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Abstract

We present a novel benchmark designed to rigorously evaluate the capabilities
of large language models (LLMs) in mathematical reasoning and algorithmic
code synthesis tasks. The benchmark comprises integer sequence generation
tasks sourced from the Online Encyclopedia of Integer Sequences (OEIS), testing
LLMs’ abilities to accurately and efficiently generate Python code to compute
these sequences without using lookup tables. Our comprehensive evaluation in-
cludes leading models from OpenAI (including the specialized reasoning-focused
o-series), Anthropic, Meta, and Google across a carefully selected set of 1000 OEIS
sequences categorized as “easy” or “hard.” Half of these sequences are classical
sequences from the early days of OEIS and half were recently added to avoid
contamination with the models’ training data. To prevent models from exploiting
memorized sequence values, we introduce an automated cheating detection mecha-
nism that flags usage of lookup tables, validated by comparison with human expert
evaluations. Experimental results demonstrate that reasoning-specialized models
(o3, o3-mini, o4-mini from OpenAI, and Gemini 2.5-pro from Google) achieve
substantial improvements in accuracy over non-reasoning models, especially on
more complex tasks. However, overall model performance on the hard sequences is
poor, highlighting persistent challenges in algorithmic reasoning. Our benchmark
provides important insights into the strengths and limitations of state-of-the-art
LLMs, particularly emphasizing the necessity for further advancements to reliably
solve complex mathematical reasoning tasks algorithmically.

1 Introduction

Benchmarking plays a crucial role in the development and evaluation of large language models
(LLMs), helping gauge their abilities across various domains such as natural language understanding,
knowledge retrieval, and mathematical reasoning. The progress that LLMs have made on challenging
benchmarks is remarkable – matching even the performance of expert humans on advanced problems
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in the human’s domain of expertise. With the release of more powerful reasoning models, there is a
need for benchmarks that can rigorously test more advanced abilities of these systems.

In this paper, we introduce a novel benchmark based on integer sequence generation tasks sourced
from the Online Encyclopedia of Integer Sequences (OEIS) [12, 9]. During evaluation, the model is
provided only the OEIS Name and Comments fields (no sequence values, formulas, or OEIS code).
Held-out sequence values are used solely for unit tests. The difficulty of these tasks ranges from trivial
(A000004 is the sequence of all zeros) to extremely difficult and interesting (A000001 is the number
of groups of order n – “a fascinating function” for which Conway et al. [6] recently provided only
an approximation of the series). The benchmark therefore spans problems an undergraduate could
solve—such as listing the non-square numbers (A000037) through PhD-level research challenges like
counting groups of order n (A000001), and Ramsey numbers (A000789, A000791 and A003323),
about which Paul Erdös famously said that for the Ramsey number R(6, 6) humanity would have a
better chance of destroying an invading alien force than computing it. These tasks are particularly
challenging for LLMs, as they require the models not only to understand the sequences but also to
implement efficient algorithms that can run quickly (both to test the algorithms and for the expediency
of the benchmark). This makes integer sequence generation an excellent testbed, especially for
reasoning models, which are optimized for tasks such as mathematics and coding.

Our benchmark consists of a diverse set of 1000 integer sequences labeled “easy” and “hard” in
OEIS. We evaluate a wide range of models on this benchmark including reasoning and non-reasoning
frontier models. The codes are subject to a time limit that is allowed to vary (similar to a pass@k
metric, where different values of k are used), analyzing their performance in terms of both accuracy
and efficiency. While reasoning models generally outperform the non-reasoning models, they still
struggle, especially with the hard sequences. Additionally, we introduce mechanisms for detecting
and preventing the use of lookup tables to verify that models write legitimate code rather than relying
on a memorized version of the sequence entries. See Figure 2 for an overview of our approach.

Our contributions are as follows: (1) We introduce a new benchmark for LLMs based on integer
sequence generation, emphasizing mathematical and computational reasoning and efficiency. (2) We
evaluate numerous frontier LLMs, demonstrating their strengths and limitations in handling these
algorithmic tasks. (3) We provide a framework for detecting and mitigating the use of lookup tables
in sequence generation tasks, bolstering the integrity of the evaluation process.

