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Abstract

In this paper, we propose self-tuned robust estimators for estimating the mean of heavy-
tailed distributions, where heavy-tailed distributions refer to distributions with only finite
variances. Our method involves introducing a new loss function that considers both the mean
parameter and a robustification parameter. By simultaneously optimizing the empirical loss
function with respect to both parameters, the resulting estimator for the robustification
parameter can automatically adapt to the unknown data variance and can achieve near-
optimal finite-sample performance. Our approach outperforms previous methods in terms
of both computational and asymptotic efficiency. Specifically, it does not require cross-
validation or Lepski’s method to tune the robustification parameter, and the variance of our
estimator achieves the Cramér-Rao lower bound.

1 Introduction

The success of numerous statistical and learning methods heavily relies on the assumption of light-tailed
or sub-Gaussian errors (Wainwright, 2019). A random variable Z is considered to have sub-Gaussian tails
if there exist constants c1 and c2 such that P(|Z − EZ| > t) ≤ c1 exp(−c2t

2) for any t ≥ 0. However, in
many practical applications, data are often collected with a high degree of noise. For instance, in the context
of gene expression data analysis, it has been observed that certain gene expression levels exhibit kurtoses
much larger than 3, regardless of the normalization method used (Wang et al., 2015). Furthermore, a recent
study on functional magnetic resonance imaging (Eklund et al., 2016) demonstrates that the principal cause
of invalid functional magnetic resonance imaging inferences is that the data do not follow the assumed
Gaussian shape. It is therefore important to develop robust statistical methods with desirable statistical
performance in the presence of heavy-tailed data.

In this paper, we focus on robust mean estimation problems, which serves as the foundation for tackling more
general problems. Specifically, we consider a generative model where data, {yi, 1 ≤ i ≤ n}, are generated
according to

yi = µ∗ + εi, 1 ≤ i ≤ n, (1.1)

where the random errors εi ∈ R are independent and identically distributed (i.i.d.) samples from ε, which
follows the law F0. We assume that ε is mean zero and has a finite variance only, with Eε∼F0ε = 0
and Eε∼F0ε

2 = σ2, where the expectation Eε∼F0ε represents the expected value of ε when ε follows the
distribution F0.

When estimating the mean µ∗, the sample mean estimator
∑n

i=1 yi/n is known to achieve, at best, a
polynomial-type nonasymptotic confidence width (Catoni, 2012), when the errors have only finite variances.
This means that there exists a distribution F = Fn,δ for ε with a mean of 0 and variance of σ2, such that
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the followings hold simultaneously:

P

(∣∣∣∣∣
n∑

i=1

yi

n
− µ∗

∣∣∣∣∣ ≤ σ

√
1

2n · 1
δ

)
≥ 1 − 2δ, ∀ δ ∈

(
0, 1/2

)
;

P

(∣∣∣∣∣
n∑

i=1

yi

n
− µ∗

∣∣∣∣∣ ≤ σ

√
1

2n · 1
δ

(
1 − 2eδ

n

)n−1
2
)

≤ 1 − 2δ, ∀ δ ∈
(
0, (2e)−1).

In simpler terms, this indicates that the sample mean does not converge quickly enough to the true mean
when the errors have only finite variances.

Catoni (2012) made an important step towards estimating the mean with faster concentration. Specifically,
Catoni introduced a robust mean estimator µ̂(τ), which depends on a tuning parameter τ , and deviates from
the true mean µ∗ logarithmically in 1/δ. Specifically, with τ properly tuned, µ̂(τ) satisfies the following
concentration inequality:

P

(
|µ̂(τ) − µ∗| ≤ cσ

√
1
n

· log
(

1
δ

))
≥ 1 − 2δ, (1.2)

where c is some constant. We refer to estimators that satisfy this deviation property as sub-Gaussian mean
estimators because they achieve the same performance as if the data were sub-Gaussian. Following Catoni’s
work, there has been a surge of research on sub-Gaussian estimators using the empirical risk minimization
approach in various settings; see Brownlees et al. (2015); Hsu & Sabato (2016); Fan et al. (2017); Avella-
Medina et al. (2018); Lugosi & Mendelson (2019b); Lecué & Lerasle (2020); Wang et al. (2021) and Sun
et al. (2020), among others. For a recent review, we refer readers to Ke et al. (2019).

To implement Catoni’s estimator (Catoni, 2012), there is a tuning parameter τ = τ(σ) that depends on the
unknown variance σ2 and needs to be carefully tuned. However, in practice, this often involves computation-
ally expensive methods such as cross-validation or Lepski’s method (Catoni, 2012). For instance, when using
the adaptive Huber estimator (Sun et al., 2020; Avella-Medina et al., 2018) to estimate a d × d covariance
matrix entrywise, as many as d2 tuning parameters can be involved. If cross-validation or Lepski’s method
were employed, the computational burden would increase significantly as d grows. Therefore, it is natural
to ask the following question:

Is it possible to develop computationally efficient robust mean estimators for distributions
with finite but unknown variances?

This paper tackles the aforementioned challenge by proposing a self-tuned robust mean estimator for dis-
tributions with only two moments. We propose an empirical risk minimization (ERM) approach based on
a novel loss function. The proposed loss function is smooth with respect to both the mean parameter and
the robustification parameter. By jointly optimizing both parameters, we prove that the resulting robusti-
fication parameter can automatically adapt to the unknowns, and the resulting mean estimator can achieve
sub-Gaussian-like performance as if the data were Gaussian, up to logarithmic terms. Therefore, compared
to previous methods, our approach eliminates the need to use cross-validation or Lepski’s method to tune the
robustification parameters. This significantly boosts the computational efficiency of data analysis in practi-
cal applications. Furthermore, from an asymptotic standpoint, we establish that our proposed estimator is
asymptotically efficient, meaning it achieves the Cramér-Rao lower bound asymptotically (Van der Vaart,
2000).

Related work In addition to the empirical risk minimization (ERM) based methods, median-of-means
(MoM) techniques (Devroye et al., 2016; Lugosi & Mendelson, 2019b; Lecué & Lerasle, 2020) are often used
to construct robust estimators in the presence of heavy-tailed distributions. A recent survey on median-of-
means can be found in the work by Lugosi & Mendelson (2019a). The MoM technique involves randomly
splitting the full data into k subsamples and computing the mean for each subsample. The MoM estimator is
then obtained as the median of these local estimators. The number of subsamples k is the only user-defined
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parameter in MoM, and it can be chosen to be independent of the unknowns, making it tuning-free. However,
in our experience, MoM often exhibits undesirable numerical performance when compared to ERM based
estimators. To understand this phenomenon, we take an asymptotic viewpoint and compare the asymptotic
efficiencies of our estimator and the MoM estimator. We show that the relative efficiency of the MoM
estimator with respect to ours is only 2/π ≈ 0.64.

Paper overview Section 2 introduces a novel loss function and presents the empirical risk minimization
(ERM) approach. The nonasymptotic theory is presented in Section 3. In Section 4, we compare our pro-
posed estimator with popular alternatives in terms of asymptotic performance. Section 5 provides numerical
experiments. Finally, we conclude in Section 6. The supplementary material contains basic calculations, al-
gorithms, a comparison with Lepski’s method, proofs of the main results, supporting lemmas, and additional
results.

Notation We summarize here the notation that will be used throughout the paper. We use c and C to
denote generic constants which may change from line to line. For two sequences of real numbers {an, n ≥ 1}
and {bn, n ≥ 1}, an ≲ bn or an = O(b0) denotes an ≤ Cbn for some constant C > 0, and an ≳ bn if bn ≲ an.
We use an ∝ bn to denote that an ≳ bn and an ≲ bn. Õ hides logarithmic terms. The log operator is
understood with respect to the base e. For a function f(x, y), we use ∇xf(x, y) or ∂

∂xf(x, y) to denote its
partial derivative of f(x, y) with respect to x. ∇f(x, y) denotes the gradient of f(x, y). For a vector x ∈ Rd,
let ∥x∥2 denote its Euclidean norm. For a symmetric positive semi-definite matrix Σ, λmax(Σ) denotes its
largest eigenvalue.

2 A new loss function for self-tuning

This section introduces a new loss function to robustly estimate the mean of distributions with only finite
variances while automatically tuning the robustification parameter.

We start with the pseudo-Huber loss (Hastie et al., 2009)

ℓτ (x) = τ
√
τ2 + x2 − τ2 = τ2

√
1 + x2/τ2 − τ2, (2.1)

where τ serves as a tuning parameter. It exhibits behavior similar to the Huber loss (Huber, 1964), approx-
imating x2/2 when |x| is small and resembling a straight line with slope τ for large values of |x|. To see this,
some algebra yields {

ϵ2−2(1+ϵ)
2ϵ2 x2 ≤ ℓτ (x) ≤ x2

2 , if x2/τ2 ≤ 4(1 + ϵ)/ϵ2,
τ |x|
1+ϵ ≤ ℓτ (x) ≤ τ |x|, if x2/τ2 > 4(1 + ϵ)/ϵ2.

We refer to τ as the robustification parameter because it controls the trade-off between the quadratic loss
and the least absolute deviation loss, where the latter induces robustness. In practice, τ is typically tuned
using computationally expensive methods such as Lepski’s method (Catoni, 2012) or cross-validation (Sun
et al., 2020).

To avoid these computationally expensive procedures, our goal is to propose a new loss function of both
the mean parameter µ and the robustification parameter τ (or its equivalent) so that optimizing over them
jointly yields an automatically tuned robustification parameter τ̂ and thus the correspondingly self-tuned
mean estimator µ̂(τ̂). Unlike the Huber loss (Sun et al., 2020), the pseudo-Huber loss is a smooth function
of τ , making optimization with respect to τ possible. To motivate the new loss function, let us first consider
the estimator µ̂(τ) with τ fixed a priori:

µ̂(τ) = argmin
µ

{
1
n

n∑
i=1

ℓτ (yi − µ)
}
. (2.2)

We provide an informal result below, with its rigorous version presented as Theorem 3.1 in subsequent
sections.
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Theorem 2.1 (Informal result). Take τ = σ
√
n/z with z =

√
log(1/δ), and assume n is sufficiently large.

Then for any 0 < δ < 1, with probability at least 1 − δ, we have

|µ̂(τ) − µ∗| ≲ σ
√

log(2/δ)
n

.

The above result indicates that when τ = σ
√
n/z with z =

√
log(1/δ), the estimator µ̂(τ) achieves the

desired sub-Gaussian performance. The only unknown parameter in τ is the standard deviation σ. In view
of this, we treat σ as an unknown parameter v, substitute τ =

√
nv/z into (2.1), and obtain

ℓ(x, v) := ℓτ (x) = nv2

z2

(√
1 + x2z2

nv2 − 1
)
, (2.3)

where z is a confidence parameter because it depends on δ as in the theorem above.

Instead of searching for the optimal τ , we will search for the optimal v, which is expected to be close to the
underlying standard deviation σ intuitively. We will use the term “robustification parameter" interchangeably
for both τ and v, as they are equivalent up to a multiplier. However, directly minimizing ℓ(x, v) with respect
to v leads to meaningless solutions, specifically v = 0 and v = +∞. To avoid these trivialities, we consider
a new loss by dividing ℓ(x, v) by v and then adding a linear penalty function av. This will be referred to as
the penalized pseudo-Huber loss, formally defined below.
Definition 2.2 (Penalized pseudo-Huber loss). The penalized pseudo-Huber loss ℓp(x, v) is defined as fol-
lows:

ℓp(x, v) := ℓ(x, v) + av2

v
= nv

z2

(√
1 + x2z2

nv2 − 1
)

+ av, (2.4)

where n is the sample size, z is a confidence parameter, and a is an adjustment factor.

We thus propose to optimize jointly over µ and v by solving the following ERM problem:

{ µ̂, v̂ } = argmin
µ, v

{
Ln(µ, v) := 1

n

n∑
i=1

ℓp(yi − µ, v)
}

= argmin
µ, v

1
n

n∑
i=1

{
nv

z2

(√
1 + (yi − µ)2z2

nv2 − 1
)

+ av

}
. (2.5)

When v is fixed a priori, solving the optimization problem above with respect to µ is equivalent to directly
minimizing the empirical pseudo-Huber loss in (2.2) with τ = v

√
n/z.

To gain insight into the loss function Ln(µ, v), let us consider its population version:

L(µ, v) = ELn(µ, v) = nv

z2 E

(√
1 + (y − µ)2z2

nv2 − 1
)

+ av.

Define the population oracle v∗ as the minimizer of L(µ∗, v) with the true mean µ∗ given a priori, that is

v∗ = argmin
τ

L(µ∗, v) = argmin
v

{
nv

z2 E

(√
1 + (y − µ)2z2

nv2 − 1
)

+ av

}
,

or equivalently,

∇vL(µ∗, v)
∣∣
v=v∗

=
{
n

z2

(
∇vE

√
v2 + ε2z2

n
− 1
)

+ a

}∣∣∣∣∣
v=v∗

= 0.
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By interchanging the derivative with the expectation, we obtain

E
v∗√

v2
∗ + z2ε2/n

= 1 − az2

n
. (2.6)

Let σ2
x2 := E{ε21(ε2 ≤ x2)}, where 1(A) is the indicator function of the set A. Our first key result utilizes

the above characterization of v∗ to derive how v∗ is able to automatically adapt to the standard deviation
σ, promising the effectiveness of our procedure.
Theorem 2.3 (Self-tuning property of v∗). Suppose n ≥ az2. Then, for any γ ∈ [0, 1), we have

(1 − γ)σ2
φτ2

∗

2a ≤ v2
∗ ≤ σ2

2a ,

where φ = γ/(1 − γ) and τ∗ = v∗
√
n/z. Moreover, we have limn→∞ v2

∗ = σ2/(2a).

The above result indicates that for any finite sample size n ≥ az2, the oracle v2
∗ can automatically adapt

to the (truncated) variance. It is bounded between the scaled truncated variance σ2
φτ∗

/(2a) and the scaled
variance σ2/(2a). Since the second moment exists, we have σ2

φτ2
∗

→ σ2 as φτ2
∗ → ∞ by the dominant

convergence theorem. For a large sample size n, σ2
φτ2

∗
is close to σ2, and therefore v2

∗ is approximately between
(1−γ)σ2/(2a) and σ2/(2a). Furthermore, an asymptotic analysis reveals that limn→∞ v2

∗ = σ2/(2a). Taking
a = 1/2 yields limn→∞ v2

∗ = σ2, indicating that the oracle v2
∗ with a = 1/2 should approximate the true

variance in the large sample limit. This also suggests the optimality of choosing a = 1/2, which is assumed
throughout the rest of the paper.

Our next result shows that the proposed empirical loss function is jointly convex in both µ and v. This
convexity property allows us to employ standard first-order optimization algorithms to compute the global
optima efficiently.
Proposition 2.4 (Joint convexity). The empirical loss function Ln(µ, v) in (2.5) is jointly convex in both
µ and v. Furthermore, if there exist at least two distinct data points, the empirical loss function is strictly
convex in both µ and v provided that v > 0.

Lastly, it was brought to our attention that our formulation (2.5) bears a resemblance to the concomitant
estimator by Ronchetti & Huber (2009):

argmin
µ,v

{
1
n

n∑
i=1

ρ

(
yi − µ

v

)
v + av

}
,

where ρ is any loss function, and a is a user-specified constant. Notably, the selection of the appropri-
ate constant a is scarcely addressed within the existing literature. Our motivation stems from a different
perspective. We aim to develop robust mean estimators that exhibit improved finite-sample properties in
the presence of heavy-tailed data. The empirical loss function Ln that we propose can be perceived as an
intricately adapted variant of theirs. Specifically, we leverage the smooth pseudo-Huber loss, in which we set
the robustification parameter τ as τ = v

√
n/z to ensure the sub-Gaussian-like performance for the robust

mean estimator. Here z serves as a judiciously chosen confidence parameter. Concurrently, we identify the
optimal adjustment factor as a = 1/2. To the best of our knowledge, all of these findings are the first among
the literature.

3 Finite-sample theory

This section presents the self-tuning property for estimated robustification parameter and then the finite-
sample property of the self-tuned mean estimator. Recall a = 1/2.

