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ABSTRACT

We define a congruence that copes with null next-symbol probabilities that arise
when the output of a language model is constrained by some means during text
generation. We develop an algorithm for efficiently learning the quotient with
respect to this congruence and evaluate it on case studies for analyzing statistical
properties of LLM.

1 INTRODUCTION

Many works have studied neural language models, such as Recurrent Neural Networks (RNN) and
Transformers, through the analysis of surrogate automata of different sorts obtained from the former
in a variety of ways, with the purpose of verifying or explaining their behavior Wang et al. (2018);
Weiss et al. (2018); Khmelnitsky et al. (2021); Mayr et al. (2023); Muškardin et al. (2023).

Recently, several papers proposed to analyze neural sequence-processing models by composing
them with automata or regular expressions in order to verify properties on-the-fly while learn-
ing Mayr et al. (2021), assess the existence of memorization, bias, or toxicity Kuchnik et al. (2023),
and guide text generation Willard & Louf (2023). However, they have not been applied to language
models, but language recognizers, this is the case of Mayr et al. (2021), or they lack formalization.

An important problem that arises when synchronizing a neural language model with a guiding au-
tomaton or constraining text generation with common sampling strategies, such as top-k, is the
occurrence of symbols with null probabilities. A consequence of this, for instance, is that generation
may not terminate. Moreover, this implies the model does not define a probability distribution over
finite strings.

The contribution of the paper is threefold: 1) the definition of a Myhill-Nerode-like congruence over
strings which takes into account the occurrence of zero-probabilities, that provides an underlying
formal basis for learning of probabilistic deterministic finite automata (PDFA) Vidal et al. (2005)
from neural language models constrained by automata and sampling strategies; 2) the development
of the Omit-Zero algorithm for learning the quotient with respect to this congruence, which shows to
be more efficient than other algorithms for the experiments carried out; 3) a framework for analyzing
statistical properties of LLM based on the previous two.

In Sec. 2, we address the question of dealing with null next-symbol probabilities that appear when
constraining the output of a language model by composing it with an automaton and/or a sampling
strategy, such as the top k most likely symbols. We do this by defining an appropriate congruence
that induces a quotient PDFA without zero-probability transitions. In Sec. 3, we adapt the learn-
ing algorithm of Mayr et al. (2023) to efficiently learn the quotient PDFA. In Sec. 4, we discuss
issues that arise when analyzing real large language models, in particular the role of tokenizers, and
apply the algorithm on problems discussed in Kuchnik et al. (2023); Willard & Louf (2023) when
generating text with GPT2. Experimental results show the interest of our approach.

2 LANGUAGE MODELS

Let Σ be a finite set of symbols, Σ∗ the set of finite strings, λ ∈ Σ∗ the empty string, and Σ$ ≜
Σ ∪ {$}, where $ ̸∈ Σ is a special symbol used to denote termination. We denote ∆(Σ$) the
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probability simplex over Σ$, that is, the set of all ρ : Σ$ → R+ such that
∑

σ∈Σ$
ρ(σ) = 1. The

support of ρ ∈ ∆(Σ$) is supp(ρ) ≜ {σ ∈ Σ$ | ρ(σ) > 0}.
Definition 1. A language model is a total function L : Σ∗ → ∆(Σ$).

Def. 1 abstracts away from particular computational mechanisms used to implement concrete lan-
guage models such as neural models, for example, RNN and Transformers, or state-transition mod-
els, for instance, Markov chains or PDFA. This work leverages PDFA as a foundation for analyzing
neural models. Moreover, PDFA offer a simple and intuitive formalism, along with graphical rep-
resentations, to illustrate examples of language models. To this end, we provide their definition
here.

Following Mayr et al. (2023), a PDFA A over Σ as a tuple (Q, qin, π, τ), where Q is a finite set
of states, qin ∈ Q is the initial state, π : Q → ∆(Σ$), and τ : Q × Σ → Q. Both π and τ are
total functions. The extensions τ∗ and π∗ are defined as follows: τ∗(q, λ) ≜ q and τ∗(q, σu) ≜
τ∗(τ(q, σ), u), and π∗(q, u) ≜ π(τ∗(q, u)). When q = qin, we omit the state q in the notation above
and simply write τ∗(u) and π∗(u). A defines the language model such that A(u) ≜ π∗(u). Fig. 1
gives examples of PDFA. The number below q is the probability of termination π(q)($), and the one
associated with an outgoing transition labeled σ corresponds to π(q)(σ).

q0
0

q1
0.4

q2
0.2

a/0.3b/0.7

a/0.6

b/0

a/0.4

b/0.4

q0
0

q1
0.4

q2
0

a/0.3b/0.7

a/0.6

b/0

a/0.5

b/0.5

Figure 1: PDFA A (left) and B (right) over Σ = {a, b} with qin = q0.

Sampling L can be used to generate random strings x ∈ Σ∗ with xi ∼ L(x<i), for i ≥ 1, where
xi is the i-th symbol and x<i = x1 . . . xi−1 with x<1 ≜ λ. That is, by sampling the next symbol to
concatenate from the distribution of the prefix until the termination symbol is selected.

