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ABSTRACT
In several real-world sequential decision problems, at every step, the

learner is required to select different actions. Every action affects a

specific part of the system and generates an observable intermedi-

ate effect. In this paper, we introduce the Factored-Reward Bandits

(FRBs), a novel setting able to effectively capture and exploit the

structure of this class of scenarios, where the reward is computed

as the product of the action intermediate observations. We char-

acterize the statistical complexity of the learning problem in the

FRBs, by deriving worst-case and asymptotic instance-dependent

regret lower bounds. Then, we devise and analyze two regret mini-

mization algorithms. The former, F-UCB, is an anytime optimistic

approach matching the worst-case lower bound (up to logarithmic

factors) but fails to perform optimally from the instance-dependent

perspective. The latter, F-Track, is a bound-tracking approach, that
enjoys optimal asymptotic instance-dependent regret guarantees.

KEYWORDS
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1 INTRODUCTION
In several real-world sequential decision-making problems, the

learner is required to select, at every interaction, different actions,

i.e., an action vector, acting on different portions of the system,

each producing an intermediate observation. In such scenarios, the

reward is often a combination of these observations. Consider, for

instance, the case in which we want to sell a product on an e-

commerce website. Our goal is to maximize the overall revenue

derived from the sales of a given item. In this business process, we

have to choose (𝑖) the price at which to sell the product and (𝑖𝑖) how

much budget to invest in advertising. On the one hand, the price we

set determines the propensity of the users to buy a given item, i.e.,

the conversion rate, representing for each price, the fraction of the

customers that will buy the item (Broder and Rusmevichientong,

2012; Den Boer, 2015). On the other hand, the advertising budget

we invest influences the number of potential customers that will be

exposed to such an item, i.e., the number of impressions we are able
to generate with the advertisement campaign (Feldman et al., 2007).

Thus, every time we select a price-budget pair (i.e., action vector), we
observe a noisy realization of the conversion rate, which depends
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on the price, and a noisy realization of the expected number of

impressions, which depends on the budget we invest in advertising

(i.e., intermediate observations). Thus, our objective is to maximize

the revenue (i.e., reward) that is computed as the product between
the price, the conversion rate, and the impressions (which will give

us our income) subtracting the invested advertising budget.
1

This scenario can be, in principle, addressed as a standard Multi-

Armed Bandit (MAB, Lattimore and Szepesvári, 2020) by looking

at the reward (i.e., revenue) only and considering price-budget

couples as actions. However, with such an approach, intermediate

observations (i.e., the conversion rate – consequence of the price we

set – and the impressions we generate – a consequence of the adv

budget we invest) that could provide useful information would be

ignored with a possible detrimental effect on the learning process.

Indeed, if we look just at the reward and disregard this factored
structure, the learning problem will: (𝑖) present an unnecessarily

large action space, including all the possible combinations of action

components (e.g., price and budget pairs), and (𝑖𝑖) suffer a possibly

amplified effect of the noise in the reward due to the product of the

noisy intermediate observations (e.g., impressions times conversion
rate).

A notion of factored bandits has been studied in (Zimmert and

Seldin, 2018) in which the expected reward is a general function of

the action components. No intermediate observations are consid-

ered and the noise is applied to the final reward only. Thus, this

setting ultimately fails to model the real-world scenarios we are

interested in, where the intermediate observations play a crucial

role and are combined with a specific function (i.e., the product).

As we shall see later in the paper, this specificity, motivated by the

considered real-world scenarios, will allow us to obtain tighter and

more detailed performance guarantees.

Contributions. In this paper, we propose the novel setting of

the Factored-Reward Bandits (FRBs) to model sequential decision-

making problems in which the agent is required to play an action

vector a = (𝑎1, . . . , 𝑎𝑑 )T consisting of 𝑑 action components. Each

action component 𝑎𝑖 provides a noisy intermediate observation

𝑥𝑖 whose product forms the reward 𝑟 = 𝑥1𝑥2 · · · 𝑥𝑑 . We study this

setting from computational and statistical perspectives and pro-

pose two regret minimization algorithms endowed with theoretical

guarantees. The contributions are summarized as follows:

1
The formalization of this example and an additional motivating example are reported

in Appendix A.
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• In Section 2, we introduce the FRB setting, describe the feedback
and noise models, and the learning problem.

• In Section 3, we study the statistical complexity of the learning

problem in the FRB setting by deriving regret lower bounds. First,
in Theorem 3.1, we present the worst-case regret lower bound of

order Ω(𝜎𝑑
√
𝑘𝑇 ), being 𝜎 the subgaussian proxy, 𝑑 the number

of action components, 𝑘 the number of possible choices for each

action component, and 𝑇 is the learning horizon.
2
This result

highlights how the complexity of the problem scales linearly

with 𝑑 and its derivation makes use of technical tools from the

multitask bandits literature. In Theorem 3.2, we show that depen-

dence on 𝜎𝑑 (exponential in 𝑑) is unavoidable when intermediate

observations are not present, motivating their crucial role. Sec-

ond, we present the instance-dependent asymptotic regret lower

bound which is first formulated as a linear program of O(𝑘𝑑 )
variables (Theorem 3.3) and, subsequently, elaborated in a more

explicit form (Theorem 3.4), whose derivation makes use of the

rearrangement inequalities (Hardy et al., 1952) and that enjoys

a computational complexity of O(𝑑𝑘 log𝑘). Qualitatively, this
result shows how the different action components choices need

to coordinate to match the lower bound.

• In Section 4, we provide a novel intuitive optimistic anytime
regret minimization algorithm, Factored Upper Confidence
Bound (F-UCB), in which optimism is applied to every action

component independently. Then, we characterize its worst-case
regret which has order Õ(𝜎𝑑

√
𝑘𝑇 ), matching the lower bound up

to logarithmic factors (Theorem 4.1). Then, we empirically study

its instance-dependent regret, revealing that it does not match

the lower bound (Theorem 4.3). This confirms how coordination
between action components is necessary.

• In Section 5, we design and analyze a novel algorithm, Factored
Track (F-Track). F-Track is based on tracking the bound (Lat-

timore and Szepesvari, 2017), and succeeds in matching the

instance-dependent lower bound in the asymptotic regime (Theo-

rem 5.1). Its analysis reveals, once more, the need for coordinating

the action components to achieve the optimal performance.

Appendix B discusses additional related works. Numerical simula-

tions are provided in Appendix E. The proofs of all the statements

are reported in Appendix C.

2 FACTORED REWARD BANDITS
In this section, we introduce the Factored-Reward Bandits (FRBs), the
learner-environment interaction, the assumptions, and we present

the learning problem.
3

Problem Formulation. Let 𝑇 ∈ N be the learning horizon. In a

FRB, at every round 𝑡 ∈ J𝑇 K, the learner chooses an action vector
a(𝑡) = (𝑎1 (𝑡), . . . , 𝑎𝑑 (𝑡))T in the action spaceA B J𝑘1K×· · ·×J𝑘𝑑K,
where for every 𝑖 ∈ J𝑑K we have that 𝑘𝑖 ∈ N≥2 is the number of

options of the 𝑖th action component 𝑎𝑖 (𝑡) of the vector, and 𝑑 ∈ N≥1
is the action vector dimension (i.e., the number of components

that the learner must select at every round 𝑡 ). As an effect of the

2
In the following, we provide more general results in which each action component 𝑖

can have a different number 𝑘𝑖 of choices.
3
Let 𝑎,𝑏 ∈ N with 𝑎 ≤ 𝑏, we introduce the symbols: J𝑎,𝑏K B {𝑎, 𝑎+1, . . . , 𝑏 − 1, 𝑏}
and J𝑏K B J1, 𝑏K. A zero-mean random variable 𝜉 is 𝜎2

-subgaussian if E[𝑒𝜆𝜉 ] ≤

𝑒
𝜆2𝜎2

2 , for every 𝜆 ∈ R.

action, the learner observes a vector of 𝑑 intermediate observations
x(𝑡) = (𝑥1 (𝑡), . . . , 𝑥𝑑 (𝑡))T and receives as reward the product of the
intermediate observations 𝑟 (𝑡) = ∏

𝑖∈J𝑑K 𝑥𝑖 (𝑡). The 𝑖th component

𝑥𝑖 (𝑡) of the intermediate observation vector x(𝑡) is the effect of the
𝑖th action component 𝑎𝑖 (𝑡) in the action vector a(𝑡). Specifically,
every component 𝑖 ∈ J𝑑K of the intermediate observation vector

x(𝑡) is independent of the others and sampled from a distribution

𝑥𝑖 (𝑡) ∼ 𝜈𝑖,𝑎𝑖 (𝑡 ) , so that, x(𝑡) ∼ 𝝂a(𝑡 ) B ⊗𝑖∈J𝑑K𝜈𝑖,𝑎𝑖 (𝑡 ) . Thus, we
will denote an FRB as 𝝂 B ⊗𝑖∈J𝑑K ⊗𝑎𝑖 ∈J𝑘𝑖K 𝜈𝑖,𝑎𝑖 . Furthermore, we

can write 𝑥𝑖 (𝑡) = 𝜇𝑖,𝑎𝑖 (𝑡 ) + 𝜖𝑖 (𝑡), where 𝜇𝑖,𝑎𝑖 (𝑡 ) is the expected
intermediate observation of the 𝑖th action component 𝑎𝑖 (𝑡), and
𝜖𝑖 (𝑡) is 𝜎2-subgaussian random noise, independent conditioned

to the past and the other noise realizations 𝜖 𝑗 (𝑡) for 𝑗 ∈ J𝑑K \
{𝑖}. As customary, we assume bounded expected values for the

intermediate observations, i.e., 𝜇𝑖,𝑎𝑖 ∈ [0, 1] for every 𝑖 ∈ J𝑑K
and 𝑎𝑖 ∈ J𝑘𝑖K, and all intermediate observation components 𝑥𝑖 (𝑡)
characterized by the same known subgaussian proxy 𝜎 .4

Learning Problem. An optimal action vector is a∗ = (𝑎∗
1
, . . . , 𝑎∗

𝑑
)T

∈ argmaxa=(𝑎1,...,𝑎𝑑 )T∈A
∏
𝑖∈J𝑑K 𝜇𝑖,𝑎𝑖 and, since all expected inter-

mediate observations are non-negative, we can factorize the opti-

mization problem observing that 𝑎∗
𝑖
∈ argmax𝑎𝑖 ∈J𝑘𝑖K 𝜇𝑖,𝑎𝑖 for every

𝑖 ∈ J𝑑K. We denote with 𝜇∗
𝑖
= 𝜇𝑖,𝑎∗

𝑖
the expected intermediate obser-

vation of the optimal 𝑖th action component. We define the subopti-

mality gap related to the 𝑖th action component as Δ𝑖,𝑎𝑖 B 𝜇∗
𝑖
− 𝜇𝑖,𝑎𝑖

for 𝑎𝑖 ∈ J𝑘𝑖K, and the suboptimality gap related to the action vector

a = (𝑎1, . . . , 𝑎𝑑 )T ∈ A as Δa B
∏
𝑖∈J𝑑K 𝜇

∗
𝑖
−∏

𝑖∈J𝑑K 𝜇𝑖,𝑎𝑖 .

Let 𝝂 be an FRB, 𝔄 be a learning algorithm, and 𝑇 ∈ N be the

learning horizon, we define its cumulative regret as:

𝑅𝑇 (𝔄,𝝂)B 𝑇
∏
𝑖∈J𝑑K

𝜇∗𝑖 −
∑︁
𝑡 ∈J𝑇 K

∏
𝑖∈J𝑑K

𝜇𝑖,𝑎𝑖 (𝑡 ) =
∑︁
𝑡 ∈J𝑇 K

Δa(𝑡 ) . (1)

The goal of the learner consists in minimizing the expected cumu-
lative regret E[𝑅𝑇 (𝔄,𝝂)], where the expectation is taken w.r.t. the

randomness of the observations and the possible randomness of

the algorithm 𝔄.

3 REGRET LOWER BOUNDS
In this section, we provide lower bounds to the expected regret

that any learning algorithm suffers when addressing the learning

problem in a FRB, both in theminimax (Section 3.1) and the instance-

dependent (Section 3.2) cases.

3.1 Worst-Case Lower Bound
We present the worst-case lower bound that every algorithm suffers

and discuss the role of the structure of the FRB.

Theorem 3.1 (Worst-Case Lower Bound). For every algorithm
𝔄, there exists an FRB 𝝂 such that for:

𝑇 ≥ 2

(
1 − 2−

1

𝑑−1
)−2

𝜎2 max

𝑖∈J𝑑K
𝑘𝑖 , (2)

𝔄 suffers an expected cumulative regret of at least:

E
[
𝑅𝑇 (𝔄,𝝂)

]
≥ 𝜎

4

√
2

∑︁
𝑖∈J𝑑K

√︁
𝑘𝑖𝑇 .

4
The extension with different known subgaussian proxies 𝜎𝑖 for every component

𝑖 ∈ J𝑑K is straightforward.



In particular, if 𝑘𝑖 C 𝑘 for every 𝑖 ∈ J𝑑K, we have:

E
[
𝑅𝑇 (𝔄,𝝂)

]
≥ Ω(𝜎𝑑

√
𝑘𝑇 ) .

Proof Sketch. The challenge is the structure of the regret in a

FRB. We lower-bound the regret 𝑅𝑇 (𝔄,𝝂) as a sum of the regrets

𝑅
(𝑖 )
𝑇
(𝔄,𝝂) that an algorithm 𝔄 would have suffered by playing 𝑑

parallel MABs. Choosing 𝜇∗
𝑖
= 1:

𝑅𝑇 (𝔄,𝝂) =
∑︁
𝑡 ∈J𝑇 K

(
1 −

∏
𝑖∈J𝑑K

(
1 − Δ𝑖,𝑎𝑖 (𝑡 )

) )
≥ 1

2

∑︁
𝑖∈J𝑑K

∑︁
𝑡 ∈J𝑇 K

Δ𝑖,𝑎𝑖 (𝑡 ) C
1

2

∑︁
𝑖∈J𝑑K

𝑅
(𝑖 )
𝑇
(𝔄,𝝂) .

This derivation leverages an ad-hoc technical Lemma C.2, which

holds for sufficiently small suboptimality gaps, i.e.,Δ𝑖,𝑎𝑖 ≤ 1−2−
1

𝑑−1 .

This condition gives rise to the constraint on the minimum time

horizon (Equation 2), since the suboptimality gaps will be chosen

∝ 𝑇 −1/2. Indeed, intuitively, if the suboptimality gaps Δ𝑖,𝑎𝑖 (𝑡 ) are
too large (depending on 𝑑) we will have 1 −∏

𝑖∈J𝑑K (1 − Δ𝑖,𝑎𝑖 ) ≪∑
𝑖∈J𝑑K Δ𝑖,𝑎𝑖 making the instances more distinguishable and, conse-

quently, reducing the regret. The result is obtained by showing that

regret component satisfies 𝑅
(𝑖 )
𝑇
(𝔄,𝝂) ≥ Ω(𝜎

√
𝑘𝑖𝑇 ) redesigning for

the subgaussian case the solution designed for Bernoulli rewards

from the multitask bandit literature (Wang et al., 2021, Theorem

10). □

To understand the beneficial effect of: (𝑖) the factored structure

and (𝑖𝑖) the intermediate observations, it is worth comparing the

result of Theorem 3.1 with the regret lower bounds of common

settings. If we remove (𝑖), we are in the presence of a MAB with

A = J𝑘1K × · · · × J𝑘𝑑K as action space.
5
It is worth noting that,

even in this case, the reward 𝑟 (𝑡) = ∏
𝑖∈J𝑑K 𝑥𝑖 (𝑡) is the product

of 𝑑 subgaussian random variables which is not, in general, sub-

gaussian (see Lemma D.1). Nevertheless, 𝑟 (𝑡) is guaranteed to pre-

serve a finite variance of order at least 𝜎2 = 𝜎2𝑑 (see Lemma D.3).

Thus, we can look at the setting as a heavy-tailed MAB with finite

variance (Bubeck et al., 2013) with

∏
𝑖∈J𝑑K 𝑘𝑖 actions, leading to

a regret of order Ω(𝜎
√︃∏

𝑖∈J𝑑K 𝑘𝑖𝑇 ), which becomes Ω(𝜎𝑑
√
𝑘𝑑𝑇 )

when 𝑘𝑖 = 𝑘 for every 𝑖 ∈ J𝑑K.
It is natural to wonder if (𝑖) is enough to break the exponential

dependence in 𝑑 (on both 𝜎 and 𝑘). This setting is similar, but not

exactly overlapping, to that of Zimmert and Seldin (2018), in which

a general “factored” structure is considered without intermediate

observations and assuming that the subgaussian noise is applied to

the reward directly. Nevertheless, (Zimmert and Seldin, 2018) pro-

vide neither worst-case lower bound nor worst-case regret analysis

of the proposed algorithm. The following result shows that (𝑖) only

is enough to remove the exponential dependence in 𝑑 on 𝑘 but not

on 𝜎 , which remains unavoidable without (𝑖𝑖).

Theorem 3.2 (Worst-Case Lower Bound without Interme-

diate Observations). For every algorithm 𝔄† that ignores the in-
termediate observations x(𝑡) and observes the reward 𝑟 (𝑡) only, there
exists an FRB 𝝂 such that for:

𝑇 ≥ 4( min

𝑖∈J𝑑K
𝑘𝑖 − 1)/𝑑,

5
Note that makes no sense to consider (𝑖𝑖) without (𝑖 ) .

𝔄† suffers an expected cumulative regret of at least:

E
[
𝑅𝑇 (𝔄†,𝝂)

]
≥ 𝜎

𝑑

8

√︄
(min𝑖∈J𝑑K 𝑘𝑖 − 1)𝑇

𝑑
.

In particular, if 𝑘𝑖 C 𝑘 for every 𝑖 ∈ J𝑑K, we have:

E
[
𝑅𝑇 (𝔄†,𝝂)

]
≥ Ω(𝜎𝑑

√︁
𝑘𝑇 /𝑑).

Thus, Theorem 3.2 shows that the exponential dependence of

𝑑 on 𝜎 is maintained even with the factored structure. This is par-

ticularly significant when 𝜎 > 1, a regime in which the function

𝜎𝑑/
√
𝑑 is exponentially increasing in 𝑑 . This motivates the inter-

est in studying this setting combining factored structure (𝑖) and

intermediate observations (𝑖𝑖).

Remark 3.1 (About the independence of the intermediate obser-

vations). The formulation of the FRB in Section 2 assumes that the
components 𝑥𝑖 (𝑡) of the observation vector x(𝑡) are independent.
This is necessary to treat the problem with appropriate advantages
over standard MABs on the combinatorial action space A. Indeed,
if we rule out the independence assumption, we can always define
a FRB in which x(𝑡) = (𝑦 (𝑡), 1, . . . , 1)T, where 𝑦 (𝑡) ∼ 𝜈

1,a(𝑡 ) . This
corresponds to a standard 𝜎2-subgaussian MAB with A as action
space and arm distributions 𝜈1,a. Nevertheless, it is possible to relax
the independence assumption, by requiring non-correlation among
the intermediate observations.

3.2 Instance-Dependent Lower Bound
We present the instance-dependent lower bound that every algo-

rithm suffers on a specific instance 𝝂 of the FRB setting.

Theorem 3.3 (Instance-Dependent Lower Bound). For every
consistent6 algorithm 𝔄 and FRB 𝝂 with unique optimal arm a∗ ∈ A
it holds that:

lim inf

𝑇→+∞

E
[
𝑅𝑇 (𝔄,𝝂)

]
log𝑇

≥ 𝐶 (𝝂), (3)

where 𝐶 (𝝂) is defined as the solution to the following optimization
problem:

min

(𝐿a )a∈A\{a∗}

∑︁
a∈A\{a∗}

𝐿aΔa (4)

s.t. 𝐿𝑖,𝑗 =
∑︁

a∈A\{a∗}
𝑎𝑖=𝑗

𝐿a, ∀𝑖 ∈ J𝑑K, 𝑗 ∈ J𝑘𝑖K\ {𝑎∗𝑖 } (5)

𝐿𝑖,𝑗 ≥
2𝜎2

Δ2

𝑖,𝑗

, ∀𝑖 ∈ J𝑑K, 𝑗 ∈ J𝑘𝑖K\ {𝑎∗𝑖 } (6)

𝐿a ≥ 0, ∀a ∈ A\ {a∗} . (7)

Proof Sketch. Here we provide an informal derivation that

captures the intuition, although the formal proof requires some ad-

ditional technical effort (see Appendix C.1). Thanks to the factored

structure, we can show, as for stochastic bandits, that for every

𝑗 ∈ J𝑘𝑖K\ {𝑎∗𝑖 } and 𝑖 ∈ J𝑑K the expected number of pulls E[𝑁𝑖, 𝑗 (𝑇 )]
is lower bounded by (Constraint 6):

𝐿𝑖, 𝑗 B
E[𝑁𝑖, 𝑗 (𝑇 )]

log𝑇
≥ 2𝜎2

Δ2

𝑖, 𝑗

for 𝑇 → +∞

6
An algorithm 𝔄 is consistent if for every FRB 𝝂 and 𝑝 > 0, it holds that

lim sup𝑇→+∞ E[𝑅𝑇 (𝔄, 𝝂 ) ]/𝑇𝑝 = 0.



We now want to find the arrangements of the number of pulls of

action vectors 𝑁a (𝑇 ), for every a ∈ A \ {a∗}, to minimize the

cumulative regret. Recalling that 𝑁𝑖, 𝑗 (𝑇 ) =
∑
a∈A :𝑎𝑖=𝑗 𝑁a (𝑇 ), we

define 𝐿𝑖, 𝑗 =
∑
a∈A\{a∗ } :𝑎𝑖=𝑗 𝐿a (Constraint 5). Finally, by recalling

the decomposition of the regret

E[𝑅𝑇 (𝔄,𝝂 )]
log𝑇

=
∑
a∈A 𝐿aΔa we get

the objective function in Equation (4) to be minimized. Notice that

to make the proof fully formal we need to properly manage the

asymptotic behavior of the sequences E[𝑁𝑖, 𝑗 (𝑇 )] and E[𝑁a (𝑇 )]
when 𝑇 → +∞. □

The optimization problem in Theorem 3.3 is a Linear Program

(LP) with

∏
𝑖∈J𝑑K 𝑘𝑖 +

∑
𝑖∈J𝑑K 𝑘𝑖 − 𝑑 − 1 variables and

∏
𝑖∈J𝑑K 𝑘𝑖 +

2

∑
𝑖∈J𝑑K 𝑘𝑖 − 2𝑑 − 1 constraints. Constraint (5) establishes the rela-

tion between the number of pulls of the action vectors 𝐿a and the

number of pulls of the action components 𝐿𝑖, 𝑗 . This captures the

“information sharing” of the setting in which we obtain a sample

for the action component (𝑖, 𝑗) whenever we pull an action vector a
such that 𝑎𝑖 = 𝑗 . Being a minimization problem, Constraint (6) will

be satisfied with equality allowing the removal of variables 𝐿𝑖, 𝑗 and

the relative constraints. Thus, the LP can be solved in polynomial

time w.r.t.

∏
𝑖∈J𝑑K 𝑘𝑖 (Vaidya, 1989).

Explicit Solution of the LP Program. We now illustrate how to

solve the LP program with a smaller time complexity of order

O(∑𝑖∈J𝑑K 𝑘𝑖 log𝑘𝑖 ). We first provide the intuition and, then, pro-

vide the formal argument.