3.1 Estimation with a fixed v
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With a light abuse of notation, we use µ̂(v) to denote the minimizer of the penalized pseudo-Huber loss in
(2.5) with v fixed. Recall that we have used µ̂(τ) to denote the minimizer of the pseudo-Huber loss in (2.2),
and the µ̂(v) equivalent to µ̂(τ) with τ = v

√
n/z. We start with the theoretical properties for µ̂(v). We

need the following locally strong convexity assumption, which will be verified later in this subsection.
Assumption 1 (Locally strong convexity in µ). The empirical Hessian matrix is locally strongly convex
with respect to µ such that, for any µ ∈ Br(µ∗) := {µ : |µ− µ∗| ≤ r},

inf
µ∈Br(µ∗)

⟨∇µLn(µ, v) − ∇µLn(µ∗, v), µ− µ∗⟩
|µ− µ∗|2

≥ κℓ > 0

where r > 0 is a local radius parameter.
Theorem 3.1. For any 0 < δ < 1, suppose v > 0 is fixed and let z2 = log(1/δ). Assume Assumption 1
holds with any r≥ r0 : = κ−1

ℓ

(
σ/(

√
2v) + 1

)2 √log(2/δ)/n. Then, with probability at least 1 − δ, we have

|µ̂(v) − µ∗| < 1
κℓ

(
σ√
2v

+ 1
)2 √ log(2/δ)

n
= C

κℓ

√
log(2/δ)

n
,

where C = (σ/(
√

2v) + 1)2 only depends on v and σ.

The above theorem states that under the assumption of local strong convexity, µ̂(v) achieves a sub-Gaussian
deviation bound when the data have only bounded variances. In particular, if we choose v = σ and apply
the theorem, we obtain:

|µ̂(σ) − µ∗| ≤ 1
κℓ

(σ
σ

+ 1
)2
√

log(2/δ)
n

≤ 4
κℓ

√
log(2/δ)

n
.

Assumption 1 requires the loss function to exhibit curvature in a small neighborhood Br(µ∗), while the
penalized loss (2.4) transitions from a quadratic function to a linear function roughly at |x| = τ ∝

√
n.

Quadratic functions always have curvature, so intuitively, Assumption 1 holds as long as
√
n ≳ r ≥ r0 ∝

√
1/n.

The latter condition is automatically guaranteed when n is sufficiently large. Taking r to be the smallest r0
results in Assumption 2 being at its weakest. In other words, in this scenatrio, the empirical loss function
only needs to exhibit curvature in a diminishing neighborhood of µ∗, approximatley with radius of

√
1/n.

The following lemma rigorously proves this claim.
Lemma 3.2. Suppose v ≥ v0. For any 0 < δ < 1, suppose n ≥ C max

{
z2(σ2 + r2)/v2

0 , log(1/δ)
}

for some
absolute constant C. Then, with probability at least 1 − δ, Assumption 1 with κℓ = 1/(2v) holds uniformly
over v ≥ v0 > 0.

The first sample complexity condition that n ≥ Cz2(σ2+r2)/v2
0 comes from requirement that τ2

v0
:= v2

0n/z
2 ≥

C(σ2 + r2) in the proof of Lemma 3.2. Recall that the robustification parameter τ2
v0

:= v2
0n/z

2 determines
the size of the quadratic region. Intuitively, this requirement is minimal in the sense that Assumption 2 can
only hold when τ2

v0
is larger than r2 plus the noise variance σ2 (due to stochasticity). As argued before,

Assumption 2 holds with any r such that
√
n ≳ r ≳

√
1/n. Thus we can take r to be a constant, and this

will not make the sample complexity condition worse. Finally, by combing Lemma 3.2 and Theorem 3.1,
we obtain the following result.
Corollary 3.3. Suppose v ≥ v0. For any 0 < δ < 1, suppose n ≥ C max

{
(r2 + σ2)/v2

0 , 1
}

log(1/δ) for some
universal constant C, and let z2 = log(1/δ). For any v ≥ v0, we have with probability at least 1 − δ that

|µ̂(v) − µ∗| ≤ 2v
(

σ√
2v

+ 1
)2 √ log(4/δ)

n
≲ v

√
1 + log(1/δ)

n
.
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3.2 Self-tuned mean estimators

We proceed to characterize the theoretical property of the self-tuned mean estimator. We need the additional
constraint that v0 ≤ v ≤ V0, and consider the constrained empirical risk minimization problem

{ µ̂, v̂ } = argmin
µ, v0≤v≤V0

{
Ln(µ, v) := 1

n

n∑
i=1

ℓp(yi − µ, v)
}
. (3.1)

Indeed, when v is either 0 or ∞, the loss function is no longer smooth or it becomes trivial respectively. In
other words, the loss function is not strongly convex in µ in either case, and the strong convexity is essential
for our analysis. Let τv0 = v0

√
n/z.

Theorem 3.4 (Self-tuning property). Assume that n is sufficiently large. Let c0 and C0 be some constants,
and suppose v0 < c0στ2

v0 /2−1 ≤ C0σ < V0. For any 0 < δ < 1, take z2 ≥ log(5/δ). Then, with probability at
least 1 − δ, we have

c0στ2
v0 /2−1 ≤ v̂ ≤ C0σ.

The above theorem suggests that v̂ automatically adapts to the standard deviation, aka v̂ approximates σ,
if στ2

v0 /2−1 approximates σ which is expected to hold for a large sample size by the dominated convergence
theorem. Of course στ2

v0
can not be close to σ at any predictable rate under the weak assumption that the

data have bounded variances only. We proceed to characterize the finite-sample property of the self-tuned
mean estimator µ̂(v̂).
Theorem 3.5. Assume that n is sufficiently large. Let c0 and C0 be some constants, and suppose v0 <
c0στ2

v0 /2−1 ≤ C0σ < V0. For any 0 < δ < 1, take z2 = log(n/δ). Then, with probability at least 1 − δ, we
have

|µ̂(v̂) − µ∗| ≤ C · σ
√

log(n/δ)
n

where C is some constant.

The above result indicates that the mean estimator µ̂ = µ̂(v̂) with a self-tuned robustification parameter v̂
achieves the optimal deviation property up to a logarithmic factor. In practical applications, we recommend
setting δ = 0.05, which corresponds to a failure probability of 0.05 or a confidence level of 0.95.

4 Comparing with alternatives

Other than the ERM based approach, the median-of-means technique (Lugosi & Mendelson, 2019a) is another
method to construct robust estimators under heavy-tailed distributions. The MoM mean estimator works
as follows:

1. Partition [n] = {1, . . . , n} into k blocks B1, . . . ,Bk, each of size |Bi| ≥ ⌊n/k⌋ ≥ 2.

2. Compute the sample mean in each block zj = 1
|Bj |

∑
i∈Bj

xi.

3. Take the median of zj ’s as the the MoM mean estimator µ̂MoM = med(z1, . . . , zk), where med(·) is
the median operator.

The following theorem is taken from Lugosi & Mendelson (2019a). Without loss of generality and for
simplicity, we shall assume throughout this section that n is divisible by k so that each block has m = n/k
elements.
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Theorem 4.1 (Theorem 2 by Lugosi & Mendelson (2019a) ). For any δ ∈ (0, 1), if k = ⌈8 log(1/δ)⌉, then,
with probability at least 1 − δ,

∣∣µ̂MoM − µ∗∣∣ ≤ σ

√
32 log(1/δ)

n
.

The theorem above indicates that in order to obtain a sub-Gaussian mean estimator, we only need to choose
k = ⌈8 log(1/δ)⌉ when constructing the MoM mean estimator. Thus, the MoM estimator is naturally tuning-
free. However, in our numerical experiments, we have observed that the MoM estimator often has inferior
numerical performance compared to our proposed estimator. To shed light on this observation, we compare
the asymptotic efficiencies of µ̂MoM and our estimator µ̂(τ̂) in the following two theorems.
Theorem 4.2 (Asymptotic inefficiency of µ̂MoM). Fix any 0 < ι ≤ 1. Assume E|yi − µ∗|2+ι < ∞. Suppose
k → ∞ and k = o

(
nι/(1+ι)), then

√
n
(
µ̂MoM − µ∗)⇝ N

(
0, π2 σ

2
)
.

Theorem 4.3 (Asymptotic efficiency of our estimator). Fix any 0 < ι ≤ 1. Assume Eε2+ι
i < ∞ and the

same assumptions as in Theorem 3.4. Take z2 = 2 log(n). Then
√
n (µ̂(v̂) − µ∗)⇝ N

(
0, σ2) .

We emphasize that the MoM mean estimator shares the same asymptotic property as the median estimator
(Van der Vaart, 2000) due to taking the median operation in the third step, and thus is asymptotically inef-
ficient. In sharp contrast, our proposed estimator achieves full asymptotic efficiency. The relative efficiency
er of MoM with respect to our estimator is

er
(
µ̂MoM, µ̂(v̂)

)
= 2
π

≈ 0.64.

This means that our proposed estimator is more efficient than the MoM estimator in terms of asymptotic
performance, partly explaining the empirical success of our method; see Section 5 for details.

We explain intuitively why our self-tuned estimator can achieve (near) optimal performance in both the
finite-sample regime and the asymptotic regime. Because our self-tuned estimator in (3.1) is a self-tuned
version of the pseudo-Huber estimator in (2.2), thus we focus on the pseudo-Huber estimator µ̂(τ). Theorem
2.1 suggests that taking τ = σ

√
n/ log(1/δ) guarantees the sub-Gaussian performance of µ̂(τ) for finite

samples. Meanwhile, as n → ∞, we have τ = σ
√
n/ log(1/δ) → ∞. Thus the pseudo-Huber loss approaches

to the least square loss which corresponds to the negative maximum likelihood of Gaussian distributions,
which leads to the asymptotically efficient mean estimator.

For MoM estimators, the situation differs. On one hand, to attain robustness in the finite-sample regime,
the number of blocks k should be greater than or equal to ⌈8 log(1/δ)⌉, as demonstrate in the proof of
Theorem 4.1 by Lugosi & Mendelson (2019a). On the other hand, to approach the sample mean estimator
and achieve asymptotic efficiency in the large sample limit, the number of blocks should diminish to 1
as the sample size n grows. Consequently, optimal finite-sample and asymptotic properties represent two
contrasting characteristics for MoM estimators. In other words, the MoM estimator can not simultaneously
adapt to both regimes (to perform optimally). This contrast seems to arise from the discontinuous nature
of the MoM estimator which cannot smoothly transition from requiring at least k = 3 blocks (for defining
the median) to functioning as an empirical mean estimator.

Another popular estimator is the trimmed mean estimator (Lugosi & Mendelson, 2021). The univariate
trimmed mean estimator works as follows: (i) Split the data points into two subsamples with equal size,
(ii) use the first subsample to determine the trimming parameters, and (iii) use the second subsample to
construct the trimmed mean estimator. Due to this sample splitting scheme, the trimmed mean estimator
lacks sample efficiency.
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Figure 1: Estimation error versus confidence level for our estimator, the sample mean estimator, the MoM
estimator and the trimmed mean estimator.
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Figure 2: Empirical 99%-quantile of the estimation error versus parameter measuring tails and skewness
for our estimator, the sample mean estimator, the MoM estimator and the trimmed mean estimator.

5 Numerical studies

This section examines numerically the finite sample performance of our proposed mean estimators in the
presence of heavy-tailed data. In all of our numerical examples, we take z =

√
log(n/δ) with δ = 0.05 as

suggested by Theorem 3.5. This choice ensures that our results hold with a probability of at least 0.95.
We consider the following four distribution settings for the random data point y in order to investigate the
robustness and efficiency of the proposed estimator:

1. Normal distribution N (µ, σ2) with mean µ = 1 and a sequence of variances σ2 ≥ 1;

2. Skewed generalized t distribution sgt(µ, σ2, λ, p, q), where mean µ = 0, a sequence of variances
σ2 = q/(q − 2) with q > 2, shape p = 2 and skewness λ = 0.75.

For each setting, we generate an independent sample of size n = 100 and compute four mean estimators: our
proposed estimator (ours), the sample mean estimator, the MoM mean estimator, and the trimmed mean
estimator.

9



Under review as submission to TMLR

0.5 0.6 0.7 0.8 0.9 1.0
Confidence level

0.00

0.02

0.04

0.06

0.08

0.10

Es
tim

at
io

n 
er

ro
r

Normal distribution
ours
cross validation
Lepski

0.5 0.6 0.7 0.8 0.9 1.0
Confidence level

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Es
tim

at
io

n 
er

ro
r

Skewed generalized t distribution
ours
cross validation
Lepski

Figure 3: Estimation error versus confidence level for our estimator, cross validation and Lepski’s method.

Figure 1 displays the α-quantile of the squared estimation error, with α ranging from 0.5 to 1, based on 1000
simulations for both scenarios. For Gaussian distributed data, our estimator performs almost identically
to the sample mean estimator, both of which outperform the MoM mean estimator and the trimmed mean
estimator. Since the sample mean estimator is the optimal mean estimator for Gaussian distributed data, this
suggests that our estimator does not sacrifice statistical efficiency when the data is Gaussian. In the case of
heavy-tailed skewed generalized t distributions, the deviation of the sample mean from the population mean
grows rapidly with the confidence level. This is in contrast to the three robust estimators: our estimator,
the MoM mean estimator, and the trimmed mean estimator. Our estimator is the only one that consistently
outperforms the others in both scenarios.

Figure 2 examines the 99%-quantile of the estimation error versus a distribution parameter that measures
the tail behavior and skewness, based on 1000 simulations. Specifically, for Gaussian data, we let σ vary
between 1 and 4. For skewed generalized t distributions, we increase the shape parameter q from 2.5 to 4. For
Gaussian data, our estimator performs identically to the sample mean estimator, both of which outperform
the MoM mean estimator and the trimmed mean estimator. For skewed generalized t distributions with
q ≤ 3, all three robust mean estimators outperform, or are as competitive as, the sample mean estimator.
When q > 3, the sample mean estimator starts to performs better than both MoM and the trimmed mean
estimator. Our proposed estimator, on the other hand, consistently outperforms all other methods across
the entire range of parameter values.

We also compare the performances of our proposed method, pseudo-Huber loss + cross validation and
pseudo-Huber loss + Lepski’s method. For cross validation, we choose the best τ , which is equivalent to
choosing the best v, from a list of candidates {1, 2, . . . , 100} using 10-fold cross validation. For Lepski’s
method, we follow the appendix and pick V = 2, ρ = 1.2 and s = 50. We run 1000 simulations for the
mean estimation problem in Setting 1 with σ2 = 1 and sample size n = 100. All studies are performed on a
Macbook Pro with Apple M1 Max and 64 GB memory. The execution times are summarized in Table 1. Our
proposed method is about 90× faster than cross validation and about 10× faster than Lepski’s method. The
run time for sample mean, MoM, and trimmed mean in the same scenario is 0.018, 0.111, and 0.057 seconds,
respectively. Lastly we compare the run time for our estimator with increasing sample sizes. Specifically, for
n = 100, 1000, 10, 000, 100, 000, the run time is 1.54, 1.58, 3.02, 25.04 seconds, respectively.

Finally we compare their statistical performances in both settings with various parameters. The results
are summarized in Figure 3 and Figure 4. In both figures, the our method and the cross validation have
similar performances although our method is slightly better while Lepski’s method does not perform well.
We suspect this is because Lepski’s method depends on three more hyper parameters V, ρ and s and our
choice are perhaps not optimally tuned. This perhaps shows that the Lepski’s method does not achieve great
empirical performances in general.
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Figure 4: Empirical 99%-quantile of the estimation error versus parameter measuring tails and skewness
for our estimator, cross validation and Lepski’s method.

Table 1: Comparing different tuning methods: Run time (in seconds) for 1000 simulations in Setting 1 with
σ2 = 1 and n = 100.

ours Lepski’s method cross validation
1.5 16.7 133.5

In summary, the most attractive feature of our method is its self-tuning property: (i) It is as efficient as
the sample mean estimator for normal distributions and is more robust for asymmetric and/or heavy-tailed
distributions; (ii) It incurs much less computational cost than cross validation and Lepski’s method. The
latter property is particularly important for large-scale inference with a myriad of parameters to be estimated
simultaneously.

6 Conclusions

Summary This paper investigates robust mean estimation for distributions with finite variances only. We
introduce a novel loss function that depends on both the mean parameter and a robustification parameter.
By jointly optimizing these parameters, we demonstrate that, even under only second moment conditions,
the resulting robustification parameter can automatically adapt to the variance. As a result, our mean
estimator achieves nearly optimal performance in finite samples, akin to the case of sub-Gaussian data. This
distinguishes our approach from previous methods that require cross-validation or Lepski’s method to tune
the robustification parameter.

Adaptivity In our experience, the performance of MoM estimators is often subpar1, and our proposed
estimator consistently outperforms MoM estimators. As discussed previously, we believe this is because our
estimator can perform (near) optimally in both the finite-sample and large-sample regimes. We shall refer to
this ability as “adaptivity to different regimes". The MoM estimator does not naturally enjoy this adaptivity
due to its discontinuous nature.

