
Published in Transactions on Machine Learning Research (10/2025)

Uncertainty-aware Reward Design Process

Yang Yang yangyang2025@ia.ac.cn
National Key Laboratory of Cognition and Decision Intelligence for Complex Systems, Institute of Automation, Chinese
Academy of Science

Xiaolu Zhou 202321130108@mail.bnu.edu.cn
School of Mathematical Sciences, Beijing Normal University

Bosong Ding B.Ding_3@tilburguniversity.edu
Air-Lab, Tilburg University

Miao Xin∗ miao.xin@ia.ac.cn
National Key Laboratory of Cognition and Decision Intelligence for Complex Systems, Institute of Automation,
Chinese Academy of Science

Reviewed on OpenReview: https: // openreview. net/ forum? id= CId5tW1HxR

Abstract

Designing effective reward functions is a cornerstone of reinforcement learning (RL), yet
it remains a challenging process due to the inefficiencies and inconsistencies inherent in
conventional reward engineering methodologies. Recent advances have explored leveraging
large language models (LLMs) to automate the design of reward functions. However, LLMs’
insufficient numerical optimization capabilities often result in suboptimal reward hyperparam-
eter tuning, while non-selective validation of candidate reward functions leads to substantial
computational overhead. To address these challenges, we propose the Uncertainty-aware
Reward Design Process (URDP), a novel framework that integrates large language models to
streamline reward function design and evaluation. URDP quantifies candidate reward function
uncertainty based on the self-consistency analysis, enabling simulation-free identification
of ineffective reward components while discovering novel ones. Furthermore, we introduce
uncertainty-aware Bayesian optimization (UABO), which incorporates uncertainty estimation
to improve the hyperparameter configuration. Finally, we construct a bi-level optimization
framework by decoupling the reward component optimization and the hyperparameter tuning.
URDP promotes the collaboration between the reward logic reasoning of the LLMs and the
numerical optimization strengths of the Bayesian optimization. We conduct a comprehensive
evaluation of URDP across 35 diverse tasks spanning three benchmark environments: Isaac-
Gym, Bidexterous Manipulation, and ManiSkill2. Our experimental results demonstrate
that URDP not only generates higher-quality reward functions but also achieves significant
improvements in the efficiency of automated reward design compared to existing approaches.
We open-source all code at https://github.com/Yy12136/URDP.

1 Introduction

In reinforcement learning (RL), the design of reward functions serves as a pivotal determinant for successfully
training agents in sequential decision-making tasks. These rewards guide the learning process by shaping
agent behaviors to accomplish complex objectives across diverse environments. While conventional approaches
such as reward engineering and inverse reinforcement learning (IRL) (Arora & Doshi, 2021) established early
research paradigms, they remain fundamentally constrained by their reliance on human expertise and the

∗Corresponding authors.

1

https://openreview.net/forum?id=CId5tW1HxR
https://github.com/Yy12136/URDP

Published in Transactions on Machine Learning Research (10/2025)

availability of high-quality demonstration data, particularly in domains like robotic skill acquisition (Zitkovich
et al., 2023). Recent advancements in large language models (LLMs) (Radford et al., 2019; Brown et al.,
2020; Liu et al., 2024) have demonstrated remarkable capabilities in natural language understanding, code
generation, and contextual optimization, thereby introducing a novel paradigm for automated reward function
design.

However, current automated reward design methodologies based on LLMs present two fundamental chal-
lenges (Cao et al., 2024). First, the efficiency of reward function design remains suboptimal. Existing
approaches rely heavily on simulation-based training processes (Ma et al., 2024a) to evaluate reward function
efficacy, which involves extensive and often redundant evaluations, leading to significant computational
overhead. Second, the performance of LLM-generated reward functions frequently falls short of expectations.
During the optimization process, LLMs fail to fully leverage their reasoning capabilities, resulting in reward
functions that inadequately capture the intended task objectives. Given that the design efficiency and the
performance of reward functions are closely tied to the speed and effectiveness of policy learning, a key
research question emerges: How can we enhance the efficiency of obtaining performant reward functions?

In this paper, we introduce the Uncertainty-aware Reward Design Process (URDP), a novel framework for
automated reward function generation. First, we propose a method to quantify the uncertainty of generated
samples, which enables the selective elimination of redundant reward function sampling and simulation. This
approach is grounded in a key observation regarding self-consistency (Wang et al., 2022): LLMs exhibit higher
output consistency when handling well-defined tasks, allowing for more efficient sampling strategies. Second,
we identify a critical limitation in current LLM-only evolutionary search approaches, i.e., their suboptimal
performance in numerical optimization. To address this, we decouple reward component formulation from
reward intensity optimization, delegating the latter to a dedicated numerical optimization module. Specifically,
we propose a novel uncertainty-aware Bayesian optimization (Snoek et al., 2012) approach incorporating
uncertainty distribution priors, which significantly accelerates convergence in this black-box optimization task.
Experimental results demonstrate that URDP surpasses state-of-the-art methods in both reward performance
and computational efficiency, establishing a new benchmark for automated reward design.

Overall, our contributions are summarized as follows: (1) We propose URDP , a novel framework for automated
reward function design in reinforcement learning. The framework employs an alternating bi-level optimization
process that decouples reward component design from hyperparameter optimization, thereby significantly
enhancing reward function performance. (2) We introduce a self-consistency-based reward uncertainty
quantification method for the reward component design process. This approach significantly improves the
efficiency of the reward component validation. (3) We present an Uncertainty-aware Bayesian optimization
algorithm that substantially increases the efficiency of hyperparameter search. (4) Our comprehensive
evaluation across 35 tasks spanning 3 distinct benchmarks demonstrates that URDP consistently outperforms
existing methods in both reward function generation efficiency and final policy performance, as evidenced by
rigorous quantitative analysis.

2 Related work

Reward code generation. The automation of reward code generation has been a critical area of research,
aiming to simplify and improve the process of defining task-specific reward functions for RL. As the dual
formulation of RL problems, inverse reinforcement learning (IRL) methods (Arora & Doshi, 2021) have
been extensively investigated for reward function acquisition. However, these approaches are fundamentally
limited by their dependence on demonstration data, which severely constrains their scalability in practical
applications. Recently, LLM-based reward design methodologies (Kwon & Michael, 2023; Yu et al., 2023;
Ma et al., 2024a; Xie et al., 2024) have demonstrated promising potential, offering a paradigm shift in
automated reward function development. L2R (Yu et al., 2023) introduced a two-stage LLM-prompting
framework to generate templated rewards, bridging high-level language instructions with low-level robot
actions. Eureka (Ma et al., 2024a) leveraged the zero-shot and in-context learning capabilities of advanced
LLMs to perform evolutionary optimization over the reward code. This method demonstrated the potential
of LLMs to generate rewards without task-specific prompting or predefined templates, enabling agents to
acquire complex skills via RL. Text2Reward (Xie et al., 2024) extended this line of work by generating shaped,

2

Published in Transactions on Machine Learning Research (10/2025)

dense reward functions as executable programs grounded in compact environment representations. Unlike
sparse reward codes or constant reward functions, Text2Reward produces interpretable, dense reward codes
capable of iterative refinement with human feedback. Despite their success, these methods generally do not
separate the tasks of defining reward components and tuning parameters, which may reduce the efficiency
of automated reward design. Our proposed framework decouples diverse factors in reward design to reduce
invalid tuning. It incorporates uncertainty quantification to guide LLMs toward more focused analysis and
refinement of reward logic relevance.

Hybrid optimization. Recent advances in large language models (LLMs) (OpenAI, 2023; Liu et al., 2024)
have demonstrated remarkable progress in text-based complex reasoning tasks (Li et al., 2025). Through
techniques such as self-improvement (Song et al., 2023), multi-path reasoning (Wan et al., 2024) and reward
modeling (Zhong et al., 2025), LLMs exhibit substantial potential in contextual comprehension (OpenAI,
2023), code generation (Yu et al., 2024) and task planning (Hao et al., 2023). However, their capabilities
in deep logical reasoning (Cheng et al., 2025), particularly in mathematical and numerical optimization
domains (Yan et al., 2025), remain underexplored, with significant performance gaps persisting. Several
studies attempt to employ LLMs as meta-optimizers for diverse optimization problems (Yang et al.). Yet,
due to their inherently discrete representation nature, LLMs’ effectiveness in high-dimensional, continuous
numerical reasoning tasks requires further investigation (Assran et al., 2025). In reinforcement learning, the
reward design inherently involves multiple types of optimization problems. Unlike completely LLM-only
evolutionary search approaches (Ma et al., 2024b; Xie et al., 2024) that utilize LLM-based evolutionary
search to optimize all elements in the reward function, URDP only applies it to the optimization of reward
components, while a black-box numerical optimization tool is introduced to compensate for the limitations of
LLMs in continuous numerical optimization.

Uncertainty quantification. Uncertainty quantification (UQ) serves as a fundamental component for reliable
automated decision-making and has been extensively studied in domains such as Bayesian inference (Gal
& Ghahramani, 2015; Foong et al., 2020). Recent advances have investigated UQ in black-box language
models (Liu et al., 2025; Geng et al., 2024; Kuhn et al., 2023; Lin et al.), yielding various approaches
including token-level entropy methods (Kadavath et al., 2022), conformal prediction-based techniques (Su
et al., 2024), and consistency-based frameworks (Lin et al.). While existing methods primarily leverage
uncertainty estimation to enhance LLM interpretability (Ahdritz et al., 2024) and mitigate hallucination
risks (Shorinwa et al., 2024; Mohri & Hashimoto, 2024), our methodology not only actively quantifies the
uncertainty in LLMs but also strategically leverages this uncertainty as the foundational mechanism for both
reward function design and efficient numerical optimization. Furthermore, we identify and characterize a
significant correlation between the novel reward component and its uncertainty.

3 Preliminary: problem setup and notations

Reinforcement learning (RL) tasks can be modeled as Markov Decision Processes (MDPs) defined by the
tuple ⟨S,A,P,R, γ⟩, where S is the state space, A is the action space, R is the space of reward functions,
R ∈ R is the reward function, and γ is the discount factor. P (st+1|st, at) ∈ P is the transition probability of
moving to state st+1 given the current state st and action at, where P is the transition probability space.
The agent can generate a trajectory of state and action τ = (s0, a0, s1, a1, ...) by executing a policy π(at|st)
in the policy space Π. The goal is to find the optimal policy that maximizes the sum of expected returns:

J(π) = Eτ∼π

 T∑
t=0

γtR(st, at)

 . (1)

Following the previous works (Song et al., 2023; Ma et al., 2024a; Xie et al., 2024), the reward function R is
represented as a function of the reward components (r) and the reward intensities (θ)

R(s, a) = h(r, θ, s, a), (2)

where the function h and the reward components r are represented in code form. Here, the reward
components r are defined as the composable and interpretable sub-terms that constitute the overall reward

3

Published in Transactions on Machine Learning Research (10/2025)

function Escontrela et al. (2022), each measuring a specific behavioral aspect or task objective. For instance,
distance_reward measures the agent’s proximity to the target, while velocity_reward quantifies the
alignment of its velocity toward the goal direction. These components are implemented as modular units,
enabling both structural manipulation and numerical tuning during the optimization process (see the
highlighted red text in the example of Appendix D.1). The reward intensity refers to the weight of a reward
component within the total reward. Designing reward functions represented in code form is critical to aligning
agent behavior with task objectives. Here, the reward design problem is defined as follows.

Definition 1: Reward design problem (RDP) (Singh et al., 2009). A reward design problem is
represented as RDP = ⟨M,R, πM , F ⟩, where M = (S, A, P) is the environment model. R is the space of
reward functions and Π is the space of polices. AM (·) : R → Π is an algorithm to optimize the reward
function R ∈ R. F : Π → R is the fitness function that produces a scalar evaluation of the RL policy
π : S → A using the ground truth reward function. The goal of an RDP is to generate a reward function
R ∈ R using AM (R) to achieve the highest fitness score F (AM (R)).

Evaluating the performance of a designed reward function necessitates computationally expensive simulations
(training a policy π using the designed R). Notably, the original definition of RDP does not impose constraints
on sample efficiency. In this work, our objective is to output a reward function code R for a given task
context such that F (AM (R)) is maximized while maximizing sample efficiency throughout the automatic
reward design process.

Bayesian optimization (BO) is a sequential design strategy for global optimization of black-box func-
tions (Shahriari et al., 2015; Snoek et al., 2012). Given a black-box function f : X→ R, Bayesian optimization
aims to find an input x∗ ∈ argminx∈Xf(x) that globally minimizes f . It places a prior p(f) over the objective
function f to form a surrogate model (usually a Gaussian process (Wang et al., 2024)). An acquisition
function (e.g., the Expected Improvement (EI) (Ament et al., 2023)) ap(f) : X→ R strategically determines
the direction of the search for sampling points. The algorithm iteration proceeds in the following three steps:
(1) find the most promising xn+1 ∼ argmax ap(x); (2) evaluate the function yn+1 = f(xn+1) and update the
set of historical observations Dn = (xj , yj)j=1...n by adding the point (xn+1, yn+1), and (3) update p(f |Dn+1)
and ap(f |Dn+1).

4 Methods

The Uncertainty-aware Reward Design Process (URDP) framework incorporates three fundamental elements: (1)
Decoupling of the reward component and reward intensity design processes, (2) Reward component generation
based on uncertainty quantification, and (3) Uncertainty-aware Bayesian optimization. URDP enhances
the efficiency of reward design by minimizing redundant simulations while improving the performance of
generated reward functions through the integration of numerical optimization techniques within the decoupled
optimization framework.

4.1 Decoupled Reward Generation and Hyperparameter Optimization

Large language models possess extensive commonsense knowledge about task rewards, enabling them to
surpass human-level performance in designing reward components (Yu et al., 2023; Ma et al., 2024a; Xie
et al., 2024) for certain tasks. However, their capability in black-box numerical optimization remains inferior
to specialized numerical optimization algorithms (see Section 5.4 Abl-3 for an ablation study). Consequently,
existing methods (Ma et al., 2024a) that conflate the optimization of reward components with reward
intensities not only yield suboptimal numerical optimization results but also lead to insufficient optimization
of the reward components.

