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Abstract

The Bradley-Terry-Luce (BTL) model is a classic and very popular statistical
approach for eliciting a global ranking among a collection of items using pairwise
comparison data. In applications in which the comparison outcomes are observed
as a time series, it is often the case that data are non-stationary, in the sense that
the true underlying ranking changes over time. In this paper we are concerned
with localizing the change points in a high-dimensional BTL model with piece-
wise constant parameters. We propose novel and practicable algorithms based on
dynamic programming that can consistently estimate the unknown locations of
the change points. We provide consistency rates for our methodology that depend
explicitly on the model parameters, the temporal spacing between two consecutive
change points and the magnitude of the change. We corroborate our findings with
extensive numerical experiments and a real-life example.

1 Introduction

Pairwise comparison data are among the most common types of data collected for the purpose of
eliciting a global ranking among a collection of items or teams. The Bradley-Terry-Luce model
(Bradley and Terry, 1952; Luce, 1959) is a classical and popular parametric approach to model
pairwise comparison data and to obtain an estimate of the underlying ranking. The Bradley-Terry-
Luce model and its variants have been proven to be powerful approaches in many applications,
including sports analytics (Fahrmeir and Tutz, 1994; Masarotto and Varin, 2012; Cattelan et al., 2013),
bibliometrics (Stigler, 1994; Varin et al., 2016), search analytics (Radlinski and Joachims, 2007;
Agresti, 2013), and much more.

To introduce the BTL model, suppose that we are interested in ranking n distinct items, each with a
(fixed but unobserved) positive preference score wi, i ∈ [n], quantifying its propensity to beat other
items in a pairwise comparison. The BTL model assumes that the outcomes of the comparisons
between different pairs are independent Bernoulli random variables such that, for a given pair of
items, say i and j in [n] := {1, . . . , n}, the probability that i is preferred to (or beats) j is

Pij = P (i beats j) =
w∗
i

w∗
i + w∗

j

, ∀ i, j ∈ [n]. (1.1)

A common reparametrization is to set w∗
i = exp(θ∗i ) for each i, where θ∗ := (θ∗1 , . . . , θ

∗
n)

⊤ ∈ Rn.
To ensure identifiability it is further assumed that

∑
i∈[n] θ

∗
i = 0.
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The properties and performance of the BTL model have been thoroughly studied under the assumption
that the outcomes of all the pairwise comparisons are simultaneously available and follow the same
BTL model. In many applications however, it is very common to observe pairwise comparison data
sequentially (i.e. one at a time), with time stamps over multiple time periods. In these cases, it is
unrealistic to assume that observations with different time stamps come from the same distribution.
For instance, in sports analytics, the performance of teams often changes across match rounds, and
Fahrmeir and Tutz (1994) utilized a state-space generalization of the BTL model to analyze sport
tournaments data. Ranking analysis with temporal variants has also become increasingly important
because of the growing needs for models and methods to handle time-dependent data. A series of
results in this direction can be found in Glickman (1993), Glickman and Stern (1998), Cattelan et al.
(2013), Lopez et al. (2018), Maystre et al. (2019), Bong et al. (2020), Karlé and Tyagi (2021) and
references therein. Much of the aforementioned literature on time-varying BTL model postulates that
temporal changes in the model parameters are smooth functions of time and thus occur gradually on
a relatively large time scale. However, there are instances in which it may be desirable to instead
model abrupt changes in the underlying parameters and estimate the times at which such change has
occurred. These change point settings, which, to the best of our knowledge, have not been considered
in the literature, and are the focus of this paper.

Contributions

We make the following methodological and theoretical contributions.

• Novel change point methodology. We develop a computationally efficient methodology to
consistently estimate the change points for a time-varying BTL model with piece-wise constant
parameters. Our baseline procedure Algorithm 1 consists of a penalized maximum likelihood
estimator of the BTL model under an ℓ0 penalty, and can be efficiently implemented via dynamic
programming. We further propose a slightly more computationally expensive two-step procedure in
Algorithm 2 that takes as input the estimator returned by our baseline procedure and delivers a more
precise estimator with provably better error rates. We demonstrate through simulations and a real life
example the performance and practicality of the procedure we develop.

• Theoretical guarantees. We obtain finite sample error rates for our procedures that depend
explicitly on all the parameters at play: the dynamic range of the BTL model and the number of
items to be compared, the number of change points, the smallest distance between two consecutive
change points and the minimal magnitude of the difference between the model parameters at two
consecutive change points. Importantly, our theory allows for general connected comparison graph
and it explicitly captures the effect the topology of the comparison graph. Our results hold provided
that a critical signal-to-noise ratio condition involving all the relevant parameters is satisfied. We
conjecture that this condition is optimal in an information theoretic sense. Both the signal-to-noise
ratio condition and the localization rates we obtain exhibit a quadratic dependence on the number of
items to be compared, which matches the sample complexity bound for two sample testing for the
BTL model recently derived by Rastogi et al. (2020).

We emphasize that the change point setting we consider have not been previously studied and both
our methodology and the corresponding theoretical guarantees appear to be the first contribution of
its kind in this line of work.

Related work

Change point detection is a classical problem in statistics that dates back to 1940s (Wald, 1945; Page,
1954). Contributions in the 1980s established asymptotic theory for change point detection methods
(Vostrikova, 1981; James et al., 1987; Yao and Au, 1989). Most of the classical literature studied the
univariate mean model. Recently with more advanced theoretical tools developed in modern statistics,
more delicate analysis of change point detection came out in high-dimensional mean models (Jirak,
2015; Aston and Kirch, 2018; Wang and Samworth, 2018), covariance models (Aue et al., 2009;
Avanesov and Buzun, 2018; Wang et al., 2021b), high-dimensional regression models (Rinaldo et al.,
2021; Wang et al., 2021c), network models (Wang et al., 2021a), and temporally-correlated times
series (Cho and Fryzlewicz, 2015; Preuss et al., 2015; Chen et al., 2021; Wang and Zhao, 2022).