2 Related Work

Benchmarking has been essential in evaluating the capabilities of LLMs across various domains,
particularly in mathematical reasoning and code generation. Existing benchmarks such as MATH [8],
GSM8K [5], and HumanEval [4] assess models on complex problem-solving and programming tasks.
While these benchmarks provide valuable insights, they often either cover broad problem areas or
focus on specific aspects like functional correctness in code generation [1, 2, 3, 4]. Our benchmark
distinguishes itself by concentrating on algorithmic reasoning through integer sequence generation,
demanding both mathematical insight and efficient code implementation. This approach enables
a deeper evaluation of LLMs’ capacity to generate accurate, efficient algorithms, filling a gap in
existing benchmarks by challenging the latest, most advanced models in a meaningful way.

FrontierMath [7] is a recently released benchmark designed to assess advanced mathematical rea-
soning in large language models using hundreds of difficult, research-level math problems curated
by expert mathematicians. While FrontierMath evaluates deep mathematical insight, it is not de-
signed to be community-maintained and depends heavily on contributions from a small set of invited
mathematicians, including Fields Medalists. In contrast, the source of our benchmark test suite is
actively maintained by a broader community, with new problems continuously submitted, reviewed,
and published, ensuring that the test set is always beyond the training data of any released LLM.
Furthermore, whereas FrontierMath problems are all solvable by humans by design (often requiring
hours of expert effort), our benchmark includes sequences for which no efficient human-generated
solution is known, enabling it to serve as a more ambitious testbed for super-intelligent reasoning
capabilities. Finally, our benchmark emphasizes not only deep mathematical understanding but also
robust algorithm design: many sequences require numerically stable and computationally efficient
implementations. Naive or poorly written solutions may cause underflow, overflow, or fail to complete
within tight runtime constraints.
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Figure 1: Each panel visualizes an individual OEIS sequence using integer-valued (n, a(n)) pairs
plotted as raw scatter plots without smoothing. Top-left (A265326): This sequence forms a striking
pattern of diagonal parallelograms, caused by taking each prime p, reversing its binary expansion,
and subtracting: a(n) = pn − reverse(pn), where pn is the n-th prime. The symmetry arises because
reversals often yield other primes, and transitions occur at binary boundaries (e.g., powers of 2),
expanding with scale. Top-right (A133058): This chaotic-looking trajectory dramatically stabilizes
after n=640, where it enters a perfectly repeating three-term loop. N. J. A. Sloane famously compared
this to the scene in Avatar where Jake Sully finally tames his Banshee: “fly straight, dammit.” Bottom-
left (A229037): A non-averaging, fractal-like sequence that forbids 3-term arithmetic progressions.
Its dense layering and soft envelope illustrate global constraints emerging from a purely local rule.
Bottom-right (A005185): Hofstadter’s Q-sequence, a meta-Fibonacci recursion that lacks a known
growth law or closed-form solution. Despite its recursive chaos, the values tightly track a diagonal,
hinting at regularity buried in self-reference.
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Figure 2: Workflow for curating the OEIS-based benchmark dataset. Starting from the full OEIS
collection, we first filter by a July 2024 timeline cutoff into “Classic” (pre-cutoff) and “Contemporary”
(post-cutoff) sequences. Each branch is then split by the OEIS “easy”/“hard” tags into four subsets:
Classic Easy, Classic Hard, Contemporary Easy, and Contemporary Hard, each containing 250
sequences. Finally, these are recombined into the 1,000-sequence benchmark set.

3 Benchmark Design

In designing the benchmark, our goal was to create a robust and rigorous evaluation framework that
challenges frontier LLMs. The benchmark is centered around writing code that computes elements of
integer sequences, using sequences sourced from the OEIS [12]. The design incorporates various
levels of difficulty and enforces performance constraints to measure both the accuracy and efficiency
of the model-generated code.

3.1 Dataset Selection

The dataset for the benchmark is derived from OEIS, an extensive database of integer sequences
contributed by a community mathematicians around the world. We selected latest 250 easy and 250
hard sequences based on OEIS labels – around 30 new sequences are added to OEIS every day. The
set of sequences is defined as S = Seasy ∪ Shard, where Seasy are 250 recent sequences labeled as easy,
and Shard are 250 recent sequences labeled as hard in OEIS. We also source an additional 250 easy and
250 hard sequences that are the oldest such sequences in OEIS and call these the classic sequences.
These classic sequences are included because many of them are of significant mathematical interest
(e.g., the first sequence is a number of groups of order n, which is fundamental to abstract algebra).
The scores for the classic sequences are reported in the appendices. Our discussion in the main text
focuses on the contemporary sequences to eliminate the potential for contamination with the models’
training data (though scores indicate the models have not been trained to perform well even on the
classic sequences).

