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ABSTRACT

Reward Feedback Learning (ReFL) has recently shown great potential in aligning
model outputs with human preferences across various generative tasks. In this
work, we introduce a ReFL framework, named DiffusionReward, to the Blind
Face Restoration task for the first time. DiffusionReward effectively overcomes
the limitations of diffusion-based methods, which often fail to generate realistic
facial details and exhibit poor identity consistency. The core of our framework is
the Face Reward Model (FRM), which is trained using carefully annotated data.
It provides feedback signals that play a pivotal role in steering the optimization
process of the restoration network. In particular, our ReFL framework incorporates
a gradient flow into the denoising process of off-the-shelf face restoration methods
to guide the update of model parameters. The guiding gradient is collaboratively
determined by three aspects: (i) the FRM to ensure the perceptual quality of the
restored faces; (ii) a regularization term that functions as a safeguard to preserve
generative diversity; and (iii) a structural consistency constraint to maintain facial
fidelity. Furthermore, the FRM undergoes dynamic optimization throughout the
process. It not only ensures that the restoration network stays precisely aligned with
the real face manifold, but also effectively prevents reward hacking. Experiments
on synthetic and wild datasets demonstrate that our method outperforms state-of-
the-art methods, significantly improving identity consistency and facial details.
The source codes and models are available at: https://anonymous.4open.
science/r/DiffusionReward-D02F

1 INTRODUCTION

Facial images captured in-the-wild often suffer from complex and diverse degradations, such as blur,
compression artifacts, noise, and low resolution. Blind Face Restoration (BFR) (Li et al., 2018; 2020;
Wang et al., 2021) aims to restore high-quality (HQ) counterparts from these degraded inputs. Given
the substantial information loss in low-quality (LQ) inputs and the typically unknown degradation
processes, BFR is inherently a highly ill-posed problem. As a result, for any given single LQ face,
there theoretically exists a solution space encompassing an infinite number of potential high-quality
solutions. Consequently, accurately reconstructing HQ facial images from this expansive solution
space remains an unsolved challenge, especially in terms of photorealism, naturalness, and identity
preservation.

Diffusion models (Ho et al., 2020) have become a powerful paradigm for BFR (Wu et al., 2024; Lin
et al., 2024; Chen et al., 2024; Yue & Loy, 2024; Wang et al., 2023b), owing to their exceptional
generative capabilities. Using rich visual priors acquired during training, these models use LQ images
as conditional inputs to progressively reconstruct high-fidelity faces through iterative denoising.
Notable methods, such as DiffBIR (Lin et al., 2024) and OSEDiff (Wu et al., 2024), leverage the
pre-trained Stable Diffusion (Rombach et al., 2022) models, effectively adapting them through fine-
tuning to achieve remarkable quality in face restoration. However, these pre-trained diffusion models
typically undergo training using images from general domains, which lack an adequate amount of
face-specific prior knowledge. This deficiency frequently gives rise to restored facial images that are
short of detailed features.
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Lack of skin texture

Base ReFL

Unrealistic and artifacts

Base ReFL

Poor identity consistency

Base ReFL GT

Figure 1: An example of issues with diffusion-based face restoration methods. After enhancement
with ReFL, the issues in the base model are significantly mitigated.

As shown in Figure 1 (Left), although coarse facial features, accessories, and background areas can
be restored to a reasonable extent, the restoration of fine-grained facial textures, such as skin textures,
is usually insufficient, leading to overly smooth or unrealistic textures (Zhang et al., 2025). The lack
of face-specific priors not only undermines the restoration quality of fine details but also significantly
exacerbates mapping ambiguities (Kamali et al., 2025), as shown in Figure 1 (Middle). Furthermore,
Stable Diffusion models are primarily trained for text-to-image generation tasks, rather than for image
restoration tasks which requires strict fidelity. Consequently, their inherent generative mechanisms
and the nature of the training data are more adept at creative synthesis rather than meeting the exacting
standards of fidelity demanded by restoration tasks, potentially leading to deviations from the original
identity features during the restoration process, as shown in Figure 1 (Right).

Reward Feedback Learning (ReFL) (Xu et al., 2023; Clark et al., 2023; Liang et al., 2024) is an
optimization paradigm that has been validated in domains such as text-to-image generation. It makes
use of a reward model that has been trained based on human preferences. This reward model serves
to guide and fine-tune latent diffusion models, boosting the quality, realism, and user alignment of
the outputs generated by these models. In this work, we employ ReFL for the BFR task to address
the previously mentioned limitations of diffusion-based face restoration methods.

For off-the-shelf diffusion-based face restoration methods (Lin et al., 2024; Wu et al., 2024), the
ReFL framework innovatively reinterprets their latent diffusion denoising process as a parameterized
iterative generator. Through the parameterization of this process, ReFL empowers the application
of supplementary optimization constraints. This enables fine-grained adjustments to the parameters
of pre-trained face restoration models. Consequently, fine-tuned models are capable of generating
images that feature enhanced facial texture details, a higher level of overall visual realism, and, more
importantly, the preservation of identity consistency. A core component of the ReFL framework is a
reward model that is able to accurately assess image quality.

To this end, we have meticulously annotated the data and constructed a Face Reward Model (FRM).
This model serves as a crucial component for evaluating the quality of restored faces. It provides
feedback signals that play a pivotal role in steering the optimization process of the face restoration
model. One common challenge in the training process based on ReFL is that the restoration model
might fall prey to reward hacking. It occurs when the restoration model discovers and capitalizes
on “loopholes” within the reward model instead of enhancing the actual perceptual quality of the
images. To address this issue, we further propose a strategy for dynamically updating the FRM during
the training process. In this manner, the reward model can continuously adapt to the evolution of
the restoration model, thereby more precisely guiding its exploration and optimization within the
manifold space of real facial images, effectively averting the phenomenon of overfitting to a specific
reward function.

In addition, we also introduce two constraints to further enhance the restoration performance. Firstly,
a Structural Consistency Constraint is incorporated to ensure that the restored image’s facial structure
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closely aligns with the original identity, thereby effectively preserving identity consistency. By
doing so, it effectively safeguards the identity consistency, preventing any significant discrepancies
in the facial features. Secondly, a Weight Regularization term is employed to restrict the extent to
which the current model parameters deviate from their initial values. Through this mechanism, it
maintains the inherent generative capabilities of the base model, ensuring that the output diversity is
not compromised.

In summary, here are our main contributions:

• We make a pioneering exploration into the BFR domain by introducing ReFL, crafting a bespoke
ReFL optimization mechanism designed specifically for diffusion-based face restoration models.

• We tailor a data curation pipeline for the creation of an FRM that is capable of accurately evaluating
the perceptual quality of restored facial images. Moreover, we introduce a dynamic updating
strategy to avert the reward hacking problem.

• We introduce two constraints to further enhance the restoration performance, including a structural
consistency constraint and a weight regularizer.

• Our proposed framework, named DiffusionReward, enhances the face restoration quality of the base
model and achieves state-of-the-art (SOTA) performance compared to other advanced methods.

2 RELATED WORK

Blind Face Restoration. Early Blind Face Restoration (BFR) methods mainly relied on geometric
priors to provide structural guidance. These include 2D priors such as facial landmarks (Chen
et al., 2018; Kim et al., 2019), parsing maps (Chen et al., 2021; Shen et al., 2018), and component
heatmaps (Yu et al., 2018), as well as 3D facial priors (Hu et al., 2020) which explicitly utilize 3D
morphable models to grasp sharp facial structures. However, these geometric priors exhibit limitations
in recovering fine-grained details, like skin textures, and struggle with severely degraded inputs.

Generative facial priors have emerged as a significant pathway for high-quality face restoration (Ledig
et al., 2017; Wang et al., 2018). Pre-trained StyleGAN (Karras et al., 2019; 2020), encapsulating rich
facial textures and details, facilitate photorealistic face restoration. For instance, GFP-GAN (Wang
et al., 2021) and GLEAN (Chan et al., 2021) integrate StyleGAN priors into an encoder-decoder ar-
chitecture, leveraging structural features from degraded faces to guide restoration, thereby remarkably
enhancing detail recovery. However, degraded inputs may be mapped to suboptimal points within the
latent space, leading to insufficient fidelity or undesirable artifacts. Codebook-based methods (Gu
et al., 2022; Zhou et al., 2022; Zhao et al., 2022) employ vector-quantized codebooks to mitigate
latent space uncertainty by learning discrete priors. Among them, Zhao et al. (Zhao et al., 2022)
incorporated these discrete priors into skip connections to enhance reconstruction fidelity, while
simultaneously injecting adaptive stochastic noise to improve generation quality.

Denoising Diffusion Probabilistic Models (DDPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020)
have recently become an emergent paradigm in BFR, due to their powerful generative capabilities
and training stability. DR2 (Wang et al., 2023b) initially generates a coarse output by noising and
subsequently denoising the degraded face, which is then refined by other face restoration models for
detail enhancement. DiffBIR (Lin et al., 2024) decouples BFR into two distinct stages: degradation
removal and generative refinement. In the degradation removal stage, advanced restoration modules
such as SwinIR (Liang et al., 2021) are employed. Subsequently, in the generative refinement, an
IRControlNet (Lin et al., 2024) is utilized to guide a latent diffusion model for detail generation.
DifFace (Yue & Loy, 2024) constructs a posterior distribution from low-quality (LQ) to high-quality
(HQ) images, leveraging the error-shrinkage property of pre-trained diffusion models to robustly
handle unknown degradation.

