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ABSTRACT

Heavy-ball momentum with decaying learning rates is widely used with SGD
for optimizing deep learning models. In contrast to its empirical popularity, the
understanding of its theoretical property is still quite limited, especially under the
standard anisotropic gradient noise condition for quadratic regression problems.
Although it is widely conjectured that heavy-ball momentum method can provide
accelerated convergence and should work well in large batch settings, there is
no rigorous theoretical analysis. In this paper, we fill this theoretical gap by
establishing a non-asymptotic convergence bound for stochastic heavy-ball methods
with step decay scheduler on quadratic objectives, under the anisotropic gradient
noise condition. As a direct implication, we show that heavy-ball momentum
can provide Õ(

√
κ) accelerated convergence of the bias term of SGD while still

achieving near-optimal convergence rate with respect to the stochastic variance
term. The combined effect implies an overall convergence rate within log factors
from the statistical minimax rate. This means SGD with heavy-ball momentum is
useful in the large-batch settings such as distributed machine learning or federated
learning, where a smaller number of iterations can significantly reduce the number
of communication rounds, leading to acceleration in practice.

1 INTRODUCTION

Optimization techniques that can efficiently train large foundation models (Devlin et al., 2019;
Brown et al., 2020; Touvron et al., 2023a;b; Ouyang et al., 2022) are rapidly gaining importance.
Mathematically, most of those optimization problems can be formulated as minimizing a finite sum

min
w

f(w) ≜
1

N

N∑
i=1

fi(w),

where numerical methods are normally applied to find the minimum of the above form. Among all
those methods, stochastic gradient descent (SGD) (Robbins and Monro, 1951) and its variants can be
regarded as one of the most widely used algorithms.

For instance, heavy-ball (HB) methods (Polyak, 1964), commonly referred as heavy-ball momentum,
are one of those popular variants. Empirically, it was extremely helpful for accelerating the training
of convolutional neural networks (Szegedy et al., 2015; Simonyan and Zisserman, 2015; He et al.,
2015; Huang et al., 2017; Sandler et al., 2018). Theoretically, it has been shown to provide optimal
acceleration for gradient descent (GD) on quadratic objectives (Nemirovski, 1995).

Nonetheless, when it comes to SGD in theory, things become much different. Despite its huge success
in practice, most theoretical results of stochastic heavy ball (SHB) were negative, showing that the
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convergence rates of heavy-ball methods are no better than vanilla SGD (Devolder et al., 2013; Yuan
et al., 2016; Loizou and Richtárik, 2017; Kidambi et al., 2018; Jain et al., 2018a; Li et al., 2022).
The existence of these gaps between GD and SGD, between practice and theory, is rather intriguing,
which may make one wonder: Can stochastic heavy ball provide Θ̃(

√
κ) accelerated convergence

when the noise is small, such as under large-batch settings?

To answer this question, the first step is to find the missing pieces in those negative results. One
key observation is that all those negative results assumed constant learning rates, while in practice,
decaying learning rates are usually used instead. Those decaying learning rates, often referred as
learning rate schedules, were demonstrated to be critical for improving the performance of a trained
model in real-world tasks (Loshchilov and Hutter, 2017; Howard and Ruder, 2018). Furthermore,
if one only considers the vanilla SGD algorithm, the theoretical property of most schedules have
already been well inspected (Shamir and Zhang, 2013; Jain et al., 2019; Ge et al., 2019; Harvey et al.,
2019; Pan et al., 2021; Wu et al., 2022a). Briefly speaking, one can view learning rate schedules as a
variance reduction technique, which helps alleviate the instability and deviation caused by stochastic
gradient noise.

Since it has been pointed out by (Polyak, 1987) that variance reduction is the key to improving
stochastic heavy ball’s convergence rate, it is then natural to ask: Are there proper learning rate
schedules that can help us achieve accelerated convergence for SHB under large-batch settings?

Our paper gives a positive answer to this question. As a first step, we restrict ourselves to quadratic
objectives. Although these problem instances are considered one of the simplest settings in optimiza-
tion, they provide important insights for understanding a model’s behavior when the parameter is
close to a local optimum. Furthermore, past literature on Neural Tangent Kernel (NTK) (Arora et al.,
2019; Jacot et al., 2018) suggests that the gradient dynamics of sufficiently wide neural networks
resemble NTKs and can have their objectives approximated by quadratic objectives given specific
loss functions.

Motivated by the empirical anisotropic behavior of SGD noises near minima of modern neural net-
works (Sagun et al., 2018; Chaudhari and Soatto, 2018; Zhu et al., 2019) and theoretical formalization
of this noise property in least square regression (Jain et al., 2018b;a; Pan et al., 2021), we conduct
our analysis based on the assumption of anisotropic gradient noise, which is formally defined later
as Assumption 3 in Section 3. Notice that the very same condition has already been adopted or
suggested by many past literatures (Dieuleveut et al., 2017; Jastrzębski et al., 2017; Zhang et al.,
2018; Zhu et al., 2019; Pan et al., 2021).

1.1 OUR CONTRIBUTIONS

1. We introduce novel theoretical techniques for analyzing stochastic heavy ball with multistage
schedules, providing several key properties for the involved 2× 2 update matrix Ti. Specifi-
cally, we show that ∥TT−1TT−2...T0∥ can be upper bounded by

∥∥TT
T−1

∥∥ under certain
conditions. This allows SHB with changing learning rates to exhibit similar theoretical
properties as vanilla SGD: for each eigenvalue, SHB first exponentially decreases the loss
with large learning rates, then retains the reduced loss with small learning rates.

2. As a direct result of this technical innovation, we present a non-asymptotic last iterate
convergence rate for stochastic heavy ball with step decay learning rate schedule on quadratic
objectives, under the standard anisotropic gradient noise assumption. To the best of our
knowledge, this is the first non-asymptotic result for SHB on quadratics that clearly expresses
the relationship among iteration number T , condition number κ and convergence rate with
step-decay schedules.

3. Our results show that stochastic heavy ball can achieve near-optimal accelerated convergence
under large-batch settings, while still retaining near-optimal convergence rate Õ(dσ2/T ) in
variance (up to log factors away from the statistical minimax rate).

2 RELATED WORK

Large batch training: Large-batch training is a realistic setting of its own practical interest. In
several recent efforts of accelerating large model training, it has been observed that large batch sizes
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are beneficial for accelerating the training process (You et al., 2017; 2018; 2019; Izsak et al., 2021;
Pan et al., 2022; Wettig et al., 2022). On top of that, in distributed machine learning (Verbraeken
et al., 2020) and federated learning (Kairouz et al., 2021), one can normally support an outrageous
size of large batches by adding machines/devices to the cluster/network, but unable to afford a large
number of iterations due to the heavy cost of communication (Zheng et al., 2019; Qian et al., 2021).
This makes acceleration techniques even more tempting under those settings.

SGD + learning rate schedules: In contrast, the research in SGD with learning rate schedules
focused on more general settings without assuming constraints on the batch size. In (Ge et al., 2019),
the convergence rate of step decay was proved to be nearly optimal on strongly convex linear square
regression problems. (Pan et al., 2021) further pushed these limits to optimal for some special problem
instances and offered a tighter upper bound, along with a lower bound for step decay. Concurrently,
(Wu et al., 2022a) extended the analysis of (Ge et al., 2019) to a dimension-free version under
overparamterized settings, with tighter lower and upper bounds provided for step decay schedules.
In (Loizou et al., 2021), the convergence rate of Polyak step size on strongly convex objectives was
investigated. Nevertheless, all the bounds in above works require SGD to have at least Ω̃(κ log c)
iterations to reduce the excess risk by any factor of c. There are also works with looser bounds but
focus on more general objectives. Since we restrict ourselves to quadratics, we just list some of them
here for reference: (Ghadimi and Lan, 2013; Hazan and Kale, 2014; Xu et al., 2016; Yuan et al., 2019;
Vaswani et al., 2019; Kulunchakov and Mairal, 2019; Davis et al., 2023; Wolf, 2021).

SGD + HB + constant learning rates: Opposed to the positive results of near optimality for
SGD, most results of stochastic HB with constant learning rates were negative, showing that its
convergence rate cannot be improved unless extra techniques like iterate averaging are applied.
In (Loizou and Richtárik, 2017; 2020), a linear convergence rate of SGD momentum on quadratic
objectives for L2 convergence E[∥wT −w∗∥2] and loss E[f(wT )− f(w∗)] was established, which
requires at least Ω̃(κ log c) iterations. A better bound for L1 convergence ∥E[wT −w∗]∥2 and B

norm ∥E[wT −w∗]∥2B was also proposed, but whether they are relevant to loss convergence is
unclear. Here B is a positive definite matrix related to the problem instance and samples. In (Kidambi
et al., 2018), momentum was proved to be no better than vanilla SGD on worst-case linear regression
problems. In (Jain et al., 2018a), both SGD and momentum are shown to require at least Ω(κ)
single-sample stochastic first-order oracle calls to reduce excess risk by any factor of c, thus extra
assumptions must be made to the noise. A modified momentum method using iterate averaging was
then proposed on least square regression problems and achieves Õ(

√
κκ̃) iteration complexity with

an extra noise assumption. Here κ̃ ≤ κ is the statistical condition number. In (Gitman et al., 2019), a
last iterate rate of SGD momentum on quadratic objectives was presented, but the convergence rate
is asymptotic. Non-asymptotic linear distributional convergence was shown in (Can et al., 2019),
where SHB with constant learning rates achieves accelerated linear rates Ω(exp(−T/

√
κ)) in terms

of Wasserstein Distances between distributions. However, this does not imply linear convergence
in excess risks, where the variance is still a non-convergent constant term. In (Mai and Johansson,
2020), a class of weakly convex objectives were studied and a convergence rate of O(κ/

√
T ) was

established for gradient L2 norm. In (Wang et al., 2021), HB on GD is analyzed and shown to yield
non-trivial speedup on quadratic objectives and two overparameterized models. However, the analysis
was done in GD instead of SGD. In (Bollapragada et al., 2022), SHB was shown to have a linear
convergence rate 1− 1/

√
κ with standard constant stepsize and large enough batch size on finite-sum

quadratic problems. Their analysis, however, was based on an extra assumption on the sample
method. (Tang et al., 2023) proved SHB converges to a neighborhood of the global minimum faster
than SGD on quadratic target functions using constant stepsize. In (Yuan et al., 2021), a modified
decentralized SGD momentum algorithm was proposed for large-batch deep training. Although it
achieves Õ(1/T ) convergence rate on a L-smooth and µ-strongly convex objectives, it still requires
at least Ω̃(κ) number of iterations to converge, which is no better than SGD. Wang et al. (2023) also
provided cases where SHB fails to surpass SGD in small and medium batch size settings, suggesting
that momentum cannot help reduce variance. There are also other variants of momentum such as
Nesterov momentum (Nesterov, 2003; Liu and Belkin, 2019; Aybat et al., 2019), or modified heavy
ball, but since we only consider the common version of heavy ball momentum here, we omit them in
our context.
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SGD + HB + learning rate schedules: As for SHB with learning rate schedules, only a limited
amount of research has been conducted so far. In (Liu et al., 2020), the convergence property of
SHB with multistage learning rate schedule on L-smooth objectives was investigated. However,
the inverse relationship between the stage length and learning rate size was implicitly assumed,
thus its convergence rate is actually O(1/ logα T ) for some constant α > 1. In (Jin et al., 2022),
a convergence rate was derived for general smooth objectives. But the relationship between the
convergence rate and T is still unclear, and the results were comparing SGD and SHB by their
upper bounds. In (Li et al., 2022), a worst-case lower bound of Ω(lnT/

√
T ) was found for SHB

with certain choices of step sizes and momentum factors on Lipschitz and convex functions. A
FTRL-based SGD momentum method was then proposed to improve SHB and achieve O(1/

√
T )

convergence rate for unconstrained convex objectives. Furthermore, in (Wang and Johansson, 2021),
a O(1/

√
T ) bound was derived on general smooth non-convex objectives, whose analysis supports a

more general class of non-monotonic and cyclic learning rate schedules. All these results only proved
that SHB is no worse than SGD, or were comparing two methods by their upper bounds instead
of lower bound against upper bound. Only until recently has SHB been shown to be superior over
SGD in some settings. In (Zeng et al., 2023), a modified adaptive heavy-ball momentum method was
applied to solve linear systems and achieved better performance than a direct application of SGD.
In (Sebbouh et al., 2021), SHB was shown to have a convergence rate arbitrarily close to o(1/

√
T )

on smooth convex objectives. However, the analysis stopped at this asymptotic bound and did not
provide any practical implications of this result.

In contrast to all the aforementioned works, we provide positive results in theory to back up SHB’s
superior empirical performance, showing that SHB can yield accelerated convergence on quadratic
objectives by equipping with large batch sizes and step decay learning rate schedules.

3 MAIN THEORY

3.1 PROBLEM SETUP

In this paper, we analyze quadratic objectives with the following form,

min
w

f(w) ≜ Eξ [f(w, ξ)] , where f(w, ξ) =
1

2
w⊤H(ξ)w − b(ξ)⊤w, (3.1)

where ξ denotes the data sample. By setting gradient to 0, the optimum of f(w) is obtained at

w∗ = H−1b, where H = Eξ [H(ξ)] , b = Eξ [b(ξ)] . (3.2)

In addition, we denote the smallest/largest eigenvalue and condition number of the Hessian H to be

µ ≜ λmin(H), L ≜ λmax(H), κ ≜ L/µ, (3.3)

where eigenvalues from largest to smallest are denoted as

L = λ1 ≥ λ2 ≥ · · · ≥ λd = µ > 0.

