

000 DIFFUSIONREWARD: ENHANCING BLIND FACE 001 RESTORATION THROUGH REWARD FEEDBACK LEARN- 002 003 004 005

006 **Anonymous authors**

007 Paper under double-blind review

009 010 ABSTRACT 011

013 Reward Feedback Learning (ReFL) has recently shown great potential in aligning
014 model outputs with human preferences across various generative tasks. In this
015 work, we introduce a ReFL framework, named *DiffusionReward*, to the Blind
016 Face Restoration task for the first time. DiffusionReward effectively overcomes
017 the limitations of diffusion-based methods, which often fail to generate realistic
018 facial details and exhibit poor identity consistency. The core of our framework is
019 the Face Reward Model (FRM), which is trained using carefully annotated data.
020 It provides feedback signals that play a pivotal role in steering the optimization
021 process of the restoration network. In particular, our ReFL framework incorporates
022 a gradient flow into the denoising process of *off-the-shelf* face restoration methods
023 to guide the update of model parameters. The guiding gradient is collaboratively
024 determined by three aspects: (i) the FRM to ensure the perceptual quality of the
025 restored faces; (ii) a regularization term that functions as a safeguard to preserve
026 generative diversity; and (iii) a structural consistency constraint to maintain facial
027 fidelity. Furthermore, the FRM undergoes dynamic optimization throughout the
028 process. It not only ensures that the restoration network stays precisely aligned with
029 the real face manifold, but also effectively prevents reward hacking. Experiments
030 on synthetic and wild datasets demonstrate that our method outperforms state-of-
031 the-art methods, significantly improving identity consistency and facial details.
032 The source codes and models are available at: <https://anonymous.4open.science/r/DiffusionReward-D02F>

034 1 INTRODUCTION 035

036 Facial images captured in-the-wild often suffer from complex and diverse degradations, such as blur,
037 compression artifacts, noise, and low resolution. Blind Face Restoration (BFR) (Li et al., 2018; 2020;
038 Wang et al., 2021) aims to restore high-quality (HQ) counterparts from these degraded inputs. Given
039 the substantial information loss in low-quality (LQ) inputs and the typically unknown degradation
040 processes, BFR is inherently a highly ill-posed problem. As a result, for any given single LQ face,
041 there theoretically exists a solution space encompassing an infinite number of potential high-quality
042 solutions. Consequently, accurately reconstructing HQ facial images from this expansive solution
043 space remains an unsolved challenge, especially in terms of photorealism, naturalness, and identity
044 preservation.

045 Diffusion models (Ho et al., 2020) have become a powerful paradigm for BFR (Wu et al., 2024; Lin
046 et al., 2024; Chen et al., 2024; Yue & Loy, 2024; Wang et al., 2023b), owing to their exceptional
047 generative capabilities. Using rich visual priors acquired during training, these models use LQ images
048 as conditional inputs to progressively reconstruct high-fidelity faces through iterative denoising.
049 Notable methods, such as DiffBIR (Lin et al., 2024) and OSEDiff (Wu et al., 2024), leverage the
050 pre-trained Stable Diffusion (Rombach et al., 2022) models, effectively adapting them through fine-
051 tuning to achieve remarkable quality in face restoration. However, these pre-trained diffusion models
052 typically undergo training using images from general domains, which lack an adequate amount of
053 face-specific prior knowledge. This deficiency frequently gives rise to restored facial images that are
short of detailed features.

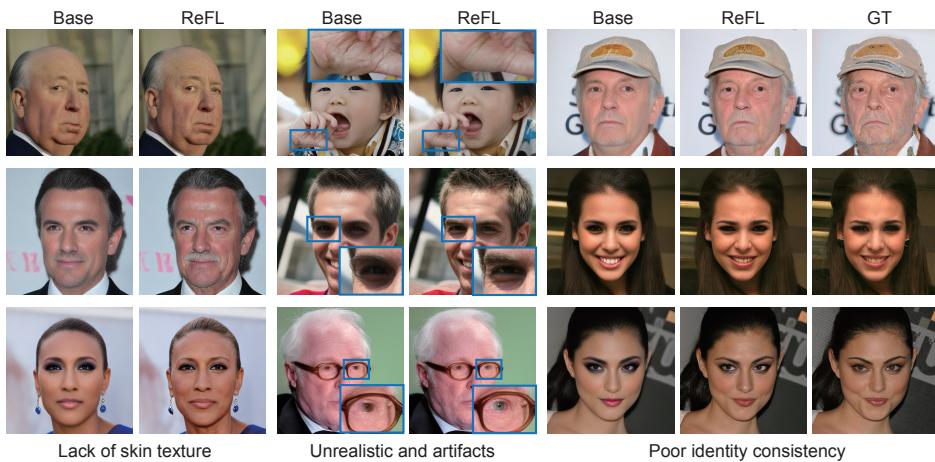


Figure 1: An example of issues with diffusion-based face restoration methods. After enhancement with ReFL, the issues in the base model are significantly mitigated.

As shown in Figure 1 (Left), although coarse facial features, accessories, and background areas can be restored to a reasonable extent, the restoration of fine-grained facial textures, such as skin textures, is usually insufficient, leading to overly smooth or unrealistic textures (Zhang et al., 2025). The lack of face-specific priors not only undermines the restoration quality of fine details but also significantly exacerbates mapping ambiguities (Kamali et al., 2025), as shown in Figure 1 (Middle). Furthermore, Stable Diffusion models are primarily trained for text-to-image generation tasks, rather than for image restoration tasks which requires strict fidelity. Consequently, their inherent generative mechanisms and the nature of the training data are more adept at creative synthesis rather than meeting the exacting standards of fidelity demanded by restoration tasks, potentially leading to deviations from the original identity features during the restoration process, as shown in Figure 1 (Right).

Reward Feedback Learning (ReFL) (Xu et al., 2023; Clark et al., 2023; Liang et al., 2024) is an optimization paradigm that has been validated in domains such as text-to-image generation. It makes use of a reward model that has been trained based on human preferences. This reward model serves to guide and fine-tune latent diffusion models, boosting the quality, realism, and user alignment of the outputs generated by these models. In this work, we employ ReFL for the BFR task to address the previously mentioned limitations of diffusion-based face restoration methods.

For *off-the-shelf* diffusion-based face restoration methods (Lin et al., 2024; Wu et al., 2024), the ReFL framework innovatively reinterprets their latent diffusion denoising process as a parameterized iterative generator. Through the parameterization of this process, ReFL empowers the application of supplementary optimization constraints. This enables fine-grained adjustments to the parameters of pre-trained face restoration models. Consequently, fine-tuned models are capable of generating images that feature enhanced facial texture details, a higher level of overall visual realism, and, more importantly, the preservation of identity consistency. A core component of the ReFL framework is a reward model that is able to accurately assess image quality.

To this end, we have meticulously annotated the data and constructed a Face Reward Model (FRM). This model serves as a crucial component for evaluating the quality of restored faces. It provides feedback signals that play a pivotal role in steering the optimization process of the face restoration model. One common challenge in the training process based on ReFL is that the restoration model might fall prey to reward hacking. It occurs when the restoration model discovers and capitalizes on “loopholes” within the reward model instead of enhancing the actual perceptual quality of the images. To address this issue, we further propose a strategy for dynamically updating the FRM during the training process. In this manner, the reward model can continuously adapt to the evolution of the restoration model, thereby more precisely guiding its exploration and optimization within the manifold space of real facial images, effectively averting the phenomenon of overfitting to a specific reward function.

In addition, we also introduce two constraints to further enhance the restoration performance. Firstly, a Structural Consistency Constraint is incorporated to ensure that the restored image’s facial structure

108 closely aligns with the original identity, thereby effectively preserving identity consistency. By
 109 doing so, it effectively safeguards the identity consistency, preventing any significant discrepancies
 110 in the facial features. Secondly, a Weight Regularization term is employed to restrict the extent to
 111 which the current model parameters deviate from their initial values. Through this mechanism, it
 112 maintains the inherent generative capabilities of the base model, ensuring that the output diversity is
 113 not compromised.

114 In summary, here are our main contributions:
 115

- 116 • We make a pioneering exploration into the BFR domain by introducing ReFL, crafting a bespoke
 117 ReFL optimization mechanism designed specifically for diffusion-based face restoration models.
- 118 • We tailor a data curation pipeline for the creation of an FRM that is capable of accurately evaluating
 119 the perceptual quality of restored facial images. Moreover, we introduce a dynamic updating
 120 strategy to avert the reward hacking problem.
- 121 • We introduce two constraints to further enhance the restoration performance, including a structural
 122 consistency constraint and a weight regularizer.
- 123 • Our proposed framework, named *DiffusionReward*, enhances the face restoration quality of the base
 124 model and achieves state-of-the-art (SOTA) performance compared to other advanced methods.

125 2 RELATED WORK

126 **Blind Face Restoration.** Early Blind Face Restoration (BFR) methods mainly relied on geometric
 127 priors to provide structural guidance. These include 2D priors such as facial landmarks (Chen
 128 et al., 2018; Kim et al., 2019), parsing maps (Chen et al., 2021; Shen et al., 2018), and component
 129 heatmaps (Yu et al., 2018), as well as 3D facial priors (Hu et al., 2020) which explicitly utilize 3D
 130 morphable models to grasp sharp facial structures. However, these geometric priors exhibit limitations
 131 in recovering fine-grained details, like skin textures, and struggle with severely degraded inputs.

132 Generative facial priors have emerged as a significant pathway for high-quality face restoration (Ledig
 133 et al., 2017; Wang et al., 2018). Pre-trained StyleGAN (Karras et al., 2019; 2020), encapsulating rich
 134 facial textures and details, facilitate photorealistic face restoration. For instance, GFP-GAN (Wang
 135 et al., 2021) and GLEAN (Chan et al., 2021) integrate StyleGAN priors into an encoder-decoder ar-
 136 chitecture, leveraging structural features from degraded faces to guide restoration, thereby remarkably
 137 enhancing detail recovery. However, degraded inputs may be mapped to suboptimal points within the
 138 latent space, leading to insufficient fidelity or undesirable artifacts. Codebook-based methods (Gu
 139 et al., 2022; Zhou et al., 2022; Zhao et al., 2022) employ vector-quantized codebooks to mitigate
 140 latent space uncertainty by learning discrete priors. Among them, Zhao et al. (Zhao et al., 2022)
 141 incorporated these discrete priors into skip connections to enhance reconstruction fidelity, while
 142 simultaneously injecting adaptive stochastic noise to improve generation quality.

143 Denoising Diffusion Probabilistic Models (DDPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020)
 144 have recently become an emergent paradigm in BFR, due to their powerful generative capabilities
 145 and training stability. DR2 (Wang et al., 2023b) initially generates a coarse output by noising and
 146 subsequently denoising the degraded face, which is then refined by other face restoration models for
 147 detail enhancement. DiffBIR (Lin et al., 2024) decouples BFR into two distinct stages: degradation
 148 removal and generative refinement. In the degradation removal stage, advanced restoration modules
 149 such as SwinIR (Liang et al., 2021) are employed. Subsequently, in the generative refinement, an
 150 IRControlNet (Lin et al., 2024) is utilized to guide a latent diffusion model for detail generation.
 151 DifFace (Yue & Loy, 2024) constructs a posterior distribution from low-quality (LQ) to high-quality
 152 (HQ) images, leveraging the error-shrinkage property of pre-trained diffusion models to robustly
 153 handle unknown degradation.

154 Despite the strengths of diffusion-based methods, their multi-step sampling process often leads to
 155 slower inference. To enhance inference efficiency, several diffusion-based image restoration methods
 156 employing distillation for one-step inference have emerged. Notably, OSEDiff (Wu et al., 2024)
 157 fine-tunes Stable Diffusion (Rombach et al., 2022) using variational score distillation, achieving
 158 high-quality restoration with one-step inference. In this work, to validate the generalizability of our
 159 method across diffusion-based methods, we choose OSEDiff and DiffBIR as base models, embodying
 160 single-step and multi-step diffusion paradigms, respectively.

161 **Reward Feedback Learning.** In the text-to-image (T2I) generation with ReFL field, there are
 two primary stages. Initially, a reward model is trained using human preference data, such as

pairwise comparisons or ratings, to capture and quantify human preferences like perceptual image quality, text-image alignment, and other aesthetic criteria. Subsequently, the trained reward model guides the optimization of the T2I model by leveraging gradients derived from its scores. Previous work (Xu et al., 2023; Kirstain et al., 2023; Liang et al., 2024; Zhang et al., 2024) have constructed preference datasets and corresponding reward models for T2I tasks. Moreover, some studies have explored the potential of leveraging feedback derived from reward models to effectively optimize T2I models. ImageReward (Xu et al., 2023) evaluates images predicted at specific denoising steps and backpropagates gradients from these scores to directly fine-tune the diffusion model parameters. In contrast, DRaFT (Clark et al., 2023) and AlignProp (Prabhudesai et al.) evaluate only the final image for optimization. R0 (Luo et al., 2025) achieves state-of-the-art T2I by directly maximizing rewards without complex diffusion losses. While existing ReFL paradigms succeed in open-ended text-to-image synthesis, their direct application to image restoration is constrained by the precise face assessment and strict identity maintenance. We overcome these limitations by incorporating two key refinements to the ReFL framework: (i) a specialized Face Reward Model (FRM) for accurate facial quality assessment, and (ii) an structural consistency constraint to enforce identity preservation. Furthermore, we implement an innovative dynamic updating mechanism to effectively mitigate reward hacking, thereby yielding a substantial elevation in overall restoration quality.