In general, this procedure may not terminate. In fact, L uniquely defines a probability distribution
over Σ∗∪Σω , where Σω denotes the set of all infinite strings. More precisely, if we let P : Σ∗ → R+

to be defined recursively as

P(uσ) ≜ P(u) · L(u)(σ), P(λ) ≜ 1,

and P$ : Σ∗ → R+ to be defined by P$(u) ≜ P(u) · L(u)($), thenthere exists a unique probability
distribution P over Σ∗ ∪ Σω whose prefix probabilities are given by P and whose restriction to Σ∗

is given by P$:
Proposition 2.1. Let L : Σ∗ → ∆(Σ$) be a language model. There exists a unique Borel1 proba-
bility measure P in Σ∗ ∪ Σω such that

P(w) = P
{
x ∈ Σ∗ ∪ Σω : w ∈ pref(x)

}
and P$(w) = P

{
w
}

for all w ∈ Σ∗. Here pref(x) denotes the set of all prefixes in Σ∗ of x, including λ and x itself.

Proof. See Appendix A.

In general, the probability P provided by Prop. 2.1 does not concentrate its mass on Σ∗. Conse-
quently, P$ is not a proper probability distribution over Σ∗, as it may not sum to 1 Vidal et al. (2005).
In such cases, there is a positive probability that the sampling procedure described above will fail
to terminate. Necessary and sufficient conditions for termination involve properties of the probabil-
ities associated with the terminal symbol Du et al. (2023). For example, in the case of a PDFA, the

1Borel means here that the measure P is defined over the σ-algebra generated by the cylinder sets. See
Appendix A for more details.
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sampling procedure terminates if, for every state q, there exists a reachable state q′ (via transitions
from q) where the terminal symbol appears with positive probability. As an example consider A
in Fig. 1. Even though πA(q0)($) = 0, we have that P$ defines a probability distribution in Σ∗

since
∑

u∈Σ∗ P$(u) = 0.3 · 0.4
∑∞

n=0 0.6
n + 0.7 · 0.2

∑∞
n=0 0.8

n = 0.3 + 0.7 = 1. However, this
is not the case for B, with πA(q2)($) = 0, since in this case

∑
u∈aΣ∗ P$(u) +

∑
u∈bΣ∗ P$(u) =

0.3 · 0.4
∑∞

n=0 0.6
n = 0.3 < 1. B can actually be obtained from A by constraining the set of

symbols to sample from to the top-2 most likely ones: top2(πA(q2)) = {a, b}, and normalizing
the probabilities. It results in that no finite string starting with symbol b can be sampled in B with
distribution P$.

Using topr or topp (most likely symbols with a cumulative probability cutoff of p) is usual practice
when sampling from an LLM. Since this may induce non-termination at the time of generating
strings, it is relevant to formalize the effect of these constraints on L.

A sampling strategy is a map samp : ∆(Σ$) → ∆(Σ$) is such that supp(samp(ρ)) ⊆ supp(ρ) for
all ρ ∈ ∆(Σ$). We denote samp(L) the language model obtained by applying samp to L(u) for all
u ∈ Σ∗. For example, in Fig. 1, B = samptop2(A), where:

samptopr(ρ)(σ) =

{
ρ(σ)∑

σ′∈topr(ρ) ρ(σ
′) if σ ∈ topr(ρ)

0 otherwise
(1)

Congruences P is used in Carrasco & Oncina (1999); Vidal et al. (2005) to define the following
equivalence relation ≡ on Σ∗ which is a congruence with respect concatenating a symbol:

u ≡ v
△⇐⇒ ∀w ∈ Σ∗.

P(uw)

P(u)
=

P(vw)

P(v)
(2)

Notice that zero probabilities in the denominator give undefined quotients. In the case one side of
(2) is undefined, the equality must be understood as implying that the other side is also undefined.

We define 1L : Σ∗ → {0, 1} such that 1L(u) = 1 iff P(u) > 0.

Proposition 2.2. For all u, v ∈ Σ∗. u ≡ v if and only if

1L(u) = 1L(v) and ∀w ∈ Σ∗. 1L(uw) = 1L(vw) = 1 =⇒ L(uw) = L(vw). (3)

Proof. See Appendix B.

Resorting to some kind of tolerance relation between distributions is usual practice when it comes
to approximating the behavior of language models with probabilistic automata in order to group in
a single state strings which continuations slightly differ in probability. For instance, in Weiss et al.
(2019); Clark & Thollard (2004), two distributions are considered similar if their variation distance

d(ρ, ρ′) ≜ max
σ∈Σ$

|ρ(σ)− ρ′(σ)|

is less than or equal to a specified tolerance threshold t. Eventually, this grouping could result in
an approximation with a finite number of states even if the image of the language model contains
infinitely many distributions, while keeping the error of the approximation as small as desired or
preserving the property to be checked.

However, this approach has a significant limitation: the induced relation on ∆(Σ$) is not transitive,
and thus, it cannot be extended to a congruence relation on Σ∗. To overcome this issue, we propose
using equivalence relations instead. This leads to a well-defined notion of algebraic quotient and
allows capturing the behavior of the language model under usual sampling strategies such as (1).
Several equivalence relations are of interest, some examples having been employed in Mayr et al.
(2023):

Quantization Given a quantization parameter κ ∈ N, κ ≥ 1, the quantization partition of the
interval [0, 1] is defined as

{
[0],

(
0, κ−1

)
,
[
κ−1, 2κ−1

)
, . . . ,

[
(κ− 1)κ−1, 1

)
, [1]

}
. For

ρ, ρ′ ∈ ∆(Σ$), we define ρ =κ ρ′ if and only if for each symbol σ, ρ(σ) and ρ′(σ) belong
to the same quantization interval. Notice that ρ =κ ρ′ implies d(ρ, ρ′) ≤ 1/κ.