We consider the standard stochastic approximation framework (Kushner and Clark, 2012) and denote
the gradient noise to be

nt ≜ ∇f(wt)−∇wf(wt, ξ). (3.4)

Throughout the paper, the following assumptions are adopted.
Assumption 1. (Independent gradient noise)

{nt} are pairwise independent. (3.5)

Assumption 2. (Unbiased gradient noise)

E [nt] = 0. (3.6)

Assumption 3. (Anisotropic gradient noise)

E
[
ntn

⊤
t

]
⪯ σ2H. (3.7)
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The anisotropic gradient noise assumption has been adopted by several past literatures (Dieuleveut
et al., 2017; Pan et al., 2021), along with evidence supported in (Zhu et al., 2019; Sagun et al., 2018;
Zhang et al., 2018; Jastrzębski et al., 2017; Wu et al., 2022b), which suggest that gradient noise
covariance is normally close to the Hessian in neural networks training.

Let Bt be the minibatch of samples at iteration t. For simplicity, we only consider the setting where
all minibatches share the same batch size

|Bt| ≡M, for ∀t = 0, 1, . . . , T − 1. (3.8)

It follows that the number of samples is N = MT .
Remark 1. One may also employ the common assumptions on strongly convex least square regres-
sions as (Bach and Moulines, 2013; Jain et al., 2018a; Ge et al., 2019):

min
w

f(w), where f(w)
def
=

1

2
E(x,y)∼D

[
(y − ⟨x,w⟩)2

]
, and

(1) y = wT
∗ x+ ϵ, where E(x,y)∼D

[
ϵ2xx⊤] ⪯ σ̃2H,

(2) E
[
∥x∥2 xx⊤

]
⪯ R2H

(3.9)

which can also be translated into our settings under the compact set constraint w ∈ Λ, as suggested
in (Jain et al., 2018a).

3.2 SUBOPTIMALITY OF SGD

We begin with the vanilla version of SGD,

wt+1 = wt −
ηt
|Bt|

∑
ξ∈Bt

∇wf(wt, ξ), (3.10)

whose theoretical property is well understood on quadratic objectives (Bach and Moulines, 2013;
Jain et al., 2018b; Ge et al., 2019; Pan et al., 2021). Here ηt means the learning rate at iteration t. It is
known that SGD requires at least Ω(κ) iterations under the setting of batch size M = 1 (Jain et al.,
2018a), nevertheless, whether this lower bound still holds for large batch settings is not rigorously
claimed yet. Here we provide Theorem 1 to make things clearer.
Theorem 1. There exist quadratic objectives f(w) and initialization w0, no matter how large the
batch size is or what learning rate scheduler is used, as long as ηt ≤ 2/L for ∀t = 0, 1, . . . , T − 1,
running SGD for T iterations will result in

E [f(wT )− f(w∗)] ≥
f(w0)− f(w∗)

2
· exp

(
−8T

κ

)
The proof is available in Appendix B. The existence of those counterexamples suggests that in the
worst case, SGD requires at least T ≥ κ/8 · ln(c/2) = Ω(κ log c) iterations to reduce the excess risk
by a factor of c ≥ 2, while in practice, κ can be quite large near the converged point (Sagun et al.,
2017; Arjevani and Field, 2020; Yao et al., 2020).

3.3 ACCELERATION WITH STOCHASTIC HEAVY BALL

To overcome this limitation, heavy-ball momentum (Polyak, 1964) is normally adopted by engineers
to speed up SGD, equipped with various types of learning rate schedulers

vt+1 = βvt +
ηt
|Bt|

∑
ξ∈Bt

∇wf(wt, ξ)

wt+1 = wt − vt+1.

(3.11)

Despite its huge success in practice, the theoretical understanding of this method is still limited,
especially for quadratic objectives. Furthermore, although it was widely recognized that stochastic
heavy ball should provide acceleration in large batch settings, positive theoretical results so far are
still insufficient to clearly account for that. We attempt to fill this gap.
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In this section, we will show that SHB equipped with proper learning rate schedules can indeed speed
up large batch training. The whole analysis is done in a general multistage learning rate scheduler
framework, as shown in Algorithm 1. Specifically, in this framework, learning rates are divided into
n stages, with each stages’ learning rates and number of iterations being η′ℓ and kℓ ≜ K respectively,
i.e.

t
(start)
ℓ ≜ K(ℓ− 1), t

(end)
ℓ ≜ Kℓ− 1

ηt ≡ η′ℓ, for ∀t = t
(start)
ℓ , t

(start)
ℓ + 1, . . . , t

(end)
ℓ .

(3.12)

Algorithm 1 Multistage Stochastic Heavy Ball with minibatch
Input: Number of stages n, learning rates {η′ℓ}nℓ=1, momentum β, stage lengths K, minibatch size
M , initialization w0 ∈ Rd and v0 = 0.

1: t← 0 ▷ Iteration counter
2: for ℓ = 1, 2, . . . , n do
3: ηt ← η′ℓ
4: for i = 1, 2, . . . ,K do
5: Sample a minibatch B uniformly from the training data
6: gt ← 1

M

∑
ξ∈B∇wf(w, ξ) ▷ Mean gradient over a minibatch

7: vt+1 ← βvt + ηtgt

8: wt+1 ← wt − vt+1

9: t← t+ 1
10: return wt ▷ Last iterate

Given the above step decay scheduler, the following theorem states the convergence rate for SHB
on quadratic objectives. To the best of our knowledge, this is the first non-asymptotic result that
explicitly expresses the relationship between T and the convergence rate of mutlistage SHB on
quadratic objectives.

Theorem 2. Given a quadratic objective f(w) and a step decay learning rate scheduler with
β = (1− 1/

√
κ)

2 with κ ≥ 4, and n ≡ T/K with settings that

1. decay factor C

1 < C ≤ T
√
κ. (3.13)

2. stepsize η′ℓ

η′ℓ =
1

L
· 1

Cℓ−1
(3.14)

3. stage length K

K =
T

logC (T
√
κ)

(3.15)

4. total iteration number T

T

ln (214T 8) · ln (26T 4) · logC(T 2)
≥ 2C

√
κ, (3.16)

then such scheduler exists, and the output of Algorithm 1 satisfies

E[f(wT )− f(w∗)] ≤E [f(w0)− f(w∗)] · exp
(
15 ln 2 + 2 lnT + 2 lnκ− 2T√

κ logC (T
√
κ)

)
+

4096C2dσ2

MT
ln2 (26T 4) · log2C (

T
√
κ
)
.

Or equivalently, the result can be simplified to the following corollary.
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Corollary 3. Given a quadratic objective f(w) and a step decay learning rate scheduler and
momentum defined in Theorem 2, with T ≥ Ω̃ (

√
κ) and κ ≥ 4, the output of Algorithm 1 satisfies

E [f(wT )− f(w∗)] ≤ E [f(w0)− f(w∗)] · exp
(
−Ω̃

(
T√
κ

))
+ Õ

(
dσ2

MT

)
,

where Õ(·) and Ω̃(·) are used to hide the log factors.

Notice that the bias term [f(w0) − f(w∗)] · exp(−Ω̃(T/
√
κ)) is exponentially decreasing after

T = Õ(
√
κ) iterations, while the variance term can be bounded by Õ(1/T ). This implies that

under the large batch setting, if the batch size is large enough to counteract the extra constant in the
variance term, accelerated convergence will be possible as compared to the iteration number of Õ (κ)

required by SGD. It is worth noting that this Θ̃(
√
κ) acceleration is only log factors away from the

optimal acceleration (Nemirovski, 1995) of Heavy Ball (Polyak, 1964) and Nesterov Accelerated
Gradient (Nesterov, 1983) in deterministic case.

The proof outline can be split into two major steps. The first step is bias-variance decomposition,
which decomposes the expected excess risk E[f(wT )]− f(w∗) into two terms: bias and variance,
where bias measures the deterministic convergence error and variance measures the effect of the
gradient noise. This step adapts the well-known bias-variance decomposition technique of SGD (Bach
and Moulines, 2013; Jain et al., 2018b; Ge et al., 2019; Pan et al., 2021) to SHB. Inside the adapted
decomposition, a critical “contraction” term ∥TT−1TT−2...T0∥ is introduced in both bias and
variance, where each matrix Tt ∈ R2×2 depends on step size ηt and differs only by a diagonal matrix
∆t ≜ Tt −T0 = diag(δt, 0).

The second major step is to bound the matrix product tightly. Notice that this term has a
form of

∏T−1
t=0 (1 − ηtλj) for SGD and is much easier to analyze. For the general form of

∥TT−1TT−2...T0∥ = ∥(T0 +∆T−1)(T0 +∆T−2)...T0∥, the major difficulty arises from the
non-commutative matrix products of different Tt’s and ∆t’s. To overcome this obstacle, a novel
technique is proposed in our paper, which is based on the special structure of Tt. The key observation
is that product with form (Ts1∆s′1

Ts2∆s′2
. . .Tsn∆s′n

) ∈ R2×2 retains two important properties:
1) The first column is always nonnegative and second column is always nonpositive; 2) The absolute
value of each entry is a monotonical increasing function of δ1, . . . , δT−1. Hence the sum of the
exponential number of terms in the binomial-like expansion also retains those two properties, which
leads to a bound ∥TT−1TT−2...T0∥ ≤

∥∥TT
T−1

∥∥ tight under certain conditions. This key technique,
as rigorously stated in Lemma 8 in Appendix, combined with subtle analysis of Tt and learning rate
schedule techniques in (Ge et al., 2019; Pan et al., 2021), gives birth to Theorem 2. The full detail of
the proof is provided Appendix C.

4 EXPERIMENTS

To verify our theoretical findings, two sets of experiments are conducted. The first one is ridge
regression, which has a quadratic loss objective and is closer our theoretical settings. The second
one is image classification on CIFAR-10 (Krizhevsky et al., 2009) with ResNet18 (He et al., 2015),
DenseNet121 (Huang et al., 2017) and MobilenetV2 (Sandler et al., 2018), which is more of a
practical interest regarding our theory’s potential applications.

4.1 RIDGE REGRESSION

In ridge regression, we consider the following setting

f(w) =
1

n
∥Xw −Y∥22 + α ∥w∥22 , (4.1)

whose optimum has an analytic form

w∗ =
(
X⊤X+ nαI

)−1
X⊤Y.
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Therefore the optimum loss f(w∗) can be directly computed. We use a4a1 dataset (Chang and Lin,
2011; Dua and Graff, 2017) to realize this setting, which contains n = 4, 781 samples and d = 123
features.

In all of our experiments, we set the number of epochs to 100, so the total amount of data is
N = 478, 100. Besides, we set different batch sizes M ∈ {2048, 512, 128}, and initialize w0 from
a uniform distribution (−1, 1)d. The partial batch at the end of each epoch is not truncated, which
means the total number of iterations T = ⌈N/M⌉.
Regarding hyperparameter choices for each scheduler & method, we do grid searches according
to Table 3 in Appendix A and report the best loss for each random seed. For all schedulers, we
set η0 ∈ {100, 10−1, 10−2, 10−3}. As for the choice of momentum factor β, we set β = 0.9 for
stochastic heavy ball methods.

Table 1: Training loss statistics of ridge regression in a4a dataset over 5 runs.

Methods/Schedules (f(w)− f(w∗))× 10−2

Batch size M = 512 M = 128 M = 32 M = 8

SGD + constant ηt 2.10±0.46 1.17±0.81 1.27±0.27 0.94±0.83

SGD + step decay 2.44±0.45 0.64±0.04 0.11±0.01 0.04±0.04

SHB + constant ηt 0.86±0.55 0.55±0.26 1.03±0.35 0.97±0.58

SHB + step decay 0.13±0.03 0.01±0.00 0.03±0.02 0.06±0.05

As shown in Table 1, one can observe that SHB are generally much better than SGD under large batch
settings, and the step decay schedule always helps. The role of learning rate schedule and heavy-ball
momentum is especially evident under the setting of M = 512, where SHB is able to greatly reduce
the loss with a much smaller bias, but still has a large loss due to the existence of variance. This
variance term is then further handled by step decay schedule and leads to a fast convergence. As the
batch size decreases, the variance term becomes dominant, which explains the closing gap between
SGD and SHB.

4.2 IMAGE CLASSIFICATION ON CIFAR-10

In image classification, our key focus is still verifying the superiority of SHB over SGD, so no
heavy tuning was done for β. We follow the common practice of β = 0.9 for our algorithm in
Theorem 2. To simulate the practical settings of distributed learning and federated learning, we
restrict the number of iterations to be a few thousands (Kairouz et al., 2021), which roughly translated
into #Epoch = 10 for batch size M = 128 and #Epoch = 100 for batch size M = 2048. On top
of that, for batch size M = 2048, we replicate 16 nodes with micro batch size 128 on each node,
hence the performance on distributed learning can be further simulated.

In this experiment, CIFAR-10 (Krizhevsky et al., 2009) dataset is adopted, which contains 50, 000
training samples and 10, 000 test samples. We use 5, 000 randomly chosen samples in the training
set to form a validation set, then conduct grid searches by training on the remaining 45, 000 samples
and selecting the hyperparameter with the best validation accuracy. The selected hyperparameter is
then used for training the whole 50, 000 samples and testing on the test set. The final test results are
thereby summarized in Table 2. For grid searches, we choose learning rate η0 ∈ {1, 0.1, 0.01, 0.001},
with decay rate γ ∈ {1/2, 1/5, 1/10} and number of intervals n ∈ {3, 4, 5, 6}.
One can observe in Table 2 and Figure 1 that under the large batch setting, SHB provides huge
acceleration over SGD and achieves a significant performance improvement. This offers empirical
evidence for our theory and suggests its practical value: Heavy Ball Momentum can provide true
acceleration for SGD under large-batch settings.

1The dataset is accessible in https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/binary.html#a4a/.
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Table 2: CIFAR-10: training losses and test accuracy of different methods over 5 trials.