The minimum proportion with which the action component

(𝑖, 𝑗) is to be pulled (Constraint 6) can be accomplished by pulling

different sequences of action vectors a such that 𝑎𝑖 = 𝑗 . How to
“arrange” the pulls of the action vectors to satisfy Constraint (6) and
minimize the regret? To start capturing the intuition, consider the

simplest setting with 𝑑 = 2, 𝑘1 = 𝑘2 = 2, 𝑎∗
1
= 𝑎∗

2
= 1, 𝜇1,1 =

𝜇2,1 = 1 and 𝜇1,2 = 𝜇2,2 = 𝑦 ∈ (0, 1). To satisfy Constraint (6), we

have to guarantee 𝐿1,2 = 𝐿2,2 = 2𝜎2 (1 − 𝑦)−2 (in the solution the

constraint is satisfied with equality) and we have at our disposal 4

action vectors A = {(1, 1), (1, 2), (2, 1), (2, 2)}. We can satisfy the

constraint in two ways:
7

(𝑖) playing action (2, 2) (i.e., with both suboptimal components)

for a proportion of 2𝜎2 (1 − 𝑦)−2 times, suffering 1 − 𝑦2 in-
stantaneous regret;

(𝑖𝑖) playing actions (1, 2) and (2, 1) (i.e., with one suboptimal

component) for a proportion of 2𝜎2 (1 − 𝑦)−2 each, suffering
1 − 𝑦 instantaneous regret;

It is simple to convince that (𝑖) is the choice that minimizes the

cumulative regret. Indeed, for 𝑦 ∈ (0, 1), we have:

2𝜎2 (1 − 𝑦)−2 (1 − 𝑦2)︸                      ︷︷                      ︸
case (𝑖)

≤ 4𝜎2 (1 − 𝑦)−2 (1 − 𝑦)︸                    ︷︷                    ︸
case (𝑖𝑖)

. (8)

This intuitive reasoning can be extended to the general case. To

this end, let us define the sorting functions 𝜋𝑖 : J𝑘𝑖K → J𝑘𝑖K for

every 𝑖 ∈ J𝑑K as any bijective function such that:

𝜇𝑖,𝜋𝑖 (1) ≤ · · · ≤ 𝜇𝑖,𝜋𝑖 (𝑘𝑖−1) ≤ 𝜇𝑖,𝜋𝑖 (𝑘𝑖 ) = 𝜇
∗
𝑖 .

We claim that in the optimal arrangement the action components

need to coordinate as illustrated in Figure 1. For every dimension

𝑖 ∈ J𝑑K (row), we sort the action components in non-decreasing

7
Any mix between (𝑖) and (𝑖𝑖) is clearly suboptimal.

𝑑

𝐿
1,𝜋

1
(1)

𝐿𝑑,𝜋𝑑 (1)

𝐿
1,𝜋

1
(2)

𝐿
2,𝜋

2
(1) 𝐿

2,𝜋
2
(2)

𝐿𝑑,𝜋𝑑 (2)

𝐿
2,𝜋

2
(𝑘
2
−1)

𝜇
1,𝜋1 (1) 𝜇

1,𝜋1 (2) 𝜇∗
1

𝜇
2,𝜋2 (𝑘2−1)

𝜇∗
𝑑

𝜇
2,𝜋2 (2)𝜇

2,𝜋2 (1)

𝜇𝑑,𝜋𝑑 (1) 𝜇𝑑,𝜋𝑑 (2)

Figure 1: Efficient solution to the LP presented in Theo-
rem 3.3.

order of 𝜇𝑖, 𝑗 according to the sorting function 𝜋𝑖 . To every 𝑗 ∈
J𝑘𝑖 −1K, an interval of length 𝐿𝑖, 𝑗 is associated corresponding to the

proportion of pull. Now, we combine the different rows to obtain the

“active action vector” (represented by different colors) made by the

corresponding action components. Each active action vector will

be pulled for a proportion (the colored vertical slices) depending on

the 𝐿𝑖, 𝑗 values of the corresponding components. Notice that we

can have at most

∑
𝑖∈J𝑑K 𝑘𝑖 − 1 active action vectors and the total

proportion of the pulls (the width of the full table in Figure 1) is

given by 𝑀 B max𝑖∈J𝑑K
∑
𝑗∈J𝑘𝑖−1K 𝐿𝑖, 𝑗 . To formally characterize

the solution, we introduce, for every 𝑖 ∈ J𝑑K and 𝑙 ∈ J𝑘𝑖 − 1K, the
variables𝑀𝑖,𝑙 B

∑
𝑙 ′∈J𝑙K 𝐿𝑖,𝜋𝑖 (𝑙 ′ ) and𝑀𝑖,𝑘𝑖 = +∞ as the cumulative

proportion of pulls of the action components more suboptimal

than (𝑖, 𝜋𝑖 (𝑙)), i.e., fixing a row 𝑖 , the position of the black vertical

lines in Figure 1 sorted from left to right. Let us define the sorting

function 𝝅 : J𝐾K → ⋃
𝑖∈J𝑑K ({𝑖} × J𝑘𝑖K), where 𝐾 =

∑
𝑖∈J𝑑K 𝑘𝑖 , as

any bijection such that:

𝑀𝝅 (1) ≤ · · · ≤ 𝑀𝝅 (𝐾−𝑑 ) ,

with the convention𝑀𝝅 (0) = 0, i.e., the position in which we move

from one vertical slice to the next one in Figure 1 sorted from left

to right. For every ℓ ∈ J𝐾K, we define the active action vector as

𝜶 ℓ = ( 𝑗1,ℓ , . . . , 𝑗𝑑,ℓ )T ∈ A where:

𝑗𝑖,ℓ B 𝜋−1
𝑖

(
argmax𝑙∈J𝑘𝑖K{𝑀𝑖,𝑙 ≥ 𝑀𝝅 (ℓ ) }

)
.

This allows us to prove the following result.

Theorem 3.4 (Instance-Dependent Lower Bound (Explicit)).

Let 𝐶 (𝝂) be the solution of the optimization problem of Theorem 3.3.
It holds that:

𝐶 (𝝂) =
𝐾−𝑑∑︁
ℓ=1

(
𝑀𝝅 (ℓ ) −𝑀𝝅 (ℓ−1)

)
Δ𝜶 ℓ

,

that can be computed in O(∑𝑖∈J𝑑K 𝑘𝑖 log𝑘𝑖 ).

Proof Sketch. We generalize Equation (8) with the rearrange-
ment inequality for integrals (Luttinger and Friedberg, 1976), the

continuous version of the more known rearrangement inequality

for sequences (Hardy et al., 1952). □



Algorithm 1: F-UCB.
Input :Exploration Parameter 𝛼 , Subgaussian proxy 𝜎 ,

Action component size 𝑘𝑖 , ∀𝑖 ∈ J𝑑K
1 Initialize 𝑁𝑖,𝑎𝑖 (0)←0, �̂�𝑖,𝑎𝑖 (0)← 0 ∀𝑎𝑖 ∈ J𝑘𝑖K, 𝑖 ∈ J𝑑K
2 for 𝑡 ∈ J𝑇 K do
3 Select a(𝑡 ) ∈ argmax

a=(𝑎1, ... 𝑎𝑑 )T∈A

∏
𝑖∈J𝑑K

UCB𝑖,𝑎𝑖 (𝑡 ) where

UCB𝑖,𝑎𝑖 (𝑡 ) = �̂�𝑖,𝑎𝑖 (𝑡 − 1) + 𝜎
√︂

𝛼 log 𝑡

𝑁𝑖,𝑎𝑖
(𝑡−1)

4 Play a(𝑡 ) and observe x(𝑡 ) = (𝑥1 (𝑡 ), . . . , 𝑥𝑑 (𝑡 ) )T

5 Update �̂�𝑖,𝑎𝑖 (𝑡 ) (𝑡 ) and 𝑁𝑖,𝑎𝑖 (𝑡 ) (𝑡 ) for every 𝑖 ∈ J𝑑K
6 end

4 A WORST-CASE OPTIMAL ALGORITHM
In this section, we present an optimistic any-time regret minimiza-

tion algorithm for the FRB setting. Factored Upper Confidence
Bound (F-UCB), whose pseudo-code is reported in Algorithm 1, is

based on the idea of running a UCB-like exploration (Auer et al.,

2002) independently for every dimension 𝑖 ∈ J𝑑K and estimate the

expected observation 𝜇𝑖,𝑎𝑖 for every action component 𝑎𝑖 ∈ J𝑘𝑖K.
The algorithm requires as input the number of action components

𝑘𝑖 for every 𝑖 ∈ J𝑑K, the exploration parameter 𝛼 > 2, and the sub-

gaussian proxy 𝜎 . After initializing the variables to keep track of the

number of pulls 𝑁𝑖,𝑎𝑖 (𝑡) and the sample mean �̂�𝑖,𝑎𝑖 (𝑡) for all action
components (line 1), the algorithm starts the learner-environment

interaction. At every round 𝑡 ∈ J𝑇 K, F-UCB computes the optimistic

action, i.e., the action a(𝑡) maximizing the optimistic index:

a(𝑡) ∈ argmax

a=(𝑎1, ..., 𝑎𝑑 )T∈A

∏
𝑖∈J𝑑K

UCB𝑖,𝑎𝑖 (𝑡),

where �̂�𝑖,𝑎𝑖 (𝑡) is the empirical mean of the observations for the

𝑖th component of the observation vector determined by the action

component 𝑎𝑖 , and 𝑁𝑖,𝑎𝑖 (𝑡) is the number of times the correspond-

ing component of the action vector has been played (line 3). Then,

the algorithm plays it and observes the 𝑑-dimensional observation

vector x(𝑡) = (𝑥1 (𝑡), . . . , 𝑥𝑑 (𝑡))T (line 4). The observation vector

is used to incrementally update the sample means of all action
components involved and the related counters (lines 5). Finally, the

algorithm reduces to UCB1 when 𝑑 = 1.

F-UCB enjoys a time complexity of O(𝑇 ∑
𝑖∈J𝑑K 𝑘𝑖 ) and a space

complexity of O(∑𝑖∈J𝑑K 𝑘𝑖 ). Indeed, at every round 𝑡 ∈ J𝑇 K, we
need to recompute the index UCB𝑖,𝑎𝑖 (𝑡) for all

∑
𝑖∈J𝑑K 𝑘𝑖 action

components (at least the bonus changes at every round). Note

that the computation of the optimistic action is not combinatorial

since the optimization can be performed independently for every

dimension 𝑖 ∈ J𝑑K.

4.1 Worst-Case Regret Analysis
In this section, we provide the worst-case regret analysis of F-UCB
as summarized in the following result.

Theorem 4.1 (Worst-Case Upper Bound for F-UCB). For any
FRB 𝝂 , F-UCB with 𝛼 > 2 suffers an expected regret bounded as:

E
[
𝑅𝑇 (F-UCB,𝝂)

]
≤ 4𝜎

∑︁
𝑖∈J𝑑K

√︁
𝛼𝑘𝑖𝑇 log𝑇 + 𝑔(𝛼)

∑︁
𝑖∈J𝑑K

𝑘𝑖 ,

where 𝑔(𝛼) = Õ
(
(𝛼 − 2)−2

)
.8 In particular, if 𝑘𝑖 C 𝑘 , for every

𝑖 ∈ J𝑑K, we have:

E
[
𝑅𝑇 (F-UCB,𝝂)

]
≤ Õ(𝜎𝑑

√
𝑘𝑇 ).

Proof Sketch. Under a suitable “good event”, we have that

𝜇𝑖,𝑎𝑖 ≤ UCB𝑖,𝑎𝑖 (𝑡) for every 𝑖 ∈ J𝑑K, 𝑎𝑖 ∈ J𝑘𝑖K, and 𝑡 ∈ J𝑇 K. Thus,
the instantaneous regret is bounded as:∏
𝑖∈J𝑑K

𝜇∗𝑖 −
∏
𝑖∈J𝑑K

𝜇𝑖,𝑎𝑖 (𝑡 )

=
∑︁
𝑙∈J𝑑K

∏
𝑖∈J𝑙−1K

𝜇∗𝑖︸︷︷︸
∈[0,1]

(
𝜇∗
𝑙
− 𝜇𝑙,𝑎𝑙 (𝑡 )

)
︸            ︷︷            ︸

≤UCB𝑖,𝑎𝑖 (𝑡 ) (𝑡 )−𝜇𝑙,𝑎𝑙 (𝑡 )

∏
𝑖∈J𝑙+1,𝑑K

𝜇𝑖,𝑎𝑖 (𝑡 )︸ ︷︷ ︸
∈[0,1]

≤
∑︁
𝑙∈J𝑑K

(
UCB𝑙,𝑎𝑙 (𝑡 ) (𝑡) − 𝜇𝑙,𝑎𝑙

)
,

where the first line is obtained by summing and subtracting all

mixed terms

∏
𝑖∈J𝑙K 𝜇

∗
𝑖

∏
𝑖∈J𝑙+1,𝑑K 𝜇𝑖,𝑎𝑖 (𝑡 ) and the second by opti-

mism 𝜇∗
𝑙
≤ UCB𝑙,𝑎∗

𝑙
(𝑡) ≤ UCB𝑙,𝑎𝑙 (𝑡 ) (𝑡). □

Comparing the upper bound of Theorem 4.1 with the lower

bound in Theorem 3.1, we realize that the dependence on the learn-

ing horizon 𝑇 is tight up to logarithmic factors (just like UCB1)
and the dependence on the number of action components 𝑘𝑖 , the

number of dimensions 𝑑 , and the subgaussian proxy 𝜎 are tight up

to constant factors.

It is worth comparing our results with the ones that could be

obtained by applying literature algorithms to our FRB setting. As

already mentioned in Section 3, although each intermediate ob-

servation 𝑥𝑖 (𝑡) is 𝜎2-subgaussian, their product 𝑟 (𝑡), i.e., the re-

ward, is not in general. This prevents, for instance, the applica-

tion of UCB1 which assumes subgaussian (or bounded) reward.

Precisely, for 𝑑 = 2, the reward 𝑟 (𝑡) = 𝑥1 (𝑡)𝑥2 (𝑡) is a subexpo-
nential random variable, a scenario that can be still approached

with the standard sample mean estimator but leveraging the Bern-

stein’s concentration bound (Boucheron et al., 2013). However,

for 𝑑 ≥ 3, as shown in Lemma D.1, the reward 𝑟 (𝑡) does not ad-
mit a moment-generating function and, consequently, displays a

heavy-tailed behavior (Bubeck et al., 2013). Nevertheless, the re-

ward 𝑟 (𝑡) random variable maintains a finite variance bounded

by 𝜎2 =
(
1 + 𝜎2

)𝑑 − 1 (see Lemma D.2). This enables the appli-

cation of algorithms designed for heavy-tailed bandits, such as

Robust-UCB (Bubeck et al., 2013), able to handle generic distribu-

tions with finite variance, by resorting to estimators other than the

sample mean. It is easy to verify that by considering the Median
of Means estimator (Bubeck et al., 2013), we obtain a regret up-

per bound in the order of Õ
(
𝜎
√︃∏

𝑖∈J𝑑K 𝑘𝑖𝑇
)
. This result is in line

with the discussion in Section 3 and, clearly, not optimal. Indeed,

the dependence on the product

∏
𝑖∈J𝑑K 𝑘𝑖 ≫

∑
𝑖∈J𝑑K 𝑘𝑖 is because

Robust-UCB does not exploit the factored property of the FRB set-

ting. Furthermore, the dependence on 𝜎 =
√︁
(1 + 𝜎2)𝑑 − 1 ≥ 𝜎 is

justified by the fact that the intermediate observations are ignored.

Finally, the analysis of Factored Bandit TEA (Zimmert and Seldin,

2018) cannot be adapted to our setting since, as already mentioned,

the subgaussian noise is applied to the final reward only.

8
The complete expression is reported in the proof.



4.2 Instance-Dependent Upper Bound
In this section, we provide the analysis of the instance-dependent

regret upper bound for the F-UCB algorithm. The following theorem

summarizes the result.

Theorem 4.2 (Instance-Dependent Upper Bound for F-UCB).
For a given FRB 𝝂 , F-UCB with 𝛼 > 2 suffers an expected regret
bounded as:

E
[
𝑅𝑇 (F-UCB,𝝂)

]
≤ 𝐶 (F-UCB,𝝂),

where 𝐶 (F-UCB,𝝂) is defined as the solution to the following opti-
mization problem (where 𝑔(𝛼) = Õ((𝛼 − 2)−2)):

max

(𝑁a )a∈A

∑︁
a∈A\{a∗ }

𝑁aΔa (9)

s.t. 𝑁𝑖, 𝑗 =
∑︁

a∈A\{a∗ }
𝑎𝑖=𝑗

𝑁a, ∀𝑖 ∈ J𝑑K, 𝑗 ∈ J𝑘𝑖K \ {𝑎∗𝑖 } (10)

𝑁𝑖, 𝑗 ≤
4𝛼𝜎2 log𝑇

Δ2

𝑖, 𝑗

+ 𝑔(𝛼), ∀𝑖 ∈ J𝑑K, 𝑗 ∈ J𝑘𝑖K \ {𝑎∗𝑖 }

(11)∑︁
a∈A

𝑁a = 𝑇 (12)

𝑁a ≥ 0, ∀a ∈ A (13)

The derivation of the LP in Theorem 4.2 follows a similar ratio-

nale as that of the instance-dependent lower bound of Theorem 3.3.

Since F-UCB runs an optimistic UCB strategy independent for every
action component, we can derive an upper bound on the expected

number of pulls for every 𝑖 ∈ J𝑑K and 𝑗 ∈ J𝑘𝑖K \ {𝑎∗𝑖 } (denoted with
𝑁𝑖, 𝑗 in the LP):

E[𝑁𝑖, 𝑗 (𝑇 )] ≤
4𝛼𝜎2 log𝑇

Δ2

𝑖, 𝑗

+ 𝑔(𝛼),

generating Constraint (11), that, since the problem involves a max-

imization, will be satisfied with equality. To relate the expected

number of pulls E[𝑁a (𝑇 )] of the action vectors a ∈ A \ {a∗}
(denoted with 𝑁a in the LP) with the ones of the action com-

ponents E[𝑁𝑖, 𝑗 (𝑇 )], we use the same argument of Theorem 3.3,

producing Constraint (10). Similarly to the LP in Theorem 3.3,

the problem is made of

∏
𝑖∈J𝑑K 𝑘𝑖 +

∑
𝑖∈J𝑑K 𝑘𝑖 − 𝑑 variables and

1 +∏
𝑖∈J𝑑K 𝑘𝑖 + 2

∑
𝑖∈J𝑑K 𝑘𝑖 − 2𝑑 constraints. We now provide an

explicit solution to a relaxation of the LP of Theorem 4.2.

Corollary 4.3 (Explicit Instance-Dependent Upper Bound for F-UCB).
For a given FRB 𝝂 , F-UCB with 𝛼 > 2 suffers an expected regret
bounded by:

E
[
𝑅𝑇 (F-UCB,𝝂)

]
≤ 𝐶 (F-UCB,𝝂)

≤ 4𝛼𝜎2 log𝑇
∑︁
𝑖∈J𝑑K

𝜇∗−𝑖
∑︁

𝑗∈J𝑘𝑖K\{𝑎∗𝑖 }
Δ−1𝑖, 𝑗 + 𝑔(𝛼)

∑︁
𝑖∈J𝑑K

𝑘𝑖 ,

where 𝜇∗−𝑖 =
∏
𝑙∈J𝑑K\{𝑖 } 𝜇

∗
𝑙
≤ 1 for every 𝑖 ∈ J𝑑K.

Proof Sketch. The result is based on providing a relaxation of

the objective function of the optimization problem in Theorem 4.2,

which is based on the following bound on the suboptimality gaps

of the action vector a = (𝑎1, . . . , 𝑎𝑑 )T in terms of the suboptimality

gaps of the action components:

Δa ≤
∑︁
𝑖∈J𝑑K

Δ𝑖,𝑎𝑖 𝜇
∗
−𝑖 .

This allows to upper bound the objective function as:∑︁
a∈A\{a∗ }

𝑁aΔa ≤
∑︁
𝑖∈J𝑑K

𝜇∗−𝑖
∑︁

𝑗∈J𝑘𝑖K\{𝑎∗𝑖 }
𝑁𝑖, 𝑗Δ𝑖, 𝑗 .

By Constraint (11) to upper bound 𝑁𝑖,𝑎𝑖 , we get the result. Alter-

natively, we can drop the constraint

∑
a∈A\{a∗ } 𝑁a = 𝑇 and use a

rearrangement inequality (Hardy et al., 1952) to upper bound the

objective function. □

It is worth comparing this instance-dependent regret upper

bound of F-UCB with the one achievable with an algorithm for

heavy-tailed bandits, such as Robust-UCB (Bubeck et al., 2013). Our
result of Corollary 4.3 is of order (neglecting the dependence on 𝛼

and on constants):

O
(
𝜎2

∑︁
𝑖∈J𝑑K

𝜇∗−𝑖
∑︁

𝑗∈J𝑘𝑖K\{𝑎∗𝑖 }

log𝑇

Δ𝑖, 𝑗

)
. (14)

Instead, Robust-UCB, for instance with the Median of Means esti-
mator, is characterized by the following instance-dependent regret

of order (neglecting constants):

O
(
𝜎2

∑︁
a∈A\{a∗ }

log𝑇

Δa

)
. (15)

where 𝜎2 = (1 + 𝜎2)𝑑 − 1 ≥ 𝜎2. It is simple to observe that Equa-

tion (15) is larger than Equation (14). Indeed, consider the subset

of action vectors in which exactly one component is not optimal,

i.e.,A◦ = ⋃
𝑖∈J𝑑KA◦𝑖 whereA

◦
𝑖
B {a ∈ A : 𝑎𝑖 ≠ 𝑎

∗
𝑖
, 𝑎 𝑗 = 𝑎

∗
𝑗
, 𝑗 ∈

J𝑑K \ {𝑖}}. We observe that for every a ∈ A◦
𝑖
, the action vector

suboptimality gap is related with equality to that of the suboptimal

component:

Δa =
∏
𝑙∈J𝑑K

𝜇∗
𝑙
− 𝜇𝑖,𝑎𝑖

∏
𝑙∈J𝑑K\{𝑖 }

𝜇∗
𝑙
= 𝜇∗−𝑖Δ𝑖,𝑎𝑖 .

This allows the conclusion of the following as desired:∑︁
a∈A\{a∗ }

log𝑇

Δa
≥

∑︁
a∈A◦

log𝑇

Δa
≥

∑︁
𝑖∈J𝑑K

𝜇∗−𝑖
∑︁

𝑗∈J𝑘𝑖K\{𝑎∗𝑖 }

log𝑇

Δ𝑖, 𝑗
.

Finally, let us compare Corollary 4.3 with the instance-dependent

regret upper bound of the Factored Bandit TEA algorithm (Zim-

mert and Seldin, 2018), although the noise model is different. The-

orem 2 of (Zimmert and Seldin, 2018) provides a bound of order

(neglecting constants):

O
©­­«𝜅

∑︁
𝑖∈J𝑑K

∑︁
𝑗∈J𝑘𝑖K\{𝑎∗𝑖 }

log(𝑇 log𝑇 )+log log(𝑇 log𝑇 )
Δ2

𝑖,𝑗

Δ𝑖, 𝑗

ª®®¬,
where 𝜅 is such that Δa ≤ 𝜅

∑
𝑖∈J𝑑K Δ𝑖,𝑎𝑖 . Thus, we can set 𝜅 =

max𝑖∈J𝑑K 𝜇
∗
−𝑖 . This result is slightly worse than ours because of the

presence of the larger 𝜅 and the additional log log𝑇 and log(1/Δ2

𝑖, 𝑗
)

terms.
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Figure 2: Ratio between the actual regret of F-UCB and the
instance-dependent lower bound (left) and ratio between the
regret upper bound and the instance-dependent lower bound
(Equation 16) (right), for different values of 𝑑 (5 runs, mean
± 2std).

Remark 4.1 (About Instance-Dependent Optimality of F-UCB).
We argue about the instance-dependent optimality of F-UCB. To this
end, we focus on a specific FRB instance with generic 𝑑 > 1 and
𝑘1 = · · · = 𝑘𝑑 = 2. We consider Gaussian intermediate observations
with expected values 𝜇𝑖,1 = 1 and 𝜇𝑖,2 = 1 − Δ where Δ ∈ (0, 1) for
every 𝑖 ∈ J𝑑K. By applying Theorems 3.3 and 4.2, we deduce that for
𝑇 → +∞, we have the lower bound (left) and the F-UCB upper bound
(right) on the number of pulls of each suboptimal action component
𝑖 ∈ J𝑑K bounded as:

E[𝑁𝑖,2 (𝑇 )]
log𝑇

≥ 2𝜎2

Δ2
and

E[𝑁𝑖,2 (𝑇 )]
log𝑇

≤ 4𝛼𝜎2

Δ2
.

