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Abstract

A critical question about Large Language Models (LLMs) is whether their apparent
deficiency in mathematical reasoning is inherent, or merely a result of insufficient
exposure to high-quality mathematical data. To explore this, we developed an
automated method for generating high-quality, supervised mathematical datasets.
The method carefully mutates existing math problems, ensuring both diversity and
validity of the newly generated problems. This is achieved by a neuro-symbolic data
generation framework combining the intuitive informalization strengths of LLMs,
and the precise symbolic reasoning of math solvers along with projected Markov
chain Monte Carlo sampling in the highly-irregular symbolic space. Empirical
experiments demonstrate the high quality of data generated by the proposed method,
and that the LLMs, specifically LLaMA-2 and Mistral, when realigned with the
generated data, surpass their state-of-the-art counterparts.

1 Introduction

Despite recent progress [1–6], both proprietary and open-source LLMs are still far from satisfactory
in mathematical reasoning [7–9]. It is an open question whether LLM’s subpar reasoning capability
is inherent or due to the the extreme scarcity of high-quality mathematical datasets [10–13]. As an
initial step towards answer this question, a data generation framework that could create high-quality
math datasets is required. To this end, current two lines of research struggle in the diversity-validity
dilemma: (1) to produce diverse math data, the prompt-based method effectively rephrases math
problems using LLMs, but may induce errors thus ruining the validity, especially considering the
rigor of maths; (2) to ensure the validity, template-based methods are often used by rewriting math
problems with certain rules, sacrificing the diversity and thus confining data scale.

To address this dilemma, we propose a novel neuro-symbolic framework that automatically generates
high-quality, supervised mathematical data. The merit of this paradigm lies in leveraging both neural
and symbolic strengths: (1) the math problem is generated in the symbolic space, achieving diversity
through systematic sampling, while maintaining validity through symbolic solvers; (2) the translation
from the symbolic space back to the natural language space can be effectively supported by LLMs,
ensuring the consistency between newly generated formal problems and their corresponding natural
language versions.

Our framework, as illustrated in Figure 1, initiates with the formalization of the original problem
expressed via the math symbolic tools. Next, it mutates the formal problem into an evolved version,
and then derives a new natural language problem by informalization. Specifically, we design a
mutation mechanism, including various simplification and complication strategies, such that the
new problems can be generated with a controllable complexity. As shown in Figure 2, our mutation
mechanism can properly adjust the complexity of generated problems, and the exposure to more
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(declare-fun width () Int)
(declare-fun length () Int)
(declare-fun perimeter () Int)
(assert (= perimeter 30))
(assert (= length (* 2 width)))
(assert (= perimeter (* 2 (+ length width))))
(check-sat)
(get-value (width))

Formalized problem

Q: Josh built his little brother a 
rectangular sandbox. The perimeter of 
the sandbox is 30 feet and the length is 
twice the width. What is the width of 
the sandbox?

Math problem in natural language

(declare-fun width () Int)
(declare-fun length () Int)
(declare-fun perimeter () Int)
(assert (= perimeter 30))
(assert (= length (+ (* width 2) 12)))
(assert (= perimeter (* 2 (+ length width))))
(check-sat)
(get-value (width))

Mutated formal problem

Q: A rectangular garden has a length 
that is 12 feet more than twice its width. 
If the perimeter of the garden is 30 feet, 
what is the width of the garden in feet?

Generated Q & A in natural language

Formalize

Mutate

A: 1

InformalizeSolve

Mutate
…

… Q: A rectangle has a 
perimeter of 30 units. The 
length of the rectangle is 14 
units more than twice its 
width. However, due to a 
mistake in measurement, the 
actual perimeter is 4 units 
less than twice the sum of its 
width and length. What is the 
width of the rectangle?

Q: A rectangle has a width 
and a length. The perimeter 
of the rectangle is 17 units. 
The length is calculated 
using the expression: first, 
multiply the width by 8, then 
add 31, subtract 38, and 
finally, multiply the result by 
16. The perimeter is also 
given by another expression: 
add 76 to twice the sum of 
the width and length, then 
subtract 63 and 30. What is 
the width of the rectangle?A: 1
A: 1

Seed problem

Generated problems with 
controlled difficulty levels.

Validity of formal mutates guaranteed by solvers
Diversity of formal mutates achieved by projected MCMC

Figure 1: The overview of our neuro-symbolic data generation framework. The framework comprises
three steps: (1) Formalize the seed problem into its symbolic version. (2) Mutate the symbolic
problem to create new variants. (3) Translate the variants in symbolic form back to the natural
language version. Additionally, we prompt GPT-4 to generate reasoning paths, which are verified by
symbolic solvers, as part of the supervision.

complex math problems can improve the LLM’s reasoning capability. Moreover, to ensure the data
validity and achieve higher generation diversity, we combine the symbolic solving with the random
sampling through the projected Markov chain Monte Carlo technique [14, 15].
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Figure 2: The performance of our proposed mutation mechanism. The first figure illustrates that
the generated problems with higher difficulty levels lead to more reasoning steps of GPT-4. The
second figure shows that the gradual incorporation of more difficult problems consistently improves
the LLM’s reasoning capability.

Empirical evaluation on GSM8K [10] and MATH [11] demonstrates the effectiveness of the proposed
method. Particularly, we use the proposed framework to generate a mathematical dataset of 620K
examples for supervised fine-tuning. The experimental results show that, the fine-tuned models on
LLaMA-2 [16] and Mistral-7B [17] significantly outperform the existing open-source counterparts
on both GSM8K and MATH datasets, as well as two out-of-domain datasets SVAMP [12] and
ASDiv [18]. On the GSM8K dataset, the model fine-tuned on Mistral-7B even outperforms GPT-3.5-
Turbo (by 2.4%), a proprietary model with an order of magnitude larger parameters. Additionally, we
evaluate the scalability of our method, and observe consistent performance improvements, as the size
of training data increases. This upward trajectory suggests a promising avenue for further enhancing
LLMs’ mathematical capabilities.

2 Mutation

Compared to existing data generation methods, the key feature of our framework lies in the mutation
of math problems within the symbolic space, enabling systematic sampling and symbolic solving.
Technically, our mutation mechanism includes several simplification and complication strategies,
to control the complexity of the generated math problems. The overall framework of our problem
mutation method is summarized in Algorithm 1.
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Algorithm 1 The overall framework of problem mutation

Input: A seed problem expressed by goal g and constraints h1, . . . , hn.
Output: A new problem expressed by goal g′ and constraint h′

1, . . . , h
′
n.