3
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Top For r ∈ N and ρ, ρ′ ∈ ∆(Σ$), we define ρ =topr ρ′ if and only if ρ and ρ′ share the same
support and topr(ρ) = topr(ρ

′). A finer relation can be defined by looking at their ranking.

Let E be an equivalence relation in ∆(Σ$). We denote ρ =E ρ′ the equivalence, [∆(Σ$)]E and [ρ]E
the quotient of ∆(Σ$) and the class of ρ induced by E respectively. We require:

supp(ρ) = supp(ρ′) whenever ρ =E ρ′ (4)

Motivated by (3) we generalize (2) as follows:

Definition 2. For u, v ∈ Σ∗, u ≡E v if and only if

1L(u) = 1L(v) and ∀w ∈ Σ∗. 1L(uw) = 1L(vw) = 1 =⇒ L(uw) =E L(vw). (5)

We denote JΣ∗KE the set of equivalence classes of ≡E and JuKE the class of u. Since 1L(u) =
1L(v) for all u ≡E v, we extend 1L to JΣ∗KE and write 1L(JuK).
Proposition 2.3. ≡E is a congruence: ∀u, v ∈ Σ∗. u ≡E v =⇒ ∀σ ∈ Σ. uσ ≡E vσ.

Proof. Let u ≡E v. If 1L(u) = 1L(v) = 0, then 1L(uw) = 1L(vw) = 0 for all w ∈ Σ∗. Then
uσ ≡E vσ trivially.

Suppose now that 1L(u) = 1L(v) = 1 and let σ ∈ Σ. We have 1L(uσ) = 1L(vσ) by Req. 4. Let
w ∈ Σ∗ be arbitrary, since concatenation of strings is associative, if 1L((uσ)w) = 1L((vσ)w) = 1,
then 1L(u(σw)) = 1L(v(σw)) = 1 and by assumption L(u(σw)) =E L(v(σw)). Thus
L((uσ)w) =E L((vσ)w). This proves that uσ ≡E vσ.

Let ≡•
E be the congruence in Σ∗ defined in Mayr et al. (2023):

u ≡•
E v

△⇐⇒ ∀w ∈ Σ∗. L(uw) =E L(vw) (6)

We denote by 0 the ≡E-class of all u ∈ Σ∗ with 1L(u) = 0.

Proposition 2.4. There exists a one-to-one map ϕ : JΣ∗KE \ {0} → JΣ∗K•E .

Proof. Let α : JΣ∗KE \ {0} → Σ∗ be any function satisfying α(c) ∈ c for all c ∈ JΣ∗KE \ {0}. In
other words, {α(c) : c ∈ JΣ∗KE\{0}} is a set of representatives of the classes. Let β : Σ∗ → JΣ∗K•E
be the quotient map β(u) = JuK•E . Define ϕ = β ◦ α.

Let c, c′ ∈ JΣ∗KE \ 0 be such that ϕ(c) = ϕ(c′). Denote u = α(c) and v = α(c′). By construction
1L(u) = 1L(v) = 1 and by Def. (6) we have L(uw) =E L(vw) for all w ∈ Σ∗. In particular
u ≡E v, or equivalently c = JuKE = JvKE = c′.

Corollary 2.1. If JΣ∗K•E is finite then JΣ∗KE is finite, and #JΣ∗KE ≤ #JΣ∗K•E + 1.

For PDFA, ≡E (similarly for ≡•
E) can be rephrased over Q as follows: ∀u, v ∈ Σ∗

τ∗(u) ≡E τ∗(v)
△⇐⇒ u ≡E v (7)

Fig. 2(left) illustrates the difference between ≡E and ≡•
E . E is equality. States q0, q1, and q2 are not

≡•
E-equivalent: π(q2) ̸= π(q0) = π(q1), and π∗(q0, b) ̸= π∗(q1, b). However, q0 ≡E q1 because

1(u) = 1 and π∗(q0, u) = π∗(q1, u), for u ∈ {a}∗, and 1(u) = 0, for u ∈ bΣ∗.

Proposition 2.5. Let L : Σ∗ → ∆(Σ$), u, v ∈ Σ∗ such that 1L(u) = 1L(v) = 1. For every
w ∈ Σ∗ such that 1L(uw) = 1, if L(uw) ̸=E L(vw), then there exists w′ ∈ pref(w) such that
L(uw′) ̸=E L(vw′), and 1L(vw

′) = 1.

Proof. If 1L(vw) = 1 then w′ = w. Otherwise, there exists w′σ ∈ pref(w) such that
1 = 1L(vw

′) ̸= 1L(vw
′σ) = 0. Hence, supp(L(uw′)) ̸= supp(L(vw′)) because 1L(uw

′σ) = 1.
Thus, by Req. 4, L(uw′) ̸=E L(vw′).

For the sake of readability, we assume hereinafter that, unless stated otherwise, the congruence
relation is associated with an equivalence E and omit the subscript.

4
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q0
0.9

q1
0.9

q2
0.1

a/0.1b/0

a/0.1 b/0a/0.2b/0.7

q′0
0.9

q′2
0.1

a/0.1
b/0

a/0.2

b/0.7

Figure 2: Difference between ≡•
E and ≡E .

Quotients ≡ induces a quotient L : JΣ∗K → [∆(Σ$)] defined as follows: L(JuK) ≜ [L(u)]. For a
PDFA A, its quotient A is (Q, qin, π, τ), where Q ≜ Jreach(Q)K, with reach(Q) ≜

⋃
u∈Σ∗ τ∗(u),

qin ≜ JqinK, π(JqK) ≜ [π(q)], and τ(JqK, σ) ≜ Jτ(q, σ)K for all σ ∈ Σ.