Although change point detection has already been extensively studied in many different settings, little
is known about the case of pairwise comparison data. Höhle (2010) numerically study the CUSUM
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method for online change point detection in logit models and BTL models without giving theoretical
guarantees. We aim to fill the gap in the literature and propose a theoretically trackable approach that
can optimally localize abrupt changes in the pairwise comparison data.

2 Model and assumptions

Below we introduce the time-varying BTL model with piece-wise constant coefficients that we are
going to study and the sampling scheme for collecting pairwise comparison data over time.

Suppose there is a connected comparison graph G = G([n], E) with edge set E ⊆ Efull := {(i, j) :
1 ≤ i < j ≤ n}. We assume throughout that data are collected as a time series indexed by
t ∈ [T ] := {1, . . . , T} that, at each time point t, a single pairwise comparison among a collection of
n items is observed. The distinct pair (it, jt) ∈ [n]2 of items to be compared at time t is randomly
chosen from the edge set E of G, independently over time. That is,

P(it = i, jt = j) =
1

|E|
, ∀(i, j) ∈ E. (2.1)

For each t, let yt ∈ {0, 1} denote the outcome of the comparison between it and jt, where yt = 1
indicates that it beats jt in the comparison. We assume that yt follows the BTL model (1.1), i.e.

Pθ∗(t)[yt = 1|(it, jt)] =
eθ

∗
it
(t)

eθ
∗
it
(t) + eθ

∗
jt
(t)
, (2.2)

where θ∗(t) = (θ∗1(t), . . . θ
∗
n(t)) is, a possibly time-varying, parameter that belongs to the set

ΘB := {θ ∈ Rn : 1⊤
n θ = 0, ∥θ∥∞ ≤ B}, (2.3)

for some B > 0. In the recent literature on the BTL model, the parameter B is referred to as the
dynamic range (see, e.g., Chen et al., 2019) which readily implies a bound on the smallest possible
probability that an item is beaten by any other item. Indeed, it follows from (2.2) and (2.3) that

min
t∈[T ],i,j∈[n]

Pij(t) ≥ e−2B/(1 + e−2B) := plb > 0. (2.4)

Remark 1. The quantity plb have appeared in several equivalent forms in the BTL literature, e.g.,
maxi,j∈[n]

w∗
i

w∗
j

(Simons and Yao, 1999; Negahban et al., 2017) and e2B (Li et al., 2022). The
minimal winning probability plb provides a way of quantifying the difficulty in estimating the model
parameters, with a small plb implying that some items are systematically better than others, a fact
that is known to lead to non-existence of the MLE (see, e.g. Ford, 1957) and to hinder parameter
estimability. In the BTL literature the dynamic range B and, as a result, the quantity plb are often
treated as known constants and thus omitted (Shah et al., 2016; Chen et al., 2020), a strong assumption
that results in an implicit regularization but potentially hides an important feature of the model. As
argued in Bong and Rinaldo (2022), in high-dimensional settings this may not be realistic. We will
allow for the possibility of a varying B and plb, and keep track of the effect of these parameters on
our consistency rates.

It is convenient to rewrite (2.2) in a different but equivalent form that is reminiscent of logistic
regression and will facilitate our analysis. One can express the fact that, at time t, the items it and
jt are randomly selected from G([n], E) to be compared using a random n-dimensional vector x(t)
that is drawn from the sets of all vectors in {−1, 0, 1}n with exactly two-non-zero entries of opposite
sign, namely xit(t) = 1 and xjt(t) = −1 for (it, jt) ∈ E. Then equation (2.2) can be written as

Pθ∗(t)[yt = 1|x(t)] = ψ
(
x(t)⊤θ∗(t)

)
, (2.5)

where ψ(x) = 1
1+e−x is the sigmoid function. For any time interval I ⊂ [T ] we then assume that

the data take the form of an i.i.d. sequence {(x(t), yt)}t∈I , where each x(t) is an i.i.d. draw from
{−1, 0, 1}n with aforementioned properties and, conditionally on x(t), yt is a Bernoulli random
variable with success probability (2.2). The negative log-likelihood of the data is then given by

L(θ, I) =
∑
t∈I

ℓt(θ), where ℓt(θ) := ℓ(θ; yt,x(t)) = −ytx(t)⊤θ+ log[1 + exp(x(t)⊤θ)]. (2.6)
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For a time interval I, we can define a random comparison graph GI(VI , EI) with vertex set
V := [n] and edge set EI := {(i, j) : i and j are compared in I}. It is well-known that the topology
of GI(VI , EI) plays an important role in the estimation of BTL parameters (Shah et al., 2016).
Under assumption (2.1), the comparison graph over I follows the random graph model G([n], |I|),
which has |I| edges randomly picked from the edge set E with replacement. Therefore, the process
{(x(t), yt)}t∈I is stationary as long as θ∗(t) is unchanged over I.

In the change point BTL model we assume that, for some unknown integer K ≥ 1, there exist K + 2
points {ηk}K+1

k=0 such that 1 = η0 < η1 < · · · < ηK < ηK+1 = T and θ∗(t) ̸= θ∗(t− 1) whenever
t ∈ {ηk}k∈[K]. Define the minimal spacing ∆ between consecutive change points and the minimal
jump size κ as

∆ = min
k∈[K+1]

(ηk − ηk−1), κ = min
k∈[K+1]

∥θ∗(ηk)− θ∗(ηk−1)∥2. (2.7)

As we mentioned in the introduction, the goal of change point localization is to produce an estimator
of the change points {η̂k}k∈[K̂] such that, with high-probability as T →∞, we recover the correct
number of change points and the localization error is a vanishing fraction of the minimal distance
between change points, i.e. that

K̂ = K, and max
k∈[K]

|η̂k − ηk|/∆ = o(1). (2.8)

In change point literature, estimators satisfying the above conditions are called consistent. In the next
section we will present two change point estimators and prove their consistency.