1: for i = 1, . . . , do ▷ Complicate the problem using Projected MCMC
2: Initalize random operations ⊕i and interpreted functions e′i.
3: Mutate g′ = g ⊕0 e

′(z0), h′
i = hi ⊕i e

′(zi) with parameter zi.
4: Randomly perturb a subset {z1, . . . , zj} for j < n.
5: Solve the rest subset {zj+1, . . . , zn}.
6: if {z1, . . . , zn} is solvable then
7: Instantiate the new problem by {z1, . . . , zn}.
8: Stop the complication process
9: end if

10: end for
11: for i = 1, . . . do ▷ Simplicate the problem using SMT tactics
12: Initalize a random tactic from {simplify, qe, simplify, . . . }.
13: Apply the tactic to the problem g′ and constraints h′

1, . . . , h
′
n.

14: end for

2.1 Formalization

We first provide the formalization of math problems, based on which the mutation mechanism is
operated. Specifically, we adopt the SMT-LIB language [19], a standard notation compatible with
prevalent SMT solvers (e.g., Z3 [20], CVC5 [21], and MathSAT [22]). It can also be easily extended
for symbolic calculators (e.g., SymPy [23]) and numerical solvers (e.g., SciPy [24]). With SMT-LIB
language, the math problem in the following structure is enabled:

Goal g := min | max | solve f(x)

Constraints h := h1 ∧ h2 | h1 ∨ h2 | ite(h1, h2, h3) |
∀x. e1(x) ▷◁ e2(x) | ∃x. e1(x) ▷◁ e2(x) |
e1 ▷◁ e2, ▷◁∈ {≥,≤, >,<,=, ̸=}

Expressions e := c | x := (x1, . . . , xn) | foo(x) |
e1 ⊕ e2, ⊕ ∈ {+,−,×,÷}

Domains D := N | N+ | R | C

where c denotes a constant, x denotes an n-dimensional variable, ite denotes the if-then-else structure,
foo refers to an interpreted function (e.g., trigonometric, logarithmic or user-defined ones) on the
domain, and g and h represent any function of interest (can include quantifiers). In particular, we
pre-defined a series of interpreted functions, such as summation, binomial, gcd, lcm, derivate,
and integral, which facilitate the formalization of most high-school level mathematical problems
(excluding geometry) within the above SMT-LIB language.

2.2 Simplification

We perform simplification by systematically considering expression reduction and constraint reduc-
tion, which can be attained through heuristic tactics provided by standard symbolic solvers [25].

Specifically, we apply the simplify tactic for expression reduction, which involes operations such
as constant or variable folding (e.g., x + 0 ⇒ x or y + x − x ⇒ y), expression expansion (e.g.,
(x+ 1)2 ⇒ x2 + 2x+ 1), and function application (e.g., (x = 2) ∧ (y = log(x)) ⇒ y = log(2));
we also perform symbolic and numerical computations for further reductions (e.g., gcd(2x, 6y) ⇒
2gcd(x, 3y) and sin(π/6) ⇒ 0.5).

For constraint reduction, we mainly employ the Gaussian elimination tactic gaussian_elim (e.g.,
x = 2 ∧ y ≤ x + z ⇒ y ≤ 2 + z). To handle the if-then-else term, we apply the elim_term_ite
tactic to decompose it by introducing a fresh variable (e.g., ite(x > y, x, y) > z ⇒ (k > z) ∧ (x >
y → k = x) ∧ (x ≤ y → k = y)). For constraints involving quantifiers, we strive to eliminate them
using the qe tactic (e.g., ∃y.(y > 0) ∧ (x = y + 2) ⇒ x > 2). Appendix B provides more examples
illustrating these simplifications.
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2.3 Complication

To complicate the expressions, a straightforward strategy is to incorporate additional operators. For
example, given an atomic constraint h = e1 ▷◁ e2, we can introduce an additional expression, denoted
by e′, and derive a more complex constraint h̃ = e1 ▷◁ (e2 ⊕ e′).

(M1)


a(b+ c) = 152
b(c+ a) = 162
c(a+ b) = 170
a, b, c ∈ N+

⇒ (M2)


a(b+ c) = 152⊕1 e

′
1(z1)

b(c+ a) = 162⊕2 e
′
2(z2)

c(a+ b) = 170⊕3 e
′
3(z3)

a, b, c ∈ N+, z1, z2, z3 ∈ R

⇒ (M3)



a(b+ c) + z1 = 152
b(c+ a)− z2 = 162
c(a+ b) = 170
z1 = 114
z2 = 36
a, b, c ∈ N+

⇒ (M4)



a(b+ c) + d = 152
b(c+ a)− e = 162
c(a+ b) = 170
d+ e = 150
d− e = 78
a, b, c, d, e ∈ N+

However, such a strategy is non-trivial in practice. The first challenge lies in the validity aspect, i.e.,
the math problem is often carefully designed, and thus a random mutation may ruin their well-defined
structure. Consider the running example problem (M1), which has been normalized for simplicity.
In this problem, a reckless mutation can easily violate the positive integer constraints, causing the
problem ill-defined and unsolvable.

To address this issue, we equip each mutation with an auxiliary variable, followed by symbolic
solvers to ensure the problem remains well-defined. Continuing with the previous example, we
introduce three auxiliary variables, denoted by z1, z2, z3, and then mutate the problem as (M2),
where ⊕1,⊕2,⊕3 ∈ {+,−,×,÷} represent three random operators. Furthermore, we instantiate
e′1, e

′
2, e

′
3 by interpreted functions, i.e., e′1 = foo1(z1), e′2 = foo2(z2), and e′3 = foo3(z3), where

foo1, foo2, foo3 are randomly selected from foo(z) = z | log(z) | exp(z) | arcsin(z) | · · · .
For our running example, we simply choose the identity function for foo1, foo2, foo3, and set
⊕1 = −,⊕2 = +,⊕3 = ×. Using symbolic solvers to compute a feasible solution of (z1, z2, z3),
we derive a new and well-defined problem (M3).

The subsequent challenge is to ensure the diversity of the mutated problems, which now becomes
how to make the solutions of auxiliary variables sufficiently diverse. This is essentially a model
counting problem [26, 27], and current symbolic solvers still underperform in this regard [28]. To
this end, we instead opt for auxiliary variable solution generation via the projected Markov chain
Monte Carlo (projected MCMC) [14, 15]. Simply put, projected MCMC first perturbs a subset
of variables (projected random walk), and then resolves the remaining part (inverse projection via
symbolic solvers), which ensures both diversity and validity of the variable solutions.