Thanks to Theorem 3.4 and Corollary 4.3, we can compute 𝐶 (𝝂) and
upper bound 𝐶 (F-UCB,𝝂):

𝐶 (𝝂)= 2𝜎2 (1−(1−Δ)𝑑 )
Δ2

and
𝐶 (F-UCB,𝝂)

log𝑇
≤ 4𝑑𝛼𝜎

2

Δ
.

It is immediate to realize the following extreme behaviors:

𝐶 (F-UCB,𝝂)
𝐶 (𝝂) log𝑇 ≤ 2𝑑𝛼Δ

1−(1−Δ)𝑑
→

{
2𝛼 Δ→0

2𝛼𝑑 Δ→1

. (16)

This suggests that for sufficiently large Δ ≈ 1, F-UCB can perform
significantly worse than the lower bound, introducing an additional
dependence on 𝑑 . Instead, for sufficiently small Δ ≈ 0, F-UCB can
match the lower bound up to constant factors.9 Clearly, we conducted
this analysis employing an upper bound to the expected regret of
F-UCB, which might, in principle, be affected by some analysis arti-
facts, making it not tight. In Figure 2, we compare the ratio between the
actual regret obtained by running F-UCB (5 runs) on the proposed FRB
example and the instance-dependent lower bound (left) with the ratio
between the upper bound and the instance-dependent lower bound
computed in Equation (16) (right). We clearly observe that, although
the𝑦-scales are different, the behavior confirms a linear dependence of
the actual regret of F-UCB on the number of dimensions of the action
vector 𝑑 .

9
Indeed, when the suboptimality gaps are close to 0, the instantaneous regret∏
𝑖∈J𝑑K 𝜇

∗
𝑖 −

∏
𝑖∈J𝑑K 𝜇𝑖,𝑎𝑖 (𝑡 ) approaches the sum of the regrets on each action com-

ponent

∑
𝑖∈J𝑑K (𝜇∗𝑖 − 𝜇𝑖,𝑎𝑖 (𝑡 ) ) .

5 OPTIMAL ASYMPTOTIC
INSTANCE-DEPENDENT ALGORITHM

In this section, we provide an algorithm that matches the derived

instance-dependent lower bound (Theorem 3.3) in the asymptotic

regime. The algorithm, named Factored Track (F-Track), whose
pseudocode is reported in Algorithm 2, is based on the idea of track-
ing the lower bound (Lattimore and Szepesvari, 2017). The rationale

behind the algorithm is that if we want to match the instance-

dependent lower bound, we need to properly coordinate the choice
of the action vectors a ∈ A, given that we have a lower bound

on the minimum number of pulls for the action components (𝑖, 𝑗)
(Theorem 3.3). To impose such a structure we must plan in advance

our sequence of action vector choices. We devise an algorithm

composed of three phases: warm-up, success, and recovery. In the

warm-up phase, the algorithm pulls some action vectors in such

a way that each action component is pulled at least 𝑁0 times, i.e.,

𝑁𝑖, 𝑗 ≥ 𝑁0 (line 3). This can be achieved by round-robing the action

components values 𝑗 of each component 𝑖 , leading to a number of

pulls in the warm-up phase equal to𝑇warm-up = 𝑁0max𝑖∈J𝑑K 𝑘𝑖 . We

use these samples to estimate the expected values �̂�𝑖, 𝑗 (𝑇warm-up)
and define the confidence interval threshold 𝜖𝑇 . Then, we use these

values as if they were the true ones 𝜇𝑖, 𝑗 to compute the suboptimal-

ity gaps Δ̂𝑖, 𝑗 B max𝑗 ′∈J𝑘𝑖K �̂�𝑖, 𝑗 ′ (𝑇warm-up) − �̂�𝑖, 𝑗 (𝑇warm-up) (line 6)
and, using them, the number of pulls (line 7):

𝑁𝑖, 𝑗 =
2𝜎2 𝑓𝑇 (1/𝑇 )

Δ̂2

𝑖, 𝑗

, ∀𝑗 ∈ J𝑘𝑖K, 𝑖 ∈ J𝑑K

where for every 𝛿 ∈ (0, 1):

𝑓𝑇 (𝛿) B
(
1 + 1

log𝑇

) (
𝑐 log log𝑇 + log

(
1

𝛿

))
,

where 𝑐 is a universal constant and, with them, we compute the

number of pulls for every action vector 𝑁a by solving the opti-

mization problem in Theorem 3.3 (line 8). It is worth noting that

𝑓𝑇 (1/𝑇 ) ≈ log𝑇 and this form is needed for technical reasons to

guarantee that the confidence bounds hold. In the success phase,

until we run out of the rounds 𝑡 ≤ 𝑇 , we track the lower bound by

pulling in a round-robin fashion all arms whose number of pulls

𝑁a (𝑡) < 𝑁a (line 10). If we realize that the estimated expected

reward �̂�𝑖, 𝑗 (𝑡 − 1) are too far from the ones estimated at the end of

the warm-up phase �̂�𝑖,𝑎𝑖 (𝑇warm-up) based on the threshold 𝜖𝑇 , we

move to the recovery phase (line 9). In this phase, we play F-UCB
until the end of the rounds discarding all the data collected so far

(line 12).

The following result shows that F-Track asymptotically matches

the lower bound for a proper choice of 𝑁0 and 𝜖𝑇 .

Theorem 5.1 (Instance-DependentUpper Bound for F-Track).
For any FRB 𝝂 , F-Track run with:

𝑁0 =

⌈√︁
log𝑇

⌉
and 𝜖𝑇 =

√︄
2𝜎2 𝑓𝑇 (1/log𝑇 )

𝑁0

,

suffers an expected regret of:

lim sup

𝑇→+∞

E
[
𝑅𝑇 (F-Track,𝝂)

]
log𝑇

= 𝐶 (𝝂).



Algorithm 2: F-Track.
Input :Warm-up sample size 𝑁0, Threshold 𝜖𝑇 , Action component

size 𝑘𝑖 , ∀𝑖 ∈ J𝑑K,
1 𝑡 ← 1

2 while min𝑖∈J𝑑K min𝑗 ∈J𝑘𝑖K 𝑁𝑖,𝑗 (𝑡 ) < 𝑁0 do
3 Pull action vector a(𝑡 ) with 𝑎𝑖 (𝑡 ) = (𝑡 − 1) mod 𝑘𝑖 + 1 for all

𝑖 ∈ J𝑑K, 𝑡 ← 𝑡 + 1
4 end
5 𝑇warm-up ← 𝑡 − 1

6 Estimate the suboptimality gaps ∀𝑖 ∈ J𝑑K, 𝑗 ∈ J𝑘𝑖K :
Δ̂𝑖,𝑗 B max𝑗 ′∈J𝑘𝑖K �̂�𝑖,𝑗 ′ (𝑇warm-up ) − �̂�𝑖,𝑗 (𝑇warm-up )

7 Compute the number of pulls 𝑁𝑖,𝑗 = 2𝜎2 𝑓𝑇 (1/𝑇 )Δ̂−2𝑖,𝑗
for every

action component 𝑖 ∈ J𝑑K and 𝑗 ∈ J𝑘𝑖K
8 Compute the number of pulls 𝑁a for every action vector a ∈ A by

solving the LP in Theorem 3.3

9 while 𝑡 ≤ 𝑇 and
max𝑖∈J𝑑K, 𝑗 ∈J𝑘𝑖K | �̂�𝑖,𝑗 (𝑇warm-up ) − �̂�𝑖,𝑗 (𝑡 − 1) | ≤ 2𝜖𝑇 do

10 Pull action vector a(𝑡 ) ∈ argmin{𝑁a (𝑡 ) : a ∈ A and

𝑁a (𝑡 ) ≤ 𝑁a}, 𝑡 ← 𝑡 + 1
11 end
12 Discard all data and play F-UCB until 𝑡 = 𝑇

6 DISCUSSION AND CONCLUSIONS
In this paper, we introduced the Factored-Reward Bandits, a novel

setting to represent decision-making problems in which the learner

is required to perform a set of actions, whose effects can be observed,

and the reward is the product of those effects. We characterized the

inherent complexity through worst-case and instance-dependent

lower bounds, and we discussed the performances of current solu-

tions. To address the regret minimization problem, we proposed two

algorithms using the intermediate observations to reduce the com-

plexity of learning in this setting. The first F-UCB is an optimistic

solution that we proved minimax optimal (up to logarithmic fac-

tors). Such a solution deals with action components independently

of the others and we have illustrated how, without coordination,

we cannot reach instance-dependent optimality. To overcome this

issue, we propose F-Track, an algorithm able to perform plan-

ning on the action components, and we proved its asymptotically

instance-dependent optimality. As future lines of research, we plan

to investigate the possibility of developing an algorithm able to

guarantee both non-asymptotic instance-dependent optimality and

to consider functions for aggregating intermediate observations

different from the product.
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A EXAMPLES
In this appendix, we first formalize the example described in Section 1 using the formalism of the FRB setting (Appendix A.1). Then, we

present an additional example of a higher dimensional problem that can be generalized by the FRB setting (Appendix A.2).

A.1 Formalization of the Example of Section 1
Consider the case of joint pricing and advertising described in Section 1. In this scenario, at every round 𝑡 ∈ J𝑇 K, we must select a vector of

dimension 𝑑 = 2. Suppose that the first action component is the advertising budget, and the second action component is the selling price. We

have 𝑘1 advertising budgets over which we want to choose and 𝑘2 prices at which we can sell our item.

At every round 𝑡 , we select the budget 𝑎1 (𝑡) and the price 𝑎2 (𝑡). Then, we observe a realization of the impressions we generate due to the

budget 𝑎1 (𝑡) we invested: 𝑥1 (𝑡) = 𝜇1,𝑎1 (𝑡 ) +𝜖1 (𝑡), and a realization of the conversion rate due to the price 𝑎2 (𝑡) we set: 𝑥2 (𝑡) = 𝜇2,𝑎2 (𝑡 ) +𝜖2 (𝑡).
The reward is equal to 𝑟 (𝑡) = 𝑎2 (𝑡)𝑥1 (𝑡)𝑥2 (𝑡) − 𝑎1 (𝑡), corresponding to the return for each sales (the price, considering the turnover as

target), multiplied by the fraction of users willing to buy and by the number of customers exposed to the price (i.e., the impressions), minus

the budget invested in advertising. Note that the operations of multiplying by the selling price and subtracting the advertising budget do not

increase the statistical complexity of the learning problem, as after we select an action, such quantities are deterministic. However, to deal

with this more elaborated formulation, we have to take care of it in the choice of the optimal action a∗:

a∗ ∈ argmax

a=(𝑎1, 𝑎2 )T∈A
𝑎2

∏
𝑖∈J2K

𝜇𝑖,𝑎𝑖 − 𝑎1 . (17)

Run this problem on F-UCB. Moving to the F-UCB, we can easily adapt the formulation of Equation (17) to the one required by the algorithm:

a(𝑡) ∈ argmax

a=(𝑎1, 𝑎2 )T∈A
𝑎2

∏
𝑖∈J2K

UCB𝑖,𝑎𝑖 (𝑡) − 𝑎1 .

In practice, as we have done in Section 4, we can replace the real value with our optimistic estimator. Clearly, the analysis of the regret

continues to hold with a multiplicative factor max𝑎2∈J𝑘2K |𝑎2 |.

A.2 Additional Example
We present an additional example of problems that can be generalized through the FRB setting related to manufacturing processes.

Consider the problem in which we run a manufacturing firm that has to set up the production line for a product. The goal in this scenario is

to optimize the following trade-off: maximize the production yield (i.e., the number of items that come out of the production line undamaged)

while minimizing the production cost.

Considering the item we want to manufacture, let us define a batch size 𝐵 and a production line consisting of 𝑑 stages. Assume that

each stage has a 1 : 1 production rate (i.e., 1 input corresponds to 1 output). For each stage 𝑖 ∈ J𝑑K, we have to select a method to fulfill

the stage among a set of 𝑘𝑖 available alternatives. Each alternative will have an aleatoric impact on the percentage of faulty outputs, and a

deterministic cost of production.

As such, at every round 𝑡 , we select an action vector a(𝑡) = (𝑎1 (𝑡), 𝑎2 (𝑡), . . . , 𝑎𝑑 (𝑡)), with 𝑎𝑖 (𝑡) ∈ J𝑘𝑖K,∀𝑖 ∈ J𝑑K. At every stage 𝑖 , we then

observe a percentage of undamaged outputs defined as:

𝑥𝑖 (𝑡) = 𝜇𝑖,𝑎𝑖 (𝑡 ) + 𝜖𝑖 (𝑡),

where:

• 𝜇𝑖,𝑎𝑖 (𝑡 ) ∈ [0, 1] is the expected percentage of faultless products due to selecting action 𝑎𝑖 (𝑡),
• 𝜖𝑖 (𝑡) is a 𝜎2-subgaussian random noise, independent conditioned to the past and the other noise realizations 𝜖 𝑗 (𝑡) for 𝑗 ∈ J𝑑K \ {𝑖}.

We can model the reward function as:

𝑟 (𝑡) = 𝐵
𝑑∏
𝑖=1

𝑥𝑖 (𝑡) −
𝑑∑︁
𝑖=1

𝑐𝑖 (𝑎𝑖 (𝑡)),

where 𝑐𝑖 (𝑎𝑖 (𝑡)) is the (deterministic and known) cost associated with the selection of action 𝑎𝑖 (𝑡). Observe that 𝐵 is a known and fixed

quantity, and 𝑐𝑖 (𝑎𝑖 (𝑡)) are deterministic and known to the learner. As such, they do not increase the complexity of the learning problem. For

this reason, this scenario can be generalized through the F-UCB setting.

B ADDITIONAL RELATEDWORKS
In this section, we discuss the related works from the action structure perspective and the works that present a notion of factored structure.Then,
we compare the most significant related algorithms with our work from the theoretical perspective.



Action Structure. Originally, multi-armed bandit frameworks focused on independent arms with no inherent structure (Lai and Robbins,

1985). However, in recent decades, various bandit models with several kinds of structure have emerged, such as linear (Dani et al., 2008; Abbasi-

Yadkori et al., 2011), Lipschitz (Agrawal, 1995; Magureanu et al., 2014) and unimodal (Yu and Mannor, 2011) bandits. These contributions aim

to incorporate diverse forms of structure into the arms being considered. Combes et al. (2017) introduced a generalization of structured

bandits, accommodating a wide range of structural concepts among arms. Their work offers a statistically efficient (at least in the general

case) algorithm for handling generic structures, at the expense of solving a semi-infinite linear program at each time step. The necessity of

choosing several actions at a time in a structured manner has been widely studied in the field of combinatorial bandits (Cesa-Bianchi and

Lugosi, 2012; Kveton et al., 2015; Combes et al., 2015).

Notions of Factored Bandits. Among the several kinds of structure, Zimmert and Seldin (2018) is the most similar to the work we propose

from the point of view of the action structure, although the two works differ from the feedback perspective. Both works employ an action

structure in which an action component 𝑎𝑖 is selected for each problem dimension 𝑖 ∈ J𝑑K. The action components are combined with a

general function that obeys a uniform identifiability assumption under which the performance of each action vector can only improve when

any action component is switched with the optimal one. However, in the work of Zimmert and Seldin (2018) the feedback comprises a single

observation of the subgaussian reward 𝑟 (a𝑡 ) applied to the aggregated expected reward, whereas, in our work, the feedback comprises one

noisy observation for every action component. This peculiarity of our work implies that the reward obtained as the product over all the

dimensions is not subgaussian anymore (Lemma D.1). (Zimmert and Seldin, 2018) generalizes (Katariya et al., 2017) to the case of more than

two dimensions.

B.1 Comparison of the Theoretical Results
In Table 1, we summarize our setting with the one of Heavy-Tails Bandits (Bubeck et al., 2013) and the Factored Bandits (Zimmert and Seldin,

2018). We also analyze and compare both our solutions with Robust-UCB (Bubeck et al., 2013) and TEA (Zimmert and Seldin, 2018) from the

instance-dependent point of view. Then, in Table 2 we compare worst-case lower and upper bounds from the worst-case perspective.

Table 1: Comparison with the instance-dependent guarantees of (Bubeck et al., 2013) and (Zimmert and Seldin, 2018). †This
result holds for 𝑇 →∞. ‡The authors consider 𝜎 = 1.

Setting Characteristics

Lower Bound Upper Bound

Match

Factored

Structure

Intermediate

Feedback
𝜎 𝑑 𝑘 𝑇

Robust-UCB
(Bubeck et al., 2013)

✗ ✗ Ω
©­«𝜎2

∑︁
a∈A\{a∗ }

log𝑇

Δa

ª®¬ O ©­«𝜎2
∑︁

a∈A\{a∗ }

log𝑇

Δa

ª®¬ ✗ ✓ ✓ ✓

TEA
(Zimmert and Seldin, 2018)

✓ ✗ Ω
©­«

∑︁
𝑖∈J𝑑K

∑︁
𝑗∈J𝑘𝑖K\{𝑎∗𝑖 }

log𝑇

Δ𝑖, 𝑗

ª®¬
†

O
©­­«

∑︁
𝑖∈J𝑑K

∑︁
𝑗∈J𝑘𝑖K\{𝑎∗𝑖 }

log(𝑇 log𝑇 ) + log log(𝑇 log𝑇 )
Δ2

𝑖,𝑗

Δ𝑖, 𝑗

ª®®¬ ✓ ‡ ✓ ✓ ✓

This Work
F-UCB

✓ ✓ Theorem 3.3
†

Theorem 4.2 ✓ ✗ ✓ ✓

F-Track Theorem 5.1
† ✓ ✓ ✓ ✓

Table 2: Comparison with the worst-case guarantees of (Bubeck et al., 2013) (Zimmert and Seldin 2018 do not provide worst-case
bounds).

Setting Characteristics

Lower Bound Upper Bound

Match

Factored

Structure

Intermediate

Feedback
𝜎 𝑑 𝑘 𝑇

Robust-UCB
(Bubeck et al., 2013)

✗ ✗ Ω
(
𝜎
√︁
𝑘𝑑𝑇

)
O

(
𝜎
√︁
𝑘𝑑𝑇

)
✗ ✓ ✓ ✓

This Work (F-UCB) ✓ ✓ Theorem 3.1 Theorem 4.1 ✓ ✓ ✓ ✓



C PROOFS AND DERIVATIONS
In this section, we provide proofs of the statements discussed in the main paper (Section C.1) and some technical lemmas needed in order to

prove them (Section C.2).

C.1 Proofs of the Theorems
Theorem 3.1 (Worst-Case Lower Bound). For every algorithm 𝔄, there exists an FRB 𝝂 such that for:

𝑇 ≥ 2

(
1 − 2−

1

𝑑−1
)−2

𝜎2 max

𝑖∈J𝑑K
𝑘𝑖 , (2)

𝔄 suffers an expected cumulative regret of at least:

E
[
𝑅𝑇 (𝔄,𝝂)

]
≥ 𝜎

4

√
2

∑︁
𝑖∈J𝑑K

√︁
𝑘𝑖𝑇 .

In particular, if 𝑘𝑖 C 𝑘 for every 𝑖 ∈ J𝑑K, we have:

E
[
𝑅𝑇 (𝔄,𝝂)

]
≥ Ω(𝜎𝑑

√
𝑘𝑇 ).

Proof. Consider an scenario in which 𝜇a∗ = 1 and Δ𝑖, 𝑗 ≤ Δ = 1 − 2−1/(𝑑−1) ,∀𝑖 ∈ J𝑑K, 𝑗 ∈ J𝑘𝑖K, then Lemma C.3 allow us to rewrite the

expected regret as:

E
[
𝑅𝑇 (𝔄,𝝂)

]
= E


∑︁
𝑡 ∈J𝑇 K

©­«1 −
∏
𝑖∈J𝑑K

(
1 − Δ𝑖,𝑎𝑖 (𝑡 )

)ª®¬


≥ 1

2

E


∑︁
𝑡 ∈J𝑇 K

∑︁
𝑖∈J𝑑K

Δ𝑖,𝑎𝑖 (𝑡 )


=

1

2

∑︁
𝑖∈J𝑑K

E


∑︁
𝑡 ∈J𝑇 K

Δ𝑖,𝑎𝑖 (𝑡 )


=

1

2

∑︁
𝑖∈J𝑑K

E
[
𝑅
(𝑖 )
𝑇
(𝔄,𝝂)

]
, (18)

where 𝑅
(𝑖 )
𝑇
(𝔄,𝝂) is the expected regret generated by pulling suboptimal arms on the component 𝑖 ∈ J𝑑K. This fact implies that if we take

sufficiently small Δ𝑖, 𝑗 < Δ,∀𝑖 ∈ J𝑑K, 𝑗 ∈ J𝑘𝑖K, we can analyze the expected regret 𝑅
(𝑖 )
𝑇
(𝔄,𝝂) we pay for each action component 𝑖 ∈ J𝑑K

independently and then summing up the regret we pay as shown above. We will see how the condition of the sufficiently small Δ𝑖, 𝑗 implies

that we have to add a condition on the minimum time budget 𝑇 for which this lower bound holds.

We can define a set of

∏
𝑖∈J𝑑K 𝑘𝑖 FRB base instances as follows. Given a vector (ℎ1, . . . , ℎ𝑑 )T ∈ J𝑘1K × · · · × J𝑘𝑑K identifying an instance, we

define the expected rewards of such an instance as follows, for Δ ∈ (0, 1/2):

𝜇𝑖, 𝑗 =

{
1 if 𝑗 = ℎ𝑖

1 − Δ if 𝑗 ∈ J𝑘𝑖K \ {ℎ𝑖 }
, ∀𝑖 ∈ J𝑑K. (19)

We refer as 𝝂 (ℎ1,...,ℎ𝑑 ) to the instance in which expected values are characterized by the vector (ℎ1, . . . , ℎ𝑑 )T ∈ J𝑘1K × · · · × J𝑘𝑑K as in
Equation (19).

We now focus on bounding the regret of a single component 𝑖 ∈ J𝑑K. In particular, we focus on component 𝑖 = 1 for the sake of simplicity in

the presentation. Then, we can extend the same reasoning to all the others. Let us define a set of helper instances which are needed for the

analysis. For all the components different from the first, we consider as before a vector (ℎ2, . . . , ℎ𝑑 )T ∈ J𝑘2K × · · · × J𝑘𝑑K which characterize

the instance 𝝂 (0,ℎ2,...,ℎ𝑑 ) defined as follows:

𝜇1, 𝑗 = 1 − Δ, ∀𝑗 ∈ J𝑘1K 𝜇𝑖, 𝑗 =

{
1 if 𝑗 = ℎ𝑖

1 − Δ if 𝑗 ∈ J𝑘𝑖K \ {ℎ𝑖 }
, ∀𝑖 ∈ J2, 𝑑K. (20)

We now need to introduce some additional objects. Given a vector (ℎ1, ℎ2, . . . , ℎ𝑑 )T ∈ ({0} ∪ J𝑘1K) × J𝑘2K × · · · × J𝑘𝑑K, we call P(ℎ1,ℎ2,...,ℎ𝑑 )
the distribution induced by the history of the pulls and the related rewards for the 𝑑 components over time horizon 𝑇 in instance

𝝂 (ℎ1,ℎ2,...,ℎ𝑑 ) . We denote with Pℎ for ℎ ∈ {0} ∪ J𝑘1K the distribution induced by the history averaged over the other dimensions, formally:

Pℎ = 1∏
𝑖∈J2,𝑑K 𝑘𝑖

∑
(ℎ2,ℎ3,...,ℎ𝑑 ) ∈J𝑘2K×···×J𝑘𝑑K P(ℎ,ℎ2,...,ℎ𝑑 ) , and with Eℎ the expectation over Pℎ .



