluation metric.

D More Experiments and Ablation Studies
D.1 Ablation on Number of Kernels

We conduct additional experiments to explore the impact of the number of kernel points K on model
performance. Table 3 presents results using K € {2,3,4, 5,6, 7} kernel points. We observe that the
best performance is achieved with a moderate value of K. This suggests that a sufficient number of
kernel points is necessary to effectively extract the inner latent structure of hyperedges, while too
many kernel points may also lead to overfitting. This reflects a trade-off between model complexity
and generalization capability. In addition, the experimental results demonstrate that using kernels to
extract hyperedge information is both feasible and effective.

We also clarify that the number of kernel points K in our model is different from the traditional
concept of kernel size commonly used in convolution operations. In traditional convolutions, kernel
size defines the receptive field, which determines the spatial scope of feature extraction. In contrast,
in our model, the number of kernel points primarily governs the calculation complexity of the
node-kernel correlation.

Additionally, increasing the number of kernel points enhances the directional resolution of our
aggregator, enabling it to more finely perceive variations within local regions of the hyperedge.
Geometrically, this corresponds to placing more vertices on a regular simplex, which allows the
model to probe the shape from a richer set of directions. Thus, the aggregator tends to be more
sensitive to the shape of hyperedge. However, it is also critical to balance the trade-off between
geometric expressivity and optimization. With more kernel points involved, the overall aggregation
becomes more complex, making it harder for the model to converge to an optimal solution during
training.

D.2 Further Ablation on the Effectiveness of KAMP

To demonstrate the effectiveness of the proposed KAMP module, we conduct two sets of ablation
experiments, evaluating both component-wise contributions and robustness across settings.

Complete Search. We apply identical hyperparameter optimization for all ablation models using
Optuna [37], and report results in Table 1. The following two variants are considered:

15
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Table 3: Results of the HypKN performance, presented as mean accuracy (%) + standard deviation,
when selecting different number of kernel points. The experiment is conducted on all 10 benchmark
datasets.

Cora-CC Citeseer-CC Pubmed-CC Cora-CA ModelNet40

78.94+0.82 73.82+1.08 88.87 046 82.02+145 98.44+0.21
78.52+1.02 73.60+1.28 8843+047 81.68£1.66 98.39+0.25
79.27 +1.38 7401 149 88.82+047 82.54+122 98.44+0.28
7830+ 1.18 73.68+ 130 88.86+0.35 81.96+£0.72 98.41+0.24
79.01 2090 73.44+131 88.86+0.43 8271 +£1.72 9843 +0.21
78.60 +£1.01 73.50+1.05 88.81+0.43  81.85+1.07 98.30+0.27

NTU2012 Zoo 20Newsgroups House Senate

89.64 +£1.23 9500+3.16 81.37+046 77.34+£226 80.85+4.31
89.76 +1.14 9538+3.53 81.95+043 77.64+275 7873+4.22
89.74 £ 0.69 96.54 +2.84 81.46+049 7749+£3.08 79.15+£3.68
89.68 090 95.77+284 81.46+049 7746 +£274 79.15+£4.69
90.12 +1.14 9538 £3.03 81.45+043  77.55+£2.66 78.87£3.87
89.68 £1.19 94.62£2.69 81.46+049 77.62+2.84 79.44+£3.59

Table 4: Ablation2: KAMP aggregator. Presented as mean accuracy (%) + standard deviation.
For each dataset, the best result is underlined, while the best results in each "KAMP setting" are
highlighted in bold.

Senate 77.75+4.03
Pubmed-CC | 86.80+0.40

77.61£3.00 78.31+3.40
88.32+0.42 88.321+0.45

78.59+5.30 78.45+4.88
88.34+£0.60 88.4940.52

Data\Model | HGNN++ || +KAMP (K=4) I +KAMP (K=6)

| | Distance Attention | Distance Attention
ModeNet40 | 97.25+0.29 || 97.77+0.21 97.71£0.27 || 97.56+0.30 97.59+0.29
700 91.9244.60 || 94.234+3.27 94.62+3.72 || 93.85+4.87 93.08£5.68
House 76.78+3.25 || 77.03£3.09 77.21+2.96 || 76.44+3.63 76.75+3.17
NTU2012 86.98+1.53 || 88.69+1.36 88.69+1.36 || 88.87+1.26 88.89+1.41

 HKN-base: Rather than using KAMP as operator ¢y, we consider the alternative of taking a
simple average aggregation, while keeping other settings identical to HypKN.

* HKN w/o Self_State : We simply follow the hyperpath (V — £ — V) message propagation
while neglecting self-state values, while other settings are identical to HypKN.

The results are also summarized in the same Table 1. Notably, HGNN++ ranks 6th overall, while
HKN w/o Self_State drops to 13th, despite achieving the best result on one dataset. This demonstrates
the critical role both KAMP and the self-state mechanism play in achieving consistent performance
across datasets. Meanwhile, HKN-base underperforms the HypKN model in 9 out of 10 benchmarks,
highlighting the value of integrating the geometry-aware KAMP module in improving overall accuracy
across datasets.

Fixed Hyperparameter. To further isolate the effect of KAMP, we start from a fixed hyperpa-
rameter configuration of HGNN++, and replace the standard aggregator ¢y with KAMP using a
fixed number of kernel points. All other components are held constant. Detailed configurations are
provided in Appendix F. Experiments are conducted on a subset of benchmarks.

