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Abstract

We present a novel benchmark designed to rigorously evaluate the capabilities
of large language models (LLMs) in mathematical reasoning and algorithmic
code synthesis tasks. The benchmark comprises integer sequence generation
tasks sourced from the Online Encyclopedia of Integer Sequences (OEIS), testing
LLMs’ abilities to accurately and efficiently generate Python code to compute
these sequences without using lookup tables. Our comprehensive evaluation in-
cludes leading models from OpenAl (including the specialized reasoning-focused
o-series), Anthropic, Meta, and Google across a carefully selected set of 1000 OEIS
sequences categorized as “easy” or “hard.” Half of these sequences are classical
sequences from the early days of OEIS and half were recently added to avoid
contamination with the models’ training data. To prevent models from exploiting
memorized sequence values, we introduce an automated cheating detection mecha-
nism that flags usage of lookup tables, validated by comparison with human expert
evaluations. Experimental results demonstrate that reasoning-specialized models
(03, 03-mini, 04-mini from OpenAl, and Gemini 2.5-pro from Google) achieve
substantial improvements in accuracy over non-reasoning models, especially on
more complex tasks. However, overall model performance on the hard sequences is
poor, highlighting persistent challenges in algorithmic reasoning. Our benchmark
provides important insights into the strengths and limitations of state-of-the-art
LLMs, particularly emphasizing the necessity for further advancements to reliably
solve complex mathematical reasoning tasks algorithmically.

1 Introduction

Benchmarking plays a crucial role in the development and evaluation of large language models
(LLMs), helping gauge their abilities across various domains such as natural language understanding,
knowledge retrieval, and mathematical reasoning. The progress that LLMs have made on challenging
benchmarks is remarkable — matching even the performance of expert humans on advanced problems
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in the human’s domain of expertise. With the release of more powerful reasoning models, there is a
need for benchmarks that can rigorously test more advanced abilities of these systems.

In this paper, we introduce a novel benchmark based on integer sequence generation tasks sourced
from the Online Encyclopedia of Integer Sequences (OEIS) [12}9]. During evaluation, the model is
provided only the OEIS Name and Comments fields (no sequence values, formulas, or OEIS code).
Held-out sequence values are used solely for unit tests. The difficulty of these tasks ranges from trivial
(A000004 is the sequence of all zeros) to extremely difficult and interesting (A000001 is the number
of groups of order n — “a fascinating function” for which Conway et al. [6] recently provided only
an approximation of the series). The benchmark therefore spans problems an undergraduate could
solve—such as listing the non-square numbers (A000037) through PhD-level research challenges like
counting groups of order n (A000001), and Ramsey numbers (A000789, A000791 and A003323),
about which Paul Erdds famously said that for the Ramsey number R(6, 6) humanity would have a
better chance of destroying an invading alien force than computing it. These tasks are particularly
challenging for LLMs, as they require the models not only to understand the sequences but also to
implement efficient algorithms that can run quickly (both to test the algorithms and for the expediency
of the benchmark). This makes integer sequence generation an excellent testbed, especially for
reasoning models, which are optimized for tasks such as mathematics and coding.

Our benchmark consists of a diverse set of 1000 integer sequences labeled “easy” and “hard” in
OEIS. We evaluate a wide range of models on this benchmark including reasoning and non-reasoning
frontier models. The codes are subject to a time limit that is allowed to vary (similar to a pass @k
metric, where different values of k are used), analyzing their performance in terms of both accuracy
and efficiency. While reasoning models generally outperform the non-reasoning models, they still
struggle, especially with the hard sequences. Additionally, we introduce mechanisms for detecting
and preventing the use of lookup tables to verify that models write legitimate code rather than relying
on a memorized version of the sequence entries. See Figure 2] for an overview of our approach.

Our contributions are as follows: (1) We introduce a new benchmark for LLMs based on integer
sequence generation, emphasizing mathematical and computational reasoning and efficiency. (2) We
evaluate numerous frontier LLMs, demonstrating their strengths and limitations in handling these
algorithmic tasks. (3) We provide a framework for detecting and mitigating the use of lookup tables
in sequence generation tasks, bolstering the integrity of the evaluation process.