From (7), it follows that each q ∈ Q can be represented by an access string u with q = Jτ∗(u)K.
Let α(q) be the designated access string of q. W.l.o.g., α(qin) ≜ λ. Given A, we can construct a
PDFA Aα ≜ (Q, qin, πα, τ), where for all q ∈ Q, πα(q) ≜ π∗(α(q)). Clearly, all choices of α yield
isomorphic PDFA that are ≡-equivalent. Thus, unless necessary, we omit α and use A to refer to
any such PDFA. A is the smallest PDFA which is ≡-equivalent to A. As an example, let A and B
be the PDFA in Fig. 2(left) and (right), respectively. Since all states of A are ̸≡•, we have that A≡•

= A. However, A≡ = B because q0 ≡ q1 ̸≡ q2.

Here, it is worth to mention that while the choice of α is irrelevant with respect to the congruence,
different ones may result in different P$. Nevertheless, if E induces convex classes, as is the case
for quantization, rank, and top defined in Mayr et al. (2023), it is always possible to define π(q) as
a convex combination of distributions in [πα(q)]E .

3 LEARNING ALGORITHM

Algorithm 1: Learning algorithm.

1 T ← InitializeTree(E)

2 while true do
3 A ← build(T )

4 γ ← EQ(A, E)

5 if γ ̸= ⊥ then
6 T ← update(T, γ,E)

7 else
8 break

9 return A

Based on the results of Sec. 2, we developed
the algorithm Omit-Zero, to learn ≡-minimal
PDFA. It is a variant of QNT (Mayr et al.
(2023)) that differs in specific steps indicated
with boxes in Alg. 1. Omit-zero maintains a
tree T whose nodes are strings which are parti-
tioned in two sets: Acc ⊂ Σ∗ and Dis ⊂ Σ∗ of
access and distinguishing strings, respectively.
Acc is the set of leafs, representing congruence
classes. Each u ∈ Acc is labelled with the dis-
tribution L(u). Dis is the set of non-leaf nodes.
Both Acc and Dis contain λ, which is also the
root and a leaf of T . Arcs in T are labeled with
classes in [∆(Σ$)]. Every outgoing arc from a
non-leaf node is labeled with a different class.
∀u ̸= u′ ∈ Acc, the lowest common ancestor, w = lca(u, u′), is such that L(uw) ̸= L(u′w). To
ensure that leafs represent congruence classes, we require T to satisfy the following property:

∀u ∈ Acc. 1L(u) = 1 (8)

Notice that Eq. 8 implies there is no leaf for the class 0 of undefined strings. Such strings are
automatically associated with 0 without searching in T .

The algorithm starts by initializing the tree. InitializeTree (line 1) creates the first instance of T ,
adding λ to Dis as root and as leaf to Acc. Clearly, Eq. 8 is satisfied because 1L(λ) = 1.

Procedure build (line 3) constructs a PDFA A from the tree. For each leaf u, A has a state qu.
Transitions from one state to another are found by build using a procedure called sift. Given a string
v, sift searches in T the congruence class where v possibly belongs. If no such leaf exists, it means
that a new congruence class (state) has been found and it is added as a new state to the PDFA and
as a new leaf to the tree by procedure siftupdate which makes sure Eq. 8 is satisfied. Transitions for
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state qu are obtained by sifting uσ for all σ in the support of the leaf:

τ(qu, σ) ≜

{
qu′ σ ∈ supp(L(u)), u′ = sift(uσ)

0 otherwise
(9)

sift(v) starts at the root of T and proceeds recursively. If the current node is a leaf, it returns it.
Otherwise, let w ∈ Dis be the distinguishing string at the current inner node. If there is an arc
labeled [L(vw)], it recursively calls sift(vw). Otherwise, siftupdate adds v to Acc labeled with
L(v) and a new arc from w to v labeled with [L(vw)], and it returns v. In 9, if sift(uσ) ̸∈ Acc,
siftupdate adds u′ = uσ as a new leaf, which satisfies 1L(u

′) = 1 because σ ∈ supp(L(u)) by
Eq. 10 and 1L(u) = 1 because u ∈ Acc. Then, Eq. 8 holds in the new tree.

Sifting a string v follows a path ζu which is the sequence of distinguishing strings (inner nodes)
traversed by the sift operation when processing v from the root λ to the leaf u returned by sift. For
every w ∈ ζu, it holds that: (1) [L(vw)] ̸= [L(u′w)], for every u′ ∈ Acc distinct from u, that is, w
is evidence that v ̸≡ u′, and (2) [L(vw)] = [L(uw)], that is, v and u may be in the same congruence
class (T has no evidence of the contrary, so far). In order to ensure that an inner node is indeed a
valid evidence of non-congruence, it must have a defined prefix (Prop 2.5). To guarantee this, we
require that every inner node starts with a symbol in the support of the associated distribution:

∀u ∈ Acc. ∀w ∈ ζu. w ̸= λ =⇒ w1 ∈ supp(L(u)) (10)

Once the PDFA A is built, the algorithm checks if it is congruent with the target language model L
by calling the so-called equivalene query EQ (line 4). When the target is a PDFA, EQ can be done
by an adaptation of the Hopcroft-Karp algorithm for testing equivalence of finite automata Hopcroft
& Karp (1971). However, when the target system involves a neural LLM, it is no longer possible to
use it. In this case, it is standard to resort to sampling. In order to ensure that every sampled string
v is such that 1L(v), we sample from the hypothesis PDFA A using random walk. Thus, if EQ
returns a counterexample γ, i.e, [L(γ)] ̸= [A(γ)], it follows that it is defined in A:

∀γ = EQ(A, E) ̸= ⊥. 1A(γ) = 1 (11)

If no counterexample is returned, the loop terminates (line 8) and A is returned (line 9). Otherwise,
γ is evidence of the existence of a class that is not in the tree. Then, update adds a new leaf u and a
new distinguishing string w to the tree. Let u = γ<j such that:

1L(u) = 1 [L(uγj)] ̸= [A(uγj)] ∀i ≤ j. [L(γ<i)] = [A(γ<i)] (12)

The existence of γ<j is ensured by Eq. 11 and Prop. 2.5. Clearly, u satisfies Eq. 8.