The multidimensional case We briefly discuss how to extend the proposed estimator to the multivariate
case. Assume model (1.1) but with yi, µ

∗, and εi ∈ Rd being i.i.d. such that Eεi = 0 and cov(εi) = Σ. A
simple strategy, as recommended by one of the referees, is to apply the univariate estimator coordinate-wise
and then combine them to form our final estimator µ̂. Then the following proposition holds. Let σ2

kk be the
k-th diagonal term of Σ, and σ2

kk,x2 = E[ε2
ik1(ε2

ik ≤ x2)], where εik is the k-th coordinate of εi.

1We had similar empirical observations in our earlier studies.
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Proposition 6.1. Assume that n is sufficiently large. Let c0 and C0 be some constants, and suppose
v0 < c0σkk,τ2

v0 −1 ≤ C0σkk < V0. For any 0 < δ < 1, taking z2 = log(n/δ), with probability at least 1 − δ, we
have

∥µ̂− µ∗∥2 ≤ C

√
tr(Σ) log(nd/δ)

n
,

where C is some constant.

We also have the following asymptotic result which states that the multivariate mean estimator also achieves
asymptotic efficiency.
Proposition 6.2 (Asymptotic efficiency for the multivariate mean estimator). Fix any 0 < ι ≤ 1. Assume
max1≤k≤d Eε2+ι

ik < ∞ and the same assumptions as in Proposition 6.1. Take z2 = 2 log(n). Then
√
n (µ̂(v̂) − µ∗)⇝ N (0,Σ) .

Limitation One limitation is that the finite-sample performance of our self-tuned estimator depends on
unknown constants, which means that the sample complexity cannot be computed in advance for fixed error.
Moreover, the proposed estimator is only optimal up to a logrithmic term. It remains unclear whether this
logrithmic factor can be removed. Another limitation is the scope of the study. This paper focuses on robust
mean estimators since this is the simplest case and the proof is already complicated. However, it is possible
to extend current work to more general problems, such as regression and matrix estimation problems. We
have extended the estimator to the multivariate case in the above but such an extension is not optimal; see
Lugosi & Mendelson (2019a) for the optimal finite-sample bound. It would also be interesting to study the
asymptotic properties of the multivariate median-of-mean estimators.
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A Basics

This section collects the basic facts such as first-order derivatives and the Hessian matrix for the loss function.
Let τ = v

√
n/z throughout the appendix. Recall that our loss function is

Ln(µ, v) = 1
n

n∑
i=1

ℓ(yi − µ, v) = 1
n

n∑
i=1

{√
n

z

√
nv2

z2 + (yi − µ)2 −
( n
z2 − a

)
v

}

= 1
n

n∑
i=1

{√
n

z

(√
τ2 + (yi − µ)2 − τ

)
+ a · τ

z
√
n

}
.
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The first-order, second-order derivatives of Ln(µ, v) are

∇µLn(µ, v) = − 1
n

n∑
i=1

yi − µ

v
√

1 + z2(yi − µ)2/(nv2)
= −

√
n

z
· 1
n

n∑
i=1

yi − µ√
τ2 + (yi − µ)2

,

∇vLn(µ, v) = 1
n

n∑
i=1

n/z2√
1 + z2(yi − µ)2/(nv2)

−
( n
z2 − a

)
= n

z2 · 1
n

n∑
i=1

(
τ√

τ2 + (yi − µ)2
− 1
)

+ a

where a = 1/2. The Hessian matrix is

H(µ, v) =


√

n
z

1
n

∑n
i=1

τ2(
τ2+(yi−µ)2

)3/2
n
z2

1
n

∑n
i=1

τ(yi−µ)
(τ2+(yi−µ)2)3/2

n
z2

1
n

∑n
i=1

τ(yi−µ)
(τ2+(yi−µ)2)3/2

n3/2

z3
1
n

∑n
i=1

(yi−µ)2

(τ2+(yi−µ)2)3/2

 .
B Population bias

Let µ∗(v) be the underlying pseudo-Huber regression coefficient with v fixed a priori

µ∗(v) = argmin
µ

ELn(µ, v).

Recall that τ = v
√
n/z. Let

ψv(x) := ∇xℓ
p(x, v) =

√
nx

z
√
τ2 + x2

,

hv(x) := ∇2
xℓ

p(x, v) =
√
n

z
√
τ2 + x2

−
√
nx2

z(τ2 + x2)3/2 =
√
nτ2

z(τ2 + x2)3/2 .

Assumption 2. The second-order derivative of L(µ, v) = Eℓp(yi − µ, v) satisfies that

0 < κℓ ≤ ∇2
µL(µ, v)

for any µ ∈ B(r, µ∗) := {µ : |µ − µ∗| ≤ r}, where we use the same κℓ as in Assumption 1 without loss of
generality.

Our next proposition shows that the population bias is at the order of
√
n/τ2.

Proposition B.1 (Population bias). Assume Assumption 2 holds with r >
√
nσ2/(2κℓτ

2). We have

|µ∗(v) − µ∗| ≤ σ2

2zκℓ
·

√
n

τ2 ≲

√
n

τ2 .

Proof of Proposition B.1. Define the bias term ∆ = µ∗ −µ∗(v) and the function hv(µ) = n−1∑n
i=1 E{ℓp(yi −

µ, v)}. We first assume that |∆| ≤ r. By the first order optimality of µ∗(v), we have ∇hv(µ∗(v)) = 0, and
thus

⟨∆,∇2hv(µ̃)∆⟩ = ⟨∇hv(µ∗) − ∇hv(µ∗(v)),∆⟩ = ⟨∇hv(µ∗),∆⟩ = − 1
n

n∑
i=1

E{ψv(σεi)}∆, (B.1)

where µ̃ = λµ∗ + (1 − λ)µ∗(v) for some 0 ≤ λ ≤ 1.

Since E(εi) = 0, we have

|E{−ψv(εi)}| =
√
n

z
·

∣∣∣∣∣E
{

−εi/τ√
1 + ε2

i /τ
2

}∣∣∣∣∣ =
√
n

z
·

∣∣∣∣∣∣E
τ

−1εi

(√
1 + ε2

i /τ
2 − 1

)
√

1 + ε2
i /τ

2


∣∣∣∣∣∣

≤
√
n

2z · E

∣∣∣∣∣ (εi)3/τ3√
1 + ε2

i /τ
2

∣∣∣∣∣ ≤
√
nσ2

2zτ2 , (B.2)
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Algorithm 1 An alternating gradient descent algorithm.
Input: µinit, vinit, v0, V0, η1, η2, (y1, . . . , yn)
for k = 1, 2, . . . until convergence do
µk+1 = µk − η1∇µLn(µk, vk)
ṽk+1 = vk − η2∇τLn(µk+1, vk) and vk+1 = min{max{ṽk+1, v0}, V0}

end for
Output: µ̂ = µk+1, v̂ = vk+1

where the first inequality uses the inequality
√

1 + x2 ≤ 1 + x2/2 and the last inequality uses the fact that√
1 + ε2

i /τ
2 ≥ 1 ∨ |εi|/τ.

Using equality (B.1) together with Assumption 2 and inequality (B.2) and canceling one |∆| term on both
sides, we obtain

|∆| ≤
√
nσ2

2zκℓτ2 .

We then show it must hold that |∆| ≤ r. If not, then we shall construct an intermediate solution between
µ∗ and µ∗(v), denoted by µ∗

η(v) = µ∗ + η(µ∗(v) −µ∗), such that |µ∗
η(v) −µ∗| = r. Specifically, we can choose

some η ∈ (0, 1) so that |µ∗
η(v) − µ∗| = r. We then proceed the above calculation and would obtain

|µτ,η − µ∗| ≤
√
nσ2

2zρℓτ2 < r.

This is a contradiction.

C An alternating gradient descent algorithm

This section derives algorithms to optimize (2.5) with the constraint v0 ≤ v ≤ V0. Starting with initialization
v = vinit and µ = µinit, we use gradient descent to alternatively update the solution sequence {(µk, vk) : k ≥
1} where (µ1, v1) = (µinit, vinit). Specifically, at working solution (µk, vk), the (k+ 1)-th iteration carries out
the following two steps

1. µk+1 = µk − η1∇µLn(µk, vk),

2. ṽk+1 = vk − η2∇τLn(µk+1, vk) and vk+1 = min{max{ṽk+1, v0}, V0},

where η1 and η2 are the learning rates and

∇µLn(µ, v) = − 1
n

n∑
i=1

yi − µ

v
√

1 + z2(yi − µ)2/(nv2)
,

∇vLn(µ, v) = 1
n

n∑
i=1

n/z2√
1 + z2(yi − µ)2/(nv2)

−
( n
z2 − a

)
.

We then repeat the above two steps until convergence. We summarize the details in Algorithm 1. In practice,
the learning rate η1 and η2 can be chosen adaptively. Specifically, in our experiments, we use alternating
gradient descent with the Barzilai and Borwein method and backtracking line search.

D Comparing with Lepski’s method

We compare our method with Lepski’s method. The idea of Lepski’s method is very simple: consider a
sequence of confidence intervals obtained by assuming that the variance is bounded by a sequence of bounds
vk and pick up as an estimator the middle of the smallest interval intersecting all the larger ones.
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We will use Lepski’s method to tune the robustification parameter v and thus τ = v
√
n/z in the empirical

pseudo-Huber loss:

Lh
n(µ, τ) = 1

n

n∑
i=1

(
τ
√
τ2 + (yi − µ)2 − τ2

)
.

Let vmax be an upper bound for σ, and τmax = vmax
√
n/z with z =

√
log(1/δ). Let n be sufficiently large.

Then with probability at least 1 − δ, we have

|µ̃(vmax) − µ∗| ≤ 6 vmax

√
log(4/δ)

n
=: ϵ(vmax, δ),

where µ̃(vmax) = argminµ Ln(µ, τmax). Let ϵ(vmax, 0) = +∞ by convention. Clearly, ϵ(vmax, δ) is homoge-
neous:

ϵ(vmax, δ) = B(δ)vmax, with B(δ) = 6
√

log(4/δ)
n

.

For some parameters V ∈ R, ρ > 1, and s ∈ N, choose for V the following distribution for vmax

V(vmax) =
{

1
2s+1 , if vmax = V ρk, k ∈ Z, |k| ≤ s,

0, otherwise.

Consider for any vmax such that ϵ(vmax, δv(vmax)) < ∞ the confidence interval

I(vmax) = µ̃(vmax) + ϵ(vmax, δv(vmax)) × [−1, 1],

where ϵ(vmax, δv(vmax)) = 6vmax

√
log(4/δ)+log(2s+1)

n . We set I(vmax) = R when ϵ(vmax, δv(vmax)) = +∞.

Let us consider the non-decreasing family of closed intervals

J(v1) =
⋂

{I(vmax) : vmax ≥ v1} , v1 ∈ R+.

Lepski’s method picks the center point of the intersection⋂
{J(v1) : v1 ∈ R+, J(v1) ̸= ∅}

to be the final estimator µ̂Lepski. Then the following result holds.
Proposition D.1. Suppose | log(σ/V )| ≤ 2s log(ρ). Then with probability at least 1 − δ

|µ̂Lepski − µ∗| ≤ 12ρσ
√

log(4/δ) + log(2s+ 1)
n

.

If we take the grid fine enough such that s = n, then the deviation bound above reduces to

12ρσ
√

log(4/δ) + log(2n+ 1)
n

,

which agrees with deviation bound for our proposed estimator, up to a constant multiplier. Therefore, our
proposed estimator is comparable to Lepski’s method in terms of deviation bound. Computationally, our
estimator is self-tuned and is thus computationally more efficient than Lepski’s method.

E Proofs for Section 2

E.1 Proofs for Theorem 2.3

Proof of Theorem 2.3. We prove first the finite-sample result and then the asymptotic result. Recall that
τ∗ = v∗

√
n/z.

17
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Proving the finite-sample result. On one side, if v∗ = 0 and by the definition of v∗, v∗ satisfies

1 − az2

n
= E

√
nv∗√

nv2
∗ + z2ε2

= 0,

which is a contradiction. Thus v∗ > 0. Using the convexity of 1/
√

1 + x for x > −1 and Jensen’s inequality
acquires

1 − az2

n
= E

√
nv∗√

nv2
∗ + z2ε2

= E
1√

1 + z2ε2/(nv2
∗)

≥ 1√
1 + z2σ2/(nv2

∗)
≥ 1 − z2σ2

2nv2
∗
,

where the last inequality uses the inequality (1 + x)−1/2 ≥ 1 − x/2, that is Lemma J.4 (i) with r = −1/2.
This implies

v2
∗ ≤ σ2

2a .

On the other side, using the concavity of
√
x, we obtain, for any γ ∈ [0, 1), that

1 − az2

n
= E

√
nv∗√

nv2
∗ + z2ε2

= E
1√

1 + σ2z2ε2/(nv2
∗)

≤

√
E
(

1
1 + z2ε2/(nv2

∗)

)

≤

√
E
{(

1 − (1 − γ)z
2ε2

nv2
∗

)
1
(
z2ε2

nv2
∗

≤ γ

1 − γ

)
+ 1

1 + z2ε2/(nv2
∗)1

(
z2ε2

nv2
∗
>

γ

1 − γ

)}

≤

√
1 − (1 − γ)E

{
z2ε2

nv2
∗

1
(
z2ε2

nv2
∗

≤ γ

1 − γ

)}

≤

√
1 − (1 − γ) E {ε21 (ε2 ≤ γτ2

∗ /(1 − γ))}
nv2

∗/z
2 , (E.1)

where the second inequality uses Lemma E.1, that is,

(1 + x)−1 ≤ 1 − (1 − γ)x, for any x ∈
[
0, γ

1 − γ

]
.

Taking square on both sides of (E.1) and using the fact that n ≥ az2 together with Lemma J.4 (i) with
r = 2, aka (1 + x)r ≥ 1 + rx for x ≥ −1 and r ∈ R \ (0, 1), we obtain

1 − 2az2

n
≤
(

1 − az2

n

)2

≤ 1 − (1 − γ) E{ε21(ε2 ≤ γτ2
∗ /(1 − γ))}

nv2
∗/z

2 ,

or equivalently

v2
∗ ≥

σ2
φτ2

∗

2a ,

where φ = γ/(1 − γ). Combining the upper bound and the lower bound for v2
∗ completes the proof for the

finite-sample result.

Proving the asymptotic result. The above implies that v∗ < ∞ for any n ≥ az2. By the definition of
v∗, we have

az2

n
= 1 − E

1√
1 + z2ε2/(nv2

∗)
. (E.2)

18
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We must have nv2
∗/z

2 → ∞. Otherwise assume lim supn→∞ nv2
∗/z

2 ≤ M < ∞. Taking n → ∞, the left
hand side of the above equality goes to 0 while the right hand is lower bounded as

1 − E
1√

1 + ε2/M
≥ 1 −

√
E
(

1
1 + ε2/M

)

≥ 1 −
√

1 − E {ε21(ε2 ≤ M)}
2M

≥ 1 −
√

1
2 > 0,

where the first two inequalities follow from (E.1) with γ = 1/2 and the third inequality uses the fact that
E{ε21(ε2 ≤ M)} ≤ M. This is a contradiction. Thus nv2

∗/z
2 → ∞. Multiplying both sides of the above

equality by n, taking n → ∞, and using the dominated convergence theorem, we obtain

az2 = lim
n→∞

E

(
n ·
√

1 + z2ε2/(nv2
∗) − 1√

1 + z2ε2/(nv2
∗)

)

= lim
n→∞

E

(
n · 1√

1 + z2ε2/(nv2
∗)

·
√

1 + z2ε2/(nv2
∗) − 1

z2ε2/(2nv2
∗) · z

2ε2

2nv2
∗

)

= Ez2ε2

2 limn→∞ v2
∗
,

and thus limn→∞ v2
∗ = σ2/(2a).

E.2 Proof of Proposition 2.4

Proof of Proposition 2.4. The convexity proof consists of two steps: (1) prove that Ln(µ, v) is jointly convex
in µ and v; (2) prove that Ln(µ, v) is strictly convex, provided that there are at least two distinct data points.
To show that Ln(µ, v) = n−1∑n

i=1 ℓ
p(yi − µ, v) in (2.5) is jointly convex in µ and v, it suffices to show that

each ℓp(yi − µ, v) is jointly convex in µ and v. Recall that τ = v
√
n/z.The Hessian matrix of ℓp(yi − µ, v) is

Hi(µ, v) =
√
n

z
· 1(
τ2 + (yi − µ)2

)3/2

[
τ2 (

√
n/z) τ(yi − µ)

(
√
n/z) τ(yi − µ) (

√
n/z)2 (yi − µ)2

]
⪰ 0,

which is positive semi-definite. Thus Ln(µ, v) is jointly convex in µ and v.