Coming back to the proof, given the definition of the base instances (Equation 19), the expected regret E
[
𝑅
(1)
𝑇
(𝔄,𝝂 (ℎ1,...,ℎ𝑑 ) )

]
related to the

first component is given by:

E
[
𝑅
(1)
𝑇
(𝔄,𝝂 (ℎ1,...,ℎ𝑑 ) )

]
= Δ

∑︁
𝑗∈J𝑘1K\{ℎ1 }

E
[
𝑁1, 𝑗 (𝑇 )

]
= Δ

(
𝑇 − E

[
𝑁
1,ℎ1 (𝑇 )

] )
.

We now want to use Lemma C.4 in order to obtain the following condition:

1

𝑘1

∑︁
ℎ∈J𝑘1K

Eℎ [𝑇 − 𝑁1,ℎ (𝑇 )] ≥
𝑇

4

. (21)

To apply Lemma C.4, we need an upper bound on the total variation 𝑑TV that we can compute ∀ℎ ∈ J𝑘1K as follows:

𝑑TV =
1

2

∥P0 − Pℎ ∥1

=
1

2







 1∏
𝑖∈J2,𝑑K 𝑘𝑖

∑︁
(ℎ2,ℎ3,...,ℎ𝑑 ) ∈J𝑘2K×···×J𝑘𝑑K

(
P(0,ℎ2,...,ℎ𝑑 ) − P(ℎ,ℎ2,...,ℎ𝑑 )

)






1

≤ 1∏
𝑖∈J2,𝑑K 𝑘𝑖

∑︁
(ℎ2,ℎ3,...,ℎ𝑑 ) ∈J𝑘2K×···×J𝑘𝑑K

1

2



P(0,ℎ2,...,ℎ𝑑 ) − P(ℎ,ℎ2,...,ℎ𝑑 )

1 (22)

≤ 1∏
𝑖∈J2,𝑑K 𝑘𝑖

∑︁
(ℎ2,ℎ3,...,ℎ𝑑 ) ∈J𝑘2K×···×J𝑘𝑑K

√︂
1

2

𝐷KL

(
P(0,ℎ2,...,ℎ𝑑 )

����P(ℎ,ℎ2,...,ℎ𝑑 ) ) (23)

=
1∏

𝑖∈J2,𝑑K 𝑘𝑖

∑︁
(ℎ2,ℎ3,...,ℎ𝑑 ) ∈J𝑘2K×···×J𝑘𝑑K

√︂
1

2

E(0,ℎ2,...,ℎ𝑑 ) [𝑁1,ℎ (𝑇 )]𝐷KL

(
𝑝0



𝑝ℎ ) (24)

=
1∏

𝑖∈J2,𝑑K 𝑘𝑖

∑︁
(ℎ2,ℎ3,...,ℎ𝑑 ) ∈J𝑘2K×···×J𝑘𝑑K

√︄
1

2

E(0,ℎ2,...,ℎ𝑑 ) [𝑁1,ℎ (𝑇 )]
Δ2

2𝜎2
(25)

≤
√√√

1∏
𝑖∈J2,𝑑K 𝑘𝑖

∑︁
(ℎ2,ℎ3,...,ℎ𝑑 ) ∈J𝑘2K×···×J𝑘𝑑K

1

2

E(0,ℎ2,...,ℎ𝑑 ) [𝑁1,ℎ (𝑇 )]
Δ2

2𝜎2
(26)

≤ 1

4

√︄
Δ2

2𝜎2
E0 [𝑁1,ℎ (𝑇 )], (27)

where line (22) is the triangle inequality for norms, line (23) is due the Pinsker’s inequality, line (24) is due to the divergence decomposition

lemma (Lattimore and Szepesvári, 2020, Lemma 15.1) considering that all the component different from the first are equal, line (25) is derived

by the expression of 𝐷KL between Gaussian distributions, line (26) is due to the Jensen’s inequality, and line (27) is obtained by marginalizing

w.r.t. the first component.

Given this upper bound to the total variation, we can finally apply Lemma C.4 considering𝑚 = 𝑘1 and 𝐵 =
2𝜎2𝑘1
Δ2

. What we get is:

1

𝑘1

∑︁
𝑖∈J𝑘1K

Eℎ

[
2𝜎2𝑘1

Δ2
− 𝑁

1,ℎ (𝑇 )
]
≥ 𝜎

2𝑘1

2Δ2
. (28)

We can now select the value of Δ in order to have in Equation (28) a bound on 𝑇 :

𝑇 =
2𝜎2𝑘1

Δ2
.

This implies a choice of Δ in the form of:

Δ =

√︂
2𝜎2𝑘1

𝑇
.



Given such a choice of Δ and the bound given by Equation (21), we get that the regret of the first action component can be bounded as:

E
[
𝑅
(1)
𝑇
(𝔄,𝝂)

]
≥ Δ

(
𝑇 − E

[
𝑁
1,ℎ1 (𝑇 )

] )
≥

√︂
2𝜎2𝑘1

𝑇

𝑇

4

=

√︂
𝜎2𝑘1𝑇

8

=
1

2

√
2

𝜎
√︁
𝑘1𝑇 .

The same reasoning can be done for all the others 𝑑 − 1 action components and the bound of Equation (18):

E
[
𝑅𝑇 (𝔄,𝝂)

]
≥ 1

2

∑︁
𝑖∈J𝑑K

E
[
𝑅
(𝑖 )
𝑇
(𝔄,𝝂)

]
≥ 1

4

√
2

𝜎
∑︁
𝑖∈J𝑑K

√︁
𝑘𝑖𝑇 .

The last point needed is to check that the condition of the choices we made on the Δ is compliant for all the dimensions 𝑖 ∈ J𝑑K with the one

of Lemma C.3, i.e., all the Δs are less than Δ defined as:

Δ =

√︄
2𝜎2max𝑖∈J𝑑K 𝑘𝑖

𝑇
.

This implies a lower bound on the 𝑇 for which this bound holds:√︄
2𝜎2max𝑖∈J𝑑K 𝑘𝑖

𝑇
≤ 1 − 2−1/(𝑑−1) .

Isolating 𝑇 we get:

𝑇 ≥
2𝜎2max𝑖∈J𝑑K 𝑘𝑖(
1 − 2−1/(𝑑−1)

)
2
.

This concludes the proof. □

Theorem 3.2 (Worst-Case Lower Bound without Intermediate Observations). For every algorithm 𝔄† that ignores the intermediate
observations x(𝑡) and observes the reward 𝑟 (𝑡) only, there exists an FRB 𝝂 such that for:

𝑇 ≥ 4( min

𝑖∈J𝑑K
𝑘𝑖 − 1)/𝑑,

𝔄† suffers an expected cumulative regret of at least:

E
[
𝑅𝑇 (𝔄†,𝝂)

]
≥ 𝜎

𝑑

8

√︄
(min𝑖∈J𝑑K 𝑘𝑖 − 1)𝑇

𝑑
.

In particular, if 𝑘𝑖 C 𝑘 for every 𝑖 ∈ J𝑑K, we have:

E
[
𝑅𝑇 (𝔄†,𝝂)

]
≥ Ω(𝜎𝑑

√︁
𝑘𝑇 /𝑑) .

Proof. For simplicity, we consider 𝑑 even. We consider the following base instance 𝝂 , parametrized by 𝜎 > 1 and Δ ∈ [0, 1/4] with Δ ≤ 𝜎𝑑 ,
defined for all 𝑖 ∈ J𝑑K and 𝑗 ∈ J𝑘𝑖K \ {1}:

𝜈𝑖,1 =

{
𝜎 w.p.

1

2
+ Δ1/𝑑

2𝜎

−𝜎 w.p.
1

2
− Δ1/𝑑

2𝜎

, 𝜈𝑖, 𝑗 =

{
𝜎 w.p.

1

2

−𝜎 w.p.
1

2

. (29)

It is clear that 𝜇𝑖,1 = Δ1/𝑑
and 𝜇𝑖, 𝑗 = 0. Consequently, the optimal arm is (1, . . . , 1)⊤ with performance 𝜇∗ = Δ and all the other arms have

performance 0. Furthermore, the variance of the suboptimal arm components is given by 𝜎2 which is also the subgaussian proxy, while for

the optimal arm components, the variance is smaller. Consider now for every 𝑖 ∈ J𝑑K:

𝑗∗𝑖 ∈ argmin

𝑗∈J𝑘𝑖K\{1}
E
𝝂
[𝑁𝑖, 𝑗 (𝑇 )] =⇒ E

𝝂
[𝑁𝑖, 𝑗∗

𝑖
(𝑇 )] ≤ 𝑇

𝑘𝑖 − 1
. (30)



We construct the alternative instance 𝝂 which is equal to 𝝂 ′ except for the the components (𝑖, 𝑗∗
𝑖
) for 𝑖 ∈ J𝑑K:

𝜈𝑖, 𝑗∗
𝑖
=

{
𝜎 w.p.

1

2
+ (2Δ)

1/𝑑

2𝜎

−𝜎 w.p.
1

2
− (2Δ)

1/𝑑

2𝜎

, (31)

enforcing Δ ≤ 𝜎𝑑/2. In this alternative instance, the optimal arm is ( 𝑗∗
1
, . . . 𝑗∗

𝑑
)⊤, with performance (𝜇∗)′ = 2Δ.

We are considering algorithms that do not observe individual components. Therefore, the distribution of the product of the individual

components has to be computed. Since they will be used in the computation of the KL-divergence, we just consider the two most dissimilar

ones:

𝜈⊗† =

{
𝜎𝑑 w.p.

1

2
+ Δ
𝜎𝑑

−𝜎𝑑 w.p.
1

2
− Δ
𝜎𝑑

, 𝜈⊗‡ =

{
𝜎𝑑 w.p.

1

2

−𝜎𝑑 w.p.
1

2

, (32)

where the probability of the first case in which we play, for instance, (1, . . . , 1)⊤ in the base instance is obtained by the following reasoning:

we get 𝜎𝑑 if the number of 𝜎 realizations is even (being 𝑑 even). Thus, we have:

P({𝜎𝑑 }) =
𝑑∑︁
𝑙=0

1{𝑙 is even}
(
𝑑

𝑗

) (
1

2

+ (2Δ)
1/𝑑

2𝜎𝑑

) 𝑗 (
1

2

− (2Δ)
1/𝑑

2𝜎𝑑

)𝑑− 𝑗
=

1

2

+ Δ

𝜎𝑑
. (33)

The KL divergence becomes, using reverse Pinsker inequality:

𝐷KL (𝜈⊗† , 𝜈
⊗
† ) ≤

1

1

2
− Δ
𝜎𝑑

𝐷TV (𝜈⊗† , 𝜈
⊗
† ) = 4

(
Δ

𝜎𝑑

)
2

=
4Δ2

𝜎2𝑑
. (34)

requiring Δ ≤ 𝜎𝑑/4.
Let us now lower bound the regret with Bretagnolle-Huber’s inequality:

max{E[𝑅𝑇 (𝔄, 𝜈)],E[𝑅𝑇 (𝔄,𝝂 ′)]} ≥
Δ𝑇

4

exp

(
−E

𝝂

[
𝑇∑︁
𝑡=1

1{∃𝑖 ∈ J𝑑K : 𝑎𝑖 (𝑡) = 𝑗∗𝑖 }𝐷KL (𝜈⊗a(𝑡 ) ∥(𝜈
′)⊗a(𝑡 ) )

])
(35)

≥ Δ𝑇

4

exp
©­«−

∑︁
𝑖∈J𝑑K

E
𝝂
[𝑁𝑖, 𝑗∗

𝑖
(𝑇 )] 4Δ

2

𝜎2𝑑
ª®¬ (36)

≥ Δ𝑇

4

exp

(
− 4𝑑𝑇Δ2

𝜎2𝑑 (𝑘∗ − 1)

)
, (37)

being 𝑘∗ = min𝑖∈J𝑑K 𝑘𝑖 . We set Δ =

√︃
𝜎2𝑑 (𝑘∗−1)

4𝑑𝑇
with 𝑇 ≥ 4(𝑘∗ − 1)/𝑑 . □

Theorem 3.3 (Instance-Dependent Lower Bound). For every consistent10 algorithm 𝔄 and FRB 𝝂 with unique optimal arm a∗ ∈ A it holds
that:

lim inf

𝑇→+∞

E
[
𝑅𝑇 (𝔄,𝝂)

]
log𝑇

≥ 𝐶 (𝝂), (3)

where 𝐶 (𝝂) is defined as the solution to the following optimization problem:

min

(𝐿a )a∈A\{a∗}

∑︁
a∈A\{a∗}

𝐿aΔa (4)

s.t. 𝐿𝑖,𝑗 =
∑︁

a∈A\{a∗}
𝑎𝑖=𝑗

𝐿a, ∀𝑖 ∈ J𝑑K, 𝑗 ∈ J𝑘𝑖K\ {𝑎∗𝑖 } (5)

𝐿𝑖,𝑗 ≥
2𝜎2

Δ2

𝑖,𝑗

, ∀𝑖 ∈ J𝑑K, 𝑗 ∈ J𝑘𝑖K\ {𝑎∗𝑖 } (6)

𝐿a ≥ 0, ∀a ∈ A\ {a∗} . (7)

Proof. The proof of this statement is divided into two parts. Part one is dedicated to finding a lower bound on the expected number of pulls

of every action component 𝑁𝑖, 𝑗 (𝑇 ) for each action component 𝑖 ∈ J𝑑K, 𝑗 ∈ J𝑘𝑖K \ {𝑎∗𝑖 }. Part two is dedicated to understanding how these

pulls of the action components can be combined in action vectors in the best way possible.

Part 1: Lower bounding the expected number of pulls for each action component
The proof of the expected number of pulls of a sub-optimal action 𝑗 ∈ J𝑘𝑖K \ {𝑎∗𝑖 } of action component 𝑖 ∈ J𝑑K is inspired by the proof of the

asymptotic number of pulls of sub-optimal arms presented in Theorem 16.2 of (Lattimore and Szepesvári, 2020).

10
An algorithm 𝔄 is consistent if for every FRB 𝝂 and 𝑝 > 0, it holds that lim sup𝑇→+∞ E[𝑅𝑇 (𝔄, 𝝂 ) ]/𝑇𝑝 = 0.



We callM𝑚𝑛 the set of distributions referring to the𝑚th
component (𝑚 ∈ J𝑑K) and the 𝑛th arm (𝑛 ∈ J𝑘𝑚K). Then, consider 𝑃𝑚𝑛 as a specific

distribution taken fromM𝑚𝑛 to model the reward observations of arm 𝑛 of component𝑚 in a given instance of the setting.

Let 𝝂 be an instance of the FRB setting with 𝑑 components and 𝑘𝑖 actions for every 𝑖 ∈ J𝑑K. We start by selecting a component 𝑖 and a sub-

optimal arm 𝑗 . Let 𝜀 > 0 ∈ R be arbitrary constant. We define a new instance of the FRB setting 𝝂 ′ such that 𝑃 ′
𝑖 𝑗

= 𝑃𝑖 𝑗 ,∀𝑖 ∈ J𝑑K\ {𝑖},∀𝑗 ∈ J𝑘𝑖K,
and 𝑃 ′

𝑖 𝑗
= 𝑃𝑖 𝑗 ,∀𝑗 ∈ J𝑘𝑖K \ { 𝑗}, and 𝑃 ′𝑖, 𝑗 ∈ M𝑖, 𝑗 be such that 𝐷𝐾𝐿 (𝑃𝑖, 𝑗 , 𝑃 ′𝑖, 𝑗 ) ≤ 𝑑𝑖, 𝑗 + 𝜀 and 𝜇

′
𝑖, 𝑗

> 𝜇∗
𝑖
. 𝑑𝑚𝑛 represents the KL divergence between

𝑃𝑚𝑛 and 𝑃∗𝑚 . The newly defined instance 𝝂 ′ is then identical to 𝝂 for every arm of every component different from 𝑖 , and in the 𝑖th component

every arm is identical except for arm 𝑗 , which is sub-optimal in 𝝂 and is optimal in 𝝂 ′. Following the original proof, we can define, for any

event E:
P𝝂 (E𝑖, 𝑗 ) + P𝝂′ (E∁𝑖, 𝑗 ) ≥

1

2

exp

(
−E𝝂

[
𝑁𝑖, 𝑗 (𝑇 )

] (
𝑑𝑖, 𝑗 + 𝜀

))
.

Now, let E𝑖, 𝑗 = {𝑁𝑖, 𝑗 (𝑇 ) > 𝑇 /2}, and let 𝑅𝑇 = 𝑅𝑇 (𝔄,𝝂) and 𝑅′𝑇 = 𝑅𝑇 (𝔄,𝝂 ′). Then:

𝑅𝑇 + 𝑅′𝑇 ≥
𝑇

2

(
P𝝂 (E𝑖, 𝑗 ) 𝑓𝑖 (𝝁)Δ𝑖, 𝑗 + P𝝂′ (E∁𝑖, 𝑗 ) 𝑓𝑖 (𝝁) (𝜇

′
𝑖, 𝑗 − 𝜇

∗
𝑖 )

)
,

where 𝑓𝑖 (𝝁) is obtained by the following observation. Since at every round 𝑡 ∈ J𝑇 K, in which we pull (𝑖, 𝑗) we suffer the instantaneous regret
in the base instance: ∏

𝑖∈J𝑑K

𝜇∗𝑖 − 𝜇𝑖, 𝑗
∏

𝑖∈J𝑑K\{𝑖 }
𝜇𝑖, 𝑗 (𝑡 ) ≥ (𝜇∗𝑖 − 𝜇𝑖, 𝑗 )

∏
𝑖∈J𝑑K\{𝑖 }

𝜇∗𝑖 = Δ𝑖, 𝑗
∏

𝑖∈J𝑑K\{𝑖 }
𝜇∗𝑖 (38)

and in the alternative instance:

𝜇′𝑖, 𝑗
∏

𝑖∈J𝑑K\{𝑖 }
𝜇∗𝑖 −

∏
𝑖∈J𝑑K

𝜇𝑖, 𝑗 (𝑡 ) ≥ (𝜇′𝑖, 𝑗 − 𝜇
∗
𝑖 )

∏
𝑖∈J𝑑K\{𝑖 }

𝜇∗𝑖 , (39)

we define:

𝑓𝑖 (𝝁) B
∏

𝑖∈J𝑑K≠{𝑖 }
𝜇∗𝑖 . (40)

Since the term 𝑓𝑖 (𝝁) multiplies both Δ𝑖, 𝑗 and (𝜇′𝑖, 𝑗 − 𝜇
∗
𝑖
), it is straightforward to continue the original proof and write:

𝑅𝑇 + 𝑅′𝑇 ≥
𝑇

4

𝑓𝑖 (𝝁)min{Δ𝑖, 𝑗 , (𝜇′𝑖, 𝑗 − 𝜇
∗
𝑖 )} exp

(
−E𝝂

[
𝑁𝑖, 𝑗 (𝑇 )

] (
𝑑𝑖, 𝑗 + 𝜀

))
.

Rearranging and dividing by log𝑇 , we obtain:

E𝝂 [𝑁𝑖, 𝑗 (𝑇 )]
log(𝑇 ) ≥

log(𝑇 ) + log
(
𝑓𝑖 (𝝁 )
4

min{Δ𝑖, 𝑗 , (𝜇′𝑖, 𝑗 − 𝜇
∗
𝑖
)}

)
− log(𝑅𝑇 + 𝑅′𝑇 )

(𝑑𝑖, 𝑗 + 𝜀) log(𝑇 )
(41)

=
1

𝑑𝑖, 𝑗 + 𝜀
+
log

(
𝑓𝑖 (𝝁 )
4

min{Δ𝑖, 𝑗 , (𝜇′𝑖, 𝑗 − 𝜇
∗
𝑖
)}

)
− log(𝑅𝑇 + 𝑅′𝑇 )

(𝑑𝑖, 𝑗 + 𝜀) log(𝑇 )
(42)

≥ 2𝜎2

Δ2

𝑖, 𝑗

− ℎ𝑖, 𝑗 (𝑇 ), (43)

by letting 𝜀 → 0, having exploited the expression of KL-divergence between Gaussians and having set:

ℎ𝑖, 𝑗 (𝑇 ) B max

0,
log

(
𝑓𝑖 (𝝁 )
4

min{Δ𝑖, 𝑗 , (𝜇′𝑖, 𝑗 − 𝜇
∗
𝑖
)}

)
− log(𝑅𝑇 + 𝑅′𝑇 )

𝑑𝑖, 𝑗 log𝑇

 . (44)

Notice that lim sup𝑇→+∞ ℎ𝑖, 𝑗 (𝑇 ) = 0 under consistency.

Now, iterating this reasoning over 𝑖 ∈ J𝑑K and over 𝑗 ∈ J𝑘𝑖K, we get the lower bound on the expected number of pulls for all the arms of all

the action components.

Part 2: Understanding how the pulls we have to perform on the action components can be combined
From Part 1 of this proof, we have a result on the expectation of the minimum number of pulls. We can now define the quantity:

𝐿𝑖, 𝑗 (𝑇 ) B
E[𝑁𝑖, 𝑗 (𝑇 )]

log𝑇
, ∀𝑖 ∈ J𝑑K, 𝑗 ∈ J𝑘𝑖K.



This quantity can be lower bounded as:

𝐿𝑖, 𝑗 (𝑇 ) ≥
2𝜎2

Δ2

𝑖 𝑗

− ℎ𝑖, 𝑗 (𝑇 ), ∀𝑖 ∈ J𝑑K, 𝑗 ∈ J𝑘𝑖K \ {𝑎∗𝑖 }.

Now, we want to understand how these pulls of the action’s suboptimal components influence the regret. We chose to look at the asymptotic

expected regret, defined as follows:

E
[
𝑅𝑇 (𝔄,𝝂)

]
log𝑇

=
∑︁
a∈A

E [𝑁a (𝑇 )]
log𝑇

Δa,

and we denote:

𝐿a (𝑇 ) B
E[𝑁a (𝑇 )]
log𝑇

, ∀a ∈ A .

The regret becomes defined as:

E
[
𝑅𝑇 (𝔄,𝝂)

]
log𝑇

=
∑︁
a∈A

𝐿a (𝑇 )Δa,

Now, we want to look at how the pulls of the action vectors 𝐿a and the ones of the action components are related. We can easily observe that

the following relation occurs:

𝐿𝑖, 𝑗 (𝑇 ) =
∑︁

a∈A:𝑎𝑖=𝑗

𝐿a (𝑇 ), ∀𝑖 ∈ J𝑑K, 𝑗 ∈ J𝑘𝑖K.

Given that, we can write an optimization problem in which we search for the best combination of pulls of the action vector satisfying the

constraints on the minimum number of pulls of the action components.

min

𝐿a (𝑇 ),𝐿𝑖,𝑗 (𝑇 )

∑︁
a∈A\{a∗ }

𝐿a (𝑇 )Δa (45)

s.t. 𝐿𝑖, 𝑗 (𝑇 ) =
∑︁

a∈A:𝑎𝑖=𝑗

𝐿a (𝑇 ), ∀𝑖 ∈ J𝑑K, 𝑗 ∈ J𝑘𝑖K \ {𝑎∗𝑖 } (46)

𝐿𝑖, 𝑗 (𝑇 ) ≥
2𝜎2

Δ2

𝑖, 𝑗

− ℎ𝑖, 𝑗 (𝑇 ), ∀𝑖 ∈ J𝑑K, 𝑗 ∈ J𝑘𝑖K \ {𝑎∗𝑖 } (47)

𝐿a (𝑇 ) ≥ 0, ∀a ∈ A \ {a∗}. (48)

Now, to simplify notation, we define 𝑥 (a) = 𝐿a (𝑇 ), remove the variables 𝐿𝑖, 𝑗 since constraint (47) will be satisfied with equality, and

reformulate in the unconstrained form using the indicator function 𝐼X (𝑥) =
{
0 if 𝑥 ∈ X
+∞ otherwise

:

inf

𝑥 (𝒂)
𝑓𝑇 (𝑥) B

∑︁
a∈A\{a∗ }

𝑥 (a)Δa +
∑︁
𝑖∈J𝑑K

∑︁
𝑗∈J𝑘𝑖K\{𝑎∗𝑖 }

𝐼R≥0
©­«

∑︁
a∈A :𝑎𝑖=𝑗

𝑥 (𝒂) − 2𝜎2

Δ2

𝑖, 𝑗

+ ℎ𝑖, 𝑗 (𝑇 )ª®¬ +
∑︁
a∈A

𝐼R≥0 (𝑥 (a)) . (49)

With this notation, wewant to characterize the value of the optimization problem as the horizon𝑇 grows to infinity, i.e., lim inf𝑇→+∞ inf𝑥 (𝒂) 𝑓𝑇 (𝑥).
Notice that this is exactly what we need to obtain a lower bound to lim inf𝑇→+∞

E[𝑅𝑇 (𝔄,𝝂 )]
log𝑇

.