URDP framework. Building upon these observations, we propose a decoupled reward function design process.
As illustrated in Figure 1, URDP implements a bi-level iterative optimization procedure. Given the environment
specifications and task descriptions, the agent first samples multiple reward functions from the LLM in the
outer loop. It ranks them using uncertainty quantification metrics and filters out redundant or potentially
unreliable rewards through a process termed Reward Code Sampling with Uncertainty Screening. Subsequently,
the agent invokes the proposed numerical optimization tool (UABO) in the inner loop to determine optimal

4

Published in Transactions on Machine Learning Research (10/2025)

Figure 1: URDP implements an alternating bi-level iterative optimization framework for automated reward
design problems (RDP). The outer-loop optimization employs LLMs to refine reward components, where
uncertainty quantification significantly enhances sampling efficiency. Concurrently, the inner-loop optimization
utilizes Uncertainty-Aware Bayesian Optimization (UABO) to determine optimal hyperparameter configu-
rations for the reward components. The decoupled architecture strategically leverages the complementary
strengths of LLMs in conceptual reward design and numerical optimization tools in precise parameter tuning,
achieving synergistic improvements in both final policy performance and computational efficiency.

reward intensity hyperparameters for the current reward configuration through black-box optimization and
simulation-based evaluation. Finally, the agent evaluates the feasibility of the current reward components
and constructs a feedback prompt to refine them. The feedback available to the process is encapsulated in a
structured prompt sent to the LLM. This prompt involves task-level indicators such as success rate and episode
length, component-level statistics (mean, max, and min values of each reward component), sample-level
statistics (uncertainty scores, standard deviation, and range), information about the best-performing reward
functions, and adjustment suggestions for refining the reward design. An example of the feedback information,
along with the full templates of both the initial and feedback prompts, is provided in App. A. In essence, the
outer loop optimizes the reward components while the inner loop tunes reward intensity hyperparameters,
with their alternating optimization progressively converging toward optimal reward functions. See Alg. 1 for
pseudocode.

4.2 Reward Code Sampling with Uncertainty Screening

In LLM-based RDP, automated reward function design can be achieved through iterative sampling and
simulation. However, existing approaches indiscriminately conduct simulation-based evaluation on all LLM-
generated reward function samples, despite the frequent presence of redundant or infeasible candidates within
these samples. Our analysis identifies this as a critical factor contributing to computational inefficiency
(see results in Section 5.4 Abl-1). Consequently, an essential question emerges: how to effectively filter out
potentially redundant reward function samples before simulations, thereby avoiding computationally expensive
yet unnecessary simulation training.

Uncertainty priority. Our sampling approach is grounded in the principle of self-consistency (Wang et al.,
2022) in LLMs. When explicitly prompted to generate diverse outputs, LLMs that produce highly consistent
responses demonstrate well-internalized, task-specific knowledge. Such outputs exhibit high reliability and
typically require minimal refinement. Conversely, if the generated results show substantial diversity, this
indicates uncertainty in the understanding of the task context and underlying concepts. These divergent
results exhibit lower reliability and consequently demand more refinement.

5

Published in Transactions on Machine Learning Research (10/2025)

Sampling and filtering. Based on this principle, the agent prompts the LLM to generate diverse reward
components for a given RL task. The uncertainty score of each reward component for the reward function
is quantified by its occurrence frequency across all sampled candidates. To quantify the uncertainty of the
reward component, URDP identifies and resolves ambiguities in reward components using LLMs. It combines
textual similarity and semantic similarity analyses to evaluate the relevance and clarity of reward components,
assigning the reward component uncertainty score Uri,m

to each reward component ri,m as

Uri∈K,m∈Mi
= 1−

∑
i∈[1,K]

(u
(
max(Stext(ri,m), Ssemantic(ri,m))− ω

)
)/K, (3)

where u (·) is a step function, K denotes the quantity of the reward function samples, Mi is the number of
reward components in the reward function Ri, ω is a decision parameter regarding the maximum similarity
(ω = 0.95), Stext ∈ (0, 1] and Ssemantic ∈ (0, 1] are the textual and semantic similarity scores, respectively.
Furthermore, the normalized sample uncertainty score URi is computed to evaluate the overall uncertainty
of each reward function sample Ri. Implementation details and hyperparameter settings are elaborated in
App. C. Using URi

, the agent filters out samples containing identical reward components, thereby eliminating
redundant inner-loop optimization processes that would otherwise incur unnecessary computational overhead.
Moreover, our analysis reveals that highly uncertain reward components may contain unexplored components
capable of facilitating effective reward shaping (see Section 5.5 Disc-2). Consequently, the agent implements an
adaptive exploration-exploitation strategy, i.e., using Ninner ·URi

to adjust the maximum number of iterations
in the inner loop, where Ninner is the upper limit. For high-uncertainty samples, it allocates additional inner-
loop iterations to prioritize exploration of optimal hyperparameter configurations for potentially novel reward
components. For low-uncertainty samples, it emphasizes exploitation to minimize unnecessary simulations.
This approach balances the trade-off between the exploration and utilization of uncertain reward components.

4.3 Uncertainty-aware Bayesian Optimization

While large language models demonstrate significant potential for reward component design, they exhibit
suboptimal performance in numerical optimization tasks (see results in Section 5.4 Abl-3). This limitation
leads to non-optimal reward intensity configurations in LLM-generated reward functions, representing a
key factor in the poor policy learning performance observed in prior approaches. In contrast to existing
methods, our URDP framework does not rely on LLM-based agents for direct numerical optimization. Instead,
the agent serves as a controller that coordinates specialized numerical optimization tools. Specifically, URDP
delegates the inner-loop optimization of reward intensity parameters to Bayesian optimization (BO) algorithms.
Benefiting from BO’s superiority in black-box global optimization, this approach achieves significantly better
performance than LLM-based optimization.

Although the classical Bayesian optimization algorithm, i.e., Gaussian Process with Expected Improvement
(EI) (Ament et al., 2023; Snoek et al., 2012), demonstrates theoretical advantages, its practical efficiency
remains unsatisfactory, particularly due to the substantial computational overhead incurred by acquisition
functions during sampling (simulation training). This inefficiency frequently prevents convergence to globally
optimal solutions within an acceptable number of samplings. Notably, the uncertainties of individual
reward components imply valuable prior knowledge for enhancing BO’s sampling efficiency. Given a reward
function comprising m components, we model the m reward intensities as a joint probability distribution.
Crucially, higher uncertainty in {ri,1, ..., ri,m} corresponds to a more uniform marginal distribution along
that dimension. This observation suggests that sampling should prioritize exploitation over exploration in
high-uncertainty dimensions. Building upon this smoothness assumption, we propose Uncertainty-aware
Bayesian optimization (UABO) to address these limitations.

UABO incorporates reward component uncertainty scores, Uri
= {Uri,1 , ..., Uri,m

}, into both the kernel
function and the acquisition function of the standard Bayesian optimization. The Matern kernel in the
Gaussian process has the form

k(p, p′) = fν(d) = σ2 · 21−ν

Γ(ν)

(√
2νd

ℓ

)ν

Kν

(√
2νd

ℓ

)
, (4)

6

Published in Transactions on Machine Learning Research (10/2025)

where d is the Euclidean distance between p and p′, σ2 is the variance, ν is the smoothness parameter, ℓ
is the length scale parameter and Kν is the modified Bessel function of the second kind. We note that the
kernel is isotropic, which means that all dimensions (i.e., the intensity parameters of reward components)
share the same length scale parameter. To accommodate heterogeneous smoothness (uncertainty score U(ri))
across different dimensions, we propose an anisotropic kernel function that incorporates uncertainty values as
length scales within the distance metric. The distance is formulated as follows,

du(θt−1
i , θt

i) =

√√√√(θt−1
i,1 − θt

i,1

Uri,1

)2

+ · · ·+
(

θt−1
i,m − θt

i,m

Uri,m

)2

, (5)

where θt−1
i and θt

i are reward intensity hyperparameters for the reward components ri in two iterations. Then
the new kernel function is defined as

k̃(θt−1
i , θt

i) = fν(du) = σ2 · 21−ν

Γ(ν)

(√
2νdu

URi

)ν

Kν

(√
2νdu

URi

)
. (6)

Furthermore, we leverage Uri
to enhance the performance of the acquisition function. The standard Expected

Improvement (EI) acquisition function (Ament et al., 2023) in Bayesian Optimization is as follows,

EIy⋆(x) = Ef(x)∼N (µ(x),σ2(x))
[
[f(x)− y⋆]+

]
= σ(x)h

(
µ(x)− y⋆

σ(x)

)
, (7)

where [·]+ = max(0 , ·), y⋆ = maxi yi is the best observed value, and h(z) = ϕ(z) + zΦ(z), ϕ is the standard
normal distribution density and Φ is the distribution function. In our context, y is the agent success rate
from the simulation RL training, and x is the reward intensities θi. The objective of EI is to decide the next
promising reward intensity parameters for the next round of simulation.

To reduce inefficient exploration along directions with potentially insignificant influence on the function value,
we introduce a penalty term that constrains the weighted distance between the candidate point and the
current optimum, yielding an uncertainty-accelerated EI acquisition function (uEI) defined as

uEIy⋆(θi, Uri) = EI(θi) · w(θi), (8)

w(θi) = exp

− Mi∑
m=1

Uri,m
(θi − θ∗

i)2

 , (9)

where w(θi) is a penalty term to constrain the weighted distance between θi and the current best θ⋆
i .

Specifically, an uncertainty value approaching zero for a particular dimension indicates no restriction on
variations along that dimension. Conversely, a large uncertainty weight in a certain direction implies that
extensive exploration in that direction is discouraged. UABO demonstrates significantly improved convergence
efficiency (see Section 5.4 Alb-3), reaching optimal values within limited hyperparameter search steps, thereby
substantially enhancing the performance and effectiveness of reward intensity configuration. A formal proof
of its convergence lower bound is provided in App. F.

5 Experiments

In this section, we evaluate the proposed URDP framework through extensive experiments on a diverse set of
environments and tasks, comparing its performance against human and baseline approaches. All experiments
and comparative analyses presented in this paper utilize DeepSeek-v3-241226 (Liu et al., 2024) as the
foundational model unless explicitly stated otherwise (see App. G.2 for more open-source LLMs’ results).

5.1 Baselines

Eureka (Ma et al., 2024a) (Baseline) provides a systematic approach for generating reward functions utilizing
LLMs. It incorporates feedback from various evaluation results to refine the reward functions via evolutionary
iterations. This iterative process continues until an optimal reward function is achieved.

7

Published in Transactions on Machine Learning Research (10/2025)

Algorithm 1: Uncertainty-aware Reward Design Process
Input: Task description T , Environment code E, LLM L.
Output: Optimized reward function R∗.
foreach iteration n ∈ Nouter do

Generate K reward component samples ri = {ri,1, ri,2, . . . , ri,m}i∈K using L(T, E, prompt)
Uncertainty quantification: Uri

= {Uri,1 , . . . , Uri,m
} and URi

Filter out redundancies and reserve Ri∈K∗

foreach Ri, t = 1, 2, . . . Ninner · URi do
Fit probabilistic model for f(θi) on data Di,t−1
Choose θt

i by maximizing the acquisition function uEI(θi, Uri
)

Evaluate by simulation training yi,t = f(θt
i)

Augment the data Di,t = Di,t−1 ∪ (θt
i , yi,t)

Choose incumbent θ∗
i ← argmax{yi,1, . . . , yi,t} and y∗

i ← max{yi,1, . . . , yi,t}
Construct a feedback prompt for LLM to propose revised components

Choose optimal {(r∗, θ∗)} ← argmax{y∗
1 , . . . , y∗

K∗}
Recombine {(r∗, θ∗)} into R∗

return R∗.

Text2reward (Xie et al., 2024) is a reinforcement learning method that automatically generates dense
reward functions from natural language task descriptions using LLMs, without relying on expert data or
demonstrations, and can express human goals in the form of procedural rewards, given to iterations using
human feedback.

Human. To maintain a fair comparison, we adopted the same Human data as reported in Eureka (Ma et al.,
2024a). The original shaped reward functions provided in the benchmark tasks were developed by active
reinforcement learning researchers who designed the tasks. These reward functions embody the outcomes of
expert human reward engineering.

Sparse.These functions correspond to the fitness measures F employed to assess the performance of the
generated reward signals. Analogous to human feedback, they are also provided as part of the benchmark
suite. The detailed configurations for Dexterity tasks and Isaac tasks are consistent with those used in
Eureka (Ma et al., 2024a). The fitness functions of all tasks in ManiSkill2 are specified in App. B.2.

5.2 Experimental Setup

Benchmarks. Our environments consist of three benchmarks: Isaac, Dexterity, and Maniskill2. They
comprise 35 different tasks. Nine of these tasks are from the original Isaac Gym environment (Nasir et al.,
2024) (Issac), twenty are complex bi-manual tasks (Chen et al., 2022) (Dexterity), and the remaining six are
from the Maniskill2 environment (Gu et al.). See App. B for more details.

Metrics. We examine fore metrics: i. Success Rate (SR). We report the success rates of different reward
functions on Dexterity and ManiSkill2 tasks. To ensure fair comparison with the baseline methods, the
success rates for ManiSkill2 tasks are calculated using the last 50% of test results from each evaluation, while
full test results are used for Dexterity tasks. (ii) Human Normalized Score (HNS). For Isaac tasks, following
Eureka (Ma et al., 2024a), we use HNS = FMethod−FSparse

|FHuman−FSparse| , where F is the environment’s fitness functions
(e.g., binary success on Bidexterous tasks; continuous task score on IsaacGym tasks). Scores are normalized so
that Sparse maps to 0 and Human to 1, enabling cross-task comparison. An HNS> 1 indicates the generated
reward’s training result exceeding the human baseline. iii. The Number of Evaluations (NOE), quantified
as the total number of simulations (RL training using the designed candidate reward functions) conducted
across all samples during the optimization process. iiii. The Number of LLM Callings (NLC), representing
the cumulative number of LLM calls made during both reward function generation and refinement. These
metrics collectively provide a comprehensive assessment, with SR and HNS evaluating the performance of the
generated reward functions, and NOE and NLC quantifying the efficiency of the design process.

8

Published in Transactions on Machine Learning Research (10/2025)

Policy Learning. The performance of reward functions generated by URDP and comparative methods was
rigorously validated through RL training. For both Isaac and Dexterity environments, we employ the same
high-efficiency PPO (Schulman et al., 2017) implementation as used in Eureka, using identical task-specific
hyperparameters without modification. In the ManiSkill2 environment, we utilized both SAC (Haarnoja
et al., 2018) and PPO algorithms to ensure fair comparison between URDP , Text2Reward, and Eureka,
strictly maintaining the original hyperparameter configurations across all methods. See App. C.2 for detailed
parameter configurations.

5.3 Results

URDP improves the efficiency of the reward function design. Table 1 presents a comprehensive
comparison of computational efficiency between URDP and Eureka across three benchmarks. When optimizing
for the peak reward performance, URDP requires only 52.4% of the simulation episodes (NOE) and 46.6%
of the evolutionary iterations (NLC) compared to Eureka. This significant acceleration demonstrates the
superior optimization efficiency of the URDP in automated reward function design. See App.E for a per-task
breakdown.

Table 1: URDP demonstrates superior efficiency across all benchmarks.

Isaac Dexterity ManiSkill2

Methods NOE↓ NLC↓ NOE↓ NLC↓ NOE↓ NLC↓

Txet2Reward 72.889 5 84.45 6.05 106.667 6.667
Eureka 68.667 4.556 80.05 5.5 98.667 6.167
URDP 39.501 2.495 57.8 3.4 32.33 1.667

URDP demonstrates superior reward function performance. Table 2 presents a systematic comparison
of reward functions generated by different approaches across benchmark tasks. Under identical simulation
budgets (NOE), reinforcement learning agents trained with URDP -derived reward functions achieve significantly
higher success rates than competing methods. Notably, URDP demonstrates substantial performance gains
of 132%, 45%, and 76% over Eureka across the three experimental environments, representing significant
enhancements. Furthermore, URDP -designed reward functions outperform manually engineered counterparts
by a considerable margin, providing compelling evidence for the efficacy of automated RL frameworks.