This selection provides a broad spectrum of sequence generation problems, ranging from basic
arithmetic operations to complex mathematical computations. The dataset and the code is available at
https://github.com/ceodspspectrum/oeis-sequence-benchmark.

3.2 Problem Definition

For each sequence s ∈ S, an LLM M is tasked with generating Python code Cs that computes the
first N terms of the sequence s, where N is a fixed positive integer (e.g., N = 10). Each integer
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sequence is a function:
s : {i0 + j}∞j=0 → Z,

where i0 is an offset indicating where the sequence starts. The code Cs should define a function

fs : {i0 + j}∞j=0 → Z

such that fs(n) = s(n) for all n ≥ i0. For each sequence, the prompt includes only the OEIS Name
and Comments fields; sequence values/formulas are withheld for testing.

The following constraints are imposed on the generated code: (1) the code Cs must not contain
a lookup table of the sequence terms, (2) the execution time ts of Cs must satisfy ts ≤ T where
T is a predefined time limit, and (3) the code must be valid Python code executable in a standard
environment without external library dependencies. We evaluate the models using T ∈ {0.5, 4}
seconds, but these thresholds may need to increase as the models begin to perform better on the
benchmark, especially for the hard sequences.

3.3 Evaluation Metrics

To provide a comprehensive evaluation of the models, we measure their performance using three
factors: accuracy, efficiency, and avoiding lookup tables.

For each sequence s, we define the accuracy As(n) as:

As(n) =


0 fs(n) ̸= s(n)

0 ts > T

0 cheating

1 otherwise

(1)

We report the average accuracy over all sequence values in Seasy and Shard. We also report the
percentage of sequences where the models correctly compute all sequence values in our test suite for
that sequence.

3.4 Cheating Detection Mechanism

Another core aspect of the benchmark is ensuring that models produce algorithms rather than lookup
tables of sequence values. To enforce this, we use LLM’s structured output capabilities (with
temperature 0 to maximize reproducibility) to check the code output by the model and flag cases
where lookup tables are employed. Any model that is found to be cheating by using a lookup table
receives a score of zero for that sequence, regardless of the accuracy of the output. This cheating
detection mechanism’s effectiveness was validated by comparing it with a human evaluation (one
of the authors, who was not provided with the GPT-4o cheating evaluations beforehand). An initial
attempt to use GPT-4o in a zero-shot setting achieved 86% accuracy with human evaluators. This was
improved by providing GPT-4o with six sequences and their human cheating evaluations to inform
its judgment. This increased accuracy to 95% on a fresh set of human evaluations.

4 Experiments and Results

We evaluate 21 state-of-the-art LLMs on our integer sequence benchmark using their default settings
(temperature, etc.). Table 1 summarizes the models’ performance on the contemporary easy (Seasy)
and hard (Shard) sequence sets and Figure 3 visualizes the performance in detail of the top performing
reasoning and non-reasoning models. There are only small differences when the 0.5s and 4s time
limits are used, so we focus our discussion on the 4s case. Overall, the o3 model performed best with
the highest fraction of perfect scores on sequences for both the easy and hard sequences. Notably,
o3-mini had the highest average score (though fewer sequences where it got a perfect score) than
regular o3 and o4-mini on the hard sequences. The latest reasoning models from OpenAI (o3,
o3-mini,o4-mini) utilize reasoning processes to score above 70% accuracy for easy sequences on
average scores and performed better than OpenAI’s non-reasoning family of models. Additionally,
reasoning models benefit more when they are allowed extra time (4 seconds compared to 0.5 seconds)
to execute the code. The latest Gemini (2.5 flash and pro) models performed well compared to older,
non-reasoning Gemini models (1.5-flash, 1.5-pro and 2.0-flash).
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Figure 3: Distribution of scores for the top three reasoning and non-reasoning models. Shown
are score distributions for the hard sequences (red for reasoning models, yellow for non-reasoning
models) and easy sequences (blue for reasoning models, green for non-reasoning models). The
percentage of sequences for which each model achieves a perfect score is shown on the right. All
models show distributions skewed toward low scores on the hard sequences, while non-reasoning
models have near-uniform scores on the easy set and reasoning models are strongly skewed toward
high scores.

All models used lookup tables more frequently on the hard sequences than the easy sequences,
reminiscent of the adage that “desperate times call for desperate measures.” It is also noteworthy
that the models with the lowest occurrences of cheating are not the strongest models and there are
regressions in cheating from models in the same series. For example, o3 cheated more than o1 on the
hard sequences and o4-mini cheated more often than o3-mini on both the hard and easy sequences.

