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Abstract

Structure-based molecule optimization (SBMO)
aims to optimize molecules with both continu-
ous coordinates and discrete types against pro-
tein targets. A promising direction is to exert
gradient guidance on generative models given
their remarkable success in images, but it is chal-
lenging to guide discrete data and risks incon-
sistencies between modalities. To this end, we
leverage a continuous and differentiable space
derived through Bayesian inference, present-
ing Molecule Joint Optimization (MolJO), the
gradient-based SBMO framework that facilitates
joint guidance signals across different modali-
ties while preserving SE(3)-equivariance. We
introduce a novel backward correction strategy
that optimizes within a sliding window of the
past, allowing for a seamless trade-off between
exploration and exploitation during optimiza-
tion. MolJO achieves state-of-the-art performance
on CrossDocked2020 benchmark (Success Rate
51.3%, Vina Dock -9.05 and SA 0.78), more than
4× improvement in Success Rate compared to the
gradient-based counterpart, and 2× “Me-Better”
Ratio as high as 3D baselines. Furthermore, we
extend MolJO to a wide range of settings, includ-
ing multi-objective optimization and challeng-
ing tasks in drug design such as R-group opti-
mization and scaffold hopping, further underscor-
ing its versatility. Code is available at https:
//github.com/AlgoMole/MolCRAFT.
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1. Introduction
Structure-based drug design (SBDD) plays a critical role
in drug discovery by identifying three-dimensional (3D)
molecules that are favorable for protein targets (Isert et al.,
2023). While recent SBDD focuses on the initial identifi-
cation of potential drug candidates, these compounds must
undergo a series of further modifications for optimized prop-
erties, a process that is both complex and time-consuming
(Hughes et al., 2011). Therefore, structure-based molecule
optimization (SBMO) has garnered increasing interest in
real-world drug design (Zhou et al., 2024a), emphasizing the
practical need to optimize for specific therapeutic criteria.

Concretely, SBMO can be viewed as a more advanced task
within the broader scope of general SBDD, requiring pre-
cise control over molecular properties while navigating the
chemical space. Specifically, SBMO addresses two key as-
pects: (1) SBMO prioritizes targeted molecular property
enhancement according to expert-specified objectives, while
generative models for SBDD focus primarily on maximizing
the likelihood of data without special emphasis on property
improvement (Luo et al., 2021; Peng et al., 2022). Therefore,
these models can only produce outputs similar to their train-
ing data, limiting the ability to improve molecular properties.
(2) SBMO is capable of optimizing existing compounds with
3D structural awareness, addressing a critical gap left by
previous molecule optimization methods with 1D SMILES
or 2D graph representations (Bilodeau et al., 2022; Fu et al.,
2022), and allowing for a more nuanced control. The focus
on structure makes SBMO particularly suited for key design
tasks, such as R-group optimization and scaffold hopping.

Recent works have explored SBMO through evolutionary-
based resampling and gradient-based methods. For instance,
DiffSBDD (Schneuing et al., 2022) uses a gradient-free evo-
lutionary sampling method, and DecompOpt (Zhou et al.,
2024a) further introduces a fragment-conditioned 3D gen-
erative model for resampling. These approaches rely on
iterative, computationally expensive oracle calls to select
top-of-N candidates. One generalized and orthogonal solu-
tion is gradient guidance, eliminating the need for oracle
simulations while being flexible enough to be incorporated
into strong-performing generative models in a plug-and-play
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Figure 1. Overview. A. Structure-based molecule optimization, including (1) guiding molecule design by expert-specified objectives,
(2) optimizing existing compounds in the structure space. B. Study on the ratio of “me-better” molecules (with improved properties),
where all other baselines fall short in the overall improvement. C. Overall illustration of MolJO, utilizing joint gradient signals over
continuous-discrete data, where the distributions of θ (for continuous x and discrete v) are taken from true guided trajectories. D.
Graphical model of our proposed backward correction strategy, keeping a sliding window of size k.

fashion, as demonstrated in a wide range of challenging real-
world applications including image synthesis (Dhariwal &
Nichol, 2021; Epstein et al., 2023).

However, current gradient-based methods have not fully
realized their potential in SBMO, for they have historically
suffered from the continuous-discrete challenges: (1) it is
non-trivial to guide discrete variable within probabilistic
generative process. More specifically, standard gradient
guidance is designed for continuous variables that follow
Gaussian distributions, making them not directly applicable
to molecular data that involve discrete atom types. Methods
attempting to adapt gradient guidance to discrete data often
resort to approximating these variables as continuous, either
by adding Gaussian noise (Bao et al., 2022) or by assuming
that classifiers follow a Gaussian distribution (Vignac et al.,
2023). Unfortunately, these approximations can lead to sub-
optimal results, as they do not accurately reflect the discrete
nature (Kong et al., 2023). (2) Gradient guidance might
introduce inconsistencies between modalities. For instance,
TAGMol (Dorna et al., 2024) formalizes guidance exclu-
sively over continuous coordinates, resulting in a disconnect
between the discrete and continuous modalities. This may
explain why TAGMol struggles to optimize overall molecu-
lar properties as shown in Fig. 1, despite its improvement
in Vina affinities. By solely guiding the continuous coordi-
nates, TAGMol enhances spatial protein-ligand interactions
but fails to optimize e.g. synthesizeability, which depends
more on molecular topology, especially discrete atom types.

In this paper, we address the multi-modality challenge for
gradient guidance by leveraging a continuous and differ-
ential space, representing an aggregation of noisy samples
from the data space derived through Bayesian inference
(Graves et al., 2023). We design MolJO (Molecule Joint
Optimization), a principled, end-to-end differentiable frame-
work that enables gradient-based optimization of continuous
and discrete variables. We introduce a novel sampling strat-
egy called backward correction, enhancing the alignment
of gradients over different steps. By maintaining a sliding
window of past history for optimization, the backward cor-
rection strategy enforces explicit dependency on the past,
effectively alleviating the issue of inconsistencies. More-
over, it balances the exploration of molecular space with the
exploitation of better-aligned guidance signals, offering a
flexible trade-off.

Our main contributions are summarized as follows.

• We propose MolJO, the joint gradient-based method for
SBMO that establishes the guidance over molecules,
offering better controllability and effectively integrat-
ing gradient guidance for continuous-discrete variables
within a unified framework.

• We design a novel backward correction strategy for ef-
fective optimization. By keeping a sliding window and
correcting the past given the current optimized version,
we achieve better-aligned gradients and facilitate a flex-
ible trade-off between exploration and exploitation.
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• MolJO achieves the best Vina Dock of -9.05, SA of
0.78 and Success Rate of 51.3%, and “Me-Better” Ra-
tio of improved molecules that is 2× as much as other
3D baselines. We generalize MolJO to various needs
including R-group optimization and scaffold hopping,
highlighting its versatility.

2. Related Work
Pocket-Aware Molecule Generation. Pocket-aware gen-
erative models aim to learn a conditional distribution
over the protein-ligand complex data. Initial approaches
adopt 1D SMILES or 2D graph representation (Bjerrum
& Threlfall, 2017; Gómez-Bombarelli et al., 2018), and
recent research has shifted its focus towards 3D molecule
generation in order to better capture interatomic interac-
tions. Early atom-based autoregressive models (Luo et al.,
2021; Peng et al., 2022; Liu et al., 2022) enforce an atom
ordering to generate molecules atom-by-atom. Fragment-
based methods (Powers et al., 2022; Zhang et al., 2023;
Lin et al., 2023) alleviate the issue of ordering by decom-
posing molecules into motifs instead of atom-level genera-
tion, but they risk more severe error accumulation and thus
generally require post-processing or multi-stage treatment.
Non-autoregressive methods based on diffusions (Schneu-
ing et al., 2022; Guan et al., 2022; 2023) and BFNs (Qu
et al., 2024) target full-atom generation for enhanced per-
formance and efficiency. However, the needs of optimizing
certain properties and modifying existing compounds are
not adequately addressed in the scope of previous methods,
limiting their usefulness in drug design.

Gradient-Based Molecule Optimization. Inspired by
classifier guidance for diffusions (Dhariwal & Nichol, 2021),
pioneering approaches are committed to adapting the guid-
ance method to handle the complicated molecular geome-
tries in the setting of pocket-unaware generation. EEGSDE
(Bao et al., 2022) derives an equivariant framework for con-
tinuous diffusion, and MUDM (Han et al., 2023) further
explores time-independent property functions for guidance.
As they enforce a continuous diffusion process for discrete
variables, these methods are not applicable in advanced
molecular modeling (Guan et al., 2022; 2023) where dis-
crete data are processed by a discrete diffusion, for it is
unnatural to apply progressive Gaussian noise that drives
Categorical data away from the simplex. DiGress (Vignac
et al., 2023) proposes classifier guidance for discrete diffu-
sion of molecular graphs, yet it additionally assumes that
the probability of classifier follows a Gaussian, which is
ungrounded and often a problematic approximation. Based
on the continuous-discrete diffusion for SBDD, TAGMol
(Dorna et al., 2024) retains the guidance only for continuous
coordinates, because there lacks a proper way to propagate
the gradient over discrete types. The discrete part is affected

only implicitly and belatedly in the generative process, and
such imbalanced guidance would probably result in subopti-
mal performance for lack of joint optimization.

3. Preliminary
3D Protein-Ligand Representation. A protein binding
site p = (xP ,vP ) is represented as a point cloud of
NP atoms with coordinates xP = {x1

P , . . . ,x
NP

P } ∈
RNP×3 and KP -dimensional atom features vP =
{v1

P , . . . ,v
NP

P } ∈ RNPKP . Similarly, a ligand molecule
m = (xM ,vM ) contains NM atoms, where x

(i)
M ∈ R3

is the atomic coordinate and v
(i)
M ∈ RKM the atom type.

For brevity, the subscript for molecules ·M and the pocket
condition p are omitted unless necessary.

Bayesian Flow Networks (BFNs). We briefly introduce
how BFN views the generative modeling as message ex-
change between a sender and a receiver, with more details
in Appendix A. The sender distribution pS(y | x;α) builds
upon the accuracy level α applied to data x and defines the
noised y. The varying noise levels constitute the schedule
β(t) =

∫ t

t′=0
α(t′)dt′, similar to that in diffusion models.