3 DIFFUSIONREWARD

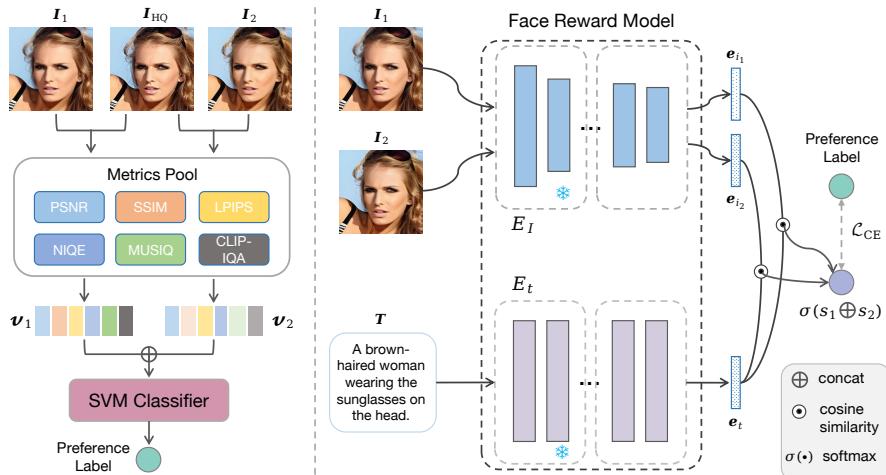


Figure 2: Training framework of the Face Reward Model. We first train a SVM (Cortes & Vapnik, 1995) classifier for automated annotation. The classifier is trained with the metric vectors (v_1, v_2) and annotated supervision signals (Left). The face reward model is based on the CLIP (Radford et al., 2021) architecture (Right), where the last 20 layers of the image encoder E_I and the last 11 layers of the text encoder E_t are trainable, while the remaining parameters are frozen. s_1 and s_2 are derived from the similarity between the image embedding and the text embedding (e.g., $\langle e_{i_1}, e_t \rangle$).

3.1 FACE REWARD MODEL

General-purpose reward models, which are commonly trained on human ratings of natural or artistic images, incorporate only limited face image ratings, leading to significant biases in providing reliable and accurate evaluations for face-related restoration. To tackle this issue, we design a pipeline for constructing a face reward model, which consists of two essential stages: annotation of a preference dataset and training of the face reward model.

Annotation of the Preference Dataset. To construct the face preference dataset, we select 19,590 diverse face images from the face dataset (Wu et al., 2023b), encompassing various poses and expressions. Then, we use LLaVA (Liu et al., 2023) to generate corresponding textual descriptions for each image, forming 19,590 image-text pairs. Subsequently, we apply blind degradation kernels (See details in Section (4.1)) to the high-quality images I_{HQ} , producing their low-quality (LQ) counterparts I_{LQ} . We employed three blind face restoration methods (Zhou et al., 2022; Lin et al., 2024; Chan et al., 2021) to restore these LQ images, yielding a total of 58,770 ($3 \times 19,590$) restored face images.

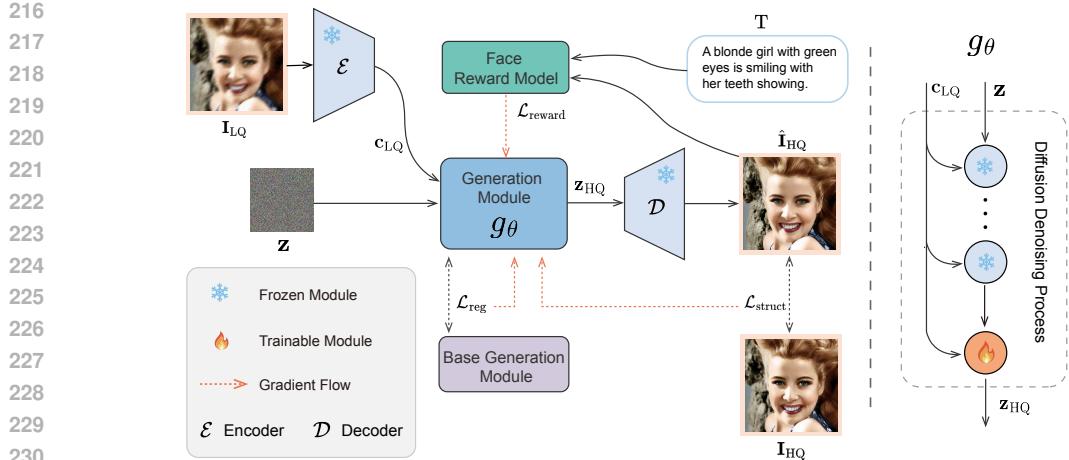


Figure 3: Our ReFL training framework. (Left) We introduce multiple constraints to optimize the generation module g_θ , including $\mathcal{L}_{\text{reward}}$, \mathcal{L}_{reg} and $\mathcal{L}_{\text{struct}}$ (See details in Section 3.3). (Right) For training efficiency, these constraints are applied solely on the last denoising step.

Finally, these restored images, combined with the original 19,590 ground-truth images, constitute our preference dataset of 78,360 ($4 \times 19,590$) facial images, providing a comprehensive data base for subsequent preference annotation.

Given an original facial image \mathbf{I}_{HQ} and its counterparts of three restored versions $\{\mathbf{I}_1, \mathbf{I}_2, \mathbf{I}_3\}$, we conduct pairwise comparisons among these images that yield six preference pairs. In the annotation phase, any preference pair involving the \mathbf{I}_{HQ} was assigned a fixed label indicating a preference for the ground-truth image, thereby treating the \mathbf{I}_{HQ} as an ideal and optimal result. The remaining preference pairs, which involved comparisons between different restoration results, are labeled using a hybrid strategy by combining human manual annotation and automated annotation.

Fully relying on human annotation would be prohibitively costly. To address this problem, we developed an efficient hybrid annotation strategy. Human annotators label a subset of image pairs (Refer to Appendix A.1 for annotation details), while the remaining pairs are automatically labeled by a preference predictor, as illustrated in Figure 2 (Left). For each pair of images, we compute six evaluation metrics: SSIM (Wang et al., 2004), PSNR, LPIPS (Zhang et al., 2018), MUSIQ (Ke et al., 2021), NIQE (Mittal et al., 2012), and CLIP-IQA (Wang et al., 2023a). These metrics are then vectorized (*i.e.*, \mathbf{v}_1 and \mathbf{v}_2 in Figure 2) and fed into a annotation predictor. The SVM (Cortes & Vapnik, 1995) classifier is trained using human-annotated preference labels. With the classifier, the remaining preference pairs are automatically annotated, significantly reducing annotation costs. [The detailed configuration and hyperparameters of the SVM classifier can be found in Appendix A.1.](#)

Reward Model Training. Training a reward model from scratch is inefficient. Instead, we fine-tuned the pre-trained HPSv2 model (Wu et al., 2023a), which is based on the CLIP architecture (Radford et al., 2021) and pre-trained on large-scale image datasets, providing robust image quality assessment priors suitable for adaptation to face preference data. We fine-tune HPSv2 with the 117,540 preference image-text pairs to optimize its ability to predict the relative quality of face images, and the training process is illustrated in Figure 2 (Right). For training efficiency, we set the last 20 layers of the image encoder and the last 11 layers of the text encoder trainable, while freeze the remaining parameters.

Given the restored images \mathbf{I}_1 and \mathbf{I}_2 , we can collect their corresponding embeddings \mathbf{e}_{i_1} and \mathbf{e}_{i_2} through the same image encoder E_I . Then, we use the text encoder E_t to represent the input text \mathbf{T} as \mathbf{e}_t . Next, we calculate s_1 and s_2 that refer to the cosine similarities between $\mathbf{e}_{i_1} \cdot \mathbf{e}_t$ and $\mathbf{e}_{i_2} \cdot \mathbf{e}_t$, respectively. subsequently, s_1 and s_2 are concatenated and followed by a softmax operation as the probabilities of preference. Finally, we minimize the entropy loss \mathcal{L}_{CE} between the preference label, derived from the SVM classifier combined with human annotations, and the probabilities $\sigma([s_1; s_2])$. During the inference stage, the reward model only requires an input image and its corresponding text description to calculate the preference score, thereby completing the evaluation of image quality.

270 3.2 MODELING THE DENOISING PROCESS
271

272 We develop on Stable Diffusion (Rombach et al., 2022) models for the BFR task. Using the pretrain
273 autoencoder (Kingma et al., 2013; Rombach et al., 2022), we convert the \mathbf{I}_{HQ} into a latent \mathbf{z}_{HQ} with
274 image encoder \mathcal{E} (i.e., $\mathbf{z}_{\text{HQ}} = \mathcal{E}(\mathbf{I}_{\text{HQ}})$) and reconstruct it with decoder \mathcal{D} (i.e., $\hat{\mathbf{I}}_{\text{HQ}} = \mathcal{D}(\mathbf{z}_{\text{HQ}})$). Both
275 diffusion and denoising process, Gaussian noise with variance $\beta_t \in (0, 1)$ at time t is added to the
276 encoded latent \mathbf{z}_{HQ} to produce the noisy latent: $\mathbf{z}_t = \sqrt{\bar{\alpha}_t} \mathbf{z}_{\text{HQ}} + \sqrt{1 - \bar{\alpha}_t} \epsilon$, where $\epsilon \sim \mathcal{N}(0, \mathbf{I})$,
277 $\alpha_t = 1 - \beta_t$ and $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$. When t is large enough, the latent \mathbf{z}_t is close to a standard Gaussian
278 distribution. A network g_θ is learned by predicting the noise ϵ conditioned on $\mathbf{c}_{\text{LQ}} = \mathcal{E}(\mathbf{I}_{\text{LQ}})$ at a
279 random time-step t .

280 As shown in Figure 3, the denoising process of the face restoration facilitates the subsequent
281 introduction of gradient information to optimize the parameters of the restoration model. Thus, this
282 conditional denoising process can be interpreted as a parameterized generation module $g_\theta(\mathbf{z}_t, \mathbf{c}_{\text{LQ}}, t)$
283 in the latent space. [The training objective for the base restoration model is a noise prediction loss](#):

$$\mathcal{L}_{\text{ldm}} = \mathbb{E}_{\mathbf{z}, \mathbf{c}_{\text{LQ}}, t, \epsilon} [\|\epsilon - g_\theta(\sqrt{\bar{\alpha}} \mathbf{z} + \sqrt{1 - \bar{\alpha}} \epsilon, \mathbf{c}_{\text{LQ}}, t)\|_2^2]. \quad (1)$$

286 [This objective is solely utilized for pretraining the off-the-shelf diffusion-based BFR models](#) (Lin
287 et al., 2024; Wu et al., 2024); [our reward-based fine-tuning objective, applied to the final restored](#)
288 [image, is detailed in Section 3.3](#).

289 Within this framework, different BFR methods vary in the specific implementation of the denoising
290 network g_θ and its utilization of the conditions \mathbf{c}_{LQ} . For multi-step inference models like DiffBIR (Lin
291 et al., 2024), g_θ refers to a UNet (Ronneberger et al., 2015) with ControlNet (Zhang et al., 2023). Its
292 initial input is the primarily noise \mathbf{z} , and the condition \mathbf{c}_{LQ} is integrated to each denoising step. For
293 single-step inference models like OSEDiff (Wu et al., 2024), g_θ refers to a UNet with a LoRA (Hu
294 et al., 2022) module. The condition \mathbf{c}_{LQ} is directly injected to the initial noise \mathbf{z} by a concatenation
295 operation. Thus, it eliminates the need for iterative injection.

296 3.3 REFL: TRAINING OBJECTIVES AND STRATEGIES
297

298 We introduce three additional objective functions, including reward loss, structural consistency loss,
299 and weight regularization loss, to refine the generation module g_θ for better perceptual quality and
300 identity consistency of restored faces, as shown in Figure 3.

301 **Reward Loss.** To enhance the alignment with human preference on the restored faces, we leverage
302 the pre-trained face reward model \mathcal{R} (See Section 3.1) to provide assessment feedbacks. The face
303 reward model takes the restored image $\hat{\mathbf{I}}_{\text{HQ}}$ and the text description \mathbf{T} of corresponding original image
304 \mathbf{I}_{HQ} as input, where $\hat{\mathbf{I}}_{\text{HQ}}$ is obtained by decoding the latent of the last denoising step: $\hat{\mathbf{I}}_{\text{HQ}} = \mathcal{D}(\mathbf{z}_{\text{HQ}})$.
305 Thus, the reward loss $\mathcal{L}_{\text{reward}}$ is defined as:

$$\mathcal{L}_{\text{reward}} = -\mathcal{R}(\hat{\mathbf{I}}_{\text{HQ}}, \mathbf{T}). \quad (2)$$

306 By minimizing $\mathcal{L}_{\text{reward}}$, we encourage g_θ to generate restored faces with higher alignment scores with
307 human preference.