Finally, to complicate the constraints, one can easily reverse the process of simplification. For our
running example, we can reverse the Gaussian elimination with refreshed variables, obtaining the
final form (M4), which is then included as a new problem in the dataset.

3 Informalization

Informalization aims to translate a formal problem back to natural language without the loss of
soundness [29]. As shown in Example 1, a simple, one-line instruction follows the formally posed
SMT-LIB problem, serving as the input. Then, GPT-4 interprets the formal problem as a new math
word problem.

The key challenge of informalization lies in ensuring a consistent conversion, i.e., the natural language
problem informalized by GPT-4 should align with the formal solution given by symbolic solvers.
Since it is difficult to directly measure this consistency, we instead use GPT-4 to generate a solution
for each informalized problem, and then calculate the consistency rate between the solutions from
GPT-4 and those from symbolic solvers as a surrogate metric. Furthermore, we observe that, if the
problem is incorrectly informalized, GPT-4’s solutions almostly cannot be confirmed by symbolic
solvers (i.e., zero false positive). Therefore, the surrogate consistency rate can be regarded as a lower
bound to the true consistency rate.
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Example 1: Informalization

(declare -fun sara_shoes_cost () Real)
(declare -fun sara_dress_cost () Real)
(declare -fun sara_total_cost () Real)
(declare -fun rachel_budget () Real)
(assert (= sara_shoes_cost 50.0))
(assert (= sara_dress_cost 200.0))
(assert (= sara_total_cost (+ sara_shoes_cost sara_dress_cost )))
(assert (= rachel_budget (* 2 sara_total_cost )))
(check -sat)
(get -value (rachel_budget ))

Translate the math problem formulated with SMT-LIB back to a natural language problem.

GPT-4 output:
Sara bought a pair of shoes for $50.00 and a dress for $200.00. If Rachel has twice the
amount that Sara spent in total, how much is Rachel’s budget?

To further improve conversion consistency, in addition to the basic zero-shot learning template in
Example 1, we investigate the effects of the following operations, whose detailed examples are
available in Appendix C.

Table 1: Consistency rate of six different opera-
tions used in informalization: (1) Mutation; (2)
Few-shot learning; (3) Comment generation; (4)
Math-word instruction; (5) Problem modification;
(6) Variable refresh. We recommend two patterns
(i.e., P1: 1-5 and P2: 1-3&6), both of which can
achieve satisfactory results.

Ops (1) (2) (3) (4) (5) (6) Rate (%)

– 75.6 (–)
41.6 (↓)

– 76.2 (↑)
87.6 (↑)

P1 90.5 (↑)

P2 97.1 (↑)

(1) Mutation. Mutation complicates the prob-
lem, making the informalization more difficult.
Therefore, we first analyze the informalization
error caused by the mutation.

(2) Few-shot learning. Few-shot examples offer
a stronger instruction to the LLM, and also in-
troduce the randomness when aided by random
retrieval.

(3) Comment generation. Recognizing that
GPT-4 is unfamiliar with SMT-LIB’s prefix ex-
pressions, we automatically convert these into
the infix format, included as comments.

(4) Math-word instruction. We simply append
one more sentence “Ensure to be a math word
problem” in the prompt. With this instruction,
informalization tends to imbue digits with some
practical meaning (e.g., 7 ⇒ one week).

(5) Problem modification. For mutated problems, rather than generating a new informalization, we
prompt GPT-4 to modify the original informalization result.

(6) Variable refresh. We standardize the naming of all introduced variables (e.g., rachel_budget
⇒ x_1), to eliminate the impact of math word problems.

Different combinations of the above operations result in different patterns. The effects of some
typical patterns are shown in Table 1, where the results are evaluated on 1,000 problems randomly
sampled from GSM8K. The basic pattern in Example 1 yields a consistency rate of 75.6%. The
mutation operation alone indeed degrades the consistency, but its combination with other operators
can further boost the informalization performance. In practice, we use two different patterns for
different informalization styles: the first pattern (P1) tends to generate math word problems, whereas
the problems generated by the second pattern (P2) tend to be pure math problems.
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4 Experiments

In this section, we conduct a series of experiments to answer the following four research questions:

RQ1: Efficacy – Using our data generation framework, can the fine-tuned model achieve better
performance compared with existing models?

RQ2: Efficiency – Given the same data generation budget, is the generated data from our framework
better than that from the state-of-the-art data generation framework?

RQ3: Generability – Is the effecitveness achieved by our framework due to potential data contami-
nation introduced during the generation process?

RQ4: Scalability – With more data generated, can our approach be continually effective in further
improving model performance?

4.1 Experimental Setup

Dataset. We conduct our data generation on the training sets of two popular mathematical reasoning
benchmarks: GSM8K [10] and MATH [11]. GSM8K is a dataset comprising high-quality grade
school math problems, which contains 7,473 training data and 1,319 testing data. MATH is a
dataset comprised of challenging competition math problems, spanning seven subjects including
Prealgebra, Algebra, Number Theory, Counting and Probability, Geometry, Intermediate Algebra, and
Precalculus. There are 7,500 training data and 5,000 testing data in the MATH dataset. Additionally,
we include two mathematical reasoning datasets, i.e., SVAMP [12] and ASDiv [18], to evaluate the
out-of-domain generalizability of the models fine-tuned on the data generated from GSM8K and
MATH datasets.

Comparison Methods. In our experiments, we compare the models trained using our generated data
with existing state-of-the-art open-source mathematical reasoning models, including WizardMath [30],
MuggleMATH [31], MAmmoTH [32], and MetaMath [33]. We also conduct a thorough comparison
between our math generation method and the bootstrapping method employed in MetaMathQA [33],
which is presently the most extensive open-source dataset for mathematical reasoning.