2 Related Work

Benchmarking has been essential in evaluating the capabilities of LLMs across various domains,
particularly in mathematical reasoning and code generation. Existing benchmarks such as MATH [8]],
GSMEK [5], and HumanEval [4] assess models on complex problem-solving and programming tasks.
While these benchmarks provide valuable insights, they often either cover broad problem areas or
focus on specific aspects like functional correctness in code generation [1} 2} 3| 4]. Our benchmark
distinguishes itself by concentrating on algorithmic reasoning through integer sequence generation,
demanding both mathematical insight and efficient code implementation. This approach enables
a deeper evaluation of LLMs’ capacity to generate accurate, efficient algorithms, filling a gap in
existing benchmarks by challenging the latest, most advanced models in a meaningful way.

FrontierMath [7] is a recently released benchmark designed to assess advanced mathematical rea-
soning in large language models using hundreds of difficult, research-level math problems curated
by expert mathematicians. While FrontierMath evaluates deep mathematical insight, it is not de-
signed to be community-maintained and depends heavily on contributions from a small set of invited
mathematicians, including Fields Medalists. In contrast, the source of our benchmark test suite is
actively maintained by a broader community, with new problems continuously submitted, reviewed,
and published, ensuring that the test set is always beyond the training data of any released LLM.
Furthermore, whereas FrontierMath problems are all solvable by humans by design (often requiring
hours of expert effort), our benchmark includes sequences for which no efficient human-generated
solution is known, enabling it to serve as a more ambitious testbed for super-intelligent reasoning
capabilities. Finally, our benchmark emphasizes not only deep mathematical understanding but also
robust algorithm design: many sequences require numerically stable and computationally efficient
implementations. Naive or poorly written solutions may cause underflow, overflow, or fail to complete
within tight runtime constraints.
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Figure 1: Each panel visualizes an individual OEIS sequence using integer-valued (n, a(n)) pairs
plotted as raw scatter plots without smoothing. Top-left (A265326): This sequence forms a striking
pattern of diagonal parallelograms, caused by taking each prime p, reversing its binary expansion, and
subtracting: a(n) = p, — reverse(p,), where p,, is the n-th prime. The symmetry arises because
reversals often yield other primes, and transitions occur at binary boundaries (e.g., powers of 2),
expanding with scale. Top-right (A133058): This chaotic-looking trajectory dramatically stabilizes
after n=640, where it enters a perfectly repeating three-term loop. N. J. A. Sloane famously compared
this to the scene in Avatar where Jake Sully finally tames his Banshee: “fly straight, dammit.” Bottom-
left (A229037): A non-averaging, fractal-like sequence that forbids 3-term arithmetic progressions.
Its dense layering and soft envelope illustrate global constraints emerging from a purely local rule.
Bottom-right (A005185): Hofstadter’s Q-sequence, a meta-Fibonacci recursion that lacks a known
growth law or closed-form solution. Despite its recursive chaos, the values tightly track a diagonal,
hinting at regularity buried in self-reference.
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Figure 2: Workflow for curating the OEIS-based benchmark dataset. Starting from the full OEIS
collection, we first filter by a July 2024 timeline cutoff into “Classic” (pre-cutoff) and “Contemporary”
(post-cutoff) sequences. Each branch is then split by the OEIS “easy”/“hard” tags into four subsets:
Classic Easy, Classic Hard, Contemporary Easy, and Contemporary Hard, each containing 250
sequences. Finally, these are recombined into the 1,000-sequence benchmark set.

3 Benchmark Design

In designing the benchmark, our goal was to create a robust and rigorous evaluation framework that
challenges frontier LLMs. The benchmark is centered around writing code that computes elements of
integer sequences, using sequences sourced from the OEIS [12]. The design incorporates various
levels of difficulty and enforces performance constraints to measure both the accuracy and efficiency
of the model-generated code.

3.1 Dataset Selection

The dataset for the benchmark is derived from OEIS, an extensive database of integer sequences
contributed by a community mathematicians around the world. We selected latest 250 easy and
250 hard sequences based on OEIS labels — around 30 new sequences are added to OEIS every
day. The set of sequences is defined as S = Scqsy U Shard, Where Seqsy are 250 recent sequences
labeled as easy, and Spq-q are 250 recent sequences labeled as hard in OEIS. We also source an
additional 250 easy and 250 hard sequences that are the oldest such sequences in OEIS and call
these the classic sequences. These classic sequences are included because many of them are of
significant mathematical interest (e.g., the first sequence is a number of groups of order n, which is
fundamental to abstract algebra). The scores for the classic sequences are reported in the appendices.
Our discussion in the main text focuses on the contemporary sequences to eliminate the potential
for contamination with the models’ training data (though scores indicate the models have not been
trained to perform well even on the classic sequences).