3 Main results

To estimate the change points, we solve the following regularized maximum likelihood problem over
all possible partitions P of the time course [T ]:

P̂ = argmin
P

{∑
I∈P

L(θ̂(I), I) + γ|P|

}
, θ̂(I) = argmin

θ∈ΘB

L(θ, I), (3.1)

where L(θ, I) is the negative log-likelihood function for the BTL model defined in (2.6) and γ > 0
is an user-specified tuning parameter. Here a partition P is defined as a set of integer intervals:

P = {[1, p1), [p1, p2), . . . , [pKP , T ]}, 1 < p1 < p2 < · · · < pKP < T. (3.2)

With K̃ = KP̂ = |P̂| − 1, the estimated change points {η̃k}k∈K̃ are then induced by η̃k = p̂k,
k ∈ [K̃]. The optimization problem (3.1) has an ℓ0-penalty, and can be solved by a dynamic
programming algorithm described in Algorithm 1 with O(T 2C(T )) complexity (Friedrich et al.,
2008; Rinaldo et al., 2021), where C(T ) is the complexity of solving minθ L(θ, [1, T ]).

In this section, we will demonstrate that the estimator returned by Algorithm 1 is consistent. Towards
that goal, we require the following signal-to-noise ratio condition involving the parameters ∆, κ, B,
n, the sample size T , and the topological property of the underlying comparison graph G([n], E).
Assumption 3.1 (Signal-to-noise ratio). Let {(x(t), yt)}t∈[T ] be i.i.d. observations generated from
model (2.1) and (2.5) with parameters {θ∗(t)} ⊂ ΘB defined in (2.3). We assume that for a diverging
sequence {BT }T∈Z+ ,

∆ · κ2 ≥ BT p−4
lb K

|E|ndmax

λ22(LG)
log(Tn), (3.3)

where we recall that plb := e−2B

1+e−2B , dmax is the maximal degree of nodes in G and λ2(LG) is the
second smallest eigenvalue of the Laplacian of G 1.

The formulation of signal-to-noise ratio conditions involving all the parameters of the model has
become a staple of modern change point analysis literature. To provide some intuition, the term
∆ · κ2 is a proxy for the strength of the signal of change points in the sense that the localization and

1For a simple undirected graph G with (binary) adjacency matrix A, the Laplacian LG := D − A where
D = diag(d1, · · · , dn) where di is the degree of node i.
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detection problems are expected to become easier, as the magnitude of the jumps and the spacing
between change points increase. On the other hand, the right hand side of Equation (3.3) collects
terms that impact negatively the difficulty of the problem: the smaller the minimal win probability plb
and the algebraic connectivity λ2(LG), the larger the number of items n to compare and the number
of change points K, the more difficult it is to estimate the change points.
Remark 2 (One the topology of G). When the comparison graph G is a complete graph, we have
|E| = n(n−1)

2 , dmax = n− 1, λ2(LG) = n, so the assumption becomes

∆ · κ2 ≥ BT p−4
lb Kn

2 log(Tn). (3.4)
In this case, the comparison graph GI([n], EI) is random graph G(n,m) that have m edges sampled
uniformly randomly with replacement. G(n,m) is similar to an Erdös-Rényi graph that is commonly
used in the ranking literature (Chen et al., 2019, 2020). In this regard, our result, which directly
reflects the impact of the general topology of the sampling graph, is fairly general and in line with
recent advances in statistical ranking.

Also note that in general, λ2 ≤ λn ≤ 2dmax, so the assumption (3.3) ensures that the sample
complexity m ≥ C0

|E| logn
λ2(LG) in Lemma B.15 is satisfied in the worst case κ2 ≍ n.

Remark 3 (On the sharpness of the signal-to-noise ratio condition). We will now argue that the
requirement (3.1) imposed by the signal-to-noise ratio (SNR for brevity) is reasonably sharp by
relating it to the sample complexity of a two-sample testing problem. To that effect, consider the
simplified setting in which there is only one change point at time ∆ = T/2 and G is a complete
graph. In this case, it can be shown that the SNR condition (3.1) becomes (see Proposition B.5)

∆ · κ2 ≥ BT p−2
lb n

2 log(Tn), (3.5)

i.e. the dependence on the dynamic range B is through p−2
lb instead of p−4

lb . It stands to reason that
estimating the unknown change point ∆ should be at least as hard as testing the null hypothesis that
there exists a change point at time ∆. Indeed, this testing problem should be easier because ∆ has
been revealed and because, in general, testing is easier than estimation. This can in turn be cast as a
two-sample testing problem of the form

H0 : P(θ(1)) = P(θ(2)) v.s. H1 :
1

n
∥P(θ(1))−P(θ(2))∥F ≥ ϵ, (3.6)

where ϵ > 0 is to be specified, θ(1) and θ(2) are the BTL model parameters for the first and the last
∆ observations respectively and, for i ∈ {1, 2}, P(θ(i)) is the n× n matrix of winning probabilities
corresponding to the BTL model parameter θ(i) as specified by (2.2). To see how one arrives at (3.6),
we have that, by Proposition B.4,

∥P(θ(1))−P(θ(2))∥2F ≥
np2lb
16
∥θ(1) − θ(2)∥22. (3.7)

Thus, a change point setting with ∥θ(1) − θ(2)∥22 = κ2, translates into the testing problem (3.6)
with ϵ2 = κ2p2lb/(16n). By Theorem 7 of Rastogi et al. (2020), there exists an algorithm that will
return a consistent test for (3.6) based on two independent samples of size N if N ≥ cn2 log(n) 1

nϵ2 .
When we apply this result to the simplified change point settings described above (by replacing
N and ϵ2 with ∆ and κ2p2lb/(16n) respectively) we conclude that the sample complexity bound of
Theorem 7 of Rastogi et al. (2020) corresponds, up to constants, to the above SNR condition (3.5)
save for the terms log(T ) and BT . Thus, we conclude that the assumed SNR condition for change
point localization is essentially equivalent to the sample complexity needed to tackle the simpler
two-sample testing problem, an indication that our assumption is sharp.