In the following, we show that:

lim inf

𝑇→+∞
inf

𝑥 (𝒂)
𝑓𝑇 (𝑥) = inf

𝑥 (𝒂)
𝑓∞ (𝑥), (50)

where 𝑓∞ is defined as follows:

𝑓∞ (𝑥) B
∑︁
a∈A

𝑥 (a)Δa +
∑︁
𝑖∈J𝑑K

∑︁
𝑗∈J𝑘𝑖K\{𝑎∗𝑖 }

𝐼R≥0
©­«

∑︁
a∈A :𝑎𝑖=𝑗

𝑥 (𝒂) − 2𝜎2

Δ2

𝑖, 𝑗

ª®¬ +
∑︁
a∈A

𝐼R≥0 (𝑥 (a)), (51)

corresponding to the optimization problem in which we remove the ℎ𝑖, 𝑗 (𝑇 ) function from the right-hand side of the constraint. First

of all, we observe that for every 𝑥 and 𝑇 , we have that 𝑓𝑇 (𝑥) ≤ 𝑓∞ (𝑥). It follows that inf𝑥 (a) 𝑓𝑇 (𝑥) ≤ inf𝑥 (a) 𝑓∞ (𝑥) and, consequently,



lim inf𝑇→+∞ inf𝑥 (𝒂) 𝑓𝑇 (𝑥) ≤ inf𝑥 (𝒂) 𝑓∞ (𝑥). Thus, it remains to prove that lim inf𝑇→+∞ inf𝑥 (𝒂) 𝑓𝑇 (𝑥) ≥ inf𝑥 (𝒂) 𝑓∞ (𝑥). Since the optimiza-

tion problem is linear and feasible (for sufficiently large 𝑇 ), there must exist 𝑥∗
𝑇
such that inf𝑥 (𝒂) 𝑓𝑇 (𝑥) = 𝑓𝑇 (𝑥∗𝑇 ) for every finite 𝑇 , but also

for 𝑇 = ∞. Now, consider for a fixed 𝑥 :

lim inf

𝑇→+∞
𝑓𝑇 (𝑥) =

∑︁
a∈A

𝑥 (a)Δa +
∑︁
a∈A

𝐼R≥0 (𝑥 (a)) + lim inf

𝑇→+∞

∑︁
𝑖∈J𝑑K

∑︁
𝑗∈J𝑘𝑖K\{𝑎∗𝑖 }

𝐼R≥0
©­«

∑︁
a∈A :𝑎𝑖=𝑗

𝑥 (𝒂) − 2𝜎2

Δ2

𝑖, 𝑗

+ ℎ𝑖, 𝑗 (𝑇 )ª®¬ (52)

≥
∑︁
a∈A

𝑥 (a)Δa +
∑︁
a∈A

𝐼R≥0 (𝑥 (a)) +
∑︁
𝑖∈J𝑑K

∑︁
𝑗∈J𝑘𝑖K\{𝑎∗𝑖 }

lim inf

𝑇→+∞
𝐼R≥0

©­«
∑︁

a∈A :𝑎𝑖=𝑗

𝑥 (𝒂) − 2𝜎2

Δ2

𝑖, 𝑗

+ ℎ𝑖, 𝑗 (𝑇 )ª®¬ (53)

= 𝑓∞ (𝑥), (54)

uniformly since lim sup𝑇→+∞ ℎ𝑖, 𝑗 (𝑇 ) = 0 and 𝐼R≥0 is a decreasing function in its argument, having also exploited that lim inf𝑛 (𝑎𝑛 + 𝑏𝑛) ≥
lim inf𝑛 𝑎𝑛 + lim inf𝑛 𝑏𝑛 . Indeed, let 𝑐 =

∑
a∈A :𝑎𝑖=𝑗 𝑥 (𝒂) −

2𝜎2

Δ2

𝑖,𝑗

and 𝑦𝑇 = ℎ𝑖, 𝑗 (𝑇 ), we have to compute lim inf𝑇→+∞ 𝐼R≥0 (𝑐 + 𝑦𝑇 ). Since
0 ≤ 𝑦𝑇 and lim sup𝑇→+∞ 𝑦𝑇 = 0, we have lim𝑇→+∞ 𝑦𝑇 = 0. If 𝑐 ≠ 0, there exists 𝑇 (𝑐) such that for 𝑇 ≥ 𝑇 (𝑐), we have that 𝑦𝑇 ≤ |𝑐 |/2.
Consequently, lim inf𝑇→+∞ 𝐼R≥0 (𝑐 + 𝑦𝑇 ) = 𝐼R≥0 (𝑐). If, instead, 𝑐 = 0, we have to compute lim𝑇→+∞ 𝐼R≥0 (𝑦𝑇 ); being 𝐼R≥0 right continuous
and 𝑦𝑇 ≥ 0 we have that lim𝑇→+∞ 𝐼R≥0 (𝑦𝑇 ) = 0.

This, combined with the fact 𝑓𝑇 (𝑥) ≤ 𝑓∞ (𝑥) leads to lim inf𝑇→+∞ 𝑓𝑇 (𝑥) = 𝑓∞ (𝑥), uniformly. Thus, we have that for every 𝜀 > 0 there exists

𝑇 (𝜀) > 0 such that for every 𝑇 ≥ 𝑇0 (𝜀) we have uniformly:���� inf
𝑇 ′≥𝑇

𝑓𝑇 ′ (𝑥) − 𝑓∞ (𝑥)
���� ≤ 𝜀. (55)

Consequently, we have:

inf

𝑇 ′≥𝑇
inf

𝑥 (a)
𝑓𝑇 ′ (𝑥) = inf

𝑇 ′≥𝑇
𝑓𝑇 ′ (𝑥∗𝑇 ′ ) ≥ 𝑓∞ (𝑥

∗
𝑇 ′ ) − 𝜀 ≥ 𝑓∞ (𝑥

∗
∞) − 𝜀 = inf

𝑥 (a)
𝑓∞ (𝑥 (a)) − 𝜀. (56)

This concludes the proof. □

Theorem 3.4 (Instance-Dependent Lower Bound (Explicit)). Let 𝐶 (𝝂) be the solution of the optimization problem of Theorem 3.3. It holds
that:

𝐶 (𝝂) =
𝐾−𝑑∑︁
ℓ=1

(
𝑀𝝅 (ℓ ) −𝑀𝝅 (ℓ−1)

)
Δ𝜶 ℓ

,

that can be computed in O(∑𝑖∈J𝑑K 𝑘𝑖 log𝑘𝑖 ).

Proof. Let𝑀 = max𝑖∈J𝑑K𝑀𝑖,𝑘𝑖−1. For every 𝑖 ∈ J𝑑K, let us define a non-negative function function 𝑓𝑖 : R→ {𝜇𝑖, 𝑗 } 𝑗∈J𝑘𝑖K ∪ {0} such that:∫
R
1{𝑓𝑖 (𝑥) = 𝜇𝑖, 𝑗 }d𝑥 = 𝐿𝑖, 𝑗 ∀𝑗 ∈ J𝑘𝑖K \ {𝑎∗𝑖 }, (57)∫
R
1{𝑓𝑖 (𝑥) = 𝜇𝑖,𝑎∗

𝑖
}d𝑥 = 𝑀 −𝑀𝑖,𝑘𝑖−1 . (58)

Clearly, 𝑓𝑖 is not uniquely defined. Any function 𝑓𝑖 satisfying these conditions is measurable (by definition, since the pre-image of any

Y ⊆ {𝜇𝑖, 𝑗 } 𝑗∈J𝑘𝑖K ∪ {0} is measurable) and correspond to a possible arrangement of a proportion of pulls of the arm components of dimension

𝑖 . Specifically, all functions satisfying these conditions are called “equimesurable” meaning that for every 𝑓𝑖 , 𝑔𝑖 fulfilling the conditions, we

have that {𝑥 : 𝑓𝑖 (𝑥) ≥ 𝑦} = {𝑥 : 𝑔𝑖 (𝑥) ≥ 𝑦} for every 𝑦 ∈ R. We call this set of functions F𝑖 .
A possible arrangement of the proportion of the pulls for component 𝑖 ∈ J𝑑K, corresponds to a function 𝑓𝑖 ∈ F𝑖 such that 𝑓𝑖 (𝑥) = 0 for 𝑥 < 0

or 𝑥 > 𝑀 . Thus, to minimize the regret as in the optimization problem of Theorem 3.3, we maximize the reward as follows:

sup

𝑓𝑖 ∈F𝑖 , 𝑓𝑖 (𝑥 ) = 0 for 𝑥 < 0 or 𝑥 > 𝑀, 𝑖∈J𝑑K

∫
R𝑑

∏
𝑖∈J𝑑K

𝑓𝑖 (𝑥𝑖 )d𝑥𝑖 ≤ sup

𝑓𝑖 ∈F𝑖 , 𝑖∈J𝑑K

∫
R𝑑

∏
𝑖∈J𝑑K

𝑓𝑖 (𝑥𝑖 )d𝑥𝑖 . (59)

Let 𝑓 ∗
𝑖
be the symmetric decreasing rearrangement of 𝑓𝑖 for every 𝑖 ∈ J𝑑K, which, in our specific case, is a piecewise constant symmetric

function. Define 𝑥0 = 0, 𝑥𝑖,1 = (𝑀 −𝑀𝑖,𝑘𝑖−1)/2, 𝑥𝑖,𝑙+1 = 𝑥𝑖,𝑙 + 𝐿𝑖,𝜋𝑖 (𝑘𝑖−𝑙 )/2 for 𝑙 ∈ J𝑘𝑖K, we have:

𝑓 ∗𝑖 (𝑥) =
∑︁
𝑙∈J𝑘𝑖K

𝜇𝑖,𝜋𝑖 (𝑘𝑖−𝑙+1)1{|𝑥 | ∈ [𝑥𝑖,𝑙−1, 𝑥𝑖,𝑙 )}. (60)

From the rearrangement inequality for multiple integrals (Luttinger and Friedberg, 1976), we have:

sup

𝑓𝑖 ∈F𝑖 , 𝑖∈J𝑑K

∫
R𝑑

∏
𝑖∈J𝑑K

𝑓𝑖 (𝑥𝑖 )d𝑥𝑖 =
∫
R𝑑

∏
𝑖∈J𝑑K

𝑓 ∗𝑖 (𝑥𝑖 )d𝑥𝑖 . (61)



Let us observe that the product of

∫
R𝑑

∏
𝑖∈J𝑑K 𝑓

∗
𝑖
(𝑥𝑖 )d𝑥𝑖 actually leads to the solution depicted in the statement of the theorem.

Concerning the computational complexity, we observe that it is dominated by the sorting in each dimension 𝑖 ∈ J𝑑K. □

Theorem 4.1 (Worst-Case Upper Bound for F-UCB). For any FRB 𝝂 , F-UCB with 𝛼 > 2 suffers an expected regret bounded as:

E
[
𝑅𝑇 (F-UCB,𝝂)

]
≤ 4𝜎

∑︁
𝑖∈J𝑑K

√︁
𝛼𝑘𝑖𝑇 log𝑇 + 𝑔(𝛼)

∑︁
𝑖∈J𝑑K

𝑘𝑖 ,

where 𝑔(𝛼) = Õ
(
(𝛼 − 2)−2

)
.11 In particular, if 𝑘𝑖 C 𝑘 , for every 𝑖 ∈ J𝑑K, we have:

E
[
𝑅𝑇 (F-UCB,𝝂)

]
≤ Õ(𝜎𝑑

√
𝑘𝑇 ) .

Proof. The proof is composed of two parts. In the first part, we define the probability, given the chosen confidence bounds, that the good

event holds, i.e., the probability that all the confidence bounds are valid. The goal is to find an upper bound on the probability that the good

event does not hold along the whole time horizon 𝑇 . In the second part, we aim to characterize the regret under the good event for a specific

round 𝑡 ∈ J𝑇 K. Finally, we join the two parts to find an upper bound on the expected cumulative regret.

Part 1: Upper bounding the bad event over time horizon 𝑇
We start by defining our good event E𝑡 at round 𝑡 ∈ J𝑇 K, which implies that all the confidence bounds of interest hold, i.e., we are not

making a severe underestimate of the expected value of the optimal action components, and severely overestimating the expected values of

the suboptimal ones. Formally:

E𝑡 B
{
∀𝑖 ∈ J𝑑K,∀𝑎𝑖 ∈ J𝑘𝑖K \ {𝑎∗𝑖 } : �̂�𝑖,𝑎𝑖 (𝑡) − 𝜇𝑖,𝑎𝑖 ≤ 𝜎

√︄
𝛼 log 𝑡

𝑁𝑖,𝑎𝑖 (𝑡)

}
∩

{
∀𝑖 ∈ J𝑑K : 𝜇𝑖,𝑎∗

𝑖
− �̂�𝑖,𝑎∗

𝑖
(𝑡) ≤ 𝜎

√︄
𝛼 log 𝑡

𝑁𝑖,𝑎∗
𝑖
(𝑡)

}
.

We now want to find an upper bound of the probability of the bad event E∁𝑡 :

P
(
E∁𝑡

)
≤ P

(
∃𝑖 ∈ J𝑑K, ∃𝑎𝑖 ∈ J𝑘𝑖K \ {𝑎∗𝑖 } : �̂�𝑖,𝑎𝑖 (𝑡) − 𝜇𝑖,𝑎𝑖 > 𝜎

√︄
𝛼 log 𝑡

𝑁𝑖,𝑎𝑖 (𝑡)

)
+ P

(
∃𝑖 ∈ J𝑑K : 𝜇𝑖,𝑎∗

𝑖
− �̂�𝑖,𝑎∗

𝑖
(𝑡) > 𝜎

√︄
𝛼 log 𝑡

𝑁𝑖,𝑎∗
𝑖
(𝑡)

)

≤ P
©­­­­­«
∃𝑖 ∈ J𝑑K, ∃𝑎𝑖 ∈ J𝑘𝑖K \ {𝑎∗𝑖 }, ∃𝑠 ∈ J𝑡K : �̂�𝑖,𝑎𝑖 [𝑠] − 𝜇𝑖,𝑎𝑖 (𝑡 ) > 𝜎

√︂
𝛼 log 𝑡

𝑠︸                                                                                       ︷︷                                                                                       ︸
(A)

ª®®®®®¬
+ P

©­­­­­«
∃𝑖 ∈ J𝑑K, ∃𝑠 ∈ J𝑡K : 𝜇𝑖,𝑎∗

𝑖
− �̂�𝑖,𝑎∗

𝑖
[𝑠] > 𝜎

√︂
𝛼 log 𝑡

𝑠︸                                                          ︷︷                                                          ︸
(B)

ª®®®®®¬
,

(62)

having highlighted with the symbols �̂�𝑖,𝑎𝑖 [𝑠] and �̂�𝑖,𝑎∗𝑖 [𝑠] the dependence of the estimators on the number of pulls 𝑠 . We now bound (A)

and (B) separately. Similar to the proof of Theorem 2.2 proposed by Bubeck (2010), we use a peeling argument together with Hoeffding’s

maximal inequality. We apply the peeling argument with a geometric grid over the time interval [1, 𝑡] to bound the probability of term (A).

Given 𝛽 ∈ (0, 1), we note that if 𝑠 ∈ {1, . . . , 𝑡}, then ∃ 𝑗 ∈
{
0, . . . ,

log 𝑡

log 1/𝛽

}
: 𝛽 𝑗+1𝑡 < 𝑠 ≤ 𝛽 𝑗 𝑡 . As such, we obtain:

P ((A)) = P
(
∃𝑖 ∈ J𝑑K, ∃𝑎𝑖 ∈ J𝑘𝑖K \ {𝑎∗𝑖 }, ∃𝑠 ∈ J𝑡K : �̂�𝑖,𝑎𝑖 [𝑠] − 𝜇𝑖,𝑎𝑖 > 𝜎

√︂
𝛼 log 𝑡

𝑠

)
= P

(
∃𝑖 ∈ J𝑑K, ∃𝑎𝑖 ∈ J𝑘𝑖K \ {𝑎∗𝑖 }, ∃𝑠 ∈ J𝑡K :

𝑠∑︁
𝑙=1

(
𝑥𝑖,𝑎𝑖 [𝑙] − 𝜇𝑖,𝑎𝑖 (𝑡 )

)
> 𝜎

√︁
𝛼𝑠 log 𝑡

)

≤

log 𝑡

log 1/𝛽∑︁
𝑗=0

P

(
∃𝑖 ∈ J𝑑K, ∃𝑎𝑖 ∈ J𝑘𝑖K \ {𝑎∗𝑖 }, ∃𝑠 : 𝛽

𝑗+1𝑡 < 𝑠 ≤ 𝛽 𝑗 𝑡,
𝑠∑︁
𝑙=1

(
𝑥𝑖,𝑎𝑖 [𝑙] − 𝜇𝑖,𝑎𝑖 (𝑡 )

)
> 𝜎

√︁
𝛼𝑠 log 𝑡

)

≤

log 𝑡

log 1/𝛽∑︁
𝑗=0

P

(
∃𝑖 ∈ J𝑑K, ∃𝑎𝑖 ∈ J𝑘𝑖K \ {𝑎∗𝑖 }, ∃𝑠 : 𝛽

𝑗+1𝑡 < 𝑠 ≤ 𝛽 𝑗 𝑡,
𝑠∑︁
𝑙=1

(
𝑥𝑖,𝑎𝑖 [𝑙] − 𝜇𝑖,𝑎𝑖 (𝑡 )

)
> 𝜎

√︃
𝛼𝛽 𝑗+1𝑡 log 𝑡

)
,

11
The complete expression is reported in the proof.



having denoted with 𝑥𝑖,𝑎𝑖 [𝑙] the 𝑙-sample used to compute the sample mean �̂�𝑖,𝑎𝑖 [𝑠]. Applying a union bound on the summations on 𝑖 and

𝑎𝑖 , and Hoeffding’s maximal inequality, we obtain:

P ((A)) ≤
∑︁
𝑖∈J𝑑K

∑︁
𝑎𝑖 ∈J𝑘𝑖K\{𝑎∗𝑖 }

log 𝑡

log 1/𝛽∑︁
𝑗=0

exp

©­­«−
(√︁
𝜎2𝛼𝛽 𝑗+1𝑡 log 𝑡

)
2

2𝜎2𝛽 𝑗 𝑡

ª®®¬
=

∑︁
𝑖∈J𝑑K

∑︁
𝑎𝑖 ∈J𝑘𝑖K\{𝑎∗𝑖 }

log 𝑡

log 1/𝛽∑︁
𝑗=0

exp

(
−𝛼𝛽 log 𝑡

2

)

=
∑︁
𝑖∈J𝑑K

∑︁
𝑎𝑖 ∈J𝑘𝑖K\{𝑎∗𝑖 }

log 𝑡

log 1/𝛽∑︁
𝑗=0

𝑡−
𝛼𝛽

2

≤
∑︁
𝑖∈J𝑑K

∑︁
𝑎𝑖 ∈J𝑘𝑖K\{𝑎∗𝑖 }

©­« log 𝑡

log
1

𝛽

+ 1ª®¬ 𝑡−
𝛼𝛽

2 .

Applying the same procedure, we can bound the probability of term (B) in Equation (62) to obtain:

P ((B)) ≤
∑︁
𝑖∈J𝑑K

©­« log 𝑡

log
1

𝛽

+ 1ª®¬ 𝑡−
𝛼𝛽

2 .

As such, we can write the upper bound of the probability of the bad event as:

P
(
E∁𝑡

)
= P ((A)) + P ((B)) ≤

∑︁
𝑖∈J𝑑K

𝑘𝑖
©­« log 𝑡

log
1

𝛽

+ 1ª®¬ 𝑡−
𝛼𝛽

2 .

Let us now bound the sum of the probabilities of the bad event over the horizon 𝑇 :

∑︁
𝑡 ∈J𝑇 K

P
(
E∁𝑡

)
≤

∑︁
𝑖∈J𝑑K

𝑘𝑖

∑︁
𝑡 ∈J𝑇 K

©­« log 𝑡

log
1

𝛽

+ 1ª®¬ 𝑡−
𝛼𝛽

2

≤
∑︁
𝑖∈J𝑑K

𝑘𝑖

∫ 𝑇

1

©­« log 𝑡

log
1

𝛽

+ 1ª®¬ 𝑡−
𝛼𝛽

2 d𝑡 (63)

=
∑︁
𝑖∈J𝑑K

𝑘𝑖

( [(
log 𝑡

log 1/𝛽 + 1
) (

2

2 − 𝛼𝛽 𝑡
1− 𝛼𝛽

2

)]+∞
1

− 4

(2 − 𝛼𝛽) log 1/𝛽

∫ +∞

1

𝑡−
𝛼𝛽

2 d𝑡

)
(64)

=
∑︁
𝑖∈J𝑑K

𝑘𝑖

(
− 2

2 − 𝛼𝛽 −
4

(2 − 𝛼𝛽)2 log(1/𝛽)

[
𝑡1−

𝛼𝛽

2

]+∞
1

)
(65)

=
∑︁
𝑖∈J𝑑K

𝑘𝑖

(
− 2

2 − 𝛼𝛽 +
4

(2 − 𝛼𝛽)2 log(1/𝛽)

)
, (66)

where line (63) is obtained by bounding the summation with the integral, line (64) is obtained via integration by parts, and the first term of

line (65) is obtained by imposing 𝛼𝛽 > 2. Substituting now 𝛽 = 4

𝛼+2 , which verifies 𝛽 ∈ (0, 1) if 𝛼 > 2, we obtain:

∑︁
𝑡 ∈J𝑇 K

P
(
E∁𝑡

)
≤

©­­«
𝛼 + 2
𝛼 − 2 +

(𝛼 + 2)2
(𝛼 − 2)2

1

log

(
𝛼+2
4

) ª®®¬
∑︁
𝑖∈J𝑑K

𝑘𝑖 = Õ
(
(𝛼 − 2)2

) ∑︁
𝑖∈J𝑑K

𝑘𝑖 .