This selection provides a broad spectrum of sequence generation problems, ranging from basic
arithmetic operations to complex mathematical computations. The dataset and the code is available at
https://github.com/ceodspspectrum/oeis-sequence-benchmark,

3.2 Problem Definition

For each sequence s € S, an LLM M is tasked with generating Python code C; that computes the
first N terms of the sequence s, where N is a fixed positive integer (e.g., N = 10). Each integer
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sequence is a function: s: { ip + j};’;o — Z, where i is an offset indicating where the sequence
starts. The code C; should define a function f : {io + j}32, — Z such that fs(n) = s(n) for all
n > 1y. For each sequence, the prompt includes only the OEIS Name and Comments fields; sequence
values/formulas are withheld for testing.

The following constraints are imposed on the generated code: (1) the code Cs must not contain
a lookup table of the sequence terms, (2) the execution time ¢, of C's must satisfy t; < T where
T is a predefined time limit, and (3) the code must be valid Python code executable in a standard
environment without external library dependencies. We evaluate the models using 7' € {0.5,4}
seconds, but these thresholds may need to increase as the models begin to perform better on the
benchmark, especially for the hard sequences.

3.3 Evaluation Metrics

To provide a comprehensive evaluation of the models, we measure their performance using three
factors: accuracy, efficiency, and avoiding lookup tables.

For each sequence s, we define the accuracy A,(n) as:

As(n) ={0 fs(n) # s(n)0ts > TOcheatinglotherwise (D
We report the average accuracy over all sequence values in Seqsy and Sparq. We also report the
percentage of sequences where the models correctly compute all sequence values in our test suite for
that sequence.

3.4 Cheating Detection Mechanism

Another core aspect of the benchmark is ensuring that models produce algorithms rather than lookup
tables of sequence values. To enforce this, we use LLM’s structured output capabilities (with
temperature 0 to maximize reproducibility) to check the code output by the model and flag cases
where lookup tables are employed. Any model that is found to be cheating by using a lookup table
receives a score of zero for that sequence, regardless of the accuracy of the output. This cheating
detection mechanism’s effectiveness was validated by comparing it with a human evaluation (one
of the authors, who was not provided with the GPT-40 cheating evaluations beforehand). An initial
attempt to use GPT-4o in a zero-shot setting achieved 86% accuracy with human evaluators. This was
improved by providing GPT-40 with six sequences and their human cheating evaluations to inform
its judgment. This increased accuracy to 95% on a fresh set of human evaluations.

4 Experiments and Results

We evaluate 21 state-of-the-art LLMs on our integer sequence benchmark using their default settings
(temperature, etc.). Table[I] summarizes the models’ performance on the contemporary easy (Scasy)
and hard (Sp4-q) sequence sets and Figure visualizes the performance in detail of the top performing
reasoning and non-reasoning models. There are only small differences when the 0.5s and 4s time
limits are used, so we focus our discussion on the 4s case. Overall, the 03 model performed best with
the highest fraction of perfect scores on sequences for both the easy and hard sequences. Notably,
03-mini had the highest average score (though fewer sequences where it got a perfect score) than
regular 03 and o4-mini on the hard sequences. The latest reasoning models from OpenAl (03,
03-mini,04-mini) utilize reasoning processes to score above 70% accuracy for easy sequences on
average scores and performed better than OpenAI’s non-reasoning family of models. Additionally,
reasoning models benefit more when they are allowed extra time (4 seconds compared to 0.5 seconds)
to execute the code. The latest Gemini (2.5 flash and pro) models performed well compared to older,
non-reasoning Gemini models (1.5-flash, 1.5-pro and 2.0-flash).

All models used lookup tables more frequently on the hard sequences than the easy sequences,
reminiscent of the adage that “desperate times call for desperate measures.” It is also noteworthy
that the models with the lowest occurrences of cheating are not the strongest models and there are
regressions in cheating from models in the same series. For example, 03 cheated more than ol on the
hard sequences and 04-mini cheated more often than 03-mini on both the hard and easy sequences.

The scores on the classic sequences are reported in Table
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Figure 3: Distribution of scores for the top three reasoning and non-reasoning models. Shown
are score distributions for the hard sequences (red for reasoning models, yellow for non-reasoning
models) and easy sequences (blue for reasoning models, green for non-reasoning models). The
percentage of sequences for which each model achieves a perfect score is shown on the right. All
models show distributions skewed toward low scores on the hard sequences, while non-reasoning
models have near-uniform scores on the easy set and reasoning models are strongly skewed toward
high scores.