A key motivation for BFN is that the transmission ought
to be continuous and smooth, therefore it does not directly
operate on the noisy latent y as diffusions, but on the struc-
tured Bayesian posterior θ given noisy latents instead. The
receiver holds a prior belief θ0, and updates the belief upon
observed y, yielding the Bayesian update distribution:

pU (θi | θi−1,x;αi) = E
pS(yi|x;αi)

δ
(
θi − h(θi−1,yi, αi)

)
(1)

where δ(·) is Dirac distribution, and Bayesian update func-
tion h is derived through Bayesian inference.

Intuitively, BFN aims to predict the clean sample given ag-
gregated θ, i.e. conditioning on all previous latents. θ is fed
into a neural network Φ to estimate the distribution of clean
datapoint x̂, i.e. the output distribution pO(x̂ |Φ(θ, t)). The
receiver distribution is obtained by marginalizing out x̂:

pR(yi | θi−1; ti, αi) = E
pO(x̂|Φ(θi−1,ti))

pS(yi | x̂;αi) (2)

The training objective is to minimize the KL-divergence
between sender and receiver distributions:

Ln(x) = E∏n
i=1 pU (θi|θi−1,x;αi)

n∑
i=1

DKL(pS(yi | x;αi) ∥ pR(yi | θi−1, ti, αi)). (3)

4. Method
In this section, we introduce MolJO that guides the distribu-
tion over θ, utilizing aggregated information from previous

3



Empower Structure-Based Molecule Optimization with Gradient Guided Bayesian Flow Networks

latents. Though different from guided diffusions that operate
on noisy latent y, this guidance aligns with our generative
process informed by θ. By focusing on lower-variance θ,
we can effectively steer the clean samples towards desirable
direction, ensuring a smooth gradient flow.

Notation. Following Kong et al. (2024) and denoting
the guided distribution π as product of experts (Hinton,
2002) modulated by energy function E that predicts cer-
tain property, we have π(θi|θi−1) ∝ pϕ(θi|θi−1)pE(θi),
where Φ is the pretrained network for BFN, pE(θi) =
exp [−E(θi, ti)] is the unnormalized Boltzmann distribu-
tion corresponding to the time-dependent energy function.

Overview. As illustrated in Fig. 1, we introduce MolJO as
follows: in Sec. 4.1, we propose the concept of gradient
guidance over the multi-modality molecule space, derive the
form of guided transition kernel π(θi|θi−1) via first-order
Taylor expansion, and explain the underlying manipulations
of distributions the guidance corresponds to. In Sec. 4.2, we
present a generalized advanced sampling strategy termed
backward correction for pϕ, which allows for a flexible trade-
off between explore-and-exploit by maintaining a sliding
window of past histories. We empirically demonstrate our
strategy helps optimize consistency across steps, ultimately
improving the overall performance.

4.1. Equivariant Guidance for multi-modality
Molecular Data

In this section, we derive the detailed guidance over θ for
molecule m = (x,v) with N atoms, where x ∈ RN×3 rep-
resent continuous atom coordinates and v ∈ {1, . . . ,K}N
for K discrete atom types, and thus θ := [θx,θv], latent
y := [yx,yv] for the continuous and discrete modality.

Guidance over Multi-Modalities. To steer the sampling
process towards near-optimal samples, we utilize the score
∇θ log pE(θ) as a gradient-based property guidance, for
which we have the following proposition (proof in Ap-
pendix C.1), followed by details for each modality.

Proposition 4.1. Suppose θ̃x
i ∼ N (θx

ϕ, σ
xI) and ỹi ∼

N (yϕ, σ
vI) by definition of BFN generative process, we

can approximate the guided transition kernel π(θi|θi−1):

θx
i ∼ N (θx

ϕ + σxgθx , σxI) (4)

yv
i ∼ N (yv

ϕ + σvgyv , σvI) (5)

where gradient gθx = −∇θxE(θ, ti)|θ=θi−1
, gθv =

−∇θvE(θ, ti)|θ=θi−1
, gyv = gθv

∂θv

∂yv .

The guidance is formalized over both continuous coordi-
nates and discrete types, and differs from previous guided
diffusion for molecules in that (1) it guides the discrete data

through Gaussian-distributed latent y and ensures that the
discrete variables are still on the probability simplex without
relying on assumptions (Vignac et al., 2023) or relaxations
(Bao et al., 2022; Han et al., 2023), and (2) alleviates the
inconsistencies between modalities (Dorna et al., 2024) by
joint gradient signals.

Guiding θx for Continuous x. For continuous coordi-
nates x ∈ RN×3, it is natural to adopt a Gaussian sender
distribution yx ∼ N (x, α−1I). With a prior belief θx

0 = 0,
we have the Bayesian update function for posterior θx

i given
noisy yx as in Graves et al. (2023):

h(θx
i−1,y

x, αi) =
θx
i−1ρi−1 + yxαi

ρi
(6)

with αi = βx
i − βx

i−1, ρi = 1 + βx
i given the schedule

βx
i = σ

−2i/n
1 − 1 for a positive σ1 and n steps.

Remark 4.2. In the continuous domain, guidance over θx

is analogous to guided diffusions, since guiding θx corre-
sponds to guiding noisy latent yx using the uncertainty-
adjusted gradient ( ρi

αi
)2gyx that accounts for how changes

in the sample space yx propagate to parameter space θx:

θx
i = θ̃x

i + σxgθx

=
θx
i−1ρi−1 + (ỹx + σx ρi

αi
gθx)αi

ρi

=
θx
i−1ρi−1 + (ỹx + σx( ρi

αi
)2gyx)αi

ρi
(7)

Guiding θv for Discrete v. For N -dimensional discrete
types v ∈ {1, . . . ,K}N , the noisy latent represents the
counts of each type among K types, where we have yv ∼
N (yv|α(Kev − 1), αKI), ev = [ev(1) , . . . , ev(N) ] ∈
RKN , ev(j) = δv(j) ∈ RK with Kronecker delta func-
tion δ. Further explanation is left to Appendix B.

θv
i as a posterior belief is updated from the prior θv

0 = 1
K :

h(θv
i−1,y

v, αi) =
exp(yv)θv

i−1∑K
k=1 exp(y

v
k)(θ

v
i−1)k

(8)

where the redundant αi = βv
i − βv

i−1 with βv
i = βv

1 (
i
n )

2,
given a positive hyperparameter βv

1 .
Remark 4.3. In the discrete domain, guiding all latents yv

amounts to a reweight of the Categorical distribution for θv ,
changing the probability of each class in accordance with
the gradient. Take an extreme case to illustrate, where gyv

is filled with one-hot vectors δd:

(θv
i )k =

exp(ỹv
k)(θ

v
i−1)k∑

l exp(ỹ
v
l )(θ

v
i−1)l + [exp(σv)− 1] exp(ỹv

d)(θ
v
i−1)d

= (θ̃v
i )k

1

1 + C
< (θ̃v

i )k (9)
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for all k ̸= d, where C =
[exp(σv)−1] exp(ỹv

d)(θ
v
i−1)d

[
∑K

l=1 exp(ỹv
l )]

> 0 as
the variance σv > 0. It is obvious that the guidance lowers
the probability for all classes but the favored d, redistributing
the mass for discrete data in a more structured way than
diffusion counterparts.

Equivariance. Our proposed guided sampling that utilizes
joint gradient signals is still equivariant as shown in the
proposition below, with the proof in Appendix C.2.

Proposition 4.4. The guided sampling process preserves
SE(3)-equivariance when Φ is SE(3)-equivariant, if the
energy function E(θ,p, t) is also SE(3)-equivariant and the
complex is shifted to the space where the protein’s Center
of Mass (CoM) is zero.

4.2. Bayesian Update With Backward Correction

Algorithm 1 Gradient Guided Sampling of MolJO
Require: network Φ(θ, t,p), schedules [βx(t), βv(t)],

number of sample steps n, back correction steps k,
number of atom types K, energy function E(θ,p, t),
guidance scale s

1: Initialize belief θ := [θx,θv]← [0, 1
K ]

2: for i = 1 to n do
3: [t, t−k]← [ i−1

n ,max(0, i−k−1
n )]

4: [x̂, êv]← Φ(θ, t,p)
5: [gθx ,gθv ]← [−∇θxE(θ,p, t),−∇θvE(θ,p, t)]
6: [ρ, ρ−k,∆βx,∆βv] ← [1 + βx(t), 1 +

βx(t−k), β
x(t)− βx(t−k), β

v(t)− βv(t−k)]
7: Retrieve θx

−k,θ
v
−k from the past

8: Sample θx according to Eq. 4 and 13
9: Sample yv and update θv according to Eq. 5 and 14

10: end for
11: [x̂, êv]← Φ(θ, 1,p)
12: v̂← argmax(êv)
13: return [x̂, v̂]

Here we propose a general backward correction sampling
strategy inspired from the optimization perspective, and
analyze its effect on aligning the gradients. Recall that from
Eq. 1 we can aggregate θi from previous latents:

pϕ(θi | θi−1) = E
pO(x̂i|Φ(θi−1,ti))

pU (θi | θi−1, x̂i;αi)

(10)

Backward correction aims at “correcting the past to further
optimize”. Since we obtain an optimized θ∗

i from the guided
kernel π(θi|θi−1), there will be an optimized version of
x̂∗
i = x̂i+1 for the next step. By backward correcting the

Bayesian update distribution pU given the optimized x̂∗, we
are able to reinforce the current best possible parameter θ,
instead of building on the suboptimal history. By utilizing

the property of additive accuracy once pU follows certain
form as described by Graves et al. (2023), the one-step
backward correction can be derived as follows:

pϕ(θi | θi−1,θi−2) =

E
pO(x̂i|Φ(θi−1,ti))

E
pU (θi−1|θi−2,x̂i;αi−1)

pU (θi | θi−1, x̂i;αi)