Data Generation Details. We use our mutation mechanism to generate a series of problems with
varying levels of difficulty, and the specifics are as follows. Starting with a problem from the original
dataset as a seed, we first perform simplification to the problem, and define this new version as level-0.
Then, we randomly apply one expression complication step and one constraint complication step to
the level-0 version, deriving a more difficult problem (level-1 version); and such complications can
be repeated to obtain more difficult problems. For the GSM8K dataset, we create datasets across five
levels of difficulty, with 30K examples at level-0 and 100K examples for the remaining four levels.
As for the MATH dataset, we establish four levels of difficulty, where level-0, level-1, level-2, and
level-3 contain 70K, 120K, 120K, and 120K examples, respectively. Particularly, for some problems
in the MATH dataset that cannot be solved by symbolic solvers, we directly prompt GPT-4 to rephrase
the problem and ignore the solution verification. The number of generated problems without solution
verification varies across problem categories, and the details can be referred to Appendix D. In total,
we generated 860K math problems based on the proposed framework to construct our dataset.

Each generated math problem consists of a natural language problem description informalized by
GPT-4 (version 0710), a final answer outputted by the symbolic solver, and a reasoning path from the
problem to the final answer. The reasoning path for each problem is also generated by GPT-4, which
is further verified by the corresponding answer derived from symbolic solvers.

More implementation details about training hyperparameters, instruction prompts, and symbolic
solver integration, are included in Appendix D.

4.2 Empirical Results

RQ1: Efficacy. Using the generated math dataset, we fine-tune the LLaMA-2 base models of 7B and
13B parameter sizes, as well as the Mistral 7B base model. The fine-tuned models, as well as the
comparison methods, are evaluated on the GSM8K and MATH datasets.
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Table 2: Performance comparison among existing mathematical reasoning models fine-tuned on three
base models (LLaMA-2 7B, LLaMA-13B, and Mistral 7B). The best performance is in bold. The
delta performance between our model and other SOTA LLMs on each dataset is also reported.

Model #Dataset LLaMA-2 7B Base LLaMA-2 13B Base Mistral 7B Base

GSM8K MATH GSM8K MATH GSM8K MATH

WizardMath >240K 54.9 10.7 63.9 14.0 83.2 33.0
MuggleMATH 157K 68.4 8.4 74.0 9.4 - -
MAmmoTH† 260K 50.5 10.4 56.3 12.9 61.9 17.5
MetaMath 395K 66.5 19.8 72.3 22.4 77.7 28.2

Ours 860K 79.0 30.4 84.1 33.7 86.8 37.3
∆ ↑ 10.6 ↑ 10.6 ↑ 10.1 ↑ 11.3 ↑ 3.6 ↑ 4.3

† Model performance is re-evaluated using Pass@1 of CoT prompt.

As shown in Table 2, our approach achieves the best performance among the baseline models
across different model scales. Compared to LLMs with the LLAMA-2 7B base model, our model
demonstrates a fair improvement in accuracy, surpassing them by at least 10.6% on the two datasets.
For our model fine-tuned using the LLAMA-2 13B base model, our model achieves an accuracy of
84.1% and 33.7%, outperforming existing SOTA model by 10.1% and 11.3%. When fine-tuned on
the Mistral 7B base model, our model still attains the best performance with an increase in accuracy
of 3.6% and 4.3%, respectively. Notably, our model even slightly outperforms GPT-3.5-Turbo (80.8%
and 34.1%) by 6.0% on the GSM8K dataset and 3.2% on the MATH dataset.

In addition to the above competitors, we also compare our models with tool-based models, and
provide the results in Appendix E.2. We summarize two observations here. First, tool-based models
tend to over-rely on external tools, and thus do not necessarily improve the inherent reasoning ability
of LLMs. Second, although the tool-based models perform better on the MATH dataset (which
frequently entails complex calculations), they still underperform on the GSM8K dataset (which
emphasizes knowledge reasoning but involves simpler calculations).

RQ2: Efficiency. To illustrate the data efficiency of our method, we carry out a comparative
experiment with current SOTA method MetaMathQA [33]. The MetaMathQA dataset comprises
240K data bootstrapped from the GSM8K training dataset and 155K data from the MATH training
dataset. To ensure a fair comparison with MetaMathQA, we use the same data budget. Additionally,
we expand the MATH data of the MetaMathQA dataset to 430K, aligning its size with that of our
generated data. Then, we fine-tune LLaMA-2-7B models on the 240K GSM8K augmented data, as
well as the 155K and 430K MATH augmented data, respectively.

The performance of fine-tuned models are given in Table 3. We also evaluate the models on two
out-of-domain datasets, SVAMP and ASDiv. The results confirm the efficiency of our framework.
With an equal generation budget of 240K for the GSM8K dataset and 155K for the MATH dataset, our
method exhibits accuracy improvements, ranging from 2.1% to 24.4% across the four datasets. This
superiority is consistent with the model trained on 430K MATH generation data, with improvements
of 19.9%, 3.2%, 12.7%, and 19.2%, respectively.

RQ3: Generability. Despite we carefully ensure that our mutations on the training set do not access
the test set, we still provide a series of analysis about the potential data contamination or overfitting
issues. We first use the memorization detection method introduced in Minerva [34]. Specifically, we
select 150 problems with the highest majority vote score and then compute the BLUE score [35]
on solutions of trained Mistral 7B, GPT-4, and the ground-truth. The results of our method and
MetaMath are provided in Figure 3, which show that our BLUE score on the test set is (1) much
lower than our BLUE score on the training set; (2) is consistent with that of MetaMath. Hence, there
is no evidence that the mutation contaminates the test set.

Second, in addition to the two out-of-distribution datasets SVAMP and ASDiv, we conduct exper-
iments on another benchmark DyVal [9], which avoids the leak of test set through dynamically
generating new benchmarks. The results of our models, alongside those of the comparison models,
are provided in Appendix E.3. In summary, our models demonstrated superior performance in 11 out
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Table 3: Comparison between our method and
MetaMathQA (MMQA) with the same data bud-
gets. The models are fine-tuned using LLaMA-2-
7B base model, and evaluated on GSM8K, MATH,
SVAMP, and ASDiv datasets. The results illusrate
the high quality of our generated data.