Table 4 reports an ablation study evaluating the impact of (different) KAMP configurations on
several benchmarks. We compare HGNN++ as the baseline with two KAMP variants: one using a
distance-based correlation function, and the other using attention-based correlation. Each variant is
tested with two kernel sizes, K = 4 and K = 6, while keeping all other components fixed. Across
all datasets, incorporating KAMP leads to consistent improvements over HGNN++, demonstrating
the benefit of KAMP’s geometry-aware aggregation. We also observe that attention-based correlation
often performs better than distance-based variants, suggesting that attention mechanisms may provide
a more expressive way to capture geometric variation. Overall, these results further confirm the
effectiveness of the KAMP module.
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Figure 5: Impact of Kernel Disposition to Downstream Performance.

D.3 Ablation on Kernel Dispositions

Proposition B.3 has shown the stability benefits that attention-based aggregation benefits, when the
kernel points are initialized differently. We also conduct experiments to show how different kernel
configurations impact the overall downstream performance. We take the same hyperparameter setting
as in the ablation study in Table 4, and use different seed to initialize the kernel (leading to similar
kernel shape but potentially different orientations). We run the model of different kernel setting by
five times and visualized the perofrmance in Figure 5.

We observe that the attention-based correlation usually yields more stable results (lower standard
deviation) and slightly higher mean accuracy among benchmarks, and this is especially notable on
small datasets like Zoo and House. These results support our theoretical analysis in proposition B.3.

E Complexity and Speed Anaysis

We analyze the computational complexity of the aggregation function ¢y on a single hyperedge.
Given the embedding dimension D, hyperedge size d. and K kernel points, the computation complex-
ity is O(d. K D?), whereas a conventional attention mechanism requires O(d.D?). The additional
complexity arises mainly from applying K independent linear transformations per node. However,
as shown in Table 3, a small K is used to achieve optimal performance. Since K is typically much
smaller than d, and D, the additional cost remains modest in practice. We also compare the training
speed (per-epoch) when using KAMP in the model, with other well-known architectures in the
Appendix E.

One possible mitigation of complexity is to mimic modern MoE designs [21] and employ Top-K
hard "kernel expert" selection, where only a sparse subset of transformations is activated for each
node. This can substantially reduce the actual computation cost. However, this sparsity may reduce
KAMP’s sensitivity to the geometric shape of each hyperedge, potentially limiting its ability to
capture subtle hyperedge patterns.

Table 5 reports the average per-epoch training time (in seconds) for our proposed HypKN model under
different kernel sizes (K=2,4,6), compared with three representative baselines: LEGNN, EDHNN,
and HyperGCN. As expected, increasing the number of kernel points in KAMP results in higher
computational cost. For example, on ModelNet40, the per-epoch training time increases from 0.108s
(K=2) to 0.154s (K=6). However, for datasets with smaller hypergraphs—such as Zoo, House, and
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Table 5: Per-Epoch Training Time (in seconds).

Dataset | HypKN (K=2) HypKN (K=4) HypKN (K=6) | LEGCN EDHNN HyperGCN
ModelNet40 0.108 0.130 0.154 0.008 0.023 0.010
House 0.018 0.018 0.019 0.005 0.017 0.008
NTU2012 0.023 0.024 0.026 0.005 0.022 0.009
Pubmed-CC 0.119 0.142 0.166 0.009 0.023 0.011
Senate 0.018 0.018 0.019 0.005 0.022 0.008
Zoo 0.017 0.017 0.018 0.005 0.022 0.007

Table 6: Hyperparameter Settings for the ablation study.

Dataset | K | #Layers | Hidden Dim | LR | Dropout | Weight Decay
Zoo 4 3 32 0.02 0.5 0.0005
NTU2012 4 2 256 0.01 03 0.0
House Committees | 4 3 16 0.10 0.5 0.0005
Senate Committees | 4 2 256 0.01 0.5 0.005
ModelNet40 4 2 256 0.001 0.0 0.00005
Pubmed-CC 4 3 256 0.001 0.0 0.005

Senate—the training time remains largely unaffected by the number of kernel points, indicating that
KAMP introduces minimal overhead when the hyperedge size is small.

F Hyperparameter Searching and Settings
F.1 Hyperparameter Search for Main Results

Optuna [37], a widely-used framework for efficient hyperparameter search, is adopted to automati-
cally tune model hyperparameters for each dataset. Specifically, the following hyperparameters are
optimized:

* learning_rate € {le—4,1e—3,1e—2,2e—2,0.1}

* dropout € {0.0,0.3,0.5,0.7,0.9}

* hidden € {16, 24, 32,48, 64, 128, 256}

* num_layers € {2,3}

» weight_decay € {0.0,5e—3,5e—4,5e—5}

* kernel_size € {2,3,4,5,6,7,8} (fixed)
The search objective is set to maximize the mean validation accuracy averaged over 10 different
random splits (with fixed train/val/test ratios), and the best test accuracy corresponding to the highest

validation accuracy is also recorded. Each trial trains the model for 500 epochs, and a total of 100
trials are conducted per experiment.

Each dataset uses default data splits with:

e Training ratio: train_prop = 0.5

* Validation ratio: valid_prop = 0.25

We use such searching to conduct experiments for main results in Table 1.

F.2 Hyperparameter Setting for Ablation

For the ablation experiments reported in Table 4 and Figure 5, we adopt a fixed hyperparameter
configuration based on HGNN++, as summarized in Table 6. We then replace the simple aggregator
(¢v) with our proposed KAMP module (using K=4 kernel points), while keeping all other settings
unchanged.
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