= E
pO(x̂i|Φ(θi−1,ti))

pU (θi | θi−2, x̂i;αi−1 + αi) (11)

where the original x̂i−1 ∼ pO(x̂i−1|Φ(θi−2, ti−1)) that
has been used to update θi−1 from θi−2 at previous step,
is now replaced by the optimized x̂i. By iteratively tracing
back, we arrive at the k − 1 step corrected estimation of pϕ:

pϕ(θn|θn−1,θn−k) =

E
pO(x̂n|Φ(θn−1,tn))

pU (θn|θn−k, x̂n;

n∑
i=n−k+1

αi) (12)

Plugging Eq. 6 and 8 together with the sender distributions
defined above into the right hand side according to Eq. 1,
yields the form of the backward corrected Bayesian update

pU (θ
x
n|θx

n−k, x̂n) = N
(∆βx̂n + θx

n−kρn−k

ρn
,
∆β

ρ2n
I
)
(13)

pU (θ
v
n|θv

n−k, v̂n) = E
y∼N (y|∆βv(Kev̂n−1),∆βvKI)

δ
(
θv
n −

exp(y)θv
n−k∑K

i=1 exp(yi)(θv
n−k)i

)
(14)

where m̂ = [x̂, v̂] is drawn from the output distribution
pO(m̂|Φ(θi−1, ti−1,p)) given pocket p, ∆βx = βx

n −
βx
n−k and ∆βv = βv

n−βv
n−k are obtained from correspond-

ing accuracy schedules. The concept of sliding window
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Figure 2. Gradient cosine similar-
ity, where k denotes the back-
ward correction window size. For
1 < k < 200, the similarity be-
fore timestep k is omitted for it
overlaps with k = 200, i.e. cover-
ing all the past.

unifies different sam-
pling strategies proposed
by Graves et al. (2023)
(k=1) and Qu et al.
(2024) (k=n). To under-
stand its effect, we visu-
alize the cosine similar-
ity of gradients at each
step w.r.t. the previous
step in Fig. 2. By chang-
ing the size k of sliding
window, it succeeds in
balancing sample quality
(explore) and optimiza-
tion efficiency (exploit),
where it first focuses on
exploring the molecular
space with rapidly changing structures and gradients, and
then exploits better-aligned guidance signals over gradually
refined structures.
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In practice, we employ the gradient scale s as a temperature
parameter, equivalent to psE(θ, t) ∝ exp [−sE(θ, t)]. We
further bypass the derivative ∂θv

∂yv = θv(1 − θv) to stabi-
lize the gradient flow. The general sampling procedure is
summarized in Algorithm 1.

5. Experiments
5.1. Experimental Setup

We conduct two sets of experiments for structure-based
molecule optimization (SBMO), although the constrained
setting seems within the scope of unconstrained one, it is
biologically meaningful and more practical in rational drug
design, and further showcases the flexibility of our method.

Task. For a molecule m ∈MwhereM denotes the set of
molecules, there are oracles ai(m) :M→ R for property
i, each with a desired threshold δi ∈ R. MolJO is capable
of different levels of controllability: (1) unconstrained op-
timization, where we identify a set of molecules such that
{m ∈M | ai(m) ≥ δi,∀i}, i.e. the goal is to optimize a
number of objectives. (2) constrained optimization, where
we aim to find a set of molecules that contain specific sub-
structures s such that {m ∈M | ai(m) ≥ δi, s ⊂m,∀i}.

Dataset. Following previous SBDD works (Luo et al.,
2021), we utilize CrossDocked2020 (Francoeur et al., 2020)
to train and test our model, and adopt the same processing
that filters out poses with RMSD > 1Å and clusters proteins
based on 30% sequence identity, yielding 100,000 training
poses and 100 test proteins.

Baselines. We divide all baselines into the following: (1)
Generative models (Gen), including AR (Luo et al., 2021),
GraphBP (Liu et al., 2022), Pocket2Mol (Peng et al., 2022),
FLAG (Zhang et al., 2023), DiffSBDD (Schneuing et al.,
2022), TargetDiff (Guan et al., 2022), DecompDiff (Guan
et al., 2023), IPDiff (Huang et al., 2024) and MolCRAFT
(Qu et al., 2024), (2) Oracle-based optimization (Oracle)
that rely on docking simulation in each round, such as Au-
toGrow4 (Spiegel & Durrant, 2020), RGA (Fu et al., 2022),
and DecompOpt (Zhou et al., 2024a), (3) Gradient-guided
(Grad) TAGMol (Dorna et al., 2024). Detailed descriptions
of baselines are left in Appendix F.

Metrics. We employ the commonly used metrics as fol-
lows: (1) Affinity metrics calculated by Autodock Vina
(Eberhardt et al., 2021), in which Vina Score calculates
the raw energy of the given molecular pose residing in the
pocket, Vina Min conducts a quick local energy minimiza-
tion and scores the minimized pose, and Vina Dock per-
forms a relatively longer search for optimal pose to calculate
the lowest energy. Success Rate measures the percentage of

generated molecules that pass certain criteria (Vina Dock <
-8.18, QED > 0.25, SA > 0.59) following Guan et al. (2022).
(2) Molecular properties, including drug-likeness (QED)
and synthesizability score (SA). (3) Metrics for sample dis-
tribution, such as diversity (Div). A more comprehensive
set of metrics are detailed in Appendix F.

5.2. Unconstrained Optimization

In this section, we demonstrate the ability of our framework
to improve molecular properties in both single and multi-
objective optimization. We sample 100 molecules for each
protein and evaluate MolJO in optimizing binding affin-
ity and molecular properties. For additional evaluation of
molecular conformation besides optimization performance,
please see Appendix G.

MolJO effectively enhances molecular property w.r.t.
generative models. The optimized distribution greatly
improves upon the original generated distribution, as shown
in Table 1 (row 14 vs. row 9).

MolJO outperforms gradient-based method with 4×
higher Success Rate. As shown in Table 1, our model
achieves state-of-the-art in affinity-related metrics while be-
ing highly drug-like, with the best Success Rate of 51.3%, a
four-fold improvement over TAGMol (row 14 vs. row 13).

MolJO has more potential than oracle-based baselines
if equipped with oracles. RGA (Fu et al., 2022) and
DecompOpt (Zhou et al., 2024a) show satisfactory Success
Rate, enjoying the advantage of oracle-based screening at
some expense of diversity, while AutoGrow4 (Spiegel &
Durrant, 2020) falls short in QED, yielding a suboptimal
Success Rate. Given the same concentration use of Z-score
(Zhou et al., 2024a), we report a variant of MolJO with
top-of-N , selecting a tenth of top scoring molecules and
showing that it is more effective than oracle-based methods
once in a similar setting. Moreover, the higher diversity
of DecompOpt and MolJO suggests the superiority of 3D
structure-aware generative models over 2D optimization
baselines (row 15 vs. row 10-12).

MolJO is 2× as effective in proposing “me-better” candi-
dates. For gradient-based method TAGMol (Dorna et al.,
2024), although it produces seemingly promising high affin-
ity binders, they come at the expense of sacrificed molecular
properties like QED and SA, demonstrating the suboptimal
control of coordinate-only guidance signals. Notably, the
ratio of all-better samples is below 17% for all other base-
lines, and MolJO is twice as effective (39.8%) in generating
feasible drug candidates that pass this criteria (Fig. 1).
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Table 1. Summary of different properties of reference molecules and generated molecules by our model and other baselines, where G+O
denotes equipping our method with top-of-N in oracle simulations. Additional baselines and results can be found in Appendix F.1. (↑) /
(↓) denotes a larger / smaller number is better. Top 2 results are highlighted with bold text and underlined text.

Methods Vina Score (↓) Vina Min (↓) Vina Dock (↓) QED (↑) SA (↑) Div (↑) Success
Avg. Med. Avg. Med. Avg. Med. Avg. Avg. Avg. Rate (↑)

Reference -6.36 -6.46 -6.71 -6.49 -7.45 -7.26 0.48 0.73 - 25.0%

Gen

1⃝ AR -5.75 -5.64 -6.18 -5.88 -6.75 -6.62 0.51 0.63 0.70 6.9%
2⃝ GraphBP - - - - -4.80 -4.70 0.43 0.49 0.79 0.1%
3⃝ Pocket2Mol -5.14 -4.70 -6.42 -5.82 -7.15 -6.79 0.57 0.76 0.69 24.4%
4⃝ FLAG 45.85 36.52 9.71 -2.43 -4.84 -5.56 0.61 0.63 0.70 1.8%
5⃝ DiffSBDD -1.44 -4.91 -4.52 -5.84 -7.14 -7.30 0.47 0.58 0.73 7.9%
6⃝ TargetDiff -5.47 -6.30 -6.64 -6.83 -7.80 -7.91 0.48 0.58 0.72 10.5%
7⃝ DecompDiff -5.19 -5.27 -6.03 -6.00 -7.03 -7.16 0.51 0.66 0.73 14.9%
8⃝ IPDiff -6.41 -7.01 -7.45 -7.48 -8.57 -8.51 0.52 0.59 0.74 16.5%
9⃝MolCRAFT -6.55 -6.95 -7.21 -7.14 -7.67 -7.82 0.50 0.67 0.70 26.8%

10⃝ AutoGrow4 - - - - -8.99 -9.00 0.46 0.76 0.47 14.3%
Oracle 11⃝ RGA - - - - -8.01 -8.17 0.57 0.71 0.41 46.2%

12⃝ DecompOpt -5.75 -5.97 -6.58 -6.70 -7.63 -8.02 0.56 0.73 0.63 39.4%

Grad 13⃝ TAGMol -7.02 -7.77 -7.95 -8.07 -8.59 -8.69 0.55 0.56 0.69 11.1%
14⃝MolJO -7.52 -8.02 -8.33 -8.34 -9.05 -9.13 0.56 0.78 0.66 51.3%

G + O 15⃝MolJO† (N=10) -8.54 -8.81 -9.48 -9.09 -10.50 -10.14 0.67 0.79 0.61 70.3%

Table 2. Constrained optimization results, where Redesign means R-group optimization with fragments of the same size redesigned,
Growing means fragment growing into larger size, Hopping means scaffold hopping.