Part 2: Upper bounding the instantaneous regret at time 𝑡 under the good event



We can now bound the instantaneous regret at time 𝑡 supposing the good event holds. We define the regret 𝑅𝑡 at time 𝑡 as the difference in

expectation between the optimal action and the one performed by F-UCB, formally:

𝑅𝑡 =
∏
𝑖∈J𝑑K

𝜇∗𝑖 −
∏
𝑖∈J𝑑K

𝜇𝑖,𝑎𝑖 (𝑡 ) (67)

=
∑︁
𝑙∈J𝑑K

∏
𝑖∈J𝑙−1K

𝜇∗
𝑙︸     ︷︷     ︸

∈[0,1]

(
𝜇∗
𝑙
− 𝜇𝑙,𝑎𝑙 (𝑡 )

) ∏
𝑖∈J𝑙+1,𝑑K

𝜇𝑖,𝑎𝑖 (𝑡 )︸             ︷︷             ︸
∈[0,1]

(68)

≤
∑︁
𝑙∈J𝑑K

(
𝜇∗
𝑙
− 𝜇𝑙,𝑎𝑙 (𝑡 )

)
(69)

=
∑︁
𝑙∈J𝑑K

(
𝜇∗
𝑙
− 𝜇𝑙,𝑎𝑙 (𝑡 ) ± UCB𝑙,𝑎𝑙 (𝑡 ) (𝑡)

)
(70)

≤
∑︁
𝑙∈J𝑑K

(
UCB𝑙,𝑎𝑙 (𝑡 ) (𝑡) − 𝜇𝑙,𝑎𝑙 (𝑡 )

)
(71)

=
∑︁
𝑙∈J𝑑K

(
�̂�𝑙,𝑎𝑙 (𝑡 ) (𝑡) + 𝛽𝑙,𝑎𝑙 (𝑡 ) (𝑡) − 𝜇𝑙,𝑎𝑙 (𝑡 )

)
(72)

≤ 2

∑︁
𝑙∈J𝑑K

𝛽𝑙,𝑎𝑙 (𝑡 ) (𝑡), (73)

where line (68) is obtained by summing and subtracting all mixed terms, line (69) follows from bounding the left and right products with 1

being all factors (including the middle one) made of non-negative terms, line (71) comes from the optimism under the good event, having

denoted with 𝛽𝑙,𝑎𝑙 (𝑡) the exploration bonus.

Upper bound of the expected cumulative regret 𝑅(F-UCB,𝑇 )
Recalling that we call 𝑅𝑡 the instantaneous regret under the good event, can now compute an upper bound on the expected cumulative

regret as:

E
[
𝑅𝑇 (F-UCB,𝝂)

]
≤

∑︁
𝑡 ∈J𝑇 K

(
1 · P

(
E∁𝑡

)
+ 𝑅𝑡 · P

(
˜E𝑡

))
≤

∑︁
𝑡 ∈J𝑇 K

P
(
E∁𝑡

)
+

∑︁
𝑡 ∈J𝑇 K

𝑅𝑡 · P
(
˜E𝑇

)
≤

∑︁
𝑡 ∈J𝑇 K

P
(
E∁𝑡

)
+

∑︁
𝑡 ∈J𝑇 K

𝑅𝑡

≤
∑︁
𝑡 ∈J𝑇 K

P
(
E∁𝑡

)
+

∑︁
𝑡 ∈J𝑇 K

2

∑︁
𝑖∈J𝑑K

𝛽𝑖,𝑎𝑖 (𝑡 ) (𝑡)

=
∑︁
𝑡 ∈J𝑇 K

P
(
E∁𝑡

)
+ 2

∑︁
𝑡 ∈J𝑇 K

∑︁
𝑖∈J𝑑K

𝜎

√︄
𝛼 log 𝑡

𝑁𝑖,𝑎𝑖 (𝑡 )

≤
∑︁
𝑡 ∈J𝑇 K

P
(
E∁𝑡

)
+ 2𝜎

√︁
𝛼 log𝑇

∑︁
𝑡 ∈J𝑇 K

∑︁
𝑖∈J𝑑K

√︄
1

𝑁𝑖,𝑎𝑖 (𝑡 )

=
∑︁
𝑡 ∈J𝑇 K

P
(
E∁𝑡

)
+ 2𝜎

√︁
𝛼 log𝑇

∑︁
𝑖∈J𝑑K

∑︁
𝑎𝑖 ∈J𝑘𝑖K

∑︁
𝑗∈J𝑁𝑖,𝑎𝑖

(𝑇 )K

√︂
1

𝑗
(74)

≤
∑︁
𝑡 ∈J𝑇 K

P
(
E∁𝑡

)
+ 2𝜎

√︁
𝛼 log𝑇

∑︁
𝑖∈J𝑑K

∑︁
𝑎𝑖 ∈J𝑘𝑖K

∑︁
𝑗∈J𝑇 /𝑘𝑖K

√︂
1

𝑗
(75)

≤
∑︁
𝑡 ∈J𝑇 K

P
(
E∁𝑡

)
+ 2𝜎

√︁
𝛼 log𝑇

∑︁
𝑖∈J𝑑K

∑︁
𝑎𝑖 ∈J𝑘𝑖K

∫ 𝑇 /𝑘𝑖

1

√︂
1

𝑗
dj (76)

≤
∑︁
𝑡 ∈J𝑇 K

P
(
E∁𝑡

)
+ 2𝜎

√︁
𝛼 log𝑇

∑︁
𝑖∈J𝑑K

∑︁
𝑎𝑖 ∈J𝑘𝑖K

(
1 + 2

√︂
𝑇

𝑘𝑖
− 2

)



≤
∑︁
𝑡 ∈J𝑇 K

P
(
E∁𝑡

)
+ 2𝜎

√︁
𝛼 log𝑇

∑︁
𝑖∈J𝑑K

∑︁
𝑎𝑖 ∈J𝑘𝑖K

2

√︂
𝑇

𝑘𝑖

=
∑︁
𝑡 ∈J𝑇 K

P
(
E∁𝑡

)
+ 4𝜎

√︁
𝛼 log𝑇

∑︁
𝑖∈J𝑑K

√︁
𝑘𝑖𝑇

≤
©­­«
𝛼 + 2
𝛼 − 2 +

(𝛼 + 2)2
(𝛼 − 2)2

1

log

(
𝛼+2
4

) ª®®¬
∑︁
𝑖∈J𝑑K

𝑘𝑖 + 4𝜎
√︁
𝛼𝑇 log𝑇

∑︁
𝑖∈J𝑑K

√︁
𝑘𝑖 .

where line (74) is obtained by rewriting the series over the arms and the number of pulls for each arm, line (75) is derived by considering the

worst case, i.e., when all the arms are pulled equally (this is the worst case because we are looking at a concave function), and line (76) is

obtained by bounding the summation with the corresponding integral. This concludes the proof.

□

Theorem 4.2 (Instance-Dependent Upper Bound for F-UCB). For a given FRB 𝝂 , F-UCB with 𝛼 > 2 suffers an expected regret bounded as:

E
[
𝑅𝑇 (F-UCB,𝝂)

]
≤ 𝐶 (F-UCB,𝝂),

where 𝐶 (F-UCB,𝝂) is defined as the solution to the following optimization problem (where 𝑔(𝛼) = Õ((𝛼 − 2)−2)):

max

(𝑁a )a∈A

∑︁
a∈A\{a∗ }

𝑁aΔa (9)

s.t. 𝑁𝑖, 𝑗 =
∑︁

a∈A\{a∗ }
𝑎𝑖=𝑗

𝑁a, ∀𝑖 ∈ J𝑑K, 𝑗 ∈ J𝑘𝑖K \ {𝑎∗𝑖 } (10)

𝑁𝑖, 𝑗 ≤
4𝛼𝜎2 log𝑇

Δ2

𝑖, 𝑗

+ 𝑔(𝛼), ∀𝑖 ∈ J𝑑K, 𝑗 ∈ J𝑘𝑖K \ {𝑎∗𝑖 } (11)∑︁
a∈A

𝑁a = 𝑇 (12)

𝑁a ≥ 0, ∀a ∈ A (13)

Proof. The proof of this statement is divided into two parts. The first part is dedicated to finding an upper bound on the expected number

of pulls for each action component 𝑁𝑖 𝑗 . The second part is dedicated to understanding how these pulls can be combined to find an upper

bound on the regret.

Part 1: Upper bounding the expected number of pulls for each action component
The proof of the expected number of pulls for 𝜎2-subgaussian variables comprises three parts, extending and following the proof of

Theorem 2.2 proposed by Bubeck (2010).

Given an instance 𝝂 of FRB, consider a component 𝑖 ∈ J𝑑K, and a suboptimal action 𝑎𝑖 ∈ J𝑘𝑖K \ {𝑎∗𝑖 }, which suffers a suboptimality gap of

Δ𝑖,𝑎𝑖 . In this part, we show that if 𝐼𝑖,𝑡 = 𝑎𝑖 (i.e., the action selected for component 𝑖 at time 𝑡 is 𝑎𝑖 ), then one of the three following equations

is true:

UCB𝑖,𝑎∗
𝑖
(𝑡) ≤ 𝜇∗𝑖 , (77)

or

𝜇𝑖,𝑎𝑖 (𝑡 − 1) > 𝜇𝑖,𝑎𝑖 + 𝜎

√︄
𝛼 log 𝑡

𝑁𝑖,𝑎𝑖 (𝑡 − 1)
, (78)

or

𝑁𝑖,𝑎𝑖 (𝑡 − 1) <
4𝜎2𝛼 log𝑇

Δ2

𝑖,𝑎𝑖

, (79)

where: UCB𝑖,𝑎∗
𝑖
(𝑡) is the confidence bound of the optimal arm for component 𝑖 at time 𝑡 , having pulled such an arm for 𝑁𝑖,𝑎∗

𝑖
(𝑡 − 1) times in

the previous rounds, and 𝜇𝑖,𝑎𝑖 ,𝑁𝑖,𝑎𝑖
(𝑡−1) is the estimated value of the mean of arm 𝑎𝑖 of component 𝑖 after 𝑁𝑖,𝑎𝑖 (𝑡 − 1) pulls. For absurd, if we

assume that the three equations are false, then we have:



UCB𝑖,𝑎∗
𝑖
(𝑡) > 𝜇∗𝑖

= 𝜇𝑖,𝑎𝑖 + Δ𝑖,𝑎𝑖

≥ 𝜇𝑖,𝑎𝑖 + 2

√︄
𝜎2𝛼 log 𝑡

𝑁𝑖,𝑎𝑖 (𝑡 − 1)

≥ 𝜇𝑖,𝑎𝑖 ,𝑁𝑖,𝑎𝑖
(𝑡−1) +

√︄
𝜎2𝛼 log 𝑡

𝑁𝑖,𝑎𝑖 (𝑡 − 1)
= UCB𝑖,𝑎𝑖 (𝑡 − 1),

which implies that 𝑎𝑖 (𝑡) ≠ 𝑎𝑖 . Now, we bound the probability that Equation (77) or Equation (78) hold true. Similar to the original proof, we

use a peeling argument together with Hoeffding’s maximal inequality, which is a consequence of Azuma-Hoeffding inequality. Note that:

P(Eq. (77) is true) ≤ P
(
∃𝑠 ∈ {1, . . . , 𝑡} : 𝜇𝑖,𝑎∗

𝑖
[𝑠] +

√︂
𝜎2𝛼 log 𝑡

𝑠
≤ 𝜇∗𝑖

)
= P

(
∃𝑠 ∈ {1, . . . , 𝑡} :

𝑠∑︁
𝑙=1

(𝑥𝑖,𝑎∗
𝑖
[𝑙] − 𝜇∗𝑖 ) ≤ −

√︃
𝜎2𝛼𝑠 log 𝑡

)
We now apply the peeling argument with a geometric grid over the time interval [1, 𝑡]. More precisely, given 𝛽 ∈ (0, 1), we note that if
𝑠 ∈ {1, . . . , 𝑡}, then ∃ 𝑗 ∈

{
0, . . . ,

log 𝑡

log 1/𝛽

}
: 𝛽 𝑗+1𝑡 < 𝑠 ≤ 𝛽 𝑗 𝑡 .

As such, we get:

P(Eq. (77) is true) ≤

log 𝑡

log 1/𝛽∑︁
𝑗=0

P

(
∃𝑠 : 𝛽 𝑗+1𝑡 < 𝑠 ≤ 𝛽 𝑗 𝑡,

𝑠∑︁
𝑙=1

(𝑥𝑖,𝑎∗
𝑖
[𝑙] − 𝜇∗𝑖 ) ≤ −

√︃
𝜎2𝛼𝑠 log 𝑡

)

≤

log 𝑡

log 1/𝛽∑︁
𝑗=0

P

(
∃𝑠 : 𝛽 𝑗+1𝑡 < 𝑠 ≤ 𝛽 𝑗 𝑡,

𝑠∑︁
𝑙=1

(𝑥𝑖,𝑎∗
𝑖
[𝑙] − 𝜇∗𝑖 ) ≤ −

√︃
𝜎2𝛼𝛽 𝑗+1𝑡 log 𝑡

)
We now bound this last term using Hoeffding’s maximal inequality, which gives:

P(Eq. (77) is true) ≤

log 𝑡

log 1/𝛽∑︁
𝑗=0

exp

©­­«−
(√︁
𝜎2𝛼𝛽 𝑗+1𝑡 log 𝑡

)
2

2𝜎2𝛽 𝑗 𝑡

ª®®¬
≤

log 𝑡

log 1/𝛽∑︁
𝑗=0

exp

(
−𝛼𝛽 log 𝑡

2

)
≤

(
log 𝑡

log 1/𝛽 + 1
)

1

𝑡
𝛽𝛼

2

.

Using the same arguments, it can be proven that:

P(Eq. (78) is true) ≤
(

log 𝑡

log 1/𝛽 + 1
)

1

𝑡
𝛽𝛼

2

.

We can now write:

E
[
𝑁𝑖,𝑎𝑖 (𝑇 )

]
= E

[
𝑇∑︁
𝑡=1

1{𝐼𝑖,𝑡=𝑎𝑖 }

]
≤ 𝑢 + E

[
𝑇∑︁

𝑡=𝑢+1
1{𝐼𝑖,𝑡=𝑎𝑖 and Eq. (79) is false}

]
= 𝑢 + E

[
𝑇∑︁

𝑡=𝑢+1
1{Eq. (77) or Eq. (78) is true}

]
≤ 𝑢 +

𝑇∑︁
𝑡=𝑢+1

(P(Eq. (77) is true) + P(Eq. (78) is true)) ,



where 𝑢 = ⌈ 4𝜎
2𝛼 log𝑇

Δ2

𝑖,𝑎𝑖

⌉.
We can now upper bound the probability of Equations (77) and (78) holds:

𝑇∑︁
𝑡=𝑢+1

(P(Eq. (77) is true) + P(Eq. (78) is true)) ≤ 2

𝑇∑︁
𝑡=𝑢+1

(
log 𝑡

log 1/𝛽 + 1
)

1

𝑡
𝛽𝛼

2

≤ 2

∫ +∞

1

(
log 𝑡

log 1/𝛽 + 1
)

1

𝑡
𝛽𝛼

2

𝑑𝑡

= 2

[(
log 𝑡

log 1/𝛽 + 1
) (

2

2 − 𝛼𝛽 𝑡
1− 𝛼𝛽

2

)]+∞
1

− 4

(2 − 𝛼𝛽) log 1/𝛽

∫ +∞

1

𝑡−
𝛼𝛽

2 d𝑡 (80)

= − 4

2 − 𝛼𝛽 −
8

(2 − 𝛼𝛽)2 log 1/𝛽

[
𝑡1−

𝛼𝛽

2

]+∞
1

(81)

= − 4

2 − 𝛼𝛽 +
8

(2 − 𝛼𝛽)2 log 1/𝛽
,

where line (80) is obtained via integration by parts and the first term of line (81) is obtained imposing 𝛼𝛽 > 2. Substituting now 𝛽 = 4

𝛼+2 ,
which verifies 𝛽 ∈ (0, 1) if 𝛼 > 2, we obtain:

𝑇∑︁
𝑡=𝑢+1

(P(Eq. (77) is true) + P(Eq. (78) is true)) ≤ − 4

2 − 4𝛼
𝛼+2
+ 8(

2 − 4𝛼
𝛼+2

)
2

1

log

(
𝛼+2
4

)
= −2(𝛼 + 2)

2 − 𝛼 + 2(𝛼 + 2)2
(2 − 𝛼)2

1

log

(
𝛼+2
4

)
=

2(𝛼 + 2)
𝛼 − 2 + 2

log

(
𝛼+2
4

) (
𝛼 + 2
𝛼 − 2

)
2

.

Rearranging the upper bound on the expected number of pulls given the three cases presented above, we get:

E[𝑁𝑖, 𝑗 (𝑇 )] ≤
4𝛼𝜎2 log𝑇

Δ2

𝑖, 𝑗

+ 2(𝛼 + 2)
𝛼 − 2 + 2

log

(
𝛼+2
4

) (
𝛼 + 2
𝛼 − 2

)
2

.

We set 𝑔(𝛼) = 2(𝛼+2)
𝛼−2 +

2

log( 𝛼+2
4
)
(
𝛼+2
𝛼−2

)
2

= Õ
(
(𝛼 − 2)−2

)
.

Part 2: Upper bounding the expected cumulative regret
We now have to understand how the pulls defined in part 1 can be combined. We want to look at the worst combination in which we can

pull the suboptimal action components.

We recall that regret can be defined by highlighting the dependence on the pulls of the action vectors:

E[𝑅𝑇 (F-UCB,𝝂)] =
∑︁
a∈A

𝑁aΔa .

As before, we can bind the pulls of the action components 𝑁𝑖 𝑗 and the action vectors 𝑁a as follows:

E[𝑁𝑖, 𝑗 (𝑇 )] =
∑︁

a∈A:𝑎𝑖=𝑗

𝑁a, ∀𝑖 ∈ J𝑑K, 𝑗 ∈ J𝑘𝑖K.

We know that the pulls cannot be negative, and that the total number of pulls of the action vectors sums to 𝑇 , so we impose these additional

constraints. Now, acting on the number of pulls 𝑁a, ∀a ∈ A we want to find the worst-case in which we can combine action components in

action vectors. So, we solve a maximization problem on the regret defined as a function of the number of pulls, given the constraints defined

above, and the upper bound on the expected number of pulls of the action components 𝑁𝑖 𝑗 , ∀𝑖 ∈ J𝑑K, 𝑗 ∈ J𝑘𝑖K \ {𝑎∗𝑖 } defined in Part 1 of this

proof. □

Corollary 4.3 (Explicit Instance-Dependent Upper Bound for F-UCB). For a given FRB 𝝂 , F-UCB with 𝛼 > 2 suffers an expected regret bounded
by:

E
[
𝑅𝑇 (F-UCB,𝝂)

]
≤ 𝐶 (F-UCB,𝝂)

≤ 4𝛼𝜎2 log𝑇
∑︁
𝑖∈J𝑑K

𝜇∗−𝑖
∑︁

𝑗∈J𝑘𝑖K\{𝑎∗𝑖 }
Δ−1𝑖, 𝑗 + 𝑔(𝛼)

∑︁
𝑖∈J𝑑K

𝑘𝑖 ,



where 𝜇∗−𝑖 =
∏
𝑙∈J𝑑K\{𝑖 } 𝜇

∗
𝑙
≤ 1 for every 𝑖 ∈ J𝑑K.

Proof. In order to obtain a relaxed solution of the optimization problem in Theorem 4.2, we first derive the following upper bound to the

suboptimality gaps of the action vector a = (𝑎1, . . . , 𝑎𝑑 )T:

Δa =
∏
𝑖∈J𝑑K

𝜇∗𝑖 −
∏
𝑖∈J𝑑K

𝜇𝑖,𝑎𝑖 (82)

=
∏
𝑖∈J𝑑K

𝜇∗𝑖
©­«1 −

∏
𝑖∈J𝑑K

𝜇𝑖,𝑎𝑖

𝜇∗
𝑖

ª®¬ (83)

≤
∏
𝑖∈J𝑑K

𝜇∗𝑖

(
1 − min

𝑖∈J𝑑K

𝜇𝑖,𝑎𝑖

𝜇∗
𝑖

)
(84)

=
∏
𝑖∈J𝑑K

𝜇∗𝑖 max

𝑖∈J𝑑K

(
1 −

𝜇𝑖,𝑎𝑖

𝜇∗
𝑖

)
(85)

≤
∏
𝑖∈J𝑑K

𝜇∗𝑖
∑︁
𝑖∈J𝑑K

(
1 −

𝜇𝑖,𝑎𝑖

𝜇∗
𝑖

)
(86)

=
∑︁
𝑖∈J𝑑K

(𝜇∗𝑖 − 𝜇𝑖,𝑎𝑖 )
∏

𝑗∈J𝑑K\{ 𝑗 }
𝜇∗𝑗 (87)

=
∑︁
𝑖∈J𝑑K

Δ𝑖,𝑎𝑖 𝜇
∗
−𝑖 , (88)

where line (84) follows from observing that

∏
𝑖∈J𝑑K

𝜇𝑖,𝑎𝑖
𝜇∗
𝑖
≤ min𝑖∈J𝑑K

𝜇𝑖,𝑎𝑖
𝜇∗
𝑖

since

𝜇𝑖,𝑎𝑖
𝜇∗
𝑖
∈ [0, 1), line (87) comes from defining 𝜇∗−𝑖 B∏

𝑗∈J𝑑K\{ 𝑗 } 𝜇
∗
𝑗
≤ 1. Thus, by considering the objective function in the optimization problem of Theorem 4.2, we have:∑︁

a∈A\{a∗ }
𝑁aΔa ≤

∑︁
a∈A\{a∗ }

𝑁a
∑︁
𝑖∈J𝑑K

Δ𝑖,𝑎𝑖 𝜇
∗
−𝑖 (89)

=
∑︁
𝑖∈J𝑑K

𝜇∗−𝑖
∑︁
𝑗∈J𝑘𝑖K

∑︁
a∈A :𝑎𝑖=𝑗

𝑁aΔ𝑖,𝑎𝑖 (90)

=
∑︁
𝑖∈J𝑑K

𝜇∗−𝑖
∑︁

𝑎𝑖 ∈J𝑘𝑖K\{𝑎∗𝑖 }
𝑁𝑖,𝑎𝑖Δ𝑖,𝑎𝑖 . (91)

By using the Constraint (11) to upper bound 𝑁𝑖,𝑎𝑖 and recalling that Δ𝑖, 𝑗 ≤ 1, we get the result.

□

Theorem 5.1 (Instance-Dependent Upper Bound for F-Track). For any FRB 𝝂 , F-Track run with:

𝑁0 =

⌈√︁
log𝑇

⌉
and 𝜖𝑇 =

√︄
2𝜎2 𝑓𝑇 (1/log𝑇 )

𝑁0

,

suffers an expected regret of:

lim sup

𝑇→+∞

E
[
𝑅𝑇 (F-Track,𝝂)

]
log𝑇

= 𝐶 (𝝂) .

Proof. Preliminary Results Let us introduce the symbol:

𝜖𝑖, 𝑗 (𝑡, 𝛿) B

√︄
2𝜎2 𝑓𝑇 (𝛿)
𝑁𝑖, 𝑗 (𝑡)

. (92)



Consider the event E(𝛿) B {∃𝑖 ∈ J𝑑K, ∃ 𝑗 ∈ J𝑘𝑖K, ∃𝑡 ∈ J𝑇warm-up,𝑇 K ≥ 1 : |�̂�𝑖, 𝑗 (𝑡) − 𝜇𝑖, 𝑗 | > 𝜖𝑖, 𝑗 (𝑡, 𝛿)} and let us bound its probability:

P(E(𝛿)) ≤
∑︁
𝑖∈J𝑑K

∑︁
𝑗∈J𝑘𝑖K

P
(
∃𝑡 ∈ J𝑇warm-up,𝑇 K : |�̂�𝑖, 𝑗 (𝑡) − 𝜇𝑖, 𝑗 | > 𝜖𝑖, 𝑗 (𝑡, 𝛿)

)
(93)

=
∑︁
𝑖∈J𝑑K

∑︁
𝑗∈J𝑘𝑖K

P

(
∃𝑠 ∈ J𝑇 K : |�̂�𝑖, 𝑗 [𝑠] − 𝜇𝑖, 𝑗 | >

√︂
2𝜎2 𝑓𝑇 (𝛿)

𝑠

)
(94)

≤
∑︁
𝑖∈J𝑑K

∑︁
𝑗∈J𝑘𝑖K

𝛿 = 𝑘𝛿, (95)

where line (93) follows from a union bound over the values of 𝑖 and 𝑗 , line (94) follows by rewriting the probability by highlighting the

dependence of the estimator on the number of samples 𝑠 , and line (95) follows from Lemma C.1, recalling that 𝑠 (�̂�𝑖, 𝑗 [𝑠] − 𝜇𝑖, 𝑗 ) is a martingale

difference sequence and it is 𝜎2-subgaussian.