λ

w

x x′

z

λ

w

x x′

w′

z u

Figure 3: T before (left) and after (right) update.

Let z = sift(u), x = sift(uγj), x′ = α(τ∗(uγj)),
and w = lca(x, x′). Then, w′ = γjw distinguishes
u and z, because w distinguishes x and x′. More-
over, γj ∈ supp(L(u)) because 1A(uγj) = 1 by
Eq. 11, and [L(uγj)] = [A(uγj)] by Eq. 12, and
γj ∈ supp(L(z)) by definition of sift. So, u ̸∈ Acc,
otherwise z would be equal to u. Then, update mod-
ifies the tree as illustrated in Fig. 3, which also satis-
fies Eq. 10.
Proposition 3.1. For any PDFA A, Omit-Zero terminates and computes A.

Proof (Sketch). Correctness of QNT, Eq. 8, and Eq. 10 imply Omit-Zero computes A. Termination
of QNT and Prop. 2.4 imply Omit-Zero terminates.

Example of run Let us consider an LLM that generates real numbers in the interval [0, 1] written
as a starting dot followed by an arbitrarily long sequence of digits. An LLM like this will be used
in the next section as a case study. Fig. 4 shows the sequence of trees and (sketches) of the PDFA
constructed by Omit-Zero (from left to right). The first tree is constructed by InitializeTree: it has a
root λ and a single leaf λ where [ρ0] is the class of L(λ), such that supp(ρ0) = {.}, that is, no other
symbol than . can be concatenated to λ. To construct the PDFA, build adds λ as a state and calls
sift(.) to obtain the transition. Suppose, [L(.)] = [ρ1] ̸= [ρ0], with supp(ρ1) = {3, 8} (say using
samptop2). Therefore, siftupdate adds . as a new leaf and an arc with [ρ1] from λ, together with the
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PDFA transition depicted as a dotted arrow having leaf λ as source and leaf . as target. In the next
step, build searches for the successors of state . calling sift(.3) and sift(.8), discovering two new
leafs (states) and adding the appropriate transitions to the PDFA. Finally, build does not discover
more states, finding that transitions for symbols 0 and 1 in the support of ρ2 from state .3 go to .3
and .8, respectively. For state .8 two self loops are added for symbols 6 and 7.

λ

λ

[ρ0]

λ

λ

[ρ0]

.

[ρ1]

sift(.)

λ

λ

[ρ0]

.

[ρ1]

.3

[ρ2]

.8

[ρ3]

sift(.) sift(.3)

sift(.8)

λ

λ

[ρ0]

.

[ρ1]

.3

[ρ2]

.8

[ρ3]

sift(.)) sift(.3)

sift(.8)

sift(.31)

sift(.30)

sift(.8
7
)

sift(.86)

Figure 4: Sequence of trees and automata obtained with build

Performance experiments We compare Omit-Zero against two instances of QNT, varying the
behavior of the teacher: Standard uses Hopcroft-Karp algorithm Hopcroft & Karp (1971) as EQ
and MQ as in Mayr et al. (2023), while Teacher-Filter checks if the string being queried by
MQ traverses a 0-probability transition, in which case it identifies it as undefined. Omit-Zero
and Teacher-Filter use as EQ an adaptation of Hopcroft-Karp that avoids traversing 0-probability
transitions. The comparison is done by randomly generating PDFA. First, we construct DFA using
the algorithm in Nicaud (2014), which for a given nominal size of n it generates DFA of actual
reachable size normally distributed around n. Then, DFA are transformed into PDFA by assign-
ing a random probability distribution over Σ$ to every state. A parameter θ is used to control the
probability of a symbol to be 0.

Running times as function of θ. 10 random PDFA with n = 500 and |Σ| = m = 20 were gener-
ated for each θ ∈ [0.9, 1), with step 0.02. Each one was run 10 times for every PDFA using quan-
tization equivalence Mayr et al. (2023), adapted to satisfy (4), with parameter κ = 100. Fig. 5(left)
shows Omit-Zero has the best performance, with an almost constant but important improvement
with respect to Teacher-Filter. Fig. 5(right) shows that #JΣ∗K may be significantly smaller than
the upper bound given by Corollary 2.1 when the percentage of 0-probability transitions increases.
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Figure 5: (left) Running times (right) Number of reachable states, as function of θ

To check the effect of θ in a more realistic scenario, Omit-Zero and Teacher-Filter were compared
by learning PDFA from GPT2 for generating real numbers in the range [0,1] sampling from the 994
possible numeric tokens (rather than only digits). This case study will be detailed in Section 4. Both
algorithms were run until 30 states were found. Fig. 6 (left) shows the learning times and Fig. 6
(right) plots the speedup achieved by Omit-Zero for increasing values of θ, obtained by varying r
from 10 to 50, using samptopr and quantization with κ = 100. Noticeable, Teacher-Filter running
times were consistently over 50 minutes while Omit-Zero took decreased from 3 minutes to less
than a minute, and achieving up to 96x speedup.
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Figure 7: Running times as function of n

Running times as function of n. We com-
pared the performance on 10 random PDFA
with n = 250, 500, 750, 1000, and m = 10,
using κ = 10 and θ = 0.9. Each algorithm was
run 10 times for each PDFA.