Setting Method Resnet18 DenseNet121 MobilenetV2
Crossent.

Loss Acc(%) Crossent.
Loss Acc(%) Crossent.

Loss Acc(%)

M = 128
(#Epoch = 10)

SGD 0.46±0.01 81.19±0.93 0.22±0.01 88.58±0.23 0.45±0.00 82.90±0.37
SHB 0.38±0.08 85.16±2.30 0.18±0.00 88.63±0.27 0.35±0.01 86.23±0.23

M = 128 × 16
(#Epoch = 100)

SGD 0.33±0.01 83.82±0.42 0.01±0.00 89.28±0.23 0.32±0.02 84.37±0.77
SHB 0.01±0.00 89.78±0.23 0.00±0.00 92.46±0.15 0.07±0.01 89.57±0.18

Figure 1: CIFAR-10 training statistics of batch size M = 128×16 and #Epoch = 100 on Resnet18,
DenseNet121 and MobilenetV2 (from top to bottom). Left: Training loss; Right: Test accuracy.

5 CONCLUSION

In this paper, we present a non-asymptotic convergence rate for Stochastic Heavy Ball with step decay
learning rate schedules on quadratic objectives. The proposed result demonstrates SHB’s superiority
over SGD under large-batch settings. To the best of our knowledge, this is the first time that the
convergence rate of SHB is explicitly expressed in terms of iteration number T given decaying
learning rates on quadratic objectives. Theoretically, our analysis provides techniques general enough
to analyze any multi-stage schedulers with SHB on quadratics. Empirically, we demonstrate the
practical benefits of heavy-ball momentum for accelerating large-batch training, which matches our
theoretical prediction and explains heavy-ball momentum’s effectiveness in practice to a certain
degree.

9
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A EXPERIMENTAL DETAILS

The detailed learning rate schedule forms and grid search hyperparameters for ridge regression in
Section 4.1 are listed in Table 3.

Table 3: Grid-search hyperparameter choices for ridge regression.
Scheduler Form Hyperparameter choices

Constant ηt = η0 -

Step decay ηt = η0 · γℓ,
if t ∈ [ℓ, ℓ+ 1) · T

n

n ∈ {2, 3, 4, 5}
γ ∈ { 1

2
, 1
4
, 1
8
}

B PROOF FOR SECTION 3.2: SUBOPTIMALITY OF SGD

Theorem 1. There exist quadratic objectives f(w) and initialization w0, no matter how large the
batch size is or what learning rate scheduler is used, as long as ηt ≤ 2/L for ∀t = 0, 1, . . . , T − 1,
running SGD for T iterations will result in

E [f(wT )− f(w∗)] ≥
f(w0)− f(w∗)

2
· exp

(
−8T

κ

)
Proof. Consider the case of κ ≥ 4, w0 = c0 · I, d ≥ κ+ 1, H(ξ) ≡ H = diag(L, µ, µ, . . . , µ) and
b(ξ) ≡ 0, then according to SGD’s update formula in Eqn. (3.10)

wt+1 = wt −
ηt
|Bt|

∑
ξ∈Bt

∇wf(wt, ξ) = (I− ηtH)wt,

we have the update of j-th (j ≥ 2) entry being

wt+1,j =(1− ηtλj)wt,j = (1− ηtµ)wt,j ≥
(
1− 2µ

L

)
wt,j =

(
1− 2

κ

)
wt,j ≥ exp

(
− 4

κ

)
wt,j ,

where the first inequality comes from ηt ≤ 2/L and the second inequality is entailed by 1 − x ≥
exp(−2x) for x = 2/κ ∈ [0, 1/2], since for ∀x ∈ [0, 1/2]

g(x) ≜ ln(1− x)− ln(exp(−2x)), g(0) = 0,
∂g(x)

∂x
= − 1

1− x
+ 2 ≥ 0

⇒ g(x) ≥ g(0) = 0 ⇒ ln(1− x) ≥ ln(exp(−2x)) ⇒ 1− x ≥ exp(−2x).
It follows,

f(wT )− f(w∗) =f(wT ) =
1

2
w⊤

T HwT =
1

2

Lw2
T,1 + µ

d∑
j=2

w2
T,j


≥µ

2

d∑
j=2

w2
T,j =

µ

2

d∑
j=2

w2
0,j

T−1∏
t=0

(1− ηtλj)
2

≥µ

2

d∑
j=2

w2
0,j exp

(
−8T

κ

)

=
µ

2
(d− 1) · c20 · exp

(
−8T

κ

)
= µ(d− 1) · f(w0)− f(w∗)

L+ µ(d− 1)
· exp

(
−8T

κ

)
=
f(w0)− f(w∗)

L
µ(d−1) + 1

· exp
(
−8T

κ

)
≥f(w0)− f(w∗)

2
· exp

(
−8T

κ

)
.
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C PROOF FOR SECTION 3.3: ACCELERATION WITH STOCHASTIC HEAVY
BALL

We provide the broad stroke of our proofs here. The ultimate goal is bounding E[f(wT )− f(w∗)] in
terms of T, κ and other fixed model parameters. To achieve this goal, we conduct the whole analysis
in a layer-by-layer fashion. In each layer, we translate the terms in the previous layer into the terms
of the current layer, specifically

• Appendix C.1: E[f(w) − f(w∗)] ⇒
∥∥Tk

t,j

∥∥ for some special 2 × 2 matrix Tt,j via
bias-variance decomposition.

• Appendix C.2: ∥Tt+1,jTt+2,j ...Tt+k,j∥ ⇒ ρ(Tt+k,j)
k via analyzing the property of∥∥Tk

t,j

∥∥ and ∥Tt+1,jTt+2,j ...Tt+k,j∥.

• Appendix C.3: ρ(Tt,j)
k ⇒ {ηt, β, λj} via analyzing the property of ρ(Tt,j).

• Appendix C.4 {ηt, β, λj} ⇒ {η′ℓ, β, λj} ⇒ {T, κ, . . . } via specializing the scheduler with
multistage scheduler step decay.

C.1 BIAS VARIANCE DECOMPOSITION: E[f(w)− f(w∗)]⇒
∥∥Tk

t,j

∥∥
The section presents the lemmas that decompose the loss into bias and variance, expressing them
in terms of the norm of product of a series of special 2 × 2 matrices ∥

∏
t Tt,j∥’s, specifically

∥TT−1,jTT−2,j . . .Tτ+1,j∥ for some τ = 0, 1, . . . , T −1. For simplicity, we only consider the case
of batch size M = 1. The case of larger batches is equivalent to replacing noise term σ2 with σ2/M .

Lemma 1. (Quadratic excess risk is H-norm) Given a quadratic objective f(w), we have

f(w)− f(w∗) =
1

2
∥w −w∗∥2H ≜

1

2
(w −w∗)

⊤H(w −w∗) (C.1)

Proof. It holds that

f(w)− f(w∗)
(3.1)
= Eξ

[
1

2
w⊤H(ξ)w − b(ξ)⊤w

]
− Eξ

[
1

2
w⊤

∗ H(ξ)w∗ − b(ξ)⊤w∗

]
=

[
1

2
w⊤E[H(ξ)]w − E[b(ξ)]⊤w

]
−
[
1

2
w⊤

∗ E[H(ξ)]w∗ − E[b(ξ)]⊤w∗

]
(3.2)
=

[
1

2
w⊤Hw − b⊤w

]
−
[
1

2
w⊤

∗ Hw∗ − b⊤w∗

]
(3.2)
=

[
1

2
w⊤Hw − (Hw∗)

⊤w

]
−
[
1

2
w⊤

∗ Hw∗ − (Hw∗)
⊤w∗

]
=
1

2

[
w⊤Hw −w⊤Hw∗ −w⊤

∗ Hw +w⊤
∗ Hw∗

]
=
1

2
(w −w∗)

⊤H(w −w∗).

Here the fifth equality comes from H = H⊤ being a symmetric matrix, and w⊤
∗ Hw =

(w⊤
∗ Hw)⊤ = w⊤Hw∗ being a scalar.

Lemma 2. (Bias-variance decomposition) Given a quadratic function f(w), if batch size M = 1,
after running T iterations of Algorithm 1, we have the last iterate wT satisfying

E
[
∥wT −w∗∥2H

]
=E

[[
w0 −w∗
w−1 −w∗

]⊤
M⊤

0 M
⊤
1 . . .M⊤

T−1

[
H O
O O

]
MT−1MT−2 . . .M0

[
w0 −w∗
w−1 −w∗

]]

+

T−1∑
τ=0

E

[
η2τ

[
nτ

0

]⊤
M⊤

τ+1M
⊤
τ+2 . . .M

⊤
T−1

[
H O
O O

]
MT−1MT−2 . . .Mτ+1

[
nτ

0

]]
,

(C.2)
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where w−1 = w0 + v0 and

Mt ≜

[
(1 + β)I− ηtH −βI

I O

]
. (C.3)

Proof. Denote

w̃t ≜

[
wt −w∗

wt−1 −w∗

]
∈ R2d, ñt ≜

[
nt

0

]
∈ R2d, H̃ ≜

[
H O
O O

]
∈ R2d×2d (C.4)

as the extended parameter difference, extended gradient noise and extended Hessian matrix, then
according to momentum’s update formula in Eqn. (3.11), or line 7-8 in Algorithm 1 with batch size
M = 1, we have

vt+1 =βvt + ηt∇wf(wt, ξ)

wt+1 =wt − vt+1

⇒ wt+1 −w∗ =wt −w∗ − vt+1

=wt −w∗ − (βvt + ηt∇wf(wt, ξ))

=wt −w∗ − β (wt−1 −wt)− ηt∇wf(wt, ξ)

(3.4)
= wt −w∗ − β (wt−1 −wt)− ηt (∇wf(wt)− nt)

(3.2)
= wt −w∗ − β (wt−1 −wt)− ηt (H (wt −w∗)− nt)

=wt −w∗ − β [(wt−1 −w∗)− (wt −w∗)]− ηt (H (wt −w∗)− nt)

= [(1 + β) I− ηtH] (wt −w∗)− βI (wt−1 −w∗) + ηtnt

⇒ w̃t+1 =

[
wt+1 −w∗
wt −w∗

]
=

[
(1 + β)I− ηtH −βI

I O

] [
wt −w∗

wt−1 −w∗

]
+ ηt

[
nt

0

]
= Mtw̃t + ηtñt.

It follows

w̃t+1 =Mtw̃t + ηtñt

=MtMt−1w̃t−1 + ηt−1Mtñt−1 + ηtñt

=MtMt−1Mt−2w̃t−2 + ηt−2MtMt−1ñt−2 + ηt−1Mtñt−1 + ηtñt

= . . .

=MtMt−1 . . .M0w̃0 +

t∑
τ=0

(ητMtMt−1 . . .Mτ+1ñτ ) .

where w̃0 =

[
w0 −w∗
w−1 −w∗

]
and w−1 = w0 + v0 which is associated with iteration t = 0.

We can decompose the above process into two parts

w̃
(b)
t+1 =Mtw̃

(b)
t with w̃

(b)
0 = w̃0

w̃
(v)
t+1 =Mtw̃

(v)
t + ηtñt with w̃

(v)
0 = 0,

(C.5)

since

w̃
(b)
t+1 =MtMt−1 . . .M0w̃

(b)
0 = MtMt−1 . . .M0w̃0

w̃
(v)
t+1 =

t∑
τ=0

(ητMtMt−1 . . .Mτ+1ñτ )

⇒ w̃t+1 =w̃
(b)
t+1 + w̃

(v)
t+1.

(C.6)
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Furthermore, we have

E
[(

w̃
(b)
t+1

)⊤
H̃w̃

(v)
t+1

]
=
(
w̃

(b)
t+1

)⊤
H̃E

[
w̃

(v)
t+1

]
(C.6)
=
(
w̃

(b)
t+1

)⊤
H̃E

[
t∑

τ=0

(ητMtMt−1 . . .Mτ+1ñτ )

]

=
(
w̃

(b)
t+1

)⊤
H̃

t∑
τ=0

(ητMtMt−1 . . .Mτ+1E [ñτ ])

(3.6)
= 0

(C.7)

and

E
[(

w̃
(v)
t+1

)⊤
H̃w̃

(v)
t+1

]

=E

( t∑
τ=0

(ητMtMt−1 . . .Mτ+1ñτ )

)⊤

H̃

(
t∑

τ ′=0

(ητ ′MtMt−1 . . .Mτ ′+1ñτ ′)

)
=

t∑
τ=0,τ ′=0

E
[
ητητ ′ ñ⊤

τ M
⊤
τ+1M

⊤
τ+2 . . .M

⊤
t H̃MtMt−1 . . .Mτ ′+1ñτ ′

]

=

t∑
τ=0

E
[
η2τ ñ

⊤
τ M

⊤
τ+1M

⊤
τ+2 . . .M

⊤
t H̃MtMt−1 . . .Mτ+1ñτ

]
+

t∑
τ=0,τ ′=0,τ ̸=τ ′

E
[
ητητ ′ ñ⊤

τ M
⊤
τ+1M

⊤
τ+2 . . .M

⊤
t H̃MtMt−1 . . .Mτ ′+1ñτ ′

]

=

t∑
τ=0

E
[
η2τ ñ

⊤
τ M

⊤
τ+1M

⊤
τ+2 . . .M

⊤
t H̃MtMt−1 . . .Mτ+1ñτ

]
+ 0,

(C.8)

where the last equality is because

ñτ
(C.4)
=

[
nτ

0

]
and ñτ ′

(C.4)
=

[
nτ ′

0

]
are pairwise independent and have mean 0 given Assumption 1 and 2.