Methods Vina Score (↓) Vina Min (↓) Vina Dock (↓) QED (↑) SA (↑) Connected Success
Avg. Med. Avg. Med. Avg. Med. Avg. Avg. Avg. (↑) Rate (↑)

Reference -6.36 -6.46 -6.71 -6.49 -7.45 -7.26 0.48 0.73 100% 25.0%

Redesign

TargetDiff -6.14 -6.21 -6.79 -6.58 -7.70 -7.61 0.50 0.64 85.5% 18.9%
TAGMol -6.60 -6.66 -7.10 -6.80 -7.63 -7.76 0.53 0.62 87.0% 19.2%
MolCRAFT -6.63 -6.70 -7.12 -6.91 -7.79 -7.72 0.49 0.67 96.7% 22.7%
MolJO -7.13 -7.28 -7.62 -7.39 -8.16 -8.20 0.57 0.68 95.1% 29.0%

Growing

TargetDiff -6.73 -7.29 -7.60 -7.67 -8.89 -8.79 0.39 0.52 71.6% 11.2%
TAGMol -7.30 -7.70 -8.08 -7.81 -8.92 -8.78 0.47 0.53 78.7% 11.8%
MolCRAFT -6.96 -7.47 -7.86 -7.73 -8.80 -8.65 0.44 0.59 91.7% 19.9%
MolJO -8.08 -8.35 -8.79 -8.58 -9.21 -9.45 0.53 0.62 93.2% 32.7%

Hopping

TargetDiff -5.72 -5.78 -6.00 -5.83 -6.31 -6.66 0.39 0.65 63.3% 6.2%
TAGMol -6.17 -6.10 -6.46 -6.07 -7.19 -6.80 0.44 0.62 68.7% 6.9%
MolCRAFT -6.31 -6.17 -6.58 -6.40 -7.25 -7.15 0.42 0.67 89.9% 14.6%
MolJO -6.86 -6.50 -7.13 -6.70 -7.67 -7.58 0.46 0.68 90.5% 23.6%

MolJO excels even in optimizing large OOD molecules.
Note that for fair comparison, we restrict the size of gener-
ated molecules by reference molecules so that both genera-
tive models and optimization methods navigate the similar
chemical space, as we observe a clear correlation between
properties and sizes in Fig. 4. For model variants capable of
exploring larger number of atoms, we report the results in
Table 3 with sizes, where MolJO consistently outperforms
other baselines, demonstrating its robustness. A detailed
discussion can be found in Appendix E.

5.3. Constrained Optimization

Constrained optimization seeks to optimize the input ref-
erence molecules for enhanced properties while retaining
specific structures. We generalize our framework with such
structural control and show its potential for pharmaceuti-

Table 3. Properties of molecules with a larger average size, where
Vina stands for Vina Dock Avg., SR for Success Rate.

Methods Vina QED SA SR Size

Reference -7.45 0.48 0.73 25.0% 22.8

DecompDiff -8.39 0.45 0.61 24.5% 29.4
DecompOpt -9.01 0.48 0.65 52.5% 32.9
MolCRAFT -9.25 0.46 0.62 36.6% 29.4
MolJO -10.53 0.50 0.72 64.2% 30.0

cal use cases including R-group optimization and scaffold
hopping, achieved by infilling (details in Appendix D.2).

MolJO captures the complex environment of infilling.
Table 2 shows that our method generates valid connected
molecules and captures the complicated chemical environ-
ment with better molecular properties than all baselines,
showcasing its potential for lead optimization. As for
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2PC8
R-group design results

Vina Score -8.98, QED 0.84, SA 0.75Vina Score -5.45, QED 0.34, SA 0.66

1A2G

2E24

Vina Score -5.33, QED 0.68, SA 0.94Vina Score -4.40, QED 0.58, SA 0.83

Vina Score -5.39, QED 0.41, SA 0.62 Vina Score -5.98, QED 0.60, SA 0.74

Reference Reference Scaffold hopping results

Vina Score -11.28, QED 0.64, SA 0.68Vina Score -9.93, QED 0.54, SA 0.58

2AZY

    

Figure 3. Visualization of the binding modes of the reference molecule (carbons in green) and the optimized molecule (in cyan) within the
protein pocket (PDB ID: 2PC8, 2AZY, 1A2G, 2E24). The molecules and key residues (in blue) are shown in stick, while the protein’s
main chain is drawn in cartoon (in gray). Dashed lines of various colors indicate different types of non-bonding interactions. Left:
R-group optimization results. Right: scaffold hopping results.

Table 4. Performances of no correction (Vanilla), SDE and backward correction strategy (B.C.) without and with gradient guidance.
Positive numbers in green show the relative improvement, while non-positive numbers in black indicate no performance gain.

Grad Sampling Vina Score (↓) Vina Min (↓) Vina Dock (↓) QED (↑) SA (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Avg.

✗
Vanilla -5.23 -5.81 -6.30 -6.17 -7.37 -7.31 0.46 0.62
SDE -6.62 -7.08 -7.31 -7.24 -8.22 -8.32 0.51 0.65
B.C. -6.50 -7.00 -7.03 -7.14 -7.95 -7.87 0.49 0.69

✓
Vanilla -5.47 (+4.6%) -5.89 (+1.4%) -6.29 (-0.2%) -6.31 (+2.3%) -7.49 (+2.2%) -7.46 (+2.1%) 0.46 (+0.0%) 0.62 (+0.0%)
SDE -7.11 (+7.4%) -7.53 (+6.3%) -7.76 (+6.1%) -7.73 (+6.8%) -8.39 (+2.1%) -8.66 (+4.1%) 0.50 (-1.9%) 0.68 (+4.6%)
B.C. -7.52 (+15.7%) -8.06 (+15.1%) -8.34 (+18.6%) -8.40 (+17.6%) -9.11 (+14.6%) -9.25 (+17.5%) 0.56 (+14.3%) 0.77 (+11.6%)

diffusion baselines, they generate fewer valid connected
molecules especially in the challenging case with scaffold
hopping, with diffusion baselines lower than 70% valid-
ity, and proves to be less effective in proposing feasible
candidates, with Success Rate < 20%.

Optimized molecules form more key interactions for
binding. The visualization for constrained optimization is
shown in Fig. 3. It can be seen that the optimized molecules
establish more key interactions with the protein pockets,
thus binding more tightly to the active sites. For example,
the optimized molecule for 2PC8 retains the key interaction
formed by its scaffold, with R-group grown deeper inside
the pocket, forming another two π-π stackings.

5.4. Ablation Studies

We conduct ablation studies to thoroughly validate our de-
sign. More details are left to Appendix F.2. For all the 100
test proteins, we sample 10 molecules each.

Joint guidance is consistently better than single-modality
guidance. To validate our choice of joint guidance over

different modalities, we ablate the gradient for coordinates
or types. As shown in Table 11, utilizing gradients to guide
both data modalities is consistently better than applying
single-modality gradient only. For affinities, optimizing co-
ordinates is effective in improving the spatial interactions,
while for drug-like properties, guidance over atom types
plays a crucial role. This underscores the significance of de-
riving appropriate guidance form jointly, and again supports
our finding that a single coordinate guidance as in TAGMol
is insufficient and yields suboptimal results.

Backward correction boosts both the unguided sampling
and the effect of guidance. We denote sampling θi ac-
cording to Eq. 10 Vanilla for point estimate of y ∼ pS
in Eq. 1, advanced SDE proposed by Xue et al. (2024)
with classifier guidance, and for B.C. we set k = 130 as
backward correction steps. Table 4 shows that our method
of correcting the past yields better results with guidance.
Note that for vanilla case, the gradient guidance does not
work as much probably due to the suboptimal history, and
SDE-based classifier guidance may have suffered from dis-
cretization errors, while correcting a sufficient number of
past steps shows consistent boosts.
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6. Conclusion
We present MolJO, the joint gradient-based SE(3)-
equivariant framework within Bayesian Flow Networks to
solve the structure-based molecule optimization problems,
which only requires differentiable energy functions instead
of expensive oracle simulations. The general framework
further equips gradient-based optimization method with
backward correction strategy, offering a flexible trade-off be-
tween exploration and exploitation. Experiments show that
MolJO is able to improve the binding affinity of molecules
by establishing more key interactions and enhance drug-
likeness and synthesizability, achieving state-of-the-art per-
formance on CrossDocked2020 (Success Rate 51.3%, Vina
Dock -9.05 and SA 0.78), together with 4× improvement
compared to gradient-based counterpart and 2× “Me-Better”
Ratio as other 3D baselines.

Impact Statement
This work is aimed at facilitating structure-based molecule
optimziation (SBMO) for drug discovery pipeline. The
positive societal impacts include effective design of viable
drug candidates. While there is a minimal risk of misuse
for generating harmful substances, such risks are mitigated
by the need for significant laboratory resources and ethical
conduct.
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A. Overview of Bayesian Flow Networks
In this section, we provide further explanation of Bayesian Flow Networks (BFNs) that are designed to model the generation
of data through a process of message exchange between a “sender” and a “receiver” (Graves et al., 2023). The fundamental
elements include the sender distribution for the sender, and input distribution, output distribution, receiver distribution for
the receiver.

This process is framed within the context of Bayesian inference, where the sender distribution is a factorized distribution
pS(y|m, αt) that introduces noise to each dimension of the data m and sends it to the receiver. The receiver observes y, has
access to the noisy channel with accuracy α at timestep t, and compares it with its own receiver distribution pR(y|θ,p; t)
based on its current belief of the parameters θ, the timestep and any conditional input such as protein pocket p.

The generative process for the receiver begins with a prior distribution (referred to as input distribution pI(m|θ) =∏N
d=1 pI(m

(d)|θ(d)) that is also factorized for N -dimensional data) that defines its initial belief about the data. For
continuous data, the prior can be chosen as a Gaussian (Song et al., 2024; Qu et al., 2024), or another distribution such as
von Mises distribution (Wu et al., 2025), while for discrete data, the prior is modeled as a uniform categorical distribution.
Then, the receiver uses its belief θ with the help of a neural network to model the inter-dependency among dimensions and
compute the output distribution pO(m̂|θ,p; t), which represents its estimate of the possible reconstructions of the original
data m, and is used to construct the receiver distribution (Eq. 2).