We proceed to show (2). Because the Hessian matrix H(µ, v) of Ln(µ, v) satisfies H(µ, v) =
n−1∑n

i=1 Hi(µ, v) and each Hi(µ, v) is positive semidefinite, we only need to show H(µ, v) is of full rank.
Without generality, assume that y1 ̸= y2. Then

H1(µ, v) +H2(µ, v) =
√
n

z
·

2∑
i=1

1(
τ2 + (yi − µ)2

)3/2

[
τ2 (

√
n/z) τ(yi − µ)

(
√
n/z) τ(yi − µ) (

√
n/z)2 (yi − µ)2

]
.

Some algebra yields

det (H1(µ, v) +H2(µ, v)) = n2τ2

z4 · (y1 − y2)2

(τ2 + (y1 − µ)2)3/2(τ2 + (y2 − µ)2)3/2 ̸= 0

for any v > 0, and thus τ > 0, and µ ∈ R, provided that y1 ̸= y2. Therefore, H1(µ, v) + H2(µ, v) is of full
rank and thus is H(µ, τ), provided v > 0, µ ∈ R, and y1 ̸= y2.
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E.3 Supporting lemmas

Lemma E.1. Let 0 ≤ γ < 1. For any 0 ≤ x ≤ γ/(1 − γ), we have

(1 + x)−1 ≤ 1 − (1 − γ)x.

Proof of Lemma E.1. To prove the lemma, it suffices to prove, for any γ ∈ [0, 1), that

1 ≤ (1 + x) − (1 − γ)x(1 + x), ∀ 0 ≤ x ≤ γ

1 − γ
,

which is equivalently to

x

(
x− γ

1 − γ

)
≤ 0, ∀ 0 ≤ x ≤ γ

1 − γ
.

The above inequality always holds, and this completes the proof.

F Proofs for the fixed v case

This section collects proofs for Theorem 3.1, Lemma 3.2, and Corollary 3.3. Recall that τ = v
√
n/z, and

the gradients with respect to µ and v are

∇µLn(µ, v) = − 1
n

n∑
i=1

yi − µ

v
√

1 + z2(yi − µ)2/(nv2)
= −

√
n

z
· 1
n

n∑
i=1

yi − µ√
τ2 + (yi − µ)2

,

∇vLn(µ, v) = 1
n

n∑
i=1

n/z2√
1 + z2(yi − µ)2/(nv2)

−
( n
z2 − a

)
= n

z2 · 1
n

n∑
i=1

(
τ√

τ2 + (yi − µ)2
− 1
)

+ a.

F.1 Proof of Theorem 3.1

Proof of Theorem 3.1. Let τ = v
√
n/z. Because µ̂(v) is the stationary point of Ln(µ, v), we have

∂

∂µ
Ln(µ̂(v), v) = − 1

n

n∑
i=1

yi − µ̂(v)
v
√

1 + z2(yi − µ̂(v))2/(nv2)
= −

√
n

z
· 1
n

n∑
i=1

yi − µ̂(v)√
τ2 + (yi − µ̂(v))2

= 0.

Let ∆ = µ̂(v) − µ. We first assume that |∆| := |µ̂(v) − µ∗| ≤ r0 ≤ r. Using Assumption 1 obtains

κℓ|µ̂(v) − µ∗|2 ≤
〈
∂

∂µ
Ln(µ̂(v), v) − ∂

∂µ
Ln(µ∗, v), µ̂(v) − µ∗

〉
≤

∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2 + ε2

i

∣∣∣∣∣ |µ̂(v) − µ∗| ,

or equivalently

κℓ|µ̂(v) − µ∗| ≤

∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2 + ε2

i

∣∣∣∣∣ .
Applying Lemma F.1 with the fact that

∣∣E (τεi/(τ2 + ε2
i )1/2)∣∣ ≤ σ2/(2τ), we obtain with probability at least

1 − 2δ

κℓ|µ̂(v) − µ∗| ≤

∣∣∣∣∣
√
n

τ

1
n

n∑
i=1

τεi

z
√
τ2 + ε2

i

∣∣∣∣∣ ≤
√
n

zτ

(
σ

√
2 log(1/δ)

n
+ τ log(1/δ)

3n + σ2

2τ

)
,
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or equivalently

κℓ|µ̂(v) − µ∗| ≤

√
2 log(1/δ)
z2τ2/σ2 + log(1/δ)

3z
√
n

+
√
nσ2

2zτ2 .

Since τ = v
√
n/z, we have

κℓ|µ̂(v) − µ∗| ≤

(√
2σ
v

+
√

log(1/δ)
3z

)√
log(1/δ)

n
+ 1

2 · σ
2

v2 · z√
n
.

Taking z =
√

log(w/δ) then yields

κℓ|µ̂(τ) − µ∗| ≤

(√
2σ
v

+
√

log(1/δ)
3
√

log(w/δ)

)√
log(1/δ)

n
+ 1

2 · σ
2

v2 ·
√

log(w/δ)
n

≤
(√

2σ
v

+ 1
3 + 1

2 · σ
2

v2

)√
log(w/δ)

n

<

(
1 + σ√

2v

)2 √ log(w/δ)
n

=: κℓr0 ≤ κℓr

for any 0 ≤ δ < 1. Moving κℓ to the right hand side obtains the desired bound.

We then show that |∆| ≤ r0 must hold. If not, we shall construct an intermediate solution between µ∗ and
µ̂(τ), denoted by µη = µ∗ +η(µ̂(τ)−µ∗), such that |µη −µ∗| = r0. Specifically, we can choose some η ∈ (0, 1)
so that |µη − µ∗| = r0. We then repeat the above calculation and obtain

|µ̂(τ) − µ∗| ≤ 1
κℓ

·
(√

2σ
v

+ 1
3 + 1

2 · σ
2

v2

)√
log(w/δ)

n

< r0 = 1
κℓ

·
(

1 + σ√
2v

)2 √ log(w/δ)
n

which is a contradiction. Thus it must hold that |∆| ≤ r0. Taking w = 1 and using a change of variable
2δ → δ complete the proof.

F.2 Proof of Lemma 3.2

Proof of Lemma 3.2. We prove that, with probability at least 1 − δ, Assumption 1 with κℓ = 1/(2v) holds
uniformly over v ≥ v0. Recall that τ = v

√
n/z. For notational simplicity, let ∆ = µ−µ∗ and τv0 = v0

√
n/z.

It follows that

⟨∇µLn(µ, v) − ∇µLn(µ∗, v), ∆⟩ =
〈

1√
n

n∑
i=1

εi

z
√
τ2 + ε2

i

− 1√
n

n∑
i=1

yi − µ

z
√
τ2 + (yi − µ)2

, ∆
〉

= 1√
n

n∑
i=1

τ2

z(τ2 + (yi − µ̃)2)3/2 ∆2,

where µ̃ is some convex combination of µ∗ and µ, that is µ̃ = (1 − λ)µ∗ + λµ for some λ ∈ [0, 1]. Obviously
we have |µ̃ − µ∗| = λ|∆| ≤ |∆| ≤ r0. Since (yi − µ̃)2 ≤ 2ε2

i + 2λ2∆2 ≤ 2ε2
i + 2∆2 ≤ 2ε2

i + 2r2
0 the above
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displayed equality implies

inf
µ∈Br(µ∗)

⟨∇µLn(µ, v) − ∇µLn(µ∗, v), µ− µ∗⟩
|µ− µ∗|2

≥
√
n

z
· 1
n

n∑
i=1

τ2

z(τ2 + 2r2
0 + 2ε2

i )3/2

=
√
n

z
· τ2

(τ2 + 2r2
0)3/2 · 1

n

n∑
i=1

(τ2 + 2r2
0)3/2

(τ2 + 2r2
0 + 2ε2

i )3/2

≥
√
n

z
· τ2

(τ2 + 2r2
0)3/2 ·

(
E

(τ2
v0

+ 2r2
0)3/2

(τ2
v0

+ 2r2
0 + 2ε2

i )3/2 −
√

log(1/δ)
2n

)

=
√
n

z
· τ2

(τ2 + 2r2
0)3/2 ·

(
I −

√
log(1/δ)

2n

)
, (F.1)

where the last inequality uses Lemma F.2.

It remains to lower bound I. Using the convexity of 1/(1 + x)3/2 and Jensen’s inequality, we obtain

1
n

n∑
i=1

E
(τ2

v0
+ 2r2)3/2

(τ2
v0

+ 2r2 + 2ε2
i )3/2 = E

(τ2
v0

+ 2r2)3/2

(τ2
v0

+ 2r2 + 2ε2
i )3/2

= E
1

(1 + 2ε2
i /(τ2

v0
+ 2r2))3/2

≥ 1
(1 + 2σ2/(τ2

v0
+ 2r2))3/2

=
(τ2

v0
+ 2r2)3/2

(τ2
v0

+ 2r2 + 2σ2)3/2 .

Plugging the above lower bound into (F.1) and using the facts that

τ3

(τ2 + 2r2)3/2 ≥
τ3

v0

(τ2
v0

+ 2r2)3/2 for τv0 ≥ τ and τ3

(τ2 + 2r2)3/2 ≤ 1,

we obtain with probability at least 1 − δ

inf
µ∈Br(µ∗)

⟨∇µLn(µ) − ∇µLn(µ∗), µ− µ∗⟩
|µ− µ∗|2

≥
√
n

z
· τ2

(τ2 + 2r2)3/2 ·

(
(τ2

v0
+ 2r2)3/2

(τ2
v0

+ 2r2 + 2σ2)3/2 −
√

log(1/δ)
2n

)

=
√
n

zτ

(
τ3

(τ2 + 2r2)3/2 ·
(τ2

v0
+ 2r2)3/2

(τ2
v0

+ 2r2 + 2σ2)3/2 − τ3

(τ2 + 2r2)3/2 ·
√

log(1/δ)
2n

)

≥
√
n

zτ

(
1

(1 + (2r2 + 2σ2)/τ2
v0

)3/2 −
√

log(1/δ)
2n

)

= 1
v

(
1

(1 + (2r2 + 2σ2)/τ2
v0

)3/2 −
√

log(1/δ)
2n

)

≥ 1
2v

provided τ2
v0

≥ 4r2 + 4σ2 and n ≥ C log(1/δ) for some large enough absolute constant C.

22



Under review as submission to TMLR

F.3 Proof of Corollary 3.3

Proof of Corollary 3.3. Recall z =
√

log(w/δ) and let

r = 2v
(

σ√
2v

+ 1
)2 √ log(2w/δ)

n
.

If n ≥ C max
{

(r2 + σ2)/v2
0 , 1
}

log(1/δ), which is guaranteed by the conditions of the corollary, then with
probability at least 1−δ, Assumption 1 holds with κℓ = 1/(2v) uniformly over v ≥ v0. Denote this probability
event by E . If Assumption 1 holds, then by Theorem 3.1, we have

P

(
|µ̂(v) − µ∗| ≤ 2v

(
σ√
2v

+ 1
)2 √ log(2w/δ)

n

∣∣∣∣ E
)

≥ 1 − δ.

Thus

P

(
|µ̂(v) − µ∗| > 2v

(
σ√
2v

+ 1
)2 √ log(2w/δ)

n

)

= P

(
|µ̂(v) − µ∗| > 2v

(
σ√
2v

+ 1
)2 √ log(2w/δ)

n
, E

)

+ P

(
|µ̂(v) − µ∗| > 2v

(
σ√
2v

+ 1
)2 √ log(2w/δ)

n
, Ec

)

≤ P

(
|µ̂(v) − µ∗| > 2v

(
σ√
2v

+ 1
)2 √ log(2w/δ)

n

∣∣∣∣ E
)

+ P (Ec)

≤ 2δ.

Then with probability at least 1 − 2δ, we have

|µ̂(v) − µ∗| ≤ 2v
(

σ√
2v

+ 1
)2 √ log(2w/δ)

n
.

Using a change of variable 2δ → δ finishes the proof.

F.4 Supporting lemmas

This subsection collects two supporting lemmas that are used earlier in this section.
Lemma F.1. Let εi be i.i.d. random variables such that Eεi = 0 and Eε2

i = 1. For any 0 ≤ δ ≤ 1, with
probability at least 1 − 2δ, we have∣∣∣∣∣ 1n

n∑
i=1

τεi√
τ2 + ε2

i

− E
τεi√
τ2 + ε2

i

∣∣∣∣∣ ≤ σ

√
2 log(1/δ)

n
+ τ log(1/δ)

3n .

Proof of Lemma F.1. The random variables Zi := τψτ (εi) = τεi/(τ2 + ε2
i )1/2 with µz = EZi and σ2

z =
var(Zi) are bounded i.i.d. random variables such that

|Zi| =
∣∣∣τεi/(τ2 + ε2

i )1/2
∣∣∣ ≤ |εi| ∧ τ ≤ τ,

|µz| = |EZi| =
∣∣∣E(τεi/(τ2 + ε2

i )1/2
)∣∣∣ ≤ σ2

2τ ,

EZ2
i = E

(
τ2ε2

i

τ2 + ε2
i

)
≤ σ2,

σ2
z := var(Zi) = E

(
τεi/(τ2 + ε2

i )1/2 − µz

)2

= E
(

τ2ε2
i

τ2 + ε2
i

)
− µ2

z ≤ σ2.
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For third and higher order absolute moments, we have

E|Zi|k = E

∣∣∣∣∣ τεi√
τ2 + ε2

i

∣∣∣∣∣
k

≤ σ2τk−2 ≤ k!
2 σ

2(τ/3)k−2, for all integers k ≥ 3.

Using Lemma J.2 with v = nσ2 and c = τ/3, we have for any t ≥ 0

P

(∣∣∣∣∣
n∑

i=1

τεi√
τ2 + ε2

i

−
n∑

i=1
E

τεi√
τ2 + ε2

i

∣∣∣∣∣ ≥
√

2nσ2t+ τt

3

)
≤ 2 exp (−t) .

Taking t = log(1/δ) acquires that for any 0 ≤ δ ≤ 1

P

(∣∣∣∣∣ 1n
n∑

i=1

τεi√
τ2 + ε2

i

− 1
n

n∑
i=1

E
τεi√
τ2 + ε2

i

∣∣∣∣∣ ≤ σ

√
2 log(1/δ)

n
+ τ log(1/δ)

3n

)
≥ 1 − 2δ.

This completes the proof.

Lemma F.2. For any 0 < δ < 1, with probability at least 1 − δ,

1
n

n∑
i=1

τ3

(τ2 + ε2
i )3/2 − E

τ3

(τ2 + ε2
i )3/2 ≥ −

√
log(1/δ)

2n .

Moreover, with probability at least 1 − δ, it holds uniformly over τ ≥ τv0 ≥ 0 that

1
n

n∑
i=1

τ3

(τ2 + ε2
i )3/2 ≥ E

τ3
v0

(τ2
v0

+ ε2
i )3/2 −

√
log(1/δ)

2n .

Proof of Lemma F.2. The random variables Zi = Zi(τ) := τ3/(τ2 + ε2
i )3/2 with µz = EZi and σ2

z = var(Zi)
are bounded i.i.d. random variables such that

0 ≤ Zi = τ3/(τ2 + ε2
i )3/2 ≤ 1.

Therefore, using Lemma J.1 with v = n acquires that for any t ≥ 0

P

(
n∑

i=1

τ3

(τ2 + ε2
i )3/2 −

n∑
i=1

E
(

τ3

(τ2 + ε2
i )3/2

)
≤ −

√
nt

2

)
≤ exp(−t).

Taking t = log(1/δ) acquires that for any 0 < δ ≤ 1

P

(
1
n

n∑
i=1

τ3

(τ2 + ε2
i )3/2 − 1

n

n∑
i=1

E
(

τ3

(τ2 + ε2
i )3/2

)
> −

√
log(1/δ)

2n

)
> 1 − δ.

The second result follows from the fact that Zi(τ) is an increasing function of τ . Specifically, we have with
probability at least 1 − δ

1
n

n∑
i=1

τ3

(τ2 + ε2
i )3/2 ≥ 1

n

n∑
i=1

τ3
v0

(τ2
v0

+ ε2
i )3/2

≥ E
(

τ3
v0

(τ2
v0

+ ε2
i )3/2

)
+ 1
n

n∑
i=1

τ3
v0

(τ2
v0

+ ε2
i )3/2 − E

(
τ3

v0

(τ2
v0

+ ε2
i )3/2

)

≥ E
(

τ3
v0

(τ2
v0

+ ε2
i )3/2

)
−
√

log(1/δ)
2n .