Finally, we take notice that, when there are multiple change points, in our analysis it appears necessary
to strengthen the signal-to-noise ratio condition (3.5) to (3.1) by requiring a dependence on p−4

lb .

We are now ready to present our first consistency result.
Theorem 3.2. Let {η̃k}k∈[K̃] be the estimates of change points from Algorithm 1 with the tuning pa-
rameter γ = Cγp

−2
lb (K+1) ndmax

λ2(LG) log(Tn) where Cγ is a universal constant. Under Assumption 3.1
we have

P
{
K̃ = K, max

k∈[K]
|η̃k − ηk| ≤ CP p−4

lb K
|E|ndmax

κ2λ22(LG)
log(Tn)

}
≥ 1− 2(Tn)−2, (3.8)

where CP > 0 is a universal constant that depends on Cγ .
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Theorem 3.2 gives a high-probability upper bound for the localization error of the output {η̃k}k∈[K̃]

of Algorithm 1. By Assumption 3.1, it follows that as T →∞, with high probability,

max
k∈[K]

|η̃k − ηk| ≤ CP p−4
lb K

|E|ndmax

κ2λ22(LG)
log(Tn) ≤ CP

∆

BT
= o(∆), (3.9)

where we use the singal-to-noise ratio assumption ∆ · κ2 ≥ BT p−4
lb K

|E|ndmax

λ2
2(LG)

log(Tn) in the last
inequality and the fact that BT diverges in the final step. This implies that the estimators {η̃k}k∈[K̃]

are consistent. Moreover, when K = 0 or there is no change point, it is guaranteed that, with high
probability, Algorithm 1 will return an empty set. We summarize this property as Proposition B.6
and include it in Appendix B.2 due to the limit of space.

Algorithm 1: Dynamic Programming. DP ({(x(t), yt)}t∈[T ], γ)

INPUT: Data {(x(t), yt)}t∈[T ], tuning parameter γ.
Set S = ∅, p = −1T , b = (γ,∞, . . . ,∞) ∈ RT . Denote bi to be the i-th entry of b.
for r in {2, . . . , T} do

for l in {1, . . . , r − 1} do

b← bl + γ + L(θ̂(I), I) where I = (l, . . . , r];

if b < br then
br ← b; pr ← l.

To compute the change point estimates from p ∈ NT , k ← T .
while k > 1 do

h← pk ; S = S ∪ h; k ← h.
OUTPUT: The estimated change points S = {η̃k}k∈K̃ .

Algorithm 2: Local Refinement.
INPUT: Data {(x(t), yt)}t∈[T ], {η̃k}k∈[K̃], (η̃0, η̃K̃+1)← (1, T ).

for k = 1, . . . , K̃ do

(sk, ek)← (2η̃k−1/3 + η̃k/3, η̃k/3 + 2η̃k+1/3);

η̂k ← argmin
η∈{sk+1,...,ek−1}

{
min

θ(1)∈ΘB

η∑
t=sk+1

ℓt(θ
(1)) + min

θ(2)∈ΘB

ek∑
t=η+1

ℓt(θ
(2))

}
;

(3.10)

OUTPUT: {η̂k}k∈[K̃].

Inspired by previous works (Wang et al., 2021a; Rinaldo et al., 2021), we can further improve the
localization error by applying a local refinement procedure as described in Algorithm 2 to {η̃k}k∈[K̃].
This methodology takes as input any preliminary estimator of the change points that estimates the
number of change points correctly with a localization error that is a (not necessarily vanishing)
fraction of the minimal spacing ∆, and returns a new estimator with a provably smaller localization
error. A natural preliminary estimator is the one returned in Algorithm 1. The next result derives the
improved localization rates delivered by the local refinement step. The two improvements are the
elimination of the term K in the rate and a better dependence on plb.
Theorem 3.3. Let {η̂k}k∈[K̂] be the output of Algorithm 2 with input {η̃k}k∈[K̂] returned by Algo-
rithm 1. Under Assumption 3.1, for all sufficiently large T we have

P
{
K̂ = K, max

k∈[K]
|η̂k − ηk| ≤ CRp−2

lb

|E|ndmax

κ2λ22(LG)
log(Tn)

}
≥ 1− 2(Tn)−2, (3.11)

where CR > 0 is a universal constant that depends on Cγ .
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Remark 4. By “sufficiently large T ” in the theorem statement, we mean that T should be large
enough to make maxk∈[K] |η̂k − ηk| ≤ ∆/5 (see Proposition B.3 in Appendix B for details). Such T
exists because of Equation (3.9) and the fact that BT is diverging in T .

We conjecture that the rate (3.11) resulting from the local refinement procedure is, aside possibly
from a logarithmic factor, minimax optimal.

4 Experiments

In this section, we study the numerical performance of our newly proposed method based on a
combination of dynamic programming with local refinement, which we will refer to as DPLR; see
Algorithms 1 and 2. We note that the detection of multiple change points in pairwise comparison data
has not been studied before, as Höhle (2010) only focus on single change point detection for pairwise
comparison data, so we are not aware of any existing competing methods in the literature. Thus,
we develop a potential competitor based on the combination of Wild Binary Segmentation (WBS)
(Fryzlewicz, 2014), a popular method for univariate change point detection, and the likelihood ratio
approach studied in Höhle (2010). We will call this potential competitor WBS-GLR (GLR stands
for generalized likelihood ratio). Due to the limit of space, we include the detail of WBS-GLR in
Appendix A.1, and results of additional experiments in Appendix A.2, where additional settings are
considered. Furthermore, we discuss and compare the performance of two other potential competitors
in Appendix A.4.