4.1 Case Study of Reasoning vs. Non-Reasoning on sequence A380521

We compare coding solutions between a frontier reasoning model (03) versus a non-reasoning LLM
(LLaMA-405B). We use sequence A380521 (“Primes p such that between p and the next prime there
exist 2 distinct integers which are a square and a cube, respectively”) for this case study because
all frontier reasoning models achieved perfect scores while most non-reasoning models scored 0.
We observe that many non-reasoning models produced functional code that correctly calculates the
sequence, such as the code for LLaMA-405B (see code[2). However, a key difference emerged
in their approach to efficiency. The 03 model demonstrated a deeper algorithmic understanding
by implementing memoization (see[I)). The 03 model stores previously verified prime numbers to
accelerate its prime number checks of future candidates. This reuse of computation significantly
reduced redundant work, enabling the solution to execute within the imposed time constraints.

In contrast, the LLaMA-405B model generated a more naive solution with no memoization. The
solution of LLaMA-405B led to excessive computation and timeouts. This case exemplifies a
broader pattern observed across multiple tasks: reasoning models like 03 typically applied more
advanced strategies such as memoization, whereas non-reasoning models often failed to infer these
improvements even when producing accurate and valid code. Figure ] shows how different models
tend to utilize memoization and other techniques.



Table 1: Evaluation of frontier models on the contemporary sequence data split. Shown are the
average accuracy scores, the fraction of sequences for which each model achieves a perfect score, and
the fraction flagged for cheating via lookup tables. Reasoning-focused models (e.g., o1, 03, 03-mini,
04-mini, Gemini 2.5-flash/pro) clearly outperform even strong non-reasoning models (e.g., Claude
3.7 Sonnet), with the largest performance gap appearing on the hard sequence split.

SequenceEasy SequenceHard
Avg. % %o Avg. %0 Y%
Model Timeout | Score Perfect Cheating | Score Perfect Cheating

2*gpt-3.5-turbo 1106 0.5 200 14.0% 4.0% 6.6 0.0% 14.8%
4 205  14.0% 4.0% 7.1 0.0% 14.8%

2*gpt-40 0.5 39.0 284% 8.0% 10.9 0.8% 17.6%

4 39.5  28.8% 8.0% 12.5 1.2% 17.6%

2*gpt-40-mini 0.5 346 272% 6.4% 11.1 0.8% 18.4%

4 346  272% 6.4% 11.6 0.8% 18.4%

2*o1-preview 0.5 555 472% 5.6% 19.0 2.0% 18.0%

4 558  472% 5.6% 21.5 2.8% 18.0%

2*01-mini 0.5 57.1  484% 2.4% 194 1.6% 12.0%

4 58.1  492% 2.4% 20.9 2.0% 12.0%

2%o01 0.5 555  50.8% 2.8% 17.7 1.6% 9.2%

4 572  52.8% 2.8% 214 2.8% 9.2%

2%03 0.5 735  68.4% 2.4% 26.2 3.6% 12.0%

4 73.6  68.4% 2.4% 29.7 4.4% 12.0%

2*03-mini 0.5 704  64.4% 2.4% 29.1 2.0% 8.4%

4 70.5  64.4% 2.4% 32.0 2.0% 8.4%

2*04-mini 0.5 70.1  66.4% 52% 28.7 3.2% 14.0%

4 703 66.4% 5.2% 31.8 3.6% 14.0%

2*claude-3.5-sonnet-20241022 0.5 492  38.8% 4.0% 14.0 0.4% 22.4%
4 494  38.8% 4.0% 14.8 0.4% 22.4%

2*claude-3.7-sonnet-20250219 0.5 555  46.0% 2.8% 13.7 1.2% 37.6%
4 556  46.0% 2.8% 15.3 1.2% 37.6%

2*]lama-405b 0.5 31.8 232% 6.8% 114 0.4% 11.6%

4 319  232% 6.8% 12.5 0.4% 11.6%

2*]lama-70b 0.5 257 16.4% 4.8% 9.9 0.4% 11.6%

4 258  164% 4.8% 10.3 0.4% 11.6%

2*]lama4-Scout 0.5 3777 284% 7.6% 124 0.8% 23.6%

4 377 284% 7.6% 13.2 0.8% 23.6%

2*]lama4-Maverick 0.5 53.0 44.0% 9.2% 13.8 1.2% 20.8%
4 531  44.0% 9.2% 14.9 1.2% 20.8%