308 **Structural Consistency Loss.** To maintain high fidelity to the structural features of real faces and
309 improve identity consistency, we introduce both structural and perceptual level constraints, which
310 comprises two sub-components:

311 • **LPIPS Loss:** LPIPS (Zhang et al., 2018) is a highly prevalent metric for evaluating the perceptual
312 similarity between two input images. Unlike traditional pixel-wise metrics (e.g., MSE, PSNR),
313 LPIPS leverages deep neural networks to extract hierarchical semantic features from images,
314 aligning more closely with human visual perception. We employ the LPIPS to measure the
315 perceptual similarity between $\hat{\mathbf{I}}_{\text{HQ}}$ and the original image \mathbf{I}_{HQ} :

$$\mathcal{L}_{\text{LPIPS}} = \text{LPIPS}(\hat{\mathbf{I}}_{\text{HQ}}, \mathbf{I}_{\text{HQ}}). \quad (3)$$

316 • **DWT Low-Frequency Loss:** Given the pixel-wise losses (e.g., ℓ_1 , MSE) are limited in boosting the
317 vivid and intricate details, we apply Discrete Wavelet Transform (DWT) to ensure the low-frequency
318 components of the restored image consistent to the original image. Moreover, we constrain only the
319 low-frequency components of the image (i.e., better structural consistency), allowing the restoration

324 model to explore Freely in the high-frequency components (*i.e.*, better details). Let $\text{DWT}_{\text{LF}}(\cdot)$
 325 denote the function that extracts low-frequency components; the \mathcal{L}_{DWT} is defined as:
 326

$$\mathcal{L}_{\text{DWT}} = \|\text{DWT}_{\text{LF}}(\mathcal{D}(z_{\text{HQ}})) - \text{DWT}_{\text{LF}}(\mathbf{I}_{\text{HQ}})\|_1. \quad (4)$$

328 **Weight Regularization Loss.** To prevent the parameters θ in g_θ from deviating excessively from its
 329 initial state θ_{base} (*e.g.*, pre-trained weights of the diffusion models), we incorporate a regularization
 330 term of Kullback–Leibler divergence:
 331

$$\mathcal{L}_{\text{reg}} = \mathcal{D}_{\text{KL}}(\theta \parallel \theta_{\text{base}}). \quad (5)$$

333 The final objective is a weighted combination:
 334

$$\mathcal{L}_{\text{total}} = \lambda_{\text{reward}} \mathcal{L}_{\text{reward}} + \lambda_{\text{LPIPS}} \mathcal{L}_{\text{LPIPS}} + \lambda_{\text{DWT}} \mathcal{L}_{\text{DWT}} + \lambda_{\text{reg}} \mathcal{L}_{\text{reg}}. \quad (6)$$

336 where λ_{reward} , λ_{LPIPS} , λ_{DWT} and λ_{reg} are balancing hyperparameters. The parameters θ of g_θ are
 337 updated by minimizing $\mathcal{L}_{\text{total}}$ during ReFL fine-tuning. At each iteration, we obtain $\hat{\mathbf{I}}_{\text{HQ}}$ via the
 338 full reverse denoising trajectory ($z_T \rightarrow z_0$). However, to ensure efficiency, we employ truncated
 339 backpropagation (Clark et al., 2023) rather than computing gradients through the entire chain.
 340 Gradients of $\mathcal{L}_{\text{total}}$ are propagated only through the last N denoising steps of g_θ . We find that $N = 1$
 341 offers the best trade-off between performance and computational cost (discussion in Table 5).
 342

343 **Reward hacking.** Reward hacking is a common issue in ReFL (Clark et al., 2023; Skalse et al.,
 344 2022) and also persists in face restoration tasks. It manifests as the restoration model generating
 345 adversarial samples to achieve higher reward scores, which lack diversity, exhibit uniformity, and
 346 contain unnatural artifacts, thus deviating from real face samples. To counteract this, we propose
 347 a strategy to dynamically update the Face Reward Model \mathcal{R} , concurrently with the training of the
 348 generator g_θ . Specifically, after every n training iterations of the generator g_θ , we perform an update
 349 step for \mathcal{R} . In this update step, we utilize the most recent generator g_θ to produce a batch of high-
 350 quality restored images $\hat{\mathbf{I}}_{\text{HQ}}$. For each $\hat{\mathbf{I}}_{\text{HQ}}$, we have its corresponding original image \mathbf{I}_{HQ} and the
 351 text description \mathbf{T} . Following the HPS v2 (Wu et al., 2023a), we employ \mathcal{R} to compute similarity
 352 scores between the text description and each image: $s_{\text{HQ}} = \mathcal{R}(\mathbf{I}_{\text{HQ}}, \mathbf{T})$, $\hat{s}_{\text{HQ}} = \mathcal{R}(\hat{\mathbf{I}}_{\text{HQ}}, \mathbf{T})$. These
 353 pair scores are then converted into preference probabilities.
 354

355 Let $\mathbf{I}_w = \mathbf{I}_{\text{HQ}}$ (the preferred, “winner” image) and $\mathbf{I}_l = \hat{\mathbf{I}}_{\text{HQ}}$ (the less preferred, “loser” image).
 356 The probability that \mathbf{I}_w is preferred over \mathbf{I}_l given the prompt \mathbf{T} is formulated using a softmax-like
 357 function over their scores:
 358

$$P(\mathbf{I}_w \succ \mathbf{I}_l | \mathbf{T}) = \frac{\exp(s_{\text{HQ}})}{\exp(s_{\text{HQ}}) + \exp(\hat{s}_{\text{HQ}})}. \quad (7)$$

359 To update the parameters of \mathcal{R} , we encourage this probability to be high, reflecting the fixed
 360 preference for \mathbf{I}_{HQ} over $\hat{\mathbf{I}}_{\text{HQ}}$. Thus, we use a simplified version of entropy loss as our objective
 361 function:
 362

$$\mathcal{L}_{\text{FRM}} = -\log P(\mathbf{I}_w \succ \mathbf{I}_l | \mathbf{T}). \quad (8)$$

363 By assigning a preference solely to \mathbf{I}_{HQ} , we ensure that the \mathcal{R} is constrained to remain within the
 364 manifold space of real face images, thereby alleviating the occurrence of reward hacking **driven by**
 365 **unstable rewards**.
 366

367 4 EXPERIMENTS

369 4.1 EXPERIMENTAL SETTINGS

371 We take DiffBIR and OSEDiff as base and employ our proposed methods on them respectively. See
 372 Appendix B for implementation details.
 373

374 **Training and Testing Data.** We used the FFHQ dataset (Karras et al., 2021) for training, which
 375 contains 70,000 high-quality facial images. During training, these images are resized to 512×512.
 376 Our strategy for synthesizing LQ faces from HQ ones during the training period is detailed in
 377 Appendix B. Follow the previous work (Wang et al., 2021; Gu et al., 2022), we employ the synthetic
 378 dataset CelebA-Test and two real-world datasets (*i.e.*, LFW-Test and WebPhoto-Test) to validate our
 379 proposed method.
 380

378 **Evaluation Metrics.** On the Celeba-Test dataset, we used five reference metrics: SSIM (Wang
 379 et al., 2004), PSNR, LPIPS (Zhang et al., 2018), CLIP Score (Hessel et al., 2021), Deg. (Wang et al.,
 380 2021), and LMD (Gu et al., 2022), along with four non-reference metrics: MUSIQ (Ke et al., 2021),
 381 MANIQA (Yang et al., 2022) and FID (Heusel et al., 2017). To evaluate the aesthetic quality of
 382 generated face images on the CelebA-Test dataset, we utilized the LAION-AI aesthetic predictor to
 383 predict aesthetic scores, which are correlated with human preferences (LAION-AI, 2022). In addition,
 384 we used our pretrained FRM to score the restored face images, denoting as FaceReward.

385 **Comparison Methods.** We compare with not only the base models but also the latest state-of-the-art
 386 methods, including GFPGAN (Chan et al., 2021), CodeFormer (Zhou et al., 2022), VQFR (Gu et al.,
 387 2022), DR2+SPAR (Wang et al., 2023b), RestoreFormer (Wang et al., 2022), DiffFace (Yue & Loy,
 388 2024), OSEDiff (Wu et al., 2024), and DiffBIR (Lin et al., 2024).

400 Figure 4: Qualitative comparison on the CelebA-Test. (Zoom in for details)
 401

402 Table 1: Performance comparison of face restoration methods on CelebA-Test datasets. The highest
 403 score for each metric is highlighted in red, and the second-highest in blue. Metrics with \uparrow indicate
 404 higher is better, while \downarrow indicate lower is better. The values in parentheses represent our method's
 405 improvements over base models.

Methods	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow	CLIP Score \uparrow	Deg. \downarrow	LMD \downarrow	MUSIQ \uparrow	MANIQA \uparrow	FID \downarrow	Aesthetic \uparrow	FaceReward \uparrow
Input	0.6994	25.33	0.4866	0.7894	47.94	3.756	17.00	0.3957	143.95	4.0484	0.3397
GFPGAN	0.6772	24.65	0.3646	0.8410	34.58	2.4110	73.90	0.6522	42.57	5.6992	0.0741
CodeFormer	0.6925	25.85	0.3335	0.8931	31.08	1.9963	74.23	0.6520	45.57	5.8103	0.2864
VQFR	0.6654	23.76	0.3557	0.8562	42.48	2.9444	73.84	0.6544	46.77	5.7844	0.3142
DR2+SPAR	0.6512	22.89	0.4146	0.7437	57.24	4.5449	70.19	0.6374	62.54	5.6602	0.2455
RestoreFormer	0.6527	24.63	0.3652	0.8876	32.14	2.3020	73.75	0.6477	41.68	5.8015	0.2423
DiffFace	0.6762	24.80	0.3994	0.8380	45.81	2.9766	68.96	0.6204	37.88	5.4708	0.3372
OSEDiff	0.6864	23.96	0.3478	0.7962	46.20	2.8871	73.41	0.6560	65.13	5.7720	0.2608
OSEDiff (+ours)	0.6838 (-0.0026)	24.93 (+0.97)	0.3451 (+0.0027)	0.8732 (+0.0770)	38.41 (+7.79)	2.4060 (+0.4811)	75.24 (+1.83)	0.6640 (+0.0080)	44.40 (+20.73)	5.9529 (+0.1809)	0.4389 (+0.1781)
DiffBIR	0.6775	25.44	0.3811	0.8877	35.16	2.2661	74.46	0.6752	45.50	5.7943	0.1938
DiffBIR (+ours)	0.7043 (+0.0268)	26.33 (+0.89)	0.3454 (+0.0357)	0.9001 (+0.0124)	30.61 (+4.55)	1.8642 (+0.4019)	74.82 (+0.36)	0.6630 (-0.0122)	42.59 (+2.91)	5.8475 (+0.0532)	0.4275 (+0.2337)

420 4.2 MAIN RESULTS

427 Figure 5: Qualitative comparison between the base model and the our methods on real-world faces.
 428

430 **Evaluation on Synthetic Dataset.** We first show the quantitative comparison on the CelebA-Test
 431 in Table 1. We employed 11 metrics to comprehensively evaluate the overall performance of each
 432 method. Initially, a glance at the values within parentheses reveals that our approach achieves

432 performance improvements across nearly all metrics when compared to the base models. Comparing
 433 to state-of-the-art (SOTA) methods, the OSEDiff (+ours) and DiffBIR (+ours) achieve top rankings in
 434 the majority of metrics, such as Deg., LMD, Aesthetic, and FaceReward, indicating that our proposed
 435 ReFL framework can enhance perceived face quality while preserving identity consistency. As the
 436 shown qualitative comparisons in Figure 4, our method exhibits superior identity consistency and
 437 skin texture details.

438 **Evaluation on Real-world Datasets.** Table 2 shows the quantitative results. We find that our
 439 proposed ReFL framework improves the aesthetic score and MUSIQ, which measures image quality.
 440 Comparing to other methods, OSEDiff (+ours) achieves the best performance on both datasets. From
 441 the qualitative results in Figure 5, a qualitative comparison between the base model and ReFL is
 442 presented. We observe that the base models, when faced with real-world degradation, often fails to
 443 restore facial details, resulting in a smooth face. Our method overcomes these problems and generate
 444 realistic faces with richer details.

445 Table 2: Performance comparison of face restora-
 446 tion methods on wild datasets. The highest score
 447 for each metric is highlighted in **red**, and the second-
 448 highest in **blue**. Metrics with \uparrow indicate higher
 449 is better. The values in parentheses represent our
 450 method’s improvements over base models.

Dataset Methods	LFW-Test		WebPhoto	
	Aesthetic \uparrow	MUSIQ \uparrow	Aesthetic \uparrow	MUSIQ \uparrow
Input	4.9978	26.87	4.2584	18.63
GFP-GAN	5.6042	73.57	5.2473	72.09
CodeFormer	5.6414	70.69	5.1860	71.16
VQFR	5.6802	74.39	5.2829	70.91
DR2+SPAR	5.5409	72.22	5.1785	63.65
RestoreFormer	5.6068	73.70	5.1213	69.84
DiffFace	5.4104	69.85	5.0721	65.21
OSEDiff	5.6796	73.40	5.4161	72.60
OSEDiff (+ours)	5.7183 (+0.0387)	74.81 (+1.41)	5.5412 (+0.1251)	74.05 (+1.45)
DiffBIR	5.6814	73.71	5.2728	67.45
DiffBIR (+ours)	5.6860 (+0.0046)	74.49 (+0.78)	5.3554 (+0.0826)	71.38 (+3.93)

462 Table 3: Performance comparison of
 463 FRM and HPS v2 reward models

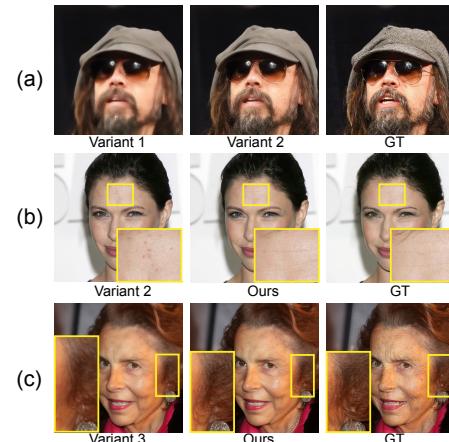
Reward Type	MANIQA \downarrow	MUSIQ \uparrow	FID \downarrow
HPS v2	0.6630	69.78	48.94
FRM (ours)	0.6535	74.82	42.59

4.3 ABLATION STUDY

471 We conduct main ablation study based on DiffBIR (+ours) on CelebA-Test dataset, and the ablation
 472 study based on OSEDiff (+ours) is provided in Appendix D.1. First, we manually annotate 360 pairs
 473 of face images and calculate the preference prediction accuracy of HPS v2 and our FRM. Our FRM
 474 outperforms HPS v2 significantly (*i.e.*, 87.78% v.s. 63.05%), demonstrating a high alignment with
 475 human preferences and superior human perception. Furthermore, when we replace our FRM with the
 476 original HPS v2 model for the ReFL framework and keep the same training configurations, our FRM
 477 obviously outperforms HPS v2, as shown in Table 3.