Fig. 7 shows the median of the execution time
curves for n. We observe that Omit-Zero is
always faster than the other two, achieving a
speedup of approximately 24x and 3x with re-
spect to Standard and Teacher-Filter, respec-
tively, for n = 1000.

4 ANALYZING LARGE LANGUAGE MODELS

Guiding generation Guiding an LLM to generate strings of interest consists in synchronizing it
with a automaton that defines the set of symbols that can be drawn at each step of the generation
process, which could be constrained further by a sampling strategy. To illustrate how the synchro-
nization works, consider the language model given by the PDFA L in Fig. 8 (0-probabilities are
omitted). The guide G is a weighted automaton that defines a mask at each state: a weight of 1 for
a symbol means it is allowed, otherwise it is not. L × G is a weighted automaton whose underlying
structure is the product automaton, and weights are obtained by taking the product of the distribu-
tion of the state of L with the weights of the state of G. To obtain PDFA B, we apply the sampling
strategy samptop2.

q0
1
10

q1
5
10

b/ 2
10

a/ 7
10

b/ 2
10

a/ 3
10

q′0
1

q′1
1

a/1 a/1

b/1

q0, q
′
0

1
8

q0, q
′
1

0
q1, q

′
0

5
8

q1, q
′
1

5
8

a/ 7
8

a/ 7
9

b/ 2
9

a/ 3
8

a/ 3
8

Figure 8: Synchronization: (top left) L (top right) G (bottom) B = samptop2(L × G)

Learning The teacher knows L and G, while the learner only knows the alphabet of G, and its
task is to learn the quotient B of the composition B modulo ≡. Notice that in Fig. 8, B is actually
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not ≡-minimal because (q1, q
′
0) ≡ (q1, q

′
1). As in Mayr et al. (2021), the composition is done on-

demand during learning. Hence, only B is built. Moreover, whenever L is an LLM, it is not possible
to use as EQ the adapted version of Hopcroft-Karp as done in the experiments in Sec. 3. In this
case, Prop. 2.5 enables sampling strings doing random walk from the hypothesis constructed by
Omit-Zero in order to ensure (11).

Tokenizers An LLM, such as GPT2, is a language model whose symbols are usually called to-
kens, denoted O, with BOS, EOS ∈ O special tokens for begin and end of sequence. To actually query
an LLM L : O∗ → ∆(O), a string of characters is transformed into a string of tokens by a tok-
enizer tok : Char∗ → O∗. As an example, consider Huggingface Tokenizer2. It provides a
parameterized tokenizer for various language models. An actual tokenizer is obtained by instanti-
ating the values of the parameters. Table 1 illustrates the effect of changing the value of parameter
add prefix space for GPT2. Therefore, in order to guide an LLM with an automaton G, we need
to fix tok and also map the symbols Σ of G to O∗, by a function str : Σ → Char∗. We define
σ⌢ ≜ tok(str(σ)), and $

⌢

≜ EOS. Now, we must define the probabilities of symbols which are mapped

Symbol Char∗
Prefix space No prefix space

Tokens Decoded Tokens Decoded
medicine ‘medicine’ 9007 ‘ medicine’ 1150, 291, 500 ‘med’, ‘ic’, ‘ine’

Table 1: Results obtained with two tokenizer instances for GPT2

to a sequence of tokens, such as medicine when add prefix space is false. In this case, we define
its probability as the product of the outputs of the LLM for the list of tokens generated by tok.
Formally, let λ

⌢

≜ tok(BOS), and uσ⌢ ≜ u⌢σ⌢. Lstr,tok : Σ
∗ → ∆(Σ$) is defined as follows:

Lstr,tok(u)(σ) =
∏|σ⌢|

i=1
L(u⌢σ⌢<i)(σ

⌢
i) (13)

Case study 1 We run Omit-Zero on GPT2 using the guiding automaton G1 of Fig. 11(a) with
samptop2 for both tokenizers. This automaton corresponds to the regex in Kuchnik et al. (2023). The
goal is to analyze bias on different professions, namely, medicine, art, computer science, science,
information systems, math, engineering, social sciences, humanities, business, after ‘The man was
trained in’ and ‘The woman was trained in’. For convenience str(trained ) is ‘was trained in’. Table 2
shows the results obtained for the states of interest in the learnt PDFA, which vary considerably
depending on the tokenizer.

Access string With prefix space No prefix space
Symbol 1 Symbol 2 Symbol 1 Symbol 2

The.man.trained medicine 0.57 engineering 0.43 art 0.72 math 0.28
The.woman.trained medicine 0.65 business 0.35 art 0.80 engineering 0.20

Table 2: Probabilities of samptop2(GPT2× G1) for different tokenizers.