2*]lama3.3-70b 0.5 329  244% 4.4% 10.5 0.4% 7.6%

4 330 244% 4.4% 11.8 0.4% 7.6 %

2*gemini-1.5-flash 0.5 303  22.8% 26.0% 6.4 0.8% 45.2%
4 303 22.8% 26.0% 6.9 0.8% 45.2%

2*gemini-1.5-pro 0.5 322 232% 16.8% 6.0 0.4% 66.7%

4 323 232% 16.8% 6.4 0.4% 66.7%
2*gemini-2.0-flash 0.5 384  30.0% 22.4% 8.7 0.4% 50.8%
4 384  30.0% 22.4% 9.1 0.4% 50.8%
2*gemini-2.5-flash-preview 0.5 68.7  62.4% 2.0% 18.1 0.8% 17.6%
4 69.5 62.8% 2.0% 19.6 0.8% 17.6%
2*gemini-2.5-pro-preview 0.5 72.0  66.0% 3.2% 28.1 2.8% 22.0%
4 723 66.0% 3.2% 30.3 3.2% 22.0%

5 Discussion

The superior performance of reasoning models highlights the effectiveness of specialization in LLMs
for mathematical reasoning and coding tasks. The reasoning model’s higher accuracy and lower
cheating rates demonstrate that models optimized for STEM reasoning can significantly outperform
general-purpose models on algorithmic tasks. The low average scores on S},4,-q across all models
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Figure 4: Classification of error modes for top reasoning and non-reasoning models. Shown
are failure types for three top-performing reasoning and non-reasoning models on both the hard and
easy sequence sets. Lookup-table use and memorization occur much more frequently on the hard
sequences than on the easy ones.

indicate that current LLMs struggle with generating complex algorithms, emphasizing the need for
further advancements in this area. The higher cheating rates in the hard sequences suggest that models
may default to memorization when faced with difficult tasks.

Using integer sequence generation from OEIS has proven to be an effective benchmark for evaluating
computational reasoning in LLMs. The richness of the OEIS dataset, with its diverse range of
sequences, provides a challenge for models across varying levels of difficulty. The sequences test both
basic and advanced mathematical concepts, making them ideal for evaluating LLMs’ mathematical
reasoning and code writing.

Implementing cheating detection mechanisms was instrumental in developing an effective benchmark,
given the frequent occurrence of lookup tables in Sy, -4, €ven for strong models and despite prompting
not to use a lookup table. By identifying when models used lookup tables, we ensured that the
benchmark tested their ability to generate solutions algorithmically. This mechanism plays a key role
in maintaining the integrity of the evaluation.

There are several avenues for future research. Integrating tool use, such as web access combined with
retrieval-augmented generation (RAG), could enable models to access additional resources during
problem-solving. This could also create problems if, e.g., the models are able to find implementations
compatible with our restrictions (e.g., vanilla python that does not depend on advanced mathematical
libraries). Allowing LLMs to retrieve and utilize external information, like the extensive references
and comments available in OEIS entries, may improve their ability to generate algorithms for complex
sequences. In this study, such reference information was not provided to the models. Future variations
of this benchmark could incorporate these resources to assess models’ abilities to leverage external
knowledge effectively. Since the OEIS is continuously updated by a large community, this benchmark
can be updated on, say, an annual or semi-annual basis to evaluate progress of generative models on
hard math and coding problems while avoiding contamination issues.

6 Conclusion

We introduced a rigorous benchmark to evaluate large language models on generating code for integer
sequences from the OEIS, focusing on mathematical reasoning and computational efficiency. Our



evaluation demonstrated that reasoning models outperform general-purpose models in tasks requiring
mathematical insight and algorithmic coding skills. Specifically, the reasoning models achieved
higher accuracy and more perfect scores on both the easy (Seqsy) and hard (Spqrq) sSequence sets.
Despite these strengths, all models showed low performance on the hard sequences, underscoring
the challenges LLMs face in generating complex algorithms within practical time constraints. The
frequent reliance on memorization strategies, like using lookup tables, despite prompting to avoid it
highlights the need for developing models capable of genuine algorithmic reasoning. Our benchmark
effectively assessed the computational reasoning abilities of LLMs, with the OEIS dataset providing a
robust and diverse evaluation framework. The implemented cheating detection mechanism was crucial
in ensuring adherence to algorithmic constraints and maintaining the integrity of the assessment.
Importantly, this benchmark can be routinely updated with new sequences added to the OEIS so that
the benchmark can always remain ahead of the training data for the models that will be evaluated on
it.