478 Second, we decompose our proposed ReFL framework into four components, including structural
 479 consistency constraint (SC), weight regularization constraint (WR), using reward feedback (Rwd), and
 480 updating reward model (RU), resulting in three variants. As shown in Table 4, Variant 1 (employing
 481 SC and WR without FRM components) improves identity preservation (LMD) but degrades perceptual
 482 quality (MUSIQ), resulting in overly smooth faces (See Figure 6(a)). After adding Rwd to Variant 1,
 483 obtaining Variant 2, we find obvious enhancements in perceptual quality (MUSIQ) and restores finer
 484 facial details (See Figure 6(a) and Table 4).

485 Removing WR from ours entire ReFL framework (*i.e.*, Variant 3) leads to a decline in perceptual
 486 quality, identity consistency, and aesthetic scores (See Table 4). This is attributed to the disruption of



487 Figure 6: Ablation study visualizations.

488 Table 4: Ablation study of ReFL components

Struct	SC	WR	Rwd	RU	LMD \downarrow	MUSIQ \uparrow	Aesthetic \uparrow
Base					2.2661	74.46	5.7943
Variant 1	✓	✓			1.9583	54.70	5.6572
Variant 2	✓	✓	✓		1.8834	71.12	5.6063
Variant 3	✓		✓	✓	1.8644	70.67	5.7528
Ours	✓	✓	✓	✓	1.8642	74.82	5.8475

486 pre-trained priors and weakened generation capabilities, as evidenced by the loss of hair details in
 487 Variant 3 (See Figure 6(b)). Finally, we validate that the dynamic update mechanism of FRM (RU) is
 488 crucial for the reward hacking. In Figure 6(c), Variant 2 exhibits “reward hacking”, generating faces
 489 with stereotypical artifacts like acne marks. Incorporating RU eliminates these artifacts, improving
 490 generation quality and outperforming Variant 2, as shown in Table 4.

491 To manage the computational cost of fine-tuning our ReFL-based restoration model, we employ
 492 truncated backpropagation for the final N denoising steps. We evaluated $N \in \{1, 5, 20\}$ in Table 5
 493 and observed that while larger N yields marginal gains in distortion metrics (e.g., SSIM), it notably
 494 degrades key perceptual metrics (FID, FaceReward) and increases training overhead. Consequently,
 495 we adopt $N = 1$ in all our experiments to achieve the best trade-off between restoration quality and
 496 training efficiency. More ablation experiments are provided in Appendix D.

497
498 Table 5: Performance under different backpropagation truncation steps (N).

Steps (N)	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow	CLIP \uparrow	Deg. \downarrow	LMD \downarrow	MUSIQ \uparrow	MANIQA \uparrow	FID \downarrow	Aesthetic \uparrow	FaceRwd \uparrow
1	0.7043	26.33	0.3454	0.9001	30.61	1.8642	74.82	0.6630	42.59	5.8475	0.4275
5	0.7101	26.42	0.3221	0.9103	30.10	1.8013	73.68	0.6652	47.27	6.0627	0.3876
20	0.7151	26.37	0.3382	0.9073	30.11	1.8031	73.60	0.6630	46.32	6.0751	0.3923

503
 504 **Analysis of Training Dynamics.** As shown
 505 in Figure 7, the training of DiffBIR (+Ours)
 506 converges stably. The Face Reward Score rises
 507 quickly at the beginning and then plateaus, with
 508 a slight decrease in the later stage due to our
 509 dynamic reward update. This mechanism deliber-
 510 ately tightens the reward, guiding the model
 511 back toward the real-face manifold and suppress-
 512 ing “reward hacking” (i.e., chasing scores at the
 513 cost of realism), which is consistent with the
 514 theoretical dynamics in Figure 12(right). Mean-
 515 while, the convergence of the structural consis-
 516 tency loss signifies an improvement in facial
 517 identity preservation.

518 **User Study.** We further conducted a pairwise
 519 user study comparing our results (+Ours) with
 520 the corresponding baselines (OSEDiff, DiffBIR)
 521 in terms of identity fidelity and visual realism.
 522 As shown in Table 6 reveals that the faces re-
 523 stored by our approach are overwhelmingly pre-
 524 ferred by human subjects. The standards for our
 525 user study are detailed in Appendix C.

5 CONCLUSION

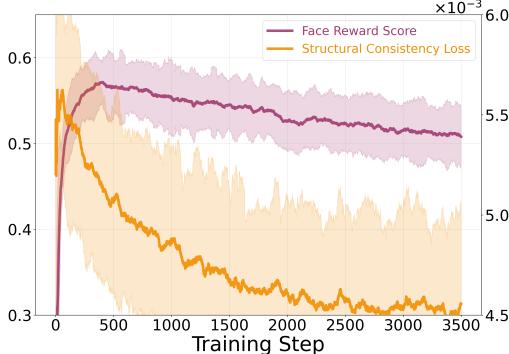
526 To tackle key challenges in diffusion-based face restoration—such as insufficient facial detail and poor
 527 identity preservation—we introduce *DiffusionReward*, a method that fine-tunes the denoising process
 528 via the ReFL framework. In the ReFL framework, we not only show a data curation pipeline for
 529 building a powerful FRM but also propose useful constraints for optimizing the diffusion denoising
 530 process. Moreover, we propose a dynamic updating strategy to avert the reward hacking problem.

6 LIMITATION

531 DiffusionReward framework has been primarily validated on diffusion-based face restoration methods
 532 (e.g., DiffBIR and OSEDiff). Its core ReFL mechanism, particularly the integration of gradient
 533 flow and the dynamic updates to the FRM, was designed considering the characteristics of diffusion
 534 models. Consequently, ReFL yields limited performance gains for certain non-diffusion methods,
 535 such as GFPGAN and CodeFormer. The quantitative experimental results are presented in Table 15 of
 536 Appendix G.1. We attribute this observation to the inherent lack of stochasticity during the generation
 537 process of these architectures, which limits the exploration needed by the face reward model.

503
504 Table 6: Human preference ratio between our
505 method and the base Model for realism and fidelity.

Comparison	Fidelity	Realism
OSEDiff (+ours) vs OSEDiff	78% vs 22%	88% vs 12%
DiffBIR (+ours) vs DiffBIR	68% vs 32%	75% vs 25%

503
504 Figure 7: Reward and loss curves during training.

540 ETHICS STATEMENT
541542 All authors adhere to the ICLR Code of Ethics. Our research focuses solely on the technical challenge
543 of image restoration and does not introduce new ethical concerns. All experiments were performed
544 using publicly available datasets for both training and evaluation.
545546 REPRODUCIBILITY STATEMENT
547548 To ensure reproducibility, we will publicly release our source code and models. Our experiments
549 are conducted using public datasets, and all implementation details, training hyperparameters are
550 provided in the Appendix.
551552 REFERENCES
553554 Kelvin CK Chan, Xintao Wang, Xiangyu Xu, Jinwei Gu, and Chen Change Loy. Glean: Generative
555 latent bank for large-factor image super-resolution. In *Proceedings of the IEEE/CVF Conference*
556 *on Computer Vision and Pattern Recognition (CVPR)*, 2021.557 Chaofeng Chen, Xiaoming Li, Lingbo Yang, Xianhui Lin, Lei Zhang, and Kwan-Yee K Wong.
558 Progressive semantic-aware style transformation for blind face restoration. In *Proceedings of the*
559 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2021.
560561 Xiaoxu Chen, Jingfan Tan, Tao Wang, Kaihao Zhang, Wenhan Luo, and Xiaochun Cao. Towards
562 real-world blind face restoration with generative diffusion prior. *IEEE Transactions on Circuits*
563 *and Systems for Video Technology*, 2024.564 Yu Chen, Ying Tai, Xiaoming Liu, Chunhua Shen, and Jian Yang. Fsrnet: End-to-end learning face
565 super-resolution with facial priors. In *Proceedings of the IEEE/CVF Conference on Computer*
566 *Vision and Pattern Recognition (CVPR)*, 2018.567 Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models on
568 differentiable rewards. *arXiv preprint arXiv:2309.17400*, 2023.569 Corinna Cortes and Vladimir Vapnik. Support-vector networks. *Machine learning*, 20:273–297,
570 1995.
572573 Yuchao Gu, Xintao Wang, Liangbin Xie, Chao Dong, Gen Li, Ying Shan, and Ming-Ming Cheng.
574 Vqfr: Blind face restoration with vector-quantized dictionary and parallel decoder. In *European*
575 *Conference on Computer Vision (ECCV)*, 2022.576 Jack Hessel, Ari Holtzman, Maxwell Forbes, and Yejin Choi. Clipscore: A reference-free evaluation
577 metric for image captioning. *arXiv preprint arXiv:2104.08718*, 2021.
578579 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
580 trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in Neural*
581 *Information Processing Systems (NeurIPS)*, 2017.582 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
583 *Neural Information Processing Systems (NeurIPS)*, 2020.
584585 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
586 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International*
587 *Conference on Learning Representations (ICLR)*, 2022.588 Xiaobin Hu, Wenqi Ren, John LaMaster, Xiaochun Cao, Xiaoming Li, Zechao Li, Bjoern Menze, and
589 Wei Liu. Face super-resolution guided by 3d facial priors. In *European Conference on Computer*
590 *Vision*, pp. 763–780. Springer, 2020.
591592 Negar Kamali, Karyn Nakamura, Aakriti Kumar, Angelos Chatzimparmpas, Jessica Hullman, and
593 Matthew Groh. Characterizing photorealism and artifacts in diffusion model-generated images. In
594 *Proceedings of the CHI Conference on Human Factors in Computing Systems*, 2025.

594 T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial
 595 networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 43(12):4217–4228, dec
 596 2021. ISSN 1939-3539. doi: 10.1109/TPAMI.2020.2970919.

597

598 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 599 adversarial networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 600 *Pattern Recognition (CVPR)*, 2019.

601 Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
 602 and improving the image quality of stylegan. In *Proceedings of the IEEE/CVF Conference on*
 603 *Computer Vision and Pattern Recognition (CVPR)*, 2020.

604

605 Junjie Ke, Qifei Wang, Yilin Wang, Peyman Milanfar, and Feng Yang. Musiq: Multi-scale image
 606 quality transformer. In *Proceedings of the IEEE/CVF International Conference on Computer*
 607 *Vision (ICCV)*, 2021.

608 Deokyun Kim, Minseon Kim, Gihyun Kwon, and Dae-Shik Kim. Progressive face super-resolution
 609 via attention to facial landmark. *arXiv preprint arXiv:1908.08239*, 2019.

610

611 Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

612

613 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
 614 a-pic: An open dataset of user preferences for text-to-image generation. *Advances in Neural*
 615 *Information Processing Systems (NeurIPS)*, 2023.

616 LAION-AI. Aesthetic predictor: A linear estimator on top of clip to predict the aesthetic quality of
 617 pictures. <https://github.com/LAION-AI/aesthetic-predictor>, 2022. Accessed:
 618 2025-05-13.

619

620 Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta,
 621 Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single image
 622 super-resolution using a generative adversarial network. In *Proceedings of the IEEE Conference*
 623 *on Computer Vision and Pattern Recognition (CVPR)*, 2017.

624 Xiaoming Li, Ming Liu, Yuting Ye, Wangmeng Zuo, Liang Lin, and Ruigang Yang. Learning warped
 625 guidance for blind face restoration. In *European conference on computer vision (ECCV)*, 2018.

626

627 Xiaoming Li, Chaofeng Chen, Shangchen Zhou, Xianhui Lin, Wangmeng Zuo, and Lei Zhang.
 628 Blind face restoration via deep multi-scale component dictionaries. In *European Conference on*
 629 *Computer Vision (ECCV)*, 2020.

630 Jingyun Liang, Jie Zhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir: Im-
 631 age restoration using swin transformer. In *Proceedings of the IEEE/CVF International Conference*
 632 *on Computer Vision (ICCV)*, 2021.

633

634 Youwei Liang, Junfeng He, Gang Li, Peizhao Li, Arseniy Klimovskiy, Nicholas Carolan, Jiao Sun,
 635 Jordi Pont-Tuset, Sarah Young, Feng Yang, et al. Rich human feedback for text-to-image generation.
 636 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 637 2024.