Case study 2 To study the fidelity of sampling with a learnt PDFA we ran two experiments. First
we compare the distributions obtained by guided sampling 10K real numbers in [0, 1] directly on
GPT2 and on a PDFA obtained with Omit-Zero by composing GPT2 with the G2 (Fig. 11(b)) that
allows only digits 0, . . . , 9. Second, we use a guiding automaton which allows all 994 numeric to-
kens of GPT2 and compare the resulting PDFA also with Outlines (Willard & Louf (2023)). PDFA
were obtained using quantization equivalence with κ = 100 and time bounds of 30 and 300 secs, re-
spectively. Fig. 9 shows the resulting distributions for the first experiment. The χ2 and Kolmogorov-
Smirnov (KS) tests for equality of distributions give the following pvalues: 0.64 for χ2 with 10 bins,
0.49 for χ2 with 20 bins, and 0.86 for KS. The KS pvalue for the length distributions is 0.99. This
confirms the PDFA very accurately approximates the distribution of the language model.

2https://huggingface.co/docs/transformers/main_classes/tokenizer
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Figure 9: Distributions of real numbers and the lengths of their representing strings (digit sampling).

Fig. 10 exhibits the resulting distributions for the second experiment. For 10 bins, the χ2 pvalue
for PDFA vs GPT2 is 0.76 and for Outlines vs GPT2 is 3 × 10−33, showing that sampling from
the PDFA is more accurate than Outlines for the first digit. However, for 20 bins χ2 and KS (real
numbers and lengths), pvalues are extremely small. It is worth to mention that summing up genera-
tion and sampling time our approach is faster than Outlines for 10K samples, with 308 vs 400 secs,
respectively.

Figure 10: Distributions of real numbers and the lengths of their representing strings (token sampling).

5 CONCLUSIONS

This work was motivated by the need of understanding LLM when their operation is controlled by
external artifacts, such as grammars, to generate text following a specific format. An important
question that arise in this context is how to deal with 0-probabilities that appear when restricting
their output. To start up with, we revised the congruence (2) in order to make constructing the
quotient less dependent on P by expressing it in terms of the output of the language model. The
first consequence of this operational view is to allow a generalization of the congruence capable
of dealing with equivalences on distributions. Besides, it led to developing a variant of the QNT
active-learning algorithm to efficiently learn PDFA by avoiding to check for 0-probability transitions
as much as possible. This is essential to make it computationally feasible by reducing the number
of queries to the LLM.

The experimental results support the viability of our approach for analyzing and validating statistical
properties of LLM, such as bias in text generation. Besides, they provided evidence that distributions
resulting from generation of a guided LLM could be well approximated by a learnt PDFA. This
opens the door to make these analyses less dependent on sampling by studying properties of the
PDFA.
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A PROOF OF PROPOSITION 2.1

The goal of this section is to prove the existence of the probability measure P on Σ∗∪Σω satisfying
the statement of Proposition 2.1. To this end, the first step is to apply Kolmogorov’s Extension
Theorem (see Shields (1996) Thm.I.1.2) to construct a probability measure P̂ defined on the space
of infinite sequences

Σω
$ ≜ {(σi)

∞
i=1 : σi ∈ Σ$for all i ≥ 1}

that include $ (at any position) as a valid symbol. The measure P̂ is defined over the σ-algebra
generated by the cylinder sets Cyl

(
Σω

$

)
, where C ∈ Cyl

(
Σω

$

)
if and only if there exists m ≤ n and

am, . . . , an ∈ Σ$ such that C = {(σi)
∞
i=1 : σi = ai for m ≤ i ≤ n}.

The second step is to embed Σ∗ ∪Σω into Σω
$ by adding at the end of every finite sequence in Σ∗ an

infinite number of terminal symbols and show that P̂ concentrates its measure on it. More precisely,
if we consider the event

A =
{
x ∈ Σω

$ : ∀k ≥ 1 if xk = $ then xk+1 = $
}
, (14)

it can be identified with Σ∗ ∪ Σω and P̂ {A} = 1.

Proof. We first extend the definition of L in order to include finite words that contain the termination
symbol. Let L$ : Σ∗

$ → ∆(Σ$) be defined as follows

L$(w) =

{
L(w) if w ∈ Σ∗

δ$ if w ∈ Σ∗
$ \ Σ

∗
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where δ$ is the probability distribution on Σ$ that concentrates its measure on the terminal symbol:
δ$(σ) = 0 for all σ ∈ Σ and δ$($) = 1.

Then, for each k ≥ 1, we define the finite dimensional distribution Pk : Σk
$ → [0, 1] as

Pk {w} =

k∏
i=1

L$(w<i)(wi)

where we denote w<i = σ1 · · ·σi−1 if w = σ1 · · ·σk, with the convention that w<1 = λ the empty
string. Let us show that {Pk}k≥1 is a consistent family of finite dimensional distributions:∑

σk+1

Pk+1{wσk+1} =
∑
σk+1

Pk{w}L$(w)(σk+1) = Pk{w}
∑
σk+1

L$(w)(σk+1) = Pk{w}

By the Kolmogorov Extension Theorem (see Shields (1996) Thm.I.1.2) there exists a unique proba-
bility measure P̂ in Σω

$ such that P̂ {C} = Pk{C} for any cylinder set C ∈ Cyl
(
Σω

$

)
of the form

C = {(σi)
∞
i=1 : σi = ai for 1 ≤ i ≤ k}. Notice that C =

{
x ∈ Σω

$ : w ∈ pref(x)
}

if we take
w = a1 · · · ak, so these cylinder sets coincide with the prefixes set. In particular

P̂
{
x ∈ Σω

$ : w ∈ pref(x)
}
= Pk{w}

for all k ≥ 1 and any w ∈ Σk
$ .