Then we obtain
E ∥wT −w∗∥2H

(C.1)
= (wT −w∗)H (wT −w∗) =

[
wT −w∗

wT−1 −w∗

]⊤ [
H O
O O

] [
wT −w∗

wT−1 −w∗

]
(C.4)
= E

[
w̃⊤

T H̃w̃T

]
(C.6)
= E

[(
w̃

(b)
T + w̃

(v)
T

)⊤
H̃
(
w̃

(b)
T + w̃

(v)
T

)]
=E

[(
w̃

(b)
T

)⊤
H̃
(
w̃

(b)
T

)
+
(
w̃

(v)
T

)⊤
H̃
(
w̃

(v)
T

)
+ 2

(
w̃

(b)
T

)⊤
H̃
(
w̃

(v)
T

)]
(C.7)
= E

[(
w̃

(b)
T

)⊤
H̃
(
w̃

(b)
T

)]
+ E

[(
w̃

(v)
T

)⊤
H̃
(
w̃

(v)
T

)]
(C.6), (C.8)

= E
[
w̃0M

⊤
0 M

⊤
1 . . .M⊤

T−1H̃MT−1MT−2 . . .M0w̃0

]
+

T−1∑
τ=0

E
[
η2τ ñ

⊤
τ M

⊤
τ+1M

⊤
τ+2 . . .M

⊤
T−1H̃MT−1MT−2 . . .Mτ+1ñτ

]
Here the fourth equality is because (w̃

(b)
t+1)

⊤H̃(w̃
(v)
t+1) is a scalar and H̃ is symmetric. Replacing the

extended terms w̃, ñ, H̃ with their definitions in Eqn. (C.4), we get the desired form in Eqn. (C.2).
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Lemma 3. (Decomposing Mt into a block diagonal matrix) Given a matrix Mt ∈ R2d×2d defined
in Eqn. (C.3), we have

Mt = VΠ


Tt,1

Tt,2

. . .
Tt,d

Π⊤V⊤, (C.9)

where

Tt,j ≜

[
1 + β − ηtλj −β

1 0

]
∈ R2×2 (C.10)

and orthogonal matrices

Π ≜

[
e1 0 e2 0 . . . ed 0
0 e1 0 e2 . . . 0 ed

]
∈ R2d×2d,V ≜

[
U O
O U

]
∈ R2d×2d, (C.11)

given the eigendecomposition of H being

H = UΛU⊤ ∈ Rd×d,
(
U⊤U = I

)
(C.12)

and standard unit vectors/standard basis being

ei = [0 . . . 0 1︸︷︷︸
i−th

0 . . . 0]
⊤ ∈ Rd×1 (C.13)

Proof.

Π⊤V⊤MtVΠ

(C.3)
= Π⊤V⊤

[
(1 + β)I− ηtH −βI

I O

]
VΠ

(C.11)
= Π⊤

[
U⊤ O
O U⊤

] [
(1 + β)I− ηtH −βI

I O

] [
U O
O U

]
Π

(C.12)
= Π⊤

[
(1 + β)I− ηtΛ −βI

I O

]
Π

(C.11)
=


e⊤1 0⊤

0⊤ e⊤1
...
e⊤d 0⊤

0⊤ e⊤d


[
(1 + β)I− ηtΛ −βI

I O

] [
e1 0 e2 0 . . . ed 0
0 e1 0 e2 . . . 0 ed

]

(C.13)
=


e⊤1 0⊤

0⊤ e⊤1
...
e⊤d 0⊤

0⊤ e⊤d


[
(1 + β − ηtλ1)e1 −βe1 . . . (1 + β − ηtλd)ed −βed

e1 0 . . . ed 0

]

=


S1,1 S1,2 . . . S1,d

S2,1 S2,2 . . . S2,d

...
...

. . .
...

Sd,1 Sd,2 . . . Sd,d

 , where Si,j =

[
(1 + β − ηtλj)e

⊤
i ej −βe⊤i ej

e⊤i ej 0

]

(C.10)
=


Tt,1

Tt,2

. . .
Tt,d


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Since

Π⊤Π
(C.11)
=


e⊤1 0⊤

0⊤ e⊤1
...
e⊤d 0⊤

0⊤ e⊤d


[
e1 0 e2 0 . . . ed 0
0 e1 0 e2 . . . 0 ed

]
(C.13)
= I2d×2d

V⊤V
(C.11)
=

[
U⊤ O
O U⊤

] [
U O
O U

]
(C.12)
= I2d×2d

(C.14)

are both orthogonal matrices, we thereby have

Mt = VΠ


Tt,1

Tt,2

. . .
Tt,d

Π⊤V⊤.

Lemma 4. (Bound Variance with
∥∥Tk

t,j

∥∥) Assuming batch size M = 1, we have

T−1∑
τ=0

E

[
η2τ

[
nτ

0

]⊤
M⊤

τ+1M
⊤
τ+2 . . .M

⊤
T−1

[
H O
O O

]
MT−1MT−2 . . .Mτ+1

[
nτ

0

]]

≤σ2
d∑

j=1

λ2
j

T−1∑
τ=0

η2τ ∥TT−1,jTT−2,j . . .Tτ+1,j∥2 ,

(C.15)

where Mt is defined in Eqn. (C.3) and Tt,j ∈ R2×2 is defined in (C.10).

Proof. Similarly, we define ñ and H̃ as in Eqn. (C.4). Notice that H̃ is a positive semi-definite
matrix since if the eigenvalue decomposition of Hessian H = UΛU⊤, we have

H̃ =

[
H O
O O

]
=

[
U O
O U

] [
Λ O
O O

] [
U O
O U

]⊤
.

Therefore, H̃1/2 is well-defined. Denote

Aτ ≜ H̃1/2MT−1MT−2 . . .Mτ+1, (C.16)

then
A⊤

τ = M⊤
τ+1M

⊤
τ+2 . . .M

⊤
T−1

(
H̃1/2

)⊤
= M⊤

τ+1M
⊤
τ+2 . . .M

⊤
T−1H̃

1/2, (C.17)

where the second equality is because H̃1/2 is symmetric.

It follows
T−1∑
τ=0

E

[
η2τ

[
nτ

0

]⊤
M⊤

τ+1M
⊤
τ+2 . . .M

⊤
T−1

[
H O
O O

]
MT−1MT−2 . . .Mτ+1

[
nτ

0

]]
(C.4)
=

T−1∑
τ=0

E
[
η2τ ñ

⊤
τ M

⊤
τ+1M

⊤
τ+2 . . .M

⊤
T−1H̃MT−1MT−2 . . .Mτ+1ñτ

]
(C.16) (C.17)

=

T−1∑
τ=0

E
[
η2τ ñ

⊤
τ A

⊤
τ Aτ ñτ

]
=

T−1∑
τ=0

η2τE
[
tr
(
ñ⊤
τ A

⊤
τ Aτ ñτ

)]
▷ Trace of a scalar is itself

=

T−1∑
τ=0

η2τE
[
tr
(
Aτ ñτ ñ

⊤
τ A

⊤
τ

)]
▷ Cyclic property of trace

=

T−1∑
τ=0

η2τ tr
(
E
[
Aτ ñτ ñ

⊤
τ A

⊤
τ

])
▷ Linearity of expectation
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(D.1)
=

T−1∑
τ=0

η2τ tr
(
AτE

[
ñτ ñ

⊤
τ

]
A⊤

τ

) (C.4)
=

T−1∑
τ=0

η2τ tr

(
AτE

[
nτn

⊤
τ O

O O

]
A⊤

τ

)

≤
T−1∑
τ=0

η2τ tr

(
Aτ

[
σ2H O
O O

]
A⊤

τ

)
= σ2

T−1∑
τ=0

η2τ tr

(
Aτ

[
H O
O O

]
A⊤

τ

)

=σ2
T−1∑
τ=0

η2τ tr

(
A⊤

τ Aτ

[
H O
O O

])
▷ Cyclic property of trace

(C.16) (C.17)
= σ2

T−1∑
τ=0

η2τ tr

(
M⊤

τ+1M
⊤
τ+2 . . .M

⊤
T−1H̃MT−1MT−2 . . .Mτ+1

[
H O
O O

])
(C.4)
= σ2

T−1∑
τ=0

η2τ tr
(
M⊤

τ+1M
⊤
τ+2 . . .M

⊤
T−1H̃MT−1MT−2 . . .Mτ+1H̃

)

where the inequality is because

E
[
nτn

⊤
τ O

O O

]
⪯
[
σ2H O
O O

]

given E[nτn
⊤
τ ] ⪯ σ2H in Assumption 3, along with basic properties of Loewner order in

Lemma 13, 14 and 15.

Let

T̃t ≜


Tt,1

Tt,2

. . .
Tt,d

 , (C.18)

we have the variance term being

T−1∑
τ=0

E

[
η2τ

[
nτ

0

]⊤
M⊤

τ+1M
⊤
τ+2 . . .M

⊤
T−1

[
H O
O O

]
MT−1MT−2 . . .Mτ+1

[
nτ

0

]]

≤σ2
T−1∑
τ=0

η2τ tr
(
M⊤

τ+1M
⊤
τ+2 . . .M

⊤
T−1H̃MT−1MT−2 . . .Mτ+1H̃

)
(C.9)
= σ2

T−1∑
τ=0

η2τ tr
(
VΠT̃⊤

τ+1T̃
⊤
τ+2 . . . T̃

⊤
T−1Π

⊤V⊤H̃VΠT̃T−1T̃T−2 . . . T̃τ+1Π
⊤V⊤H̃

)
=σ2

T−1∑
τ=0

η2τ tr
(
T̃⊤

τ+1T̃
⊤
τ+2 . . . T̃

⊤
T−1

(
Π⊤V⊤H̃VΠ

)
T̃T−1T̃T−2 . . . T̃τ+1

(
Π⊤V⊤H̃VΠ

))
.
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Here the last equality comes from the cyclic property of trace. Given the definition of Π,V and H̃ in
Eqn. (C.11) and Eqn. (C.4), we have

Π⊤V⊤H̃VΠ =


e⊤1 0⊤

0⊤ e⊤1
...
e⊤d 0⊤

0⊤ e⊤d


[
U⊤ O
O U⊤

] [
H O
O O

] [
U O
O U

] [
e1 0 e2 0 . . . ed 0
0 e1 0 e2 . . . 0 ed

]

(C.12)
=


e⊤1 0⊤

0⊤ e⊤1
...
e⊤d 0⊤

0⊤ e⊤d


[
Λ O
O O

] [
e1 0 e2 0 . . . ed 0
0 e1 0 e2 . . . 0 ed

]

=



λ1

0
λ2

0
. . .

λd

0


= Λ⊗

[
1 0
0 0

]
,

(C.19)
Here ⊗ is the Kronecker product. Then the variance term is simplified to

T−1∑
τ=0

E

[
η2τ

[
nτ

0

]⊤
M⊤

τ+1M
⊤
τ+2 . . .M

⊤
T−1

[
H O
O O

]
MT−1MT−2 . . .Mτ+1

[
nτ

0

]]

≤σ2
T−1∑
τ=0

η2τ tr

(
T̃⊤

τ+1T̃
⊤
τ+2 . . . T̃

⊤
T−1

(
Λ⊗

[
1 0
0 0

])
T̃T−1T̃T−2 . . . T̃τ+1

(
Λ⊗

[
1 0
0 0

]))
(C.18)
= σ2

T−1∑
τ=0

η2τ

d∑
j=1

tr

(
T⊤

τ+1,jT
⊤
τ+2,j . . .T

⊤
T−1,j

[
λj 0
0 0

]
TT−1,jTT−2,j . . .Tτ+1,j

[
λj 0
0 0

])
▷ All are block diagonal matrices

=σ2
T−1∑
τ=0

η2τ

d∑
j=1

λ2
j tr

(
T⊤

τ+1,jT
⊤
τ+2,j . . .T

⊤
T−1,j

[
1
0

] [
1
0

]⊤
TT−1,jTT−2,j . . .Tτ+1,j

[
1
0

] [
1
0

]⊤)

=σ2
T−1∑
τ=0

η2τ

d∑
j=1

λ2
j tr

([
1
0

]⊤
T⊤

τ+1,jT
⊤
τ+2,j . . .T

⊤
T−1,j

[
1
0

] [
1
0

]⊤
TT−1,jTT−2,j . . .Tτ+1,j

[
1
0

])
▷ Cyclic property of trace

=σ2
T−1∑
τ=0

η2τ

d∑
j=1

λ2
j

([
1
0

]⊤
T⊤

τ+1,jT
⊤
τ+2,j . . .T

⊤
T−1,j

[
1
0

])([
1
0

]⊤
TT−1,jTT−2,j . . .Tτ+1,j

[
1
0

])
▷ Notice that the term inside the trace is a scalar

=σ2
T−1∑
τ=0

η2τ

d∑
j=1

λ2
j

([
1
0

]⊤
TT−1,jTT−2,j . . .Tτ+1,j

[
1
0

])2

▷ Transpose of a scalar is itself

≤σ2
T−1∑
τ=0

η2τ

d∑
j=1

λ2
j ∥TT−1,jTT−2,j . . .Tτ+1,j∥2
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=σ2
d∑

j=1

λ2
j

T−1∑
τ=0

η2τ ∥TT−1,jTT−2,j . . .Tτ+1,j∥2 .

Here the last inequality is entailed by the fact that for ∀C ∈ R2×2,[
1
0

]⊤
C

[
1
0

]
=

(
C

[
1
0

])
1

≤

√(
C

[
1
0

])2

1

+

(
C

[
1
0

])2

2

=

∥∥∥∥C [10
]∥∥∥∥ ≤ ∥C∥ ,

with (x)1, (x)2 standing for the first and second element of vector x.