The Bayesian update function in Eq. 1 defines how the prior belief θ0 is updated to the conjugate posterior θt. Ideally,
the update requires aggregating all possible noisy latents y from the sender distribution pS . However, during the actual
generative process, only the receiver distribution pR is available, which leaves an exposure bias, and different approximations
determine different forms of mapping θ = f(y) to the posterior, showcasing the flexibility in the design space of BFN.

Through the iterative communication between sender and receiver, the receiver progressively updates its belief of the
underlying parameters, and training is achieved by minimizing the divergence between the sender and receiver distributions
(Eq. 3). This is analogous to the way Bayesian inference works in parameter estimation: as more noisy data y is observed,
the receiver’s posterior belief about the data m becomes increasingly accurate, which implies the reconstruction would be
made easier. It is shown that BFN for Gaussian priors can be sampled from the view of SDE (Xue et al., 2024), but this type
of sampling displays distinct behaviors empirically, possibly due to discretization errors.

B. Sender Distribution for Discrete Data
The continuous parameter θv for discrete types v is updated by observed noisy yv. Here we briefly introduce how to
configure the sender so that yv follows a Gaussian as well. For detailed derivation, we refer the readers to Graves et al.
(2023).

While true discrete data can be viewed as a sharp one-hot distribution, it can be further relaxed by a factor ω ∈ [0, 1] into a
Categorical distribution defined by the probability p(k(d)|v(d);ω) = 1−ω

K + ωδk(d)v(d) for k from 1 to K along the d-th
dimension, where δ is the Kronecker delta function.

Instead of focusing on the density or sampling from it once, note that the counts c of observing each class in m independent
draws follow a multinomial distribution, namely c ∼ Multi(m, p). Dropping the superscripts, Graves et al. (2023) derives
the following conclusions:

Proposition B.1. When the number of experiments m is large enough, the frequency approximates its density for class
indexed at k, i.e. limm→∞

ck
m = p(k|v;ω), following the law of large numbers. Furthermore, by the central limit theorem,

it follows that c−mp√
mp(1−p)

∼ N (0, I) when m→∞.

Proposition B.2. Denoting yk = (ck − m
K ) ln ξ with ξ = 1 + ωK

1−ω , and pS(yk|v;α) = limω→0 p(yk|v;ω) with α = mω2,
it holds from the change of variables that pS(yk|v;α) = N (α(Kδkv − 1), αK).

Thus, it naturally follows that such noisy yv ∼ N (yv|α(Kev − 1), αKI).
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C. Proofs
C.1. Proof of Guided Bayesian Update Distribution

Lemma. If a random vector X has probability density f(x) ∝ N (x|θx,Σ)ec
Tx, where c is a constant vector with the same

dimension as X, then X ∼ N (θx +Σc,Σ).

Proof. We obtain the proof by completing the square as shown below.

log f(x) =C − 1

2
(x− θx)TΣ−1(x− θx) + cTx

=C ′ − 1

2
(x− θx −Σc)TΣ−1(x− θx −Σc) (15)

where C and C ′ are constant scalars.

Proposition (4.1). Assuming θx
i ∼ N (θx

ϕ, σ) and yv
i ∼ N (yϕ, σ) by definition of the generative process of BFN, we can

approximately sample θx
i ,y

v
i from the guided transition kernel π(θi|θi−1) according to Eq. 4 and 5.

Proof. Under the definition of π, with the parameters θi = [θx
i ,θ

v
i ] referred to as [θx

i ,θ
v
i (y

v
i )] and a slight abuse of notation,

we have

π(θx
i ,y

v
i |θi−1) ∝ pϕ(θ

x
i ,y

v
i |θi−1)pE(θ

x
i ,y

v
i ) (16)

where some parentheses and protein pocket condition p have been omitted for brevity.

Eq. 13 and 14 guarantee that θx
i ∼ N (θx

ϕ, σ
x), yv

i ∼ N (yϕ, σ
v). Plugging pE(θ

x
i ,y

v
i ) ∝ e−E(θx

i ,y
v
i ,ti) into Eq. 16, we get

π(θx
i ,y

v
i |θi−1) ∝ N

(
θx
ϕ, σ

x
)
N (yv

i |yϕ, σ
v) e−E(θx

i ,y
v
i ,ti) (17)

With ti fixed, perform a first-order Taylor expansion to E(θx,yv, ti) at (θx
i−1,y

v
i−1):

E(θx
i ,y

v
i , ti) ≈ E(θx

i−1,y
v
i−1, ti)− gT

θx(θx
i − θx

i−1)− gT
y (y

v
i − yv

i−1) (18)

where gradient gθx = −∇θxE(θ, ti)|θ=θi−1
, gy = −∇yE(θ, ti)|θ=θi−1

. Substitute it into Eq. 17:

π(θx
i ,y

v
i |θi−1)

apx
∝ N

(
θx
i |θx

ϕ, σ
x
)
N (yv

i |yϕ, σ
v)eg

T
θxθ

x
i +gT

yyv
i (19)

Eq. 19, together with the lemma above, leads to Proposition 4.1.

C.2. Proof of Equivariance

Proposition (4.4). The guided sampling process preserves SE(3)-equivariance when Φ is SE(3)-equivariant, if the energy
function E(θ,p, t) is also parameterized with an SE(3)-equivariant neural network, and the complex is shifted to the space
where the protein’s Center of Mass (CoM) is zero.

Proof. Following Schneuing et al. (2022), once the complex is moved so that the pocket is centered at the origin (i.e. zero
CoM), translation equivariance becomes irrelevant and only O(3)-equivariance needs to be satisfied.

For any orthogonal matrix R ∈ R3×3 such that R⊤R = I, it is easy to see that the prior θx
0 = 0 is O(3)-invariant. Given

that x̂ ∼ pO(x̂ | Φ(θ,p, t)) and the equivariance of Φ, it suffices to prove the invariant likelihood for the transition kernel.

Given the parameterization of the pretrained energy function E(θ,p, t) is SE(3)-equivariant, then the gradient gθx(θ) =
−∇θxE(θ,p, ti) is also equivariant according to Bao et al. (2022).

Without loss of generality, we consider the guided transition density for i ≤ k, which simplifies to

π(θx
i | θx

i−1,y
v
i−1,p)

= N (θx
i | γiΦ(θx

i−1,y
v
i−1,p) + γi(1− γi)gθx(θx

i−1,y
v
i−1,p, ti−1), γi(1− γi)I)
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where γi
def
:= β(ti)

1+β(ti)
.

Then we can prove that it is O(3)-invariant:

π(Rθx
i |Rθx

i−1,y
v
i−1,Rp)

= N (Rθx
i | γiΦ(Rθx

i−1,y
v
i−1,Rp) + γi(1− γi)gθx(Rθx

i−1,y
v
i−1,Rp, ti−1), γi(1− γi)I)

= N (Rθx
i | γiΦ(Rθx

i−1,y
v
i−1,Rp) + γi(1− γi)Rgθx(θx

i−1,y
v
i−1,p, ti−1), γi(1− γi)I)

(equivariance of gθx )
= N (Rθx

i | γiRΦ(θx
i−1,y

v
i−1,p) + γi(1− γi)Rgθx(θx

i−1,y
v
i−1,p, ti−1), γi(1− γi)I)

(equivariance of Φ)
= N (θx

i | γiΦ(θx
i−1,y

v
i−1,p) + γi(1− γi)gθx(θx

i−1,y
v
i−1,p, ti−1), γi(1− γi)I)

(equivariance of isotropic Gaussian)
= π(θx

i | θx
i−1,y

v
i−1,p)

It also applies to cases where i > k, as we can recurrently view the starting point of backward corrected history θx
i−k as the

new O(3)-invariant prior θx
0 and iteratively make the above derivation.

D. Implementation Details
D.1. Model Details

Backbone. Our BFN backbone follows that of MolCRAFT (Qu et al., 2024), and we conduct optimization during sampling
on the pretrained checkpoint without finetuning.

Training Property Regressors. To enable a differentiable oracle function, we additionally train the energy function based
on the molecules and their properties (Vina Score, QED, SA) in CrossDocked dataset (Francoeur et al., 2020) by minimizing
the squared loss for property c over the data distribution pdata:

L = Epdata
|E(θ,p, t)− c|2 (20)

where the Bayesian posterior is derived by Graves et al. (2023) as:

θx
i ∼ N (θx

i | γix+ γi(1− γi), γi(1− γi)I) (21)
θv
i ∼ δ(θv

i − softmax(yv
i )) (22)

for yv
i ∼ N

(
yv | βv(ti)(Kev − 1), βv(ti)KI

)
, δ is the Dirac delta distribution.

The input parameters to all energy functions belong to the parameter space defined by β1 = 1.5 for atom types, σ1 = 0.03
for atom coordinates, n = 1000 discrete steps. The energy network is parameterized with the same model architecture as
TargetDiff (Guan et al., 2022), i.e. kNN graphs with k = 32, N = 9 layers with d = 128 hidden dimension, 16-headed
attention, and the same featurization, i.e. protein atoms (H, C, N, O, S, Se) and ligand atoms (C, N, O, F, P, S, Cl). For
training, the Adam optimizer is adopted with learning rate 0.0005, batch size is set to 8. The training takes less than 8 hours
on a single RTX 3090 and converges within 5 epochs.

Sampling. To sample via guided Bayesian flow, we set the sample steps to 200, and the guidance scale to 50. For the
combination of different objectives, we simply take an average of different gradients.

D.2. Task Details

R-group optimization. Lead optimization cases involve retaining the scaffold while redesigning the remaining R-groups,
usually when the scaffold forms desirable interactions with the protein and anchors the binding mode, and the remaining
parts need further modifications to secure this pattern and enhance binding affinity. Following Polykovskiy et al. (2020), we
employ RDKit for fragmentation and atom annotation with R-group or Bemis-Murcko scaffold.
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Figure 4. Distribution of molecular properties (QED, SA, Vina Score) over the number of atoms for CrossDocked2020. For each size, the
mean and error bars are shown in the boxplot.