7 Limitations

Our benchmark possesses several limitations that warrant consideration. First, relying exclusively
on the OEIS as the source of integer sequences may introduce biases due to the specific types and
distributions of sequences included, as well as their subjective labeling as “easy” or “hard.” Another
potential issue is that some OEIS sequences have associated code snippets that are publicly available.
While this could assist LLMs in generating the correct sequence, many of the selected problems are
difficult enough to require novel mathematical insights or optimized coding techniques. The codes
that are available in the OEIS database are most often in languages like Mathematica, Maple, or
Magma and tend to rely on advanced functionality of these pieces of software that can turn complex
sequences into a few lines of code. To mitigate this, we require the models to generate code using the
Python standard library, which does not have equivalent functionality. In practice, current models face
considerable challenges in computing the sequences efficiently, especially for the Spqr-q problems.
The OEIS is also actively maintained with 30-60 new sequences being added on a daily basis [10]]. So,
the benchmark could be continuously updated to mitigate the effect of OEIS sequence information
being included in the training of LLMs.

Second, although our cheating detection mechanism effectively identifies the use of lookup tables, it
is not infallible. With a 95% agreement rate with human evaluators, some instances of cheating may
go undetected or be falsely flagged, potentially impacting the accuracy of the evaluation. Of course,
there is fundamentally some subjectivity in the determination of whether or not a code uses a lookup
table.

Third, restricting code generation to Python confines the evaluation to a single programming language.
This limitation may not fully capture a model’s versatility or efficiency in other languages that
could be more suitable for certain sequences. Models might perform differently if allowed to utilize
languages better aligned with the computational demands of specific tasks. Python has a relatively
slow computational speed. At the same time, many sequences have a seemingly high cost to compute
some of the sequence values. For example, AO00791 [11] is a sequence in Spapq of Ramsey numbers
— notoriously difficult to compute — and one of the comments notes that the tenth element in the
sequence being 42 was ruled out “with a massive computer search.” This combination of a slow
language and expensive computations suggests that a different program language might provide the
models a better chance of success.

Fourth, the imposed time constraints, while essential for assessing efficiency, may disadvantage
models that implement correct but computationally intensive algorithms, especially for sequences
inherently requiring significant resources. This could unfairly penalize models due to factors beyond
their control, such as hardware limitations or the intrinsic complexity of the problem.
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Appendix A: Classic Sequence Evaluation

The scores on the classic sequences are shown in Table[2]

Appendix B: Code Examples

Listing 1: 03 Reasoning Model Solution for sequence A380521

import sys
import math

def

icbrt(n: int) -> int:

Integer cube root: floor of real cube root of n
nmmnn

lo, hi = 0, int(n *x (1/3)) + 2
while lo < hi:
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Table 2: The scores on the classic sequences are shown.