Despite the strengths of diffusion-based methods, their multi-step sampling process often leads to
slower inference. To enhance inference efficiency, several diffusion-based image restoration methods
employing distillation for one-step inference have emerged. Notably, OSEDiff (Wu et al., 2024)
fine-tunes Stable Diffusion (Rombach et al., 2022) using variational score distillation, achieving
high-quality restoration with one-step inference. In this work, to validate the generalizability of our
method across diffusion-based methods, we choose OSEDiff and DiffBIR as base models, embodying
single-step and multi-step diffusion paradigms, respectively.

Reward Feedback Learning. In the text-to-image (T2I) generation with ReFL field, there are
two primary stages. Initially, a reward model is trained using human preference data, such as
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pairwise comparisons or ratings, to capture and quantify human preferences like perceptual image
quality, text-image alignment, and other aesthetic criteria. Subsequently, the trained reward model
guides the optimization of the T2I model by leveraging gradients derived from its scores. Previous
work (Xu et al., 2023; Kirstain et al., 2023; Liang et al., 2024; Zhang et al., 2024) have constructed
preference datasets and corresponding reward models for T2I tasks. Moreover, some studies have
explored the potential of leveraging feedback derived from reward models to effectively optimize
T2I models. ImageReward (Xu et al., 2023) evaluates images predicted at specific denoising steps
and backpropagates gradients from these scores to directly fine-tune the diffusion model parameters.
In contrast, DRaFT (Clark et al., 2023) and AlignProp (Prabhudesai et al.) evaluate only the final
image for optimization. R0 (Luo et al., 2025) achieves state-of-the-art T2I by directly maximizing
rewards without complex diffusion losses. While existing ReFL paradigms succeed in open-ended
text-to-image synthesis, their direct application to image restoration is constrained by the precise
face assessment and strict identity maintenance. We overcome these limitations by incorporating two
key refinements to the ReFL framework: (i) a specialized Face Reward Model (FRM) for accurate
facial quality assessment, and (ii) an structural consistency constraint to enforce identity preservation.
Furthermore, we implement an innovative dynamic updating mechanism to effectively mitigate
reward hacking, thereby yielding a substantial elevation in overall restoration quality.
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Figure 2: Training framework of the Face Reward Model. We first train a SVM (Cortes & Vapnik,
1995) classifier for automated annotation. The classifier is trained with the metric vectors (vvv1, vvv2)
and annotated supervision signals (Left). The face reward model is based on the CLIP (Radford et al.,
2021) architecture (Right), where the last 20 layers of the image encoder EI and the last 11 layers of
the text encoder Et are trainable, while the remaining parameters are frozen. s1 and s2 are derived
from the similarity between the image embedding and the text embedding (e.g., < eeei1 , eeet >).

3.1 FACE REWARD MODEL

General-purpose reward models, which are commonly trained on human ratings of natural or artistic
images, incorporate only limited face image ratings, leading to significant biases in providing reliable
and accurate evaluations for face-related restoration. To tackle this issue, we design a pipeline for
constructing a face reward model, which consists of two essential stages: annotation of a preference
dataset and training of the face reward model.
Annotation of the Preference Dataset. To construct the face preference dataset, we select 19,590
diverse face images from the face dataset (Wu et al., 2023b), encompassing various poses and
expressions. Then, we use LLaVA (Liu et al., 2023) to generate corresponding textual descriptions for
each image, forming 19,590 image-text pairs. Subsequently, we apply blind degradation kernels (See
details in Section (4.1)) to the high-quality images IHQ, producing their low-quality (LQ) counterparts
ILQ. We employed three blind face restoration methods (Zhou et al., 2022; Lin et al., 2024; Chan
et al., 2021) to restore these LQ images, yielding a total of 58,770 (3× 19, 590) restored face images.
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Figure 3: Our ReFL training framework. (Left) We introduce multiple constraints to optimize the
generation module gθ, including Lreward, Lreg and Lstruct (See details in Section 3.3). (Right) For
training efficiency, these constraints are applied solely on the last denoising step.

Finally, these restored images, combined with the original 19,590 ground-truth images, constitute our
preference dataset of 78,360 (4× 19, 590) facial images, providing a comprehensive data base for
subsequent preference annotation.

Given an original facial image IHQ and its counterparts of three restored versions {I1, I2, I3}, we
conduct pairwise comparisons among these images that yield six preference pairs. In the annotation
phase, any preference pair involving the IHQ was assigned a fixed label indicating a preference for the
ground-truth image, thereby treating the IHQ as an ideal and optimal result. The remaining preference
pairs, which involved comparisons between different restoration results, are labeled using a hybrid
strategy by combining human manual annotation and automated annotation.

Fully relying on human annotation would be prohibitively costly. To address this problem, we
developed an efficient hybrid annotation strategy. Human annotators label a subset of image pairs
(Refer to Appendix A.1 for annotation details), while the remaining pairs are automatically labeled
by a preference predictor, as illustrated in Figure 2 (Left). For each pair of images, we compute
six evaluation metrics: SSIM (Wang et al., 2004), PSNR, LPIPS (Zhang et al., 2018), MUSIQ (Ke
et al., 2021), NIQE (Mittal et al., 2012), and CLIP-IQA (Wang et al., 2023a). These metrics are
then vectorized (i.e., vvv1 and vvv2 in Figure 2) and fed into a annotation predictor. The SVM (Cortes &
Vapnik, 1995) classifier is trained using human-annotated preference labels. With the classifier, the
remaining preference pairs are automatically annotated, significantly reducing annotation costs. The
detailed configuration and hyperparameters of the SVM classifier can be found in Appendix A.1.

Reward Model Training. Training a reward model from scratch is inefficient. Instead, we fine-tuned
the pre-trained HPSv2 model (Wu et al., 2023a), which is based on the CLIP architecture (Radford
et al., 2021) and pre-trained on large-scale image datasets, providing robust image quality assessment
priors suitable for adaptation to face preference data. We fine-tune HPSv2 with the 117,540 preference
image-text pairs to optimize its ability to predict the relative quality of face images, and the training
process is illustrated in Figure 2 (Right). For training efficiency, we set the last 20 layers of the image
encoder and the last 11 layers of the text encoder trainable, while freeze the remaining parameters.

Given the restored images I1 and I2, we can collect their corresponding embeddings eeei1 and eeei2
through the same image encoder EI . Then, we use the text encoder Et to represent the input text
T as eeet. Next, we calculate s1 and s2 that refer to the cosine similarities between eeei1-eeet and eeei2-eeet,
respectively. subsequently, s1 and s2 are concatenated and followed by a softmax operation as the
probabilities of preference. Finally, we minimize the entropy loss LCE between the preference label,
derived from the SVM classifier combined with human annotations, and the probabilities σ([s1; s2]).
During the inference stage, the reward model only requires an input image and its corresponding text
description to calculate the preference score, thereby completing the evaluation of image quality.
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3.2 MODELING THE DENOISING PROCESS

We develop on Stable Diffusion (Rombach et al., 2022) models for the BFR task. Using the pretrain
autoencoder (Kingma et al., 2013; Rombach et al., 2022), we convert the IHQ into a latent zHQ with
image encoder E (i.e., zHQ = E(IHQ)) and reconstruct it with decoder D (i.e., ÎHQ = D(zHQ)). Both
diffusion and denoising process, Gaussian noise with variance βt ∈ (0, 1) at time t is added to the
encoded latent zHQ to produce the noisy latent: zt =

√
ᾱtzHQ +

√
1− ᾱtϵϵϵ, where ϵϵϵ ∼ N (0, I),

αt = 1−βt and ᾱt =
∏t

s=1 αs. When t is large enough, the latent zt is close to a standard Gaussian
distribution. A network gθ is learned by predicting the noise ϵ conditioned on cLQ = E(ILQ) at a
random time-step t.

As shown in Figure 3, the denoising process of the face restoration facilitates the subsequent
introduction of gradient information to optimize the parameters of the restoration model. Thus, this
conditional denoising process can be interpreted as a parameterized generation module gθ(zt, cLQ, t)
in the latent space. The training objective for the base restoration model is a noise prediction loss:

Lldm = Ez,cLQ,t,ϵϵϵ[∥ϵϵϵ− gθ(
√
ᾱz+

√
1− ᾱtϵϵϵ, cLQ, t)∥22]. (1)

This objective is solely utilized for pretraining the off-the-shelf diffusion-based BFR models (Lin
et al., 2024; Wu et al., 2024); our reward-based fine-tuning objective, applied to the final restored
image, is detailed in Section 3.3.

Within this framework, different BFR methods vary in the specific implementation of the denoising
network gθ and its utilization of the conditions cLQ. For multi-step inference models like DiffBIR (Lin
et al., 2024), gθ refers to a UNet (Ronneberger et al., 2015) with ControlNet (Zhang et al., 2023). Its
initial input is the primarily noise z, and the condition cLQ is integrated to each denoising step. For
single-step inference models like OSEDiff (Wu et al., 2024), ϵθ refers to a UNet with a LoRA (Hu
et al., 2022) module. The condition cLQ is directly injected to the initial noise z by a concatenation
operation. Thus, it eliminates the need for iterative injection.