The scores on the classic sequences are reported in Table 2.

4.1 Case Study of Reasoning vs. Non-Reasoning on sequence A380521

We compare coding solutions between a frontier reasoning model (o3) versus a non-reasoning LLM
(LLaMA-405B). We use sequence A380521 (“Primes p such that between p and the next prime there
exist 2 distinct integers which are a square and a cube, respectively”) for this case study because
all frontier reasoning models achieved perfect scores while most non-reasoning models scored 0.
We observe that many non-reasoning models produced functional code that correctly calculates the
sequence, such as the code for LLaMA-405B (see code 2). However, a key difference emerged
in their approach to efficiency. The o3 model demonstrated a deeper algorithmic understanding
by implementing memoization (see 1). The o3 model stores previously verified prime numbers to
accelerate its prime number checks of future candidates. This reuse of computation significantly
reduced redundant work, enabling the solution to execute within the imposed time constraints.

In contrast, the LLaMA-405B model generated a more naive solution with no memoization. The
solution of LLaMA-405B led to excessive computation and timeouts. This case exemplifies a
broader pattern observed across multiple tasks: reasoning models like o3 typically applied more
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Table 1: Evaluation of frontier models on the contemporary sequence data split. Shown are the
average accuracy scores, the fraction of sequences for which each model achieves a perfect score, and
the fraction flagged for cheating via lookup tables. Reasoning-focused models (e.g., o1, o3, o3-mini,
o4-mini, Gemini 2.5-flash/pro) clearly outperform even strong non-reasoning models (e.g., Claude
3.7 Sonnet), with the largest performance gap appearing on the hard sequence split.

SequenceEasy SequenceHard
Avg. % % Avg. % %

Model Timeout Score Perfect Cheating Score Perfect Cheating
gpt-3.5-turbo 1106

0.5 20.0 14.0% 4.0% 6.6 0.0% 14.8%
4 20.5 14.0% 4.0% 7.1 0.0% 14.8%

gpt-4o
0.5 39.0 28.4% 8.0% 10.9 0.8% 17.6%
4 39.5 28.8% 8.0% 12.5 1.2% 17.6%

gpt-4o-mini
0.5 34.6 27.2% 6.4% 11.1 0.8% 18.4%
4 34.6 27.2% 6.4% 11.6 0.8% 18.4%

o1-preview
0.5 55.5 47.2% 5.6% 19.0 2.0% 18.0%
4 55.8 47.2% 5.6% 21.5 2.8% 18.0%

o1-mini
0.5 57.1 48.4% 2.4% 19.4 1.6% 12.0%
4 58.1 49.2% 2.4% 20.9 2.0% 12.0%

o1
0.5 55.5 50.8% 2.8% 17.7 1.6% 9.2%
4 57.2 52.8% 2.8% 21.4 2.8% 9.2%

o3
0.5 73.5 68.4% 2.4% 26.2 3.6% 12.0%
4 73.6 68.4% 2.4% 29.7 4.4% 12.0%

o3-mini
0.5 70.4 64.4% 2.4% 29.1 2.0% 8.4%
4 70.5 64.4% 2.4% 32.0 2.0% 8.4%

o4-mini
0.5 70.1 66.4% 5.2% 28.7 3.2% 14.0%
4 70.3 66.4% 5.2% 31.8 3.6% 14.0%

claude-3.5-sonnet-20241022
0.5 49.2 38.8% 4.0% 14.0 0.4% 22.4%
4 49.4 38.8% 4.0% 14.8 0.4% 22.4%

claude-3.7-sonnet-20250219
0.5 55.5 46.0% 2.8% 13.7 1.2% 37.6%
4 55.6 46.0% 2.8% 15.3 1.2% 37.6%

llama-405b
0.5 31.8 23.2% 6.8% 11.4 0.4% 11.6%
4 31.9 23.2% 6.8% 12.5 0.4% 11.6%

llama-70b
0.5 25.7 16.4% 4.8% 9.9 0.4% 11.6%
4 25.8 16.4% 4.8% 10.3 0.4% 11.6%

llama4-Scout
0.5 37.7 28.4% 7.6% 12.4 0.8% 23.6%
4 37.7 28.4% 7.6% 13.2 0.8% 23.6%

llama4-Maverick
0.5 53.0 44.0% 9.2% 13.8 1.2% 20.8%
4 53.1 44.0% 9.2% 14.9 1.2% 20.8%