Lemma 5. (Bound Bias with
∥∥Tk

t,j

∥∥)

E

[[
w0 −w∗
w−1 −w∗

]⊤
M⊤

0 M
⊤
1 . . .M⊤

T−1

[
H O
O O

]
MT−1MT−2 . . .M0

[
w0 −w∗
w−1 −w∗

]]

≤
d∑

j=1

λj ∥TT−1,jTT−2,j . . .T0,j∥2 E

∥∥∥∥∥
(
Π⊤V⊤

[
w0 −w∗
w−1 −w∗

])
2j−1:2j

∥∥∥∥∥
2

,

(C.20)

where Mt is defined in Eqn. (C.3), Tt,j ∈ R2×2 is defined in (C.10) and Π,V are orthogonal
matrices defined in (C.11). Here notation zj1:j2 means

For ∀z =


z1
z2
...
zd′

 ∈ Rd′
, 1 ≤ j ≤ j′ ≤ d′, zj:j′ ≜


zj

zj+1

...
zj′

 (C.21)

Proof. The proof is similar to a simplified version of the variance case, so we will reuse some of its
notations to shorten the proof.

E

[[
w0 −w∗
w−1 −w∗

]⊤
M⊤

0 M
⊤
1 . . .M⊤

T−1

[
H O
O O

]
MT−1MT−2 . . .M0

[
w0 −w∗
w−1 −w∗

]]
(C.4)
= E

[
w̃⊤

0 M
⊤
1 M

⊤
2 . . .M⊤

T−1H̃MT−1MT−2 . . .M1w̃0

]
(C.9) (C.18)

= E
[
w̃⊤

0 VΠT̃⊤
0 T̃

⊤
1 . . . T̃⊤

T−1Π
⊤V⊤H̃VΠT̃T−1T̃T−2 . . . T̃0Π

⊤V⊤w̃0

]
=E

[(
w̃⊤

0 VΠ
)
T̃⊤

0 T̃
⊤
1 . . . T̃⊤

T−1

(
Π⊤V⊤H̃VΠ

)
T̃T−1T̃T−2 . . . T̃0

(
Π⊤V⊤w̃0

)]
(C.19)
= E

[(
w̃⊤

0 VΠ
)
T̃⊤

0 T̃
⊤
1 . . . T̃⊤

T−1

(
Λ⊗

[
1 0
0 0

])
T̃T−1T̃T−2 . . . T̃0

(
Π⊤V⊤w̃0

)]

(C.18) (C.21)
= E




(
Π⊤V⊤w̃0

)
1:2(

Π⊤V⊤w̃0

)
3:4

...(
Π⊤V⊤w̃0

)
2d−1:2d


⊤ 

S1

S2

. . .
Sd




(
Π⊤V⊤w̃0

)
1:2(

Π⊤V⊤w̃0

)
3:4

...(
Π⊤V⊤w̃0

)
2d−1:2d


 ,

where Sj = T⊤
0,jT

⊤
1,j . . .T

⊤
T−1,j

[
λj 0
0 0

]
TT−1,jTT−2,j . . .T0,j

=E

 d∑
j=1

(
Π⊤V⊤w̃0

)⊤
2j−1:2j

Sj

(
Π⊤V⊤w̃0

)
2j−1:2j

 ,

where Sj = T⊤
0,jT

⊤
1,j . . .T

⊤
T−1,j

[
λj 0
0 0

]
TT−1,jTT−2,j . . .T0,j

=E

 d∑
j=1

(
Π⊤V⊤w̃0

)⊤
2j−1:2j

(
λjsjs

⊤
j

) (
Π⊤V⊤w̃0

)
2j−1:2j

 ,
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where sj = T⊤
0,jT

⊤
1,j . . .T

⊤
T−1,j

[
1
0

]

=E

 d∑
j=1

λj

((
Π⊤V⊤w̃0

)⊤
2j−1:2j

sj

)(
s⊤j
(
Π⊤V⊤w̃0

)
2j−1:2j

) ,

where sj = T⊤
0,jT

⊤
1,j . . .T

⊤
T−1,j

[
1
0

]

=E

 d∑
j=1

λj

(
s⊤j
(
Π⊤V⊤w̃0

)
2j−1:2j

)2 , where sj = T⊤
0,jT

⊤
1,j . . .T

⊤
T−1,j

[
1
0

]

=E

 d∑
j=1

λj

([
1
0

]⊤
TT−1,jTT−2,j . . .T0,j

(
Π⊤V⊤w̃0

)
2j−1:2j

)2


≤E

 d∑
j=1

λj ∥TT−1,jTT−2,j . . .T0,j∥2
∥∥∥(Π⊤V⊤w̃0

)
2j−1:2j

∥∥∥2


=

d∑
j=1

λj ∥TT−1,jTT−2,j . . .T0,j∥2 E
∥∥∥(Π⊤V⊤w̃0

)
2j−1:2j

∥∥∥2
▷ Linearity of expectation

(C.4)
=

d∑
j=1

λj ∥TT−1,jTT−2,j . . .T0,j∥2 E

∥∥∥∥∥
(
Π⊤V⊤

[
w0 −w∗
w−1 −w∗

])
2j−1:2j

∥∥∥∥∥
2

.

Here the inequality is entailed by the fact that for ∀C ∈ R2×2, z ∈ R2,[
1
0

]⊤
Cz =(Cz)1 ≤

√
(Cz)

2
1 + (Cz)

2
2 = ∥Cz∥ ≤ ∥C∥ ∥z∥

C.2 BOUNDING ∥Tt+k,j ...Tt+1,j∥ WITH ρ(Tt+k,j)

This section upper bounds the matrix product ∥Tt+k,j ...Tt+1,j∥ with the spectral radius ρ(Tt+1,j).
Similar results for bounding

∥∥Tk
t,j

∥∥ have been shown in (Wang et al., 2021)(Theorem 5), but our
result is more general, so we still put our proofs here. In the following proof, we use ∥·∥F to denote
the Frobenius norm of matrices.
Lemma 6 (Bounding

∥∥Tk
t,j

∥∥
F

with ρ(Tt,j)
k). Given momentum matrices Tt,j that are defined in

Eqn. (C.10) and β ≥ 1/4, for all positive integer k ≥ 1, it holds that

∥∥Tk
t,j

∥∥
F
≤ min

(
8k,

8√
|(1 + β − ηtλj)2 − 4β|

)
ρ(Tt,j)

k. (C.22)

Proof. According to the definition of Tt,j in Eqn. (C.10),

Tt,j =

[
1 + β − ηtλj −β

1 0

]
.

We can directly analyze the product by Jordan decomposition that there exists P ∈ C2×2 such that

Tt,j = PJP−1

where J can have the following two cases

J =

[
γ1 0
0 γ2

]
or J =

[
γ1 1
0 γ2

]
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depending on whether Tt,j is diagnolizable. Here γ1, γ2 are the eigenvalues of Tt,j and we assume
without generality that γ1 ≥ γ2 if γ1, γ2 ∈ R. And when γ1, γ2 /∈ R, it holds that γ1 and γ2 are
conjugate thus |γ1| = |γ2|. Therefore |γ1| is the spectral radius of Tt,j , i.e. ρ(Tt,j) = |γ1|. Then we
discuss case by case.

i) If γ1 ̸= γ2: In this case one can verify that

P =

[
γ1 γ2
1 1

]
, J =

[
γ1 0
0 γ2

]
, P−1 =

1

γ1 − γ2

[
1 −γ2
−1 γ1

]
where γ1, γ2 are eigenvalues of Tt,j . And the characteristic polynomial of Tt,j

det (Tt,j − γI)=

∣∣∣∣1 + β − ηtλj − γ −β
1 −γ

∣∣∣∣ = γ2 − (1 + β − ηtλj) γ + β = 0

entails γ1 + γ2 = 1 + β − ηtλj , γ1γ2 = β. Thus in this case, it holds that

Tk
t,j = PJkP−1 =

[
γ1 γ2
1 1

]
·
[
γk
1 0
0 γk

2

]
· 1

γ1 − γ2

[
1 −γ2
−1 γ1

]

=

γk+1
1 −γk+1

2

γ1−γ2
−β γk

1−γk
2

γ1−γ2

γk
1−γk

2

γ1−γ2
−β γk−1

1 −γk−1
2

γ1−γ2

 .

It holds that

∥Tt,j∥F =
1

|γ1 − γ2|

∥∥∥∥[γk+1
1 − γk+1

2 −β
(
γk
1 − γk

2

)
γk
1 − γk

2 −β
(
γk−1
1 − γk−1

2

)]∥∥∥∥
F

≤ 1

|γ1 − γ2|

∥∥∥∥[2ρ(Tt,j)
k+1 −2βρ(Tt,j)

k

2ρ(Tt,j)
k −2βρ(Tt,j)

k−1

]∥∥∥∥
F

≤ 1

|γ1 − γ2|

∥∥∥∥[2ρ(Tt,j)
k −2βρ(Tt,j)

k

2ρ(Tt,j)
k −4βρ(Tt,j)

k

]∥∥∥∥
F

≤ 2ρ(Tt,j)
k

|γ1 − γ2|

∥∥∥∥[1 −β
1 −2β

]∥∥∥∥
F

≤8ρ(Tt,j)
k

|γ1 − γ2|
=

8√
|(1 + β − ηtλj)2 − 4β|

ρ(Tt,j)
k,

where the first inequality holds as |γ1| = |γ2| = ρ(Tt,j) and the third inequality holds as ρ(Tt,j) ≥
γ1γ2 = β ≥ 1/4 according to Lemma 16 and thus ρ(Tt,j) ∈ (1/2, 1). For more details about the
properties of ρ(Tt,j) one can refer to Appendix C.3. We can also analyze the norm from another
point: it holds that for all k,∣∣∣∣γk

1 − γk
2

γ1 − γ2

∣∣∣∣ =
∣∣∣∣∣∣
k−1∑
j=0

γj
1γ

k−1−j
2

∣∣∣∣∣∣ ≤
k−1∑
j=0

∣∣∣γj
1γ

k−1−j
2

∣∣∣ = k−1∑
j=0

ρ(Tt,j)
k−1 = kρ(Tt,j)

k−1.

Substituting we have

∥Tt,j∥F =

∥∥∥∥∥∥
γk+1

1 −γk+1
2

γ1−γ2
−β γk

1−γk
2

γ1−γ2

γk
1−γk

2

γ1−γ2
−β γk−1

1 −γk−1
2

γ1−γ2

∥∥∥∥∥∥
F

≤
∥∥∥∥[(k + 1)ρ(Tt,j)

k −βkρ(Tt,j)
k−1

kρ(Tt,j)
k−1 −β(k − 1)ρ(Tt,j)

k−2

]∥∥∥∥
F

≤
∥∥∥∥[2kρ(Tt,j)

k −2kρ(Tt,j)
k

2kρ(Tt,j)
k −4kρ(Tt,j)

k

]∥∥∥∥
F

≤ 8kρ(Tt,j)
k.

Thus we prove the lemma when γ1 ̸= γ2.

ii) If γ1 = γ2 = γ: In this case, Tt,j can not be diagonalized, which means that

Tt,j =

[
γ 1
0 γ

]
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one can verify that

P =

[
γ 1
1 0

]
, Jk =

[
γk kγk−1

0 γk

]
, P−1 =

[
0 1
1 −γ

]
where γ1 = γ2 = γ ∈ R. In this case, it holds that

Tk
t,j = PJkP−1 =

[
γ 1
1 0

]
·
[
γk kγk−1

0 γk

]
·
[
0 1
1 −γ

]
=

[
(k + 1)γk −kγk+1

kγk−1 −(k − 1)γk

]
Then it holds that∥∥Tk

t,j

∥∥
F
=

∥∥∥∥[(k + 1)γk −kγk+1

kγk−1 −(k − 1)γk

]∥∥∥∥
F

≤
∥∥∥∥[2kγk −kγk

2kγk −kγk

]∥∥∥∥
F

≤ 8kγk = 8kρ(Tt,j)
k.

Therefore, combining the two cases, we obtain the conclusion.

Lemma 7 (Bounding ∥(Tt,j +∆1)(Tt,j +∆1)...(Tt,j +∆k)∥F with matrix power). Given ma-
trices Tt,j defined in Eqn. (C.10) and ∆i, ∆ defined as

∆i =

[
δi 0
0 0

]
, ∆ =

[
δ 0
0 0

]
,

where δi ≥ 0 and δ = max1≤i≤k δi, if (1 + β − ηtλj)
2 − 4β ≥ 0, it holds that

∥(Tt,j +∆1)(Tt,j +∆2)...(Tt,j +∆k)∥F ≤
∥∥∥(Tt,j +∆)

k
∥∥∥
F
. (C.23)

Proof. As we assume (1 + β − ηtλj)
2 − 4β ≥ 0, the eigenvalues of Tt,j γ1, γ2 ∈ R. Following

the same method as the proof of Lemma 6 to apply Jordan decomposition to Tt,j , the power of
momentum matrix Tt,j can be written as

Tk
t,j =

γk+1
1 −γk+1

2

γ1−γ2

−β(γk
1−γk

2 )
γ1−γ2

γk
1−γk

2

γ1−γ2

−β(γk−1
2 −γk−1

1 )
γ1−γ2

 , if γ1 ̸= γ2

Tk
t,j =

[
(k + 1)γk −kγk+1

kγk−1 −(k − 1)γk

]
, if γ1 = γ2 = γ

We can observe that in this case, the first column of Tk
t,j is nonnegative and the second column is

nonpositive as γ1, γ2, γ ∈ R. For simplicity, in the following proof we use
∏

to denote a product
from i = 1 to i = k orderly from left to right, namely,

∏k
i=1 Tt+i,k = Tt+k,jTt+k−1,j ...Tt+1,j .