3.3 REFL: TRAINING OBJECTIVES AND STRATEGIES

We introduce three additional objective functions, including reward loss, structural consistency loss,
and weight regularization loss, to refine the generation module gθ for better perceptual quality and
identity consistency of restored faces, as shown in Figure 3.

Reward Loss. To enhance the alignment with human preference on the restored faces, we leverage
the pre-trained face reward model R (See Section 3.1) to provide assessment feedbacks. The face
reward model takes the restored image ÎHQ and the text description T of corresponding original image
IHQ as input, where ÎHQ is obtained by decoding the latent of the last denoising step: ÎHQ = D(zHQ).
Thus, the reward loss Lreward is defined as:

Lreward = −R(ÎHQ,T). (2)

By minimizing Lreward, we encourage gθ to generate restored faces with higher alignment scores with
human preference.

Structural Consistency Loss. To maintain high fidelity to the structural features of real faces and
improve identity consistency, we introduce both structural and perceptual level constraints, which
comprises two sub-components:

• LPIPS Loss: LPIPS (Zhang et al., 2018) is a highly prevalent metric for evaluating the perceptual
similarity between two input images. Unlike traditional pixel-wise metrics (e.g., MSE, PSNR),
LPIPS leverages deep neural networks to extract hierarchical semantic features from images,
aligning more closely with human visual perception. We employ the LPIPS to measure the
perceptual similarity between ÎHQ and the original image IHQ:

LLPIPS = LPIPS(ÎHQ, IHQ). (3)

• DWT Low-Frequency Loss: Given the pixel-wise losses (e.g., ℓ1, MSE) are limited in boosting the
vivid and intricate details, we apply Discrete Wavelet Transform (DWT) to ensure the low-frequency
components of the restored image consistent to the original image. Moreover, we constrain only the
low-frequency components of the image (i.e., better structural consistency), allowing the restoration
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model to explore Freely in the high-frequency components (i.e., better details). Let DWTLF(·)
denote the function that extracts low-frequency components; the LDWT is defined as:

LDWT = ∥DWTLF(D(zHQ))− DWTLF(IHQ)∥1. (4)

Weight Regularization Loss. To prevent the parameters θθθ in gθ from deviating excessively from its
initial state θθθbase (e.g., pre-trained weights of the diffusion models), we incorporate a regularization
term of Kullback–Leibler divergence:

Lreg = DKL(θθθ∥θθθbase). (5)

The final objective is a weighted combination:

Ltotal = λrewardLreward + λLPIPSLLPIPS + λDWTLDWT + λregLreg. (6)

where λreward, λLPIPS, λDWT and λreg are balancing hyperparameters. The parameters θθθ of gθ are
updated by minimizing Ltotal during ReFL fine-tuning. At each iteration, we obtain ÎHQ via the
full reverse denoising trajectory (zT → z0). However, to ensure efficiency, we employ truncated
backpropagation (Clark et al., 2023) rather than computing gradients through the entire chain.
Gradients of Ltotal are propagated only through the last N denoising steps of gθ. We find that N = 1
offers the best trade-off between performance and computational cost (discussion in Table 5).

Reward hacking. Reward hacking is a common issue in ReFL (Clark et al., 2023; Skalse et al.,
2022) and also persists in face restoration tasks. It manifests as the restoration model generating
adversarial samples to achieve higher reward scores, which lack diversity, exhibit uniformity, and
contain unnatural artifacts, thus deviating from real face samples. To counteract this, we propose
a strategy to dynamically update the Face Reward Model R, concurrently with the training of the
generator gθ. Specifically, after every n training iterations of the generator gθ, we perform an update
step for R. In this update step, we utilize the most recent generator gθ to produce a batch of high-
quality restored images ÎHQ. For each ÎHQ, we have its corresponding original image IHQ and the
text description T. Following the HPS v2 (Wu et al., 2023a), we employ R to compute similarity
scores between the text description and each image: sHQ = R(IHQ,T), ŝHQ = R(ÎHQ,T). These
pair scores are then converted into preference probabilities.

Let Iw = IHQ (the preferred, “winner” image) and Il = ÎHQ (the less preferred, “loser” image).
The probability that Iw is preferred over Il given the prompt T is formulated using a softmax-like
function over their scores:

P (Iw ≻ Il|T) =
exp(sHQ)

exp(sHQ) + exp(ŝHQ)
. (7)

To update the parameters of R, we encourages this probability to be high, reflecting the fixed
preference for IHQ over ÎHQ. Thus, we use a simplified version of entropy loss as our objective
function:

LFRM = − logP (Iw ≻ Il|T). (8)
By assigning a preference solely to IHQ, we ensure that the R is constrained to remain within the
manifold space of real face images, thereby alleviating the occurrence of reward hacking driven by
unstable rewards.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We takes DiffBIR and OSEDiff as base and employ our proposed methods on them respectively. See
Appendix B for implementation details.

Training and Testing Data. We used the FFHQ dataset (Karras et al., 2021) for training, which
contains 70,000 high-quality facial images. During training, these images are resized to 512×512.
Our strategy for synthesizing LQ faces from HQ ones during the training period is detailed in
Appendix B. Follow the previous work (Wang et al., 2021; Gu et al., 2022), we employ the synthetic
dataset CelebA-Test and two real-world datasets (i.e., LFW-Test and WebPhoto-Test) to validate our
proposed method.
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Evaluation Metrics. On the Celeba-Test dataset, we used five reference metrics: SSIM (Wang
et al., 2004), PSNR, LPIPS (Zhang et al., 2018), CLIP Score(Hessel et al., 2021), Deg. (Wang et al.,
2021), and LMD (Gu et al., 2022), along with four non-reference metrics: MUSIQ (Ke et al., 2021),
MANIQA (Yang et al., 2022) and FID (Heusel et al., 2017). To evaluate the aesthetic quality of
generated face images on the CelebA-Test dataset, we utilized the LAION-AI aesthetic predictor to
predict aesthetic scores, which are correlated with human preferences (LAION-AI, 2022). In addition,
we used our pretrained FRM to score the restored face images, denoting as FaceReward.

Comparison Methods. We compare with not only the base models but also the latest state-of-the-art
methods, including GFPGAN (Chan et al., 2021), CodeFormer (Zhou et al., 2022), VQFR (Gu et al.,
2022), DR2+SPAR (Wang et al., 2023b), RestoreFormer (Wang et al., 2022), DifFace (Yue & Loy,
2024), OSEDiff (Wu et al., 2024), and DiffBIR (Lin et al., 2024).

DifFace OSEDiff OSEDiff (+ours) DiffBIR DiffBIR (+ours) GT

LQ GFP-GAN CodeFormer VQFR DR2 ResoreFormer

Figure 4: Qualitative comparison on the CelebA-Test. (Zoom in for details)

Table 1: Performance comparison of face restoration methods on CelebA-Test datasets. The highest
score for each metric is highlighted in red, and the second-highest in blue. Metrics with ↑ indicate
higher is better, while ↓ indicate lower is better. The values in parentheses represent our method’s
improvements over base models.

Methods SSIM↑ PSNR↑ LPIPS↓ CLIP Score↑ Deg.↓ LMD↓ MUSIQ↑ MANIQA↑ FID↓ Aesthetic↑ FaceReward↑

Input 0.6994 25.33 0.4866 0.7894 47.94 3.756 17.00 0.3957 143.95 4.0484 0.3397
GFPGAN 0.6772 24.65 0.3646 0.8410 34.58 2.4110 73.90 0.6522 42.57 5.6992 0.0741
CodeFormer 0.6925 25.85 0.3335 0.8931 31.08 1.9963 74.23 0.6520 45.57 5.8103 0.2864
VQFR 0.6654 23.76 0.3557 0.8562 42.48 2.9444 73.84 0.6544 46.77 5.7844 0.3142
DR2+SPAR 0.6512 22.89 0.4146 0.7437 57.24 4.5449 70.19 0.6374 62.54 5.6602 0.2455
RestoreFormer 0.6527 24.63 0.3652 0.8876 32.14 2.3020 73.75 0.6477 41.68 5.8015 0.2423
DifFace 0.6762 24.80 0.3994 0.8380 45.81 2.9766 68.96 0.6204 37.88 5.4708 0.3372

OSEDiff 0.6864 23.96 0.3478 0.7962 46.20 2.8871 73.41 0.6560 65.13 5.7720 0.2608

OSEDiff (+ours)
0.6838 24.93 0.3451 0.8732 38.41 2.4060 75.24 0.6640 44.40 5.9529 0.4389
(-0.0026) (+0.97) (+0.0027) (+0.0770) (+7.79) (+0.4811) (+1.83) (+0.0080) (+20.73) (+0.1809) (+0.1781)

DiffBIR 0.6775 25.44 0.3811 0.8877 35.16 2.2661 74.46 0.6752 45.50 5.7943 0.1938

DiffBIR (+ours)
0.7043 26.33 0.3454 0.9001 30.61 1.8642 74.82 0.6630 42.59 5.8475 0.4275
(+0.0268) (+0.89) (+0.0357) (+0.0124) (+4.55) (+0.4019) (+0.36) (-0.0122) (+2.91) (+0.0532) (+0.2337)

4.2 MAIN RESULTS

OSEDiff OSEDiff (+ours) DiffBIR DiffBIR (+ours) OSEDiff OSEDiff (+ours) DiffBIR DiffBIR (+ours)

Figure 5: Qualitative comparison between the base model and the our methods on real-world faces.