This finishes the proof.
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G Proofs for the self-tuned case

This section collects proofs for Theorem 3.4.

G.1 Proof of Theorem of 3.4

Proof of Theorem of 3.4. Recall that τ = v
√
n/z. For simplicity, let τ̂ = v̂

√
n/z. Define the profile loss

Lpro
n (v) as

Lpro
n (v) := Ln(µ̂(v), v) = min

µ
Ln(µ, v).

Its first order gradient is

∇Lpro
n (v) = ∇Ln(µ̂(v), v) = ∂

∂v
µ̂(v) · ∂

∂v
Ln(µ, v)

∣∣∣
µ=µ̂(v)

+ ∂

∂v
Ln(µ, v)

∣∣∣
µ=µ̂(v)

= ∂

∂v
Ln(µ̂(v), v), (G.1)

where we use the fact that ∂/∂µLn(µ, v)|
µ=µ̂(v) = 0, implied by the stationarity of µ̂(v).

Assuming that the constraint is inactive. We first assume that the constraint is not active for any
stationary point v̂, that is, any stationary point v̂ is an interior point of [v0, V0], aka v̂ ∈ (v0, V0). By the
joint convexity of Ln(µ, v) and the convexity of Lpro

n (v), (µ̂(v̂), v̂) and v̂ are stationary points of Ln(µ, v) and
Ln(µ̂(v), v), respectively. Thus we have

∂

∂µ
Ln(µ, v)

∣∣∣
(µ,v)=(µ̂(v̂),̂v)

= −
√
n

z
· 1
n

n∑
i=1

yi − µ̂(v̂)√
τ̂2 + (yi − µ̂(v̂))2

= 0,

∂

∂v
Ln(µ, v)

∣∣∣
(µ,v)=(µ̂(v̂),̂v)

= n

z2 · 1
n

n∑
i=1

τ̂√
τ̂2 + (yi − µ̂(v̂))2

−
( n
z2 − a

)
= 0,

∇Lpro
n (v)

∣∣∣
v=v̂

= ∇Ln(µ̂(v̂), v̂)
∣∣∣
v=v̂

= ∂

∂v
Ln(µ̂(v), v)

∣∣∣
v=v̂

= ∂

∂v
Ln(µ, v)

∣∣∣
(µ,v)=(µ̂(v̂),̂v)

= 0,

where the first two equalities are on partial derivatives of Ln(µ, v) and the last one is on the derivative of
the profile loss Ln(µ̂(v), v).

Recall that τ =
√
nv/z. Let f(τ) = z2∇Lpro

n (v)/n, that is

f(τ) = 1
n

n∑
i=1

τ√
τ2 + (yi − µ̂(v))2

−
(

1 − az2

n

)
.

In other words, τ̂ =
√
nv̂/z satisfies f(τ̂) = 0. We now split the proof for the inactive constraint case into

two steps.

Step 1: Proving v̂ ≤ C0σ for some universal constant C0. We will employ the proof by contradiction
argument. Assume there exists some v such that v > (1 + ϵ)

√
r2 + σ2 and ∇Lpro

v (v) = 0; or equivalently,
there exists some τ such that

τ > (1 + ϵ)
√
r2 + σ2√

n/z =: τ̄ and f(τ) = 0, (G.2)

where ϵ and r are to be determined later. Let τv0 = v0
√
n/z. Then, provided that n is large enough, Lemma

3.2 implies that Assumption 1 with r and κℓ = 1/(2v) holds uniformly over v ≥ v0 conditional on the
following event

E1 :=
{

1
n

n∑
i=1

(τ2
v0

+ 2r2)3/2

(τ2
v0

+ 2r2 + 2ε2
i )3/2 − 1

n

n∑
i=1

E
(τ2

v0
+ 2r2)3/2

(τ2
v0

+ 2r2 + 2ε2
i )3/2 ≥ −

√
log(1/δ)

2n

}
.
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Conditional on the intersection of event E1 and the following event

E2 :=
{

sup
v∈[v0,V0]

∣∣∣∣∣ 1n
n∑

i=1

εi√
τ2 + ε2

i

∣∣∣∣∣ ≤ C · V0

v0
· log(n/δ)

n

}
,

where z ≲
√

log(n/δ) and C is some constant, and following the proof of Theorem 3.1, for any fixed v and
thus τ , we have

κℓ|µ̂(v) − µ∗| ≤

∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2 + ε2

i

∣∣∣∣∣ .
Thus, for any v such that v0 ∨ v̄0 := v0 ∨ (1 + ϵ)

√
r2 + σ2 < v < V0, we have on E2 that

sup
v0∨v̄0<v<V0

κℓ(v) |µ̂(v) − µ∗| ≤ sup
v∈[v0,V0]

κℓ(v) |µ̂(v) − µ∗|

≤ sup
v∈[v0,V0]

∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2 + ε2

i

∣∣∣∣∣
≤ C · V0

v0
· log(n/δ)

z
√
n

,

which, by Lemma 3.2, yields

sup
v∈[v0,V0]

|µ̂(v) − µ∗| ≤ 2C · V
2

0
v0

· log(n/δ)
z
√
n

=: r.

The above r can be further refined by using the finer lower bound v̄0 of v instead of v0, but we use v0 for
simplicity. Let ∆ = µ∗ − µ̂(v), and we have |∆| ≤ r. Let the event E3 be

E3 :=
{

1
n

n∑
i=1

√
τ̄2 + 2(r2 + ε2

i ) − τ̄√
τ̄2 + 2(r2 + ε2

i )
− E

(√
τ̄2 + 2(r2 + ε2

i ) − τ̄√
τ̄2 + 2(r2 + ε2

i )

)
≤
√

log(1/δ)2(r2 + σ2)
nτ̄2 + log(1/δ)

3n

}
.

Thus on the event E1 ∩ E2 ∩ E3 and using the fact that 1 − 1/
√

1 + x is an increasing function, we have

f(τ) = az2

n
− 1
n

n∑
i=1

√
τ2 + (∆ + εi)2 − τ√
τ2 + (∆ + εi)2

≥ az2

n
− 1
n

n∑
i=1

√
τ2 + 2(r2 + ε2

i ) − τ√
τ2 + 2(r2 + ε2

i )

>
az2

n
− 1
n

n∑
i=1

√
τ̄2 + 2(r2 + ε2

i ) − τ̄√
τ̄2 + 2(r2 + ε2

i )
(τ < τ̄)

≥ az2

n
−

{
E

(√
τ̄2 + 2(r2 + ε2

i ) − τ̄√
τ̄2 + 2(r2 + ε2

i )

)
+ 1
n

n∑
i=1

√
τ̄2 + 2(r2 + ε2

i ) − τ̄√
τ̄2 + 2(r2 + ε2

i )
− E

(√
τ̄2 + 2(r2 + ε2

i ) − τ̄√
τ̄2 + 2(r2 + ε2

i )

)}

≥ az2

n
−

(
r2 + σ2

τ̄2 +
√

log(1/δ) · 2(r2 + σ2)
nτ̄2 + log(1/δ)

3n

)

= z2

n

(
a− log(1/δ)

3z2

)
−

(
r2 + σ2

r2 + σ2
z2

(1 + ϵ)2n
+

√
r2 + σ2

r2 + σ2
2z2 log(1/δ)
(1 + ϵ)2n2

)
(Definition of τ̄)

≥ (a− 1/3)z2

n
−

(
r2 + σ2

r2 + σ2
z2

(1 + ϵ)2n
+

√
r2 + σ2

r2 + σ2
2z4

(1 + ϵ)2n2

)
(z2 ≥ log(1/δ))

≥ (a− 1/3)z2

n
− z2

n
·

(
1

(1 + ϵ)2 +

√
2

(1 + ϵ)2

)

= z2

n

(
a− 1

3 − 1
(1 + ϵ)2 −

√
2

(1 + ϵ)2

)
≥ 0,
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provided that

1
1 + ϵ

≤
√

1 + 2(a− 1/3) − 1√
2

,

or equivalently

ϵ ≥
√

4a+ 2/3 + 2/3 −
√

2 − 2a
2(a− 1/3) =: ϵ(a).

In other words, conditional on the event E1 ∩ E2 ∩ E3 and taking ϵ ≥ ϵ(a), f(τ) > 0 for τ > τ̄ := (1 +
ϵ)

√
r2 + σ2√

n/z. This contradicts with (G.2), and thus

τ̂ ≤ (1 + ϵ)
√
r2 + σ2√

n/z.

If a = 1/2 and conditional on the same event, the above holds with

ϵ =
√

4a+ 2/3 + 2/3 −
√

2 − 2a
2(a− 1/3) ≥ 9.

If n is large enough such that 12σ ≥ 5
√
r2 + σ2, then conditional on the event E1 ∩ E2 ∩ E3, we have

v0 ≤ v̂ ≤ C0σ,

where C0 = 12.

Step 2: Proving v̂ ≥ c0στ2
v0 −1 for some constant c0. We will again employ the proof by contradiction

argument. Let

g(τ) :=
(

1
n

n∑
i=1

τ2√
τ2 + (∆ + εi)2

)2

−
(

1 − az2

n

)2

.

Assume there exists some v such that v < c and ∂
∂vLn(µ̂(v), v) = 0. Or equivalently, assume there exists

some τ such that

τ < c
√
n/z =: τ and g(τ) = 0. (G.3)

It is impossible that c ≤ v0 because any stationary point v is in (v0, V0). Thus c > v0. Let ∆ = µ̂(v) − µ∗.
Thus on the event E1 ∩ E2, using the facts that

√
x is a concave function and 1/

√
1 + y/x is an increasing

function of x, we have

1
n

n∑
i=1

τ2√
τ2 + (∆ + εi)2

= 1
n

n∑
i=1

1√
1 + (∆ + εi)2/τ2

≤ 1
n

n∑
i=1

1√
1 + (∆ + εi)2/τ2

≤

√√√√ 1
n

n∑
i=1

1
1 + (∆ + εi)2/τ2

≤

√√√√ 1
n

n∑
i=1

1
1 + τ−2(∆ + εi)2 · 1 ((∆ + εi)2 ≤ τ2)

≤

√√√√1 − 1
n

· 1
2τ2

n∑
i=1

(∆ + εi)2 · 1 ((∆ + εi)2 ≤ τ2).
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By the proof from step 1, on the event E1 ∩ E2, we have

sup
v∈[v0,V0]

|µ̂(v) − µ∗| ≤ r,

where r is the same as in step 1. Then

g(τ) ≤ 1 − 1
n

· 1
2τ2

n∑
i=1

(∆ + εi)2 · 1
(
(∆ + εi)2 ≤ τ2)−

(
1 − az2

n

)2

<
2az2

n
− 1
n

· 1
2τ2

n∑
i=1

(∆ + εi)2 · 1
(
(∆ + εi)2 ≤ τ2) (as long as az2/n > 0)

≤ 2az2

n
− 1
n

· 1
2τ2

n∑
i=1

(
ε2

i + 2∆εi

)
· 1
(
ε2

i ≤ 2−1τ2 − r2)
≤ 2az2

n
− 1

2τ2

(
1
n

n∑
i=1

ε2
i 1
(
ε2

i ≤ τ2

2 − r2
)

− 2
n

n∑
i=1

r|εi|1
(
ε2

i ≤ τ2

2 − r2
))

= 2az2

n
− 1

2τ2 (I − 2r · II) .

Define the probability event E4 as

E4 := E41 ∩ E42

where

E41 =:
{

1
n

n∑
i=1

ε2
i 1
(
ε2

i ≤ τ2

2 − r2
)

≥ Eε2
i 1
(
ε2

i ≤ τ2

2 − r2
)

− σ τ2
2

√
τ2 log(1/δ)

n
− τ2 log(1/δ)

6n

}
,

E42 =:

 1
n

n∑
i=1

|εi|1
(
ε2

i ≤ τ2

2 − r2
)

≤ E|εi|1
(
ε2

i ≤ τ2

2 − r2
)

+

√
2σ2

τ2/2 log(1/δ)
n

+ τ log(1/δ)
3
√

2n

 .

If n is sufficiently large such that

r2 ≤ ϵ0 ≲

(
logn+ log(1/δ)

z
√
n

)2
≤ 1,

r

τ2

σ2
τ2/2 +

√
2σ2

τ2/2 log(1/δ)
n

+ τ log(1/δ)
3
√

2n

 ≤ 1
12

log(1/δ)
n

,

then conditional on E4, we have

I ≥ Eε2
i 1
(
ε2

i ≤ τ2

2 − r2
)

− σ τ2
2

√
τ2 log(1/δ)

n
− τ2 log(1/δ)

6n ,

II ≤ E|εi|1
(
ε2

i ≤ τ2

2 − r2
)

+

√
2σ2

τ2/2 log(1/δ)
n

+ τ log(1/δ)
3
√

2n
.
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Thus conditional on E4, we have

g(τ) < 2az2

n
− 1

2τ2 (I − 2r · II)

≤ 2az2

n
− 1

2τ2

(
Eε2

i 1
(
ε2

i ≤ τ2

2 − r2
)

− στ2/2

√
τ2 log(1/δ)

n
− τ2 log(1/δ)

6n

)

+ r

τ2

E|εi|1
(
ε2

i ≤ τ2

2 − r2
)

+

√
2σ2

τ2/2 log(1/δ)
n

+ τ log(1/δ)
3
√

2n


≤ 2az2

n
−
σ2

τ2/2−ϵ0

2τ2 +
στ2/2

√
log(1/δ)

2τ
√
n

+ log(1/δ)
12n + r

τ2

σ2
τ2/2 +

√
2σ2

τ2/2 log(1/δ)
n

+ τ log(1/δ)
3
√

2n


≤ z2

n

(
2a+ log(1/δ)

z2 · 1
6

)
−
σ2

τ2/2−ϵ0

2τ2 +
στ2/2

√
log(1/δ)

2τ
√
n

= z2

2n

(
4a+ log(1/δ)

z2 · 1
3 −

σ2
τ2/2−ϵ0

c2 +
στ2/2

c
·
√

log(1/δ)
z

)
(τ = c

√
n/z)

≤ z2

2n

(
4a+ 1

3 −
σ2

τ2/2−ϵ0

c2 +
στ2/2

c

)
(z2 ≥ log(1/δ))

≤ 0,

for any c such that

c ≤
στ2/2

2(4a+ 1/3)


√√√√1 +

4(4a+ 1/3)σ2
τ2/2−ϵ0

σ2
τ2/2

− 1

 ,

In other words, conditional no the event E1 ∩ E2 ∩ E4 and taking any c such that it satisfies the above
inequality, we have

g(τ) < 0 for any τ < τ = c
√
n/z.

This is a contradiction. Thus, τ̂ ≥ τ = c
√
n/z, or equivalently v̂ ≥ c > v0. Using the inequality

√
1 + x− 1 ≥ 1(x ≥ 3) + x

3 1(0 ≤ x < 3) ≥ x

3 ∧ 1 ∀ x ≥ 0,

we have

στ2/2

2(4a+ 1/3)


√√√√1 +

4(4a+ 1/3)σ2
τ2/2−ϵ0

σ2
τ2/2

− 1


=

3στ2
v0 /2

14


√√√√1 +

28σ2
τ2/2−ϵ0

3σ2
τ2/2

− 1

 (a = 1/2)

≥
3στ2/2

14

(
28σ2

τ2/2−ϵ0

9σ2
τ2/2

∧ 1
)

=
2σ2

τ2/2−ϵ0

3στ2/2
∧

3στ2/2

14

≥ 1
5

(
στ2/2−1

στ2/2
∧ 1
)
στ2/2−1

≥ 1
5

(
στ2

v0 /2−1

στ2
v0 /2

∧ 1
)
στ2

v0 /2−1.
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Therefore we can take c = 5−1(στ2
v0 /2−1/στ2

v0 /2 ∧ 1)στ2
v0 /2−1. Thus on the event E1 ∩ E2 ∩ E4, we have

v̂ ≥ c := c0στ2
v0 /2−1,

where c0 = 5−1(στ2
v0 /2−1/στ2

v0 /2 ∧ 1). This finishes the proof of step 2.

Proving that the constraint is inactive. If v̂ ̸∈ (v0, V0), then v̂ ∈ {v0, V0}. Suppose v̂ = v0, then
v̂ = v0 < c. Recall that τv0 = v0

√
n/z. Then we must have f(τv0) ≥ 0, and thus g(τv0) ≥ 0. However,

conditional on the probability event E1 ∩ E2 ∩ E4, repeating the above analysis in step 2 would obtain
g(τv0) < 0. This is a contradiction. Therefore v̂ ̸= v0. Similarly, conditional on probability event E1 ∩E2 ∩E3,
we can obtain v̂ ̸= V0. Therefore, conditional on the probability event E1 ∩ E2 ∩ E3 ∩ E4, the constraint must
be inactive, aka v̂ ∈ (v0, V0).