Table 2: URDP exhibits higher reward performance across all benchmarks.

Methods Isaac (HNS↑) Dexterity (SR↑) ManiSkill2 (SR↑)

Sparse 0 0.054 0.101
Human 1.000 0.459 0.434
Text2Reward 1.553 0.452 0.554
Eureka 1.607 0.466 0.449
URDP 3.424 0.675 0.792

URDP achieves synergistic progress in both reward performance and generation efficiency. In
Figure 2, it can be seen that the superiority of URDP over Eureka, text2reward and Human, both in terms of
the success rate and the reduction in the number of simulations, has been well improved on these typical
tasks. Each data point in the line plots represents the effectiveness of the reward function obtained after a
single iteration. The results show that URDP surpasses human-designed rewards on certain tasks after just one
LLM refinement cycle and achieves optimal performance with significantly fewer iterations than both Eureka
and Text2Reward, which means that it consumes fewer tokens. These results collectively demonstrate that
URDP achieves simultaneous improvements in both the efficiency and performance of the reward generation.

5.4 Ablation Experiments

Furthermore, we explore the role of each core content in URDP in achieving the above results.

9

Published in Transactions on Machine Learning Research (10/2025)

(a) Ant (b) AllegroHand (c) FrankaCabinet

(d) ShadowHand (e) DoorCloseOutward (f) PickCube

Figure 2: Comparisons of URDP with other methods in Isaac (a-d), Dexterity (e), and ManiSkill2 (f). The
URDP curve, as well as those of other methods, is truncated at the point where the performance reaches
convergence and remains stable. The same configuration is applied consistently in the following figures.

Abl-1: Uncertainty quantification improves the efficiency of reward design. To evaluate the role of
uncertainty sampling, we conduct ablation studies by removing the uncertainty sampling and filtering module
from URDP (denoted as URDP w.o. Uncertainty). Experimental results in Figure 3 demonstrate that
URDP achieves comparable success rates while requiring significantly fewer optimization episodes (NOE) than
URDP w.o. Uncertainty, quantitatively validating the efficiency improvement brought by uncertainty-aware
sampling. Interestingly, our analysis also reveals the correlation between the uncertainty and the novel reward
functions, with detailed mechanistic explanations to be discussed in Section 5.5 (Disc-2).

(a) Ant (b) AllegroHand (c) FrankaCabinet

(d) ShadowHand (e) DoorCloseOutward (f) PickCube

Figure 3: When generating reward functions of comparable performance, URDP requires significantly fewer
simulation training episodes, attributable to its effective uncertainty-based filtering mechanism.

Abl-2: Decoupled optimization is the cornerstone for the collaborative improvement of perfor-
mance and efficiency. This experimental investigation examines the role of decoupling in URDP , where

10

Published in Transactions on Machine Learning Research (10/2025)

reward components and their associated intensities are optimized separately. To evaluate this mechanism,
we ablate UABO from URDP (denoted as URDP w.o. UABO) while maintaining identical configurations
otherwise, resulting in a system where both reward components and intensities are jointly configured by
the LLM without alternating optimization. Under unrestricted NLC, we compare the HNS or SR achieved
by URDP w.o. UABO using equivalent NOE to the standard URDP implementation. As shown in Figure 4
(dashed lines), consistent reductions in both HNS and SR are observed across all three benchmark tasks,
demonstrating the substantial impact of decoupled optimization on improving the reward performance.
Furthermore, URDP exhibits faster convergence (requiring fewer NLC) to optimal solutions, suggesting that
decoupling also enhances the efficiency of evolutionary search. A comprehensive discussion of this phenomenon
and the underlying mechanisms is presented in Section 5.5 (Disc-1).

(a) Ant (b) AllegroHand (c) FrankaCabinet

(d) ShadowHand (e) DoorCloseOutward (f) PickCube

Figure 4: A comparison of the URDP , URDP w. BO, URDP w. LLMO and URDP w.o. UABO when all
methods utilize identical simulation budgets (NOE).

Abl-3: The UABO plays a key role in performance improvement. This experimental study
systematically compares the numerical optimization capabilities between large language models (LLMs) and
Bayesian optimization approaches within our framework. In the first ablation, we replaced the UABO module
with the LLM reflection (denoted as URDP w. LLMO), employing identical prompting strategies to Eureka,
thereby configuring both outer-loop (reward components) and inner-loop (reward intensities) optimization
entirely through LLMs. Figure 4 demonstrates that even under decoupled optimization conditions, LLM-
based numerical optimization underperforms the Bayesian optimization, revealing fundamental limitations in
mathematical optimization capabilities while confirming the critical role of Bayesian methods in enhancing
the reward performance. These results substantiate our core hypothesis that LLMs serve more effectively as
controllers for numerical optimization tools rather than direct optimizers. Subsequent validation experiments
replacing UABO with standard BO (URDP w. BO) reveal UABO’s superior efficiency (see Figure 5): URDP
(UABO) achieves comparable or better performance than URDP w. BO using only 80% of the sampling
budget across all Isaac tasks, with consistently superior final reward function performance, demonstrating
that uncertainty-aware priors accelerate optimal search in the reward function design.

5.5 Extended Discussion

Disc-1: Decoupling and performance degradation in evolutionary search. As illustrated in Figure 6
(blue line), our experiments reveal performance degradation during evolutionary search in the baseline
(Eureka) approach, with performance regression observed in 23% of Isaac tasks. Analysis of the LLMs’
decision-making in these cases demonstrates that in 75% of instances, the models modified only the reward
intensity hyperparameters while leaving the reward components unchanged, indicating a propensity for

11

Published in Transactions on Machine Learning Research (10/2025)

Figure 5: URDP achieves a significantly greater improvement in efficiency across all benchmarks compared to
BO.

erroneous judgments in numerical optimization. More critically, we identify oscillatory phenomenon in the
baseline optimization process (see Figure 6c), where LLMs entered persistent cycles of alternating between
limited sets of hyperparameters during evolutionary search. This optimization instability resulted in complete
convergence failure, with the baseline system trapped in ineffective, non-progressive iterations.

(a) LiftUnderarm (b) OpenCabinetDrawer (c) Humanoid

Figure 6: The baseline (Eureka) exhibits undesirable performance degradation during evolutionary search on
certain tasks (a-b). Notably, the oscillatory phenomenon is detected in the baseline method for Task (c),
indicating substantial computational waste of the baseline method.

In contrast, URDP demonstrates superior optimization efficiency, requiring significantly fewer evolutionary
iterations (NLC) while exhibiting markedly reduced instances of performance regression and oscillatory
behavior during the optimization process. Our empirical results show performance regression in merely 1% of
Isaac tasks, with no observed cases of persistent optimization oscillations. These findings provide a strong
empirical explanation for the effectiveness of the decoupled reward design approach implemented in URDP .

Disc-2: The correlation between reward component uncertainty and novel reward discovery.
Our investigation reveals a noteworthy phenomenon: the high-uncertainty reward components (ru↑) identified
by URDP frequently correspond to novel reward components not previously utilized in human-designed reward
functions, with these components exhibiting significant reward shaping effects during RL training, thereby
revealing a dual role of the uncertainty in enhancing both optimization efficiency and final policy performance.
Here, we refer to a reward component as ru↑ when the uncertainty of the reward is greater than 0.9. Through
systematic comparisons between reward components designed by the URDP and conventional human-designed
rewards, Figure 7a illustrates a strong correlation between the component uncertainty level and the novelty,
suggesting that the higher-uncertainty components may represent more innovative reward formulations.
Ablation studies conducted by removing ru↑ components from the reward function (R w.o. ru↑) and retraining
PPO agents reveal statistically significant performance degradation and poorer convergence characteristics in
the resulting policies as shown in Figure 7b, whereas the complete reward function maintains substantially

12

Published in Transactions on Machine Learning Research (10/2025)

(a) URDP Rewards vs. Human Rewards on IsaacGym.
(b) RL training curves of reward functions R vs. R w.o.
ru↑ on the ShadowHand.

Figure 7: (a) Results on IsaacGym tasks. Each marker represents one reward component. The x-axis
shows the HNS on a log scale, while the y-axis gives the Pearson correlation between generated reward and
human-designed reward. Marker color shows the component-level uncertainty Ur (darker indicates higher
uncertainty). Marker shapes indicate outcome relative to the human baseline (blue circles: URDP wins; red
crosses: human wins; green triangles: ties). Tasks in the lower-right region illustrate reward formulations that
deviate from human design yet achieve superior performance, suggesting that high-uncertainty components
capture novel, previously unexplored reward. These components are angvel_penalty and distance_penalty
in ShadowHand, dof_vel_penalty in Anymal, and progress_reward in FrankaCabinet. (b) ShadowHand
training curves show that adding the higher-uncertainty component ru↑(angvel_penalty) to R consistently
yields higher HNS than the ablation without it.

better optimization stability, collectively providing conclusive evidence that ru↑ components play an essential
role in effective reward shaping and policy learning regularization. See more examples in App. G.1.

6 Conclusion

In this work, we present a novel decoupled architecture for automated reward function design in reinforcement
learning. Our framework introduces uncertainty quantification into reward component design, significantly
improving the sampling efficiency of LLMs. Furthermore, we propose Uncertainty-Aware Bayesian Optimiza-
tion to enable efficient hyperparameter search. Extensive experimental results demonstrate that our approach
outperforms existing methods in both reward function quality and automated design efficiency.

13

Published in Transactions on Machine Learning Research (10/2025)

Acknowledgments

This work has been supported by the program of the National Natural Science Foundation of China (No.
61906195) and the independent deployment project of the National Key Laboratory of Cognition and Decision
Intelligence for Complex Systems, Institution of Automation, Chinese Academy of Sciences.

References
Gustaf Ahdritz, Tian Qin, Nikhil Vyas, Boaz Barak, and Benjamin L Edelman. Distinguishing the knowable

from the unknowable with language models. In International Conference on Machine Learning (ICML),
pp. 503–549. PMLR, 2024.

Sebastian Ament, Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy. Unexpected
improvements to expected improvement for bayesian optimization. Advances in Neural Information
Processing Systems (NeurIPS), 36:20577–20612, 2023.

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, methods and
progress. Artificial Intelligence, 297:103500, 2021.

Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Matthew Muckley, Ammar Rizvi,
Claire Roberts, Koustuv Sinha, Artem Zholus, et al. V-jepa 2: Self-supervised video models enable
understanding, prediction and planning. arXiv preprint arXiv:2506.09985, 2025.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. In Proceedings of Advances In Neural Information Processing Systems (NeurIPS),
pp. 1877–1901, 2020.

Adam D Bull. Convergence rates of efficient global optimization algorithms. Journal of Machine Learning
Research, 12(10), 2011.

Yuji Cao, Huan Zhao, Yuheng Cheng, Ting Shu, Yue Chen, Guolong Liu, Gaoqi Liang, Junhua Zhao, Jinyue
Yan, and Yun Li. Survey on large language model-enhanced reinforcement learning: Concept, taxonomy,
and methods. IEEE Transactions on Neural Networks and Learning Systems, 2024.

Yuanpei Chen, Tianhao Wu, Shengjie Wang, Xidong Feng, Jiechuan Jiang, Zongqing Lu, Stephen McAleer,
Hao Dong, Song-Chun Zhu, and Yaodong Yang. Towards human-level bimanual dexterous manipulation
with reinforcement learning. Advances in Neural Information Processing Systems (NeurIPS), 35:5150–5163,
2022.

Fengxiang Cheng, Haoxuan Li, Fenrong Liu, Robert van Rooij, Kun Zhang, and Zhouchen Lin. Empowering
llms with logical reasoning: A comprehensive survey. arXiv preprint arXiv:2502.15652, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv e-prints,
pp. arXiv–2407, 2024.

Alejandro Escontrela, Xue Bin Peng, Wenhao Yu, Tingnan Zhang, Atil Iscen, Ken Goldberg, and Pieter
Abbeel. Adversarial motion priors make good substitutes for complex reward functions. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 25–32. IEEE, 2022.

Andrew Foong, David Burt, Yingzhen Li, and Richard Turner. On the expressiveness of approximate
inference in bayesian neural networks. In Proceedings of Advances In Neural Information Processing
Systems (NeurIPS), volume 33, pp. 15897–15908, 2020.

14

Published in Transactions on Machine Learning Research (10/2025)

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In Proceedings of the International Conference on Machine Learning (ICML), 2015.

Jiahui Geng, Fengyu Cai, Yuxia Wang, Heinz Koeppl, Preslav Nakov, and Iryna Gurevych. A survey of
confidence estimation and calibration in large language models. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
pp. 6577–6595, 2024.

Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone Tao, Xinyue
Wei, Yunchao Yao, et al. Maniskill2: A unified benchmark for generalizable manipulation skills. In The
Eleventh International Conference on Learning Representations (ICLR).

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on machine
learning (ICML), pp. 1861–1870. Pmlr, 2018.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning with
language model is planning with world model. In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 8154–8173, 2023.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas Schiefer,
Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language models (mostly) know what they
know. arXiv preprint arXiv:2207.05221, 2022.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for uncertainty
estimation in natural language generation. In International Conference on Learning Representations (ICLR),
2023.

Minae Kwon and Sang Michael. Reward design with language models. In International Conference on
Learning Representations (ICLR), 2023.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian Xu,
Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of reasoning large
language models. arXiv preprint arXiv:2502.17419, 2025.

Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Generating with confidence: Uncertainty quantification for
black-box large language models. Transactions on Machine Learning Research.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng,
Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024.

Xiaoou Liu, Tiejin Chen, Longchao Da, Chacha Chen, Zhen Lin, and Hua Wei. Uncertainty quantification
and confidence calibration in large language models: A survey. arXiv preprint arXiv:2503.15850, 2025.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke
Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding large language
models. In International Conference on Learning Representations (ICLR), 2024a.

Yecheng Jason Ma, William Liang, Hungju Wang, Sam Wang, Yuke Zhu, Linxi Fan, Osbert Bastani, and
Dinesh Jayaraman. Dreureka: Language model guided sim-to-real transfer. In Robotics: Science and
Systems (RSS), 2024b.

Christopher Mohri and Tatsunori Hashimoto. Language models with conformal factuality guarantees. In
International Conference on Machine Learning (ICML), pp. 36029–36047. PMLR, 2024.

F. J. Narcowich, J. D. Ward, and H. Wendland. Refined error estimates for radial basis function interpolation.
Constructive Approximation, 2003.

Muhammad U. Nasir, Sam Earle, Christopher Cleghorn, Steven James, and Julian Togelius. Llmatic: Neural
architecture search via large language models and quality diversity optimization. 2024.

15

Published in Transactions on Machine Learning Research (10/2025)

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
and Zihan Qiu. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.

Alec Radford, Rewon Child Jeffrey Wu, David Luan, Dario Amodei, and Ilya Sutskever. Language models
are unsupervised multitask learners. OpenAI blog, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the human out
of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2015.