llama3.3-70b
0.5 32.9 24.4% 4.4% 10.5 0.4% 7.6%
4 33.0 24.4% 4.4% 11.8 0.4% 7.6%

gemini-1.5-flash
0.5 30.3 22.8% 26.0% 6.4 0.8% 45.2%
4 30.3 22.8% 26.0% 6.9 0.8% 45.2%

gemini-1.5-pro
0.5 32.2 23.2% 16.8% 6.0 0.4% 66.7%
4 32.3 23.2% 16.8% 6.4 0.4% 66.7%

gemini-2.0-flash
0.5 38.4 30.0% 22.4% 8.7 0.4% 50.8%
4 38.4 30.0% 22.4% 9.1 0.4% 50.8%

gemini-2.5-flash-preview
0.5 68.7 62.4% 2.0% 18.1 0.8% 17.6%
4 69.5 62.8% 2.0% 19.6 0.8% 17.6%

gemini-2.5-pro-preview
0.5 72.0 66.0% 3.2% 28.1 2.8% 22.0%
4 72.3 66.0% 3.2% 30.3 3.2% 22.0%

advanced strategies such as memoization, whereas non-reasoning models often failed to infer these
improvements even when producing accurate and valid code. Figure 4 shows how different models
tend to utilize memoization and other techniques.
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Figure 4: Classification of error modes for top reasoning and non-reasoning models. Shown
are failure types for three top-performing reasoning and non-reasoning models on both the hard and
easy sequence sets. Lookup-table use and memorization occur much more frequently on the hard
sequences than on the easy ones.

5 Discussion

The superior performance of reasoning models highlights the effectiveness of specialization in LLMs
for mathematical reasoning and coding tasks. The reasoning model’s higher accuracy and lower
cheating rates demonstrate that models optimized for STEM reasoning can significantly outperform
general-purpose models on algorithmic tasks. The low average scores on Shard across all models
indicate that current LLMs struggle with generating complex algorithms, emphasizing the need for
further advancements in this area. The higher cheating rates in the hard sequences suggest that models
may default to memorization when faced with difficult tasks.

Using integer sequence generation from OEIS has proven to be an effective benchmark for evaluating
computational reasoning in LLMs. The richness of the OEIS dataset, with its diverse range of
sequences, provides a challenge for models across varying levels of difficulty. The sequences test both
basic and advanced mathematical concepts, making them ideal for evaluating LLMs’ mathematical
reasoning and code writing.

Implementing cheating detection mechanisms was instrumental in developing an effective benchmark,
given the frequent occurrence of lookup tables in Shard, even for strong models and despite prompting
not to use a lookup table. By identifying when models used lookup tables, we ensured that the
benchmark tested their ability to generate solutions algorithmically. This mechanism plays a key role
in maintaining the integrity of the evaluation.

There are several avenues for future research. Integrating tool use, such as web access combined with
retrieval-augmented generation (RAG), could enable models to access additional resources during
problem-solving. This could also create problems if, e.g., the models are able to find implementations
compatible with our restrictions (e.g., vanilla python that does not depend on advanced mathematical
libraries). Allowing LLMs to retrieve and utilize external information, like the extensive references
and comments available in OEIS entries, may improve their ability to generate algorithms for complex
sequences. In this study, such reference information was not provided to the models. Future variations
of this benchmark could incorporate these resources to assess models’ abilities to leverage external
knowledge effectively. Since the OEIS is continuously updated by a large community, this benchmark
can be updated on, say, an annual or semi-annual basis to evaluate progress of generative models on
hard math and coding problems while avoiding contamination issues.
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6 Conclusion

We introduced a rigorous benchmark to evaluate large language models on generating code for integer
sequences from the OEIS, focusing on mathematical reasoning and computational efficiency. Our
evaluation demonstrated that reasoning models outperform general-purpose models in tasks requiring
mathematical insight and algorithmic coding skills. Specifically, the reasoning models achieved
higher accuracy and more perfect scores on both the easy (Seasy) and hard (Shard) sequence sets.
Despite these strengths, all models showed low performance on the hard sequences, underscoring
the challenges LLMs face in generating complex algorithms within practical time constraints. The
frequent reliance on memorization strategies, like using lookup tables, despite prompting to avoid it
highlights the need for developing models capable of genuine algorithmic reasoning. Our benchmark
effectively assessed the computational reasoning abilities of LLMs, with the OEIS dataset providing a
robust and diverse evaluation framework. The implemented cheating detection mechanism was crucial
in ensuring adherence to algorithmic constraints and maintaining the integrity of the assessment.
Importantly, this benchmark can be routinely updated with new sequences added to the OEIS so that
the benchmark can always remain ahead of the training data for the models that will be evaluated on
it.