Using the first result of Lemma F.2 with τ2 and ε2
i replaced by τ2

v0
+ 2r2 and 2ε2

i respectively, Lemma G.1,
Lemma G.2 with τ2 and w2

i replaced by τ̄2 and 2(r2 + ε2
i ) respectively, and Lemma G.3, we obtain

P(E1) ≥ 1 − δ, P(E2) ≥ 1 − δ, P(E3) ≥ 1 − δ, P(E4) ≥ 1 − 2δ,

and thus

P(E1 ∩ E2 ∩ E3 ∩ E4) ≥ 1 − 5δ.

Putting the above results together, and using Lemmas G.1 and G.3, we obtain with probability at least
1 − 5δ that

c0στ2
v0 /2−1 ≤ v̂ ≤ C0σ.

Using a change of variable 5δ → δ completes the proof.

G.2 Proof of Theorem 3.5

Proof of Theorem 3.5. On the probability event E1 ∩ E2 ∩ E3 ∩ E4 where Ek’s are defined the same as in the
proof of Theorem 3.4, we have

c0στ2
v0 /2−1 ≤ v̂ ≤ C0σ.

Following the proof of Theorem 3.1, for any fixed v and thus τ , we have

κℓ|µ̂(v) − µ∗| ≤

∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2 + ε2

i

∣∣∣∣∣ .
For any v such that c0στ2

v0 /2−1 ≤ v ≤ C0σ and any z > 0, using Lemma G.1 but with v0 and V0 replaced by
c0στ2

v0 /2−1 and C0σ respectively, we obtain with probability at least 1 − δ

sup
v∈[c0στ2

v0
/2−1, C0σ]

κℓ(v) |µ̂(v) − µ∗| ≤ sup
v∈[c0στ2

v0
/2−1, C0σ]

κℓ(v) |µ̂(v) − µ∗|

≤ sup
v∈[c0στ2

v0
/2−1, C0σ]

∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2 + ε2

i

∣∣∣∣∣
≤ σ

c0στ2
v0 /2−1

√
2 log(n/δ)

n
+ 1
z

log(n/δ)√
n

+ σ2

2c2
0σ

2
τ2

v0 /2−1

z√
n

+
3(C0σ − c0στ2

v0 /2−1)
στ2

v0 /2−1

1
z
√
n
,
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which yields

sup
v∈[c0στ2

v0
/2−1, C0σ]

|µ̂(v) − µ∗| ≤ Cσ
log(n/δ) ∨ z2 ∨ 1

z
√
n

,

where C is some constant only depending on σ/στ2
v0 /2−1, c0, and C0. Putting the above pieces together and

if log(1/δ) ≤ z2 ≤ log(n/δ), we obtain with probability at least 1 − 6δ that

|µ̂(v̂) − µ∗| ≤ sup
v∈[c0στ2

v0
/2−1, C0σ]

|µ̂(v) − µ∗| ≤ C · σ log(n/δ) ∨ 1
z
√
n

.

Using a change of variable 6δ → δ and then setting z = log(n/δ) gives

|µ̂(v̂) − µ∗| ≤ sup
v∈[c0στ2

v0
/2−1, C0σ]

|µ̂(v) − µ∗| ≤ C · σ
√

log(n/δ)
n

with a lightly different constant C, provided that log(n/δ) ≥ 1, aka n ≥ eδ. This completes the proof.

G.3 Supporting lemmas

We collect supporting lemmas, aka Lemmas G.1, G.2, and G.3, in this subsection.
Lemma G.1. Let 0 < δ < 1. Suppose σ ≲ V0 and z ≲

√
log(n/δ). Then, with probability at least 1 − δ,

we have

sup
v∈[v0,V0]

∣∣∣∣∣ 1n
n∑

i=1

εi√
τ2 + ε2

i

∣∣∣∣∣ ≤ C · V0

v0
· log(n/δ)

n

where C is some constant.

Proof of Lemma G.1. To prove the uniform bound over [v0, V0], we adopt a covering argument. For any
0 < ϵ ≤ 1, there exists an ϵ-cover N of [v0, V0] such that |N | ≤ 3(V0 − v0)/ϵ. Let τw = w

√
n/z. Then for

every v ∈ [v0, V0], there exists a w ∈ N ⊂ [v0, V0] such that |w − τ | ≤ ϵ and∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2 + ε2

i

∣∣∣∣∣ ≤

∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2

w + ε2
i

∣∣∣∣∣
+

∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2

w + ε2
i

− 1√
n

n∑
i=1

εi

z
√
τ2 + ε2

i

∣∣∣∣∣
≤

∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2

w + ε2
i

− E

[
1√
n

n∑
i=1

εi

z
√
τ2

w + ε2
i

]∣∣∣∣∣
+

∣∣∣∣∣E
[

1√
n

n∑
i=1

εi

z
√
τ2

w + ε2
i

]∣∣∣∣∣
+

∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2

w + ε2
i

− 1√
n

n∑
i=1

εi

z
√
τ2 + ε2

i

∣∣∣∣∣
= I + II + III.

For II, we have

II ≤
√
n

z
· σ2

2τ2
w

≤ zσ2

2v2
0
√
n
.
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For III, using the inequality ∣∣∣∣∣ x√
τ2

w + x2
− x√

τ2 + x2

∣∣∣∣∣ ≤ |τw − τ |
2 |τw| ∧ |τ |

,

we obtain

III ≤
√
n

z
· ϵ

2(w ∧ v) ≤
√
n

z
· ϵ

2v0
.

We then bound I. For any fixed τw, applying Lemma F.1 with the fact that
∣∣E (τwεi/(τ2

w + ε2
i )1/2)∣∣ ≤

σ2/(2τw), we obtain with probability at least 1 − 2δ∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2

w + ε2
i

− E

[
1√
n

n∑
i=1

εi

z
√
τ2

w + ε2
i

]∣∣∣∣∣ ≤
√
n

zτw

(
σ

√
2 log(1/δ)

n
+ τw log(1/δ)

n

)

≤ σ

zτv0

√
2 log(1/δ) + 1

z

log(1/δ)√
n

where τv0 = v0
√
n/z. Therefore, putting above pieces together and using the union bound, we obtain with

probability at least 1 − 6ϵ−1(V0 − v0)δ

sup
v∈[v0,V0]

∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2 + ε2

i

∣∣∣∣∣ ≤ sup
w∈N

∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2

w + ε2
i

− E

[
1√
n

n∑
i=1

εi

z
√
τ2

w + ε2
i

]∣∣∣∣∣
+ zσ2

2v2
0
√
n

+
√
n

z
· ϵ

2v0

≤ σ

v0

√
2 log(1/δ)

n
+ 1
z

log(1/δ)√
n

+ σ2

2v2
0

z√
n

+
√
n

z
· ϵ

2v0
.

Taking ϵ = 6(V0 − v0)/n, we obtain with probability at least 1 − nδ

sup
v∈[v0,V0]

∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2 + ε2

i

∣∣∣∣∣ ≤ σ

v0

√
2 log(1/δ)

n
+ 1
z

log(1/δ)√
n

+ σ2

2v2
0

z√
n

+ 3(V0 − v0)
v0

1
z
√
n
.

Thus with probability at least 1 − δ, we have

sup
v∈[v0,V0]

∣∣∣∣∣ 1√
n

n∑
i=1

εi

z
√
τ2 + ε2

i

∣∣∣∣∣ ≤ σ

v0

√
2 log(n/δ)

n
+ 1
z

log(n/δ)√
n

+ σ2

2v2
0

z√
n

+ 3(V0 − v0)
v0

1
z
√
n

≤ C · V0

v0
· log(n/δ)

z
√
n

provided z ≲
√

log(n/δ), where C is a constant only depending on σ2/(v0V0). When v0 and V0 are taken
symmetrically around 1, v0V0 is close to 1. Multiplying both sides by z/

√
n finishes the proof.

Lemma G.2. Let wi be i.i.d. copies of w. For any 0 < δ < 1, with probability at least 1 − δ

1
n

n∑
i=1

√
τ2 + w2

i − τ√
τ2 + w2

i

− E

(√
τ2 + w2

i − τ√
τ2 + w2

i

)
≤
√

log(1/δ)Ew2
i

nτ2 + log(1/δ)
3n .

Proof of Lemma G.2. The random variables

Zi = Zi(τ) :=
√
τ2 + w2

i − τ√
τ2 + w2

i

=
√

1 + w2
i /τ

2 − 1√
1 + w2

i /τ
2
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with µz = EZi and σ2
z = var(Zi) are bounded i.i.d. random variables such that

0 ≤ Zi ≤ 1 ∧ w2
i

2τ2 .

Moreover we have

EZ2
i ≤ Ew2

i

2τ2 , σ
2
z := var(Zi) ≤ Ew2

i

2τ2 .

For third and higher order absolute moments, we have

E|Zi|k ≤ Ew2
i

2τ2 ≤ k!
2 · Ew

2
i

2τ2 ·
(

1
3

)k−2
, for all integers k ≥ 3.

Therefore, using Lemma J.2 with v = nEw2
i /(2τ2) and c = 1/3 acquires that for any t > 0

P

(
n∑

i=1

(1 + w2
i /τ

2)1/2 − 1
(1 + w2

i /τ
2)1/2 −

n∑
i=1

E
(

(1 + w2
i /τ

2)1/2 − 1
(1 + w2

i /τ
2)1/2

)
≥ −

√
tnEw2

i

τ2 − t

3

)
≤ exp(−t).

Taking t = log(1/δ) acquires that for any 0 < δ < 1

P

(
1
n

n∑
i=1

(1 + w2
i /τ

2)1/2 − 1
(1 + w2

i /τ
2)1/2 − E

(
(1 + w2

i /τ
2)1/2 − 1

(1 + w2
i /τ

2)1/2

)
> −

√
log(1/δ)Ew2

i

nτ2 − log(1/δ)
3n

)
> 1 − δ.

This finishes the proof.

Lemma G.3. For any 0 < δ < 1, we have with probability at least 1 − δ that

1
n

n∑
i=1

ε2
i 1
(
ε2

i ≤ τ2

2 − r2
)

≥ 1
n

n∑
i=1

Eε2
i 1
(
ε2

i ≤ τ2

2 − r2
)

− στ2/2

√
τ2 log(1/δ)

n
− τ2 log(1/δ)

6n .

For any 0 < δ < 1, we have with probability at least 1 − δ that

1
n

n∑
i=1

|εi|1
(
ε2

i ≤ τ2

2 − r2
)

≤ 1
n

n∑
i=1

E|εi|1
(
ε2

i ≤ τ2

2 − r2
)

+

√
2σ2

τ2/2 log(1/δ)
n

+ τ log(1/δ)
3
√

2n
.

Consequently, we have, with probability at least 1 − 2δ, the above two inequalities hold simultaneously.

Proof of Lemma G.3. We prove the first two results one by one and the last result directly follows from first
two.

First result. Let Zi = ε2
i 1
(
ε2

i ≤ τ2/2 − r2) . The random variables Zi with µz = EZi and σ2
z = var(Zi)

are bounded i.i.d. random variables such that

|Zi| =
∣∣ε2

i 1
(
ε2

i ≤ τ2/2 − r2)∣∣ ≤ τ2/2,
|µz| = |EZi| =

∣∣E (ε2
i 1
(
ε2

i ≤ τ2/2 − r2))∣∣ ≤ σ2
τ2/2,

EZ2
i = E

(
ε4

i 1
(
ε2

i ≤ τ2/2 − r2)) ≤ τ2σ2
τ2/2/2,

σ2
z := var(Zi) = E

(
Zi − µz

)2 ≤ τ2σ2
τ2/2/2.

For third and higher order absolute moments, we have

E|Zi|k = E
∣∣ε2

i 1
(
ε2

i ≤ τ2/2 − r2)∣∣k ≤
τ2σ2

τ2/2

2

(
τ2

2

)k−2

≤ k!
2
τ2σ2

τ2/2

2

(
τ2

6

)k−2

, for all integers k ≥ 3.
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Using Lemma J.2 with v = nτ2σ2
τ2/2/2 and c = τ2/6, we have for any t > 0

P

(
n∑

i=1
ε2

i 1
(
ε2

i ≤ τ2

2 − r2
)

−
n∑

i=1
Eε2

i 1
(
ε2

i ≤ τ2

2 − r2
)

≤ −
√
nτ2σ2

τ2/2t− τ2t

6

)
≤ exp (−t) .

Taking t = log(1/δ) acquires the desired result.

Second result. With an abuse of notation, let Zi = |εi|1
(
ε2

i ≤ τ2/2 − r2) . The random variables Zi with
µz = EZi and σ2

z = var(Zi) are bounded i.i.d. random variables such that

|Zi| =
∣∣εi1

(
ε2

i ≤ τ2/2 − r2)∣∣ ≤ τ/
√

2,
|µz| = |EZi| =

∣∣E (|εi|1
(
ε2

i ≤ τ2/2 − r2))∣∣ ≤
√

2σ2
τ2/2/τ ,

EZ2
i = E

(
ε2

i 1
(
ε2

i ≤ τ2/2 − r2)) ≤ σ2
τ2/2,

σ2
z := var(Zi) = E

(
Zi − µz

)2 ≤ σ2
τ2/2.

For third and higher order absolute moments, we have

E|Zi|k = E
∣∣|εi|1

(
ε2

i ≤ τ2/2 − r2)∣∣k ≤ σ2
τ2/2

(
τ√
2

)k−2
≤ k!

2 σ
2
τ2/2

(
τ

3
√

2

)k−2
, for all integers k ≥ 3.

Using Lemma J.2 with v = nσ2
τ2/2 and c = τ/(3

√
2), we have for any t > 0

P

(
n∑

i=1
|εi|1

(
ε2

i ≤ τ2

2 − r2
)

−
n∑

i=1
E|εi|1

(
ε2

i ≤ τ2

2 − r2
)

≥
√

2nσ2
τ2/2t+ τt

3
√

2

)
≤ exp (−t) .

Taking t = log(1/δ) acquires the desired result.

H Proofs for Section 4

This section collects proofs for results in Section 4.

H.1 Proof of Theorem 4.2

Proof of Theorem 4.2. First, the MoM estimator µ̂MoM = M(z1, . . . , zk) is equivalent to

argmin
k∑

j=1
|zj − µ| .

For any x ∈ R, let ℓ(x) = |x| and define L(x) = Eℓ′(x+ Z) where Z ∼ N (0, 1) and

ℓ′(x) =


1, if x > 0,
0, if x = 0,
−1, otherwise.

If the assumptions of Theorem 4 of Minsker (2019) are satisfied, we obtain, after some algebra, that

√
n
(
µ̂MoM − µ∗)⇝ N

(
0, E(ℓ′(Z))2

(L′(0))2

)
.

Some algebra derives that

E(ℓ′(Z))2

(L′(0))2 = πσ2

2 .

It remains to check the assumptions there. Assumptions (1), (4), and (5) trivially hold. Assumption (2) can
be verified by using the following Berry-Esseen bound.
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Fact H.1. Let y1, . . . , ym be i.i.d. random copies of y with mean µ, variance σ2 and E|y − µ|2+ι < ∞ for
some ι ∈ (0, 1]. Then there exists an absolute constant C such that

sup
t∈R

∣∣∣∣P(√
m
ȳ − µ

σ
≤ t

)
− Φ(t)

∣∣∣∣ ≤ C
E|y − µ|2+ι

σ2+ιmι/2 .

It remains to check Assumption (3). Because g(m) ≲ m−ι/2,
√
kg(m) ≲

√
km−ι/2 → 0 if k = o(nι/(1+ι)) as

n → ∞. Thus Assumption (3) holds if k = o(nι/(1+ι)) and k → ∞. This completes the proof.

H.2 Proof of Theorem 4.3

In this subsection, we state and prove a stronger result of Theorem 4.3, aka Theorem H.2. Theorem 4.3 can
then be proved following the same proof under the assumption that E|εi|2+ι < ∞ for any prefixed 0 < ι ≤ 1.
Theorem H.2. Assume the same assumptions as in Theorem 3.4. Take z2 = 2 log(n). If Eε4

i < ∞, then

√
n

[
µ̂− µ∗

v̂ − v∗

]
⇝ N (0,Σ) , where Σ =

[
σ2 σ Eε3

i /2
σ Eε3

i /2 (σ2Eε4
i − σ6)/4

]
.