Ola Shorinwa, Zhiting Mei, Justin Lidard, Allen Z Ren, and Anirudha Majumdar. A survey on uncertainty
quantification of large language models: Taxonomy, open research challenges, and future directions. arXiv
preprint arXiv:2412.05563, 2024.

Satinder Singh, Richard L Lewis, and Andrew G Barto. Where do rewards come from. In Proceedings of the
annual conference of the cognitive science society, pp. 2601–2606. Cognitive Science Society, 2009.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning
algorithms. Advances in neural information processing systems (NeurIPS), 25, 2012.

Jiayang Song, Zhehua Zhou, Jiawei Liu, Chunrong Fang, Zhan Shu, and Lei Ma. Self-refined large language
model as automated reward function designer for deep reinforcement learning in robotics. arXiv preprint
arXiv:2309.06687, 2023.

Jiayuan Su, Jing Luo, Hongwei Wang, and Lu Cheng. Api is enough: Conformal prediction for large language
models without logit-access. In Findings of the Association for Computational Linguistics: EMNLP 2024,
pp. 979–995, 2024.

Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun Wang.
Alphazero-like tree-search can guide large language model decoding and training. In Forty-first International
Conference on Machine Learning (ICML), 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Huai hsin Chi, and Denny Zhou. Self-consistency
improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171, 2022.

Zi Wang, George E Dahl, Kevin Swersky, Chansoo Lee, Zachary Nado, Justin Gilmer, Jasper Snoek, and
Zoubin Ghahramani. Pre-trained gaussian processes for bayesian optimization. Journal of Machine Learning
Research, 25(212):1–83, 2024.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack: Packed
resources for general chinese embeddings. In Proceedings of the 47th international ACM SIGIR conference
on research and development in information retrieval, pp. 641–649, 2024.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang, and Tao
Yu. Text2reward: Reward shaping with language models for reinforcement learning. In International
Conference on Learning Representations (ICLR), 2024.

Yang Yan, Yu Lu, Renjun Xu, and Zhenzhong Lan. Do phd-level llms truly grasp elementary addition?
probing rule learning vs. memorization in large language models. arXiv preprint arXiv:2504.05262, 2025.

16

https://arxiv.org/abs/2412.15115

Published in Transactions on Machine Learning Research (10/2025)

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen. Large
language models as optimizers. In The Twelfth International Conference on Learning Representations
(ICLR).

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Arenas, Hao-
Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, Brian Ichter, Ted Xiao, Peng Xu, Andy
Zeng, Tingnan Zhang, Nicolas Heess, Dorsa Sadigh, Jie Tan, Yuval Tassa, and Fei Xia. Language to
rewards for robotic skill synthesis. In Proceedings of Conference on Robot Learning (CoRL), 2023.

Zhuohao Yu, Weizheng Gu, Yidong Wang, Zhengran Zeng, Jindong Wang, Wei Ye, and Shikun Zhang.
Outcome-refining process supervision for code generation. arXiv preprint arXiv:2412.15118, 2024.

Jialun Zhong, Wei Shen, Yanzeng Li, Songyang Gao, Hua Lu, Yicheng Chen, Yang Zhang, Wei Zhou, Jinjie
Gu, and Lei Zou. A comprehensive survey of reward models: Taxonomy, applications, challenges, and
future. arXiv preprint arXiv:2504.12328, 2025.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart, Stefan
Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge to robotic
control. In Conference on Robot Learning (CoRL), pp. 2165–2183. PMLR, 2023.

17

Published in Transactions on Machine Learning Research (10/2025)

A Full Prompts

In this section, we provide all prompts and a concrete example of the feedback used in the URDP framework.

Prompt 1: Initial system prompt

You are a reward engineer trying to write reward functions to solve reinforcement learning tasks as effective as possible.
Your goal is to write a reward function for the environment that will help the agent learn the task described in text.
Your reward function should use useful variables from the environment as inputs. As an example,
the reward function signature can be:
@torch.jit.script
def compute_reward(object_pos: torch.Tensor, goal_pos: torch.Tensor) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:

...
return reward, {}

Since the reward function will be decorated with @torch.jit.script,
please make sure that the code is compatible with TorchScript (e.g., use torch tensor instead of numpy array).
Make sure any new tensor or variable you introduce is on the same device as the input tensors.

Prompt 2: Reward reflection and feedback

We trained a RL policy using the provided reward function code and tracked the values of the individual components in the
reward function as well as global policy metrics such as success rates and episode lengths after every {epoch_freq} epochs
and the maximum, mean, minimum values encountered:
<REWARD REFLECTION HERE1>

We calculated a score for each sample based on the uncertainty of the reward term. We then calculated the standard and
extreme deviations of all the sample scores in this iteration, which were as follows:
<REWARD REFLECTION HERE2>

Please adopt the following recommendations for the next iteration of reward function generation:
(1) If the standard deviation is less than 0.05 and the extreme deviation is less than 0.1, it is recommended to stop the
iteration and instead encourage exploration of new combinations of reward terms.
(2) It is recommended to retain reward items with higher scores in the sample and remove those with lower scores.
(3) Only the combination of reward items and the content of the reward function need to be optimised, not the numerical
optimisation.

Please carefully analyze the policy feedback and provide a new, improved reward function that can better solve the task.
Some helpful tips for analyzing the policy feedback:

(1) If the success rates are always near zero, then you must rewrite the entire reward function
(2) If some reward components' magnitude is significantly larger, then you must re-scale its value to a proper range

Please analyze each existing reward component in the suggested manner above first, and then write the reward function code.

Prompt 3: Code formatting tip

The output of the reward function should consist of two items:
(1) the total reward,
(2) a dictionary of each individual reward component.

The code output should be formatted as a python code string: "```python ... ```".

Some helpful tips for writing the reward function code:
(1) You may find it helpful to normalize the reward to a fixed range by applying transformations like torch.exp to the
overall reward or its components
(2) If you choose to transform a reward component, then you must also introduce a temperature parameter inside the
transformation function; this parameter must be a named variable in the reward function and it must not be an input
variable. Each transformed reward component should have its own temperature variable
(3) Make sure the type of each input variable is correctly specified; a float input variable should not be specified as
torch.Tensor
(4) Most importantly, the reward code's input variables must contain only attributes of the provided environment class
definition (namely, variables that have prefix self.). Under no circumstance can you introduce new input variables.

Example of feedback

Iteration 1: URDP Best Sample:
```python
@torch.jit.script
def compute_reward(

object_rot: torch.Tensor,
goal_rot: torch.Tensor,
object_angvel: torch.Tensor,

18



Published in Transactions on Machine Learning Research (10/2025)

fingertip_pos: torch.Tensor,
object_pos: torch.Tensor,
actions: torch.Tensor

) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
"""
Reward function for spinning an object to target orientation.

orientation_temp: float = 1.0
alignment_temp: float = 0.5
spin_temp: float = 0.3
control_penalty_temp: float = -0.01
fingertip_dist_temp: float = -0.1

device = object_rot.device

# 1. Orientation alignment reward (main objective)
# Quaternion dot product (cosine of half the angle between rotations)
quat_diff = quat_mul(object_rot, quat_conjugate(goal_rot))
orientation_reward = orientation_temp * (1.0 - torch.abs(quat_diff[:, 0]))

# 2. Angular velocity alignment with the desired rotation axis
# We want the object to be spinning, not just static at target orientation
avg_angvel = torch.mean(torch.abs(object_angvel), dim=1)
spin_reward = spin_temp * avg_angvel

# 3. Control penalty (small penalty for large actions)
action_penalty = control_penalty_temp * torch.mean(torch.square(actions), dim=1)

# 4. Fingertip distance penalty (keep fingertips close to object)
fingertip_dist = torch.norm(fingertip_pos - object_pos.unsqueeze(1), dim=-1)
avg_fingertip_dist = torch.mean(fingertip_dist, dim=1)
distance_penalty = fingertip_dist_temp * avg_fingertip_dist

# Combine all components
total_reward = orientation_reward + spin_reward + action_penalty + distance_penalty

# Return components for debugging
reward_dict = {

"orientation_reward": orientation_reward,
"spin_reward": spin_reward,
"action_penalty": action_penalty,
"distance_penalty": distance_penalty

}

return total_reward, reward_dict
```

Iteration 1: Feedback:
We trained an RL policy using the provided reward function code and tracked the values of the individual components in the
reward function, as well as global policy metrics such as success rates and episode lengths after every 30 epochs, and the
maximum, mean, and minimum values encountered:

Best Sample (0) metrics:
orientation_reward: ['0.57', '0.60', '0.61', '0.58', '0.57', '0.59', '0.58', '0.58', '0.57', '0.57'], Max: 0.61, Mean: 0.58,
Min: 0.56
spin_reward: ['2.10', '2.12', '2.28', '2.42', '2.78', '2.84', '3.07', '4.01', '4.74', '5.09'], Max: 5.62, Mean: 3.31, Min:
1.79
action_penalty: ['-0.19', '-0.21', '-0.22', '-0.23', '-0.24', '-0.25', '-0.26', '-0.27', '-0.28', '-0.29'], Max: -0.19,
Mean: -0.25, Min: -0.30
distance_penalty: ['-0.03', '-0.03', '-0.03', '-0.03', '-0.03', '-0.03', '-0.03', '-0.02', '-0.02', '-0.02'], Max: -0.02,
Mean: -0.03, Min: -0.03
success_rate: ['0.00', '0.00', '0.05', '0.01', '0.03', '0.01', '0.08', '0.04', '0.02', '0.02'], Max: 0.20, Mean: 0.03, Min:
0.00
episode_lengths: ['6.88', '85.14', '177.95', '218.96', '263.25', '298.06', '308.33', '311.40', '305.05', '322.21'], Max:
326.63, Mean: 243.48, Min: 6.88

We calculated a score for each sample based on the uncertainty of the reward term. We then calculated the standard and
extreme deviations of all the sample scores in this iteration, which were as follows:

Sample Score Statistics:
Standard Deviation: 0.080
Range: 0.309
Sample 12 metrics:
orientation_reward: ['0.07', '0.06', '0.07', '0.07', '0.07', '0.07', '0.07', '0.07', '0.07', '0.06'], Max: 0.07, Mean: 0.07,
Min: 0.06
angvel_reward: ['0.00', '0.01', '0.00', '0.01', '0.00', '0.01', '0.01', '0.01', '0.01', '0.01'], Max: 0.01, Mean: 0.01, Min:
0.00
dof_vel_penalty: ['68.31', '74.19', '74.67', '80.21', '86.64', '93.44', '98.93', '103.92', '105.69', '107.19'], Max: 109.81,
Mean: 91.46, Min: 67.74
fingertip_distance_penalty: ['0.07', '0.09', '0.08', '0.07', '0.08', '0.08', '0.07', '0.07', '0.07', '0.08'], Max: 0.09,
Mean: 0.08, Min: 0.07

19

Published in Transactions on Machine Learning Research (10/2025)

success_rate: ['0.00', '0.03', '0.01', '0.00', '0.02', '0.01', '0.02', '0.00', '0.00', '0.00'], Max: 0.18, Mean: 0.02, Min:
0.00
episode_lengths: ['6.88', '112.69', '217.70', '263.16', '267.88', '352.34', '346.89', '360.60', '348.12', '355.96'], Max:
379.91, Mean: 275.82, Min: 6.88

Sample 6 metrics:
orientation_reward: ['0.66', '0.65', '0.65', '0.65', '0.65', '0.66', '0.66', '0.65', '0.66', '0.66'], Max: 0.66, Mean: 0.66,
Min: 0.65
angvel_reward: ['0.30', '0.43', '0.53', '0.53', '0.51', '0.47', '0.49', '0.49', '0.52', '0.50'], Max: 0.53, Mean: 0.48, Min:
0.27
stability_reward: ['0.96', '0.97', '0.97', '0.98', '0.98', '0.98', '0.98', '0.98', '0.98', '0.98'], Max: 0.98, Mean: 0.98,
Min: 0.95
contact_reward: ['0.99', '0.99', '0.99', '0.99', '0.99', '0.99', '0.99', '0.99', '0.99', '0.99'], Max: 0.99, Mean: 0.99, Min:
0.99
action_reg: ['-0.05', '-0.06', '-0.06', '-0.07', '-0.07', '-0.07', '-0.08', '-0.08', '-0.08', '-0.09'], Max: -0.05, Mean:
-0.07, Min: -0.09
success_rate: ['0.00', '0.02', '0.00', '0.04', '0.01', '0.00', '0.01', '0.01', '0.04', '0.00'], Max: 0.13, Mean: 0.02, Min:
0.00
episode_lengths: ['6.88', '104.14', '264.72', '234.71', '321.16', '351.02', '347.56', '327.18', '343.47', '341.25'], Max:
395.64, Mean: 272.77, Min: 6.88

Sample 8 metrics:
orientation_reward: ['0.35', '0.35', '0.35', '0.35', '0.35', '0.35', '0.35', '0.35', '0.35', '0.35'], Max: 0.36, Mean: 0.35,
Min: 0.34
angvel_reward: ['0.36', '0.62', '0.68', '0.75', '0.74', '0.71', '0.79', '0.78', '0.84', '0.85'], Max: 0.88, Mean: 0.74, Min:
0.35
position_reward: ['1.00', '1.00', '1.00', '1.00', '1.00', '0.99', '0.99', '0.99', '0.99', '0.99'], Max: 1.00, Mean: 1.00,
Min: 0.99
contact_reward: ['1.00', '1.00', '1.00', '1.00', '1.00', '1.00', '1.00', '1.00', '1.00', '1.00'], Max: 1.00, Mean: 1.00,
Min: 1.00
action_penalty: ['-0.10', '-0.12', '-0.14', '-0.14', '-0.15', '-0.15', '-0.15', '-0.15', '-0.15', '-0.16'], Max: -0.10,
Mean: -0.15, Min: -0.17
success_rate: ['0.00', '0.00', '0.01', '0.01', '0.02', '0.00', '0.01', '0.03', '0.02', '0.05'], Max: 0.14, Mean: 0.02, Min:
0.00
episode_lengths: ['6.88', '107.01', '227.35', '219.53', '249.13', '292.37', '281.23', '331.81', '298.09', '305.40'], Max:
399.00, Mean: 250.83, Min: 6.88

Sample 10 metrics:
orientation_reward: ['0.80', '0.80', '0.80', '0.80', '0.80', '0.80', '0.80', '0.80', '0.80', '0.80'], Max: 0.81, Mean: 0.80,
Min: 0.80
angvel_reward: ['0.56', '0.69', '0.80', '0.88', '0.92', '0.91', '0.93', '0.94', '0.94', '0.94'], Max: 0.96, Mean: 0.87, Min:
0.54
fingertip_reward: ['1.00', '1.00', '1.00', '1.00', '1.00', '1.00', '1.00', '1.00', '1.00', '1.00'], Max: 1.00, Mean: 1.00,
Min: 1.00
action_reward: ['0.99', '0.99', '0.99', '0.98', '0.98', '0.98', '0.98', '0.98', '0.98', '0.98'], Max: 0.99, Mean: 0.98, Min:
0.98
success_rate: ['0.00', '0.01', '0.02', '0.03', '0.02', '0.00', '0.01', '0.00', '0.00', '0.00'], Max: 0.17, Mean: 0.01, Min:
0.00
episode_lengths: ['6.88', '104.65', '285.08', '312.46', '354.28', '356.70', '275.36', '371.96', '368.43', '370.56'], Max:
395.92, Mean: 296.21, Min: 6.88