Table 5. Molecular properties under different sizes, where Ref Size denotes 23 atoms on average, and Large Size around 30 atoms. Top 1
results are highlighted with bold text for each size category.

Methods Vina Score (↓) Vina Min (↓) Vina Dock (↓) QED (↑) SA (↑) Div (↑) Success
Avg. Med. Avg. Med. Avg. Med. Avg. Avg. Avg. Rate (↑)

DecompDiff -5.19 -5.27 -6.03 -6.00 -7.03 -7.16 0.51 0.66 0.73 14.9%
Ref DecompOpt -5.75 -5.97 -6.58 -6.70 -7.63 -8.02 0.56 0.73 0.63 39.4%
Size MolCRAFT -6.59 -7.04 -7.27 -7.26 -7.92 -8.01 0.50 0.69 0.72 26.0%

MolJO -7.52 -8.02 -8.33 -8.34 -9.05 -9.13 0.56 0.78 0.66 51.3%

DecompDiff -5.67 -6.04 -7.04 -7.09 -8.39 -8.43 0.45 0.61 0.68 24.5%
Large DecompOpt -5.87 -6.81 -7.35 -7.72 -8.98 -9.01 0.48 0.65 0.60 52.5%
Size MolCRAFT -6.61 -8.14 -8.14 -8.42 -9.25 -9.20 0.46 0.62 0.61 36.6%

MolJO -7.93 -9.26 -9.47 -9.73 -10.53 -10.48 0.50 0.72 0.57 64.2%

Scaffold hopping. Unlike R-group design, scaffold hopping involves redesigning the scaffold for a given molecule while
keeping its core functional groups, for example, to overcome the patent protection for a known drug molecule while retaining
pharmaceutical activity. This is a technically more challenging task for generative models, because the missing parts they
need to fulfill are generally larger than those in R-group design, and the hopping is usually subject to more chemical
constraints. We construct scaffold hopping as a dual problem to R-group optimization using Bemis-Murcko scaffolding
annotation, although it does not need to be so.

E. Effect of Molecular Size on Properties
The size of molecules is found to have a notable impact on molecular properties, including Vina affinities (Qu et al., 2024).
We quantify the relationship and plot the distribution of molecular properties w.r.t. the number of atoms with the Pearson
correlation coefficient in Fig. 4. It is not surprising to see a non-negligible correlation between properties and molecular
sizes, since the sizes of molecules typically constrain their accessible chemical space. To ensure a fair comparison, we
adhere to the molecular space with similar size to the reference. For further comparison among different model variants, we
report the molecular properties under different sizes in Table 5. Results show that our method consistently achieves the
highest success rate, demonstrating its robust optimization ability even in an Out-of-Distribution (OOD) scenario.
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F. Full Optimization Results
Baselines. We provide a detailed description of all baselines here:

• AR (Luo et al., 2021) uses MCMC sampling to reconstruct a molecule atom-by-atom given voxel-wise densities.

• GraphBP (Liu et al., 2022) is an autoregressive atom-based model that uses normalizing flow and encodes the context
to preserve 3D geometric equivariance.

• Pocket2Mol (Peng et al., 2022) generates one atom and its bond at a time via an E(3)-equivariant network. It predicts
frontier atoms to expand, alleviating the efficiency problem in sampling.

• FLAG (Zhang et al., 2023) is a fragment-based model that assembles the generated fragments using predicted
coordinates and torsion angles.

• DiffSBDD (Schneuing et al., 2022) constructs an equivariant continuous diffusion for full-atom generation given
pocket information, and applies Gaussian noise to both continuous atom coordinates and discrete atom types.

• TargetDiff (Guan et al., 2022) adopts a continuous-discrete diffusion approach that treats each modality via corre-
sponding diffusion process, achieving better performance than continuous diffusion such as DiffSBDD.

• DecompDiff (Guan et al., 2023) decomposes the molecules into contact arms and linking scaffolds, and utilizes such
chemical priors in the diffusion process.

• IPDiff (Huang et al., 2024) pretrains an affinity predictor, and utilizes this predictor to extract features that augment the
conditioning of the diffusion generative process.

• MolCRAFT (Qu et al., 2024) employs Bayesian Flow Networks for molecular design with an advanced sampling
strategy, showing notable improvement upon diffusion counterparts.

• AutoGrow4 (Spiegel & Durrant, 2020) is an evolutionary algorithm that uses a genetic algorithm to optimize 1D
SMILES with docking simulation. Starting from the initial seed molecule, AutoGrow4 iteratively conducts mutations
and crossovers, then makes oracle calls for docking feedback, and retains the top-scoring molecules in the end.

• RGA (Fu et al., 2022) is built on top of AutoGrow4, and utilizes a pocket-aware RL-trained policy to suppress its
random walking behavior in traversing the molecular space.

• DecompOpt (Zhou et al., 2024a) trains a conditional generative model on decomposed fragments and the binding
pocket, following the style of DecompDiff. The optimization is done by iteratively resampling in the 3D diffusion
latent space given the top K arms ranked by oracle functions as updated fragment condition input.

• TAGMol (Dorna et al., 2024) exerts gradient-based property guidance on the pretrained TargetDiff backbone, and the
gradient is enabled only in the continuous diffusion process for coordinates.

Metrics. Besides the common evaluation metrics such as binding affinities calculated by Autodock Vina (Eberhardt et al.,
2021) and QED, SA calculated by RDKit, we elaborate other metrics as follows:

• Diversity measures the diversity of generated molecules for each binding site. Following SBDD convention (Luo et al.,
2021), it is based on Tanimoto similarity over Morgan fingerprints, and averaged across 100 test proteins.

• Connected Ratio is the ratio of complete molecules overall, i.e. with only one connected component.

• Lipinski enumerates the Lipinski rule of five (Lipinski et al., 1997) and checks how many are satisfied. These rules are
typically seen as an empirical reference that helps to predict whether the molecule is likely to be orally bioavailable.

• Key Interaction, i.e. key non-covalent interactions formed between molecules and protein binding sites as an in-
depth measure for binding modes, including π interactions, hydrogen bonds (donor and acceptor), salt bridges and
hydrophobic interactions calculated by Schrödinger Glide (Halgren et al., 2004).

• Strain Energy measures the internal energy of generated poses, indicating pose quality (Harris et al., 2023).
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• Steric Clash calculates the number of clashes between generated ligand and protein surface, where clashing means
the distance of ligand and protein atoms is within a certain threshold. This reveals the stability of complex to some
extend, yet it does not strictly mean a violation of physical constraints, since the protein is not overly rigid and might
also undergo spatial rearrangement upon binding, as noted by Harris et al. (2023).

• Redocking RMSD reports the percentage of molecules with an RMSD between generated and Vina redocked poses
lying within the range of 2Å, which suggests the binding mode remains consistent after redocking.

F.1. Molecule Optimization

Overall Distributions. We additionally report the property distributions for SA, QED and Vina Score in Fig. 12, 13, 14,
respectively, demonstrating the efficacy of our proposed method in optimizing a number of objectives for “me-better” drug
candidates. We additionally report in Table 6 the error bars as 95% confidence intervals for our main results (Table 1).

Table 6. Main results with error bars as 95% confidence intervals.

Model Vina Score (↓) Vina Min (↓) Vina Dock (↓) QED (↑) SA (↑)

Reference -6.362 ± 0.615 -6.707 ± 0.491 -7.450 ± 0.456 0.476 ± 0.040 0.728 ± 0.027
AR -5.754 ± 0.066 -6.180 ± 0.049 -6.746 ± 0.082 0.509 ± 0.004 0.635 ± 0.003
Pocket2Mol -5.139 ± 0.063 -6.415 ± 0.058 -7.152 ± 0.097 0.573 ± 0.003 0.756 ± 0.002
TargetDiff -5.466 ± 0.172 -6.643 ± 0.102 -7.802 ± 0.075 0.480 ± 0.004 0.585 ± 0.003
FLAG 45.978 ± 0.778 6.173 ± 0.525 -5.237 ± 0.142 0.609 ± 0.003 0.626 ± 0.002
DecompDiff -5.190 ± 0.060 -6.035 ± 0.048 -7.033 ± 0.073 0.505 ± 0.004 0.661 ± 0.003
IPDiff -6.417 ± 0.141 -7.448 ± 0.088 -8.572 ± 0.072 0.519 ± 0.004 0.595 ± 0.003
MolCRAFT -6.587 ± 0.122 -7.265 ± 0.070 -7.924 ± 0.097 0.504 ± 0.004 0.686 ± 0.003
DecompOpt -4.839 ± 0.415 -6.874 ± 0.210 -8.425 ± 0.528 0.429 ± 0.011 0.625 ± 0.006
TAGMol -7.019 ± 0.175 -7.951 ± 0.088 -8.588 ± 0.135 0.553 ± 0.004 0.562 ± 0.003
MolJO -7.516 ± 0.136 -8.326 ± 0.078 -9.048 ± 0.083 0.556 ± 0.003 0.775 ± 0.003
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Figure 5. Distribution shift from test set (Ref), backbone without guidance (Gen) to guided MolJO (Opt).

Affinity Analysis. We present the tail distribution of Vina affinities in Table 7, demonstrating that our method not only
excels in optimizing overall performance as shown in Fig. 5, but also enhances the quality of the best possible binders.

To better understand the enhanced binding affinites, we further analyze the distribution of non-covalent interactions that are
known to play an important role in stabilizing protein-ligand complexes. Fig. 6 demonstrates that the improved affinity results
are achieved by forming a greater number of hydrophobic interactions, more hydrogen bond acceptors and π interactions.

Combination of Objectives. In Table 8, we report the results for an exhausted combination of different objectives under
the unconstrained setting, where 1000 molecules are sampled in total. It can be seen that combining two objectives yields
nearly the best optimized performances for each objective, with the choice of Affinity + SA even displaying improvement
in QED. However, from the QED + SA setting, we observe a negative impact on binding affinity. It is possible that
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Figure 6. Non-covalent interaction distributions of reference and optimized molecules.