638

639 Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Bo Dai, Fanghua Yu, Yu Qiao, Wanli Ouyang,
 640 and Chao Dong. Diffbir: Toward blind image restoration with generative diffusion prior. In
 641 *European Conference on Computer Vision (ECCV)*, 2024.

642

643 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in*
 644 *Neural Information Processing Systems (NeurIPS)*, 2023.

645

646 Yihong Luo, Tianyang Hu, Weijian Luo, Kenji Kawaguchi, and Jing Tang. Rewards are enough for
 647 fast photo-realistic text-to-image generation. *arXiv preprint arXiv:2503.13070*, 2025.

648

649 Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Making a “completely blind” image quality
 650 analyzer. *IEEE Signal Processing Letters*, 20(3):209–212, 2012.

648 Mihir Prabhudesai, Anirudh Goyal, Deepak Pathak, and Katerina Fragkiadaki. Aligning text-to-image
 649 diffusion models with reward backpropagation (2023). *arXiv preprint arXiv:2310.03739*.

650

651 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 652 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 653 models from natural language supervision. In *International Conference on Machine Learning
 (ICML)*, 2021.

654

655 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 656 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Confer-
 657 ence on Computer Vision and Pattern Recognition (CVPR)*, 2022.

658

659 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 660 image segmentation. In *Medical Image Computing and Computer-Assisted Intervention (MICCAI)*,
 661 2015.

662

663 Ziyi Shen, Wei-Sheng Lai, Tingfa Xu, Jan Kautz, and Ming-Hsuan Yang. Deep semantic face
 664 deblurring. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
 (CVPR)*, 2018.

665

666 Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and characterizing
 667 reward gaming. *Advances in Neural Information Processing Systems*, 35:9460–9471, 2022.

668

669 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 670 learning using nonequilibrium thermodynamics. In *International Conference on Machine Learning
 (ICML)*, 2015.

671

672 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv
 preprint arXiv:2010.02502*, 2020.

673

674 Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and feel
 675 of images. In *Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)*, 2023a.

676

677 Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen Change
 678 Loy. Esrgan: Enhanced super-resolution generative adversarial networks. In *European Conference
 679 on Computer Vision Workshops (ECCVW)*, 2018.

680

681 Xintao Wang, Yu Li, Honglun Zhang, and Ying Shan. Towards real-world blind face restoration
 682 with generative facial prior. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 683 Pattern Recognition (CVPR)*, 2021.

684

685 Zhixin Wang, Ziying Zhang, Xiaoyun Zhang, Huangjie Zheng, Mingyuan Zhou, Ya Zhang, and
 686 Yanfeng Wang. Dr2: Diffusion-based robust degradation remover for blind face restoration. In
 687 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 688 2023b.

689

690 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 691 from error visibility to structural similarity. *IEEE Transactions on Image Processing (TIP)*, 13(4):
 692 600–612, 2004.

693

694 Zhouxia Wang, Jiawei Zhang, Runjian Chen, Wenping Wang, and Ping Luo. Restoreformer: High-
 695 quality blind face restoration from undegraded key-value pairs. 2022.

696

697 Rongyuan Wu, Lingchen Sun, Zhiyuan Ma, and Lei Zhang. One-step effective diffusion network for
 698 real-world image super-resolution. *Advances in Neural Information Processing Systems (NeurIPS)*,
 699 2024.

700

701 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 702 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-image
 703 synthesis. *arXiv preprint arXiv:2306.09341*, 2023a.

704

705 Yiqian Wu, Jing Zhang, Hongbo Fu, and Xiaogang Jin. Lpff: A portrait dataset for face generators
 706 across large poses. In *Proceedings of the IEEE/CVF International Conference on Computer Vision
 (ICCV)*, 2023b.

702 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 703 Dong. Imagereward: learning and evaluating human preferences for text-to-image generation. In
 704 *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.

705 Sidi Yang, Tianhe Wu, Shuwei Shi, Shanshan Lao, Yuan Gong, Mingdeng Cao, Jiahao Wang, and
 706 Yujiu Yang. Maniqa: Multi-dimension attention network for no-reference image quality assessment.
 707 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 708 2022.

709 Xin Yu, Basura Fernando, Bernard Ghanem, Fatih Porikli, and Richard Hartley. Face super-resolution
 710 guided by facial component heatmaps. In *European conference on computer vision (ECCV)*, 2018.

711 Zongsheng Yue and Chen Change Loy. Difface: Blind face restoration with diffused error contraction.
 712 *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 2024.

713 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 714 diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision
 (ICCV)*, 2023.

715 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 716 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE/CVF Conference
 717 on Computer Vision and Pattern Recognition (CVPR)*, 2018.

718 Sixian Zhang, Bohan Wang, Junqiang Wu, Yan Li, Tingting Gao, Di Zhang, and Zhongyuan Wang.
 719 Learning multi-dimensional human preference for text-to-image generation. In *Proceedings of the
 720 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024.

721 Ziying Zhang, Xiang Gao, Zhixin Wang, Xiaoyun Zhang, et al. Td-bfr: Truncated diffusion model
 722 for efficient blind face restoration. *arXiv preprint arXiv:2503.20537*, 2025.

723 Yang Zhao, Yu-Chuan Su, Chun-Te Chu, Yandong Li, Marius Renn, Yukun Zhu, Changyou Chen,
 724 and Xuhui Jia. Rethinking deep face restoration. In *Proceedings of the IEEE/CVF Conference on
 725 Computer Vision and Pattern Recognition*, pp. 7652–7661, 2022.

726 Shangchen Zhou, Kelvin Chan, Chongyi Li, and Chen Change Loy. Towards robust blind face
 727 restoration with codebook lookup transformer. *Advances in Neural Information Processing
 728 Systems (NeurIPS)*, 2022.

756

757

758

759

760

761

762

Appendix

Table of Contents

A Implementation Details of Face Reward Model	16
A.1 Details of Training Data Annotation	16
A.2 The Training Details of Face Reward Model	19
B The Implementation Details of DiffusionReward	19
C User Study	20
D More Ablation analysis	20
D.1 Ablation of OSEDiff	20
D.2 Preference Predictor Architecture Selection	21
D.3 Stability Analysis of the FRM during Dynamic Updates	21
D.4 Ablation Study on the Role of Text Input in the Reward Model	22
D.5 Sensitivity Analysis on the Scale of Human Annotation	22
D.6 Sensitivity to Weight Regularization Strength	23
E Analysis of Training Costs and Inference Efficiency	23
F Discussion on Reward Hacking in Blind Face Restoration	24
G More Analysis	25
G.1 Generalization to Different Model Architectures	25
G.2 Discussion on the Face Reward Model’s Alignment with Human Preferences	26
H More Qualitative Results.	26
H.1 Qualitative Results	26
H.2 Uncurated Qualitative Results	27
I LLM Usage Statement	27

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A IMPLEMENTATION DETAILS OF FACE REWARD MODEL
811812 This section provides supplementary details to those presented in Sec. 3.1.
813814 A.1 DETAILS OF TRAINING DATA ANNOTATION
815816 To effectively train our Face Reward Model (FRM), it is crucial to prepare accurate textual descriptions
817 and preference labels for the face images.
818819 **Text Description Generation for Face Images.** High-quality textual descriptions enable the reward
820 model to better comprehend image content, thereby providing more precise feedback. Our FRM
821 training data originates from a public face dataset (Wu et al., 2023b) containing 19,590 face images.
822 For these images, we generated corresponding textual descriptions as follows: We utilized the
823 LLaVA (Liu et al., 2023) model to automatically generate text descriptions for each facial image.
824 When inputting an image to the LLaVA model, we employed the following carefully designed prompt:
825826 Listing 1: Prompt for LLaVA model
827

828 As an AI face caption expert, please provide precise description for
829 face.
830 Provide a simple description of the face, including gender, age, facial
831 features, pose (whether the person is in profile, front-facing, looking
832 up,
833 etc.), and facial expression. Begin your description with 'The face'.
834 If the image includes one or more elements from list [HAIR, BEARD,
835 CLOTHES,
836 GLASSES, HEADWEAR, FACEWEAR, JEWELRY, FACE PAINT, HAND, HANDHELD ITEMS],
837 include descriptions of those elements. (Word limit: within 35 words.)

838 The primary objective of this prompt was to ensure that the generated text descriptions not only cover
839 fundamental facial attributes (such as gender, age, facial features, and expression) but also specifically
840 emphasize the person's pose (e.g., profile, front-facing, looking up) and any potential occlusions or
841 adornments (such as hair, beard, clothes, glasses, headwear, facewear, jewelry, face paint, hands, or
842 handheld items). By doing so, we aimed for the text descriptions to guide the reward model towards
843 a more comprehensive and detailed perception of the image, thereby enhancing the accuracy of the
844 reward scores. Similarly, during the training process of DiffusionReward, we added text descriptions
845 to the training dataset FFHQ (Karras et al., 2021). In Figure 8, we present the face images along with
846 their corresponding text descriptions.
847848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863 The face of a young woman with
fair skin and light brown hair,
wearing a serious expression,
holding a violin.The face of a young boy with
short black hair, brown eyes,
and a wide smile, wearing an
orange shirt. The background
shows another smiling child
and a wooden structure.The face of a young woman with
light skin and straight, shoulder-length
blonde hair, wearing glasses and a
yellow top. She is front-facing, making
a kissing face, with a background of a
dimly lit room and indistinct figures.

Figure 8: Text description example

864 **Manual Annotation of Preference Labels.** To acquire reliable human preference data, we organized
865 a team of three annotators to manually label image pairs. In total, the annotators provided preference
866 selections for 3,600 image pairs. We established clear annotation guidelines for the human annotators
867 to ensure consistency and quality:
868

When presented with two facial images generated by different face restoration models, annotators were instructed to select the image they preferred. This preference decision was based on a comprehensive consideration of the following three core rules, ordered by importance:

- *Realism of the Facial Image:* This was the most critical factor. Annotators were required to meticulously inspect the images for any unnatural artifacts, distortions, blurring, or other signs of unnaturalness. The image should appear as close as possible to a real-world photograph of a face.
- *Richness and Naturalness of Facial Details:* Annotators assessed whether the facial details (such as skin texture, hair, and clarity of facial features) were sufficiently rich and whether these details conformed to the natural texture characteristics of a real face, avoiding overly smooth details.
- *Consistency between the Facial Image and its Textual Description:* This was the final consideration. Annotators needed to judge if the image content aligned with the text description.

The face of a middle-aged man with a dark beard, wearing a gray Civil War-era hat with a black brim.

(a)

(b)

Figure 9: The brim and eyes of (b) have artifacts, so (a) is a better face image.

The face of a smiling woman with long, wavy brown hair, light skin, and red lipstick.

(a)

(b)

Figure 10: Sample (a) exhibits more realistic textures, rendering it the superior choice.

The final preference judgment was based on a holistic assessment considering these three rules. To further illustrate the application of this hierarchical decision-making process, annotators proceeded as follows:

First, they evaluated the images for any obvious, unrealistic artifacts based on the primary rule of realism. For instance, as demonstrated in Figure 9, if image (b) exhibited distorted elements such as a warped cap brim or unnatural-looking eyes when compared to image (a), Figure 9 (a) would be selected as the superior image. If both images passed the initial realism check, the focus shifted to the second rule: the richness and naturalness of facial details. As exemplified in Figure 10, if the skin in image (b) appeared overly smooth and artificial, while image (a) preserved fine and natural skin textures, then Figure 10 (a) would be deemed the better facial image. Finally, if a clear preference could not be established based on the first two rules, the third rule concerning text-image consistency

918 was applied. For example, as depicted in Figure 11, if image (b) was missing an element explicitly
 919 mentioned in its textual description, such as 'glasses', whereas Figure 11 (a) accurately reflected the
 920 description, then Figure 11 (a) would be chosen as the preferred image.

921 Through this structured process, we aimed to collect preference data that accurately reflects human
 922 subjective perception of image quality, grounded in both the objective visual content and the semantic
 923 information conveyed by the textual descriptions.

925 **Automated Annotation Pipeline.** To scale up the collection of preference labels beyond the 3,600
 926 manually annotated pairs and efficiently construct a large dataset for training our FRM, we developed
 927 an automated annotation pipeline. This pipeline leverages a Support Vector Machine (SVM) [Cortes & Vapnik \(1995\)](#) classifier trained on the previously described human-annotated data.

929 The face of a middle-aged man with a beard, [glasses](#),
 930 and an open-mouthed expression, bathed in red light.



(a)

(b)

942 Figure 11: Sample (a) successfully restored the glasses mentioned in the text description. Therefore,
 943 (a) is the superior choice.

945 The 12-dimensional feature vectors v (formed by concatenating the 6 evaluation metrics from each
 946 image in a pair, as detailed in Sec. 3.1 of the main paper and illustrated in Figure 2 therein) and the
 947 corresponding integer preference labels derived from the 3,600 human-annotated image pairs serve
 948 as the training set for this SVM classifier.

949 The SVM classifier was implemented using the `scikit-learn` library. The training process began
 950 with loading these feature vectors and labels. To enhance the SVM's performance and training
 951 stability, the feature vectors underwent standardization using a `StandardScaler`, which was
 952 fitted to the training data and then applied to transform it, ensuring each feature dimension had a
 953 mean of 0 and a variance of 1.

955 A Support Vector Classifier (SVC) was selected as the preference prediction model. To determine
 956 the optimal model configuration, we utilized `GridSearchCV` with 5-fold cross-validation on the
 957 training set. The hyperparameter search space included various kernel types (e.g., 'linear',
 958 'rbf', 'poly'), the regularization parameter C , and other kernel-specific parameters (such as
 959 gamma and degree). The grid search aimed to maximize the average cross-validation accuracy.
 960 Upon completion of the grid search, the best hyperparameter combination was identified. The trained
 961 `StandardScaler` and the optimized SVC model were then saved to disk for subsequent use.