Training Dataset Performance
Method GSM8K Math GSM8K Math SVAMP ASDiv

MMQA 240K 0K 66.1 5.8 61.7 72.5
Ours 240K 0K 72.7 8.2 78.8 79.2

∆ ↑ 6.6 ↑ 2.3 ↑ 17.1 ↑ 6.7

MMQA 0K 155K 28.6 19.9 49.0 61.0
Ours 0K 155K 42.1 22.0 73.4 64.1

∆ ↑ 13.5 ↑ 2.1 ↑ 24.4 ↑ 3.1

MMQA 240K 155K 67.5 21.7 64.1 76.0
Ours 240K 155K 73.7 23.4 85.2 81.1

∆ ↑ 6.2 ↑ 1.7 ↑ 21.1 ↑ 5.0

MMQA* 0K 430K 35.0 25.6 66.4 51.1
Ours 0K 430K 54.9 28.8 79.1 70.3

∆ ↑ 19.9 ↑ 3.2 ↑ 12.7 ↑ 19.2

Figure 3: BLUE scores between the output
of our fine-tuned model, versus the ground-
truth solution and GPT-4 output. The model is
fine-tuned on the Mistral 7B base model, and
MetaMath Mistral 7B model is also included as
a reference. The results show that our method
does not induce data contamination.
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of 12 cases and delivered competitive results in the remaining case. Particularly, as the complexity of
the tasks increased, our models exhibited a relatively robust performance compared to other models.

Finally, we include an additional experiment on the Hungarian High School National Finals Exam
dataset [36], whose problems are newly collected at 2023. We manually check 33 testing problems
based on the provided ground-truth answer, and our model correctly solved 14 problems and partially
solved 6 problems, resulting in an exam score of 44. The result is comparable to GPT3.5-turbo (i.e.,
41 exam score), conforming the generalizability of our method.
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Figure 4: Performance curves of the LLaMA-2-7B models fine-tuned on various scales of datasets.
The two datasets are generated by our approach and MetaMath (MMQA). The performance can be
consistently enhanced by increasing the amount of data generated using the proposed framework.

RQ4: Scability. To explore the scalability of our framework, we fine-tune the LLaMA-2 7B model
using our generated datasets of various sizes and difficulties. To be specific, we progressively
incorporate a 30K dataset, along with four additional 70K datasets generated from GSM8K. Note that
these five datasets are randomly sampled from five different levels of difficulty. Five LLaMA-2-7B
models are fine-tuned based on these datasets, and the scalability curves are shown in Figure 4. We
also include MetaMathQA with the same data settings as a reference. Since MetaMathQA cannot
inherently group the dataset into various difficult levels, we construct five datasets by incrementally
random sampling from the GSM8K subset of the MetaMathQA dataset.

The results presented in Figure 4 indicate the promising scalability of our method. That is, as the
size of data increases, the accuracy of the model consistently improves. In contrast, the performance
enhancement observed in MetaMathQA is limited and starts to diminish as the data size reaches 70K.
We also present the models’ performance on the other three out-of-domain datasets in this case, i.e.,
SVAMP, ASDiv, and MATH datasets. The results demonstrate that the scalability of our method is
robust and generalizable, while MetaMathQA hardly guarantees such consistency.

8



We also investigate the diversity gain relative to the original dataset for each difficulty level. The
results are provided in Appendix E.4. It is observed that the dataset consisting of the same difficulty
level cannot further improve the diversity with a larger data budget. On the contrary, the diversity
gain of the dataset comprising all difficulty levels continues to increase as the data budget grows.

5 Related Work
Recent surveys [37–39] have comprehensively discussed the current advances in the mathematical
reasoning of LLMs. Here, we review three main lines of existing work on enhancing the mathematical
reasoning for LLMs related to our study: prompt-based methods, rephrasing-based methods, and
tool-based methods.

Prompt-based Method. Prompt-based methods aim to harness the inherent capabilities of LLMs by
carefully designing appropriate input prompts without tuning the model parameters. This line of work
starts from the observation that LLMs can effectively tackle more math problems when provided with
a simple Chain-of-Thought (CoT) prompt, i.e., “Let’s think step by step” [40]. Building upon the
CoT prompt, Wang et al. [41] further propose to consolidate multiple reasoning paths based on the
self-consistency of correct answers. Later, several researchers propose to prompt LLMs to decompose
complex problems. For example, Zhou et al. [42] introduce the least-to-most strategy that prompts
LLMs to break down the original problem into a series of sub-problems. Khot et al. [43] further
boost this strategy, by assigning each sub-problem to the corresponding LLM that is specifically
optimized for it. Finally, few-shot prompting, e.g., Few-shot CoT [44] and Complex CoT [45], has
also been studied to enhance the reasoning performance of LLMs. To further improve the few-shot
prompting, the prompt retrieval is proposed to automatically select high-quality examples [46, 47],
while the prompt compression is explored to include more examples in restricted context by pruning
each example [48].

Rephrasing-based Method. The second line of existing work aims to generate additional math data,
based on which the mathematical reasoning capability of LLMs can be established via supervised
fine-tuning. To address the data scarcity issue, current research mainly focuses on rephrasing the
problem or the answer. For the answer rephrasing, Magister et al. [49] adopt the PaLM and GPT-3
to generate CoT math data, resulting in improved performance of the T5 model on math reasoning
tasks. To mitigate the inclusion of incorrect answers during the supervised fine-tuning, RFT [50]
introduces a rejection sampling strategy, whereas AFT [51] trains an LLM to categorize them.
Regarding the problem rephrasing, WizardMath [30] proposes a reinforced evol-instruct method. It
instructs ChatGPT and trains a new LLM to rephrase the problem, equipped by a reward model for
evaluating the quality of generated problems. Combining the rephrasing of problems and answers
together, MuggleMATH [31] builds the AugGSM8K dataset based on prompting GPT-3.5 and GPT-4.
MetaMath [33] develops a question bootstrapping method based on LLMs, unifying rephrasing,
self-verification [52], FOBAR [53], and answer augmentation strategies, obtaining the MetaMathQA.
Xwin-Math [54] is a peer study that significantly enhances the reasoning capacity of LLMs using
problems generated by GPT-4 Turbo. In contrast, our work focuses on generating verifiable problems
through controllable mutations, rather than relying entirely on the GPT model.

Our proposed method also falls into this category. In contrast to existing methods directly prompting
LLMs to rephrase the problem, we mutate the problem in the formal symbolic space, resulting in a
more controllable mutation mechanism that ensures both the validity and diversity of the generated
problems. Moreover, the quality of reasoning paths is also guaranteed by the symbolic solvers.

Tool-based Method. Tool-based methods aim to enhance the math solving performance of LLMs
by instructing them to use external math tools. For instance, PoT (Program of Thought) [55] and
PAL [56] propose to prompt the LLMs to delegate the computation to a program interpreter, which
can be executed to obtain the final answer. To further improve the tool-using ability of LLMs,
MathCoder [57] constructs a math dataset containing problems and their code-based solutions for
the supervised fine-tuning; MAmmoTH [32] builds a dataset that combines CoT and PoT reasoning,
enabling LLMs to perform hybrid inference. Since the interaction with math tools can further
boost the performance of LLMs, TVA [58] includes the Isabelle theorem prover to check each
reasoning step and guide the reflection of LLMs; Tora [59] generates interactive tool-use trajectories
on mathematical datasets and then performs imitation learning on the annotations.