Evaluation on Synthetic Dataset. We first show the quantitative comparison on the CelebA-Test
in Table 1. We employed 11 metrics to comprehensively evaluate the overall performance of each
method. Initially, a glance at the values within parentheses reveals that our approach achieves
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performance improvements across nearly all metrics when compared to the base models. Comparing
to state-of-the-art (SOTA) methods, the OSEDiff (+ours) and DiffBIR (+ours) achieve top rankings in
the majority of metrics, such as Deg., LMD, Aesthetic, and FaceReward, indicating that our proposed
ReFL framework can enhance perceived face quality while preserving identity consistency. As the
shown qualitative comparisons in Figure 4, our method exhibits superior identity consistency and
skin texture details.

Evaluation on Real-world Datasets. Table 2 shows the quantitative results. We find that our
proposed ReFL framework improves the aesthetic score and MUSIQ, which measures image quality.
Comparing to other methods, OSEDiff (+ours) achieves the best performance on both datasets From
the qualitative results in Figure 5, a qualitative comparison between the base model and ReFL is
presented. We observe that the base models, when faced with real-world degradation, often fails to
restore facial details, resulting in a smooth face. Our method overcomes these problems and generate
realistic faces with richer details.

Table 2: Performance comparison of face restora-
tion methods on wild datasets. The highest score
for each metric is highlighted in red, and the second-
highest in blue. Metrics with ↑ indicate higher
is better. The values in parentheses represent our
method’s improvements over base models.

Dataset LFW-Test WebPhoto
Methods Aesthetic↑ MUSIQ↑ Aesthetic↑ MUSIQ↑

Input 4.9978 26.87 4.2584 18.63
GFP-GAN 5.6042 73.57 5.2473 72.09
CodeFormer 5.6414 70.69 5.1860 71.16
VQFR 5.6802 74.39 5.2829 70.91
DR2+SPAR 5.5409 72.22 5.1785 63.65
RestoreFormer 5.6068 73.70 5.1213 69.84
DiffFace 5.4104 69.85 5.0721 65.21
OSEDiff 5.6796 73.40 5.4161 72.60

OSEDiff (+ours) 5.7183 74.81 5.5412 74.05
(+0.0387) (+1.41) (+0.1251) (+1.45)

DiffBIR 5.6814 73.71 5.2728 67.45

DiffBIR (+ours) 5.6860 74.49 5.3554 71.38
(+0.0046) (+0.78) (+0.0826) (+3.93)

Variant 1 Variant 2 GT

(a)

Variant 3 Ours GT

(c)

Variant 2 Ours GT

(b)

Figure 6: Ablation study visualizations.

Table 3: Performance comparison of
FRM and HPS v2 reward models

Reward Type MANIQA↓ MUSIQ↑ FID↓

HPS v2 0.6630 69.78 48.94
FRM (ours) 0.6535 74.82 42.59

Table 4: Ablation study of ReFL components

Struct SC WR Rwd RU LMD↓ MUSIQ↑ Aesthetic↑

Base 2.2661 74.46 5.7943
Variant 1 ✓ ✓ 1.9583 54.70 5.6572
Variant 2 ✓ ✓ ✓ 1.8834 71.12 5.6063
Variant 3 ✓ ✓ ✓ 1.8644 70.67 5.7528
Ours ✓ ✓ ✓ ✓ 1.8642 74.82 5.8475

4.3 ABLATION STUDY

We conduct main ablation study based on DiffBIR (+ours) on CelebA-Test dataset, and the ablation
study based on OSEDiff (+ours) is provided in Appendix D.1. First, we manually annotate 360 pairs
of face images and calculate the preference prediction accuracy of HPS v2 and our FRM. Our FRM
outperforms HPS v2 significantly (i.e., 87.78% v.s. 63.05%), demonstrating a high alignment with
human preferences and superior human perception. Furthermore, when we replace our FRM with the
original HPS v2 model for the ReFL framework and keep the same training configurations, our FRM
obviously outperfoms HPS v2, as shown in Table 3.

Second, we decompose our proposed ReFL framework into four components, including structural
consistency constraint (SC), weight regularization constraint (WR), using reward feedback (Rwd), and
updating reward model (RU), resulting in three variants. As shown in Table 4, Variant 1 (employing
SC and WR without FRM components) improves identity preservation (LMD) but degrades perceptual
quality (MUSIQ), resulting in overly smooth faces (See Figure 6(a)). After adding Rwd to Variant 1,
obtaining Variant 2, we find obvious enhancements in perceptual quality (MUSIQ) and restores finer
facial details (See Figure 6(a) and Table 4).

Removing WR from ours entire ReFL framework (i.e., Variant 3) leads to a decline in perceptual
quality, identity consistency, and aesthetic scores (See Table 4). This is attributed to the disruption of
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pre-trained priors and weakened generation capabilities, as evidenced by the loss of hair details in
Variant 3 (See Figure 6(b)). Finally, we validate that the dynamic update mechanism of FRM (RU) is
crucial for the reward hacking. In Figure 6(c), Variant 2 exhibits “reward hacking”, generating faces
with stereotypical artifacts like acne marks. Incorporating RU eliminates these artifacts, improving
generation quality and outperforming Variant 2, as shown in Table 4.

To manage the computational cost of fine-tuning our ReFL-based restoration model, we employ
truncated backpropagation for the final N denoising steps. We evaluated N ∈ {1, 5, 20} in Table 5
and observed that while larger N yields marginal gains in distortion metrics (e.g., SSIM), it notably
degrades key perceptual metrics (FID, FaceReward) and increases training overhead. Consequently,
we adopt N = 1 in all our experiments to achieve the best trade-off between restoration quality and
training efficiency. More ablation experiments are provided in Appendix D.

Table 5: Performance under different backpropagation truncation steps (N ).

Steps (N ) SSIM↑ PSNR↑ LPIPS↓ CLIP↑ Deg.↓ LMD↓ MUSIQ↑ MANIQA↑ FID↓ Aesthetic↑ FaceRwd↑
1 0.7043 26.33 0.3454 0.9001 30.61 1.8642 74.82 0.6630 42.59 5.8475 0.4275
5 0.7101 26.42 0.3221 0.9103 30.10 1.8013 73.68 0.6652 47.27 6.0627 0.3876
20 0.7151 26.37 0.3382 0.9073 30.11 1.8031 73.60 0.6630 46.32 6.0751 0.3923

Table 6: Human preference ratio between our
method and the base Model for realism and fidelity.

Comparison Fidelity Realism

OSEDiff (+ours) vs OSEDiff 78% vs 22% 88% vs 12%
DiffBIR (+ours) vs DiffBIR 68% vs 32% 75% vs 25%

Figure 7: Reward and loss curves during training.

Analysis of Training Dynamics. As shown
in Figure 7, the training of DiffBIR (+Ours)
converges stably. The Face Reward Score rises
quickly at the beginning and then plateaus, with
a slight decrease in the later stage due to our
dynamic reward update. This mechanism delib-
erately tightens the reward, guiding the model
back toward the real-face manifold and suppress-
ing “reward hacking” (i.e., chasing scores at the
cost of realism), which is consistent with the
theoretical dynamics in Figure 12(right). Mean-
while, the convergence of the structural consis-
tency loss signifies an improvement in facial
identity preservation.

User Study. We further conducted a pairwise
user study comparing our results (+Ours) with
the corresponding baselines (OSEDiff, DiffBIR)
in terms of identity fidelity and visual realism.
As shown in Table 6 reveals that the faces re-
stored by our approach are overwhelmingly pre-
ferred by human subjects. The standards for our
user study are detailed in Appendix C.

5 CONCLUSION

To tackle key challenges in diffusion-based face restoration–such as insufficient facial detail and poor
identity preservation–we introduce DiffusionReward, a method that fine-tunes the denoising process
via the ReFL framework. In the ReFL framework, we not only show a data curation pipeline for
buiding a powerful FRM but also propose useful constraints for optimizing the diffusion denoising
process. Moreover, we propose a dynamic updating stategy to avert the reward hacking problem.

6 LIMITATION

DiffusionReward framework has been primarily validated on diffusion-based face restoration methods
(e.g., DiffBIR and OSEDiff). Its core ReFL mechanism, particularly the integration of gradient
flow and the dynamic updates to the FRM, was designed considering the characteristics of diffusion
models. Consequently, ReFL yields limited performance gains for certain non-diffusion methods,
such as GFPGAN and CodeFormer. The quantitative experimental results are presented in Table 15 of
Appendix G.1. We attribute this observation to the inherent lack of stochasticity during the generation
process of these architectures, which limits the exploration needed by the face reward model.
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A IMPLEMENTATION DETAILS OF FACE REWARD MODEL

This section provides supplementary details to those presented in Sec. 3.1.