7 Limitations

Our benchmark possesses several limitations that warrant consideration. First, relying exclusively
on the OEIS as the source of integer sequences may introduce biases due to the specific types and
distributions of sequences included, as well as their subjective labeling as “easy” or “hard.” Another
potential issue is that some OEIS sequences have associated code snippets that are publicly available.
While this could assist LLMs in generating the correct sequence, many of the selected problems are
difficult enough to require novel mathematical insights or optimized coding techniques. The codes
that are available in the OEIS database are most often in languages like Mathematica, Maple, or
Magma and tend to rely on advanced functionality of these pieces of software that can turn complex
sequences into a few lines of code. To mitigate this, we require the models to generate code using the
Python standard library, which does not have equivalent functionality. In practice, current models
face considerable challenges in computing the sequences efficiently, especially for the Shard problems.
The OEIS is also actively maintained with 30-60 new sequences being added on a daily basis [10]. So,
the benchmark could be continuously updated to mitigate the effect of OEIS sequence information
being included in the training of LLMs.

Second, although our cheating detection mechanism effectively identifies the use of lookup tables, it
is not infallible. With a 95% agreement rate with human evaluators, some instances of cheating may
go undetected or be falsely flagged, potentially impacting the accuracy of the evaluation. Of course,
there is fundamentally some subjectivity in the determination of whether or not a code uses a lookup
table.

Third, restricting code generation to Python confines the evaluation to a single programming language.
This limitation may not fully capture a model’s versatility or efficiency in other languages that
could be more suitable for certain sequences. Models might perform differently if allowed to utilize
languages better aligned with the computational demands of specific tasks. Python has a relatively
slow computational speed. At the same time, many sequences have a seemingly high cost to compute
some of the sequence values. For example, A000791 [11] is a sequence in Shard of Ramsey numbers
– notoriously difficult to compute – and one of the comments notes that the tenth element in the
sequence being 42 was ruled out “with a massive computer search.” This combination of a slow
language and expensive computations suggests that a different program language might provide the
models a better chance of success.

Fourth, the imposed time constraints, while essential for assessing efficiency, may disadvantage
models that implement correct but computationally intensive algorithms, especially for sequences
inherently requiring significant resources. This could unfairly penalize models due to factors beyond
their control, such as hardware limitations or the intrinsic complexity of the problem.
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Appendix A: Classic Sequence Evaluation

The scores on the classic sequences are shown in Table 2.

Appendix B: Code Examples

Listing 1: o3 Reasoning Model Solution for sequence A380521
import sys
import math
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Table 2: The scores on the classic sequences are shown.
Model Timeout SequenceEasy SequenceHard

Avg. % % Avg. % %
Score Perfect Cheating Score Perfect Cheating

o1 0.5 57.8 51.4% 2.4% 16.0 1.2% 11.6%
4 57.8 51.4% 2.4% 17.4 1.2% 11.6%

o3 0.5 81.7 74.6% 1.2% 24.3 3.3% 16.4%
4 81.8 74.6% 1.2% 25.4 3.3% 16.4%

o3-mini 0.5 77.5 67.2% 0.4% 23.0 2.0% 20.8%
4 77.8 67.6% 0.4% 24.2 2.4% 20.8%

o4-mini 0.5 80.0 73.6% 2.4% 24.4 2.8% 25.6%
4 80.1 73.6% 2.4% 25.7 2.8% 25.6%

claude-3-7-sonnet-20250219 0.5 60.7 53.6% 2.4% 9.1 1.2% 55.0%
4 60.7 53.6% 2.4% 9.6 1.2% 55.0%

llama4-Scout 0.5 50.5 42.4% 4.8% 9.0 0.8% 40.8%
4 50.6 42.4% 4.8% 9.3 0.8% 40.8%

llama4-Maverick 0.5 59.6 48.4% 3.2% 10.7 0.8% 41.9%
4 59.7 49.2% 3.2% 11.3 0.8% 41.9%

llama3.3-70b 0.5 52.1 45.6% 4.4% 9.2 0.4% 21.6%
4 52.1 46.0% 4.4% 9.5 0.4% 21.6%

gemini-2.0-flash 0.5 56.2 50.0% 14.4% 6.5 0.4% 61.6%
4 56.3 50.0% 14.4% 6.7 0.4% 61.6%