Sample 3 metrics:
orientation_reward: ['0.00', '0.00', '0.00', '0.00', '0.00', '0.00', '0.00', '0.00', '0.00', '0.00'], Max: 0.00, Mean: 0.00,
Min: 0.00
angvel_reward: ['0.36', '0.68', '0.81', '0.87', '0.85', '0.90', '0.89', '0.92', '0.92', '0.92'], Max: 0.93, Mean: 0.84, Min:
0.35
fingertip_reward: ['-0.00', '-0.00', '-0.00', '-0.00', '-0.00', '-0.00', '-0.00', '-0.00', '-0.00', '-0.00'], Max: -0.00,
Mean: -0.00, Min: -0.00
action_penalty: ['-0.01', '-0.01', '-0.02', '-0.02', '-0.02', '-0.02', '-0.02', '-0.02', '-0.02', '-0.02'], Max: -0.01,
Mean: -0.02, Min: -0.02
object_vel_penalty: ['-0.00', '-0.00', '-0.00', '-0.00', '-0.00', '-0.00', '-0.00', '-0.00', '-0.00', '-0.00'], Max: -0.00,
Mean: -0.00, Min: -0.00
success_rate: ['0.00', '0.02', '0.01', '0.00', '0.00', '0.00', '0.01', '0.01', '0.00', '0.00'], Max: 0.05, Mean: 0.01, Min:
0.00
episode_lengths: ['6.88', '83.31', '208.44', '169.25', '228.87', '225.52', '222.20', '236.94', '254.80', '282.27'], Max:
399.00, Mean: 209.30, Min: 6.88

Please adopt the following recommendations for the next iteration of reward function generation:
(1) If the standard deviation is less than 0.05 and the extreme deviation is less than 0.1, it is recommended to stop the
iteration and instead encourage exploration of new combinations of reward terms.
(2) For all reward items with higher scores it is recommended to keep them and for those with lower scores it is recommended
to remove them.
(3) Only the combination of reward items and the content of the reward function need to be optimised, not the numerical
optimisation.

Please carefully analyze the policy feedback and provide a new, improved reward function that can better solve the task.
Some helpful tips for analyzing the policy feedback:

(1) If the success rates are always near zero, then you must rewrite the entire reward function
(2) If some reward components' magnitude is significantly larger, then you must re-scale its value to a proper range

20

Published in Transactions on Machine Learning Research (10/2025)

B Benchmark Details

B.1 An Introduction to the Benchmarks

Isaac.The Isaac Gym benchmark includes a broad set of continuous control tasks, covering locomotion,
balancing, aerial control, and dexterous manipulation. Robots range from low-DoF systems (e.g., Cartpole,
Ball Balance) to complex agents such as Humanoid, Anymal, AllegroHand, and ShadowHand. Each task
presents different control challenges, requiring precise joint coordination, stable gait generation, or fine-grained
object interaction. All tasks provide observations, including joint positions, velocities, root orientation, and
task-specific data such as object pose or goal location. The control mode varies by task—torque, velocity, or
end-effector control—depending on the robot type. Randomization of initial states and physical parameters
(e.g., mass, friction) is applied during training to improve robustness and generalization. The benchmark
emphasizes both low-level motor control and high-level strategy in physics-rich environments.

Dexterity.The Dexterous benchmark focuses on dexterous manipulation using the 24-DoF ShadowHand
across a wide range of object-centric tasks. These include stacking blocks, turning faucets, opening doors,
rotating bottles, catching objects, and tool use. The tasks require precise finger control, contact-rich
interactions, and adaptability to diverse object geometries and behaviors. Each environment provides
proprioceptive input (joint states, fingertip positions), as well as object-related observations (pose, velocity,
goal state). Control is applied via joint position or velocity commands. The tasks involve significant variability
in object placement, orientation, and physical properties, encouraging the development of general and robust
manipulation policies. The benchmark highlights the challenge of high-dimensional motor coordination in
real-world-like, unstructured settings.

Maniskill2. In the ManiSkill2 environment, a 7-DoF Franka Panda robotic arm is used by default. For
tasks focused on stationary manipulation—such as Lift Cube, Pick Cube, Turn Faucet, and Stack Cube—a
fixed-base arm configuration is employed. In contrast, tasks involving mobility, such as Open Cabinet Door
and Open Cabinet Drawer, utilize a single-arm robot mounted on a Sciurus17 mobile base. The Push Chair
task is handled by a dual-arm system, also equipped with the Sciurus17 base. The observation space includes
robot-centric data like joint angles, joint velocities, and the base’s pose (position and orientation in the
world frame), along with task-specific inputs such as goal coordinates and end-effector locations. Control is
performed in end-effector delta pose mode, which directly manages changes in 3D translation and orientation,
the latter expressed in axis-angle form relative to the end-effector’s frame. Each task features variability in
key parameters, including the initial and goal states of the object being manipulated, the robot’s starting
joint configuration, and physical dynamics like friction and damping.

B.2 ManiSkill2 Environment Details

We provide detailed information about the ManiSkill2 environment in this section. Detailed information
about the Isaac and Dexterity environments is the same as in the Eureka (see the content in the appendix
of the paper (Ma et al., 2024a)). For each environment, we list its observation and action dimensions, the
original description of the task, and the task fitness function F .

21

Published in Transactions on Machine Learning Research (10/2025)

ManiSkill2 Environments
Environment (obs dim, action dim)
Task description
Task fitness function F

PickCube-v0 (51,7)
This class corresponds to the PickCube task in ManiSkill. This environment consists of a robot arm and
a cube placed on the table. At the beginning, the cube appears at a random location and orientation.
The agent must control the gripper to approach, grasp, and lift the cube above a threshold height. The
challenge lies in object localization, precise control, and stable grasping.
1[dist_cube_goal < 0.05]
LiftCube-v0 (42,7)
This environment corresponds to the LiftCube task. The agent is required to grasp a cube and lift it
vertically above a specific height threshold. The task emphasizes accurate vertical movement and stable
grasping without disturbing the cube’s pose.
1[cube_height > 0.2]
TurnFaucet-v0 (40, 7)
This class corresponds to the TurnFaucet task. A faucet handle is mounted on a wall, and the agent
must rotate it clockwise or counterclockwise to a target angle. The challenge lies in establishing proper
contact, applying sufficient torque, and maintaining stability during the turning motion.
1[rotation_reward < 0.1]
OpenCabinetDoor-v1 (75, 11)
This environment corresponds to the OpenCabinetDoor task. A cabinet with a side-hinged door is
presented. The agent must locate and pull the door handle to open it. The task involves estimating the
door’s hinge axis, approaching from an appropriate angle, and applying a pulling force that aligns with
the door’s rotation.
1[goal_diff < 0.1 and is_static]
OpenCabinetDrawer-v1 (75, 11)
This class corresponds to the OpenCabinetDrawer task. The robot must open a drawer embedded in a
cabinet by locating the handle and pulling it outward. The task requires both accurate handle grasping
and force application along a linear trajectory, while avoiding excessive torque that could misalign the
drawer.
1[goal_diff < 0.05 and is_static]
PushChair-v1 (131, 18)
This environment corresponds to the PushChair task. The robot must push a movable chair from its
initial location to a designated target region. The chair is free to rotate and slide. The agent needs
to make strategic contact with the chair body and adjust its pushing direction dynamically to avoid
misalignment and ensure accurate placement.
1[chair_to_target_dist < 0.3 and chair_tilt < 0.2]

C Implementation Details

C.1 Implementation Details of Sampling and Uncertainty

When explicitly prompted to generate diverse outputs, LLMs inevitably produce varying textual expressions for
semantically equivalent content - a phenomenon particularly evident in reward function generation where code
implementations may differ lexically while encoding identical reward semantics. For instance, as demonstrated
in Section D.2, two LLM-generated reward function samples might both incorporate velocity-based rewards
while exhibiting completely different textual formulations. Failure to detect and eliminate such semantic
redundancies leads to computationally expensive duplicate evaluations that cannot be effectively identified
through surface-level text matching, necessitating deeper semantic analysis for accurate deduplication.

22

Published in Transactions on Machine Learning Research (10/2025)

Therefore, the URDP utilizes the BGE-M3 model (Xiao et al., 2024) for the purpose of semantic similarity
assessment, whereas the built-in SequenceMatcher in Python is employed for text similarity assessment.
The uncertainty quantification for both reward components and reward functions is implemented through
similarity comparison. Specifically, the component uncertainty score (Uri,:) is computed by comparing a
given reward component against all components generated within the same iteration. The reward function
uncertainty (URi

) score is derived through comparison with all functionally similar reward functions from
the same iteration (referred to as a similarity group). From each similarity group, only one reward function
is randomly selected for training, while the remaining ones are discarded, thereby filtering out redundant
reward functions. See Alg. 2 for the pseudocode. We employ a similarity threshold of 0.95, where the final
similarity metric is determined as the maximum value between semantic similarity and textual similarity.

Algorithm 2: Uncertainty Quantification in the URDP
Input: K reward component samples {ri,1, ri,2, . . . , ri,m}i∈K , text models Stext and semantic models

Ssemantic.
Output: Reward components uncertainty {Uri,1 , . . . , Uri,m

}, reward functions uncertainty URi
and

similarity sample group Bi.
foreach Ri ∈ K do

foreach ri,1, ri,2, . . . , ri,m do
foreach rj,1, rj,2, . . . , rj,m with j > i do

if max(Stext(ri,m, rj,m), Ssemantic(ri,m, rj,m)) > 0.95 then
countm ← countm + 1

Uri,m
← 1− countm/K, Uri

←
∑Mi

m=1 Uri,m

URi
← Uri

/(Uri
+ · · ·+ Urk

)
foreach Rj>i do

if max(Stext(Ri, Rj), Ssemantic(Ri, Rj)) > 0.95 and Ri not in other B then
Add Rj to Bi

return {Uri,1 , . . . , Uri,m
}, URi

, Bi,n=1

C.2 Hyper-parameter Settings

All hyperparameters in URDP are listed in Table 3. The reinforcement learning algorithms employed for valida-
tion maintain the default configurations specified for each respective environment, with all hyperparameters
comprehensively documented in Tables 4 and 5.

Table 3: Hyperparameters of URDP .

Hyper-parameter Value
Quantity of the reward samples K 16
Maximum # of iterations Nouter 10
Baseline # of iterations Ninner 10
Maximum similarity ω 0.95
Smoothness ν 2.5
Length scale ℓ UR

We set the quantity of the reward samples K to be the same as that used in Eureka, ensuring fairness in
comparisons.

Determination of outer maximum iterations Nouter and inner baseline iterations Ninner. The
settings for these two hyperparameters were determined based on experimentally observed safe upper bounds.
For the outer maximum iterations Nouter, Figure 8a compares the average NLC (and its variation range,
indicated by black lines) required by URDP and Eureka across different benchmarks when achieving comparable

23

Published in Transactions on Machine Learning Research (10/2025)

HNS and SR. Since the variation range of NLC is within 10 for all cases, we set the maximum iterations
Nouter = 10 as a safe upper bound, ensuring effective completion of all tasks. For the inner baseline iterations
Ninner, Figure 8b(b) presents the average number of inner-loop iterations required by URDP across the three
benchmarks, along with their ranges. The required range is also within 10, while in Alg. 1 the inner-loop
iteration count is defined as Ninner · UR (with UR ∈ [0, 1]). Therefore, we set Ninner = 10 to meet the
requirements across tasks.

(a) Outer-loop iterations across benchmarks (b) Inner-loop iterations in URDP benchmarks

Figure 8: Statistics of the outer-loop (equivalent to NLC) and inner-loop iteration counts. (a) The number of
outer-loop iterations required across different benchmarks, with black lines indicating the variation range. (b)
The statistics and variation ranges of inner-loop iterations for URDP during the experiments.

Influence of maximum similarity ω. The maximum similarity parameter ω primarily determines the
criterion for assessing sample similarity. Both the reward function and the uncertainty scores UR and Ur

designed in URDP are influenced by this parameter, thereby affecting the overall task score. To examine its
impact, we conducted an ablation study by setting ω to 0.9 (denoted as URDP ω=0.9) and compared it with our
default setting of ω = 0.95. As shown in Figure 9a, reducing ω to 0.9 leads to a decline in both the success
rate during the training iterations and the final success rate. The main reason, illustrated in Figure 9b, is
that with ω = 0.9, fewer samples are evaluated per iteration. This occurs because the more lenient similarity
threshold causes URDP to overlook some high-quality samples, ultimately resulting in a drop in success scores.

(a) URDP outperforms URDP ω=0.9 in the Allergo-
Hand task.

(b) The number of samples to be evaluated in the NLC
process on the AllegroHand task.

Figure 9: Results of the AllegroHand task under URDP and URDP ω=0.9. (a) HNS variation during the NLC
process, where URDP ω=0.9 remains consistently lower than URDP . (b) Reducing ω in NLC substantially
decreases the number of evaluated samples.

Effect of Smoothness Parameter ν. The parameter ν determines the differentiability of the kernel function,
which directly influences the trade-off between exploration and exploitation during Bayesian optimization. In
theory, smaller ν values correspond to less smooth kernels that encourage more aggressive exploration. To

24

Published in Transactions on Machine Learning Research (10/2025)

evaluate the effect of the Matern kernel smoothness parameter ν = 2.5 in UABO on URDP , we conduct an
ablation study by setting different commonly used ν values (0.5 and 1.5, denoted as URDP w. UABO0.5 and
URDP w. UABO1.5, respectively). As shown in Figure 10, when achieving comparable or identical HNS and
SR, URDP (UABO2.5) requires fewer NOE, indicating that the smoothness parameter ν not only enhances
the efficiency of URDP but also aligns well with its theoretical motivation.

Figure 10: URDP with ν = 2.5 outperforms other ablations in terms of efficiency.

The impact of length scale ℓ on efficiency. In the Matern kernel of a Gaussian Process, the length
scale ℓ determines the rate at which the kernel value decays with distance, thereby affecting the explo-
ration–exploitation balance of UABO in the parameter space. A larger ℓ slows the decay, increasing the
correlation between distant sample points and encouraging global search, but may lead to slower convergence.
In contrast, a smaller ℓ accelerates the decay, enhancing the sensitivity to local neighborhoods and favoring
fine-grained local search, although at the risk of premature convergence. To balance these effects, URDP
dynamically sets ℓ to the uncertainty score of the reward function UR, whose value is in the range [0,1].
To assess the advantage of this adaptive length scale, we performed an ablation study using a fixed ℓ = 1
(denoted URDP w. UABO1) as a baseline, as shown in Figure 11. The experimental results show that ℓ = UR

(URDP) achieves comparable solution quality with fewer NOE, thus improving task efficiency.