A.1 DETAILS OF TRAINING DATA ANNOTATION

To effectively train our Face Reward Model (FRM), it is crucial to prepare accurate textual descriptions
and preference labels for the face images.

Text Description Generation for Face Images. High-quality textual descriptions enable the reward
model to better comprehend image content, thereby providing more precise feedback. Our FRM
training data originates from a public face dataset (Wu et al., 2023b) containing 19,590 face images.
For these images, we generated corresponding textual descriptions as follows: We utilized the
LLaVA (Liu et al., 2023) model to automatically generate text descriptions for each facial image.
When inputting an image to the LLaVA model, we employed the following carefully designed prompt:

Listing 1: Prompt for LLaVA model
As an AI face caption expert, please provide precise description for

face.
Provide a simple description of the face, including gender, age, facial
features, pose (whether the person is in profile, front-facing, looking

up,
etc.), and facial expression. Begin your description with ’The face’.
If the image includes one or more elements from list [HAIR, BEARD,

CLOTHES,
GLASSES, HEADWEAR, FACEWEAR, JEWELRY, FACE PAINT, HAND, HANDHELD ITEMS],
include descriptions of those elements. (Word limit: within 35 words.)

The primary objective of this prompt was to ensure that the generated text descriptions not only cover
fundamental facial attributes (such as gender, age, facial features, and expression) but also specifically
emphasize the person’s pose (e.g., profile, front-facing, looking up) and any potential occlusions or
adornments (such as hair, beard, clothes, glasses, headwear, facewear, jewelry, face paint, hands, or
handheld items). By doing so, we aimed for the text descriptions to guide the reward model towards
a more comprehensive and detailed perception of the image, thereby enhancing the accuracy of the
reward scores. Similarly, during the training process of DiffusionReward, we added text descriptions
to the training dataset FFHQ (Karras et al., 2021). In Figure 8, we present the face images along with
their corresponding text descriptions.

The face of a young woman with 
fair skin and light brown hair, 
wearing a serious expression, 
holding a violin.

The face of a young boy with 
short black hair, brown eyes, 
and a wide smile, wearing an 
orange shirt. The background 
shows another smiling child 
and a wooden structure.

The face of a young woman with 
light skin and straight, shoulder-length 
blonde hair, wearing glasses and a 
yellow top. She is front-facing, making 
a kissing face, with a background of a 
dimly lit room and indistinct figures.

Figure 8: Text description example

Manual Annotation of Preference Labels. To acquire reliable human preference data, we organized
a team of three annotators to manually label image pairs. In total, the annotators provided preference
selections for 3,600 image pairs. We established clear annotation guidelines for the human annotators
to ensure consistency and quality:
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When presented with two facial images generated by different face restoration models, annotators were
instructed to select the image they preferred. This preference decision was based on a comprehensive
consideration of the following three core rules, ordered by importance:

• Realism of the Facial Image: This was the most critical factor. Annotators were required to
meticulously inspect the images for any unnatural artifacts, distortions, blurring, or other signs of
unnaturalness. The image should appear as close as possible to a real-world photograph of a face.

• Richness and Naturalness of Facial Details: Annotators assessed whether the facial details (such
as skin texture, hair, and clarity of facial features) were sufficiently rich and whether these details
conformed to the natural texture characteristics of a real face, avoiding overly smooth details.

• Consistency between the Facial Image and its Textual Description: This was the final consideration.
Annotators needed to judge if the image content aligned with the text description.

The face of a middle-aged man with a dark beard, 
wearing a gray Civil War-era hat with a black brim.

(a) (b)

Figure 9: The brim and eyes of (b) have artifacts, so (a) is a better face image.

The face of a smiling woman with long, 
wavy brown hair, light skin, and red lipstick.

(a) (b)

Figure 10: Sample (a) exhibits more realistic textures, rendering it the superior choice.

The final preference judgment was based on a holistic assessment considering these three rules. To
further illustrate the application of this hierarchical decision-making process, annotators proceeded
as follows:

First, they evaluated the images for any obvious, unrealistic artifacts based on the primary rule of
realism. For instance, as demonstrated in Figure 9, if image (b) exhibited distorted elements such as
a warped cap brim or unnatural-looking eyes when compared to image (a), Figure 9 (a) would be
selected as the superior image. If both images passed the initial realism check, the focus shifted to
the second rule: the richness and naturalness of facial details. As exemplified in Figure 10, if the skin
in image (b) appeared overly smooth and artificial, while image (a) preserved fine and natural skin
textures, then Figure 10 (a) would be deemed the better facial image.Finally, if a clear preference
could not be established based on the first two rules, the third rule concerning text-image consistency
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was applied. For example, as depicted in Figure 11, if image (b) was missing an element explicitly
mentioned in its textual description, such as ’glasses’, whereas Figure 11 (a) accurately reflected the
description, then Figure 11 (a) would be chosen as the preferred image.

Through this structured process, we aimed to collect preference data that accurately reflects human
subjective perception of image quality, grounded in both the objective visual content and the semantic
information conveyed by the textual descriptions.

Automated Annotation Pipeline. To scale up the collection of preference labels beyond the 3,600
manually annotated pairs and efficiently construct a large dataset for training our FRM, we developed
an automated annotation pipeline. This pipeline leverages a Support Vector Machine (SVM) Cortes
& Vapnik (1995) classifier trained on the previously described human-annotated data.

The face of a middle-aged man with a beard, glasses, 
and an open-mouthed expression, bathed in red light.

(a) (b)

Figure 11: Sample (a) successfully restored the glasses mentioned in the text description. Therefore,
(a) is the superior choice.

The 12-dimensional feature vectors v (formed by concatenating the 6 evaluation metrics from each
image in a pair, as detailed in Sec. 3.1 of the main paper and illustrated in Figure 2 therein) and the
corresponding integer preference labels derived from the 3,600 human-annotated image pairs serve
as the training set for this SVM classifier.

The SVM classifier was implemented using the scikit-learn library. The training process began
with loading these feature vectors and labels. To enhance the SVM’s performance and training
stability, the feature vectors underwent standardization using a StandardScaler, which was
fitted to the training data and then applied to transform it, ensuring each feature dimension had a
mean of 0 and a variance of 1.

A Support Vector Classifier (SVC) was selected as the preference prediction model. To determine
the optimal model configuration, we utilized GridSearchCV with 5-fold cross-validation on the
training set. The hyperparameter search space included various kernel types (e.g., ‘linear‘,
‘rbf‘, ‘poly‘), the regularization parameter C, and other kernel-specific parameters (such as
gamma and degree). The grid search aimed to maximize the average cross-validation accuracy.
Upon completion of the grid search, the best hyperparameter combination was identified. The trained
StandardScaler and the optimized SVC model were then saved to disk for subsequent use.

Once trained, the SVM classifier was used to automatically assign preference labels to the remaining
image pairs in our dataset that were not manually annotated. The procedure is as follows:

• For an unlabeled image pair, its 12-dimensional raw metric vector is extracted.
• The saved StandardScaler is applied to standardize this vector.
• The standardized feature vector is then fed into the trained SVM model.
• The SVM model outputs a predicted preference label (e.g., ‘1‘ indicating the first image is of higher

quality, ‘0‘ indicating the second is better).

This hybrid approach, combining manual annotations with an efficient SVM-based automated pipeline,
allowed us to effectively augment the dataset with a large number of preference labels. This provided
a richer source of supervision for training the FRM while significantly reducing the cost and time
associated with purely manual annotation.
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A.2 THE TRAINING DETAILS OF FACE REWARD MODEL

The Face Reward Model (FRM) is a critical component of our DiffusionReward framework, designed
to provide feedback signals that align the output of face restoration models with human preferences.
Its training involves specific architectural choices, initialization, optimization parameters, and a
tailored loss function.

The FRM utilizes the ViT-H-14 CLIP (Radford et al., 2021) architecture as its backbone. We initialize
the model with pre-trained weights from HPS v2 (Wu et al., 2023a)1. CLIP consists of an image
encoder EI and a text encoder Et.

The FRM is fine-tuned on our curated face preference dataset . The training process employs the
Adam optimizer. We fine-tune the model for 20,000 iterations with a learning rate of 3.3 × 10−6.
During fine-tuning, only specific parts of the model are made trainable to preserve the rich priors
from pre-training while adapting to our specific task. Specifically, the last 20 layers of the image
encoder (EI ) and the last 11 layers of the text encoder (Et) are trainable. All other parameters are
kept frozen.

The FRM is trained using pairwise preference data. Each training instance consists of a pair of
images, denoted as {I1, I2}, a corresponding textual description T, and a human preference label y.
The label y is typically a one-hot vector; for instance, y = [1, 0] if image I1 is preferred over I2, and
y = [0, 1] otherwise.

The FRM computes a score for each image with respect to the text description. Let eeei1 = EI(I1)
and eeei2 = EI(I2) be the image embeddings obtained from the image encoder EI , and eeet = Et(T)
be the text embedding from the text encoder Et. Following the principles of CLIP and HPS v2, and
aligning with our notation in Sec. 3.1 of main paper, the preference scores s1 and s2 are derived from
the cosine similarities:

sk =
eeeik · eeet

τ

where k ∈ {1, 2}, θ represents the trainable parameters of the FRM, and τ is a learned temperature
scalar inherent to the CLIP model, which scales the logits.