Consider now the event A defined in (14) that can be identified with Σ∗ ∪ Σω . Let us show that P̂
concentrates its measure in A, i.e. P̂ {A} = 1. The complement of A is

B =

∞⋃
k=1

Bk, Bk = {x ∈ Σω
$ : xk = $ and xk+1 ̸= $}

and Bk is the finite disjoint union of the cylinders of the form Cw,σ = {x ∈ Σω
$ : w$σ ∈ Pref(x)}

with w ∈ Σk−1
$ and σ ∈ Σ. Therefore

P̂ {Bk} =
∑
w,σ

P̂ {Cw,σ} =
∑
w,σ

Pk+1{Cw,σ} =
∑
w,σ

Pk−1 {w}L$(w)($)���*0
δ$(σ) = 0

and the union bound shows that P̂ {B} ≤
∑∞

k=1 P̂ {Bk} = 0.

We define P to be the restriction of P̂ to A. Let us show that the P probability of a prefix set is
determined by the function P as in the statement. Consider a string w ∈ Σ∗ of length k ≥ 1. Since
the event {x ∈ Σ∗ ∪ Σω : w ∈ pref(x)} equals the cylinder Ck = {x ∈ Σω

$ : w ∈ pref(x)}
intersected with A, and A has probability one, we have

P
{
x ∈ Σ∗ ∪ Σω : w ∈ pref(x)

}
= Pk{Ck} =

k∏
i=1

L$(w<i)(wi) =

k∏
i=1

L(w<i)(wi) = P(w) .

In the case w = λ, the event {x ∈ Σ∗ ∪Σω : w ∈ pref(x)} equals A and its probability is therefore
1 as it is the case for P (λ).

Finally, let us compute the probability of occurrence of a given finite string w ∈ Σ∗. This string
corresponds to the infinite sequence w$$$ · · · in Σω

$ , which in turn equals the decreasing intersection
of the cylinders Cw,n = {x ∈ Σω

$ : w($)n ∈ pref(x)}. Therefore

P
{
w
}
= P

⋂
n≥1

Cw,n

 = lim
n→+∞

 |w|∏
i=1

L(w<i)(wi)

L(w)($)

�
�

�
�

��>
1n−1∏

j=0

δ$($)

 = P$(w)

This concludes the proof.
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B PROOF OF PROPOSITION 2.2

Proof. Let u and v in Σ∗ be arbitrary.

Assume first that u ≡ v.

If 1L(u) = 0, then the lhs of (2) is undefined for any w ∈ Σ∗. Then 1L(v) = 0 since otherwise the
rhs of (2) would be a number for any w ∈ Σ∗ (for instance, it would be equal to 1 for w = λ). By
symmetry if 1L(v) = 0 then 1L(u) = 0. Therefore 1L(u) = 1L(v).

Moreover, if 1L(u) = 1L(v) = 0, then 1L(uw) = 1L(vw) = 0 for all w ∈ Σ∗ and there is nothing
more to check.

Suppose that 1L(u) = 1L(v) = 1 so that both sides of (2) are defined for any w ∈ Σ∗. Notice also
that in this case (2) implies 1L(uw) = 1L(vw) for all w ∈ Σ∗. By definition of P we can rewrite
(2) as follows:

|w|∏
i=1

L (uw<i) (wi) =

|w|∏
i=1

L(v w<i)(wi) (15)

for any w ∈ Σ∗ with length |w| ≥ 1. In particular, varying w = σ ∈ Σ in (15) and noticing that
L(u) and L(v) are distributions over Σ$, we see that L(u) = L(v).
We will now prove by induction on the length |w| that L(uw) = L(vw) whenever 1L(uw) =
1L(vw) = 1. We already proved the claim for |w| = 0, so suppose it holds true for length ≤ n. Let
w be such that |w| = n+ 1 and let σ ∈ Σ be such that 1L(uwσ) = 1L(vwσ) = 1. Since all terms
involving the products in (15) are positive, and by induction hypothesis L(uw<i) = L(v w<i) for
all i = 1, . . . , n, all these terms cancel out leaving the equality L(uw)(σ) = L(vw)(σ). Since
σ ∈ Σ is arbitrary and L(uw) and L(vw) are probability distributions, we see again that they must
be equal.

Assume now 1L(u) = 1L(v) and ∀w ∈ Σ∗. 1L(uw) = 1L(vw) = 1 =⇒ L(uw) = L(vw).
If 1L(u) = 1L(v) = 0, then the quotients in (2) are undefined and equality holds trivially for all
w ∈ Σ∗.

Let us suppose then that 1L(u) = 1L(v) = 1. We first prove that 1L(uw) = 1L(vw) for all
w ∈ Σ∗. In fact, if on the contrary there exists w ∈ Σ∗ so that 1L(uw) ̸= 1L(vw), then there exists
w′ ∈ pref(w) with 1L(uw

′) = 1L(vw
′) = 1 but L(uw′) ̸= L(vw′) because they have different

support. This contradicts our assumption.

Let w ∈ Σ∗ be so that 1L(uw) = 1L(vw) = 1. Then for all prefix w<i we also have 1L(uw<i) =
1L(vw<i) = 1, and therefore L(uw<i) = L(vw<i). In particular, all the terms in (15) are equal
and therefore (2) holds.

This completes the proof that u ≡ v.

C GUIDING AUTOMATA AND LEARNED PDFA FOR CASE STUDIES 1 AND 2

q0
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trained/1
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dot/1 0 . . . 9/1

0 . . . 9/1
Figure 11: Guiding automata:(above) G1 for man-woman case study (below) G2 for digits case study
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Figure 12: PDFA learned for man-woman case study (with prefix space tokenizer)
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