Table 7. Tail distribution of Vina affinities.

Vina Score 5% Vina Min 5% Vina Dock 5%

Reference -9.98 -9.93 -10.62

AR -10.05 -10.33 -10.56
Pocket2Mol -10.47 -11.77 -12.36
TargetDiff -11.10 -11.57 -11.89
DecompDiff -10.04 -10.96 -11.77
IPDiff -12.98 -13.40 -13.63
MolCRAFT -12.14 -12.34 -12.58
DecompOpt -10.78 -11.70 -12.73
TAGMol -13.15 -13.50 -13.67
MolJO -13.59 -13.90 -14.18

too high a requirement of QED and SA further constrains the chemical space for drug candidates, limiting the types of
potential interactions with protein surfaces. When it comes to all objectives, MolJO achieves balanced optimization results,
i.e. satisfactory QED and SA comparable to single objective optimization or the combination of two, and enhanced affinities
compared with the results without affinity optimization, though slightly inferior to the best possible affinity optimization
results. This might stem from QED + SA problems described above, suggesting a careful handling of these two objectives.
In this regard, we simply choose Affinity + SA objectives in all our main experiments for a clear demonstration of our
optimization ability.

For a better understanding of the correlation between objectives, we plot the pairwise relationships for the molecules in
the training set in Fig. 7, and calculate the Spearman’s rank coefficient of correlation ρ. The Spearman ρ is 0.41 between
SA and QED, and it is reasonable to see such a positive correlation between SA and QED, since these are both indicators
of drug-likeness with certain focus and thus alternative to some extent. This aligns with our findings that adopting the
Affinity + SA objectives can also benefit QED, and justifies our choice of optimization objectives in this sense. Moreover,
although there is also a slightly positive correlation between Vina Score and SA (ρ = 0.33), meaning that it is nontrivial
to simultaneously optimize both properties, our method succeeds in finding the best balanced combination of properties,
demonstrating the superiority of joint optimziation compared with TAGMol.

Table 8. Combinations of different objectives. Top-2 results are highlighted in bold and underlined, respectively.

Objective Vina Score (↓) Vina Min (↓) QED (↑) SA (↑) Connected (↑)Avg. Med. Avg. Med.

Affinity -7.74 -7.96 -8.21 -8.19 0.52 0.68 0.87
QED -6.84 -7.32 -7.54 -7.65 0.66 0.70 0.99
SA -6.25 -7.24 -7.48 -7.65 0.57 0.78 0.97
QED+SA -6.55 -7.23 -7.38 -7.52 0.65 0.74 0.99
Affinity+QED -7.46 -8.04 -8.18 -8.20 0.64 0.67 0.98
Affinity+SA -7.08 -7.88 -8.05 -8.21 0.57 0.75 0.97
All -7.09 -7.47 -7.79 -7.76 0.62 0.73 0.98
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Figure 7. Pairwise correlation of different properties. On the diagonal are histograms showing single property distributions on Cross-
Docked2020.
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Top-of-N Comparison. We have made the same top-of-N selection (N = 10) for picking the top 1/10 from the generated
molecules for each baseline. Specifically, for each of the 100 test proteins, a tenth out of roughly 100 molecules are selected
based on z-score reranking, where z = 5 · |norm(Vina)|+ norm(QED) + 1.5 · norm(SA), and norm denotes zero mean
and unit variance normalization.

This generally shows what the “concentrated space” for desirable drug-like candidates looks like for generative models.
As shown in Table 9, our method displays the best Success Rate in top-of-N evaluations, indicating better optimization
efficiency. Though IPDiff also displays superior Vina affinities, it comes at the expense of low SA (0.62) and shows only
moderate Success Rate, as there is observed to be a slightly positive correlation between Vina Score and SA (ρ = 0.33) in
Fig. 4, meaning that it is nontrivial to simultaneously optimize both properties. MolJO does a better job in finding the best
balanced combination of properties, demonstrating the superiority of gradient-based joint optimziation.

Table 9. Top-of-N (N = 10) performances for baselines.

Vina Score (↓) Vina Min (↓) Vina Dock (↓)Method Avg. Med. Avg. Med. Avg. Med. QED (↑) SA (↑) Div (↑) Success Rate (↑)

AR -6.71 -6.35 -7.12 -6.63 -7.81 -7.33 0.64 0.70 0.60 19.1%
Pocket2Mol -5.80 -5.39 -7.18 -6.50 -8.32 -7.78 0.67 0.84 0.59 40.5%
FLAG 50.37 43.14 6.27 -3.38 -6.57 -6.47 0.74 0.78 0.71 9.6%
TargetDiff -7.06 -7.57 -8.10 -8.11 -9.31 -9.18 0.64 0.65 0.67 32.6%
DecompDiff -5.78 -5.82 -6.73 -6.57 -8.07 -8.03 0.61 0.74 0.61 32.1%
MolCRAFT -7.54 -7.89 -8.40 -8.13 -9.36 -9.05 0.65 0.77 0.63 55.0%
IPDiff -8.15 -8.67 -9.36 -9.27 -10.65 -10.17 0.60 0.62 0.69 34.6%
MolJO -8.54 -8.81 -9.48 -9.09 -10.50 -10.14 0.67 0.79 0.61 70.3%

Additional Baselines. For more comprehensive comparison, we have added the results of DiffBP (Lin et al., 2022), D3FG
(Lin et al., 2024) and VoxBind (Pinheiro et al., 2024) from a recently proposed benchmark CBGBench (Lin et al., 2025) and
concurrent work DecompDPO (Cheng et al., 2025). It can be seen that our MolJO maintains superiority in optimizing the
overall properties, reflected by its highest Success Rate.

Table 10. Comparison with additional baselines, where the results for DiffBP, D3FG and VoxBind are calculated based on the samples
released by CBGBench, and results for DecompDPO follow the numbers reported by the authors.

Method Vina Score (↓) Vina Min (↓) Vina Dock (↓) QED (↑) SA (↑) Div (↑) Success Rate (↑)Avg. Med. Avg. Med. Avg. Med.

DiffBP - - - - -7.34 - 0.47 0.59 - -
D3FG - - -2.59 - -6.78 - 0.49 0.66 - -
VoxBind -6.16 -6.21 -6.82 -6.73 -7.68 -7.59 0.54 0.65 - 21.4%
DecompDPO -6.10 -7.22 -7.93 -8.16 -9.26 -9.23 0.48 0.64 0.62 36.2%
MolJO -7.52 -8.02 -8.33 -8.34 -9.05 -9.13 0.56 0.78 0.66 51.3%

F.2. Ablation Studies

Effect of Joint Guidance. Table 11 shows the effectiveness of joint guidance over coordinates or types. Utilizing gradients
to guide both data modalities is consistently better than applying single gradient only, since the energy landscape of a
molecular system is a function of both the atom coordinates and the types. Lack of direct control over either modality can
lead to suboptimal performance due to not efficiently exploring the chemical space where certain atomic types naturally
pair with specific spatial arrangements. Specifically, it can be seen that for affinities, the optimization is closely related
to coordinates, while for drug-like properties, simply propagating gradients over coordinates displays no improvement
at all. This validates our choice of finding appropriate guidance form jointly, and a single coordinate guidance would be
insufficient for generating desirable molecules.

Effect of Backward Correction. We conduct ablation studies regarding the proposed backward correction strategy.
w/o Correction denotes sampling θi according to Eq. 10. Fig. 8 shows that increasing the steps k in Eq. 12 that have
been corrected backward boosts the optimization performance once sufficient past steps are corrected for optimization.
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Table 11. Ablation studies of joint optimization for atom types and coordinates, where w/o type means the gradient is disabled for types.
Top 2 results are highlighted with bold and underlined text.

Objective Methods Vina Score (↓) Vina Min (↓) QED (↑) SA (↑)Avg. Med. Avg. Med.

Affinity
Ours -7.74 -7.96 -8.21 -8.19 0.52 0.68
w/o type -7.13 -7.58 -7.82 -7.80 0.50 0.66
w/o coord -6.61 -7.23 -7.42 -7.53 0.52 0.71

QED
Ours -6.84 -7.32 -7.54 -7.65 0.66 0.70
w/o type -6.41 -7.03 -7.20 -7.26 0.52 0.67
w/o coord -6.50 -7.20 -7.44 -7.42 0.65 0.70

SA
Ours -6.25 -7.24 -7.48 -7.65 0.57 0.78
w/o type -6.29 -6.85 -7.07 -7.09 0.51 0.70
w/o coord -6.71 -7.22 -7.60 -7.60 0.57 0.77

It can be inferred that sampling pϕ(θi|θi−1,θi−k) up until θn results in a chain of parameters {θTi
}⌊n/k⌋i=0 , where Ti = ik+(n

mod k), and θi ∼ pϕ(θi, |θi−1,θ0) when i ≤ (n mod k).

Smaller number k of corrected steps moves the starting point θT0
closer to θ0 and sees more updates along the chain. We

observe that when k is too small, the sampling process tends to suffer from error accumulation instead of error correction
due to stochasticity. Once k is larger than 50, the process is better balanced in exploiting the shortcut (i.e. interval k) and
exploring the stochasticity to reduce approximation errors via a few updates (i.e. ⌊n/k⌋). The final k is set to 130, while our
strategy is robust within the range k ∈ (50, 200].
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Figure 8. Ablation study of backward correction. Correction Step on the x-axis means the length of history k, and w/o Correction means
vanilla update (k = 1) with a Monte-Carlo estimate of y.

Additionally, we have conducted pairwise t-tests comparing our guided Backward Correction (k = 130) approach against
both Vanilla (k = 1) and SDE guidance. The results in Table 12 show statistically significant improvements (p < 0.05, N =
1000) for our proposed strategy.

Table 12. P-values for pairwise t-tests.

p-value Vina Score Vina Min Vina Dock SA QED

Ours vs. Vanilla 2.63E-13 3.31E-31 2.79E-35 8.10E-115 1.98E-26
Ours vs. SDE 2.55E-19 6.48E-19 7.84E-4 2.10E-50 1.82E-12

Effect of Scales. We conduct a grid search of guidance scales, and report the full results of ablation studies on different
guiding scales within the range {0.1, 1, 10, 20, 50, 100} for different objectives (Affinity, QED, SA) in Table 13, where 10
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molecules are sampled for each of the 100 test proteins.