gemini-2.5-flash-preview-04-17 0.5 72.4 67.2% 0.0% 14.3 1.6% 26.4%
4 72.4 67.2% 0.0% 15.0 1.6% 26.4%

gemini-2.5-pro-preview-03-25 0.5 77.4 70.4% 3.2% 15.5 1.6% 47.2%
4 77.4 70.4% 3.2% 16.3 1.6% 47.2%

gpt-3.5-turbo-1106 0.5 35.8 30.0% 0.0% 6.5 0.4% 0.0%
4 35.9 30.0% 0.0% 6.6 0.4% 0.0%

gpt-4o 0.5 54.5 48.8% 4.0% 8.7 0.4% 37.2%
4 54.6 48.8% 4.0% 8.9 0.4% 37.2%

gpt-4o-mini 0.5 51.6 45.6% 6.0% 8.5 0.8% 32.0%
4 52.0 45.6% 6.0% 8.7 0.8% 32.0%

o1-preview 0.5 63.2 55.2% 2.8% 18.0 1.2% 23.2%
4 63.2 54.8% 2.8% 18.7 1.2% 23.2%

o1-mini 0.5 65.3 58.4% 2.0% 17.3 1.6% 15.2%
4 65.4 58.4% 2.0% 18.1 2.0% 15.2%

claude-3-5-sonnet-20241022 0.5 56.9 50.8% 2.0% 10.8 0.8% 42.0%
4 57.0 51.2% 2.0% 11.1 0.8% 42.0%

llama-405b 0.5 47.4 39.6% 4.4% 9.9 0.8% 32.0%
4 47.6 40.0% 4.4% 10.1 0.8% 32.0%

llama3.1-70b 0.5 44.7 36.4% 2.4% 8.6 0.4% 22.0%
4 44.7 36.8% 2.4% 8.7 0.4% 22.0%

gemini-1.5-flash 0.5 45.9 37.6% 4.0% 6.5 0.8% 36.0%
4 46.1 38.0% 4.0% 6.6 0.8% 36.0%

gemini-1.5-pro 0.5 49.4 45.2% 20.8% 4.7 0.4% 73.2%
4 49.4 45.2% 20.8% 4.9 0.4% 73.2%

def icbrt(n: int) -> int:
"""
Integer cube root: floor of real cube root of n
"""
lo, hi = 0, int(n ** (1/3)) + 2
while lo < hi:

mid = (lo + hi + 1) // 2
if mid * mid * mid <= n:

lo = mid
else:
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hi = mid - 1
return lo

def has_square_and_cube(p: int , q: int) -> bool:
"""
Returns True iff the open interval (p, q) contains
two distinct integers , one a perfect square and the other a perfect

cube.
"""
if q - p < 3:

return False

first_sq_root = math.isqrt(p) + 1
last_sq_root = math.isqrt(q - 1)
if first_sq_root > last_sq_root:

return False

first_cu_root = icbrt(p) + 1
last_cu_root = icbrt(q - 1)
if first_cu_root > last_cu_root:

return False

if (first_sq_root == last_sq_root and
first_cu_root == last_cu_root and
first_sq_root ** 2 == first_cu_root ** 3):
return False

return True

def generate_sequence_element(n: int) -> int:
"""
Generates the n-th prime p for which the open interval (p, next_prime

)
contains a square and a cube (at least one of each , and they are

distinct).
"""
if n <= 0:

raise ValueError("n must be a positive integer")

primes = [2]
seq_count = 0
prev_prime = 2
candidate = 3

while True:
root = int(math.isqrt(candidate))
is_p = True
for pr in primes:

if pr > root:
break

if candidate % pr == 0:
is_p = False
break

if is_p:
primes.append(candidate)
if has_square_and_cube(prev_prime , candidate):

seq_count += 1
if seq_count == n:

return prev_prime
prev_prime = candidate

candidate += 2
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def main():
try:

n = int(sys.stdin.readline ().strip())
except Exception:

return
result = generate_sequence_element(n)
print(str(result))

if __name__ == "__main__":
main()