We will make use of the following two instantiations of event E(𝛿):

E1 B E(1/log𝑇 ) and E2 B E(1/𝑇 ). (96)

Clearly, from the previous result, we have that P(E1) ≤ 𝑘/log𝑇 and P(E2) ≤ 𝑘/𝑇 .
We start decomposing the regret over the phases of the algorithm:

E
𝝂
[𝑅(F-Track,𝑇 )] = E

𝝂


∑︁

𝑡 ∈warm-up
Δa(𝑡 )

︸                   ︷︷                   ︸
CE𝝂 [𝑅warm-up (𝑇 ) ]

+E
𝝂

[ ∑︁
𝑡 ∈success

Δa(𝑡 )

]
︸                 ︷︷                 ︸
CE𝝂 [𝑅success (𝑇 ) ]

+E
𝝂


∑︁

𝑡 ∈recovery
Δa(𝑡 )

︸                  ︷︷                  ︸
CE𝝂 [𝑅recovery (𝑇 ) ]

, (97)

where, with little abuse of notation, we denoted with 𝑡 ∈ phase denotes the rounds in which phase phase is active. We proceed to analyze the

three components separately.

Part 1: Regret in Warm-Up Phase E𝝂 [𝑅warm-up (𝑇 )] We start by analyzing the regret in the warm-up phase, whose duration is given by

𝑇warm-up = 𝑁0max𝑖∈J𝑑K 𝑘𝑖 = ⌈
√︁
log𝑇 ⌉max𝑖∈J𝑑K 𝑘𝑖 . Thus, the corresponding expected cumulative regret can be bounded as follows:

E
𝝂
[𝑅warm-up (𝑇 )] ≤ Δmax

⌈√︁
log𝑇

⌉
max

𝑖∈J𝑑K
𝑘𝑖 = O

(√︁
log𝑇

)
, (98)

where Δmax = maxa∈A Δa and the Big-O notation retains the dependence on 𝑇 only. Thus, its contribution to the regret is asymptotically

negligible:

lim sup

𝑇→+∞

E𝝂 [𝑅warm-up (𝑇 )]
log𝑇

= 0. (99)

Part 2: Regret in the Recovery Phase E𝝂 [𝑅recovery (𝑇 )] We move to the analysis of the regret in the recovery phase. We start by showing

that if event E1 does not hold, then, the recovery phase never activates. Indeed, under E∁
1
simultaneously for all 𝑖 ∈ J𝑑K, 𝑗 ∈ J𝑘𝑖K, and

𝑡 ∈ J𝑇warm-up,𝑇 K we have that:

|�̂�𝑖, 𝑗 (𝑡) − 𝜇𝑖, 𝑗 | ≤ 𝜖𝑖, 𝑗 (𝑡, 1/log𝑇 ), (100)

which implies simultaneously for all 𝑖 ∈ J𝑑K, 𝑗 ∈ J𝑘𝑖K, and 𝑡 ∈ J𝑇warm-up,𝑇 K that:

|�̂�𝑖, 𝑗 (𝑇warm-up) − �̂�𝑖, 𝑗 (𝑡 − 1) | ≤ |�̂�𝑖, 𝑗 (𝑇warm-up) − 𝜇𝑖, 𝑗 | + |�̂�𝑖, 𝑗 (𝑡 − 1) − 𝜇𝑖, 𝑗 | (101)

≤ 𝜖𝑖, 𝑗 (𝑇warm-up, 1/log𝑇 ) + 𝜖𝑖, 𝑗 (𝑡 − 1, 1/log𝑇 ) (102)

≤ 2𝜖𝑖, 𝑗 (𝑇warm-up, 1/log𝑇 ), (103)

being 𝜖𝑖, 𝑗 (𝑡, 1/log𝑇 ) a decreasing in 𝑡 . Recalling that 𝑁𝑖, 𝑗 (𝑇warm-up) ≥ 𝑁0, we have:

2𝜖𝑖, 𝑗 (𝑇warm-up, 1/log𝑇 ) = 2

√︄
2𝜎2 𝑓𝑇 (1/log𝑇 )
𝑁𝑖, 𝑗 (𝑇warm-up)

≤ 2

√︄
2𝜎2 𝑓𝑇 (1/log𝑇 )

𝑁0

= 2𝜖𝑇 . (104)

Thus, we conclude that the termination condition of the while loop never activates and, consequently, the recovery phase activates only

when E1 holds, i.e., with probability at most 1/log𝑇 .
In the recovery phase, our F-Track algorithm plays F-UCB that, from Corollary 4.3, is proved to suffer logarithmic regret of the form:

𝜌 (𝑇 ) B 4𝛼𝜎2 log𝑇
∑︁
𝑖∈J𝑑K

𝜇∗−𝑖
∑︁

𝑗∈J𝑘𝑖K\{𝑎∗𝑖 }
Δ−1𝑖, 𝑗 + 𝑔(𝛼)

∑︁
𝑖∈J𝑑K

𝑘𝑖 = O(log𝑇 ). (105)



Thus, we have that the cumulative regret of the recovery phase is bounded by:

E
𝝂
[𝑅recovery (𝑇 )] = E

𝝂
[𝑅recovery (𝑇 ) |E∁

1
] P(E∁

1
) + E

𝝂
[𝑅recovery (𝑇 ) |E1] P(E1) ≤ 0 + 𝜌 (𝑇 )

log𝑇
= O(1). (106)

Consequently, its contribution to the expected cumulative regret is asymptotically negligible. Indeed:

lim sup

𝑇→+∞

E𝝂 [𝑅recovery (𝑇 )]
log𝑇

= 0. (107)

Part 3: Regret in the Success Phase E𝝂 [𝑅success (𝑇 )] We conclude with the most challenging part consisting of bounding the regret in the

success phase. The cumulative regret in the success phase needs to be further decomposed as follows:

E
𝝂
[𝑅success (𝑇 )] = E

𝝂

[
1{E∁

1
}

∑︁
𝑡 ∈success

Δa(𝑡 )

]
+ E

𝝂

[
1{E1 ∧ E∁

2
}

∑︁
𝑡 ∈success

Δa(𝑡 )

]
+ E

𝝂

[
1{E2}

∑︁
𝑡 ∈success

Δa(𝑡 )

]
(108)

We analyze each term separately.

Part 3.1: Regret under E∁
1
In what follows, all estimated quantities are estimated with the samples available at the end of the warm-up

phase and, thus, we will omit the dependence on 𝑇warm-up. We show that asymptotically, during the success phase and under event E∁
1
, the

algorithm suffers the optimal regret. To this end, we need to introduce some auxiliary tools. For every 𝑖 ∈ J𝑑K, let us define a sorting function
as any bijective function 𝜋𝑖 : J𝑘𝑖K→ J𝑘𝑖K such that:

𝜇𝑖,𝜋𝑖 (1) ≤ · · · ≤ 𝜇𝑖,𝜋𝑖 (𝑘𝑖 ) . (109)

If all 𝜇𝑖, 𝑗 are different, the sorting function is unique. Furthermore, for every 𝑖 ∈ J𝑑K and 𝑗 ∈ J𝑘𝑖K \ {𝜋𝑖 (𝑘𝑖 )} (i.e., excluding the action

component with maximum expected reward), let us denote:

𝑁𝑖, 𝑗 =
2𝜎2 𝑓𝑇 (1/𝑇 )

Δ2

𝑖, 𝑗

, (110)

where Δ𝑖, 𝑗 = 𝜇𝑖,𝜋𝑖 (𝑘𝑖 ) −𝜇𝑖, 𝑗 . Let us notice that 𝑁𝑖, 𝑗 corresponds approximately to the minimum number of pulls of component (𝑖, 𝑗) prescribed
by the lower bound in Theorem 3.3 and denoted with 𝐿𝑖, 𝑗 =

2𝜎2
log𝑇

Δ2

𝑖,𝑗

. Given the definition of 𝑓𝑇 (1/𝑇 ), we have that 𝐿𝑖, 𝑗/𝑁𝑖, 𝑗 → 1 as𝑇 → +∞.
Given the sorting function, it is clear that also:

𝑁𝑖,𝜋𝑖 (1) ≤ · · · ≤ 𝑁𝑖,𝜋𝑖 (𝑘𝑖 ) . (111)

Let us define:

𝛽𝑖 B 𝑓𝑇 (1/𝑇 )−1 min

𝑙,𝑙 ′∈J𝑘𝑖K :𝑁𝑖,𝜋𝑖 (𝑙 )≠𝑁𝑖,𝜋𝑖 (𝑙 ′ )

��𝑁𝑖,𝜋𝑖 (𝑙 ) − 𝑁𝑖,𝜋𝑖 (𝑙 ′ ) �� . (112)

It is clear that if for every 𝑖 ∈ J𝑏K and 𝑗 ∈ J𝑘𝑖K we have we have |𝑁𝑖, 𝑗 −𝑁𝑖, 𝑗 | ≤ 𝛽𝑖 𝑓𝑇 (1/𝑇 )/4, then, for any sorting function 𝜋𝑖 of the estimated

quantities 𝑁 𝑖, 𝑗 , there exist a sorting function 𝜋𝑖 of the true quantities 𝑁𝑖, 𝑗 such that 𝜋𝑖 = 𝜋𝑖 .

Let us define for every 𝑖 ∈ J𝑑K and 𝑗 ∈ J𝑘𝑖K:

𝑀𝑖, 𝑗 B

𝑗∑︁
𝑙=1

𝑁𝑖,𝜋𝑖 (𝑙 ) . (113)

We define now a sorting function 𝜋 : J𝑘K→ ⋃
𝑖∈J𝑑K ({𝑖} × J𝑘𝑖K) as any bijection such that:

𝑀𝜋 (1) ≤ · · · ≤ 𝑀𝜋 (𝑘 ) , (114)

and convene (with a little abuse of notation) that𝑀𝜋 (0) = 0. It is clear that𝑀𝜋 (𝑘 ) = 𝑀𝜋 (𝑘−1) = · · · = 𝑀𝜋 (𝑘−𝑑+1) = 𝑇 . Let 𝑙 ∈ J𝑘K, we define
the active action as:

𝜶 (𝑙) B ( 𝑗1, . . . , 𝑗𝑑 ) where 𝑗𝑖 s.t. 𝜋 (𝑙 ′) = (𝑖, 𝑗𝑖 ) and 𝑙 ′ = min{𝑙 ′′ ≥ 𝑙 and 𝜋 (𝑙 ′′) = (𝑖, ·)} with 𝑖 ∈ J𝑑K. (115)

We can now rewrite the regret with this notation:∑︁
a≠a∗

𝑁aΔa =
𝑘−𝑑∑︁
𝑙=1

(
𝑀𝜋 (𝑙 ) −𝑀𝜋 (𝑙−1)

)
Δ𝜶 (𝑙 ) , (116)

having observed that for the 𝑘 − 𝑑 + 1 terms we play the optimal action and the successive ones are zero. Furthermore, given the relation

between 𝐿𝑖, 𝑗 and 𝑁𝑖, 𝑗 , we have that: ∑
a≠a∗ 𝑁a

𝑓𝑇 (1/𝑇 )
= 𝐶 and lim sup

𝑇→+∞

∑
a≠a∗ 𝑁a

log𝑇
= 𝐶. (117)



Let us now define:

𝛽 B 𝑓𝑇 (1/𝑇 )−1 min

𝑙,𝑙 ′∈J𝑘K :𝑀𝜋 (𝑙 )≠𝑀𝜋 (𝑙 ′ )

��𝑀𝜋 (𝑙 ) −𝑀𝜋 (𝑙 ′ ) �� . (118)

It is clear that if for every 𝑖 ∈ J𝑏K and 𝑗 ∈ J𝑘𝑖K we have |𝑀𝑖, 𝑗 −𝑀𝑖, 𝑗 | ≤ 𝛽 𝑓𝑇 (1/𝑇 )/4, for every sorting function 𝜋 of the estimated quantities

𝑀𝑖, 𝑗 , there exist a sorting function 𝜋 of the true quantities𝑀𝑖, 𝑗 such that 𝜋 = 𝜋 . If this is the case, then, the active action 𝜶 (𝑙) induced by 𝜋

must be the same as 𝜶 (𝑙) since the active action depends on the sorting function only.

We now show that we can always guarantee |𝑁𝑖, 𝑗 − 𝑁𝑖, 𝑗 | ≤ (𝛽𝑖 𝑓𝑇 (1/𝑇 ))/4 and |𝑀𝑖, 𝑗 −𝑀𝑖, 𝑗 | ≤ (𝛽 𝑓𝑇 (1/𝑇 ))/4 for sufficiently large 𝑇 . First of

all, let us ensure that we identify the optimal component for every 𝑖 ∈ J𝑑K. This is guaranteed whenever for every 𝑗 ∈ J𝑘𝑖K we have:���̂�𝑖, 𝑗 − 𝜇𝑖, 𝑗 �� ≤ 𝜖𝑖, 𝑗 (𝑇warm-up, 1/log𝑇 ) ≤ 𝜖𝑇 ≤ Δmin/4, (119)

where Δmin = min𝑖∈J𝑑K min𝑗∈J𝑘𝑖K\{𝜋𝑖 (𝑘𝑖 ) } 𝜇𝑖,𝜋𝑖 (𝑘𝑖 ) − 𝜇𝑖, 𝑗 . The inequality is satisfied for sufficiently large 𝑇 since:

𝜖𝑇 =

√√√
2𝜎2 𝑓𝑇 (1/log𝑇 )⌈√︁

log𝑇

⌉ = O
(√︄

𝜎2 log log𝑇√︁
log𝑇

)
→ 0 as 𝑇 → +∞. (120)

Under this condition, we have that 𝜋𝑖 (𝑘𝑖 ) = 𝜋𝑖 (𝑘𝑖 ) and, consequently:

Δ̂𝑖, 𝑗 = �̂�𝑖,𝜋 (𝑘𝑖 ) − �̂�𝑖, 𝑗 and Δ𝑖, 𝑗 = 𝜇𝑖,𝜋 (𝑘𝑖 ) − 𝜇𝑖, 𝑗 . (121)

Thus, under event E∁
1
, we have |Δ̂𝑖, 𝑗 − Δ𝑖, 𝑗 | ≤ 2𝜖𝑇 . Let us now consider 𝑖 ∈ J𝑘K and 𝑗 ∈ J𝑘𝑖K \ {𝜋𝑖 (𝑘𝑖 )}, we have:

���𝑁𝑖, 𝑗 − 𝑁𝑖, 𝑗 ��� =
������2𝜎2 𝑓𝑇 (1/𝑇 )Δ̂2

𝑖, 𝑗

− 2𝜎2 𝑓𝑇 (1/𝑇 )
Δ2

𝑖, 𝑗

������ (122)

= 2𝜎2 𝑓𝑇 (1/𝑇 )
(Δ𝑖, 𝑗 + Δ̂𝑖, 𝑗 ) |Δ𝑖, 𝑗 − Δ̂𝑖, 𝑗 |

Δ2

𝑖, 𝑗
Δ̂2

𝑖, 𝑗

(123)

≤ 8𝜎2 𝑓𝑇 (1/𝑇 )
(2Δmax + Δmin/2)

Δ4

min

𝜖𝑇 , (124)

where Δmax = max𝑖∈J𝑑K max𝑗, 𝑗 ′∈J𝑘𝑖K |𝜇𝑖, 𝑗 − 𝜇𝑖, 𝑗 ′ | and having observed that Δ̂𝑖, 𝑗 ≥ Δ𝑖, 𝑗 − 2𝜖𝑇 ≥ Δmin − Δmin/2 = Δmin/2 and Δ̂𝑖, 𝑗 ≤
Δ𝑖, 𝑗 + 2𝜖𝑇 ≤ Δmax + Δmin/2 = Δmin/2. Thus, the difference can go below 𝛽𝑖 𝑓𝑇 (1/𝑇 ) for sufficiently large 𝑇 . Let us now move to the 𝑀𝑖, 𝑗
variables. For sufficiently large 𝑇 such that the sorting function 𝜋𝑖 coincide with their estimated counterparts 𝜋𝑖 , we have that for 𝑖 ∈ J𝑑K
and 𝑗 ∈ J𝑘𝑖K:

���𝑀𝑖, 𝑗 −𝑀𝑖, 𝑗 ��� = ����� 𝑗∑︁
𝑙=1

𝑁𝑖,𝜋𝑖 (𝑙 ) −
𝑗∑︁
𝑙=1

𝑁𝑖,𝜋𝑖 (𝑙 )

����� (125)

≤
𝑗∑︁
𝑙=1

���𝑁 𝑖,𝜋𝑖 (𝑙 ) − 𝑁𝑖,𝜋𝑖 (𝑙 ) ��� (126)

≤ 8𝜎2 𝑗 𝑓𝑇 (1/𝑇 )
(2Δmax + Δmin/2)

Δ4

min

𝜖𝑇 . (127)

Similarly, as before, we can conclude that this difference can be made smaller than 𝛽 for sufficiently large 𝑇 , and, consequently, make the

estimated sorting function 𝜋 equal the true counterpart 𝜋 .



Under these conditions, we can bound the cumulative regret under E∁
1
:∑︁

𝑡 ∈success
Δa(𝑡 ) =

∑︁
a≠a∗

𝑁aΔa (128)

=

𝑘−𝑑∑︁
𝑙=1

(
𝑀𝜋 (𝑙 ) −𝑀𝜋 (𝑙−1)

)
Δ𝜶 (𝑙 ) (129)

=

𝑘−𝑑∑︁
𝑙=1

(
𝑀𝜋 (𝑙 ) −𝑀𝜋 (𝑙−1)

)
Δ𝜶 (𝑙 ) (130)

=

𝑘−𝑑∑︁
𝑙=1

(
𝑀𝜋 (𝑙 ) −𝑀𝜋 (𝑙 ) +𝑀𝜋 (𝑙−1) −𝑀𝜋 (𝑙−1)

)
Δ𝜶 (𝑙 ) +

𝑘−𝑑∑︁
𝑙=1

(
𝑀𝜋 (𝑙 ) −𝑀𝜋 (𝑙−1)

)
Δ𝜶 (𝑙 ) (131)

≤ 2Δmax

𝑘−𝑑∑︁
𝑙=1

���𝑀𝜋 (𝑙 ) −𝑀𝜋 (𝑙 ) ��� +𝐶𝑓𝑇 (1/𝑇 ) (132)

≤ 8𝜎2 (𝑘 − 𝑑) max

𝑖∈J𝑑K
𝑘𝑖 𝑓𝑇 (1/𝑇 )

(2Δmax + Δmin/2)
Δ4

min

𝜖𝑇 +𝐶𝑓𝑇 (1/𝑇 ) (133)

= O(𝜖𝑇 𝑓𝑇 (1/𝑇 )) +𝐶𝑓𝑇 (1/𝑇 ), (134)

where we used Equation 127. Thus, recalling that 𝜖𝑇 → 0 for 𝑇 → +∞, we have:

lim sup

𝑇→+∞

E
[
1{E∁

1
}∑𝑡 ∈success Δa(𝑡 )

]
log𝑇

= 𝐶. (135)

Consequently, its contribution to the asymptotic regret is exactly 𝐶 .

Part 3.2: Regret under E1 ∧ E∁
2
In this case, we have to prove that the regret remains logarithmic. We consider two cases:

Case 1 We perform the analysis in the first case under the following conditions:

∀𝑖 ∈ J𝑑K : 𝜋𝑖 (𝑘𝑖 ) = 𝜋𝑖 (𝑘𝑖 ) and ∀𝑗 ∈ J𝑘𝑖K \ {𝜋𝑖 (𝑘𝑖 )} : Δ̂𝑖, 𝑗 ≥ Δmin/4. (136)

In such a case, it is simple to show that the regret is at most logarithmic. Indeed, being the optimal arm correctly identified (𝜋𝑖 (𝑘𝑖 ) = 𝜋𝑖 (𝑘𝑖 ))
we have: ∑︁

a≠a∗
𝑁aΔa ≤ 2Δmax

𝑘−𝑑∑︁
𝑙=1

𝑀𝜋 (𝑙 ) (137)

≤ 2Δmax
∑︁
𝑖∈J𝑑K

∑︁
𝑗∈J𝑘𝑖K\{𝜋𝑖 (𝑘𝑖 ) }

𝑁𝑖,𝜋𝑖 ( 𝑗 ) (138)

≤ 4𝜎2 𝑓𝑇 (1/𝑇 )Δmax
∑︁
𝑖∈J𝑑K

∑︁
𝑗∈J𝑘𝑖K\{𝜋𝑖 (𝑘𝑖 ) }

Δ̂−2
𝑖,𝜋𝑖 ( 𝑗 ) (139)

≤ 64𝑘𝜎2 𝑓𝑇 (1/𝑇 )ΔmaxΔ
−2
min

= O(log𝑇 ), (140)

wherewe observed that since the optimal arm is correctly identified, the following inequality holds:

∑𝑘−𝑑
𝑙=1

𝑀𝜋 (𝑙 ) ≤
∑
𝑖∈J𝑑K

∑
𝑗∈J𝑘𝑖K\{𝜋𝑖 (𝑘𝑖 ) } 𝑁𝑖,𝜋𝑖 ( 𝑗 ) .

Case 2 If the condition in Equation (136) is violated, we show that the success phase stops after a logarithmic number of rounds. Consider

the smallest round 𝑡𝑖, 𝑗 in which for a given 𝑖 ∈ J𝑘K and 𝑗 ∈ J𝑘𝑖K \ {𝜋𝑖 (𝑘𝑖 )}, it holds that:

𝑁𝑖, 𝑗 (𝑡𝑖, 𝑗 ) ≥ min

 2𝜎2 𝑓𝑇 (1/𝑇 )
Δ̂2

𝑖, 𝑗

,
128𝜎2 𝑓𝑇 (1/𝑇 )

Δ2

min

 . (141)

Since the F-Track algorithm in the success phase proceeds with the round robin of at most 𝑘 arms, we have that:

𝑡𝑖, 𝑗 ≤ 𝑘 min

 2𝜎2 𝑓𝑇 (1/𝑇 )
Δ̂2

𝑖, 𝑗

,
128𝜎2 𝑓𝑇 (1/𝑇 )

Δ2

min

 ≤ 128𝑘𝜎2 𝑓𝑇 (1/𝑇 )
Δ2

min

C 𝑡∗ = O(log𝑇 ). (142)

Now, we consider two sub-cases.

Case 2.1 In the first sub-case, we deal with the case in which some optimal components are not correctly identified:

∃𝑖 ∈ J𝑑K : 𝜋𝑖 (𝑘𝑖 ) ≠ 𝜋𝑖 (𝑘𝑖 ) (143)



In such a case, at most at round 𝑡∗, we have that:

�̂�𝑖,𝜋𝑖 (𝑘𝑖 ) (𝑡) ≥ 𝜇𝑖,𝜋𝑖 (𝑘𝑖 ) (𝑡) −
√︄

2𝜎2 𝑓𝑇 (1/𝑇 )
𝑁𝑖,𝜋𝑖 (𝑘𝑖 ) (𝑡)

(144)

≥ 𝜇𝑖,𝜋𝑖 (𝑘𝑖 ) (𝑡) −max

{
Δ̂𝑖,𝜋𝑖 (𝑘𝑖 ) ,Δmin/8

}
(145)

≥ 𝜇𝑖,𝜋𝑖 (𝑘𝑖 ) (𝑡) − Δ̂𝑖,𝜋𝑖 (𝑘𝑖 ) − Δmin/8 (146)

≥ 𝜇𝑖,𝜋𝑖 (𝑘𝑖 ) (𝑡) + Δ𝑖,𝜋𝑖 (𝑘𝑖 ) − Δmin/8 − Δ̂𝑖,𝜋𝑖 (𝑘𝑖 ) (147)

≥ �̂�𝑖,𝜋𝑖 (𝑘𝑖 ) (𝑡) −
√︄

2𝜎2 𝑓𝑇 (1/𝑇 )
𝑁𝑖,𝜋𝑖 (𝑘𝑖 ) (𝑡)

+ Δ𝑖,𝜋𝑖 (𝑘𝑖 ) − Δmin/8 − Δ̂𝑖,𝜋𝑖 (𝑘𝑖 ) (148)

≥ �̂�𝑖,𝜋𝑖 (𝑘𝑖 ) (𝑡) −max{0,Δmin/8} + Δ𝑖,𝜋𝑖 (𝑘𝑖 ) − Δmin/8 − Δ̂𝑖,𝜋𝑖 (𝑘𝑖 ) (149)

≥ �̂�𝑖,𝜋𝑖 (𝑘𝑖 ) (𝑡) − 3/4Δmin + �̂�𝑖,𝜋𝑖 (𝑘𝑖 ) (𝑇warm-up) − �̂�𝑖,𝜋𝑖 (𝑘𝑖 ) (𝑇warm-up). (150)

where line (144) follows from the fact that event E2 does not hold, line (145) follows from Equation (141) with 𝑗 = 𝜋𝑖 (𝑘𝑖 ), line (146) is

obtained with max𝑎, 𝑏 ≤ 𝑎 + 𝑏 for 𝑎, 𝑏 ≥ 0, line (147) is obtained from the definition of Δ𝑖,𝜋𝑖 (𝑘𝑖 ) , line (148) follows from the fact that event

E2 does not hold, line (149) follows from Equation (141) with 𝑗 = 𝜋𝑖 (𝑘𝑖 ) (whose estimated Δ̂𝑖,𝜋𝑖 (𝑘𝑖 ) = 0, and line (150) is obtained from the

definition of Δ̂𝑖,𝜋𝑖 (𝑘𝑖 ) and from Δ𝑖,𝜋𝑖 (𝑘𝑖 ) ≥ Δmin.