We first consider the combination product form of
∏k

i=1(Tt,j +∆i) that
k∏

i=1

(Tt,j +∆i) =
∑

l1+...+lt+k1+...+kt+1=k

Tk1
t,j∆11...∆1l1T

k2
t,j∆21...∆2l2T

k3
t,j ...∆t1...∆tltT

kt+1

t,j ,

which is similar to the binomial expansion but without the commutativity of T and ∆i. Now we
consider one arbitrary combination term S that

S = Tk1
t,j∆11...∆1l1T

k2
t,j∆21...∆2l2T

k3
t,j ...∆t1...∆tltT

kt+1

t,j .

We first prove by induction that S has the following properties:

1. the first column of S is nonnegative and the second column of S is nonpositive;

2. the absolute value of each entry of S is monotonically increasing with respect to δ1, ..., δk.

We call Tki
t,j or ∆ij one multiple component of S in the following proof. And we denote Sp the

product of the first p multiple component of S in the following proof. The first multiple component
of S can be S1 = Tk1

t,j or S1 = ∆11, which satisfies the two desired properties naturally. Then we
assume that the product of the first p multiple component Sp satisfies the two properties. We discuss
Sp+1 in cases that
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1. if the p-th multiple component is Ti
t,j , where i represents an arbitrary integer, then the

(p+ 1)-th multiple component should be ∆i′ , where i′ also represents an arbitrary integer,
or the p-th and (p+ 1)-th component can be merged. Then it holds that

Sp+1 = Sp∆i′ =

[
Sp,11 Sp,12

Sp,21 Sp,22

] [
δi′ 0
0 0

]
=

[
δi′Sp,11 0
δi′Sp,21 0

]
.

Thus if the two properties hold for p, it also holds for p+ 1 in this case.

2. if the p-th multiple component is ∆i, where i represents an arbitrary integer, and the
(p+ 1)-th multiple component is ∆i+1, then it holds that

Sp+1 = Sp∆i+1 =

[
Sp,11 Sp,12

Sp,21 Sp,22

] [
δi+1 0
0 0

]
=

[
δi+1Sp,11 0
δi+1Sp,21 0

]
.

Thus if the two properties hold for p, it also holds for p+ 1 in this case.

3. if the p-th multiple component is ∆i, where i represents an arbitrary integer, and the
(p+ 1)-th multiple component is Ti′

t,j , then it holds that

Sp = Sp−1∆i =

[
Sp−1,11 Sp−1,12

Sp−1,21 Sp−1,22

] [
δi 0
0 0

]
=

[
δiSp−1,11 0
δiSp−1,21 0

]
,

which implies that Sp,12 = Sp,22 = 0, thus we can substitute that

Sp+1 = SpT
i′

t,j =

[
Sp,11 0
Sp,21 0

] [
t11 t12
t21 t22

]
=

[
Sp,11t11 Sp,11t12
Sp,21t11 Sp,21t12

]
.

As t11,Sp,11,Sp,21 are nonnegative, t12 is nonpositive, the two properties also hold for
Sp+1.

Therefore, the two properties hold for Sp+1 and thus for any combination term S by induction. And
one can verify that the properties also hold for their summation

∏k
i=1(T + ∆i). Because of the

definition of frobenius norm, when the two properties hold,
∥∥∥∏k

i=1(T+∆i)
∥∥∥
F

is monotonically
increasing with respect to δ1, ...δk as well. Therefore, it holds that∥∥∥∥∥

k∏
i=1

(Tt,j +∆i)

∥∥∥∥∥
F

≤

∥∥∥∥∥
k∏

i=1

(Tt,j +∆)

∥∥∥∥∥
F

=
∥∥(Tt,j +∆)k

∥∥
F
,

which concludes the proof.

Then combining Lemma 6 and Lemma 7, we can obtain a conclusion.
Lemma 8. Given β ∈ [1/4, 1), Tt,j defined as Eqn. (C.10), if Tt,j only has real eigenvalues, which
is equivalent to that the discriminant of Tt,j satisfies that (1 + β − ηtλj)

2 − 4β ≥ 0, it holds that

∥Tt+1,jTt+2,j ...Tt+k,j∥ ≤min

(
8k,

8√
|(1 + β − ηt+kλj)2 − 4β|

)
ρ(Tt+k,j)

k. (C.24)

Proof. The difference of two momentum matrices Tt,j and Tt′,j that ηt′ ≤ ηt is

Tt′,j −Tt,j =

[
(ηt′ − ηt)λj 0

0 0

]
,

which has the same structure with ∆i in Lemma 7. Thus Lemma 8 is a natural combination of
Lemma 6 and Lemma 7. One can verify that

∥Tt+1,jTt+2,j ...Tt+k,j∥ ≤∥Tt+1,jTt+2,j ...Tt+k,j∥F
(C.23)
≤

∥∥Tk
t+k,j

∥∥
F

(C.22)
≤ min

(
8k,

8√
|(1 + β − ηt+kλj)2 − 4β|

)
ρ(Tt+k,j)

k,

which concludes the proof.

27



Published as a conference paper at ICLR 2024

C.3 KEY PROPERTIES OF ρ(T)

This section offers some useful property of spectral radius ρ(Tt,j) in terms of different ηt, β and λj .
Lemma 9 (The exact form of ρ and its relationship with {β, η, λ}). Given momentum matrix

T =

[
1 + β − ηλ −β

1 0

]
,

if Tt,j only has real eigenvalues, which is equivalent to that the discriminant (1+β−ηλ)2−4β > 0
the spectral radius of T is

ρ(T) =
1

2

[
1 + β − ηλ+

√
(1 + β − ηλ)2 − 4β

]
.

Else the spectral radius of T is

ρ(T) =
√
β.

Thus under the assumption that ηλ ≤ 1, we have ρ(T) is monotonically decreasing with respect to
ηλ.

Proof. To find the spectral radius, we first derive the eigenvalues of T, which is equivalent to solving
the equation

det |T− γI| = det
∣∣∣∣1 + β − ηλ− γ −β

1 −γ

∣∣∣∣ = 0.

After rearrangement we have
γ2 − (1 + β − ηλ)γ + β = 0,

which is a quadratic equation. The discriminant is that

∆ = (1 + β − ηλ)2 − 4β =

((
1−

√
β
)2
− ηλ

)((
1 +

√
β
)2
− ηλ

)
.

Under the assumption that ηλ ≤ 1, the positivity of ∆ depends on the positivity of
(
1−
√
β
)2 − ηλ.

If ∆ ≥ 0, then the eigenvalues γ1, γ2 ∈ R. If ∆ < 0, then the eigenvalues γ1, γ2 /∈ R. We then
discuss these two cases.

Case 1: ∆ ≥ 0 In this case, we have

γ1 =
1

2

[
1 + β − ηλ+

√
(1 + β − ηλ)2 − 4β

]
,

γ2 =
1

2

[
1 + β − ηλ−

√
(1 + β − ηλ)2 − 4β

]
.

Then we have γ1 ≥ γ2, thus the spectral radius

ρ(T) = γ1 =
1

2

[
1 + β − ηλ+

√
(1 + β − ηλ)2 − 4β

]
.

Then we justify the monotonicity in this case. We have

∂ρ(T)

∂(ηλ)
=

1

2

[
−1 + −(1 + β − ηλ)√

(1 + β − ηλ)2 − 4β

]
< 0,

thus ρ(T) is monotonically decreasing with respect to ηλ.

Case 2: ∆ < 0 In this case, we have

γ1 =
1

2

[
1 + β − ηλ+

√
4β − (1 + β − ηλ)2i

]
,

γ2 =
1

2

[
1 + β − ηλ−

√
4β − (1 + β − ηλ)2i

]
,

where i is the imaginary unit. One can observe that γ1 is the complex conjugate of γ2. Thus we have
the spectral radius is

ρ(Tt,j) = |γ1| = |γ2| =
√
γ1γ̄1 =

√
γ1γ2

(D.2)
=
√

β.

In this case, ρ(Tt,j) does not depend on ηλ. Thus we finish the proof.
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Lemma 10 (ρ bounded by η, λ, β in real-eigenvalue case). For momentum matrix

T =

[
1 + β − ηλ −β

1 0

]
,

if Tt,j only has real eigenvalues, which is equivalent to that the discriminant (1+β−ηλ)2−4β > 0,
it holds that

ρ(T) ≤ 1− ηλ

2
− ηλ

4
(
1−
√
β
) . (C.25)

Proof. According to Lemma 9, the spectral radius of T is

ρ(T) =
1 + β − ηλ+

√
(1 + β − ηλ)2 − 4β

2
.

It holds that

ρ(T) =
1

2

[
1 + β − ηλ+

√
(1 + β − ηλ)2 − 4β

]
=

1

2

[
1 + β − ηλ+

√(
1 +

√
β
)2
− ηλ ·

√(
1−

√
β
)2
− ηλ

]

≤ 1

2

[
1 + β − ηλ+

(
1 +

√
β
)√(

1−
√
β
)2
− ηλ

]

=
1

2

[
1 + β − ηλ+ (1− β)

√
1− ηλ(

1−
√
β
)2
]

(D.3)
≤ 1

2

[
1 + β − ηλ+ (1− β)

(
1− ηλ

2
(
1−
√
β
)2
)]

=
1

2

[
2− ηλ− (1− β)ηλ

2(1−
√
β)2

]
≤ 1

2

[
2− ηλ− ηλ

2(1−
√
β)

]
= 1− ηλ

2
− ηλ

4
(
1−
√
β
) .

C.4 PROOF OF THEOREM 2

In this section, we specify the schedule to step decay and prove Theorem 2. We denote the step size
of the ℓ-th stage η′ℓ and its corresponding momentum matrix T′

ℓ,j to specify the stagewise case.

We first present a lemma to simplify our proof in the stagewise case.
Lemma 11. For all stage ℓ > 1, given matrices T′

ℓ,j defined in Eqn. (C.10), if η′ℓλj > (1−
√
β)2,

and the length of the stage

K ≥
√
κ ln (8T ) ,

it holds that ∥∥∥(T′
ℓ,j

)K∥∥∥ ≤ 1. (C.26)

Proof. In this case, the eigenvalues of T′
ℓ,j are not real and thus the spectral radius ρ(T′

ℓ,j) =
√
β as

Lemma 9 suggests. Thus it holds that∥∥∥(T′
ℓ,j

)K∥∥∥ ≤∥∥∥(T′
ℓ,j

)K∥∥∥
F

(C.22)
≤ 8Kρ

(
T′

ℓ,j

)K
= 8K

(√
β
)K

≤8T
(
1− 1√

κ

)√
κ ln(8T )
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(D.4)
≤ 8T · e− ln(8T ) = 1,

which concludes the proof.

Then we are ready to prove the convergence of step decay schedule.
Theorem 2. Given a quadratic objective f(w) and a step decay learning rate scheduler with
β = (1− 1/

√
κ)

2 with κ ≥ 4, and n ≡ T/K with settings that

1. decay factor C

1 < C ≤ T
√
κ. (3.13)

2. stepsize η′ℓ

η′ℓ =
1

L
· 1

Cℓ−1
(3.14)

3. stage length K

K =
T

logC (T
√
κ)

(3.15)

4. total iteration number T
T

ln (214T 8) · ln (26T 4) · logC(T 2)
≥ 2C

√
κ, (3.16)

then such scheduler exists, and the output of Algorithm 1 satisfies

E[f(wT )− f(w∗)] ≤E [f(w0)− f(w∗)] · exp
(
15 ln 2 + 2 lnT + 2 lnκ− 2T√

κ logC (T
√
κ)

)
+

4096C2dσ2

MT
ln2 (26T 4) · log2C (

T
√
κ
)
.

Proof. From (3.16), the total iteration number T satisfies that

T ≥ 2C
√
κ ln

(
214T 6κ

)
· ln
(
26T 4

)
· logC

(
T
√
κ
)
, (C.27)

and we define an auxiliary constant for our proof that

h ≡ h(T, κ) = 4 ln
(
26T 4

)
· logC

(
T
√
κ
)
≥ 1. (C.28)

From (3.16), we know that T ≥ 2C
√
κ. Then with (C.27) and (C.28), we can verify that the

following requirements are satisfied.

1. From Lemma 11:

K ≥
√
κ ln (8T ) . (C.29)

Verify: As T ≥
√
κ, it holds that

K
(3.15)
=

T

logC(T
√
κ)

(3.16)
≥ 2C

√
κ ln(214T 8) ln(26T 4) ≥

√
κ ln(8T ).

2. From variance case 1.1, the final stage needs the variance to be small enough that η′nL ≤
h/(T

√
κ):

K ≤ T

logC

(
T
√
κ

h

) . (C.30)

Verify: As T ≥
√
κ and h ≥ 1, it holds that

K
(3.15)
=

T

logC(T
√
κ)
≤ T

logC

(
T
√
κ

h

) .
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3. From variance case 1.1:

K ≤ T

logC
(
4κ
3

)
+ 1

. (C.31)

Verify: As T ≥ 2C
√
κ, it holds that

K
(3.15)
=

T

logC(T
√
κ)
≤ T

logC
(
4κ
3

)
+ 1

.

4. From variance case 1.2:

K ≥ 4T

h
ln
(
26T 4

)
. (C.32)

Verify: It holds that

h
(C.28)
= 4 ln

(
26T 4

)
· logC

(
T
√
κ
) (3.15)

=
4T

K
ln
(
26T 4

)
.

5. From variance case 2.1:

K ≥ 2C
√
κ ln

(
212T 6

)
. (C.33)

Verify: It holds that

K
(3.15)
=

T

logC(T
√
κ)

(3.16)
≥ 2C

√
κ ln(214T 8) ln(26T 4) ≥ 2C

√
κ ln

(
212T 6

)
.

6. From variance case 2.2:

K ≥
√
κ

2
ln
(
214T 6κ

)
. (C.34)

Verify: As T ≥
√
κ, it holds that

K
(3.15)
=

T

logC(T
√
κ)

(3.16)
≥ 2C

√
κ ln(214T 8) ln(26T 4) ≥

√
κ

2
ln
(
214T 6κ

)
.