Model Timeout SequenceEasy SequenceHard
Avg. % % Avg. % %
Score Perfect Cheating | Score Perfect Cheating
2%0l 0.5 57.8  51.4% 2.4% 16.0 1.2% 11.6%
4 57.8  51.4% 2.4% 17.4 1.2% 11.6%
2*03 0.5 81.7  74.6% 1.2% 243 3.3% 16.4%
4 81.8  74.6% 1.2% 25.4 3.3% 16.4%
2*03-mini 0.5 775  67.2% 0.4% 23.0 2.0% 20.8%
4 71.8  67.6% 0.4% 242 2.4% 20.8%
2*04-mini 0.5 80.0  73.6% 2.4% 244 2.8% 25.6%
4 80.1  73.6% 2.4% 25.7 2.8% 25.6%
2*claude-3-7-sonnet-20250219 0.5 60.7  53.6% 2.4% 9.1 1.2% 55.0%
4 60.7  53.6% 2.4% 9.6 1.2% 55.0%
2*]]lama4-Scout 0.5 50.5  42.4% 4.8% 9.0 0.8% 40.8%
4 50.6  42.4% 4.8% 9.3 0.8% 40.8%
2*]lama4-Maverick 0.5 59.6  48.4% 3.2% 10.7 0.8% 41.9%
4 59.7 49.2% 3.2% 11.3 0.8% 41.9%
2*]lama3.3-70b 0.5 52.1  45.6% 4.4% 9.2 0.4% 21.6%
4 521  46.0% 4.4% 9.5 0.4% 21.6%
2*gemini-2.0-flash 0.5 56.2  50.0% 14.4% 6.5 0.4% 61.6%
4 56.3  50.0% 14.4% 6.7 0.4% 61.6%
2*gemini-2.5-flash-preview-04-17 0.5 724 67.2% 0.0% 14.3 1.6% 26.4%
4 724 67.2% 0.0% 15.0 1.6% 26.4%
2*gemini-2.5-pro-preview-03-25 0.5 774 70.4% 3.2% 15.5 1.6% 47.2%
4 774 70.4% 3.2% 16.3 1.6% 47.2%
2*gpt-3.5-turbo-1106 0.5 35.8 30.0% 0.0% 6.5 0.4% 0.0%
4 359  30.0% 0.0% 6.6 0.4% 0.0%
2*gpt-40 0.5 545 48.8% 4.0% 8.7 0.4% 37.2%
4 54.6  48.8% 4.0% 8.9 0.4% 37.2%
2*gpt-40-mini 0.5 51.6  45.6% 6.0% 8.5 0.8% 32.0%
4 520 45.6% 6.0% 8.7 0.8% 32.0%
2*ol-preview 0.5 63.2  55.2% 2.8% 18.0 1.2% 23.2%
4 63.2 54.8% 2.8% 18.7 1.2% 23.2%
2*o1-mini 0.5 653  58.4% 2.0% 17.3 1.6% 15.2%
4 654  58.4% 2.0% 18.1 2.0% 15.2%
2*claude-3-5-sonnet-20241022 0.5 56.9  50.8% 2.0% 10.8 0.8% 42.0%
4 570  51.2% 2.0% 11.1 0.8% 42.0%
2*]lama-405b 0.5 474  39.6% 4.4% 9.9 0.8% 32.0%
4 47.6  40.0% 4.4% 10.1 0.8% 32.0%
2*]lama3.1-70b 0.5 447  36.4% 2.4% 8.6 0.4% 22.0%
4 447  36.8% 2.4% 8.7 0.4% 22.0%
2*gemini-1.5-flash 0.5 459  37.6% 4.0% 6.5 0.8% 36.0%
4 46.1 38.0% 4.0% 6.6 0.8% 36.0%
2*gemini-1.5-pro 0.5 494  452% 20.8% 4.7 0.4% 73.2%
4 494  452% 20.8% 4.9 0.4% 73.2%

mid = (lo + hi + 1) // 2

if mid * mid * mid
lo = mid
else:
hi = mid - 1
return 1lo

def has_square_and_cube(p:

nun

<= n:

int, q:

int) -> bool:

Returns True iff the open interval (p, q) contains
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two distinct integers, one a perfect square and the other a
perfect cube.

nmn

if 9 - p < 3:
return False

first_sq_root = math.isqrt(p) + 1

last_sq_root = math.isqrt(q - 1)

if first_sq_root > last_sq_root:
return False

first_cu_root = icbrt(p) + 1

last_cu_root icbrt(q - 1)

if first_cu_root > last_cu_root:
return False

if (first_sq_root == last_sq_root and
first_cu_root == last_cu_root and
first_sq_root ** 2 == first_cu_root *x* 3):
return False

return True

def generate_sequence_element(n: int) -> int:

nun

Generates the n-th prime p for which the open interval (p,
next_prime)

contains a square and a cube (at least one of each, and they are
distinct).

nmn

if n <= 0:
raise ValueError ("n must be a positive integer")

primes = [2]

seq_count = 0
prev_prime = 2
candidate = 3

while True:
root = int(math.isqrt(candidate))
is_p = True
for pr in primes:
if pr > root:

break

if candidate % pr == 0:
is_p = False
break

if is_p:
primes.append(candidate)
if has_square_and_cube(prev_prime, candidate):
seq_count += 1
if seq_count == n:
return prev_prime
prev_prime = candidate
candidate += 2

def main():
try:
n = int(sys.stdin.readline().strip())
except Exception:
return
result = generate_sequence_element (n)
print (str(result))

12




if __name__ == "__main__":

main ()

Listing 2: 1lama405B Model Solution for sequence A380521

def is_prime(n):
"""Check if n is a prime number."""
if n < 2:
return False
for i in range(2, int(n ** 0.5) + 1):
if n % i == 0:
return False
return True

def is_square(n):
"""Check if n is a perfect square.
return int(n ** 0.5) **x 2 == n

def is_cube(n):
"""Check if n is a perfect cube.
return round(n **x (1. / 3)) **x 3 == n

def next_prime(n):
"""Return the next prime number greater than n.
n += 1
while not is_prime(n):
n += 1
return n

def check(n):
Check if the open interval (n, next_prime(n)) contains
a square followed by a distinct cube.
nnn
next_n = next_prime (n)
for i in range(n + 1, next_n):
if is_square(i):
for j in range(i + 1, next_n):
if is_cube(j):
return True
return False