All of our simulation results show that our proposed method DPLR outperforms WBS-GLR in
the sense that DPLR gives more accurate change point estimates with similar running time. Each
experiment is run on a virtual machine of Google Colab with Intel(R) Xeon(R) CPU of 2 cores 2.30
GHz and 12GB RAM. All of our reproducible code is openly accessible 2

Simulation Settings. Suppose we have K change points {ηk}k∈[K] in the sequential pairwise
comparison data, with η0 = 1. We can use θ∗(ηk) to represent the value of true parameters after
the change point ηk. To begin, we define θ∗i (η0) as follows. For 1 < i ≤ n, we set θ∗i (η0) =
θ∗1(η0)+(i−1)δ with some constant δ. In each experiment, we set δ first and then set θ∗1(η0) to make
1⊤
n θ

∗(η0) = 0. For a given n, we set δ = 1
n−1ψ

−1(p) = 1
n−1 log(

p
1−p ) where ψ−1 is the inverse

function of ψ and p = 0.9. Recall that Pij = ψ(θi − θj) is the winning probability, so the value of δ
guarantees that the maximum winning probability is 0.9. We consider three types of changes:

Type I (reverse): θ∗i (ηk) = θ∗n+1−i(η0).

Type II (block-reverse): θ∗i (ηk) = θ∗[n2 ]+1−i(η0) for i ≤ [n2 ]; θ
∗
i (ηk) = θ∗[n2 ]+n+1−i(η0) for i > [n2 ].

Type III (block exchange): θ∗i (ηk) = θ∗i+[n2 ](η0) for i ≤ [n2 ]; θ
∗
i (ηk) = θ∗i−[n2 ](η0) for i > [n2 ].

We consider four simulation settings. For each setting, we set the comparison graph G([n], E) to be
the complete graph and T = (K + 1)∆ with true change points located at ηi = i∆ for i ∈ [K]. To
describe the true parameter at each change point, we use an ordered tuple. For instance, (I, II, III, I)
means that K = 4 and the true parameters at η1, η2, η3, η4 are determined based on θ∗(η0) and the
change type I, II, III, and I, respectively.

For the constrained MLE in Equation (3.1), we use the function in sklearn for fitting the ℓ2-
penalized logistic regression, as it is well-known that the constrained and the penalized estimators for
generalized linear models are equivalent. For both DPLR and WBS-GLR, we use λ = 0.1. For M ,
the number of random intervals in WBS-GLR, we set it to be 50 as a balance of time and accuracy.

For both methods, we use cross-validation to choose the tuning parameter γ. Given the sequential
pairwise comparison data in each trial, we use samples with odd time indices as training data and even
time indices as test data. For each tuning parameter, the method is applied to the training data to get
estimates of change points. Then a BTL model is fitted to the test data for each interval determined
by the estimated change points. The tuning parameter and the corresponding change point estimators
with the minimal test error (negative loglikelihood) are selected. We run 100 trials for each setting.

2Code repository: https://github.com/MountLee/CPD_BT

https://github.com/MountLee/CPD_BT
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H(η̂, η) Time K̂ < K K̂ = K K̂ > K
Setting (i) n = 10,K = 3,∆ = 500, Change (I, II, III)

DPLR 9.2 (9.1) 49.7s (0.7) 0 100 0
WBS-GLR 15.2 (7.9) 31.9s (3.9) 0 100 0

Setting (ii) n = 20,K = 3,∆ = 800, Change (I, II, III)
DPLR 9.0 (9.9) 118.5s (2.2) 0 100 0
WBS-GLR 240.5 (220.3) 144.2s (12.5) 0 40 60

Setting (iii) n = 100,K = 2,∆ = 1000, Change (I, II)
DPLR 13.4 (14.4) 167.4s (3.3) 0 100 0
WBS-GLR 111.9 (195.6) 215.9s (17.0) 0 79 21

Setting (iv) n = 100,K = 3,∆ = 2000, Change (I, II, III)
DPLR 12.4 (12.1) 402.4s (7.4) 0 100 0
WBS-GLR 412.3 (495.5) 400.0s (40.9) 0 57 43

Table 1: Comparison of DPLR and WBS-GLR under four different simulation settings. 100 trials
are conducted in each setting. For the localization error and running time (in seconds), the average
over 100 trials is shown with standard error in the bracket. The three columns on the right record the
number of trials in which K̂ < K, K̂ = K, and K̂ > K respectively.

Results. To measure the localization errors, we use the Hausdorff distance H({η̂i}i∈[K̂], {ηi}i∈[K])

between the estimated change points {η̂i}i∈[K̂] and the true change points {ηi}i∈[K]. The Hausdorff
distance H(S1, S2) between two sets of scalars is defined as

H(S1, S2) = max{ sup
x∈S1

inf
y∈S2

|x− y|, sup
y∈S2

inf
x∈S1

|x− y|}. (4.1)

The results are summarized in Table 1, where we use H(η̂, η) to denote the localization error for
brevity. As we can see, our proposed method DPLR gives more accurate localization with similar
running time compared to the potential competitor WBS-GLR.

5 Application: the National Basketball Association games

We study the game records of the National Basketball Association (NBA) 3. Usually a regular NBA
season begins in October and ends in April of the next year, so in what follows, a season is named
by the two years it spans over. The original data contains all game records of NBA from season
1946-1947 to season 2015-2016. We focus on a subset of 24 teams founded before 1990 and seasons
from season 1980-1981 to season 2015-2016. All code of analysis is available online with the data 4

We start with an exploratory data analysis and the results show strong evidence for multiple change
points 5. Therefore, we apply our method DPLR to the dataset to locate those change points. We
use the samples with odd time indices as training data and even time indices as test data, and use
cross-validation to choose the tuning parameter γ.

To interpret the estimated change points, we fit the BTL model on each subset splitted at change point
estimates separately. The result is summarized in Table 2. Several teams show significant jumps in
the preference scores and rankings around change points. Apart from this quantitative assessment,
the result is also firmly supported by memorable facts in NBA history, and we will name a few here.
In 1980s, Celtics was in the “Larry Bird” era with its main and only competitor “Showtime” Lakers.
Then starting from 1991, Michael Jordan and Bulls created one of the most famous dynasties in NBA
history. 1998 is the year Michael Jordan retired, after which Lakers and Spurs were dominating
during 1998-2009 with their famous cores “Shaq and Kobe” and “Twin Towers”. The two teams
together won 8 champions during these seasons. S2010-S2012 is the well-known “Big 3” era of Heat.
Meanwhile, Spurs kept its strong competitiveness under the lead of Timothy Duncan. From 2013,
with the arise of super stars Stephen Curry and Klay Thompson, Warriors started to take the lead.