For binding affinity, the optimization performance steadily improves with increasing scales, but the ratio of complete
molecules significantly decreases when the scale is greater than 50.

For QED and SA, MolJO achieves best results when the scale is around 20 and 50.

In order to maintain the comparability with molecules without guidance, we stick to the scale range where the connected
ratio remains acceptable, and therefore set the guidance scale to 50 for all our experiments.

Table 13. Full ablation studies on different guiding scales for different objectives. Top-1 values are highlighted in bold.

Objective Scale Vina Score (↓) Vina Min (↓) QED (↑) SA (↑) Connected (↑)Avg. Med. Avg. Med.

Affinity

0.1 -6.28 -6.98 -7.17 -7.25 0.50 0.70 0.96
1 -6.24 -7.01 -7.27 -7.29 0.50 0.69 0.96
10 -6.69 -7.46 -7.46 -7.67 0.51 0.70 0.97
20 -7.03 -7.87 -7.84 -8.08 0.51 0.70 0.98
50 -7.64 -8.38 -8.39 -8.64 0.53 0.68 0.90

100 -9.33 -9.55 -9.87 -9.85 0.55 0.63 0.55

QED

0.1 -6.03 -6.92 -7.10 -7.19 0.51 0.70 0.97
1 -6.24 -7.09 -7.31 -7.31 0.56 0.71 0.96
10 -6.12 -7.07 -7.29 -7.41 0.66 0.71 0.98
20 -6.33 -7.23 -7.34 -7.64 0.66 0.69 0.98
50 -6.84 -7.32 -7.54 -7.65 0.66 0.70 0.99

100 -6.25 -6.83 -7.02 -7.10 0.62 0.60 0.95

SA

0.1 -6.30 -7.11 -7.19 -7.29 0.50 0.70 0.96
1 -6.17 -7.16 -7.36 -7.37 0.52 0.73 0.97
10 -5.87 -7.23 -7.39 -7.72 0.57 0.78 0.98
20 -6.14 -7.24 -7.49 -7.72 0.56 0.79 0.98
50 -6.38 -7.29 -7.86 -7.77 0.54 0.79 0.99

100 -6.08 -7.36 -7.51 -7.85 0.54 0.78 0.98

G. Evaluation of Molecular Conformation
PoseCheck Analysis. To measure the quality of generated ligand poses, we further employ PoseCheck (Harris et al., 2023)
to calculate the Strain Energy (Energy) of molecular conformations and Steric Clashes (Clash) w.r.t. the protein atoms in
Fig. 9 and 10, respectively.

Our proposed MolJO not only significantly outperforms the other optimization baselines in both Energy and Clash, but also
shows competitive results with strong-performing generative models, in which Pocket2Mol achieves lower strain energy via
generating structures with fewer rotatable bonds as noted by Harris et al. (2023), and fragment-based model FLAG directly
incorporates rigid fragments in its generation. As for clashes, we achieve the best results in non-autoregressive methods.

Notably, IPDiff ranks the least in Strain Energy and displays severely strained structures despite its strong performance in
binding affinities. This arguably suggests that directing utlizing pretrained binding affinity predictor as feature extractor
might result in spurious correlated features, even harming the molecule generation.

RMSD Distribution. We report the ratio of redocking RMSD below 2Å between generated poses and Vina docked poses
to reveal the agreement of binding mode. Due to issues of poses generate by Autodock, not all pose pairs are available for
calculating symmetry-corrected RMSD, where we report the non-corrected RMSD instead to make sure that all samples
are faithfully evaluated. As shown in Fig. 11, the optimization methods all display a tendency towards generating a few
outliers, which might be attributed to the somewhat out-of-distribution (OOD) nature of optimization that seeks to shift the
original distribution. Among all, DecompOpt generates the most severe outliers with RMSD as high as 160.7 Å, and its
unsatifactory performance is also suggested by the lowest ratio of RMSD < 2Å (24.3%), while for gradient-based TAGMol
and our method, it only has a negligible impact and the ratio is generally more favorable.
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Overall Conformation Quality and Validity. The overall results in Table 14 show that our gradient-based method actually
improves upon the conformation stability of backbone in terms of energy and clash, demonstrating its ability to faithfully
model the chemical environment of protein-ligand complexes, while DecompOpt generates heavily strained structures
similar to DecompDiff, and TAGMol ends up with even worse energy than its backbone TargetDiff. Moreover, from the
perspective of validity reflected by Connected Ratio, the optimization efficiency of RGA and DecompOpt is relatively low
as suggested by the ratio of successfully optimized molecules.

Ring Size. For a comprehensive understanding of the effect of property guidance, we additionally report the distribution
of ring sizes in Table 15, showing that the gradient-based property guidance generally favors more rings, but our result still
lies within a reasonable range, and even improves upon the ratio of 4-membered rings.

Table 14. Summary of conformation stability results. Energy, Clash are calculated by PoseCheck. Connected is the ratio of successfully
generated valid and connected molecules.

Energy Med. (↓) Clash Avg. (↓) RMSD < 2Å (↑) Connected (↑)1

Reference 114 5.46 34.0% 100%

AR 608 4.18 36.5% 93.5%
Pocket2Mol 186 6.22 31.3% 96.3%
FLAG 396 40.83 8.2% 97.1%
TargetDiff 1208 10.67 31.0% 90.4%
DecompDiff 983 14.23 25.1% 72.0%
IPDiff 5861 10.31 17.9% 90.1%
MolCRAFT 196 6.91 42.4% 96.7%
RGA - - - 52.2%
DecompOpt 861 16.6 24.3% 2.64%
TAGMol 2058 7.41 37.2% 92.0%
MolJO 163 6.72 43.5% 97.3%
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Figure 9. Cummulative density function (CDF) for strain energy distributions of generated molecules and reference molecules.

H. Inference Time
We report the time cost in Table 16 for optimization baselines in the table below, which is calculated as the time for sampling
a batch of 5 molecules on a single NVIDIA RTX 3090 GPU, averaged over 10 randomly selected test proteins.

1Connected ratio of DecompOpt and RGA is calculated based on the optimization results of all rounds provided by the authors. For
each of the N rounds, a total of k molecules ought to be generated, thus we divide the total number by N × k × n.
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Figure 10. Box plot for clash distributions of generated molecules and reference molecules.
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Figure 11. Boxplot for RMSD distributions of generated molecules and reference molecules.
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Figure 12. Violin plot for SA distributions of generated molecules and reference molecules.
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Figure 13. Violin plot for QED distributions of generated molecules and reference molecules.
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Figure 14. Violin plot for Vina Score distributions of generated molecules and reference molecules.
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Figure 15. Violin plot for Vina Min distributions of generated molecules and reference molecules.
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Figure 16. Violin plot for Vina Dock distributions of generated molecules and reference molecules.

Table 15. Proportion (%) of different ring sizes in reference and generated ring structured molecules, where 3-Ring denotes three-
membered rings and the like.

#Rings Avg. 3-Ring 4-Ring 5-Ring 6-Ring

Reference 2.8 4.0 0.0 49.0 84.0
Train 3.0 3.8 0.6 56.1 90.9

AR 3.2 50.8 0.8 35.8 71.9
Pocket2Mol 3.0 0.3 0.1 38.0 88.6
FLAG 2.1 3.1 0.0 39.9 84.7
TargetDiff 3.1 0.0 7.3 57.0 76.1
DecompDiff 3.4 9.0 11.4 64.0 83.3
IPDiff 3.4 0.0 6.4 51.0 83.7
MolCRAFT 3.0 0.0 0.6 47.0 85.1

DecompOpt 3.7 6.8 11.8 61.4 89.8
TAGMol 4.0 0.0 8.5 62.5 82.6
MolJO (Aff) 3.6 0.0 0.4 46.7 92.5
MolJO (QED) 3.7 0.0 0.5 58.0 96.1
MolJO (SA) 3.8 0.0 0.2 37.0 97.8
MolJO (Aff+SA) 3.9 0.0 0.1 37.0 98.1
MolJO (All) 3.6 0.0 0.3 44.4 97.6

Table 16. Inference time cost of optimization baselines, error bars indicating the standard deviation across 10 randomly selected proteins.

Model Ours TAGMol DecompOpt RGA AutoGrow4

Time (s) 146 ± 11 667 ± 69 11714 ± 1115 458 ± 43 2586 ± 360
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I. More Related Works
General Molecule Optimization. As an alternative to target-aware generative modeling of 3D molecules, the optimization
methods are goal-directed, obtain desired ligands usually by searching in the drug-like chemical space guided by property
signals (Bilodeau et al., 2022; Sun et al., 2023; Du et al., 2024). General optimization algorithms were originally designed for
ligand-based drug design (LBDD) and optimize common molecule-specific properties such as LogP and QED (Olivecrona
et al., 2017; Jin et al., 2018; Nigam et al., 2020; Spiegel & Durrant, 2020; Xie et al., 2021; Bengio et al., 2021), but could be
extended to structure-based drug design (SBDD) given docking oracles. However, since most early attempts did not take
protein structures into consideration thus were essentially not target-aware, it means that they need to be separately trained
on the fly for each protein target when applied to pocket-specific scenarios. RGA (Fu et al., 2022) explicitly models the
protein pocket in the design process, overcoming the transferability problem of previous methods. DiffAC (Zhou et al.,
2024b) utilizes policy gradients for SDEs to fine-tune pretrained diffusion models given affinity signal, demonstrating the
potential of RL method but limited to Vina Score optimization only.

Constraint Molecule Optimization. Real-world lead optimization typically requires retaining specific substructures
to preserve critical molecular interactions or properties. Recently, CBGBench (Lin et al., 2025) introduces a generative
graph completion framework for systematic evaluation, including tasks such as linker design, fragment growing, side
chain decoration, and scaffold hopping, showing the potential for rigorous benchmarking of structure-based molecular
optimization under predefined substructural constraints.
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