Now we are ready to start our main analysis. From the former lemmas, it holds that

2E [f(wT )− f(w∗)]

(C.1)
= (wT −w∗)

⊤
H (wT −w∗)

(C.2)
= E

[[
w0 −w∗
w−1 −w∗

]⊤
M⊤

0 M
⊤
1 . . .M⊤

T−1

[
H O
O O

]
MT−1MT−2 . . .M0

[
w0 −w∗
w−1 −w∗

]]

+

T−1∑
τ=0

E

[
η2τ

[
nτ

0

]⊤
M⊤

τ+1M
⊤
τ+2 . . .M

⊤
T−1

[
H O
O O

]
MT−1MT−2 . . .Mτ+1

[
nτ

0

]]
(C.15) (C.20)
≤

d∑
j=1

λj ∥TT−1,jTT−2,j . . .T0,j∥2 E

∥∥∥∥∥
(
Π⊤V⊤

[
w0 −w∗
w−1 −w∗

])
2j−1:2j

∥∥∥∥∥
2

+ σ2
d∑

j=1

λ2
j

T−1∑
τ=0

η2τ ∥TT−1,jTT−2,j . . .Tτ+1,j∥2 .

If we denote bias and variance as

B
△
=

d∑
j=1

λj ∥TT−1,jTT−2,j ...T0,j∥2 E

∥∥∥∥∥
(
Π⊤V⊤

[
w0 − w∗
w−1 − w∗

])
2j−1:2j

∥∥∥∥∥
2

,

V
△
= σ2

d∑
j=1

λ2
j

T−1∑
τ=0

η2τ ∥TT−1,jTT−2,j ...Tτ+1,j∥2 ,
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we have the following results.

(1) Bounding bias term:

It holds that

B =

d∑
j=1

λj ∥TT−1,jTT−2,j ...T0,j∥2 E

∥∥∥∥∥
(
Π⊤V⊤

[
w0 − w∗
w−1 − w∗

])
2j−1:2j

∥∥∥∥∥
2

=

d∑
j=1

λj ∥TT−1,jTT−2,j ...T0,j∥2 E
∥∥∥(Π⊤V⊤w̃0

)
2j−1:2j

∥∥∥2
=

d∑
j=1

λj

∥∥∥∥(T′
n,j

)kn
(
T′

nℓ−1,j

)knℓ−1

...
(
T′

1,j

)k1

∥∥∥∥2 E∥∥∥(Π⊤V⊤w̃0

)
2j−1:2j

∥∥∥2
(C.26), (C.24)
≤

d∑
j=1

λj

∥∥∥(T′
1,j

)k1

∥∥∥2( 8√
(1 + β − ηT−1λj)2 − 4β

)2

E
∥∥∥(Π⊤V⊤w̃0

)
2j−1:2j

∥∥∥2
≤256

η′1µ

d∑
j=1

λj

∥∥∥(T′
1,j

)k1

∥∥∥2 E ∥∥∥(Π⊤V⊤w̃0

)
2j−1:2j

∥∥∥2
(C.22)
≤ 256

η′1µ

d∑
j=1

λj

(
8k1ρ

(
T′

1,j

)k1
)2
· E
∥∥∥(Π⊤V⊤w̃0

)
2j−1:2j

∥∥∥2
Lem. 9
≤ 256

η′1µ

d∑
j=1

λj

(
8k1ρ

(
T′

1,d

)k1
)2
· E
∥∥∥(Π⊤V⊤w̃0

)
2j−1:2j

∥∥∥2
=
256

η′1µ

(
8k1ρ

(
T′

1,d

)k1
)2
·

d∑
j=1

λjE
∥∥∥(Π⊤V⊤w̃0

)
2j−1:2j

∥∥∥2

=
256

η′1µ

(
8k1ρ

(
T′

1,d

)k1
)2
· E

 d∑
j=1

λj

(
Π⊤V⊤w̃0

)⊤
2j−1:2j

(
Π⊤V⊤w̃0

)
2j−1:2j


=
256

η′1µ

(
8k1ρ

(
T′

1,d

)k1
)2
· E

 d∑
j=1

(
Π⊤V⊤w̃0

)⊤
2j−1:2j

[
λj 0
0 λj

] (
Π⊤V⊤w̃0

)
2j−1:2j


=
256

η′1µ

(
8k1ρ

(
T′

1,d

)k1
)2

· E




(
Π⊤V⊤w̃0

)
1:2(

Π⊤V⊤w̃0

)
3:4

...(
Π⊤V⊤w̃0

)
2d−1:2d


⊤ 

S1

S2

. . .
Sd




(
Π⊤V⊤w̃0

)
1:2(

Π⊤V⊤w̃0

)
3:4

...(
Π⊤V⊤w̃0

)
2d−1:2d


 ,

with Sj =

[
λj 0
0 λj

]
=
256

η′1µ

(
8k1ρ

(
T′

1,d

)k1
)2
· E
[(
Π⊤V⊤w̃0

)⊤(
Λ⊗

[
1 0
0 1

]) (
Π⊤V⊤w̃0

)]
=
256

η′1µ

(
8k1ρ

(
T′

1,d

)k1
)2
· E
[
w̃⊤

0

(
VΠ

(
Λ⊗

[
1 0
0 1

])
Π⊤V⊤

)
w̃0

]
,

where the first inequality is because that Eqn. C.26 can be applied for the stages ℓ where T′
ℓ,j has

only complex eigenvalues and Eqn. C.24 can be applied to the matrix product for all stages ℓ that
Tℓ,j has only real eigenvalues. And the second inequality holds as√

(1 + β − η′nλj)2 − 4β =

√
(1−

√
β)2 − η′nλj ·

√
(1 +

√
β)2 − η′nλj
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≥
√
(1−

√
β)2 − η′nλj =

√
(1−

√
β)2 − C−nℓ+1 · η′1λj

(C.31)

≥
√
(1−

√
β)2 − 3

4
(1−

√
β)2 =

1

2
(1−

√
β) =

1

2

√
η′1µ.

Notice that

VΠ

(
Λ⊗

[
1 0
0 1

])
Π⊤V⊤ =

[
H O
O H

]
since

Π⊤V⊤
[
H O
O H

]
VΠ

(C.11)
=


e⊤1 0⊤

0⊤ e⊤1
...
e⊤d 0⊤

0⊤ e⊤d


[
U⊤ O
O U⊤

] [
H O
O H

] [
U O
O U

] [
e1 0 e2 0 . . . ed 0
0 e1 0 e2 . . . 0 ed

]

(C.12)
=


e⊤1 0⊤

0⊤ e⊤1
...
e⊤d 0⊤

0⊤ e⊤d


[
Λ O
O Λ

] [
e1 0 e2 0 . . . ed 0
0 e1 0 e2 . . . 0 ed

]

=



λ1

λ1

λ2

λ2

. . .
λd

λd


= Λ⊗

[
1 0
0 1

]

and Π,V are orthogonal matrices (Eqn. (C.14)). We then further have

B ≤256

η′1µ

(
8k1ρ

(
T′

1,d

)k1
)2
· E
[
w̃⊤

0

[
H O
O H

]
w̃0

]
(C.4)
=

256

η′1µ

(
8k1ρ

(
T′

1,d

)k1
)2
· E

[[
w0 −w∗
w−1 −w∗

]⊤ [
H O
O H

] [
w0 −w∗
w−1 −w∗

]]

=
256

η′1µ

(
8k1ρ

(
T′

1,d

)k1
)2
· E
[
(w0 −w∗)

⊤
H (w0 −w∗) + (w−1 −w∗)

⊤
H (w−1 −w∗)

]
(C.1)
=

256

η′1µ

(
8k1ρ

(
T′

1,d

)k1
)2
· E [f(w−1) + f(w0)− 2f(w∗)]

=
256

η′1µ

(
8k1

(√
β
)k1
)2

· E [f(w−1) + f(w0)− 2f(w∗)]

=
256

η′1µ

(
8k1

(
1−

√
η′1µ
)k1
)2

· E [f(w−1) + f(w0)− 2f(w∗)]

≤ exp
(
14 ln 2 + 2 ln k1 − 2 ln (η′1µ)− 2k1

√
η′1µ
)
· E [f(w−1) + f(w0)− 2f(w∗)]

=E [f(w−1) + f(w0)− 2f(w∗)] · exp
(
14 ln 2 + 2 ln k1 − 2 ln

(
1

κ

)
− 2T√

κ logC (T
√
κ)

)
≤E [f(w−1) + f(w0)− 2f(w∗)] · exp

(
14 ln 2 + 2 lnT + 2 lnκ− 2T√

κ logC (T
√
κ)

)
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=E [f(w0)− f(w∗)] · exp
(
15 ln 2 + 2 lnT + 2 lnκ− 2T√

κ logC (T
√
κ)

)
,

where the second last inequality is because of the fact that 1− x ≤ exp(−x) for x ≥ 0 and the last
equality is because of the setting of Algorithm 1 that v0 = 0 and thus w−1 = w0.

(2) Bounding variance term:

We denote

Vt,j
△
= η2t λ

2
j ∥TT−1,jTT−2,j ...Tt+1,j∥2

in the following analysis. We first assume that the batch size M = 1 in the main analysis and we will
transfer the result to the general M ≥ 1 case.

We make use of Lemma 9 and 10 and divide the analysis of Vt,j into 4 cases with respect to ηtλj and
equivalently the corresponding eigenvalues. The division of the 4 cases is due to two major boarders:
b1 = (1−

√
β)2 and b2 = h/(T

√
κ).

• For momentum matrix Tt,j with ηtλj > b1, T has complex eigenvalues and a large spectral
radius that supports sufficient geometric decay of Vt,j , the variance generated at iteration t
on λj . Case 2.1 and Case 2.2 discuss this case.

• For momentum matrix Tt,j with b2 < ηtλj ≤ b1, Tt,j has real eigenvalues but its spectral
radius is still large enough to support sufficient geometric decay of Vt,j . Case 1.2 discusses
this case.

• For momentum matrix Tt,j with ηtλj ≤ b2, the corresponding step size ηtλj is small
enough to ensure the generated variance Vt,j is small. Case 1.1 discusses this case.

Among this cases, we use requirement (C.31) to ensure that Case 1.1 exists and thus the variance can
be small enough. Let’s discuss Vt,j case by case then.

Case 1.1: Real eigenvalues with small step size. We first consider the case that Tt,j only has real
eigenvalues. This case is equivalent to that

(1 + β − ηtλj)
2 − 4β ≥ 0.

It is also equivalent to that

ηtλj ≤ (1−
√
β)2 = η′1µ. (C.35)

And in this case we further assume that ηtλj is small enough that

ηtλj ≤
Ch

T
√
κ
, (C.36)

where h is defined in (C.28). We also discuss From requirement (C.30), this case exists. Then from
the fact that Frobenius norm of a matrix is always larger than ℓ2 norm and using Lemma 8 we can
obtain that

∥TT−1,jTT−2,j ...Tτ+1,j∥ ≤∥TT−1,jTT−2,j ...Tτ+1,j∥F
(C.24)
≤ min

(
8(T − 1− τ),

8√
(1 + β − ηT−1λj)2 − 4β

)
ρ(TT−1,j)

T−1−τ

≤ 8√
(1 + β − ηT−1λj)2 − 4β

ρ(TT−1,j)
T−1−τ

=
8√

(1 + β − η′nλj)2 − 4β
ρ(TT−1,j)

T−1−τ .

(C.37)
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Then we analyze the right hand side term by term. First it holds that√
(1 + β − η′nλj)2 − 4β =

√
(1−

√
β)2 − η′nλj ·

√
(1 +

√
β)2 − η′nλj

≥
√
(1−

√
β)2 − η′nλj =

√
(1−

√
β)2 − C−nℓ+1 · η′1λj

(C.31)

≥
√
(1−

√
β)2 − 3

4
(1−

√
β)2 =

1

2
(1−

√
β) =

1

2

√
η′1µ.

(C.38)

From Lemma 9, ρ(Tt,j) < 1 holds for all t, j. Combining all above we can obtain that for t, j
satisfying ηtλj ≤ h/ (T

√
κ), it holds that

Vt,j = η2t λ
2
j ∥TT−1,jTT−2,j ...Tt+1,j∥2

(C.36), (C.37)
≤

(
Ch

T
√
κ

)2
(

8√
(1 + β − η′nλj)2 − 4β

)2

(C.38)
≤ C2h2

T 2κ

64(
1
2

√
η′1µ
)2 =

256C2h2

T 2κη′1µ
=

256C2h2

T 2
,

where the last equality holds as η′1 = 1/L.

Case 1.2: Real eigenvalues with large step size. Then we continue to consider the case that Tt,j

only has real eigenvalues. Similar to case 1.1, this case is equivalent to that

(1 + β − ηtλj)
2 − 4β ≥ 0.

It is also equivalent to that

ηtλj ≤ (1−
√
β)2 = η′1µ. (C.39)

But in this case we further assume that ηtλj is large enough that

ηtλj ≥
Ch

T
√
κ

as the case that ηtλj ≤ Ch/(T
√
κ) has been discussed in case 1.1. From requirement (3.16) we

know that such stage exists. Then according to Lemma 10, with ηtλj ≥ h/(T
√
κ), it holds that

ρ(Tt,j) =
1

2

[
1 + β − ηtλj +

√
(1 + β − ηtλj)2 − 4β

]
(C.25)
≤ 1− ηtλj

4
(
1−
√
β
) = 1− ηtλj

4
√
η′1µ

≤ 1− h

4T
.