962 Once trained, the SVM classifier was used to automatically assign preference labels to the remaining
 963 image pairs in our dataset that were not manually annotated. The procedure is as follows:

- 964 • For an unlabeled image pair, its 12-dimensional raw metric vector is extracted.
- 965 • The saved `StandardScaler` is applied to standardize this vector.
- 966 • The standardized feature vector is then fed into the trained SVM model.
- 967 • The SVM model outputs a predicted preference label (e.g., '1' indicating the first image is of higher
 968 quality, '0' indicating the second is better).

969 This hybrid approach, combining manual annotations with an efficient SVM-based automated pipeline,
 970 allowed us to effectively augment the dataset with a large number of preference labels. This provided
 971 a richer source of supervision for training the FRM while significantly reducing the cost and time
 972 associated with purely manual annotation.

972 A.2 THE TRAINING DETAILS OF FACE REWARD MODEL
973974 The Face Reward Model (FRM) is a critical component of our DiffusionReward framework, designed
975 to provide feedback signals that align the output of face restoration models with human preferences.
976 Its training involves specific architectural choices, initialization, optimization parameters, and a
977 tailored loss function.978 The FRM utilizes the ViT-H-14 CLIP (Radford et al., 2021) architecture as its backbone. We initialize
979 the model with pre-trained weights from HPS v2 (Wu et al., 2023a)¹. CLIP consists of an image
980 encoder E_I and a text encoder E_t .981 The FRM is fine-tuned on our curated face preference dataset. The training process employs the
982 Adam optimizer. We fine-tune the model for 20,000 iterations with a learning rate of 3.3×10^{-6} .
983 During fine-tuning, only specific parts of the model are made trainable to preserve the rich priors
984 from pre-training while adapting to our specific task. Specifically, the last 20 layers of the image
985 encoder (E_I) and the last 11 layers of the text encoder (E_t) are trainable. All other parameters are
986 kept frozen.987 The FRM is trained using pairwise preference data. Each training instance consists of a pair of
988 images, denoted as $\{\mathbf{I}_1, \mathbf{I}_2\}$, a corresponding textual description \mathbf{T} , and a human preference label y .
989 The label y is typically a one-hot vector; for instance, $y = [1, 0]$ if image \mathbf{I}_1 is preferred over \mathbf{I}_2 , and
990 $y = [0, 1]$ otherwise.991 The FRM computes a score for each image with respect to the text description. Let $\mathbf{e}_{i_1} = E_I(\mathbf{I}_1)$
992 and $\mathbf{e}_{i_2} = E_I(\mathbf{I}_2)$ be the image embeddings obtained from the image encoder E_I , and $\mathbf{e}_t = E_t(\mathbf{T})$
993 be the text embedding from the text encoder E_t . Following the principles of CLIP and HPS v2, and
994 aligning with our notation in Sec. 3.1 of main paper, the preference scores s_1 and s_2 are derived from
995 the cosine similarities:

996
$$s_k = \frac{\mathbf{e}_{i_k} \cdot \mathbf{e}_t}{\tau}$$

997

998 where $k \in \{1, 2\}$, θ represents the trainable parameters of the FRM, and τ is a learned temperature
999 scalar inherent to the CLIP model, which scales the logits.1000 Given these scores for the pair of images, the predicted preference probability for image \mathbf{I}_k (i.e., \hat{y}_k)
1001 is calculated using a softmax function, consistent with $\sigma([s_1; s_2])$ in Figure 2 of the main paper:

1003
$$\hat{y}_k = \frac{\exp(s_k)}{\sum_{j=1}^2 \exp(s_j)}$$

1004
1005

1006 This results in a probability distribution $\hat{y} = [\hat{y}_1, \hat{y}_2]$ over the two images.1007 The parameters θ of the FRM are optimized by minimizing the cross-entropy loss (\mathcal{L}_{CE} as denoted
1008 in Sec. 3.1 of main paper) between the ground-truth preference label $y = [y_1, y_2]$ and the predicted
1009 preference distribution $\hat{y} = [\hat{y}_1, \hat{y}_2]$. The \mathcal{L}_{CE} Can be formulated as:

1010
$$\mathcal{L}_{\text{CE}} = - \sum_{j=1}^2 y_j \log(\hat{y}_j)$$

1011
1012

1013 B THE IMPLEMENTATION DETAILS OF DIFFUSIONREWARD
1014

1015 This section is used to supplement the implementation details of Sec. 4 in the main paper.

1016 Our strategy for synthesizing LQ faces from HQ ones during the training period is as follows:

1017
$$\mathbf{I}_{\text{LQ}} = \left\{ \left[(\mathbf{I}_{\text{HQ}} \otimes \mathbf{k}_\sigma)_{\downarrow_r} + \mathbf{n}_\delta \right]_{\text{JPEG}_q} \right\}_{\uparrow_r} \quad (9)$$

1018

1019 Where the HQ images are first convolved with a Gaussian kernel \mathbf{k}_σ , followed by a downsampling
1020 with a factor of r , and then corrupted with Gaussian noise \mathbf{n}_δ . Subsequently, the images undergo
1021 JPEG compression with a quality factor of q . Finally, the LQ image is resized back to the original
10221023 ¹Source weights for HPS v2 are available at <https://github.com/tgxs002/HPSv2>.
1024
1025

1026 512×512 . Here, σ , r , δ , and q are randomly sampled from the intervals $[0.1, 12]$, $[1, 12]$, $[0, 15]$, and
 1027 $[30, 100]$, respectively.

1028 Our DiffusionReward framework is developed by fine-tuning two pre-trained base models: DiffBIR-
 1029 v1² and OSEDiff³. Both of these base models were originally pre-trained on the FFHQ face dataset.
 1030 We initialize our training using their respective released pre-trained weights (e.g., the DiffBIR v1
 1031 Face version and the OSEDiff Face version). Subsequently, we apply our proposed Reward Feedback
 1032 Learning (ReFL) strategy to further fine-tune these pre-trained models, resulting in two distinct
 1033 versions of our DiffusionReward.

1034 The denoising process within our DiffusionReward framework employs DDIM (Song et al., 2020)
 1035 sampling. During the ReFL fine-tuning phase, distinct components were trained depending on the
 1036 base model: for DiffBIR, we focused on training its ControlNet module, whereas for OSEDiff, we
 1037 trained the LoRA parameters of its UNet.

1038 The general training configuration utilized the Adam optimizer with a learning rate of 5×10^{-5} and a
 1039 batch size of 12. All training was conducted on an NVIDIA L20 GPU equipped with 48GB of memory.
 1040 For the ReFL training specifically with OSEDiff as the base, the loss weighting hyperparameters
 1041 were set as follows: $\lambda_{\text{LPIPS}} = 0.02$, $\lambda_{\text{DWT}} = 0.01$, $\lambda_{\text{reward}} = 0.005$, and $\lambda_{\text{reg}} = 1$. When DiffBIR
 1042 served as the base model for ReFL training, the corresponding hyperparameters were: $\lambda_{\text{LPIPS}} = 0.01$,
 1043 $\lambda_{\text{DWT}} = 0.01$, $\lambda_{\text{reward}} = 0.005$, and $\lambda_{\text{reg}} = 10^{-4}$. Furthermore, a crucial aspect of our ReFL training
 1044 strategy involved the dynamic update of the Face Reward Model (\mathcal{R}); this update was performed
 1045 every $n = 10$ training iterations of the main restoration model.

C USER STUDY

1046 We conducted a user study by randomly selecting 100 face images from the CelebA test dataset. We
 1047 invited 20 participants with different backgrounds to perform a pairwise comparison between the
 1048 results generated by our method (+ours) and the corresponding baseline models (OSEDiff, DiffBIR).
 1049 Participants were asked to choose their preferred result based on two core criteria:

1. **Fidelity:** Which image better preserves the identity features of the original person?
2. **Realism:** Which image looks more natural and realistic, with fewer artifacts?

1050 The statistical results of the study are presented in Table 7, which shows a clear preference for the
 1051 results enhanced by our method.

1052 Table 7: Human preference evaluation

Comparison	Fidelity Preference %	Realism Preference %
OSEDiff (+ours) vs OSEDiff	78% vs 22%	88% vs 12%
DiffBIR (+ours) vs DiffBIR	68% vs 32%	75% vs 25%

D MORE ABLATION ANALYSIS

D.1 ABLATION OF OSEDIFF

1053 In Sec. 4.3 of the main paper, due to space constraints, we presented ablation studies primarily for
 1054 the DiffusionReward framework applied to DiffBIR. Here, we provide additional ablation results
 1055 specifically for DiffusionReward when OSEDiff is used as the base model. These results are
 1056 summarized in Table 8. The conclusions in the table are consistent with the analysis previously
 1057 conducted in Sec. 4. The structural consistency constraint (SC), weight regularization constraint
 1058 (WR), reward feedback (Rwd), and updating reward model (RU) work together to improve the quality
 1059 of face restoration.

1060 ²Source weights for DiffBIR are available at <https://github.com/XPixelGroup/DiffBIR>.

1061 ³Source weights for OSEDiff are available at <https://github.com/cswry/OSEDiff>.

1080
1081
1082 Table 8: Ablation Study of ReFL Components
1083
1084
1085
1086
1087

Struct	SC	WR	Rwd	RU	LMD↓	MUSIQ↑	Aesthetic↑
Base					2.8871	73.41	5.7720
Variant 1	✓	✓			2.3406	69.85	5.7813
Variant 2	✓	✓	✓		2.3997	69.97	5.8912
Variant 3	✓		✓	✓	2.3962	70.83	5.7860
DiffusionReward (OSEDiff)	✓	✓	✓	✓	2.4060	75.24	5.9529

1088
1089 D.2 PREFERENCE PREDICTOR ARCHITECTURE SELECTION
1090

1091 When designing our preference predictor, a key goal was to simplify the modeling of human preference
1092 from image data. Instead of using high-dimensional pixels, we first extract a set of established proxy
1093 metrics (such as SSIM, NIQE, LPIPS, etc.) known to correlate with human-perceived quality. These
1094 metrics form a low-dimensional feature vector for each image.

1095 For this relatively simple, low-dimensional feature space, we hypothesized that a traditional and
1096 robust classifier like a SVM might generalize better and be less prone to overfitting than a deep
1097 learning model with a larger number of parameters. To validate this hypothesis, we conducted a
1098 direct comparative experiment between an SVM and MLPs with different depths. We trained each
1099 model as a preference predictor and evaluated its accuracy on our manually annotated preference
1100 dataset. The results of this comparison are summarized in Table 9.

1101
1102 Table 9: Prediction accuracy on our human-annotated dataset for different predictor architectures.
1103

Predictor Architecture	Prediction Accuracy
MLP (3-layer)	69.2%
MLP (4-layer)	68.8%
SVM	70.0%

1109
1110 As the table shows, the SVM classifier achieved the highest prediction accuracy in our task setting.
1111 This result supports our choice of SVM, which is based on direct experimental evidence. This
1112 predictor provided reliable data annotation for the subsequent training of our high-quality FRM.
1113

1114
1115 D.3 STABILITY ANALYSIS OF THE FRM DURING DYNAMIC UPDATES
1116

1117 A critical challenge in training stage is ensuring the reward model remains reliable and aligned
1118 with human preferences throughout the dynamic updating process. A deteriorating reward model
1119 could lead to sparse gradients or optimization collapse. To investigate this, we tracked the “Human
1120 Consistency” of our FRM on the manually annotated test set (360 pairs) at intervals of 500 training
1121 iterations.

1122 As shown in Table 10, the FRM exhibits stable human consistency during the training stage. The
1123 alignment starts at 87.78% and remains above 83.06% even after 3,000 iterations. This consistency is
1124 significantly higher than that of the baseline HPSv2 (approximately 63%), ensuring that the reward
1125 signal stays dense and reliable during training stage.

1126 We observe a slight gradual decline in consistency (from 87.78% to 83.06%). This phenomenon
1127 is attributed to the manifold alignment objective in our dynamic update strategy. As discussed in
1128 Section 3.3, the dynamic update minimizes the probability of generated samples being preferred over
1129 real images (i.e. Eq. 8). This mechanism strictly constrains the reward model to align with the real
1130 face distribution, penalizing any deviations from the real manifold to prevent the restoration model
1131 from exploiting loopholes in the reward function (i.e., reward hacking). Consequently, this stringent
1132 focus on realism incurs a necessary trade-off: a minor loss in human consistency in exchange for
1133 robust defense against reward hacking, thereby ensuring the generation of photorealistic results.