Proof of Theorem H.2. Now we are ready to analyze the self-tuned mean estimator µ̂ = µ̂(v̂). For any
0 < δ < 1, following the proof of Theorem 3.4, we obtain with probability at least 1 − δ that

|µ̂(v̂) − µ∗| ≤ sup
v∈[v0,V0]

|µ̂(v) − µ∗| ≤ 2C · V
2

0
v0

· log(n/δ)
z
√
n

.

Taking z2 ≥ log(n/δ) with δ = 1/n in the above inequality, we obtain µ̂ → µ∗ in probability. Theorem H.3
implies that v̂ → σ in probability. Thus we have ∥θ̂ − θ∗∥2 → 0 in probability, where

θ̂ = (µ̂, v̂)T, and θ∗ = (µ∗, σ)T.

Using the Taylor’s theorem for vector-valued functions, we obtain

∇Ln(θ̂) = 0 = ∇Ln(θ∗) +Hn(θ∗)(θ̂ − θ∗) + R2(θ)
2

(
θ̂ − θ∗)⊗2

,

where ⊗ indicates the tensor product. Let τσ = σ
√
n/z. We say that Xn and Yn are asymptotically equiva-

lent, denoted as Xn ≃ Yn, if both Xn and Yn converge in distribution to some same random variable/vector
Z. Rearranging, we obtain
√
n
(
θ̂ − θ∗) ≃ [Hn(θ∗)]−1 (−√

n∇Ln(θ∗)
)

=

√
n

z · 1
n

∑n
i=1

τ2
σ

(τ2
σ+ε2

i
)3/2

n
z2 · 1

n

∑n
i=1

τσεi

(τ2
σ+ε2

i
)3/2

n
z2 · 1

n

∑n
i=1

τσεi

(τ2
σ+ε2

i
)3/2

n3/2

z3 · 1
n

∑n
i=1

ε3
i

(τ2
σ+ε2

i
)3/2

−1  √
n · 1

n

∑n
i=1

τσεi

σ
√

τ2
σ+ε2

i√
n · n

z2
1
n

∑n
i=1

√
1+ε2

i
/τ2

σ−1√
1+ε2

i
/τ2

σ

−
√
n · a


≃
[
σ 0
0 σ3

] √
n · 1

n

∑n
i=1

τσεi

σ
√

τ2
σ+ε2

i√
n · n

z2
1
n

∑n
i=1

√
1+ε2

i
/τ2

σ−1√
1+ε2

i
/τ2

σ

−
√
n · a


=
[
σ 0
0 σ3

] [
I
II

]
,

where the second ≃ uses the fact that

Hn(θ∗) a.s.−→
[ 1

σ 0
0 1

σ3

]
.
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We proceed to derive the asymptotic property of (I, II)T. For I, we have

I =
√
n ·

(
1
n

n∑
i=1

τσεi

σ
√
τ2

σ + ε2
i

− E

[
τσεi

σ
√
τ2

σ + ε2
i

])
+

√
n · E

[
τσεi

σ
√
τ2

σ + ε2
i

]

⇝ N

(
0, lim

n→∞
var
[

τσεi

σ
√
τ2

σ + ε2
i

])
+ lim

n→∞

√
n · E

[
τσεi

σ
√
τ2

σ + ε2
i

]
.

It remains to calculate

lim
n→∞

E

( √
nτσεi√
τ2

σ + ε2
i

)
and lim

n→∞
var
[

τεi√
τ2

σ + ε2
i

]
.

For the former term, if there exists some 0 < ι ≤ 1 such that E|εi|2+ι < ∞, using the fact that Eεi = 0, we
have ∣∣∣∣∣E

( √
nτσεi√
τ2

σ + ε2
i

)∣∣∣∣∣ =
√
nτσ ·

∣∣∣∣∣E
{

−εi/τσ√
1 + ε2

i /τ
2
σ

}∣∣∣∣∣ =
√
nτσ ·

∣∣∣∣∣∣E
τ

−1
σ εi

(√
1 + ε2

i /τ
2
σ − 1

)
√

1 + ε2
i /τ

2
σ


∣∣∣∣∣∣

≤
√
nτσ

2 · E

∣∣∣∣∣ ε3
i /τ

3
σ√

1 + ε2
i /τ

2
σ

∣∣∣∣∣ ≤
√
nτσ

2 · E|εi|2+ι

τ2+ι
σ

≤
√
nE|εi|2+ι

2τ1+ι
σ

→ 0, (H.1)

where the first inequality uses Lemma J.4 (ii) with r = 1/2, that is,
√

1 + x ≤ 1 + x/2 for x ≥ −1. For the
second term, we have

lim
n→∞

var
[

τσεi√
τ2

σ + ε2
i

]
= lim

n→∞
E
[
τ2

σε
2
i

τ2
σ + ε2

i

]
= σ2,

by the dominated convergence theorem. Thus

I⇝ N (0, 1).

For II, recall a = 1/2 and using the facts that

lim
n→∞

n

z2 · E

(√
1 + ε2

i /τ
2
σ − 1√

1 + ε2
i /τ

2
σ

)
= lim

n→∞

n

2τ2
σz

2 · E

(
1√

1 + ε2
i /τ

2
σ

·
√

1 + ε2
i /τ

2
σ − 1

1/(2τ2
σ)

)
= 1

2 ,

lim
n→∞

√
n ·

(
n

z2 · E

(√
1 + ε2

i /τ
2
σ − 1√

1 + ε2
i /τ

2
σ

)
− 1

2

)
= 0,

we have

II =
√
n · n

z2 · 1
n

n∑
i=1

√
1 + ε2

i /τ
2
σ − 1√

1 + ε2
i /τ

2
σ

−
√
n · 1

2

≃
√
n · 1

n

n∑
i=1

(
n

z2 ·
√

1 + ε2
i /τ

2
σ − 1√

1 + ε2
i /τ

2
σ

− E

(
n

z2 ·
√

1 + ε2
i /τ

2
σ − 1√

1 + ε2
i /τ

2
σ

))

≃ N

(
0, lim

n→∞
var
(
n

z2 ·
√

1 + ε2
i /τ

2
σ − 1√

1 + ε2
i /τ

2
σ

))
.
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If Eε4
i < ∞, then

lim
n→∞

var
(
n

z2 ·
√

1 + ε2
i /τ

2
σ − 1√

1 + ε2
i /τ

2
σ

)
= Eε4

i

4σ4 − 1
4 ,

and thus II ≃ N
(
0, (Eε4

i /σ
4 − 1)/4

)
. For the cross covariance, we have

lim
n→∞

cov
(

τσεi

σ
√
τ2

σ + ε2
i

,
n

z2 ·
√

1 + ε2
i /τ

2
σ − 1√

1 + ε2
i /τ

2
σ

)

= lim
n→∞

E

(
τσεi

σ
√
τ2

σ + ε2
i

· n
z2 ·

√
1 + ε2

i /τ
2
σ − 1√

1 + ε2
i /τ

2
σ

)

= Eε3
i

2σ3 .

Thus
√
n (θ̂ − θ∗)⇝ N (0,Σ),

where

Σ =
[
σ 0
0 σ3

] [
1 Eε3

i /(2σ3)
Eε3

i /(2σ3) (Eε4
i /σ

4 − 1)/4

] [
σ 0
0 σ3

]
=
[

σ2 σEε3
i /2

σEε3
i /2 (σ2Eε4

i − σ6)/4

]
.

Therefore, for µ̂ only, we have
√
n (µ̂− µ∗)⇝ N (0, σ2).

H.3 Consistency of v̂

This subsection proves that v̂ is a consistent estimator of σ when the (2 + ι)-th moment exists. Recall that

∇vLn(µ, v) = n

z2 · 1
n

n∑
i=1

(
τ√

τ2 + (yi − µ)2
− 1
)

+ a

where a = 1/2. We emphasize that the following proof only needs the second moment assumption σ2 =
Eε2

i < ∞.
Theorem H.3 (Consistency of v̂). Assume the same assumptions as in Theorem 3.4. Take z2 ≥ log(n).
Then

v̂ −→ σ in probability.

Proof of Theorem H.3. By the proof of Theorem 3.4, we obtain with probability at least 1 − δ that the
following two results hold simultaneously:

sup
v∈[v0,V0]

|µ̂(v) − µ∗| ≤ 2C · V
2

0
v0

· log(n/δ)
z
√
n

=: r, (H.2)

v0 < c0στ2
v0 −1 ≤ v̂ ≤ C0σ < V0, (H.3)

provided that z2 ≥ log(5/δ) and n is large enough. Therefore, the constraint in the optimization problem
(3.1) is not active, and thus

∇vLn(µ̂, v̂) = 0.
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Using Lemma H.4 together with the equality above, we obtain with probability at least 1 − δ that

c0

V 3
0

|v̂ − σ|2 ≤ c0

v̂3 ∨ σ3 |v̂ − σ|2 ≤ ρℓ|v̂ − σ|2

≤ ⟨∇vLn(µ̂, v̂) − ∇vLn(µ̂, σ), v̂ − σ⟩
≤ |∇vLn(µ̂, σ)| |v̂ − σ|

≤

∣∣∣∣∣ nz2 · 1
n

n∑
i=1

(
τσ√

τ2
σ + (yi − µ̂)2

− 1
)

+ a

∣∣∣∣∣ |v̂ − σ| .

Plugging (H.2) into the above inequality and canceling |v̂ − σ| on both sides, we obtain with probability at
least 1 − 2δ that

c0

V 3
0

|v̂ − σ| ≤

∣∣∣∣∣ nz2 · 1
n

n∑
i=1

(
τσ√

τ2
σ + (yi − µ̂)2

− 1
)

+ a

∣∣∣∣∣
≤ sup

µ∈Br(µ∗)

∣∣∣∣∣ nz2 · 1
n

n∑
i=1

(
τσ√

τ2
σ + (yi − µ)2

− 1
)

+ a

∣∣∣∣∣
= n

z2 · sup
µ∈Br(µ∗)

∣∣∣∣∣ 1n
n∑

i=1

(
τσ√

τ2
σ + (yi − µ)2

− 1
)

+ az2

n

∣∣∣∣∣
≤ n

z2 · sup
µ∈Br(µ∗)

∣∣∣∣∣ 1n
n∑

i=1

(
1 − τσ√

τ2
σ + (yi − µ)2

)
− E

(
1 − τσ√

τ2
σ + (yi − µ)2

)∣∣∣∣∣
+ n

z2 · sup
µ∈Br(µ∗)

∣∣∣∣∣E
(

1 − τσ√
τ2

σ + (yi − µ)2

)
− az2

n

∣∣∣∣∣
=: I + II.

It remains to bound terms I and II. We start with term II. Let r2
i = (yi − µ)2. We have

II = n

z2 · sup
µ∈Br(µ∗)

∣∣∣∣∣E
(

1 − τσ√
τ2

σ + (yi − µ)2

)
− az2

n

∣∣∣∣∣
= max

{
sup

µ∈Br(µ∗)

(
n

z2 · E
√

1 + r2
i /τ

2
σ − 1√

1 + r2
i /τ

2
σ

− a

)
, sup

µ∈Br(µ∗)

(
a− n

z2 + E
1√

1 + r2
i /τ

2
σ

)}
=: II1 ∨ II2.

In order to bound II, we bound II1 and II2 respectively. For term II1, using Lemma J.4 (ii), aka (1 + x)r ≤
1 + rx for x ≥ −1 and r ∈ (0, 1), and a = 1/2, we have

II1 = sup
µ∈Br(µ∗)

(
n

z2 · E
√

1 + r2
i /τ

2
σ − 1√

1 + r2
i /τ

2
σ

− a

)

≤ sup
µ∈Br(µ∗)

{
n

z2 ·
(

1 + E
r2

i

2τ2
σ

− 1
)

− a

}
≤ n

z2 · Eε
2
i + 2r|εi| + r2|

2τ2
σ

− 1
2 (a = 1/2)

≤ r

σ

(
1 + r

2σ

)
≤ 2r

σ
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if n is large enough such that r ≤ 2σ. To bound II2, we need Lemma E.1. Specifically, for any 0 ≤ γ < 1,
we have

(1 + x)−1 ≤ 1 − (1 − γ)x, for any 0 ≤ x ≤ γ

1 − γ
.

Using this result, we obtain

E
1√

1 + r2
i /τ

2
σ

≤

√
E

1
1 + r2

i /τ
2
σ

(concavity of
√
x)

≤

√
E
{(

1 − (1 − γ)r2
i

τ2
σ

)
1
(
r2

i

τ2
σ

≤ γ

1 − γ

)
+ 1

1 + r2
i /τ

2
σ

1
(
r2

i

τ2
σ

>
γ

1 − γ

)}

≤

√
1 − (1 − γ)E

(
r2

i

τ2
σ

1
(
r2

i

τ2
σ

≤ γ

1 − γ

))
(Lemma E.1)

≤

√
1 − (1 − γ)E

(
r2

i

τ2
σ

1
(
r2

i

τ2
σ

≤ γ

1 − γ

))

≤

√
1 − (1 − γ)E

(
ε2

i − 2r|εi| + r2

τ2
σ

1
(

2(ε2
i + r2)
τ2

σ

≤ γ

1 − γ

))
(∀ µ ∈ Br(µ∗))

≤ 1 − 1 − γ

2 E
(
ε2

i − 2r|εi| + r2

τ2
σ

1
(

2(ε2
i + r2)
τ2

σ

≤ γ

1 − γ

))
,

where the first inequality uses the concavity of
√
x, the third inequality uses Lemma E.1, and the last

inequality uses the inequality that (1 + x)−1 ≤ 1 − x/2 for x ∈ [0, 1], aka Lemma J.4 (iii) with r = −1,
provided that

(1 − γ)E
(
ε2

i − 2r|εi| − r2

τ2
σ

1
(

2(ε2
i + r2)
τ2

σ

≤ γ

1 − γ

))
≤ (1 − γ)σ

2 − 2rσ − r2

τ2
σ

≤ 1.

Thus term II2 can be bounded as

II2 = sup
µ∈Br(µ∗)

(
a− n

z2 + n

z2 · E 1√
1 + r2

i /τ
2
σ

)

≤ a− n

z2 + n

z2 ·
{

1 − 1 − γ

2 E
(
ε2

i − 2r|εi| + r2

τ2
σ

1
(

2(ε2
i + r2)
τ2

σ

≤ γ

1 − γ

))}
≤ a− 1 − γ

2σ2 · Eε2
i + 1 − γ

2σ2 · 2r · E (|εi|)

≤ a− 1 − γ

2 + r(1 − γ)
σ

= γ

2 + r(1 − γ)
σ

. (a = 1/2)

Combining the upper bound for II1 and II2 and using the fact that, we obtain

II ≤ max{II1, II2} ≤ γ

2 + 2r
σ

→ 0,

if γ = γ(n) → 0.

We proceed to bound I. Recall that

I = n

z2 · sup
µ∈Br(µ∗)

∣∣∣∣∣ 1n
n∑

i=1

(
1 − τσ√

τ2
σ + (yi − µ)2

)
− E

(
1 − τσ√

τ2
σ + (yi − µ)2

)∣∣∣∣∣ .
39



Under review as submission to TMLR

For any 0 < ϵ ≤ 2r, there exists an ϵ-cover N ⊆ Br(µ∗) of Br(µ∗) such that |N | ≤ 6r/ϵ. Then for any
µ ∈ Br(µ∗) there exists a ω ∈ N such that |ω − µ| ≤ γ, and∣∣∣∣∣ 1n

n∑
i=1

(
1 − τσ√

τ2
σ + (yi − µ)2

)
− E

(
1 − τσ√

τ2
σ + (yi − µ)2

)∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑

i=1

√
1 + (yi − µ)2/τ2

σ − 1√
1 + (yi − µ)2/τ2

σ

− E
√

1 + (yi − µ)2/τ2
σ − 1√

1 + (yi − µ)2/τ2
σ

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

i=1

√
1 + (yi − ω)2/τ2

σ − 1√
1 + (yi − ω)2/τ2

σ

− E
√

1 + (yi − ω)2/τ2
σ − 1√

1 + (yi − ω)2/τ2
σ

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑

i=1

√
1 + (yi − µ)2/τ2

σ − 1√
1 + (yi − µ)2/τ2

σ

− 1
n

n∑
i=1

√
1 + (yi − ω)2/τ2

σ − 1√
1 + (yi − ω)2/τ2

σ

∣∣∣∣∣
+

∣∣∣∣∣E
√

1 + (yi − µ)2/τ2
σ − 1√

1 + (yi − µ)2/τ2
σ

− E
√

1 + (yi − ω)2/τ2
σ − 1√

1 + (yi − ω)2/τ2
σ

∣∣∣∣∣
= I1 + I2 + I3.