Listing 2: llama405B Model Solution for sequence A380521

def is_prime(n):
""" Check if n is a prime number."""
if n < 2:

return False
for i in range(2, int(n ** 0.5) + 1):

if n % i == 0:
return False

return True

def is_square(n):
""" Check if n is a perfect square."""
return int(n ** 0.5) ** 2 == n

def is_cube(n):
""" Check if n is a perfect cube."""
return round(n ** (1. / 3)) ** 3 == n

def next_prime(n):
""" Return the next prime number greater than n."""
n += 1
while not is_prime(n):

n += 1
return n

def check(n):
"""
Check if the open interval (n, next_prime(n)) contains
a square followed by a distinct cube.
"""
next_n = next_prime(n)
for i in range(n + 1, next_n):

if is_square(i):
for j in range(i + 1, next_n):

if is_cube(j):
return True

return False

# Read input
n = int(input())
count = 0
num = 2

# Find the nth qualifying prime
while True:

if is_prime(num) and check(num):
count += 1
if count == n:

print(num)
break

num += 1
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Appendix C: Prompts

Here, we provide the prompts we used for code generation and lookup table detection using Python’s
string interpolation syntax. The actual prompts would contain the interpolated information.

Code Generation Prompt

f"""Write a python code that takes a number n as input from stdin, outputs
a single element of a sequence as a string to stdout. Just output the n-th
element in the sequence, not the whole sequence or anything other than the
single sequence element. You will be graded by my running your code and
comparing the results with a lookup table. If you use a lookup table for your
code, you will not only fail the test. Hardcoding values that can be computed
without hardcoding is considered to be using a lookup table. Use only the
standard python library. No packages will be installed with pip or conda.
Output your final code at the end of your response inside triple backticks
like:\n‘‘‘\n#your code goes here\n‘‘‘\nThe last part of your response that
is inside triple backticks will be used as your response for the purposes of
the test. The code will be stopped after a short period of time, so make it
efficient if needed.\n\nHere is some information on the sequence:\n‘‘‘\nName: {
info["name"]}\nComments: {info["comments"]}\n‘‘‘"""
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NeurIPS Paper Checklist

1. Claims
Answer: [Yes]
Justification: Our abstract and introduction clearly list (1) the new OEIS-based bench-
mark, (2) the suite of 1,000 sequences split into easy/hard and classic/contemporary,
(3) the cheating-detection mechanism, and (4) the empirical findings on reasoning vs.
non-reasoning models. These map directly to the contributions claimed.

2. Limitations
Answer: [Yes]
Justification: We devote Section 7 to a thoughtful discussion of dataset bias, Python
runtime constraints, the imperfect cheating-detector, etc.

3. Theory assumptions and proofs
Answer: [NA]
Justification: This paper does not present new theorems or formal proofs.

4. Experimental result reproducibility
Answer: [Yes]
Justification: We give full details of dataset curation (Section 3), timeouts, model
versions, prompt templates (Supp. Info), and evaluation code logic. A reader can re-run
exactly the same API calls.

5. Open access to data and code
Answer: [No]
Justification: While we provide all prompt templates and dataset definitions, we have
not yet released an external public repository link for our evaluation scripts; we plan to
do so in the camera-ready.

6. Experimental setting/details
Answer: [Yes]
Justification: Section 3 and 4 describe the dataset splits, timeouts (0.5 s/4.0 s), the
model families tested, and the precise accuracy/cheating metrics.

7. Experiment statistical significance
Answer: [No]
Justification: We report aggregate averages but did not compute error bars or confi-
dence intervals;

8. Experiments compute resources
Answer: [No]
Justification: We do not specify CPU/GPU types or exact wall-clock runtimes beyond
the per-code timeouts; only total API cost ( $200) is given.

9. Code of ethics
Answer: [Yes]
Justification: Our evaluation uses only publicly available OEIS data under CC BY-SA
4.0, and we do not collect any personal or sensitive information.

10. Broader impacts
Answer: [No]
Justification: We focus on foundational benchmarking; we did not discuss societal
impacts, as our work is not directly tied to applications that could be misused.

11. Safeguards
Answer: [NA]
Justification: We do not release a new model or sensitive dataset that would require
controlled access.

12. Licenses for existing assets
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Answer: [Yes]
Justification: We explicitly cite OEIS under CC BY-SA 4.0 (Introduction, Sec 3), and
all other assets (models/APIs) are properly referenced.

13. New assets
Answer: [NA]
Justification: We do not release a novel dataset or code package beyond our benchmark
definition; we plan to open-source the scripts later.

14. Crowdsourcing and research with human subjects
Answer: [NA]
Justification: No human subjects or crowd-workers were involved.

15. Institutional review board (IRB) approvals
Answer: [NA]
Justification: No human subjects research was conducted.

16. Declaration of LLM usage
Answer: [Yes]
Justification: LLMs are central to our methodology—they generate code for each
OEIS task—so we describe versions, prompting, and temperature in Section 4.
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