3https://gist.github.com/masterofpun/2508ab845d53add72d2baf6a0163d968
4Code repository: https://github.com/MountLee/CPD_BT
5Due to the limit of space, we include these results in Appendix A.3.

https://gist.github.com/masterofpun/2508ab845d53add72d2baf6a0163d968
https://github.com/MountLee/CPD_BT
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S1980-S1985 S1986-S1991m S1991m-S1997 S1998-S2003
Celtics 1.1484 Lakers 1.1033 Bulls 0.9666 Spurs 0.8910
76ers 0.9851 Pistons 0.7696 Jazz 0.8618 Lakers 0.8744
Bucks 0.7828 Celtics 0.7304 Knicks 0.5908 Kings 0.6833
Lakers 0.7779 Trail Blazers 0.6848 Suns 0.5628 Mavericks 0.5087
Nuggets 0.0789 Bulls 0.6647 Rockets 0.5032 Trail Blazers 0.4899
Trail Blazers 0.0636 Jazz 0.5179 Spurs 0.4742 Jazz 0.3944
Suns 0.0636 Bucks 0.3474 Trail Blazers 0.4176 Timberwolves 0.3913
Spurs 0.0611 Suns 0.3472 Cavaliers 0.3751 Pacers 0.3165
Nets 0.0215 Rockets 0.3156 Magic 0.3009 Hornets 0.1002
Pistons -0.0252 76ers 0.2195 Lakers 0.2730 76ers 0.0993
Knicks -0.1333 Cavaliers 0.1885 Pacers 0.2688 Suns 0.0721
Rockets -0.1950 Mavericks 0.1798 Hornets 0.2465 Pistons 0.0249
Jazz -0.2926 Knicks 0.0583 Heat 0.1445 Bucks -0.0146
Kings -0.3104 Warriors 0.0441 Pistons -0.2028 Rockets -0.0525
Mavericks -0.3104 Spurs 0.0035 Nets -0.2122 Knicks -0.1420
Bulls -0.3115 Nuggets -0.0232 Warriors -0.3075 Heat -0.1455
Warriors -0.4330 Pacers -0.0237 Celtics -0.3288 Nets -0.2276
Pacers -0.5500 Kings -0.7006 Kings -0.4808 Magic -0.2650
Clippers -0.6443 Nets -0.7666 Clippers -0.5419 Celtics -0.2885
Cavaliers -0.7771 Clippers -0.7788 Bucks -0.5864 Nuggets -0.4894
Heat NA Magic -0.8969 Nuggets -0.6272 Clippers -0.6250
Hornets NA Timberwolves -0.9554 Timberwolves -0.6570 Cavaliers -0.6796
Magic NA Heat -0.9874 76ers -0.8869 Warriors -0.7362
Timberwolves NA Hornets -1.0418 Mavericks -1.1542 Bulls -1.1801

S2004-S2006 S2007-S2009 S2010-S2012 S2013-S2015
Spurs 1.0532 Lakers 1.0097 Heat 0.9909 Warriors 1.3617
Suns 0.9559 Celtics 0.8699 Spurs 0.8653 Spurs 1.2728
Mavericks 0.9338 Magic 0.7741 Bulls 0.8292 Clippers 0.9909
Pistons 0.8120 Cavaliers 0.7466 Nuggets 0.5857 Rockets 0.6158
Heat 0.2713 Spurs 0.6270 Lakers 0.4922 Trail Blazers 0.5501
Rockets 0.1803 Mavericks 0.5686 Mavericks 0.4121 Mavericks 0.4197
Cavaliers 0.1510 Jazz 0.5169 Clippers 0.3413 Cavaliers 0.3872
Nuggets 0.1322 Nuggets 0.4751 Celtics 0.2901 Heat 0.3215
Kings 0.0542 Suns 0.4146 Knicks 0.1990 Pacers 0.3202
Lakers 0.0166 Hornets 0.3593 Pacers 0.1233 Bulls 0.2104
Nets -0.0149 Rockets 0.3428 Rockets 0.1227 Hornets 0.0145
Timberwolves -0.0566 Trail Blazers 0.2750 Jazz 0.0167 Pistons -0.1710
Clippers -0.0646 Bulls -0.1260 Trail Blazers -0.0549 Suns -0.1787
Bulls -0.0680 Pistons -0.1821 Magic -0.0899 Jazz -0.1936
Pacers -0.0824 Heat -0.2939 Warriors -0.1402 Celtics -0.2037
Jazz -0.1039 76ers -0.3418 76ers -0.1930 Nets -0.3093
Magic -0.2482 Warriors -0.3729 Bucks -0.2362 Nuggets -0.3140
Warriors -0.2803 Pacers -0.3936 Suns -0.3228 Kings -0.4066
76ers -0.3030 Bucks -0.5456 Nets -0.4589 Bucks -0.4516
Celtics -0.5144 Kings -0.7977 Hornets -0.4670 Timberwolves -0.6266
Hornets -0.5641 Knicks -0.8568 Timberwolves -0.6034 Magic -0.6398
Bucks -0.6555 Nets -0.8935 Kings -0.6929 Knicks -0.6591
Knicks -0.7101 Clippers -1.0853 Pistons -0.7807 Lakers -0.9431
Trail Blazers -0.8947 Timberwolves -1.0901 Cavaliers -1.2285 76ers -1.3676

Table 2: Fitted θ̂ (rounded to the fourth decimal) for 24 selected teams in seasons 1980-2016 of the
National Basketball Association. Teams are ranked by the MLE θ̂ on subsets splitted at the estimated
change points given by our DPLR method. S1980 means season 1980-1981 and S1991m means the
middle of season 1991-1992. Heat(1988), Hornets(1988), Magic(1989), and Timberwolves(1989)
were founded after S1985, so the corresponding entries are marked as NA.