1134 Table 10: **Human Consistency of the Face Reward Model (FRM) during Dynamic Training.**
1135

Iteration	0	500	1000	1500	2000	2500	3000
Human Consistency (%)	87.78	86.11	85.83	85.00	83.89	83.01	83.06

1139 **D.4 ABLATION STUDY ON THE ROLE OF TEXT INPUT IN THE REWARD MODEL**
11401141 Our FRM is designed to generate a scalar reward score by evaluating a pair of inputs: the restored
1142 image and a corresponding text description. This reward is then used to compute a Reward Loss,
1143 which guides the optimization of the restoration network. This design aims to align the model’s
1144 output with human preference.1145 The role of each input modality is distinct. The restored image allows the FRM to assess holistic
1146 qualities such as realism, detail richness, and overall aesthetic appeal, providing a perception-aligned
1147 learning signal. The text description, in turn, acts as a semantic anchor. It provides essential context
1148 (e.g., facial features, age, accessories) that enables the FRM to evaluate not only the visual quality of
1149 the restoration but also its semantic plausibility. This ensures that generated details are contextually
1150 appropriate, rather than being arbitrary high-frequency textures.1151 To empirically validate the contribution of the text description, we conducted an ablation study.
1152 We trained two versions of the FRM: one utilizing the full "Image & Text" input and a control
1153 version using only the image with a null text input. We then measured how accurately each model’s
1154 predictions aligned with true human preferences on a manually annotated test set of 360 image pairs.1155 The results, presented in Table 11, demonstrate the effectiveness of incorporating semantic context.
11561158 Table 11: Ablation study on the impact of text descriptions.
1159

FRM Input Methods	Human Consistency (\uparrow)
Image & Text	87.78%
Image & Null Text	85.01%

1164 The data clearly indicates that while a model trained on images alone is effective, the inclusion
1165 of text descriptions allows the FRM’s judgments to align more closely with human preferences
1166 (accuracy increased from 85.01% to 87.78%). This confirms that the text provides a more precise and
1167 semantically grounded reward signal, which is crucial for guiding the restoration process.
11681170 **D.5 SENSITIVITY ANALYSIS ON THE SCALE OF HUMAN ANNOTATION**
11711172 To address the concern regarding the sensitivity of our framework to the amount of human-annotated
1173 data, we conducted an ablation study by varying the proportion of manual annotations used to train
1174 the SVM preference predictor. Specifically, we evaluated three settings: 0% (relying solely on the
1175 pre-trained HPSv2 without domain-specific fine-tuning), 50% (using half of the manual annotations),
1176 and 100% (our full setting). We assessed both the alignment consistency of the face reward model
1177 with human judgments and the final restoration quality of the DiffBIR (+ours) trained with these
1178 respective reward signals.1179 The quantitative results are summarized in Table 12. We observe a clear positive correlation between
1180 the scale of human annotation and the model performance:

- 1181 • Using 0% annotation (i.e., raw HPSv2), the alignment with human preference on our face dataset
1182 is relatively low (69.78%). Incorporating just 50% of the manual data significantly boosts this
1183 alignment to 83.21%, and utilizing 100% of the data further elevates it to 87.78%. This demonstrates
1184 that domain-specific human feedback is crucial for calibrating the reward model to the nuances of
1185 face restoration.
- 1186 • The improvement in the reward model directly translates to better restoration outcomes. As the
1187 annotation ratio increases, the perceptual quality metric (MUSIQ) improves from 69.78 to 74.82,
1188 and the distributional distance to real images (FID) decreases significantly from 48.94 to 42.59.

1188
 1189 These results indicate that while the base HPSv2 provides a foundational perception of quality, our
 1190 manual annotation process effectively bridges the domain gap, enabling the restoration model to
 1191 generate more realistic and human-preferred facial details.
 1192

1193 Table 12: Impact of human annotation scale on reward model alignment and restoration quality.

Annotation Ratio	Human Consistency (\uparrow)	MANIQA (\uparrow)	MUSIQ (\uparrow)	FID (\downarrow)
0%	69.78%	0.6630	69.78	48.94
50%	83.21%	0.6689	73.32	45.90
100% (ours)	87.78%	0.6535	74.82	42.59

1200 D.6 SENSITIVITY TO WEIGHT REGULARIZATION STRENGTH
 1201

1202 To decouple the contributions of the Weight Regularization (WR) constraint and the Face Reward
 1203 Model (FRM), we conducted a sensitivity analysis on the WR hyper-parameter λ_{reg} . This analysis
 1204 aims to rigorously verify whether the observed perceptual improvements stem from the reward
 1205 guidance or merely from optimal tuning of the regularization weight.

1206 We evaluated both Variant 1 (equipped only with SC and WR losses, excluding FRM) and our
 1207 proposed method (Ours) across three orders of magnitude for λ_{reg} : $\{10^{-3}, 10^{-4}, 10^{-5}\}$. The
 1208 quantitative results, summarized in Table 13, reveal distinct behaviors. As shown in the upper section
 1209 of Table 13, simply adjusting λ_{reg} in Variant 1 fails to yield significant perceptual improvements.
 1210 Regardless of the regularization strength, MUSIQ scores remain plateaued in the range of 54–57,
 1211 and Aesthetic scores hover around 5.6–5.7. This confirms that the WR loss serves primarily to
 1212 maintain the original generative capability (i.e., acting as an anchor) rather than driving perceptual
 1213 enhancement.

1214 In contrast, incorporating the FRM triggers a substantial performance leap. Even with a suboptimal
 1215 λ_{reg} of 10^{-3} , our method achieves a MUSIQ score of 69.50, far surpassing the best result of Variant
 1216 1 (57.57). With the optimal $\lambda_{reg} = 10^{-4}$, our method peaks at a MUSIQ score of 74.82 with
 1217 superior identity preservation. This empirically proves that the FRM is indispensable for achieving
 1218 high-quality restoration.

1219 Table 13: Sensitivity analysis of the Weight Regularization hyper-parameter (λ_{reg}). We compare
 1220 Variant 1 (w/o FRM) and Ours (w/ FRM) under different regularization weights.

Method	λ_{reg}	LMD (\downarrow)	MUSIQ (\uparrow)	Aesthetics (\uparrow)
Variant 1	10^{-3}	2.0252	57.57	5.7358
	10^{-4}	1.9583	54.70	5.6572
	10^{-5}	1.9087	55.05	5.7729
Ours	10^{-3}	1.9467	69.50	5.8117
	10^{-4}	1.8642	74.82	5.8475
	10^{-5}	1.8182	73.22	5.8231

1231 E ANALYSIS OF TRAINING COSTS AND INFERENCE EFFICIENCY
 1232

1233 In this section, we provide a detailed quantitative analysis of the training overhead and inference
 1234 latency of the proposed DiffusionReward. Our objective is to demonstrate that our method achieves
 1235 significant improvements in image restoration quality without introducing any additional inference
 1236 burden, while keeping training costs within a highly reasonable range.

1237 We quantitatively analyze DiffusionReward from the perspectives of both training overhead and
 1238 inference cost. It is crucial to emphasize that the auxiliary modules introduced in our frame-
 1239 work—including the Face Reward Model are utilized exclusively during the training stage. Once
 1240 training is finalized, all auxiliary networks and components are discarded, enabling efficient inference.

1242 During inference stage, the network architecture remains identical to the base model. Consequently,
 1243 the inference speed of our method is inherently determined by the chosen base model. As shown
 1244 in Table 14, our approach maintains the exact same inference latency as the respective baselines.
 1245 Notably, when applied to efficient one-step sampling methods like OSEDiff, our framework fully
 1246 preserves its rapid inference capability, ensuring seamless integration into existing pipelines without
 1247 compromising real-time processing.

1248 Regarding training overhead, our method performs post-training refinement on an off-the-shelf
 1249 restoration model, requiring only minimal fine-tuning to achieve improved restoration quality. Mean-
 1250 while, while backpropagating gradients through the image decoder and reward model is theoretically
 1251 expensive, our adoption of truncated backpropagation (with $N = 1$) effectively circumvents memory
 1252 bottlenecks and computational prohibitive costs. As evidenced by the training-performance ratio in
 1253 Table 14, this strategy yields an exceptionally high return on investment. Compared to the substantial
 1254 cost of pre-training from scratch, our fine-tuning approach incurs only marginal additional overhead:
 1255 for OSEDiff, it requires only 24 additional GPU hours—equivalent to merely 11.8% of the base
 1256 model’s original pre-training time (202 hours); for DiffBIR, the added cost is approximately 21% of
 1257 the total training budget.

1258 In exchange for this modest one-time investment, DiffusionReward delivers permanent and significant
 1259 quality gains. For instance, OSEDiff (+Ours) reduces the FID score by 31.8% (from 65.13 to 44.40)
 1260 and significantly improves identity consistency (LMD decreased by 0.48). These results demonstrate
 1261 that our framework offers a highly favorable trade-off: achieving state-of-the-art perceptual quality
 1262 and fidelity with scalable training costs and efficient, unchanged inference speeds.

1263 Table 14: Comparison of Training Cost, Inference Speed, and Performance Metrics (Tested on
 1264 NVIDIA L20 GPU). Values in parentheses indicate the absolute change compared to the base model.
 1265 Arrows (\downarrow / \uparrow) denote the direction of change. \downarrow indicates lower is better (Improvement), \uparrow indicates
 1266 higher is better (Improvement).

Method	Training Time	Inference Speed	Deg. \downarrow	LMD \downarrow	MUSIQ \uparrow	FID \downarrow
OSEDiff (Base)	202 GPU hours	0.13s	46.20	2.8871	73.41	65.13
OSEDiff (+Ours)	24 GPU hours	0.13s	38.41 (\downarrow 7.79)	2.4060 (\downarrow 0.48)	75.24 (\uparrow 1.83)	44.40 (\downarrow 20.73)
DiffBIR (Base)	216 GPU hours	2.84s	35.16	2.2661	74.46	45.50
DiffBIR (+Ours)	46 GPU hours	2.84s	30.61 (\downarrow 4.55)	1.8642 (\downarrow 0.40)	74.82 (\uparrow 0.36)	42.59 (\downarrow 2.91)

F DISCUSSION ON REWARD HACKING IN BLIND FACE RESTORATION

1274 Reward Hacking is a prevalent challenge in tasks employing Reward Feedback Learning (ReFL).
 1275 Our research has found that Reward Hacking is also an issue in the BFR task. This phenomenon
 1276 occurs when the generative model, in its pursuit of maximizing scores from a reward model, discovers
 1277 and exploits “loopholes” or biases within the reward function. Such behavior, driven purely by
 1278 score optimization, can lead to outputs that, despite achieving high reward scores, severely deviate
 1279 from the desired effects of realistic, high-quality, and faithful restoration of the original input. This
 1280 typically manifests as unnatural artifacts, stylistic distortions, or a loss of diversity. One of the core
 1281 contributions of our work, particularly the dynamic updating strategy for the Face Reward Model
 1282 (FRM), is specifically designed to mitigate such issues.

1283 Fig. 12 (left) showcases examples of facial images generated during the face restoration task when
 1284 Reward Hacking occurs. These examples reveal two distinct manifestations:

- 1285 • **Style 1** represents a more severe form of Reward Hacking. In this scenario, the restored facial
 1286 images exhibit a uniform, stylized, almost “painterly” appearance. Although certain features might
 1287 appear sharp or well-defined, the overall output loses photorealism and may introduce exaggerated
 1288 or unnatural facial characteristics. This suggests that the model has essentially learned a specific
 1289 artistic style that the static reward model erroneously favors.
- 1290 • **Style 2** reveals a significant yet different manifestation of Reward Hacking. In this case, the restored
 1291 facial images consistently display unnatural blemishes, such as repetitive skin texture patterns, or
 1292 exhibit a subtle “uncanny” appearance despite being overly smoothed. The emergence of these
 1293 defects is likely because they inadvertently trigger higher scores from a less robust reward model,
 1294 which may have failed to effectively penalize such subtle deviations from realism.

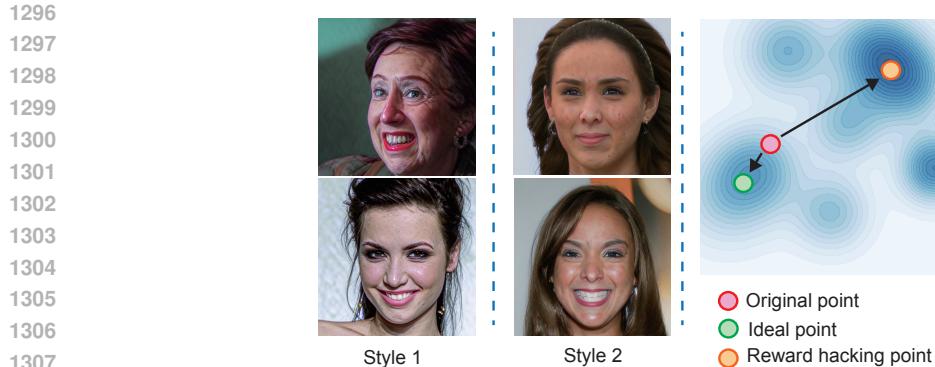


Figure 12: Illustration of Reward Hacking. (Left) Examples of facial restoration exhibiting reward hacking: Style 1 shows severe stylization, while Style 2 displays consistent artifacts and blemishes. (Right) A schematic representation in the image manifold space: The red point is the original output state. The orange point represents a reward hacking state, achieving high reward by moving off the natural image manifold. The green point indicates an ideal optimization outcome, improving reward while maintaining fidelity to the true manifold. Contour lines indicate reward values (darker is higher).

Fig. 12 (right) provides a schematic illustration of the Reward Hacking phenomenon within a conceptual image manifold space. The contour lines in the diagram represent the distribution of reward values, with darker blue areas indicating regions perceived by the reward model as having higher reward values.