# Read input

n = int (input ())
count = 0

num = 2

# Find the nth qualifying prime
while True:
if is_prime (num) and check(num):
count += 1

if count == n:
print (num)
break

num += 1

Appendix C: Prompts

Here, we provide the prompts we used for code generation and lookup table detection using Python’s
string interpolation syntax. The actual prompts would contain the interpolated information.
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Code Generation Prompt

f"""Write a python code that takes a number n as input from stdin, outputs
a single element of a sequence as a string to stdout. Just output the n-th
element in the sequence, not the whole sequence or anything other than the
single sequence element. You will be graded by my running your code and
comparing the results with a lookup table. If you use a lookup table for
your code, you will not only fail the test. Hardcoding values that can be
computed without hardcoding is considered to be using a lookup table. Use
only the standard python library. No packages will be installed with pip
or conda. Output your final code at the end of your response inside triple
backticks like:\n‘‘‘\n#your code goes here\n‘‘‘\nThe last part of your
response that is inside triple backticks will be used as your response for
the purposes of the test. The code will be stopped after a short period of
time, so make it efficient if needed.\n\nHere is some information on the
sequence:\n‘‘ ‘\nName: {info["name"]}\nComments: {info["comments"]}\n¢‘¢"""
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NeurlIPS Paper Checklist

1.

10.

11.

12.

Claims

Answer: [Yes]

Justification: Our abstract and introduction clearly list (1) the new OEIS-based bench-
mark, (2) the suite of 1,000 sequences split into easy/hard and classic/contemporary,
(3) the cheating-detection mechanism, and (4) the empirical findings on reasoning vs.
non-reasoning models. These map directly to the contributions claimed.

Limitations

Answer: [Yes]

Justification: We devote Section|7|to a thoughtful discussion of dataset bias, Python
runtime constraints, the imperfect cheating-detector, etc.

. Theory assumptions and proofs

Answer: [NA]

Justification: This paper does not present new theorems or formal proofs.
Experimental result reproducibility

Answer: [Yes]

Justification: We give full details of dataset curation (Section 3), timeouts, model
versions, prompt templates (Supp. Info), and evaluation code logic. A reader can re-run
exactly the same API calls.

. Open access to data and code

Answer:

Justification: While we provide all prompt templates and dataset definitions, we have
not yet released an external public repository link for our evaluation scripts; we plan to
do so in the camera-ready.

Experimental setting/details

Answer: [Yes]

Justification: Section 3 and 4 describe the dataset splits, timeouts (0.5 s/4.0 s), the
model families tested, and the precise accuracy/cheating metrics.

. Experiment statistical significance

Answer:

Justification: We report aggregate averages but did not compute error bars or confi-
dence intervals;

. Experiments compute resources

Answer:

Justification: We do not specify CPU/GPU types or exact wall-clock runtimes beyond
the per-code timeouts; only total API cost ( $200) is given.

Code of ethics

Answer: [Yes]

Justification: Our evaluation uses only publicly available OEIS data under CC BY-SA
4.0, and we do not collect any personal or sensitive information.

Broader impacts

Answer:

Justification: We focus on foundational benchmarking; we did not discuss societal
impacts, as our work is not directly tied to applications that could be misused.

Safeguards

Answer: [NA|

Justification: We do not release a new model or sensitive dataset that would require
controlled access.

Licenses for existing assets
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13.

14.

15.

16.

Answer: [Yes]

Justification: We explicitly cite OEIS under CC BY-SA 4.0 (Introduction, Sec 3), and
all other assets (models/APIs) are properly referenced.

New assets

Answer: [NA]

Justification: We do not release a novel dataset or code package beyond our benchmark
definition; we plan to open-source the scripts later.

Crowdsourcing and research with human subjects

Answer: [NA]
Justification: No human subjects or crowd-workers were involved.

Institutional review board (IRB) approvals

Answer: [NA]
Justification: No human subjects research was conducted.

Declaration of LLLM usage

Answer: [Yes]

Justification: LLMs are central to our methodology—they generate code for each
OEIS task—so we describe versions, prompting, and temperature in Section 4.

. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [TODO]
Justification: [TODO]
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims

made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [TODO]
Justification: [TODO]
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [TODO]
Justification: [TODO]
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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10.

11.

12.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [TODO]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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13.

14.

15.

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [TODO]
Justification: [TODO]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [TODO]
Justification: [TODO]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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