For I1, using Lemma G.2 acquires with probability at least 1 − 2δ that

I1 ≤

√
E(yi − ω)2 log(1/δ)

nτ2
σ

+ log(1/δ)
3n

≤

√
2(σ2 + r2) log(1/δ)

nτ2
σ

+ log(1/δ)
3n

≤
2z
√

log(1/δ)
n

+ log(1/δ)
3n

provided r2 ≤ σ2. Let

g(x) = − 1
n

n∑
i=1

τ√
τ2 + (x+ εi)2

.

Using the mean value theorem and the inequality that |x/(1 + x2)3/2| ≤ 1/2, we obtain

|g(x) − g(y)| =

∣∣∣∣∣ 1n
n∑

i=1

(x̃+ εi)/τσ

(1 + (x̃+ εi)2/τ2
σ)3/2 · x− y

τσ

∣∣∣∣∣ ≤ |x− y|
2τσ

,

where x̃ is some convex combination of x and y. Then we have

I2 =

∣∣∣∣∣ 1n
n∑

i=1

(∆̃ + εi)/τσ

(1 + (∆̃ + εi)2/τ2
σ)3/2

· ∆µ − ∆ω

τσ

∣∣∣∣∣ ≤ ϵ

2τσ

where ∆̃ is some convex combination of ∆w = µ∗ − w and ∆µ = µ∗ − µ. For II3, a similar argument for
bounding II2 yields

I3 =

∣∣∣∣∣E
(

(∆̃ + εi)/τσ

(1 + (∆̃ + εi)2/τ2
σ)3/2

)
· ∆µ − ∆ω

τσ

∣∣∣∣∣
≤ E|∆̃ + εi| · ϵ

τ2
σ

≤
ϵ
√

2(r2 + σ2)
τ2

σ

,
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where the last inequality uses Jensen’s inequality, i.e. E|∆̃ + εi| ≤
√
E(∆̃ + ε2

i ) ≤
√

2(r2 + σ2). Putting the
above pieces together and using the union bound, we obtain with probability at least 1 − 12ϵ−1rδ

I ≤ n

z2 · sup
ω∈N

∣∣∣∣∣ 1n
n∑

i=1

√
1 + (yi − ω)2/τ2

σ − 1√
1 + (yi − ω)2/τ2

σ

− E
√

1 + (yi − ω)2/τ2
σ − 1√

1 + (yi − ω)2/τ2
σ

∣∣∣∣∣
+ n

z2 · ϵ

2τσ

(
1 +

2
√

2(r2 + σ2)
τσ

)

≤
2
√

log(1/δ)
z

+ log(1/δ)
3z2 + ϵ

√
n

σz
,

provided that

2
√

2(r2 + σ2) ≤ τσ.

Putting above results together, we obtain with probability at least 1 − (12r/ϵ+ 2)δ that

|v̂ − σ| ≲ I + II

≤
2
√

log(1/δ)
z

+ log(1/δ)
3z2 + ϵ

√
n

σz
+ γ

2 + 2r
σ
.

Let C ′ = 24CV 2
0 /v0. Therefore, taking ϵ = 1/

√
n, δ = 1/logn, and z2 ≥ log(n), we obtain with probability

at least

1 −
C ′(√logn+ log logn/

√
logn

)
+ 2

logn

that

|v̂ − σ| ≲

√
log logn

logn + log logn
logn + 1√

logn
+ γ + r → 0.

Therefore v̂ → σ in probability. This finishes the proof.

H.4 Local strong convexity in v

In this section, we first present the local strong convexity of the empirical loss function with respect to v
uniformly over a neighborhood of µ∗.

Lemma H.4 (Local strong convexity in v). Let Br(µ∗) = {µ : |µ− µ∗| ≤ r}. Assume r = r(n) = o(1). Let
0 < δ < 1 and n is sufficiently large. Take ϖ such that max{ϖr

√
n,ϖ} → 0 and ϖ

√
n → ∞. Then, with

probability at least 1 − δ, we have

inf
µ∈Br(µ∗)

⟨∇vLn(µ, v) − ∇vLn(µ, v∗), v − σ⟩
|v − σ|2

≥ ρℓ =
σ2

cϖ2n/(4z2)

2(v3 ∨ σ3) ≥ c0

v3 ∨ σ3 ,

where c and c0 are some constants.
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Proof of Lemma H.4. Recall τ = v
√
n/z. For notational simplicity, write τσ = σ

√
n/z, τv0 = v0

√
n/z,

τϖ = ϖ
√
n/z, and ∆ = µ∗ − µ. It follows that

⟨∇vLn(µ, v) − ∇vLn(µ, σ), v − σ⟩ = n

z2

〈
1
n

n∑
i=1

τ√
τ2 + (yi − µ)2

− 1
n

n∑
i=1

τσ√
τ2
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, v − σ

〉
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(τ̃2 + (yi − µ)2)3/2 |v − σ|2

≥ n3/2

z3 · 1
n

n∑
i=1

(yi − µ)2

((τ ∨ τσ)2 + (yi − µ)2)3/2 |v − σ|2

where τ̃ is some convex combination of τ and τσ, that is τ̃ = (1 − λ)τσ + λτ for some λ ∈ [0, 1]. Because
τ3x2/(τ2 + x2)3/2 is an increasing function of τ , if τϖ ≤ τ ∨ τσ, we have

⟨∇vLn(µ, v) − ∇vLn(µ, σ), v − v∗⟩
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≥ n3/2

z3(τ ∨ τσ)3 · 1
n

n∑
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(τ ∨ τσ)3(yi − µ)2
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Thus
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1
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)

= n3/2

z3(τ ∨ τσ)3 · (I − II) .

It remains to lower bound I and upper bound II. We start with I. Let f(x) = x/(1 + x)3/2 which satisfies

f(x) ≥

{
ϵx x ≤ cϵ

0 x > cϵ,

and Z = (y − µ)2/τ2
ϖ in which y ∼ yi. Suppose r2 ≤ cϵτ

2
ϖ/4, then we have
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µ∈Br(µ∗)

(
E
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)
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E
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2
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E
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E
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ϖ
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)
.
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We then proceed with II. For any 0 < γ ≤ 2r, there exists an γ-cover N of Br(µ∗) such that |N | ≤ 6r/γ.
Then for any µ ∈ Br(µ∗) there exists an ω ∈ N such that |ω − µ| ≤ γ, and thus by Lemma H.5 we have∣∣∣∣∣ 1n

n∑
i=1

τ3
ϖ(yi − µ)2

(τ2
ϖ + (yi − µ)2)3/2 − E
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(τ2
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∣∣∣∣∣
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∣∣∣∣
= II1 + II2 + II3.

For II1, Lemma H.5 implies with probability at least 1 − 2δ

II1 ≤
√

2τ2
ϖE(yi − ω)2 log(1/δ)

3n + τ2
ϖ log(1/δ)

3
√

3n
≤
√

2τ2
ϖ(σ2 + r2) log(1/δ)

3n + τ2
ϖ log(1/δ)

3
√

3n
.

Let

g(x) = 1
n

n∑
i=1

τ3(x+ εi)2

(τ2 + (x+ εi)2)3/2 .

Using the mean value theorem and the inequality that |τ2x/(τ2 + x2)3/2| ≤ 1/
√

3, we obtain

|g(x) − g(y)| =
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3
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Then we have
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3

where ∆̃ is some convex combination of ∆w = µ∗ − w and ∆µ = µ∗ − µ. For II3, we have

II3 =
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√
E
(

∆̃ + εi
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,

where the last inequality uses Jensen’s inequality. Putting the above pieces together and using the union
bound, we obtain with probability at least 1 − 12γ−1rδ
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3
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=
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2ϖ2 log(1/δ)

3z2 + γ

)
+ ϖ2 log(1/δ)
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√
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3
.
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Combining the bounds for I and II yields with probability at least 1 − δ

inf
µ∈Br(µ∗)

⟨∇vLn(µ, v) − ∇vLn(µ, σ), v − σ⟩
|v − σ|2

≥ n3/2
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where ϵ,ϖ, γ, n are picked such that ϵ = 3/4, γ = 12r, and
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3z2 + γ

)
− ϖ2 log(1/δ)

3
√

3z2
− ϖγ

√
n√

3

≥ 1
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4σ.

For example, we can pick ϖ such that

max{ϖr
√
n,ϖ} → 0 and ϖ

√
n → ∞

as n → ∞. This completes the proof.

H.5 Supporting lemmas

This subsection proves a supporting lemma that is used prove Lemma H.4.
Lemma H.5. Let wi be i.i.d. copies of w. For any 0 < δ < 1, we have

1
n

n∑
i=1

τ3w2
i

(τ2 + w2
i )3/2 − E

τ3w2
i

(τ2 + w2
i )3/2 ≥ −

√
2τ2Ew2

i log(1/δ)
3n − τ2 log(1/δ)

3
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3n
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∣∣∣∣∣ ≤
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2τ2Ew2
i log(1/δ)
3n + τ2 log(1/δ)

3
√

3n
, with prob. 1 − 2δ.

Proof of Lemma H.5. We only prove the first result and the second result follows similarly. The random
variables Zi = Zi(τ) := τ3w2

i /(τ2 + w2
i )3/2 with µz = EZi and σ2

z = var(Zi) are bounded i.i.d. random
variables such that

0 ≤ Zi = τ3w2
i /(τ2 + w2

i )3/2 ≤ w2
i ∧ τ2

√
3

∧ τ |wi|√
3
.

Moreover we have

EZ2
i = E

(
τ6w4

i

(τ2 + ε2
i )3

)
≤ τ2Ew2

i

3 , σ2
z := var(Zi) ≤ τ2Ew2

i

3 .

For third and higher order absolute moments, we have

E|Zi|k = E
∣∣∣∣ τ3w2

i

(τ2 + ε2
i )3/2

∣∣∣∣k ≤ τ2Ew2
i

3 ·
(
τ2
√

3

)k−2

≤ k!
2 · τ

2Ew2
i

3 ·
(
τ2

3
√

3

)k−2

, for all integers k ≥ 3.
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Therefore, using Lemma J.2 with v = nτ2 Ew2
i /3 and c = τ2/

(
3
√

3
)

acquires that for any t ≥ 0

P

(
n∑

i=1

τ3w2
i

(τ2 + ε2
i )3/2 −

n∑
i=1

E
(

τ3w2
i

(τ2 + ε2
i )3/2

)
≥ −

√
2nτ2Ew2

i t

3 − τ2t

3
√

3

)
≤ exp(−t).

Taking t = log(1/δ) acquires that for any 0 < δ < 1

P

(
1
n

n∑
i=1

τ3w2
i

(τ2 + w2
i )3/2 − 1

n

n∑
i=1

E
(

τ3w2
i

(τ2 + ε2
i )3/2

)
> −

√
2τ2Ew2

i log(1/δ)
3n − τ2 log(1/δ)

3
√

3n

)
> 1 − δ.

This finishes the proof.

I Proofs for Section 6

We first prove Proposition 6.1.

Proof of Proposition 6.1. The proof directly follows from Theorem 3.5 and the union bound.

Next, we prove Proposition 6.2.

Proof of Proposition 6.2. We only sketch the proof, as most of the proof follows from that of Theorem H.2.
By Proposition 6.1 and taking z2 = 2 logn, we obtain

∥µ̂− µ∗∥2 → 0 in probability.

Similarly, following the proof of Theorem H.3, we obtain

∥v̂ − σ∥2 → 0 in probability,

where v̂ = (v̂1, . . . , v̂d)T and σ = (σ11, . . . , σdd)T.

With a slight overload of notation, let Ln(µ) = Ln(µ, σ). Let τσk
= σkk

√
n/z. Then following the proof of

Theorem H.2, we obtain
√
n
(
µ̂− µ∗) ≃ [Hn(µ∗)]−1 (−√

n∇Ln(µ∗)
)

=


√

n
z · 1

n

∑n
i=1

τ2
σ11

(τ2
σ11 +ε2

i1)3/2 0 . . .

...
. . .

0
√

n
z · 1

n

∑n
i=1

τ2
σdd

(τ2
σdd

+ε2
id

)3/2


−1 

√
n · 1

n

∑n
i=1

τσ11 εi1

σ11
√

τ2
σ11 +ε2

i1
...√

n · 1
n

∑n
i=1

τσdd
εid

σdd

√
τ2

σdd
+ε2

id



≃

σ11 0 . . .
...

. . .
0 σdd




√
n · 1

n

∑n
i=1

τσ11 εi1

σ11
√

τ2
σ11 +ε2

i1
...√

n · 1
n

∑n
i=1

τσdd
εid

σdd

√
τ2

σdd
+ε2

id


=: Λ I,

where Λ = diag(σ11, . . . , σdd).

We only to derive the asymptotic distribution of the term I:

I =
√
n ·




1
n

∑n
i=1

τ2
σ11 εi1

σ
√

τ2
σ11 +ε2

i1
...

1
n

∑n
i=1

τ2
σdd

εid

σ
√

τ2
σdd

+ε2
id

− E


1
n

∑n
i=1

τσ11 εi1

σ11
√

τ2
σ11 +ε2

i1
...

1
n

∑n
i=1

τσdd
εid

σdd

√
τ2

σdd
+ε2

id


+

√
n · E


1
n

∑n
i=1

τσ11 εi1

σ11
√

τ2
σ11 +ε2

i1
...

1
n

∑n
i=1

τσdd
εid

σdd

√
τ2

σdd
+ε2

id


= I1 + I2.
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Again, following the proof of Theorem H.2, the ℓ2 norm of the second term goes to 0. For the first term I,
we have

I1 ⇝ N

0, lim
n→∞

cov




τ2
σ11 εi1

σ
√

τ2
σ11 +ε2

i1
...

τ2
σdd

εid

σ
√

τ2
σdd

+ε2
id





= N
(
0,Λ−1ΣΛ−1) .

Thus we have
√
n
(
µ̂− µ∗)⇝ N (0,Σ).

This finishes the proof.

J Preliminary lemmas

This section collects preliminary lemmas that are frequently used in the proofs for the main results and
supporting lemmas. We first collect the Hoeffding’s inequality and then present a form of Bernstein’s
inequality. We omit their proofs and refer interested readers to Boucheron et al. (2013).
Lemma J.1 (Hoeffding’s inequality). Let Z1, . . . , Zn be independent real-valued random variables such that
a ≤ Zi ≤ b almost surely. Let Sn =

∑n
i=1(Zi − EZi) and v = n(b− a)2. Then for all t ≥ 0,

P
(
Sn ≥

√
vt/2

)
≤ e−t, P

(
Sn ≤ −

√
vt/2

)
≤ e−t, P

(
|Sn| ≥

√
vt/2

)
≤ 2e−t.

Lemma J.2 (Bernstein’s inequality). Let Z1, . . . , Zn be independent real-valued random variables such that
n∑

i=1
EZ2

i ≤ v,

n∑
i=1

E|Zi|k ≤ k!
2 vc

k−2 for all k ≥ 3.

If Sn =
∑n

i=1(Zi − EZi), then for all t ≥ 0,

P
(
Sn ≥

√
2vt+ ct

)
≤ e−t, P

(
Sn ≤ −(

√
2vt+ ct)

)
≤ e−t, P

(
|Sn| ≥

√
2vt+ ct

)
≤ 2e−t.

Proof of Lemma J.2. This lemma involves a two-sided extension of Theorem 2.10 by Boucheron et al. (2013).
The proof follows from a similar argument used in the proof of Theorem 2.10, and thus is omitted.

Our third lemma concerns the localized Bregman divergence for convex functions. It was first established
in Fan et al. (2018). For any loss function L, define the Bregman divergence and the symmetric Bregman
divergence as

DL(β1, β2) = L(β1) − L(β2) − ⟨∇L(β2), β1 − β2⟩,
Ds

L(β1, β2) = DL(β1, β2) +DL(β2, β1).

Lemma J.3. For any βη = β∗ + η(β − β∗) with η ∈ (0, 1] and any convex loss function L, we have

Ds
L(βη, β

∗) ≤ ηDs
L(β, β∗).

Our forth lemma in this section concerns three basic inequalities that are frequently used in the proofs.
Lemma J.4. The following inequalities hold:
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(i) (1 + x)r ≥ 1 + rx for x ≥ −1 and r ∈ R \ (0, 1);

(ii) (1 + x)r ≤ 1 + rx for x ≥ −1 and r ∈ (0, 1);

(iii) (1 + x)r ≤ 1 + (2r − 1)x for x ∈ [0, 1] and r ∈ R \ (0, 1).
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