Figure 11: URDP outperforms URDP with ℓ = 1(URDP w. UABO1) in terms of efficiency.

D Case Studies

D.1 Case Study 1: LLMs in Numerical Optimization

This study employs two comparative examples to visualize the differences between URDP and Eureka in
optimization processes. Example 1(a) and 1(b) present the respective design trajectories of URDP and Eureka
for the ShadowHand task, where red annotations denote reward components and blue text indicates reward
intensity hyperparameters.

25

Published in Transactions on Machine Learning Research (10/2025)

Table 4: Hyperparameters of the SAC algorithm applied to Maniskill2.

Hyper-parameter Value
Discount factor γ 0.95
Target update frequency 1
Learning rate 3× 10−4

Train frequency 8
Soft update τ 5× 10−3

Gradient steps 4
Learning starts 4000
Hidden units per layer 256
Batch Size 1024
of layers 2
Initial temperature 0.2
Rollout steps per episode 200

Table 5: Hyperparameters of the PPO algorithm applied to each task.

Hyper-parameter Value
Discount factor γ 0.99 (Isaac), 0.96 (Dexterity), 0.85 (ManiSkill2)
of epochs per update 8 (Isaac), 5 (Dexterity), 15 (ManiSkill2)
Learning rate 5× 10−4 (Isaac), 3× 10−4 (Dexterity, ManiSkill2)
Batch size 32768, 16384, 8192 (Isaac), 16384 (Dexterity), 400 (ManiSkill2)
Target KL divergence 0.008 (Isaac), 0.016 (Dexterity), 0.05 (ManiSkill2)
of layers 3 (Isaac, Dexterity), 2 (ManiSkill2)
of steps per update 16 (Isaac), 8 (Dexterity), 3200 (ManiSkill2)

Analysis of Example 1(a) demonstrates that during evolutionary search iterations, Eureka exclusively modifies
reward intensity hyperparameters while failing to improve reward components. Despite multiple optimization
attempts, this approach yields degraded performance. This finding reveals a critical limitation: when
simultaneously optimizing both reward components and their strengths, LLMs cannot effectively utilize their
inherent advantages in semantic correlation and autoregressive modeling, while their deficiencies in numerical
optimization become particularly pronounced.

In contrast, URDP ’s decoupled alternating optimization demonstrates systematic effectiveness. As shown in
Example 1(b), URDP proactively explores novel reward components (e.g., replacing “distance reward” with
“velocity reward”), achieving a 70.3% performance improvement (from 0.929 to 1.583) before hyperparameter
optimization. Subsequent Bayesian optimization further enhances performance with an average 22.1% gain,
culminating in a 102.5% total improvement over the initial configuration. Example 2 confirms this consistent
advantage, providing compelling visual evidence of URDP ’s superior optimization characteristics.

Example 1(a): Eureka reward functions on ShadowHand (Iteration 2, HNS: 1.045; Iteration 3, HNS: 0.898;
Iteration 4, HNS: 1.019; Iteration 5, HNS: 0.955).

1 Iteration 2:
2 def compute_reward(object_rot: torch.Tensor, goal_rot: torch.Tensor, object_angvel: torch.Tensor) -> Tuple[torch.Tensor,

Dict[str, torch.Tensor]]:
3 # Temperature parameters for reward components
4 orientation_temp: float = 5.0 # Increased sensitivity for orientation alignment
5 angular_velocity_temp: float = 0.5 # Adjusted sensitivity for angular velocity
6
7 # Compute the difference in orientation between the object and the goal
8 orientation_diff = 1.0 - torch.abs(torch.sum(object_rot * goal_rot, dim=-1)) # Quaternion dot product
9

10 # Reward for minimizing the orientation difference
11 orientation_reward = torch.exp(-orientation_temp * orientation_diff)

26

Published in Transactions on Machine Learning Research (10/2025)

12
13 # Reward for spinning the object (encouraging non-zero angular velocity)
14 angular_velocity_magnitude = torch.norm(object_angvel, dim=-1)
15 angular_velocity_reward = torch.tanh(angular_velocity_temp * angular_velocity_magnitude) # Rescaled to [-1, 1]
16
17 # Combine the rewards with a focus on orientation alignment
18 total_reward = orientation_reward * (1.0 + angular_velocity_reward) # Weighted combination
19
20 # Return the total reward and individual components
21 reward_components = {
22 "orientation_reward": orientation_reward,
23 "angular_velocity_reward": angular_velocity_reward
24 }
25 return total_reward, reward_components
26
27 ##
28
29 Iteration 3:
30 def compute_reward(object_rot: torch.Tensor, goal_rot: torch.Tensor, object_angvel: torch.Tensor) -> Tuple[torch.Tensor,

Dict[str, torch.Tensor]]:
31 # Temperature parameters for reward components
32 orientation_temp: float = 10.0 # Increased sensitivity for orientation alignment
33 angular_velocity_temp: float = 1.0 # Adjusted sensitivity for angular velocity
34
35 # Compute the difference in orientation between the object and the goal
36 orientation_diff = 1.0 - torch.abs(torch.sum(object_rot * goal_rot, dim=-1)) # Quaternion dot product
37
38 # Reward for minimizing the orientation difference
39 orientation_reward = torch.exp(-orientation_temp * orientation_diff)
40
41 # Reward for spinning the object (encouraging non-zero angular velocity)
42 angular_velocity_magnitude = torch.norm(object_angvel, dim=-1)
43 angular_velocity_reward = torch.tanh(angular_velocity_temp * angular_velocity_magnitude) # Rescaled to [-1, 1]
44
45 # Combine the rewards with a focus on orientation alignment
46 total_reward = orientation_reward * (1.0 + angular_velocity_reward) # Weighted combination
47
48 # Return the total reward and individual components
49 reward_components = {
50 "orientation_reward": orientation_reward,
51 "angular_velocity_reward": angular_velocity_reward
52 }
53 return total_reward, reward_components
54
55 ##
56
57 Iteration 4:
58 def compute_reward(object_rot: torch.Tensor, goal_rot: torch.Tensor, object_angvel: torch.Tensor) -> Tuple[torch.Tensor,

Dict[str, torch.Tensor]]:
59 # Temperature parameters for reward components
60 orientation_temp: float = 10.0 # Increased sensitivity for orientation alignment
61 angular_velocity_temp: float = 2.0 # Adjusted sensitivity for angular velocity
62
63 # Compute the difference in orientation between the object and the goal
64 orientation_diff = 1.0 - torch.abs(torch.sum(object_rot * goal_rot, dim=-1)) # Quaternion dot product
65
66 # Reward for minimizing the orientation difference
67 orientation_reward = torch.exp(-orientation_temp * orientation_diff)
68
69 # Reward for spinning the object (encouraging non-zero angular velocity)
70 angular_velocity_magnitude = torch.norm(object_angvel, dim=-1)
71 angular_velocity_reward = torch.tanh(angular_velocity_temp * angular_velocity_magnitude) # Rescaled to [-1, 1]
72
73 # Combine the rewards with a focus on orientation alignment
74 total_reward = orientation_reward * (1.0 + angular_velocity_reward) # Weighted combination
75
76 # Return the total reward and individual components
77 reward_components = {
78 "orientation_reward": orientation_reward,
79 "angular_velocity_reward": angular_velocity_reward
80 }
81 return total_reward, reward_components
82
83 ##
84
85 Iteration 5:
86 def compute_reward(object_rot: torch.Tensor, goal_rot: torch.Tensor, object_angvel: torch.Tensor) -> Tuple[torch.Tensor,

Dict[str, torch.Tensor]]:
87 # Temperature parameters for reward components
88 orientation_temp: float = 50.0 # Increased sensitivity for orientation alignment
89 angular_velocity_temp: float = 2.0 # Adjusted sensitivity for angular velocity

27

Published in Transactions on Machine Learning Research (10/2025)

90
91 # Compute the difference in orientation between the object and the goal
92 orientation_diff = 1.0 - torch.abs(torch.sum(object_rot * goal_rot, dim=-1)) # Quaternion dot product
93
94 # Reward for minimizing the orientation difference
95 orientation_reward = torch.exp(-orientation_temp * orientation_diff)
96
97 # Reward for spinning the object (encouraging non-zero angular velocity)
98 angular_velocity_magnitude = torch.norm(object_angvel, dim=-1)
99 angular_velocity_reward = torch.tanh(angular_velocity_temp * angular_velocity_magnitude) # Rescaled to [-1, 1]

100
101 # Combine the rewards with a focus on orientation alignment
102 total_reward = orientation_reward * (1.0 + angular_velocity_reward) # Weighted combination
103
104 # Return the total reward and individual components
105 reward_components = {
106 "orientation_reward": orientation_reward,
107 "angular_velocity_reward": angular_velocity_reward
108 }
109 return total_reward, reward_components

Example 1(b): URDP reward functions on ShadowHand. Iteration 1 (before UABO), HNS: 0.929; Iteration 1
(after UABO), HNS: 1.165; Iteration 2 (before UABO), HNS: 1.583; Iteration 2 (after UABO), HNS: 1.882.

1 Iteration 1(before UABO):
2 def compute_reward(object_rot: torch.Tensor, goal_rot: torch.Tensor) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
3 # Temperature parameters
4 orientation_temp = 1.0 # Reduced temperature for better sensitivity
5 distance_temp = 1.0 # Temperature for distance-based reward
6
7 # Compute the dot product between the object and goal quaternions
8 dot_product = torch.sum(object_rot * goal_rot, dim=1)
9

10 # Ensure the dot product is within the valid range [-1, 1]
11 dot_product = torch.clamp(dot_product, -1.0, 1.0)
12
13 # Compute the angle difference between the quaternions
14 angle_diff = torch.acos(2.0 * dot_product**2 - 1.0)
15
16 # Orientation reward: exponential transformation of the angle difference
17 orientation_reward = torch.exp(-orientation_temp * angle_diff)
18
19 # Distance-based reward: encourages reducing the angle difference
20 distance_reward = -angle_diff # Negative because we want to minimize the difference
21
22 # Success bonus: reward for achieving the target orientation
23 success_threshold: float = 0.05 # Easier threshold for success
24 success_bonus = torch.where(angle_diff < success_threshold, 100.0, 0.0) # Larger bonus
25
26 # Total reward: weighted sum of orientation reward, distance reward, and success bonus
27 total_reward = orientation_reward + distance_reward + success_bonus
28
29 # Dictionary of individual reward components
30 reward_components = {
31 "orientation_reward": orientation_reward,
32 "distance_reward": distance_reward,
33 }
34
35 return total_reward, reward_components
36
37 ##
38
39 Iteration 1(after UABO):
40 def compute_reward(object_rot: torch.Tensor, goal_rot: torch.Tensor) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
41 # Temperature parameters
42 orientation_temp = 1.1134 # Reduced temperature for better sensitivity
43 distance_temp = 1.1134 # Temperature for distance-based reward
44
45 # Compute the dot product between the object and goal quaternions
46 dot_product = torch.sum(object_rot * goal_rot, dim=1)
47
48 # Ensure the dot product is within the valid range [-1, 1]
49 dot_product = torch.clamp(dot_product, -1.0, 1.0)
50
51 # Compute the angle difference between the quaternions
52 angle_diff = torch.acos(2.0 * dot_product**2 - 1.0)
53
54 # Orientation reward: exponential transformation of the angle difference

28

Published in Transactions on Machine Learning Research (10/2025)

55 orientation_reward = torch.exp(-orientation_temp * angle_diff)
56
57 # Distance-based reward: encourages reducing the angle difference
58 distance_reward = -angle_diff # Negative because we want to minimize the difference
59
60 # Success bonus: reward for achieving the target orientation
61 success_threshold: float = 0.05 # Easier threshold for success
62 success_bonus = torch.where(angle_diff < success_threshold, 100.0, 0.0) # Larger bonus
63
64 # Total reward: weighted sum of orientation reward, distance reward, and success bonus
65 total_reward = orientation_reward + distance_reward + success_bonus
66
67 # Dictionary of individual reward components
68 reward_components = {
69 "orientation_reward": orientation_reward,
70 "distance_reward": distance_reward
71 }
72
73 return total_reward, reward_components
74
75 ##
76
77 Iteration 2(before UABO):
78 def compute_reward(object_rot: torch.Tensor, goal_rot: torch.Tensor, object_angvel: torch.Tensor) -> Tuple[torch.Tensor,

Dict[str, torch.Tensor]]:
79 # Temperature parameters for reward components
80 orientation_temp = 1
81 velocity_temp = 0.1
82
83 # Compute the difference in orientation between the object and the goal
84 orientation_diff = torch.norm(object_rot - goal_rot, dim=-1)
85
86 # Compute the angular velocity magnitude of the object
87 angvel_magnitude = torch.norm(object_angvel, dim=-1)
88
89 # Reward for minimizing the orientation difference
90 orientation_reward = torch.exp(-orientation_temp * orientation_diff)
91
92 # Reward for maintaining a high angular velocity (encourages spinning)
93 velocity_reward = torch.exp(-velocity_temp * (1.0 / (angvel_magnitude + 1e-6)))
94
95 # Combine the rewards with appropriate weights
96 total_reward = 0.7 * orientation_reward + 0.3 * velocity_reward
97
98 # Dictionary of individual reward components for logging
99 reward_dict = {

100 "orientation_reward": orientation_reward,
101 "velocity_reward": velocity_reward
102 }
103
104 return total_reward, reward_dict
105
106 ##
107
108 Iteration 2(after UABO):
109 def compute_reward(object_rot: torch.Tensor, goal_rot: torch.Tensor, object_angvel: torch.Tensor) -> Tuple[torch.Tensor,

Dict[str, torch.Tensor]]:
110 # Temperature parameters for reward components
111 orientation_temp = 1.2642
112 velocity_temp = 0.3145
113
114 # Compute the difference in orientation between the object and the goal
115 orientation_diff = torch.norm(object_rot - goal_rot, dim=-1)
116
117 # Compute the angular velocity magnitude of the object
118 angvel_magnitude = torch.norm(object_angvel, dim=-1)
119
120 # Reward for minimizing the orientation difference
121 orientation_reward = torch.exp(-orientation_temp * orientation_diff)
122
123 # Reward for maintaining a high angular velocity (encourages spinning)
124 velocity_reward = torch.exp(-velocity_temp * (1.0 / (angvel_magnitude + 1e-6)))
125
126 # Combine the rewards with appropriate weights
127 total_reward = 0.7 * orientation_reward + 0.3 * velocity_reward
128
129 # Dictionary of individual reward components for logging
130 reward_dict = {
131 "orientation_reward": orientation_reward,
132 "velocity_reward": velocity_reward
133 }

29

Published in Transactions on Machine Learning Research (10/2025)

134
135 return total_reward, reward_dict

Example 2 (a): Eureka reward functions on Humanoid (Iteration 1, HNS: 2.273; Iteration 2, score: 0.412;
Iteration 3, HNS: 0.032; Iteration 4, HNS: 0.127).