Our proposed method shares some similarities with tool-based approaches as both involve symbolic
solvers. However, rather than using external tools to solve mathematical problems, our approach aims
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to explore the inherent reasoning capability of LLMs. Therefore, symbolic solvers are only used to
ensure the validity of the generated data as well as the correctness of the generated reasoning paths.

6 Limitations

The Capability of Symbolic Solvers. The effectiveness of our approach significantly hinges on the
symbolic solvers. However, existing mathematical tools (e.g., Z3 [20], SymPy [23], and SciPy [24])
face limitations when it comes to expressing and solving a wide array of mathematical problems.
For instance, the Z3 SMT solver struggles with expressing higher-order concepts like gcd and lcm,
while the SymPy encounters difficulties in solving inequalities involving multiple variables. In
our framework, we integrate five mathematical tools, i.e., Z3, CVC4 [60], MathSAT [22], SymPy,
and SciPy, and employ SMT-LIB [19] as a unified formal language to enhance the performance of
symbolic solving.

The Expressiveness of Mutations. The mutation operators used within our framework remain
limited, especially in generating more difficult problems (e.g., college- and even IMO-level math
problems). One of our future work is to introduce more mutation operators, further increasing the
problem difficulty. A possible strategy is the problem fusion [61], which fuses two formal problems
into a single, new problem, rather than merely modifying an individual problem. Moreover, the
informalization facilitated by LLMs can effectively mitigate the unnaturalness issue stemming from
brute-force fusion.

The Dependence on GPT-4. GPT-4 is involved in our framework to carry out the informalization
and generate the reasoning paths. We also consider the possible solutions that the dependence on
GPT-4 can be gradually removed. First, by leveraging our generated formal-informal pairs, we
can fine-tune a new LLM specifically for the informalization. Second, it is possible to bypass
the generation of reasoning paths, through curriculum learning [62, 63] instead of supervised fine-
tuning. Particularly, the reward in the curriculum learning can be determined by whether the generated
solution is consistent with symbolic solvers , and the curriculum progresses by incorporating problems
of various difficulty levels.

Broader Impact

The paper aims to advance the field of math data generation. There are many potential societal
consequences of our work, and we firmly believe that the majority of these impacts are positive and
none which we feel must be highlighted here.

7 Conclusion

This paper explores the question of whether sufficient exposure to high-quality mathematical data
could enhance LLMs’ inherent mathematical reasoning capability. We identify a key challenge in
balancing diversity and validity in current math problem generation methods. To tackle this challenge,
we propose a neuro-symbolic framework that initially generates formal mathematical problems and
then informalizes them back into natural language versions. By casting the data generation into the
formal language space, the diversity and validity of the generated math problems can be effectively
ensured by the systematic sampling and symbolic solvers. Building upon this, we carefully devise
a mutation mechanism, establishing the math dataset encompassing various difficulty levels, and
prompt the LLMs to accomplish informalization. Through empirical experiments, we demonstrate
that our neuro-symbolic data generation framework significantly enhances the performance of various
LLMs in mathematical reasoning tasks, surpassing the current state-of-the-art open-source models.
The results also suggest a promising pathway for further enhancing LLMs’ mathematical capabilities.

In future work, we intend to expand the expressiveness of mutations and enhance the capability of
symbolic solvers to support more types of problems, such as inequality problems. Our goal is to
offer a data generation framework to automatically generate high-quality, supervised datasets for
LLMs. We expect that our neuro-symbolic data generation framework can provide a potential solution
for LLMs to solve the problem of data scarcity, and thereby facilitate in building more LLMs in
downstream tasks. Further, our framework has the potential to be integrated with recent studies [64],
which only require problems and final answers.
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A Broader Impacts

The paper aims to advance the field of math data generation. There are many potential societal
consequences of our work, and we firmly believe that the majority of these impacts are positive and
none which we feel must be highlighted here.

B Examples of Simplification

Example 2: Simplification strategy on Problem (No. 41) of the GSM8K dataset.

Autoformalization:
Translate the natural language problem into SMT-LIB language: “Sara bought a pair of shoes
for $50.00 and a dress for $200.00. If Rachel has twice the amount that Sara spent in total,
how much is Rachel’s budget?”

GPT-4 output:
(declare -fun sara_shoes_cost () Real)
(declare -fun sara_dress_cost () Real)
(declare -fun sara_total_cost () Real)
(declare -fun rachel_budget () Real)
(assert (= sara_shoes_cost 50.0))
(assert (= sara_dress_cost 200.0))
(assert (= sara_total_cost (+ sara_shoes_cost sara_dress_cost )))
(assert (= rachel_budget (* 2 sara_total_cost )))
(check -sat)
(get -value (rachel_budget ))

Mutation & Informalization:
(declare -fun sara_dress_cost () Real)
(declare -fun sara_shoes_cost () Real)
(declare -fun sara_total_cost () Real)
(assert (= sara_dress_cost 200.0))
(assert (= sara_shoes_cost 50.0))
(assert (= sara_total_cost (+ sara_shoes_cost sara_dress_cost )))
(check -sat)
(get -value (sara_total_cost ))

Translate the math problem formulated with SMT-LIB back to a natural language problem.

GPT-4 output:
Sara went shopping and bought a dress for $200.00 and a pair of shoes for $50.00. What is
the total amount Sara spent on her shopping trip?

We elucidate the simplification strategy through Example 2, which is selected from the GSM8K
dataset. In this formal problem, we can conduct one step of Gaussian elimination, i.e., randomly
solving and removing a variable (e.g., rachel_budget = 500). Then, we derive the new problem
with its informalized version. Furthermore, we present another example, specifically Example 3,
sourced from the MATH dataset. Here, the new problem is generated through the simplification
strategy that randomly performs some calculations.

C Examples of Informalization

Various prompts yield different styles of informalization. To illustrate this, we provide two specific
examples as follows. In Example 4, we do not refresh the variable, and instruct the informalization by
adding the prompt “Ensure to be a math word problem.” The result of GPT-4’s informalization tends
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Example 3: Simplification strategy on Problem (No. 496) of the MATH dataset.