- **Original point (red circle)** denotes the initial state of the model’s output. This point is typically located on or near the true manifold of natural, realistic (facial) images, but its perceived quality may still be deficient.
- **Reward Hacking point (orange circle)** represents the outcome of an unconstrained or improperly guided optimization process. The model, by solely aiming to maximize the reward score, has moved to a high-reward region. However, this point is often distant from the initial state and, crucially, may have deviated from the manifold of realistic images. This occurs because the model exploits biases or vulnerabilities in the reward function, leading to outputs that, despite high scores, are perceptually flawed, overly stylized, or contain artifacts (as exemplified by Style 1 and Style 2).
- **Ideal point (green circle)**, in contrast, illustrates a more balanced and desirable optimization outcome. This state represents a moderate yet genuine improvement in reward/perceptual quality, while ensuring that the output remains close to the initial state and, most importantly, stays on or near the true manifold of natural, realistic images. This ensures the fidelity and realism of the results. Achieving this “green point” is the goal of robust ReFL frameworks, such as our proposed DiffusionReward method with its dynamic FRM updates, which actively counteracts overfitting to a static reward function and guides the restoration process towards genuine, manifold-consistent improvements.

Understanding and addressing Reward Hacking is crucial for developing reliable ReFL-based image restoration methods. Without effective countermeasures, the restoration model might merely learn to generate “reward-maximizing illusions” rather than truly enhancing the perceptual quality and faithfulness of the input images. Fortunately, by reducing the weight of the reward loss, using weight regularization, and employing an updatable face reward model, this issue can be alleviated or even resolved in practice; [in our experiments, these strategies keep the optimization trajectory close to the natural face manifold and prevent the collapse behaviors illustrated in Fig. 12](#).

G MORE ANALYSIS

G.1 GENERALIZATION TO DIFFERENT MODEL ARCHITECTURES

To rigorously assess the generalizability of our proposed framework, we extended our evaluation to models with fundamentally different generative architectures. In addition to the diffusion-based base model, we integrated our method with two representative state-of-the-art approaches: the

1350
1351 Table 15: Generalization results on different architectures. We compare the integration of our method
1352 with GAN-based (GFPGAN), VQ-based (CodeFormer), and Diffusion-based (DR2) models. Best
1353 results for each model pairing are in **bold**.

Model	LMD \downarrow	FID \downarrow	MUSIQ \uparrow
GFPGAN	2.4110	42.57	73.90
GFPGAN (+ours)	2.4007	41.78	73.27
CodeFormer	1.9963	45.57	74.23
CodeFormer (+ours)	1.9943	38.77	70.12
DR2	4.5449	62.54	70.19
DR2 (+ours)	3.2145	51.34	72.60

1363
1364 GAN-based GFPGAN (Chan et al., 2021) and the CodeFormer (Zhou et al., 2022), which utilizes a
1365 vector-quantized (VQ) codebook prior. We compared these against an alternative diffusion-based
1366 model, DR2 (Wang et al., 2023b). The performance of both the original and enhanced versions on
1367 the CelebA-Test dataset is detailed in Table 15.

1368 The quantitative results reveal significant disparities in how different architectures respond to our
1369 Reward Feedback Learning (ReFL):

- 1370 Our method brings substantial improvements to the diffusion-based DR2 model across all key
1371 dimensions, including LMD, FID, and MUSIQ. This confirms that the stochastic generation process
1372 of diffusion models, characterized by the iterative injection of random noise, provides a broad and
1373 smooth exploration landscape. This inherent randomness is highly conducive to our framework,
1374 allowing the reward gradients to effectively guide the restoration trajectory toward the real face
1375 manifold.
- 1376 The optimization effect on GFPGAN is marginal, with most metrics showing negligible changes.
1377 We attribute this primarily to the deterministic nature of CNN-based GAN generators. The mapping
1378 from the latent code to the image is relatively rigid, resulting in a constrained “exploration space”
1379 that resists the fine-grained adjustments attempted by the reward feedback.
- 1380 For CodeFormer, ReFL improves fidelity and distributional alignment (LMD: 1.9963 \rightarrow 1.9943;
1381 FID: 45.57 \rightarrow 38.77) at the cost of perceptual quality (MUSIQ: 74.23 \rightarrow 70.12). Like GFPGAN, its
1382 lack of intrinsic stochasticity prevents reward-guided exploration of diverse restorations.

1383 Ultimately, this comparative experiment underscores that our framework exhibits the strongest
1384 synergy with stochastic generative models. While it can improve fidelity in deterministic or discrete
1385 architectures (like CodeFormer), it excels in the continuous and probabilistic solution space offered
1386 by diffusion models, where it can simultaneously enhance both fidelity and perceptual quality.

1388 G.2 DISCUSSION ON THE FACE REWARD MODEL’S ALIGNMENT WITH HUMAN PREFERENCES

1390 Our Face Reward Model (FRM) is designed to capture subjective human preferences for face
1391 restoration, rather than simply predicting objective quality metrics. To this end, we employ a hybrid
1392 annotation strategy, leveraging a small amount of manually annotated preference data to build a
1393 domain-specific dataset for fine-tuning the general HPSv2 preference model. The optimized FRM
1394 achieves a consistency of **87.78%** with human judgments, significantly outperforming the baseline
1395 model’s **63.05%**. This result strongly validates that the FRM is a true reward model aligned with
1396 subjective human perception, confirming its core role within the Reward Feedback Learning (ReFL)
1397 framework and ensuring that the optimization is guided by human aesthetic standards.

1398 H MORE QUALITATIVE RESULTS.

1400 H.1 QUALITATIVE RESULTS

1401 Building upon the comparative results presented in Sec. 4.2 of the main paper, we provide further
1402 qualitative comparisons in this section. Figure 13 illustrates qualitative comparisons of our method

1404 against other advanced methods on the synthetic CelebA-Test dataset. Similarly, Figure 14 showcases
 1405 qualitative comparisons of our method with other advanced methods on real-world datasets.
 1406

1407 H.2 UNCURATED QUALITATIVE RESULTS

1408 To showcase the effectiveness of our method in an unbiased manner, we consecutively selected
 1409 the first 20 images from the CelebA-Test dataset for qualitative evaluation. The CelebA-Test
 1410 dataset is derived from the public VQFR repository⁴. Specifically, we utilize a total of 20 im-
 1411 ages for restoration, ranging from 00000000.png to 00000019.png, located in the unzipped
 1412 celeba_512_validation_lq directory. The comparison focuses on the baseline models, OSED-
 1413 iff and DiffBIR, versus our enhanced variants, OSEDiff (+Ours) and DiffBIR (+Ours). The specific
 1414 results are presented in Figure 15 and Figure 16.

1416 I LLM USAGE STATEMENT

1417 During the preparation of this paper, we utilized a LLM to assist with grammar correction and
 1418 improving the clarity of our writing. We confirm that all scientific contributions, including ideation
 1419 and analysis, are entirely the authors' original work. The LLM was used solely for proofreading
 1420 purposes and did not contribute scientifically.

1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

⁴<https://github.com/TencentARC/VQFR>

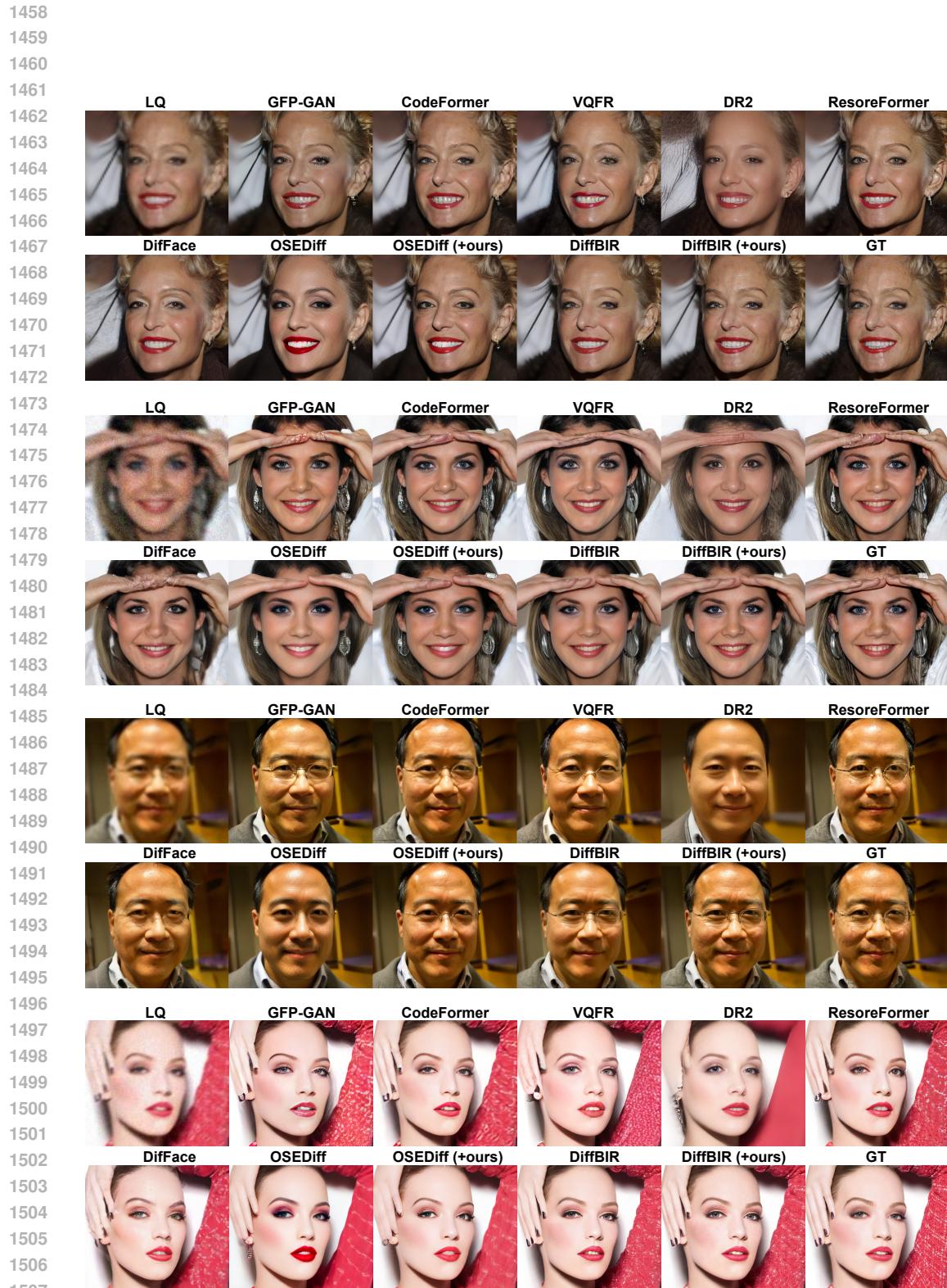
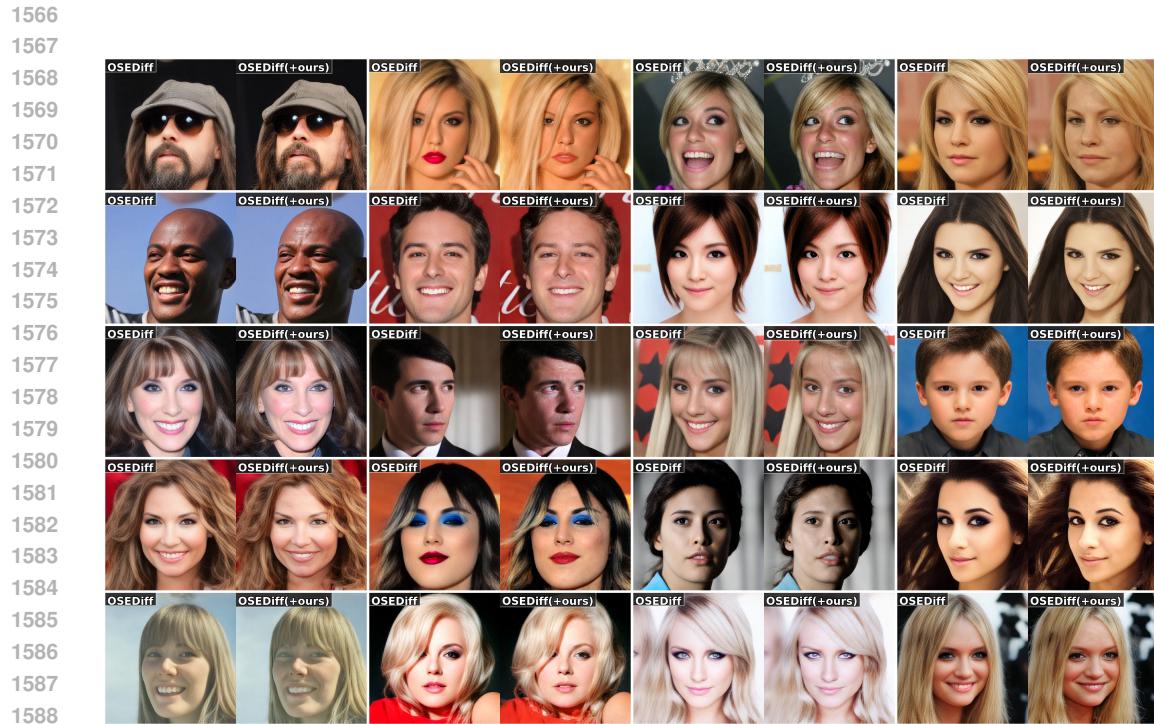


Figure 13: More qualitative comparison on the CelebA-Test. (Zoom in for details)



1589
1590
Figure 15: Qualitative comparison results between OSEDiff and OSEDiff (+Ours) without cherry-
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

1617
1618
Figure 16: Qualitative comparison results between DiffBIR and DiffBIR (+Ours) without cherry-
1619