1 Iteration 1:
2 def compute_reward(root_states: torch.Tensor, dt: float) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
3 # Extract the velocity of the humanoid's torso (root_states[:, 7:10] contains the linear velocity)
4 velocity = root_states[:, 7:10]
5
6 # Compute the forward speed (we assume the humanoid is moving along the x-axis)
7 forward_speed = velocity[:, 0]
8
9 # Reward for forward speed (scaled to a smaller range)

10 speed_temp = 1.0 # Reduced temperature for better scaling
11 speed_reward = forward_speed * speed_temp
12
13 # Reward for consistency (encourage maintaining high speed)
14 consistency_temp = 1.0
15 consistency_reward = torch.exp(-consistency_temp * torch.abs(forward_speed - torch.mean(forward_speed)))
16
17 # Total reward combines speed reward and consistency reward
18 reward = speed_reward + consistency_reward
19
20 # Dictionary of individual reward components
21 reward_dict = {
22 "speed_reward": speed_reward,
23 "consistency_reward": consistency_reward,
24 }
25
26 return reward, reward_dict
27
28 ##
29
30 Iteration 2:
31 def compute_reward(root_states: torch.Tensor, dt: float) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
32 # Extract the velocity of the humanoid's torso (root_states[:, 7:10] contains the linear velocity)
33 velocity = root_states[:, 7:10]
34
35 # Compute the forward speed (we assume the humanoid is moving along the x-axis)
36 forward_speed = velocity[:, 0]
37
38 # Reward for forward speed (scaled to a smaller range)
39 speed_temp = 0.2 # Further reduced temperature for better scaling
40 speed_reward = forward_speed * speed_temp
41
42 # Reward for consistency (encourage maintaining high speed over time)
43 consistency_temp = 0.5 # Increased temperature for better scaling
44 consistency_reward = torch.exp(-consistency_temp * torch.abs(forward_speed - torch.mean(forward_speed)))
45
46 # Total reward combines speed reward and consistency reward
47 reward = speed_reward + consistency_reward
48
49 # Dictionary of individual reward components
50 reward_dict = {
51 "speed_reward": speed_reward,
52 "consistency_reward": consistency_reward,
53 }
54
55 return reward, reward_dict
56
57 ##
58
59 Iteration 3:
60 def compute_reward(root_states: torch.Tensor, dt: float) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
61 # Extract the velocity of the humanoid's torso (root_states[:, 7:10] contains the linear velocity)
62 velocity = root_states[:, 7:10]
63
64 # Compute the forward speed (we assume the humanoid is moving along the x-axis)
65 forward_speed = velocity[:, 0]
66
67 # Reward for forward speed (scaled to a smaller range)
68 speed_temp = 0.1 # Reduced temperature for better scaling
69 speed_reward = forward_speed * speed_temp
70
71 # Reward for consistency (encourage maintaining high speed)
72 consistency_temp = 0.5 # Increased temperature for better scaling

30

Published in Transactions on Machine Learning Research (10/2025)

73 consistency_reward = torch.exp(-consistency_temp * torch.abs(forward_speed - torch.mean(forward_speed)))
74
75 # Total reward combines speed reward and consistency reward
76 reward = speed_reward + consistency_reward
77
78 # Dictionary of individual reward components
79 reward_dict = {
80 "speed_reward": speed_reward,
81 "consistency_reward": consistency_reward,
82 }
83
84 return reward, reward_dict
85
86 ##
87
88 Iteration 4:
89 def compute_reward(root_states: torch.Tensor, dt: float) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
90 # Extract the velocity of the humanoid's torso (root_states[:, 7:10] contains the linear velocity)
91 velocity = root_states[:, 7:10]
92
93 # Compute the forward speed (we assume the humanoid is moving along the x-axis)
94 forward_speed = velocity[:, 0]
95
96 # Reward for forward speed (scaled to a smaller range)
97 speed_temp = 0.1 # Further reduced temperature for better scaling
98 speed_reward = forward_speed * speed_temp
99

100 # Reward for consistency (encourage maintaining high speed over time)
101 consistency_temp = 10 # Increased temperature for better scaling
102 consistency_reward = torch.exp(-consistency_temp * torch.abs(forward_speed - torch.mean(forward_speed)))
103
104 # Total reward combines speed reward and consistency reward
105 reward = speed_reward + consistency_reward
106
107 # Dictionary of individual reward components
108 reward_dict = {
109 "speed_reward": speed_reward,
110 "consistency_reward": consistency_reward,
111 }
112
113 return reward, reward_dict

Example 2 (b): URDP reward functions on Humanoid. Iteration 1 (before UABO), HNS: 1.428, Iteration 1
(after UABO), HNS: 2.132; Iteration 2 (before UABO), HNS: 2.481, Iteration 2 (after UABO), HNS: 2.646.

1 Iteration 1(before UABO):
2 def compute_reward(root_states: torch.Tensor, dt: float) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
3 # Extract the velocity of the humanoid's torso from the root states
4 velocity = root_states[:, 7:10]
5
6 # Compute the forward speed (assuming x-axis is the forward direction)
7 forward_speed = velocity[:, 0]
8
9 # Scale up the speed reward to provide stronger feedback

10 speed_reward_temp = 10 # Temperature parameter for speed reward
11 speed_reward = torch.exp(speed_reward_temp * forward_speed * dt)
12
13 # Optional: Add a reward for sustained running
14 sustained_speed_temp = 0.1 # Temperature parameter for sustained speed reward
15 sustained_speed_reward = torch.exp(sustained_speed_temp * forward_speed * dt)
16
17 # Combine the rewards
18 total_reward = speed_reward + sustained_speed_reward
19
20 # Return the total reward and the individual reward components
21 reward_dict = {
22 "speed_reward": speed_reward,
23 "sustained_speed_reward": sustained_speed_reward
24 }
25
26 return total_reward, reward_dict
27
28 ##
29
30 Iteration 1(after UABO):
31 def compute_reward(root_states: torch.Tensor, dt: float) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
32 # Extract the velocity of the humanoid's torso from the root states
33 velocity = root_states[:, 7:10]

31

Published in Transactions on Machine Learning Research (10/2025)

34
35 # Compute the forward speed (assuming x-axis is the forward direction)
36 forward_speed = velocity[:, 0]
37
38 # Scale up the speed reward to provide stronger feedback
39 speed_reward_temp = 10.4424 # Temperature parameter for speed reward
40 speed_reward = torch.exp(speed_reward_temp * forward_speed * dt)
41
42 # Optional: Add a reward for sustained running
43 sustained_speed_temp = 0.3606 # Temperature parameter for sustained speed reward
44 sustained_speed_reward = torch.exp(sustained_speed_temp * forward_speed * dt)
45
46 # Combine the rewards
47 total_reward = speed_reward + sustained_speed_reward
48
49 # Return the total reward and the individual reward components
50 reward_dict = {
51 "speed_reward": speed_reward,
52 "sustained_speed_reward": sustained_speed_reward
53 }
54
55 return total_reward, reward_dict
56
57 ##
58
59 Iteration 2(before UABO):
60 def compute_reward(root_states: torch.Tensor, dt: float) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
61 # Extract the velocity of the humanoid's torso from the root states
62 velocity = root_states[:, 7:10]
63 torso_height = root_states[:, 2] # Torso height (z-axis)
64
65 # Compute the forward speed (assuming x-axis is the forward direction)
66 forward_speed = velocity[:, 0]
67
68 # Apply exponential transformation to the speed reward with a temperature parameter
69 speed_temp = 1 # Temperature parameter for speed reward
70 speed_reward = torch.exp(speed_temp * forward_speed) * dt
71
72 # Penalty for falling (torso height below a threshold)
73 fall_threshold = 0.8 # Minimum torso height to avoid falling
74 fall_penalty = -10.0 * (torso_height < fall_threshold).float() * dt
75
76 # Combine the rewards
77 total_reward = speed_reward + fall_penalty
78
79 # Return the total reward and the individual reward components
80 reward_dict = {
81 "speed_reward": speed_reward
82 }
83
84 return total_reward, reward_dict
85
86 ##
87
88 Iteration 2(after UABO):
89 def compute_reward(root_states: torch.Tensor, dt: float) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
90 # Extract the velocity of the humanoid's torso from the root states
91 velocity = root_states[:, 7:10]
92 torso_height = root_states[:, 2] # Torso height (z-axis)
93
94 # Compute the forward speed (assuming x-axis is the forward direction)
95 forward_speed = velocity[:, 0]
96
97 # Apply exponential transformation to the speed reward with a temperature parameter
98 speed_temp = 0.7111 # Temperature parameter for speed reward
99 speed_reward = torch.exp(speed_temp * forward_speed) * dt

100
101 # Penalty for falling (torso height below a threshold)
102 fall_threshold = 0.8 # Minimum torso height to avoid falling
103 fall_penalty = -10.0 * (torso_height < fall_threshold).float() * dt
104
105 # Combine the rewards
106 total_reward = speed_reward + fall_penalty
107
108 # Return the total reward and the individual reward components
109 reward_dict = {
110 "speed_reward": speed_reward
111 }
112
113 return total_reward, reward_dict

32

Published in Transactions on Machine Learning Research (10/2025)

D.2 Case Study 2: the Redundancy in Reward Function Samples

This case study analyzes two representative examples from Eureka within a single iteration, visually demon-
strating a major source of computational redundancy. Our analysis reveals that Eureka generates multiple
semantically equivalent but syntactically varied reward functions within a single iteration, all sharing identical
reward intensities.

For instance, in Example 3, although the two reward functions (Sample #9 and #15) from iteration 1
exhibit different textual expressions (“forward_velocity_reward” vs. “velocity_reward”), their underlying
reward objectives and logic are fundamentally identical. This observation suggests that the apparent diversity
among Eureka-generated samples may be primarily lexical rather than semantic. Effective filtering of such
pseudo-diversity is therefore essential to eliminate redundant and computationally inefficient evaluations.
Example 4 is a similar example.

Example 3: The reward function codes of the task Ant after Iteration 1. The scores of Sample #9 and
Sample #15 are both 2.012.

1 Iteration 1 (sample #9):
2 def compute_reward(root_states: torch.Tensor, actions: torch.Tensor) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
3
4 # Define weight parameters
5 forward_velocity_temp: float = 1.0
6 action_penalty_temp: float = 0.01
7
8 # Extract forward velocity (x-axis velocity in the world frame)
9 forward_velocity = root_states[:, 7] # Velocity along the x-axis

10
11 # Reward for forward velocity
12 forward_velocity_reward = forward_velocity * forward_velocity_temp
13
14 # Penalty for large actions to encourage energy efficiency
15 action_penalty = -torch.sum(torch.square(actions), dim=-1) * action_penalty_temp
16
17 # Total reward
18 reward = forward_velocity_reward + action_penalty
19
20 # Individual reward components
21 reward_dict = {
22 "forward_velocity_reward": forward_velocity_reward,
23 "action_penalty": action_penalty,
24 }
25
26 return reward, reward_dict
27
28 ##
29
30 Iteration 1 (sample #15):
31 def compute_reward(root_states: torch.Tensor, actions: torch.Tensor) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
32
33 # Define weight parameters
34 velocity_temp: float = 1.0
35 action_penalty_temp: float = 0.01
36
37 # Extract the forward velocity (x-axis velocity)
38 forward_velocity = root_states[:, 7] # x-axis velocity is at index 7
39
40 # Reward for moving forward fast
41 velocity_reward = forward_velocity * velocity_temp
42
43 # Penalty for large actions to encourage energy efficiency
44 action_penalty = -torch.sum(torch.square(actions), dim=-1) * action_penalty_temp
45
46 # Total reward
47 total_reward = velocity_reward + action_penalty
48
49 # Individual reward components for debugging and analysis
50 reward_components = {
51 "velocity_reward": velocity_reward,
52 "action_penalty": action_penalty,
53 }
54
55 return total_reward, reward_components

33

Published in Transactions on Machine Learning Research (10/2025)

Example 4: The reward function codes of the task Ant after Iteration 1. The scores of Sample #3 and
Sample #14 are both 0.059.

1 Iteration 1 (sample #3):
2 def compute_reward(object_rot: torch.Tensor, goal_rot: torch.Tensor, object_angvel: torch.Tensor) -> Tuple[torch.Tensor,

Dict[str, torch.Tensor]]:
3 # Temperature parameters for reward components
4 orientation_temp: float = 1.0
5 angular_vel_temp: float = 0.1
6
7 # Compute the difference in orientation using quaternion distance
8 quat_diff = quat_mul(object_rot, quat_conjugate(goal_rot))
9 orientation_error = torch.norm(quat_diff[:, 1:4], dim=1) # Ignore the scalar part for distance

10 orientation_reward = torch.exp(-orientation_temp * orientation_error)
11
12 # Penalize excessive angular velocity
13 angular_vel_penalty = torch.exp(-angular_vel_temp * angular_vel_magnitude)
14
15 # Combine rewards
16 total_reward = orientation_reward * angular_vel_penalty
17
18 # Return the total reward and individual components for debugging
19 reward_components = {
20 "orientation_reward": orientation_reward,
21 "angular_vel_penalty": angular_vel_penalty
22 }
23 return total_reward, reward_components
24
25 ##
26
27 Iteration 1 (sample #14):
28 def compute_reward(object_rot: torch.Tensor, goal_rot: torch.Tensor, object_angvel: torch.Tensor) -> Tuple[torch.Tensor,

Dict[str, torch.Tensor]]:
29 # Temperature parameters for reward components
30 orientation_temp = 1.0
31 angular_velocity_temp = 0.1
32
33 # Compute the difference in orientation using quaternion distance
34 quat_diff = quat_mul(object_rot, quat_conjugate(goal_rot))
35 orientation_error = torch.norm(quat_diff[:, 1:4], dim=1) # Ignore the scalar part for distance
36 orientation_reward = torch.exp(-orientation_temp * orientation_error)
37
38 # Penalize excessive angular velocity
39 angular_velocity_magnitude = torch.norm(object_angvel, dim=1)
40 angular_velocity_penalty = torch.exp(-angular_velocity_temp * angular_velocity_magnitude)
41
42 # Combine rewards
43 total_reward = orientation_reward * angular_velocity_penalty
44
45 # Return the total reward and individual components for debugging
46 reward_components = {
47 "orientation_reward": orientation_reward,
48 "angular_velocity_penalty": angular_velocity_penalty
49 }
50 return total_reward, reward_components

E Detailed Results

E.1 Evaluation on Efficiency

Table 6 presents the comprehensive evaluation results across all tasks in the three benchmarks. The
comparative analysis demonstrates that while achieving comparable SR or HNS to Eureka, URDP requires
fewer simulation training episodes and LLM invocations in 92% of the experimental tasks, indicating superior
sample efficiency and computational economy.

E.2 Evaluation on the Performance of the Reward Function

Table 7 presents a comprehensive performance comparison of different methods across all tasks in three
benchmarks. The results demonstrate that URDP consistently outperforms the baseline approaches while
maintaining comparable or reduced requirements for both simulation training episodes and LLM invocations.