6 Conclusions

We have formulated and investigate a novel change point analysis problem for pairwise comparison
data based on a high-dimensional BTL model. We have developed a novel methodology that yields
consistent estimators of the change points, and establish theoretical guarantees with nonasymptotic
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localization error. To the best of our knowledge, this is the first work in the literature that addresses
in both a methodological and theoretically sound way multiple change points in ranking data.

Although we filled a big gap in the literature, there remain many open and interesting problems for
future work. First, we only consider pairwise comparison data modeled by the BTL model. Of course,
there are other popular ranking models for general ranking data, e.g., the Plackett-Luce model(Luce,
1959; Plackett, 1975), Stochastically Transitive models(Shah et al., 2017), and the Mallows model
(Tang, 2019). It would be interesting to see that for those models how different the method and theory
would be from our settings. We present some exploratory results on this in Appendix A.4. Second,
we have focused on retrospective setting of change point detection and passive setting of ranking. On
the other hand, online change point detection (Vovk, 2021) and active ranking (Heckel et al., 2019;
Ren et al., 2021) are widely used in practice. Thus, it would be interesting to consider the online
or active framework in change point detection for ranking data. Third, in the recent change point
detection literature, incorporating temporal dependence is of growing interest (Chen et al., 2021;
Wang and Zhao, 2022), so investigating how temporal dependence in the pairwise comparison data
can affect our results seems like a worthwhile direction.

At last, we discuss potential societal impacts of our work. The BTL model does have applications
with potentially undesirable societal impacts, e.g., sports-betting (McHale and Morton, 2011), which
could amplify the negative impacts of gambling. We recommend using our method for research
purposes rather than gambling-driven purposes.

Acknowledgments

We would like to thank the anonymous reviewers for their feedback which greatly helped improve
our exposition. Wanshan Li and Alessandro Rinaldo acknowledge partial support from NSF grant
DMS-EPSRC 2015489.



REFERENCES 11

References
Agresti, A. (2013). Categorical data analysis. Wiley Series in Probability and Statistics. Wiley-

Interscience [John Wiley & Sons], Hoboken, NJ, third edition.

Aston, J. A. and Kirch, C. (2018). High dimensional efficiency with applications to change point
tests. Electronic Journal of Statistics, 12(1):1901 – 1947.

Aue, A., Hörmann, S., Horváth, L., and Reimherr, M. (2009). Break detection in the covariance
structure of multivariate time series models. The Annals of Statistics, 37(6B):4046 – 4087.

Avanesov, V. and Buzun, N. (2018). Change-point detection in high-dimensional covariance structure.
Electronic Journal of Statistics, 12(2):3254 – 3294.

Bong, H., Li, W., Shrotriya, S., and Rinaldo, A. (2020). Nonparametric estimation in the dynamic
Bradley-Terry model. In Proceedings of the Twenty Third International Conference on Artificial
Intelligence and Statistics, volume 108 of Proceedings of Machine Learning Research, pages
3317–3326. PMLR.

Bong, H. and Rinaldo, A. (2022). Generalized results for the existence and consistency of the MLE
in the Bradley-Terry-Luce model. to appear in International Conference on Machine Learning.

Bradley, R. A. and Terry, M. E. (1952). Rank analysis of incomplete block designs. I. The method of
paired comparisons. Biometrika, 39:324–345.

Cattelan, M., Varin, C., and Firth, D. (2013). Dynamic Bradley-Terry modelling of sports tournaments.
Journal of the Royal Statistical Society. Series C (Applied Statistics), 62(1):135–150.

Chen, L., Wang, W., and Wu, W. B. (2021). Inference of breakpoints in high-dimensional time series.
Journal of the American Statistical Association, 0(0):1–13.

Chen, P., Gao, C., and Zhang, A. Y. (2020). Partial recovery for top-K ranking: optimality of MLE
and sub-optimality of spectral method. to appear in The Annals of Statistics.

Chen, Y., Fan, J., Ma, C., and Wang, K. (2019). Spectral method and regularized MLE are both
optimal for top-K ranking. The Annals of Statistics, 47(4):2204–2235.

Cho, H. and Fryzlewicz, P. (2015). Multiple-change-point detection for high dimensional time series
via sparsified binary segmentation. Journal of the Royal Statistical Society. Series B (Statistical
Methodology), 77(2):475–507.

Fahrmeir, L. and Tutz, G. (1994). Dynamic stochastic models for time-dependent ordered paired
comparison systems. Journal of the American Statistical Association, 89(428):1438–1449.

Ford, L. R. (1957). Solution of a ranking problem from binary comparisons. The American
Mathematical Monthly, 64(8):28–33.

Friedrich, F., Kempe, A., Liebscher, V., and Winkler, G. (2008). Complexity penalized M -estimation:
fast computation. Journal of Computational and Graphical Statistics, 17(1):201–224.

Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection. The Annals of
Statistics, 42(6):2243 – 2281.

Glickman, M. E. (1993). Paired comparison models with time varying parameters. Doctoral thesis,
Harvard University.

Glickman, M. E. and Stern, H. S. (1998). A state-space model for national football league scores.
Journal of the American Statistical Association, 93(441):25–35.

Heckel, R., Shah, N. B., Ramchandran, K., and Wainwright, M. J. (2019). Active ranking from
pairwise comparisons and when parametric assumptions do not help. The Annals of Statistics,
47(6):3099–3126.

Höhle, M. (2010). Online change-point detection in categorical time series. In Statistical Modelling
and Regression Structures: Festschrift in Honour of Ludwig Fahrmeir, pages 377–397. Physica-
Verlag HD, Heidelberg.



REFERENCES 12

James, B., James, K. L., and Siegmund, D. (1987). Tests for a change-point. Biometrika, 74(1):71–83.

Jirak, M. (2015). Uniform change point tests in high dimension. The Annals of Statistics, 43(6):2451–
2483.

Karlé, E. and Tyagi, H. (2021). Dynamic ranking with the BTL model: A nearest neighbor based
rank centrality method. arXiv:2109.13743.