Given these scores for the pair of images, the predicted preference probability for image Ik (i.e., ŷk)
is calculated using a softmax function, consistent with σ([s1; s2]) in Figure 2 of the main paper:

ŷk =
exp(sk)∑2
j=1 exp(sj)

This results in a probability distribution ŷ = [ŷ1, ŷ2] over the two images.

The parameters θ of the FRM are optimized by minimizing the cross-entropy loss (LCE as denoted
in Sec. 3.1 of main paper) between the ground-truth preference label y = [y1, y2] and the predicted
preference distribution ŷ = [ŷ1, ŷ2]. The LCE Can be formulated as:

LCE = −
2∑

j=1

yj log(ŷj)

B THE IMPLEMENTATION DETAILS OF DIFFUSIONREWARD

This section is used to supplement the implementation details of Sec. 4 in the main paper.

Our strategy for synthesizing LQ faces from HQ ones during the training period is as follows:

ILQ =

{[
(IHQ ⊗ kkkσ)↓r

+nnnδ

]
JPEGq

}
↑r

(9)

Where the HQ images are first convolved with a Gaussian kernel kkkσ, followed by a downsampling
with a factor of r, and then corrupted with Gaussian noise nnnδ. Subsequently, the images undergo
JPEG compression with a quality factor of q. Finally, the LQ image is resized back to the original

1Source weights for HPS v2 are available at https://github.com/tgxs002/HPSv2.
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512× 512. Here, σ, r, δ, and q are randomly sampled from the intervals [0.1, 12], [1, 12], [0, 15], and
[30, 100], respectively.

Our DiffusionReward framework is developed by fine-tuning two pre-trained base models: DiffBIR-
v12 and OSEDiff3. Both of these base models were originally pre-trained on the FFHQ face dataset.
We initialize our training using their respective released pre-trained weights (e.g., the DiffBIR v1
Face version and the OSEDiff Face version). Subsequently, we apply our proposed Reward Feedback
Learning (ReFL) strategy to further fine-tune these pre-trained models, resulting in two distinct
versions of our DiffusionReward.

The denoising process within our DiffusionReward framework employs DDIM (Song et al., 2020)
sampling. During the ReFL fine-tuning phase, distinct components were trained depending on the
base model: for DiffBIR, we focused on training its ControlNet module, whereas for OSEDiff, we
trained the LoRA parameters of its UNet.

The general training configuration utilized the Adam optimizer with a learning rate of 5× 10−5 and a
batch size of 12. All training was conducted on an NVIDIA L20 GPU equipped with 48GB of memory.
For the ReFL training specifically with OSEDiff as the base, the loss weighting hyperparameters
were set as follows: λLPIPS = 0.02, λDWT = 0.01, λreward = 0.005, and λreg = 1. When DiffBIR
served as the base model for ReFL training, the corresponding hyperparameters were: λLPIPS = 0.01,
λDWT = 0.01, λreward = 0.005, and λreg = 10−4. Furthermore, a crucial aspect of our ReFL training
strategy involved the dynamic update of the Face Reward Model (R); this update was performed
every n = 10 training iterations of the main restoration model.

C USER STUDY

We conducted a user study by randomly selecting 100 face images from the CelebA test dataset. We
invited 20 participants with different backgrounds to perform a pairwise comparison between the
results generated by our method (+ours) and the corresponding baseline models (OSEDiff, DiffBIR).
Participants were asked to choose their preferred result based on two core criteria:

1. Fidelity: Which image better preserves the identity features of the original person?

2. Realism: Which image looks more natural and realistic, with fewer artifacts?

The statistical results of the study are presented in Table 7, which shows a clear preference for the
results enhanced by our method.

Table 7: Human preference evaluation

Comparison Fidelity Preference % Realism Preference %

OSEDiff (+ours) vs OSEDiff 78% vs 22% 88% vs 12%
DiffBIR (+ours) vs DiffBIR 68% vs 32% 75% vs 25%

D MORE ABLATION ANALYSIS

D.1 ABLATION OF OSEDIFF

In Sec. 4.3 of the main paper, due to space constraints, we presented ablation studies primarily for
the DiffusionReward framework applied to DiffBIR. Here, we provide additional ablation results
specifically for DiffusionReward when OSEDiff is used as the base model. These results are
summarized in Table 8. The conclusions in the table are consistent with the analysis previously
conducted in Sec. 4. The structural consistency constraint (SC), weight regularization constraint
(WR), reward feedback (Rwd), and updating reward model (RU) work together to improve the quality
of face restoration.

2Source weights for DiffBIR are available at https://github.com/XPixelGroup/DiffBIR.
3Source weights for OSEDiff are available at https://github.com/cswry/OSEDiff.
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Table 8: Ablation Study of ReFL Components

Struct SC WR Rwd RU LMD↓ MUSIQ↑ Aesthetic↑
Base 2.8871 73.41 5.7720
Variant 1 ✓ ✓ 2.3406 69.85 5.7813
Variant 2 ✓ ✓ ✓ 2.3997 69.97 5.8912
Variant 3 ✓ ✓ ✓ 2.3962 70.83 5.7860
DiffusionReward (OSEDiff) ✓ ✓ ✓ ✓ 2.4060 75.24 5.9529

D.2 PREFERENCE PREDICTOR ARCHITECTURE SELECTION

When designing our preference predictor, a key goal was to simplify the modeling of human preference
from image data. Instead of using high-dimensional pixels, we first extract a set of established proxy
metrics (such as SSIM, NIQE, LPIPS, etc.) known to correlate with human-perceived quality. These
metrics form a low-dimensional feature vector for each image.

For this relatively simple, low-dimensional feature space, we hypothesized that a traditional and
robust classifier like a SVM might generalize better and be less prone to overfitting than a deep
learning model with a larger number of parameters. To validate this hypothesis, we conducted a
direct comparative experiment between an SVM and MLPs with different depths. We trained each
model as a preference predictor and evaluated its accuracy on our manually annotated preference
dataset. The results of this comparison are summarized in Table 9.

Table 9: Prediction accuracy on our human-annotated dataset for different predictor architectures.

Predictor Architecture Prediction Accuracy

MLP (3-layer) 69.2%
MLP (4-layer) 68.8%
SVM 70.0%

As the table shows, the SVM classifier achieved the highest prediction accuracy in our task setting.
This result supports our choice of SVM, which is based on direct experimental evidence. This
predictor provided reliable data annotation for the subsequent training of our high-quality FRM.

D.3 STABILITY ANALYSIS OF THE FRM DURING DYNAMIC UPDATES

A critical challenge in training stage is ensuring the reward model remains reliable and aligned
with human preferences throughout the dynamic updating process. A deteriorating reward model
could lead to sparse gradients or optimization collapse. To investigate this, we tracked the “Human
Consistency” of our FRM on the manually annotated test set (360 pairs) at intervals of 500 training
iterations.

As shown in Table 10, the FRM exhibits stable human consistency during the training stage. The
alignment starts at 87.78% and remains above 83.06% even after 3,000 iterations. This consistency is
significantly higher than that of the baseline HPSv2 (approximately 63%), ensuring that the reward
signal stays dense and reliable during training stage.

We observe a slight gradual decline in consistency (from 87.78% to 83.06%). This phenomenon
is attributed to the manifold alignment objective in our dynamic update strategy. As discussed in
Section 3.3, the dynamic update minimizes the probability of generated samples being preferred over
real images (i.e. Eq. 8). This mechanism strictly constrains the reward model to align with the real
face distribution, penalizing any deviations from the real manifold to prevent the restoration model
from exploiting loopholes in the reward function (i.e., reward hacking). Consequently, this stringent
focus on realism incurs a necessary trade-off: a minor loss in human consistency in exchange for
robust defense against reward hacking, thereby ensuring the generation of photorealistic results.
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Table 10: Human Consistency of the Face Reward Model (FRM) during Dynamic Training.

Iteration 0 500 1000 1500 2000 2500 3000

Human Consistency (%) 87.78 86.11 85.83 85.00 83.89 83.01 83.06

D.4 ABLATION STUDY ON THE ROLE OF TEXT INPUT IN THE REWARD MODEL

Our FRM is designed to generate a scalar reward score by evaluating a pair of inputs: the restored
image and a corresponding text description. This reward is then used to compute a Reward Loss,
which guides the optimization of the restoration network. This design aims to align the model’s
output with human preference.

The role of each input modality is distinct. The restored image allows the FRM to assess holistic
qualities such as realism, detail richness, and overall aesthetic appeal, providing a perception-aligned
learning signal. The text description, in turn, acts as a semantic anchor. It provides essential context
(e.g., facial features, age, accessories) that enables the FRM to evaluate not only the visual quality of
the restoration but also its semantic plausibility. This ensures that generated details are contextually
appropriate, rather than being arbitrary high-frequency textures.

To empirically validate the contribution of the text description, we conducted an ablation study.
We trained two versions of the FRM: one utilizing the full ”Image & Text” input and a control
version using only the image with a null text input. We then measured how accurately each model’s
predictions aligned with true human preferences on a manually annotated test set of 360 image pairs.