34

Published in Transactions on Machine Learning Research (10/2025)

Table 6: URDP vs. SOTA with efficiency. URDP performed best in 92% of tasks in terms of NOE and NLC
(bolded parts in the table).

Benchmark Environment Text2Reward Eureka URDP

HNS NOE↓ NLC↓ HNS NOE↓ NLC↓ HNS NOE↓ NLC↓

Isaac

Ant 1.543 112 7 1.527 112 7 1.556 48 3
Cartpole 1 16 1 1 16 1 1 15 1
BallBalance 1 16 1 1 16 1 1 16 1
Quadcopter 1.678 82 6 1.667 70 5 1.818 41 2
FrankaCabinet 16.95 95 7 17 97 7 17.130 57 4
Humanoid 2.305 16 1 2.306 16 1 2.646 52 3
Anymal 1.095 87 6 1.113 91 6 1.2 47 2
AllegroHand 2.176 121 8 2.162 95 6 2.182 40 4
ShadowHand 1.805 111 8 1.786 105 7 1.817 33 2

SR NOE↓ NLC↓ SR NOE↓ NLC↓ SR NOE↓ NLC↓

Dexterity

BlockStack 0.67 112 7 0.67 112 7 0.68 53 1
HandKettle 0.89 85 6 0.89 72 5 0.89 78 5
HandDoorCloseOutward 0.96 83 6 0.9 72 5 0.97 37 2
DoorCloseInward 1 71 5 1.0 78 5 1.0 34 2
SwingCup 0.84 93 7 0.84 87 6 0.84 51 3
Switch 0 58 5 0.0 58 5 0.02 76 5
TwoCatchUnderarm 0 62 5 0.0 62 5 0.0 62 4
CatchUnderarm 0.72 95 7 0.73 89 6 0.73 67 4
CatchAbreast 0.66 88 6 0.66 83 6 0.67 54 4
DoorOpenInward 0.04 73 5 0.04 69 5 0.06 67 4
PushBlock 0.14 97 7 0.14 92 6 0.15 49 3
BottleCap 0.88 110 8 0.88 96 7 0.89 67 4
ReOrientation 0.32 75 6 0.31 66 5 0.33 58 4
CatchOver2Underarm 0.91 77 6 0.9 74 5 0.93 57 3
LiftUnderarm 0.89 88 6 0.89 86 6 0.89 78 4
Over 0.92 82 6 0.92 71 5 0.92 41 3
Pen 0.85 95 7 0.85 97 7 0.85 78 4
DoorOpenOutward 1 76 5 1.0 75 5 1.0 46 3
Scissors 1 76 5 1.0 77 5 1 44 3
GraspAndPlace 0.75 93 6 0.75 85 6 0.77 59 4

SR NOE↓ NLC↓ SR NOE↓ NLC↓ SR NOE↓ NLC↓

ManiSkill2

LiftCube 0.906 112 7 0.905 96 6 0.906 15 1
PickCube 0.879 128 8 0.884 112 7 0.885 20 1
TurnFaucet 0.799 96 6 0.800 96 6 0.801 34 2
OpenCabinetDoor 0.865 96 6 0.861 96 6 0.866 31 2
OpenCabinetDrawer 0.633 112 7 0.632 96 6 0.638 43 2
PushChair 0.657 96 6 0.654 96 6 0.657 51 2

35

Published in Transactions on Machine Learning Research (10/2025)

Notably, URDP achieves superior performance to human-designed reward functions in 89% of the experimental
tasks, highlighting the significant potential of automated reward design methodologies.

Table 7: Task-wise comparison of URDP with other methods. URDP outperforms the compared methods on
89% of the tasks.

‌

Benchmark Environment Sparse Human Text2Reward Eureka URDP

HNS↑ HNS↑ HNS↑ NOE NLC HNS↑ NOE NLC HNS↑ NOE NLC

Isaac

Ant 0 1 0.772 48 3 0.828 48 3 1.556 48 3
Cartpole 0 1 1 15 1 1 15 1 1 15 1
BallBalance 0 1 1 16 1 1 16 1 1 16 1
Quadcopter 0 1 1.041 41 3 1.25 41 3 1.818 41 2
FrankaCabinet 0 1 5.4 57 4 4.8 57 4 17.130 57 4
Humanoid 0 1 2.217 52 4 2.306 52 4 2.646 52 3
Anymal 0 1 0.317 47 3 0.545 47 3 1.2 47 2
AllegroHand 0 1 1.196 40 3 1.594 40 3 2.182 40 4
ShadowHand 0 1 1.034 33 3 1.115 33 3 1.817 33 2

SR↑ SR↑ SR↑ NOE NLC SR↑ NOE NLC SR↑ NOE NLC

Dexterity

BlockStack 0 0.69 0.11 53 4 0.12 53 4 0.679 53 1
Kettle 0 0.02 0.89 78 5 0.89 78 5 0.89 72 5
DoorCloseOutward 0.15 0.06 0.57 37 3 0.64 37 3 0.968 37 2
DoorCloseInward 0 1 0.74 34 3 0.83 34 3 1 34 2
SwingCup 0 0 0.62 51 4 0.53 51 4 0.84 51 3
Switch 0 0 0 76 5 0.01 76 5 0.02 76 5
TwoCatchUnderarm 0 0 0 62 5 0 62 5 0 62 4
CatchUnderarm 0 0.51 0.58 67 5 0.63 67 5 0.73 67 4
CatchAbreast 0 0.37 0.27 54 5 0.34 54 5 0.67 54 4
DoorOpenInward 0 0.03 0 67 5 0 67 5 0.06 67 4
PushBlock 0 0.01 0.05 49 4 0.05 49 4 0.15 49 3
BottleCap 0.91 0.91 0.21 67 5 0.25 67 5 0.89 67 4
ReOrientation 0.01 0.02 0.25 58 4 0.28 58 4 0.33 58 4
CatchOver2Underarm 0 0.87 0.81 57 4 0.81 57 4 0.93 57 3
LiftUnderarm 0 0.37 0.83 78 6 0.85 78 6 0.89 78 4
Over 0 0.9 0.54 41 4 0.61 41 4 0.92 41 3
Pen 0.01 0.74 0.67 78 6 0.63 78 6 0.85 78 4
DoorOpenOutward 0.02 0.85 0.76 46 3 0.87 46 3 1 46 3
Scissors 0.99 0.96 0.73 44 3 0.69 44 3 1 44 3
GraspAndPlace 0 0.87 0.41 59 4 0.43 59 4 0.77 59 4

SR↑ SR↑ SR↑ NOE NLC SR↑ NOE NLC SR↑ NOE NLC

ManiSkill2

LiftCube 0.143 0.543 0.531 15 1 0.356 15 1 0.906 15 1
PickCube 0.131 0.479 0.497 20 2 0.434 20 2 0.885 20 1
TurnFaucet 0 0.598 0.631 34 3 0.516 34 3 0.801 34 2
OpenCabinetDoor 0.028 0.651 0.713 31 2 0.575 31 2 0.866 31 2
OpenCabinetDrawer 0 0.37 0.519 43 3 0.478 43 3 0.64 43 2
PushChair 0 0.334 0.432 51 4 0.336 51 4 0.657 51 2

F Proofs

F.1 Determination of the Kernel Function

Theorem 1. The kernel function equation 6 satisfied the properties of symmetry and positive semi-definiteness.

Proof. The property of symmetry is obvious. Now we prove the positive semi-definiteness based on the
properties of the Matern kernel equation 4. For any given finite set of sample points p̃(1), p̃(2), · · · , p̃(n), we
denote the corresponding kernel matrix as

K̃ij = k̃(p̃(i), p̃(j)). (10)

By performing a coordinate scaling transformation on the sample points, we obtain new sample points

p(i) = (p̃(i)
1 /l1, · · · , p̃

(i)
d /ld), i = 1, 2, · · · , n. (11)

And the Matern kernel matrix is
Kij = k(p(i), p(j)) (12)

36

Published in Transactions on Machine Learning Research (10/2025)

Since Matern kernel equation 4 is positive semi-definite, the kernel matrix equation 12 constructed from the
transformed points with Matern kernel is positive semi-definite. Furthermore, the kernel matrix of equation 6
is essentially equivalent to the Martern kernel matrix equation 12 computed on the transformed sample
points, i.e.

rnew(p̃(i), p̃(j)) = r(p(i), p(j)) (13)
K̃ij = k̃(p̃(i), p̃(j)) = fν(rnew) = fν(r) = Kij . (14)

Therefore, K̃ is positive semi-definite.

In the newly defined weighted distance equation 5, a larger li in directions with more rapid variations can
increase the possibility of exploration, while a smaller li in directions with smoother variations will reduce
exploration and emphasize the exploitation of information from previously sampled points.

F.2 Convergence analysis of the Uncertainty-accelerated Expected Improvement (uEI)

The basic definitions and theorems have been defined to analyze the convergence rate of Bayesian optimiza-
tion (Bull, 2011). Here, we briefly restate some of the key definitions required. Let X ⊂ Rd be a compact
set with non-empty interior. For a function f : X → R to be minimized, Kθ is the correlation kernel for the
function f prior distribution π with length-scales θ. Hθ(X) is the reproducing-kernel Hilbert space of Kθ on
X . Let Pu

f and Eu
f denote the probability and expectation operators when minimizing the fixed function f

using strategy u. The loss suffered over the ball BR in Hθ(X) after n steps by a strategy u is defined as,

Ln(u,Hθ(X), R) := sup
f∈Hθ(X)

∥f∥Hθ(X)≤R

Eu
f

[
f(x∗

n)−min f
]

(15)

where x∗
n is the estimated minimum of f .

It is proved that the strategy expected improvement converges at least at a rate n−(ν∧1)/d, up to logarithmic
factors, where ν is the parameter in the Matern kernel (Bull, 2011).
Theorem 2. Assume that the function f depends only on m input variables, m < d, and remains constant
along the other d−m directions. Under such an assumption, with an appropriate choice of weighted parameters,
the Uncertainty-accelerated Expected Improvement converges at least at the rate n−(ν∧1)/m, up to logarithmic
factors, where ν is the parameter in the Matern kernel.

Proof. From the proof of expected improvement convergence rate (Bull, 2011), we observe that the parameter
d in convergence rate estimation is actually the dimensionality of the sampling space. And the conclusion
holds based on the condition that {xn} is a quasi-uniform sequence in a region of interest (Narcowich et al.,
2003). Without loss of generality, let us assume that the function f depends on dimensions i1 to im, and is
invariant with respect to dimensions im+1 to id. For the uEI strategy, let

λj =
{

0, j = 1, · · · , m

∞, j = m + 1, · · · , d
(16)

Consequently, any exploration in the directions of dimensions im+1 to id will be discouraged. The effective
dimensionality of the sampling space decreases from d to m, which leads to an improved convergence rate of
at least n−(ν∧1)/m.

Although our theorem has focused on the limiting case in which f is entirely independent of certain directions,
it illustrates how applying weighted constraints allows for dimension-specific treatment within the sampling
space, thus enhancing the efficiency of the algorithm.

37

Published in Transactions on Machine Learning Research (10/2025)

G Additional Analysis

G.1 Uncertainty and Reward Shaping

To validate the role of high-uncertainty reward components, we conducted ablation studies by removing these
components from the reward function. Figure 12 presents comparative cases between the original reward
functions (R) and its ablated counterparts (R w.o. ru↑). Our analysis reveals two key findings: (1) the removal
of high-uncertainty components leads to significant performance degradation, with respective decreases of
19%, 83%, and 51% in HNS/SR metrics; and (2) reward functions retaining these components demonstrate
accelerated discovery of critical states during early RL training phases, effectively reducing inefficient
exploration. These results collectively demonstrate the crucial function of high-uncertainty components in
both final performance and training efficiency. These results suggest that high-uncertainty reward components
contribute positively to reward shaping and play an essential role in guiding effective policy learning.

(a) Anymal (b) FrankaCabinet (c) LiftUnderarm

Figure 12: The comparison between R and R w.o.ru↑ suggests that the high-uncertainty reward components ru↑
(dof_vel_penalty in Anymal, progress_reward in FrankaCabinet, drop_penalty in LiftUnderarm) contribute
to reward shaping during the policy learning.

G.2 LLM Alternatives

URDP with Qwen2.5 and Llama3. In Figure 13, we compare the performance of URDP with DeepSeek-v3-
241226 (the results reported in the paper), URDP with Qwen2.5 (qwen-max-0919) (Qwen et al., 2025), and
Llama3 (llama-v3-70b-instruct) (Dubey et al., 2024). These results demonstrate the consistency of the effect
of URDP on different LLMs and eliminate concerns that the differences in the capabilities of LLMs themselves
may affect the results.

Figure 13: URDP demonstrates consistent performance across different LLMs.

H Limitation and Discussion

In this work, we investigate efficient automated reward design methodologies based on large language models
(LLMs). However, constrained by the inherent limitations of LLMs in spatial reasoning capabilities, our
approach, like other comparable methods, faces challenges in addressing scenario-specific constraints during
reward formulation. A representative case emerges in “grasping” tasks where environmental obstacles may
restrict robotic manipulation paths, constraints that should ideally be reflected in reward design. While

38

Published in Transactions on Machine Learning Research (10/2025)

providing detailed environmental descriptions in prompts may partially mitigate this issue, a more fundamental
solution would involve integrating video-language models (VLMs) into the reward design framework. VLMs
demonstrate superior spatial perception capabilities that could enrich the understanding of RL task objectives,
environmental constraints, and reward composition. Nevertheless, incorporating VLMs introduces new
challenges regarding computational scalability during reward design and tuning processes. We therefore
identify this as a critical yet underexplored research direction worthy of systematic investigation.

To maintain simplicity in presenting our work, we employ the base capabilities of large language models
without sophisticated inference-time enhancement techniques (e.g., chain-of-thought, test-time training).
However, advanced reasoning techniques have demonstrated significant improvements in handling complex
logical tasks, as evidenced in code generation and mathematical reasoning domains. We posit these methods
would similarly enhance reward function code design. Ultimately, substantial exploration potential remains
for large language model techniques in automated reward design.

39

	Introduction
	Related work
	Preliminary: problem setup and notations
	Methods
	Decoupled Reward Generation and Hyperparameter Optimization
	Reward Code Sampling with Uncertainty Screening
	Uncertainty-aware Bayesian Optimization

	Experiments
	Baselines
	Experimental Setup
	Results
	Ablation Experiments
	Extended Discussion

	Conclusion
	Full Prompts
	Benchmark Details
	An Introduction to the Benchmarks
	ManiSkill2 Environment Details

	Implementation Details
	Implementation Details of Sampling and Uncertainty
	Hyper-parameter Settings

	Case Studies
	Case Study 1: LLMs in Numerical Optimization
	Case Study 2: the Redundancy in Reward Function Samples

	Detailed Results
	Evaluation on Efficiency
	Evaluation on the Performance of the Reward Function

	Proofs
	Determination of the Kernel Function
	Convergence analysis of the Uncertainty-accelerated Expected Improvement (uEI)

	Additional Analysis
	Uncertainty and Reward Shaping
	LLM Alternatives

	Limitation and Discussion