Li, W., Shrotriya, S., and Rinaldo, A. (2022). ℓ∞-bounds of the MLE in the BTL model under general
comparison graphs. to appear in Uncertainty in Artificial Intelligence.

Lopez, M. J., Matthews, G. J., and Baumer, B. S. (2018). How often does the best team win? A
unified approach to understanding randomness in North American sport. The Annals of Applied
Statistics, 12(4):2483–2516.

Luce, R. D. (1959). Individual Choice Behavior: A Theoretical Analysis. New York, Wiley.

Masarotto, G. and Varin, C. (2012). The ranking lasso and its application to sport tournaments. The
Annals of Applied Statistics, 6(4):1949–1970.

Maystre, L., Kristof, V., and Grossglauser, M. (2019). Pairwise comparisons with flexible time-
dynamics. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1236–1246.

McHale, I. and Morton, A. (2011). A bradley-terry type model for forecasting tennis match results.
International Journal of Forecasting, 27(2):619–630.

Negahban, S., Oh, S., and Shah, D. (2017). Rank centrality: Ranking from pairwise comparisons.
Operations Research, 65(1):266–287.

Page, E. S. (1954). Continuous Inspection Schemes. Biometrika, 41(1-2):100–115.

Plackett, R. L. (1975). The analysis of permutations. Journal of the Royal Statistical Society. Series
C (Applied Statistics), 24(2):193–202.

Pollard, D. F. (1990). Empirical Processes: Theory and Applications. Inst of Mathematical Statistic.

Preuss, P., Puchstein, R., and Dette, H. (2015). Detection of multiple structural breaks in multivariate
time series. Journal of the American Statistical Association, 110(510):654–668.

Radlinski, F. and Joachims, T. (2007). Active exploration for learning rankings from clickthrough
data. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’07, pages 570–579, New York, NY, USA. ACM.

Rastogi, C., Balakrishnan, S., Shah, N., and Singh, A. (2020). Two-sample testing on pairwise
comparison data and the role of modeling assumptions. In 2020 IEEE International Symposium on
Information Theory (ISIT), pages 1271–1276.

Ren, W., Liu, J., and Shroff, N. (2021). Sample complexity bounds for active ranking from multi-
wise comparisons. In Advances in Neural Information Processing Systems, volume 34, pages
4290–4300.

Rinaldo, A., Wang, D., Wen, Q., Willett, R., and Yu, Y. (2021). Localizing changes in high-
dimensional regression models. In Proceedings of The 24th International Conference on Artificial
Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pages
2089–2097. PMLR.

Scott, A. and Knott, M. (1974). A cluster analysis method for grouping means in the analysis of
variance. Biometrics, 30:507.

Shah, N. B., Balakrishnan, S., Bradley, J., Parekh, A., Ramchandran, K., and Wainwright, M. J.
(2016). Estimation from pairwise comparisons: Sharp minimax bounds with topology dependence.
Journal of Machine Learning Research, 17(58):1–47.



REFERENCES 13

Shah, N. B., Balakrishnan, S., Guntuboyina, A., and Wainwright, M. J. (2017). Stochastically transi-
tive models for pairwise comparisons: Statistical and computational issues. IEEE Transactions on
Information Theory, 63(2):934–959.

Shah, N. B. and Wainwright, M. J. (2018). Simple, robust and optimal ranking from pairwise
comparisons. Journal of Machine Learning Research, 18(199):1–38.

Simons, G. and Yao, Y.-C. (1999). Asymptotics when the number of parameters tends to infinity in
the bradley-terry model for paired comparisons. Annals of Statistics, 27(3):1041–1060.

Stigler, S. M. (1994). Citation patterns in the journals of statistics and probability. Statistical Science,
9:94–108.

Tang, W. (2019). Mallows ranking models: maximum likelihood estimate and regeneration. In
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 6125–6134. PMLR.

Tao, T. (2012). Topics in Random Matrix Theory. American Mathematical Society.

Tropp, J. A. (2015). An introduction to matrix concentration inequalities. Foundations and Trends®
in Machine Learning, 8(1-2):1–230.

Varin, C., Cattelan, M., and Firth, D. (2016). Statistical modelling of citation exchange between
statistics journals. Journal of the Royal Statistical Society. Series A (Statistics in Society), 179(1):1–
63.

Venkatraman, E. S. (1992). Consistency results in multiple change-point problems. Doctoral thesis,
Stanford University.

Vostrikova, L. (1981). Detection of the disorder in multidimensional random-processes. Doklady
Akademii Nauk SSSR, 259:270 – 274.

Vovk, V. (2021). Testing randomness online. Statistical Science, 36(4):595–661.

Wainwright, M. J. (2019). High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge:
Cambridge University Press.

Wald, A. (1945). Sequential Tests of Statistical Hypotheses. The Annals of Mathematical Statistics,
16(2):117 – 186.

Wang, D., Yu, Y., and Rinaldo, A. (2020). Univariate mean change point detection: Penalization,
CUSUM and optimality. Electronic Journal of Statistics, 14(1):1917 – 1961.

Wang, D., Yu, Y., and Rinaldo, A. (2021a). Optimal change point detection and localization in sparse
dynamic networks. The Annals of Statistics, 49(1):203 – 232.

Wang, D., Yu, Y., and Rinaldo, A. (2021b). Optimal covariance change point localization in high
dimensions. Bernoulli, 27(1):554 – 575.

Wang, D. and Zhao, Z. (2022). Optimal change-point testing for high-dimensional linear models
with temporal dependence. arXiv:2205.03880.

Wang, D., Zhao, Z., Lin, K. Z., and Willett, R. (2021c). Statistically and computationally efficient
change point localization in regression settings. Journal of Machine Learning Research, 22(248):1–
46.

Wang, T. and Samworth, R. J. (2018). High dimensional change point estimation via sparse projection.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(1):57–83.

Yao, Y.-C. and Au, S. T. (1989). Least-squares estimation of a step function. Sankhyā: The Indian
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