The results, presented in Table 11, demonstrate the effectiveness of incorporating semantic context.

Table 11: Ablation study on the impact of text descriptions.

FRM Input Methods Human Consistency (↑)

Image & Text 87.78%
Image & Null Text 85.01%

The data clearly indicates that while a model trained on images alone is effective, the inclusion
of text descriptions allows the FRM’s judgments to align more closely with human preferences
(accuracy increased from 85.01% to 87.78%). This confirms that the text provides a more precise and
semantically grounded reward signal, which is crucial for guiding the restoration process.

D.5 SENSITIVITY ANALYSIS ON THE SCALE OF HUMAN ANNOTATION

To address the concern regarding the sensitivity of our framework to the amount of human-annotated
data, we conducted an ablation study by varying the proportion of manual annotations used to train
the SVM preference predictor. Specifically, we evaluated three settings: 0% (relying solely on the
pre-trained HPSv2 without domain-specific fine-tuning), 50% (using half of the manual annotations),
and 100% (our full setting). We assessed both the alignment consistency of the face reward model
with human judgments and the final restoration quality of the DiffBIR (+ours) trained with these
respective reward signals.

The quantitative results are summarized in Table 12. We observe a clear positive correlation between
the scale of human annotation and the model performance:

• Using 0% annotation (i.e., raw HPSv2), the alignment with human preference on our face dataset
is relatively low (69.78%). Incorporating just 50% of the manual data significantly boosts this
alignment to 83.21%, and utilizing 100% of the data further elevates it to 87.78%. This demonstrates
that domain-specific human feedback is crucial for calibrating the reward model to the nuances of
face restoration.

• The improvement in the reward model directly translates to better restoration outcomes. As the
annotation ratio increases, the perceptual quality metric (MUSIQ) improves from 69.78 to 74.82,
and the distributional distance to real images (FID) decreases significantly from 48.94 to 42.59.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

These results indicate that while the base HPSv2 provides a foundational perception of quality, our
manual annotation process effectively bridges the domain gap, enabling the restoration model to
generate more realistic and human-preferred facial details.

Table 12: Impact of human annotation scale on reward model alignment and restoration quality.

Annotation Ratio Human Consistency (↑) MANIQA (↑) MUSIQ (↑) FID (↓)

0% 69.78% 0.6630 69.78 48.94
50% 83.21% 0.6689 73.32 45.90
100% (ours) 87.78% 0.6535 74.82 42.59

D.6 SENSITIVITY TO WEIGHT REGULARIZATION STRENGTH

To decouple the contributions of the Weight Regularization (WR) constraint and the Face Reward
Model (FRM), we conducted a sensitivity analysis on the WR hyper-parameter λreg. This analysis
aims to rigorously verify whether the observed perceptual improvements stem from the reward
guidance or merely from optimal tuning of the regularization weight.

We evaluated both Variant 1 (equipped only with SC and WR losses, excluding FRM) and our
proposed method (Ours) across three orders of magnitude for λreg: {10−3, 10−4, 10−5}. The
quantitative results, summarized in Table 13, reveal distinct behaviors. As shown in the upper section
of Table 13, simply adjusting λreg in Variant 1 fails to yield significant perceptual improvements.
Regardless of the regularization strength, MUSIQ scores remain plateaued in the range of 54–57,
and Aesthetic scores hover around 5.6–5.7. This confirms that the WR loss serves primarily to
maintain the original generative capability (i.e., acting as an anchor) rather than driving perceptual
enhancement.

In contrast, incorporating the FRM triggers a substantial performance leap. Even with a suboptimal
λreg of 10−3, our method achieves a MUSIQ score of 69.50, far surpassing the best result of Variant
1 (57.57). With the optimal λreg = 10−4, our method peaks at a MUSIQ score of 74.82 with
superior identity preservation. This empirically proves that the FRM is indispensable for achieving
high-quality restoration.

Table 13: Sensitivity analysis of the Weight Regularization hyper-parameter (λreg). We compare
Variant 1 (w/o FRM) and Ours (w/ FRM) under different regularization weights.

Method λreg LMD (↓) MUSIQ (↑) Aesthetics (↑)

Variant 1
10−3 2.0252 57.57 5.7358
10−4 1.9583 54.70 5.6572
10−5 1.9087 55.05 5.7729

Ours
10−3 1.9467 69.50 5.8117
10−4 1.8642 74.82 5.8475
10−5 1.8182 73.22 5.8231

E ANALYSIS OF TRAINING COSTS AND INFERENCE EFFICIENCY

In this section, we provide a detailed quantitative analysis of the training overhead and inference
latency of the proposed DiffusionReward. Our objective is to demonstrate that our method achieves
significant improvements in image restoration quality without introducing any additional inference
burden, while keeping training costs within a highly reasonable range.

We quantitatively analyze DiffusionReward from the perspectives of both training overhead and
inference cost. It is crucial to emphasize that the auxiliary modules introduced in our frame-
work—including the Face Reward Model are utilized exclusively during the training stage. Once
training is finalized, all auxiliary networks and components are discarded, enabling efficient inference.
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During inference stage, the network architecture remains identical to the base model. Consequently,
the inference speed of our method is inherently determined by the chosen base model. As shown
in Table 14, our approach maintains the exact same inference latency as the respective baselines.
Notably, when applied to efficient one-step sampling methods like OSEDiff, our framework fully
preserves its rapid inference capability, ensuring seamless integration into existing pipelines without
compromising real-time processing.

Regarding training overhead, our method performs post-training refinement on an off-the-shelf
restoration model, requiring only minimal fine-tuning to achieve improved restoration quality. Mean-
while, while backpropagating gradients through the image decoder and reward model is theoretically
expensive, our adoption of truncated backpropagation (with N = 1) effectively circumvents memory
bottlenecks and computational prohibitive costs. As evidenced by the training-performance ratio in
Table 14, this strategy yields an exceptionally high return on investment. Compared to the substantial
cost of pre-training from scratch, our fine-tuning approach incurs only marginal additional overhead:
for OSEDiff, it requires only 24 additional GPU hours—equivalent to merely 11.8% of the base
model’s original pre-training time (202 hours); for DiffBIR, the added cost is approximately 21% of
the total training budget.

In exchange for this modest one-time investment, DiffusionReward delivers permanent and significant
quality gains. For instance, OSEDiff (+Ours) reduces the FID score by 31.8% (from 65.13 to 44.40)
and significantly improves identity consistency (LMD decreased by 0.48). These results demonstrate
that our framework offers a highly favorable trade-off: achieving state-of-the-art perceptual quality
and fidelity with scalable training costs and efficient, unchanged inference speeds.

Table 14: Comparison of Training Cost, Inference Speed, and Performance Metrics (Tested on
NVIDIA L20 GPU). Values in parentheses indicate the absolute change compared to the base model.
Arrows (↓ / ↑) denote the direction of change. ↓ indicates lower is better (Improvement), ↑ indicates
higher is better (Improvement).

Method Training Time Inference Speed Deg.↓ LMD↓ MUSIQ↑ FID↓
OSEDiff (Base) 202 GPU hours 0.13s 46.20 2.8871 73.41 65.13
OSEDiff (+Ours) 24 GPU hours 0.13s 38.41 (↓ 7.79) 2.4060 (↓ 0.48) 75.24 (↑ 1.83) 44.40 (↓ 20.73)

DiffBIR (Base) 216 GPU hours 2.84s 35.16 2.2661 74.46 45.50
DiffBIR (+Ours) 46 GPU hours 2.84s 30.61 (↓ 4.55) 1.8642 (↓ 0.40) 74.82 (↑ 0.36) 42.59 (↓ 2.91)

F DISCUSSION ON REWARD HACKING IN BLIND FACE RESTORATION

Reward Hacking is a prevalent challenge in tasks employing Reward Feedback Learning (ReFL).
Our research has found that Reward Hacking is also an issue in the BFR task. This phenomenon
occurs when the generative model, in its pursuit of maximizing scores from a reward model, discovers
and exploits ”loopholes” or biases within the reward function. Such behavior, driven purely by
score optimization, can lead to outputs that, despite achieving high reward scores, severely deviate
from the desired effects of realistic, high-quality, and faithful restoration of the original input. This
typically manifests as unnatural artifacts, stylistic distortions, or a loss of diversity. One of the core
contributions of our work, particularly the dynamic updating strategy for the Face Reward Model
(FRM), is specifically designed to mitigate such issues.

Fig. 12 (left) showcases examples of facial images generated during the face restoration task when
Reward Hacking occurs. These examples reveal two distinct manifestations:

• Style 1 represents a more severe form of Reward Hacking. In this scenario, the restored facial
images exhibit a uniform, stylized, almost ”painterly” appearance. Although certain features might
appear sharp or well-defined, the overall output loses photorealism and may introduce exaggerated
or unnatural facial characteristics. This suggests that the model has essentially learned a specific
artistic style that the static reward model erroneously favors.