Autoformalization:
Translate the natural language problem into SMT-LIB language: “Compute $\\displaystyle
\\frac{2+4-8+16+32-64}{4+8-16+32+64-128}$.”

GPT-4 output:
(declare -fun num () Real)
(declare -fun den () Real)
(declare -fun fraction () Real)
; Define the numerator and denominator expressions
(assert (= num (+ 2 4 (- 8) 16 32 (- 64))))
(assert (= den (+ 4 8 (- 16) 32 64 (- 128))))
; Define the fraction as the numerator divided by the denominator
(assert (= fraction (/ num den)))
(check -sat)
(get -value (fraction ))

Mutation & Informalization:
(declare -fun num () Real)
(declare -fun den () Real)
(declare -fun fraction () Real)
; Define the numerator and denominator expressions
(assert (= num (+ (- 2) 16 ( -32))))
(assert (= den (+ (- 4) 32 (- 64))))
; Define the fraction as the numerator divided by the denominator
(assert (= fraction (/ num den)))
(check -sat)
(get -value (fraction ))

Translate the math problem formulated with SMT-LIB back to a natural language problem.

GPT-4 output: Calculate the value of the fraction \\(\\frac{-2 + 16 - 32}{-4 + 32 - 64}\\).

to envelop the problem with common knowledge, culminating in the creation of a math word problem.
In contrast, Example 5 involves refreshing each variable and eliminating the prompt “Ensure it is
a math word problem.” Hence, its corresponding informalization renders the new problem more
abstract and devoid of extraneous elements.

D Additional Experimental Details

Generation Details. In the GSM8K dataset, each problem can be accurately formalized into the
SMT-LIB format and successfully mutated into a new version. However, some problems, particularly
in the precalculus and geometry categories of the MATH dataset, cannot be formalized or mutated
effectively. Overall, out of a total of 7,500 problems, 822 cannot be formalized into the SMT-LIB
format, and approximately 3,600 formalizations are inaccurate although they remain usable for the
data generation. To address this issue, we strategically added a proportional number of mutated
problems derived by directly prompting GPT-4, bypassing solution verification. The detailed counts
of these problems are presented in Table 4.

Training Details. In this paper, we fully fine-tune the LLAMA-2-7B and LLAMA-2-13B models
using four H800 NVIDIA GPUs. Each model is trained for 3 epochs with a batch size of 128 and a
learning rate of 2e-5. For the fine-tuning of the LLAMA-2-70B model, we adopt the QLoRA [65]
method with a learning rate of 1e-4. The rank and alpha of LoRA [66] are set to 96 and 16,
respectively, with a dropout rate of 0.05 between the two matrices. The LoRA modules are added to
both the attention and MLP layers. The 70B model is fine-tuned using eight A800 NVIDIA GPUs.
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Example 4: Informalization to be a math word problem (Problem No.14 in GSM8K).

(declare -fun pages_per_minute () Real)
(declare -fun total_pages () Int)
(declare -fun time_hours () Int)
(assert (= pages_per_minute (/ 2 5)))
(assert (= total_pages 144))
; (time_hours = ((( total_pages / pages_per_minute) * 1/60) * 1/2))
(assert (= time_hours (* (* (/ total_pages pages_per_minute)

(/ 1 60)) (/ 1 2))))
(check -sat)
(get -value (time_hours ))

Translate the math problem formulated with SMT-LIB back to a natural language problem.
Please ensure to be a math word problem.

GPT-4 output:
Jamie has a book with 144 pages that she wants to read. She reads at a pace of 2/5 pages per
minute. If she reads for half the time it would normally take her to read the book at this pace,
how many hours will she have read?

Example 5: Informalization to be a pure math problem (Problem No.14 in GSM8K).

(declare -fun x_0 () Real)
(declare -fun x_1 () Int)
(declare -fun x_2 () Int)
(assert (= x_0 (/ 2 5)))
(assert (= x_1 1))
; (x_2 = (2/5 * (x_1 / x_0)))
(assert (= x_2 (* (/ 2 5) (/ x_1 x_0 ))))
(check -sat)
(get -value (x_2))

Translate the math problem formulated with SMT-LIB back to a natural language problem.

GPT-4 output:
A fraction representing a number is 2/5. If you have the number 1 and you want to find out
how many times this fraction fits into it, what would be the result?

Prompt 1: Training Prompt

Below is an instruction that describes a task. Write a response that appropriately completes
the request.\n \n ### Instruction:\n{instruction}\n\n### Response:\n

Table 4: Detailed count of problems generated by GPT-4 and mutated during the generation process
of the MATH dataset. The numbers 1-7 correspond to Algebra, Counting and Probability, Geometry,
Intermediate Algebra, Number Theory, Prealgebra, and Precalculus, respectively.

Category 1 2 3 4 5 6 7 Total

# LLM generated 20.4K 9.2K 6.4K 15.4K 8.4K 12.4K 7.8K 80K
# Mutated 97.4K 36.2K 31.2K 60.3K 40.7K 59.2K 24.1K 350K

When fine-tuning the Mistral 7B model, the same training settings as LLAMA-2-7B are used, except

19



for the learning rate, which is set to 5e-6. Moreover, we adopt the instruction template Prompt 1 used
in Alpaca [67] for fine-tuning each model.

Prompt 2: Testing Prompt

Below is an instruction that describes a task. Write a response that appropriately completes
the request.\n\n### Instruction:\n{instruction}\n\n### Response:\n

Evaluation Details. We evaluate each fine-tuned model using a zero-shot evaluation protocol with
the corresponding recommended instruction template. Our model is evaluated using the following
instruction template Prompt 2, which is consistent with our training instruction template.

For answer extraction and accuracy calculation, we follow the code of WizardMath [30] to extract
the answer after the phrase “The answer is”.

Symbolic Solvers. We integrate five symbolic solvers, Z3, CVC4, MathSAT, SymPy, and SciPy based
on the PySMT framework [68]. To be specific, the PySMT intrinsically includes Z3, CVC4, and
MathSAT, and we further extend its support to encompass SMT-LIB version 2.5, which incorporates
more commands like define-rec. Next, we proceed to serialize the SMT-LIB format into SymPy
expressions, and attempt to find solutions using SymPy’s solve function. In addition, the SymPy
expressions are also encoded as NumPy [69] functions, thereby enabling the using of SciPy’s
optimization modules, such as differential_evolution and minimize. Note that we introduce a
fuzzy-logic-like strategy [70–72] in the encoding, which combines the equalities and inequalities into
a loss function, subsequently enabling optimization methods for problem-solving tasks.