Thus if we denote t∗ to be the first iteration that ηt∗λj ≤ h/ (T
√
κ), it holds that

Vt,j = η2t λ
2
j ∥TT−1,jTT−2,j ...Tt+1,j∥2

≤ η2t λ
2
j ∥TT−1,jTT−2,j ...Tt∗,j∥

2 ∥Tt∗−1,jTt∗−2,j ...Tt+1,j∥2

(C.23)
≤ η2t λ

2
j ∥TT−1,jTT−2,j ...Tt∗,j∥

2 ∥∥Tt∗−t−1
t∗,j

∥∥2
(C.38), (C.22)
≤ η2t λ

2
j

(
8√

(1 + β − η′nλj)2 − 4β

)2

· (8(t∗ − t− 1))
2

(
1− h

4T

)2(t∗−t−1)

(C.38)
≤ η2t λ

2
j

212T 2(
1
2

√
η′1µ
)2 (1− h

4T

)2(t∗−t−1)

≤ η2t λ
2
j

212T 2(
1
2

√
η′1µ
)2 (1− h

4T

)2K

(C.32), (C.39)
≤ (η′1µ)

2 212T 2(
1
2

√
η′1µ
)2 (1− h

4T

) 4T
h ·2 ln(26T 4) (D.4)

≤ 256

T 2κ
,
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where the third last inequality holds as ηtλj ≥ Ch/(T
√
κ), which suggests that there is at least one

stage between t and t∗.

Case 2.1: Complex eigenvalues with small step size. Then we consider the case that T′
ℓ,j has

complex eigenvalues but T′
ℓ+1,j has real eigenvalues, which is equivalent to that

C(1−
√
β)2 ≥ ηtλj > (1−

√
β)2 = η′1µ. (C.40)

Thus if we denote t∗ to be the first iteration in the ℓ+1 stage, consider the spectral radius of the ℓ+1
stage, it holds that

ρ(Tt∗,j) = ρ(T′
ℓ+1,j) =

1

2

[
1 + β − η′ℓ+1λj +

√
(1 + β − η′ℓ+1λj)2 − 4β

]
(C.25)
≤ 1−

η′ℓ+1λj

4(1−
√
β)

= 1−
η′ℓ+1λj

4
√
η′1µ

(C.40)
≤ 1− η′1µ

4C
√

η′1µ
= 1−

√
η′1µ

4C
.

(C.41)

Thus we have

Vt,j = η2t λ
2
j ∥TT−1,jTT−2,j ...Tt+1,j∥2

≤ (Cη′ℓ+1λj)
2 ∥TT−1,jTT−2,j ...Tt+1,j∥2

(C.35)

≤ C2 (η′1µ)
2 ∥TT−1,jTT−2,j ...Tt+1,j∥2

≤ C2(η′1µ)
2 ∥TT−1,jTT−2,j ...Tt∗+K,j∥2 ∥Tt∗+K−1,jTT−2,j ...Tt∗,j∥

2 ∥Tt∗−1,jTt∗−2,j ...Tt+1,j∥2

(C.38)

≤ C2(η′1µ)
2 · 256

η′1µ
∥Tt∗+K−1,jTT−2,j ...Tt∗,j∥

2 ∥Tt∗−1,jTt∗−2,j ...Tt+1,j∥2

= 256C2η′1µ ·
∥∥(T′

ℓ+1,j

)∥∥2 ∥Tt∗−1,jTt∗−2,j ...Tt+1,j∥2

(C.41)

≤ 256C2η′1µ ·

8T

(
1−

√
η′1µ

4C

)K+1
2

∥Tt∗−1,jTt∗−2,j ...Tt+1,j∥2

≤ 256C2η′1µ ·

8T

(
1−

√
η′1µ

4C

)K
2

· max
0≤i≤K

∥∥∥(T′
ℓ,j

)K−i
∥∥∥2

(C.22)
≤ 256C2η′1µ ·

8T

(
1−

√
η′1µ

4C

)K
2

· (8K)2 ≤ 220C2T 4η′1µ

(
1−

√
η′1µ

4C

)2K

(C.33), (C.40)
≤ 220C2T 4η′1µ

(
1−

√
η′1µ

4C

)4C
√
κ·ln(212T 6)

(D.4)
≤ 256C2

T 2
,

where in the fifth inequality we introduce maxi because the leading stage ℓ may be incomplete.

Case 2.2: Complex eigenvalues with large step size. Finally we consider the case that Tt,j has
complex eigenvalues which is equivalent to Equation (C.40) and also Tt,j is far away from the
boundary, namely, the step size of the next stage can still satisfy Equation (C.40). In this stage, it
holds that

ηtλj > Cη′1µ. (C.42)

Thus if we denote t∗ the first iteration of the ℓ∗ + 1 stage where ℓ∗ is the last stage that T′
ℓ,j has

complex eigenvalues, namely, η′ℓ∗λj ∈ (η′1µ,Cη′1µ]. We denote ℓt the stage where iteration t is in.
Thus it holds that ℓt ≤ ℓ∗ − 1. Then we consider that

Vt,j =η2t λ
2
j ∥TT−1,jTT−2,j ...Tt+1,j∥2

(3.14)

≤ ∥TT−1,j ...Tt∗,j∥
2
∥∥∥(T′

ℓ∗,j

)K∥∥∥2 ∥∥∥(T′
ℓ∗−1,j

)K∥∥∥2 ...∥∥∥(T′
ℓt+1,j

)K∥∥∥2
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· max
0≤i≤K

∥∥∥(T′
ℓt,j

)K−i
∥∥∥2

(C.37)
≤

(
8√

(1 + β − η′nλj)2 − 4β

)2 ∥∥∥(T′
ℓ∗,j

)K∥∥∥2 ∥∥∥(T′
ℓ∗−1,j

)K∥∥∥2 ...∥∥∥(T′
ℓt+1,j

)K∥∥∥2
· max
0≤i≤K

∥∥∥(T′
ℓt,j

)K−i
∥∥∥2

(C.38)

≤ 256

η′1µ

∥∥∥(T′
ℓ∗,j

)K∥∥∥2 ∥∥∥(T′
ℓ∗−1,j

)K∥∥∥2 ...∥∥∥(T′
ℓt+1,j

)K∥∥∥2 · max
0≤i≤K

∥∥∥(T′
ℓt,j

)K−i
∥∥∥2

(C.26)
≤ 256

η′1µ

∥∥∥(T′
ℓ∗,j

)K∥∥∥2 · max
0≤i≤K

∥∥∥(T′
ℓt,j

)K−i
∥∥∥2

(C.22)
≤ 256

η′1µ

(
8K

(√
β
)K)2

(8K)
2 ≤ 220K4

η′1µ

(
1−

√
η′1µ
)2K

(C.34), (C.42)
≤ 220T 4

η′1µ

(
1−

√
η′1µ
)√κ ln(214T 6κ) (D.4)

≤ 256

T 2
,

where in the first inequality we introduce maxi because the leading stage ℓt may be incomplete.

Therefore, combining the four cases, we have the result

V = σ2
d∑

j=1

T−1∑
t=0

Vt,j ≤σ2
d∑

j=1

T−1∑
t=0

256C2h2

T 2

(C.28)
≤ 4096C2dσ2

T
ln2
(
26T 4

)
· log2C

(
T
√
κ
)
,

which concludes the proof in the case that batch size M = 1.

For general batch size M ≥ 1, the gradient noise

n′
t =∇wf(wt)−

1

|Bt|
∑
ξ∈Bt

∇wf(wt, ξ)

=
1

M

∑
ξ∈Bt

(∇wf(wt)−∇wf(wt, ξ))

=
1

M

M−1∑
i=0

ntM+i

satisfies

E
[
n′
t (n

′
t)

⊤
]

=E

[(
1

M

M−1∑
i=0

ntM+i

)(
1

M

M−1∑
i′=0

n⊤
tM+i′

)]

=
1

M2
· E

M−1∑
i=0

ntM+in
⊤
tM+i +

∑
i̸=i′

ntM+in
⊤
tM+i′


=

1

M2
·

M−1∑
i=0

E
[
ntM+in

⊤
tM+i

]
+
∑
i ̸=i′

E
[
ntM+in

⊤
tM+i′

]
=

1

M2
·

M−1∑
i=0

E
[
ntM+in

⊤
tM+i

]
+
∑
i ̸=i′

E [ntM+i]E
[
n⊤
tM+i′

] ▷ Assumption 1

=
1

M2
·
M−1∑
i=0

E
[
ntM+in

⊤
tM+i

]
▷ Assumption 2

⪯ 1

M2
·M · σ2H ▷ Assumption 3
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=
σ2H

M
.

So for general M ≥ 1, it is equivalent to replacing the noise term σ2 with σ2/M . Thus it holds that

V ≤ 4096C2dσ2

MT
ln2
(
26T 4

)
· log2C

(
T
√
κ
)
.

Combining the bias and variance term, we can verify that Theorem 2 holds.

D PRELIMINARY: USEFUL LEMMAS

We provide some basic mathematical tools relevant to our proof. It serves as a manual section and
can be skipped if one is already familiar with those tools.

D.1 RANDOM VARIABLES

Lemma 12. If each pair of entries of matrix X and matrix Y are independent from each other, then
E [XY] = E [X]E [Y] (D.1)

Proof. For ∀i, j,

E [XY]i,j =E
[
(XY)i,j

]
= E

[∑
k

Xi,kYk,j

]
=
∑
k

E [Xi,kYk,j ] =
∑
k

E [Xi,k]E [Yk,j ]

=
∑
k

E [X]i,k E [Y]k,j = (E [X]E [Y])i,j

Thus E[XY] = E[X]E[Y].

D.2 LOEWNER ORDER

In Loewner order, X ⪯ Y if and only if ∀z, z⊤(Y −X)z ≥ 0.
Lemma 13. Given two 2× 2 block matrices X and Y where

X11 ⪯ Y11, X12 = Y12, X21 = Y21, X22 = Y22,

then X ⪯ Y.

Proof.

For ∀z =

[
z1
z2

]
, z⊤(Y −X)z =

[
z⊤1 z⊤2

] [Y11 −X11 O
O O

] [
z1
z2

]
= z⊤1 (Y11 −X11)z1 ≥ 0,

where the inequality comes from X11 ⪯ Y11. Therefore X ⪯ Y according to the definition of
Loewner order.

Lemma 14. If X ⪯ Y ∈ Rn×n, then for ∀C ∈ Rn×m,
C⊤XC ⪯ C⊤YC

Proof. For ∀z ∈ Rm,
z⊤
(
C⊤YC−C⊤XC

)
z = (Cz)⊤(Y −X)(Cz) ≥ 0 ⇒ C⊤XC ⪯ C⊤YC

Lemma 15. If X ⪯ Y, then tr(X) ≤ tr(Y).

Proof. Denote

ei = [0 . . . 0 1︸︷︷︸
i−th

0 . . . 0]
⊤ ∈ Rd,

Yii −Xii = e⊤i (Y −X)ei ≥ 0 for ∀i ⇒ tr(Y)− tr(X) =

d∑
i=1

(Yii −Xii) ≥ 0
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D.3 QUADRATIC EQUATIONS

Lemma 16. (Roots of quadratic equations) If x1, x2 ∈ C are roots of equation x2 +Bx+ C = 0,
where B,C ∈ R, then

(1) x1 + x2 = −B,

(2) x1x2 = C

(3) x1x2 + x1x2 =

{
2C, if x1, x2 are real
B2 − 2C, if x1, x2 are imaginary

(4) |x1|2 + |x2|2 =

{
B2 − 2C, if x1, x2 are real
2C, if x1, x2 are imaginary

(D.2)

Proof. (1) and (2) are a special case of the famous Vieta’s formulas, which can be directly obtained
from

x2 +Bx+ C = (x− x1)(x− x2) = x2 − (x1 + x2)x+ (x1x2).

(3) can be derived from the form of x1 and x2. The roots of x2 +Bx+ C = 0 is

x =
1

2

(
−B ±

√
B2 − 4C

)
,

If x1 and x2 are both real, then

x1x2 + x1x2 = x1x2 + x1x2 = 2x1x2 = 2C.

Otherwise x1 and x2 are both imaginary, then x1 = x2, x2 = x1, which follows

x1x2 + x1x2 = x2
1 + x2

2 = (x1 + x2)
2 − 2x1x2 = B2 − 2C.

(4) can be obtained from (1) and (3) by

|x1|2 + |x2|2 =x1x1 + x2x2 = (x1 + x2) (x1 + x2)− (x1x2 + x1x2) = B2 − (x1x2 + x1x2)

=

{
B2 − 2C, if x1, x2 are real
2C, if x1, x2 are imaginary

D.4 BOUNDING SPECIAL FUNCTIONS

Lemma 17. √
1− x ≤ 1− x

2
holds for ∀x ∈ [0, 1]. (D.3)

Proof. Only in this lemma, denote

f(x) ≜
√
1− x−

(
1− x

2

)
,

then for ∀x ∈ [0, 1),

f(0) = 0,
d

dx
f(x) = −1

2
· 1√

1− x
+

1

2
=

1

2

(
1− 1√

1− x

)
≤ 0

⇒ f(x) ≤ f(0) = 0

⇒
√
1− x ≤ 1− x

2

For x = 1, we also have
√
1− x = 0 ≤ 1/2 = 1− x/2.

Lemma 18. For x ∈ [1,+∞), it holds that

f(x) =

(
1− 1

x

)x

≤ 1

e
. (D.4)

39



Published as a conference paper at ICLR 2024

Proof. The lemma is equivalent to that

x ln

(
1− 1

x

)
≤ −1

Denote g(t) = ln(1− t) + t, t ∈ (0, 1), then g(t) is monotonically decreasing as

g′(t) = − 1

1− t
+ 1 < 0.

Therefore, g(t) ≤ g(0) = 0 when t ∈ (0, 1). Thus substituting t = 1/x, it holds that

ln

(
1− 1

x

)
+

1

x
≤ 0.

After rearrangement, we can obtain the result.
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