• Style 2 reveals a significant yet different manifestation of Reward Hacking. In this case, the restored
facial images consistently display unnatural blemishes, such as repetitive skin texture patterns, or
exhibit a subtle ”uncanny” appearance despite being overly smoothed. The emergence of these
defects is likely because they inadvertently trigger higher scores from a less robust reward model,
which may have failed to effectively penalize such subtle deviations from realism.
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Original point
Ideal point
Reward hacking pointStyle 1 Style 2

Figure 12: Illustration of Reward Hacking. (Left) Examples of facial restoration exhibiting reward
hacking: Style 1 shows severe stylization, while Style 2 displays consistent artifacts and blemishes.
(Right) A schematic representation in the image manifold space: The red point is the original output
state. The orange point represents a reward hacking state, achieving high reward by moving off
the natural image manifold. The green point indicates an ideal optimization outcome, improving
reward while maintaining fidelity to the true manifold. Contour lines indicate reward values (darker
is higher).

Fig. 12 (right) provides a schematic illustration of the Reward Hacking phenomenon within a
conceptual image manifold space. The contour lines in the diagram represent the distribution of
reward values, with darker blue areas indicating regions perceived by the reward model as having
higher reward values.

• Original point (red circle) denotes the initial state of the model’s output. This point is typically
located on or near the true manifold of natural, realistic (facial) images, but its perceived quality
may still be deficient.

• Reward Hacking point (orange circle) represents the outcome of an unconstrained or improperly
guided optimization process. The model, by solely aiming to maximize the reward score, has
moved to a high-reward region. However, this point is often distant from the initial state and,
crucially, may have deviated from the manifold of realistic images. This occurs because the model
exploits biases or vulnerabilities in the reward function, leading to outputs that, despite high scores,
are perceptually flawed, overly stylized, or contain artifacts (as exemplified by Style 1 and Style 2).

• Ideal point (green circle), in contrast, illustrates a more balanced and desirable optimization
outcome. This state represents a moderate yet genuine improvement in reward/perceptual quality,
while ensuring that the output remains close to the initial state and, most importantly, stays on
or near the true manifold of natural, realistic images. This ensures the fidelity and realism of the
results. Achieving this ”green point” is the goal of robust ReFL frameworks, such as our proposed
DiffusionReward method with its dynamic FRM updates, which actively counteracts overfitting to
a static reward function and guides the restoration process towards genuine, manifold-consistent
improvements.

Understanding and addressing Reward Hacking is crucial for developing reliable ReFL-based image
restoration methods. Without effective countermeasures, the restoration model might merely learn
to generate ”reward-maximizing illusions” rather than truly enhancing the perceptual quality and
faithfulness of the input images. Fortunately, by reducing the weight of the reward loss, using weight
regularization, and employing an updatable face reward model, this issue can be alleviated or even
resolved in practice; in our experiments, these strategies keep the optimization trajectory close to the
natural face manifold and prevent the collapse behaviors illustrated in Fig. 12.

G MORE ANALYSIS

G.1 GENERALIZATION TO DIFFERENT MODEL ARCHITECTURES

To rigorously assess the generalizability of our proposed framework, we extended our evaluation
to models with fundamentally different generative architectures. In addition to the diffusion-based
base model, we integrated our method with two representative state-of-the-art approaches: the
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Table 15: Generalization results on different architectures. We compare the integration of our method
with GAN-based (GFPGAN), VQ-based (CodeFormer), and Diffusion-based (DR2) models. Best
results for each model pairing are in bold.

Model LMD↓ FID↓ MUSIQ↑

GFPGAN 2.4110 42.57 73.90
GFPGAN (+ours) 2.4007 41.78 73.27

CodeFormer 1.9963 45.57 74.23
CodeFormer (+ours) 1.9943 38.77 70.12

DR2 4.5449 62.54 70.19
DR2 (+ours) 3.2145 51.34 72.60

GAN-based GFPGAN (Chan et al., 2021) and the CodeFormer (Zhou et al., 2022), which utilizes a
vector-quantized (VQ) codebook prior. We compared these against an alternative diffusion-based
model, DR2 (Wang et al., 2023b). The performance of both the original and enhanced versions on
the CelebA-Test dataset is detailed in Table 15.

The quantitative results reveal significant disparities in how different architectures respond to our
Reward Feedback Learning (ReFL):

• Our method brings substantial improvements to the diffusion-based DR2 model across all key
dimensions, including LMD, FID, and MUSIQ. This confirms that the stochastic generation process
of diffusion models, characterized by the iterative injection of random noise, provides a broad and
smooth exploration landscape. This inherent randomness is highly conducive to our framework,
allowing the reward gradients to effectively guide the restoration trajectory toward the real face
manifold.

• The optimization effect on GFPGAN is marginal, with most metrics showing negligible changes.
We attribute this primarily to the deterministic nature of CNN-based GAN generators. The mapping
from the latent code to the image is relatively rigid, resulting in a constrained “exploration space”
that resists the fine-grained adjustments attempted by the reward feedback.

• For CodeFormer, ReFL improves fidelity and distributional alignment (LMD: 1.9963→1.9943;
FID: 45.57→38.77) at the cost of perceptual quality (MUSIQ: 74.23→70.12). Like GFPGAN, its
lack of intrinsic stochasticity prevents reward-guided exploration of diverse restorations.

Ultimately, this comparative experiment underscores that our framework exhibits the strongest
synergy with stochastic generative models. While it can improve fidelity in deterministic or discrete
architectures (like CodeFormer), it excels in the continuous and probabilistic solution space offered
by diffusion models, where it can simultaneously enhance both fidelity and perceptual quality.

G.2 DISCUSSION ON THE FACE REWARD MODEL’S ALIGNMENT WITH HUMAN PREFERENCES

Our Face Reward Model (FRM) is designed to capture subjective human preferences for face
restoration, rather than simply predicting objective quality metrics. To this end, we employ a hybrid
annotation strategy, leveraging a small amount of manually annotated preference data to build a
domain-specific dataset for fine-tuning the general HPSv2 preference model. The optimized FRM
achieves a consistency of 87.78% with human judgments, significantly outperforming the baseline
model’s 63.05%. This result strongly validates that the FRM is a true reward model aligned with
subjective human perception, confirming its core role within the Reward Feedback Learning (ReFL)
framework and ensuring that the optimization is guided by human aesthetic standards.

H MORE QUALITATIVE RESULTS.

H.1 QUALITATIVE RESULTS

Building upon the comparative results presented in Sec. 4.2 of the main paper, we provide further
qualitative comparisons in this section. Figure 13 illustrates qualitative comparisons of our method
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against other advanced methods on the synthetic CelebA-Test dataset. Similarly, Figure 14 showcases
qualitative comparisons of our method with other advanced methods on real-world datasets.

H.2 UNCURATED QUALITATIVE RESULTS

To showcase the effectiveness of our method in an unbiased manner, we consecutively selected
the first 20 images from the CelebA-Test dataset for qualitative evaluation. The CelebA-Test
dataset is derived from the public VQFR repository4. Specifically, we utilize a total of 20 im-
ages for restoration, ranging from 00000000.png to 00000019.png, located in the unzipped
celeba 512 validation lq directory. The comparison focuses on the baseline models, OSED-
iff and DiffBIR, versus our enhanced variants, OSEDiff (+Ours) and DiffBIR (+Ours). The specific
results are presented in Figure 15 and Figure 16.

I LLM USAGE STATEMENT

During the preparation of this paper, we utilized a LLM to assist with grammar correction and
improving the clarity of our writing. We confirm that all scientific contributions, including ideation
and analysis, are entirely the authors’ original work. The LLM was used solely for proofreading
purposes and did not contribute scientifically.

4https://github.com/TencentARC/VQFR
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DifFace OSEDiff OSEDiff (+ours) DiffBIR DiffBIR (+ours) GT

LQ GFP-GAN CodeFormer VQFR DR2 ResoreFormer

LQ GFP-GAN CodeFormer VQFR DR2 ResoreFormer

DifFace OSEDiff OSEDiff (+ours) DiffBIR DiffBIR (+ours) GT

DifFace OSEDiff OSEDiff (+ours) DiffBIR DiffBIR (+ours) GT

LQ GFP-GAN CodeFormer VQFR DR2 ResoreFormer

DifFace OSEDiff OSEDiff (+ours) DiffBIR DiffBIR (+ours) GT

LQ GFP-GAN CodeFormer VQFR DR2 ResoreFormer

Figure 13: More qualitative comparison on the CelebA-Test. (Zoom in for details)
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GFP-GAN CodeFormer VQFR DR2 ResoreFormer

DifFace OSEDiff OSEDiff (+ours) DiffBIR DiffBIR (+ours)

GFP-GAN CodeFormer VQFR DR2 ResoreFormer

DifFace OSEDiff OSEDiff (+ours) DiffBIR DiffBIR (+ours)

GFP-GAN CodeFormer VQFR DR2 ResoreFormer

DifFace OSEDiff OSEDiff (+ours) DiffBIR DiffBIR (+ours)

Figure 14: More qualitative comparison on the real-world faces. (Zoom in for details)
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Figure 15: Qualitative comparison results between OSEDiff and OSEDiff (+Ours) without cherry-
picking. (Zoom in for details)

Figure 16: Qualitative comparison results between DiffBIR and DiffBIR (+Ours) without cherry-
picking. (Zoom in for details)
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