E Additional Experimental Results

E.1 Detailed results on MATH dataset

We present detailed results across different categories in the MATH dataset in Table 5. The numbers
1-7 correspond to Algebra, Counting and Probability, Geometry, Intermediate Algebra, Number
Theory, Prealgebra, and Precalculus, respectively. The results indicate that Algebra is easier to
improve, as evidenced by its higher mutation success rate. It is worth noting that improvements in
Counting and Number Theory are reasonable because related mutation operators (e.g., binomial,
gcd, lcm, etc.) are included in our framework. However, Precalculus and Geometry are still not
well-supported. For example, the concept of triangle cannot currently be correctly expressed in the
SMT-LIB format, resulting in relatively low improvement rates.

Table 5: Comparison of performance between MetaMath and our method across different categories
of MATH dataset. The used base model is Mistral-7B. The best performance is in bold.

Category 1 2 3 4 5 6 7

MetaMath 41.4 23.6 15.4 20.7 47.9 15.3 22.5
Ours 59.6 35.4 16.4 32.8 58.5 18.5 25.0
∆ +18.2 +11.8 +1.0 +12.1 +10.6 +3.2 +2.5

E.2 Comparison to tool-based methods

We compare our model with the tool-based models in Table 6. Although tool-based models achieve
good performance with tools, they meet severe performance degradation when tools are not available.
This result indicates that training a model using code-based and language-based rationales does not
necessarily enhance the intrinsic reasoning ability; instead, it often promotes excessive dependence
on external tools. For datasets that involve complex calculations, such as the MATH dataset, tool-
based methods offer certain advantages due to their utilization of the strong capabilities of external
tools. For datasets that emphasize knowledge reasoning but involve simpler calculations, such as the
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Table 6: Performance comparison among tool-based methods and our methods. We report the
performance of tool-based methods w/ and w/o tools. The best performance is in bold.

Model Base Model GSM8k MATH

Tora LLaMA2-7B 68.8 40.1
MAmmoTH LLaMA2-7B 53.6 31.5
MAmmoTH(w/o tools) LLaMA2-7B 50.5 10.4
Tora CodeLLaMA-7B 72.6 44.6
MAmmoTH CodeLLaMA-7B 59.4 33.4
MAmmoTH(w/o tools) CodeLLaMA-7B 22.1 7.6
MAmmoTH Mistral-7B 75.0 40.0
MAmmoTH(w/o tools) Mistral-7B 61.9 17.5

Ours LLaMA2-7B 79.2 28.8
Ours Mistral-7B 86.8 37.3

GSM8K dataset, they underperform our proposed methods, proving that their reasoning ability is still
inadequate.

E.3 Experiments on DyVal Datasets

We also compare our models and existing mathematical reasoning models using DyVal [9] datasets
to further evaluate the generalization ability of our models. DyVal is a flexible evaluation protocol for
dynamic evaluation of LLMs, which generates evaluation samples with controllable complexities
using directed acyclic graphs (DAGs). We focus on Arithmetic tasks using three DAGs’ orders:
topological (TOPO), reversed topological (REVERSED), and random orders (RAND). Following the
same setting, we generate testing four increased complexity levels {D1, D2, D3, D3}, with tree depths
and widths set to (2, 2), (3, 2), (3, 3), (4, 2). The performance comparison between models fine-tuned
on LLaMA2-7B and Mistral-7B are respectively shown in Table 7 and Table 8. The results show
that our models achieve the best performance in 11/12 cases and give a competitive performance
in the remaining one case. As the complexity increases, our models achieves a relatively robust
performance compared with the other models.

Table 7: Performance comparison of models fine-tuned on LLaMA2-7B using DyVal datasets with
four complexity levels and three graph orders. The best performance is in bold.

Model Arithmetic-Topo Arithmetic-Reversed Arithmetic-Rand
D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4

WizardMath 74.0 55.4 21.4 19.9 71.0 50.6 23.2 7.8 74.2 49.0 19.6 10.7
MAmmoTH 77.3 35.1 13.7 8.1 81.8 27.7 13.1 4.8 78.3 26.4 12.7 3.8
MetaMath 91.9 48.0 20.3 16.9 90.5 50.5 18.1 5.8 90.2 41.0 17.9 7.4

Ours 99.7 85.7 66.8 62.5 99.1 75.8 39.8 18.1 98.8 71.4 41.2 19.0

Table 8: Performance comparison of models fine-tuned on Mistral-7B using DyVal datasets with four
complexity levels and three graph orders. The best performance is in bold.

Model Arithmetic-Topo Arithmetic-Reversed Arithmetic-Rand
D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4

MAmmoTH 90.2 66.7 29.9 32.8 92.2 64.8 25.3 18.8 91.0 62.2 23.9 18.2
MetaMath 97.8 75.7 43.0 45.6 99.5 78.6 45.6 37.2 98.3 76.3 44.6 38.8

Ours 99.6 91.3 74.0 71.5 99.3 85.4 56.8 49.2 98.4 87.5 68.6 47.2

E.4 Diversity Gain across Various Difficulty Levels

To illustrate the need for various difficulty levels, we calculate the diversity gain relative to the original
dataset for each difficulty level. We apply the same method as in MetaMath [33] to compute diversity
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gain but use the BERT model [73] as a feature extractor instead. We select data budgets of 35K,
50K, and 100K, respectively, and investigate the diversity across four levels, from level-1 to level-4.
Additionally, we create a mixed version by sampling data from all levels. The results are shown
in Figure 5, and we can observe that: (1) The higher the difficulty level, the greater the diversity
of generated data; (2) The mixed version increases with the growing data budget, and achieves the
highest diversity gain.
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Figure 5: The diversity gain across all difficulty levels. The results indicate that the diversity gain of
the Mix version continues to increase and reaches the highest compared with alternatives as the data
budget increases.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state our claims.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitation is thoroughly discussed in Appendix ??.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: N/A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Details of data generation, training and inference process are discussed in
Appendix D. We will public the code, as well as the fine-tuned models, for the reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide the code for our data generation framework, as well as a small part
of our generated data, in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Training and test settings are detailed in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We cannot provide statistical significance of the experiments due to the limited
GPU resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details of the computer resources used in the experiments are provided in D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Social impacts are discussed in ??.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Code packages and datasets are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets up to now.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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