This implies that at this round:

�̂�𝑖,𝜋𝑖 (𝑘𝑖 ) (𝑡) − �̂�𝑖,𝜋𝑖 (𝑘𝑖 ) (𝑇warm-up) + �̂�𝑖,𝜋𝑖 (𝑘𝑖 ) (𝑇warm-up) − �̂�𝑖,𝜋𝑖 (𝑘𝑖 ) (𝑡) ≥ 3/4Δmin ≥ 4𝜖𝑇 , (151)

where the latter holds for sufficiently large 𝑇 . Thus, we have that the success phase stops after at most 𝑡∗ rounds, leading to a regret of:∑︁
𝑡 ∈success

Δa(𝑡 ) ≤ Δmax
32𝑘𝜎2 𝑓𝑇 (1/𝑇 )

Δ2

min

= O(log𝑇 ) . (152)

Case 2.2 In the first sub-case, we deal with the case holding under the condition:

∀𝑖 ∈ J𝑑K : 𝜋𝑖 (𝑘𝑖 ) = 𝜋𝑖 (𝑘𝑖 ) and ∃𝑖 ∈ J𝑑K : ∃ 𝑗 ∈ J𝑘𝑖K \ {𝜋𝑖 (𝑘𝑖 )} : Δ̂𝑖, 𝑗 < Δmin/4 (153)

At round 𝑡∗, for the (𝑖, 𝑗) fulfilling the second part of the condition:

�̂�𝑖,𝜋𝑖 (𝑘𝑖 ) (𝑡)−�̂�𝑖,𝜋𝑖 (𝑘𝑖 ) (𝑇warm-up) + �̂�𝑖, 𝑗 (𝑇warm-up) − �̂�𝑖, 𝑗 (𝑡) (154)

≥ �̂�𝑖,𝜋𝑖 (𝑘𝑖 ) (𝑡) − �̂�𝑖, 𝑗 (𝑡) − Δ̂𝑖, 𝑗 (155)

≥ 𝜇𝑖,𝜋𝑖 (𝑘𝑖 ) (𝑡) −
√︄

2𝜎2 𝑓𝑇 (1/𝑇 )
𝑁𝑖,𝜋𝑖 (𝑘𝑖 ) (𝑡)

− 𝜇𝑖, 𝑗 (𝑡) −

√︄
2𝜎2 𝑓𝑇 (1/𝑇 )
𝑁𝑖, 𝑗 (𝑡)

− Δ̂𝑖, 𝑗 (156)

≥ −max{0,Δmin/8} −max{Δ̂𝑖, 𝑗 ,Δmin/8} + Δ𝑖, 𝑗 − Δ̂𝑖, 𝑗 (157)

≥ Δmin/4, (158)

having exploited Δ̂𝑖, 𝑗 ≤ Δmin/4 and Δ𝑖, 𝑗 ≥ Δmin. Thus, for sufficiently large 𝑇 , we have that 4𝜖𝑇 ≤ Δmin/4 and, consequently, the success
phase ends.

Part 3.3: Regret under E2 We conclude by bounding the regret under event E2, In this case, we proceed with the following trivial bound,

recalling that Pr(E2) ≤ 1/𝑇 .

E

[
1{E2}

∑︁
𝑡 ∈success

Δa(𝑡 )

]
≤ Δmax𝑇 P(E2) ≤ Δmax = O(1) . (159)

Consequently, its contribution to the asymptotic regret is negligible. □

C.2 Technical Lemmas
Lemma C.1. Let 𝑇 ∈ N, 𝜖 > 0. Let 𝑋1, . . . , 𝑋𝑇 be a martingale difference sequence adapted to the filtration F0, F1, . . . , such that for every
𝑡 ∈ J𝑇 K, it holds that E[𝑒𝜆𝑋𝑡 ] ≤ 𝑒 (𝜎2𝜆2 )/2 a.s. for every 𝜆 ∈ R. Then, for every 𝛿 ∈ (0, 1) it holds that:

P
©­«∃𝑡 ∈ J𝑇 K :

𝑡∑︁
𝑠=1

𝑋𝑠 ≥

√︄
2

(
1 + (log𝑇 )−1

)
max

{
𝜖, 𝑡𝜎2

} (
log

(
1 +

⌈
log(𝑇𝜎2/𝜖)

log(1 + (log𝑇 )−1)

⌉)
+ log

(
1

𝛿

))ª®¬ ≤ 𝛿. (160)



Furthermore, for sufficiently large 𝑇 , it holds that:

P

(
∃𝑡 ∈ J𝑇 K :

𝑡∑︁
𝑠=1

𝑋𝑠 ≥
√︃
2𝜎2𝑡 𝑓𝑇 (𝛿)

)
≤ 𝛿, (161)

where:

𝑓𝑇 (𝛿) B
(
1 + 1

log𝑇

) (
𝑐 log log𝑇 + log

(
1

𝛿

))
, (162)

and 𝑐 > 0 is a universal constant.

Proof. The first statement is obtained from Lemma 14 of (Lattimore and Szepesvari, 2017) considering that the inequality employed in

Equation (19) of that proof applies for 𝜎2-subgaussian random variables and not for Gaussian variables only. The second statement is obtained

by setting 𝜖 = 𝜎2 and bounding
1

log(1+(log𝑇 )−1 ) ≤ log𝑇 and log(1 + ⌈(log𝑇 )2⌉) ≤ 𝑐 log log𝑇 for some universal constant 𝑐 (≈ 2). □

Lemma C.2. Let 𝑥 ∈ [0, 1), 𝑑 ∈ N, then if 𝑥𝑖 ∈ [0, 𝑥) ,∀𝑖 ∈ J𝑑K, it holds:

1 −
∏
𝑖∈J𝑑K

(1 − 𝑥𝑖 ) ≥ (1 − 𝑥)𝑑−1
∑︁
𝑖∈J𝑑K

𝑥𝑖 .

Proof. We prove this statement by induction.

First, we can observe how for 𝑑 = 1 this result trivially holds:

1 − (1 − 𝑥1) = 𝑥1 .

We can now make the inductive step on 𝑑 :

1 −
∏
𝑖∈J𝑑K

(1 − 𝑥𝑖 ) = 1 − (1 − 𝑥𝑑 )
∏

𝑖∈J𝑑−1K
(1 − 𝑥𝑖 )

= 1 − (1 − 𝑥𝑑 )
∏

𝑖∈J𝑑−1K
(1 − 𝑥𝑖 ) ± 𝑥𝑑

= (1 − 𝑥𝑑 )
©­«1 −

∏
𝑖∈J𝑑−1K

(1 − 𝑥𝑖 )
ª®¬ + 𝑥𝑑 (163)

≥ (1 − 𝑥𝑑 )
©­«(1 − 𝑥)𝑑−2

∑︁
𝑖∈J𝑑−1K

𝑥𝑖
ª®¬ + 𝑥𝑑

≥ (1 − 𝑥)𝑑−1
∑︁
𝑖∈J𝑑K

𝑥𝑖 ,

where line (163) is the inductive step on 𝑑 . □

Lemma C.3. In a FRB, considering 𝜇a∗ = 1, if Δ𝑖, 𝑗 ≤ Δ = 1 − 1

2
1/(𝑑−1) ,∀𝑖 ∈ J𝑑K, 𝑗 ∈ J𝑘𝑖K, the regret can be bounded as:

𝑅𝑇 (𝔄,𝝂) =
∑︁
𝑡 ∈J𝑇 K

©­«1 −
∏
𝑖∈J𝑑K

(
1 − Δ𝑖,𝑎𝑖 (𝑡 )

)ª®¬ ≥ 1

2

∑︁
𝑡 ∈J𝑇 K

∑︁
𝑖∈J𝑑K

Δ𝑖,𝑎𝑖 (𝑡 ) .

Proof. We prove this statement by looking at a single time 𝑡 . We can rewrite Lemma C.2 as:

1 −
∏
𝑖∈J𝑑K

(1 − Δ𝑖,𝑎𝑖 (𝑡 ) ) ≥ (1 − Δ)
𝑑−1

∑︁
𝑖∈J𝑑K

Δ𝑖,𝑎𝑖 (𝑡 ) ,

if Δ𝑖, 𝑗 ≤ Δ ∈ [0, 1), ∀𝑖 ∈ J𝑑K, 𝑗 ∈ J𝑘𝑖K.
We make a choice we want to transform this result in order to have:

1 −
∏
𝑖∈J𝑑K

(1 − Δ𝑖,𝑎𝑖 (𝑡 ) ) ≥
1

2

∑︁
𝑖∈J𝑑K

Δ𝑖,𝑎𝑖 (𝑡 ) .



This can be done by imposing:

1

2

≤ (1 − Δ)𝑑−1

1

2
1/(𝑑−1) ≤ (1 − Δ)

Δ ≤ 1 − 1

2
1/(𝑑−1) .

□

Lemma C.4 (Wang et al. 2021). Suppose𝑚, 𝐵 are positive integers and𝑚 ≥ 2; there are𝑚 + 1 probability distributions P0, P1, . . . P𝑚 , and
𝑚 random variables 𝑁1, . . . , 𝑁𝑚 , such that: (𝑖) Under any of the 𝑃𝑖 ’s, 𝑁1, . . . , 𝑁𝑚 are non-negative and

∑
𝑖∈J𝑚K 𝑁𝑖 ≤ 𝐵 with probability 1; (𝑖𝑖)

∀𝑖 ∈ J𝑚K, 𝑑TV ≤ 1

4

√︃
𝑚
𝐵
E0 [𝑁𝑖 ]. Then:

1

𝑚

∑︁
𝑖∈J𝑚K

E𝑖 [𝐵 − 𝑁𝑖 ] ≥
𝐵

4

.

Proof. For the proof of this Lemma, we refer the reader to Lemma 24 of (Wang et al., 2021). □

D ADDITIONAL THEOREMS AND LEMMAS
In this section, we provide additional Theorems and Lemmas useful in the discussion of the work.

Lemma D.1. The product 𝑋1𝑋2 · · ·𝑋𝑛 of 𝑛 ≥ 3 independent 𝜎2-subgaussian random variables is not subgaussian.

Proof. The proof follows the one proposed by (Pinelis, 2021).

The proof of this statement can be done by verifying that the moment-generating function of the product of 𝑛 independent Gaussian

distributions with unit variance (𝑋𝑖 ∼ N(0, 1), ∀𝑖 ∈ J𝑛K) is unbounded:

E

exp ©­«𝑐
∏
𝑖∈J𝑛K

𝑋𝑖
ª®¬
 = ∞, ∀𝑐 > 0.

Let us call 𝑋 the vector composed of our random variables 𝑋 B (𝑋1, 𝑋2, . . . , 𝑋𝑛) and let (𝑈1,𝑈2, . . .𝑈𝑛) be a uniformly distributed unit

random vector. For some real 𝐶𝑛 > 0:

E

exp ©­«𝑐
∏
𝑖∈J𝑛K

𝑋𝑖
ª®¬
 ≥ E

exp ©­«𝑐
∏
𝑖∈J𝑛K

𝑋𝑖
ª®¬1

{
𝑋𝑖 >

| |𝑋 | |2
2

√
𝑛
,∀𝑖 ∈ J𝑛K

} (164)

= 𝐶𝑛

∫ ∞

0

exp

©­­­­­­«
𝑐

1

(2
√
𝑛)𝑛

𝑟𝑛︸      ︷︷      ︸
(A)

ª®®®®®®¬
𝑟𝑛−1 exp

(
−𝑟

2

2

)
︸              ︷︷              ︸

(B)

d𝑟 · P
(
𝑈𝑖 >

1

2

√
𝑛
,∀𝑖 ∈ J𝑛K

)
︸                        ︷︷                        ︸

(C)

(165)

= 𝐶𝑛
(2
√
𝑛)𝑛
𝑐𝑛

∫ ∞

0

exp

(
𝑐

1

(2
√
𝑛)𝑛

𝑟𝑛
)

𝑐𝑛

(2
√
𝑛)𝑛

𝑟𝑛−1︸                                   ︷︷                                   ︸
𝑔′ (𝑟 )

exp

(
−𝑟

2

2

)
︸       ︷︷       ︸

𝑓 (𝑟 )

d𝑟 · P
(
𝑈𝑖 >

1

2

√
𝑛
,∀𝑖 ∈ J𝑛K

)

= 𝐶𝑛
(2
√
𝑛)𝑛
𝑐𝑛

©­­­­­­«
[
exp

(
𝑐

1

(2
√
𝑛)𝑛

𝑟𝑛
)
exp

(
−𝑟

2

2

)]∞
0

+
∫ ∞

0

exp

©­­­­­­«
𝑐

1

(2
√
𝑛)𝑛

𝑟𝑛︸        ︷︷        ︸
(𝐷 )

−𝑟
2

2

ª®®®®®®¬
𝑟 d𝑟

ª®®®®®®¬
· P

(
𝑈𝑖 >

1

2

√
𝑛
,∀𝑖 ∈ J𝑛K

)
(166)

≥ 𝐶𝑛
(2
√
𝑛)𝑛
𝑐𝑛

(
[∞ − 0] +

∫ ∞

0

exp

(
−𝑟

2

2

)
𝑟 d𝑟

)
· P

(
𝑈𝑖 >

1

2

√
𝑛
,∀𝑖 ∈ J𝑛K

)
(167)

= 𝐶𝑛
(2
√
𝑛)𝑛
𝑐𝑛

(
[∞ − 0] −

[
exp

(
−𝑟

2

2

)]∞
0

)
· P

(
𝑈𝑖 >

1

2

√
𝑛
,∀𝑖 ∈ J𝑛K

)
𝐶𝑛>0
𝑛≥3
𝑐>0
= ∞.



The inequality in Equation (164) follows from the fact that the event inside the indicator function happenswith a probability ≤ 1. Equation (165)

is a rewriting of the previous line under the assumption that the indicator function evaluates to 1. We can rewrite the expected value as an

integral over the positive real numbers since, according to the indicator function, every random variable 𝑋𝑖 must be greater than
| |𝑋 | |2
2

√
𝑛
,

which is a positive quantity.

Term (A) is a substitution of

∏
𝑖∈J𝑛K 𝑋𝑖 with

𝑟

2

√
𝑛
repeated 𝑛 times, which comes from the indicator function. 𝑟 is the integration variable and

represents the Euclidean norm of vector 𝑋 .

Term (B) represents the probability density of the Euclidean norm of a Gaussian vector 𝑋 ∼ N(0, I𝑛).
Finally, term (C) represents the probability of the indicator function evaluating to 1. Considering the vector 𝑌 whose elements are 𝑌𝑖 =

𝑋𝑖/| |𝑋 | |2, then | |𝑌 | |2 = 1. The probability that 𝑌𝑖 >
1

2

√
𝑛
,∀𝑖 ∈ J𝑛K can be thought of as the probability that the point defined by 𝑌 in the

𝑛-dimensional space is located on the surface of the 𝑛-dimensional hyper-sphere of radius 1 in the region induced by the condition 𝑌𝑖 >
1

2

√
𝑛
.

Equation (166) is an integration by parts of the two functions 𝑓 (𝑟 ) and 𝑔′ (𝑟 ) identified in the line above.

Equation (167) holds under the assumption that 𝑛 ≥ 3 and 𝑐 > 0. First, the term:

[
exp

(
𝑐

1

(2
√
𝑛)𝑛

𝑟𝑛
)
exp

(
−𝑟

2

2

)]∞
0

𝑛≥3
𝑐>0
= ∞− 0

under such an assumption. Second, we can write:

exp

(
𝑐

1

(2
√
𝑛)𝑛

𝑟𝑛 − 𝑟
2

2

)
≥ exp

(
−𝑟

2

2

)
⇒

∫ ∞

0

exp

(
𝑐

1

(2
√
𝑛)𝑛

𝑟𝑛 − 𝑟
2

2

)
d𝑟 ≥

∫ ∞

0

exp

(
−𝑟

2

2

)
d𝑟

The final result then holds under the further assumption that 𝐶𝑛 > 0. □

Lemma D.2 (Variance of the product of independent random variables). Let 𝑋1, 𝑋2, . . . 𝑋𝑛 independent random variables. The variance of
their product is:

Var[𝑋1𝑋2 · · ·𝑋𝑛] =
∏
𝑖∈J𝑛K

(
Var[𝑋𝑖 ] + (E[𝑋𝑖 ])2

)
−

∏
𝑖∈J𝑛K

(E[𝑋𝑖 ])2

Proof.

Var[𝑋1𝑋2 · · ·𝑋𝑛] = E[(𝑋1𝑋2 · · ·𝑋𝑛)2] − (E[𝑋1𝑋2 · · ·𝑋𝑛])2

= E[𝑋 2

1
𝑋 2

2
· · ·𝑋 2

𝑛] − (E[𝑋1])2 (E[𝑋2])2 · · · (E[𝑋𝑛])2

= E[𝑋 2

1
] E[𝑋 2

2
] · · ·E[𝑋 2

𝑛] − (E[𝑋1])2 (E[𝑋2])2 · · · (E[𝑋𝑛])2

=
∏
𝑖∈J𝑛K

(
Var[𝑋𝑖 ] + (E[𝑋𝑖 ])2

)
−

∏
𝑖∈J𝑛K

(E[𝑋𝑖 ])2

□

Lemma D.3. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 independent subgaussian random variables with expected value 𝜇𝑖 ∈ [0, 1] and subgaussianity parameter
𝜎𝑖 ∈ [0, +∞). The variance of the product 𝑋1𝑋2 · · ·𝑋𝑛 is bounded by:∏

𝑖∈J𝑑K

𝜎2𝑖 ≤ Var[𝑋1𝑋2 · · ·𝑋𝑛] ≤
∏
𝑖∈J𝑛K

(
1 + 𝜎2𝑖

)
− 1

Proof. Now, we want to find the worst combination of 𝜇𝑖 , 𝑖 ∈ J𝑛K, i.e., the combination of expected values which maximizes the variance of

the product of such random variables. To do so, we can consider a single 𝑖 ∈ J𝑛K, and look at the behavior of the first derivative when we



change 𝜇
𝑖
∈ [0, 1]. We recall from Lemma D.2 that:

Var[𝑋1𝑋2 · · ·𝑋𝑛] =
∏
𝑖∈J𝑛K

(
Var[𝑋𝑖 ] + (E[𝑋𝑖 ])2

)
−

∏
𝑖∈J𝑛K

(E[𝑋𝑖 ])2

=
∏
𝑖∈J𝑛K

(
𝜎2𝑖 + 𝜇

2

𝑖

)
−

∏
𝑖∈J𝑛K

𝜇2𝑖

=

(
𝜎2
𝑖
+ 𝜇2

𝑖

) ∏
𝑖∈J𝑛K\{𝑖 }

(
𝜎2𝑖 + 𝜇

2

𝑖

)
− 𝜇2

𝑖

∏
𝑖∈J𝑛K\{𝑖 }

𝜇2𝑖 , (168)

= 𝜇2
𝑖

∏
𝑖∈J𝑛K\{𝑖 }

(
𝜎2𝑖 + 𝜇

2

𝑖

)
− 𝜇2

𝑖

∏
𝑖∈J𝑛K\{𝑖 }

𝜇2𝑖 + 𝜎
2

𝑖

∏
𝑖∈J𝑛K\{𝑖 }

(
𝜎2𝑖 + 𝜇

2

𝑖

)
(169)

= 𝜇2
𝑖

©­­­­­­­«
∏

𝑖∈J𝑛K\{𝑖 }

(
𝜎2𝑖 + 𝜇

2

𝑖

)
︸                  ︷︷                  ︸

A

−
∏

𝑖∈J𝑛K\{𝑖 }
𝜇2𝑖︸        ︷︷        ︸

B

ª®®®®®®®¬
+ 𝜎2

𝑖

∏
𝑖∈J𝑛K\{𝑖 }

(
𝜎2𝑖 + 𝜇

2

𝑖

)
︸                      ︷︷                      ︸

C

(170)

where lines (168), (169) and (170) are no other than an algebraic step to make explicit in the product the dependence on 𝜇
𝑖
. Now we want to

look at the worst case scenario for the variance, i.e., the value of 𝜇
𝑖
that maximize it.

Recalling the constraints on 𝜇𝑖 which is assumed to be bounded in [0, 1] and 𝜎2
𝑖
that is defined over [0, +∞], it trivial to see that term A is

predominant over term B and so the worst case for element 𝑖 is to consider 𝜇
𝑖
= 1, no matter the other values of 𝜇𝑖 , 𝑖 ∈ J𝑛K \ {𝑖}. The term C

is not relevant as 𝜇
𝑖
does not appear. This reasoning applies for all the possible values of 𝑖 ∈ J𝑛K, and so the worst case variance is when all

the 𝜇𝑖 are equal to 1, for all the components 𝑖 ∈ J𝑛K.
Given that, the variance of the product of independent random variables with expected values in 𝜇𝑖 ∈ [0, 1] and variance 𝜎2

𝑖
can be bounded

as:

Var[𝑋1𝑋2 · · ·𝑋𝑛] ≤
∏
𝑖∈J𝑛K

(
1 + 𝜎2𝑖

)
− 1.

A symmetric reasoning leads to the lower bound.

This concludes the proof. □

E NUMERICAL VALIDATION
In this appendix, we provide numerical simulations aiming to prove the effectiveness of F-UCB against bandit baselines. The code of the
experiments can be found at https://github.com/marcomussi/FRB.

Baselines. The first baseline we consider is UCB1 (Auer et al., 2002), which is designed for stochastic bandits. We consider the anytime version

of the algorithm, proposed by Bubeck (2010). Due to its characteristics, we expect it to perform in a comparable manner to F-UCB for 𝑑 = 1,

with its performance degrading as the dimensionality grows. As an additional baseline, we consider a robust version of UCB algorithm

designed for heavy-tail (HT) distributions (Bubeck et al., 2013) considering the Median of Means estimator (RUCB-MoM). Due to the capability

of this algorithm to handle non-subgaussian noise, we expect it to converge for any problem dimensionality, although at a slower rate.

Finally, we consider the TEA algorithm, proposed by Zimmert and Seldin (2018). Since this algorithm provides theoretical guarantees for

handling only subgaussian noise applied to the reward, we expect it to have a performance that degrades when 𝑑 > 1. For all the baselines,

we consider the values of the hyperparameters as prescribed in the respective original papers.

Setting. For the sake of simplicity in the presentation of the results, we consider the scenario in which all the problem dimensions present

the same number of actions (i.e., 𝑘1 = · · · = 𝑘𝑑 C 𝑘). Moreover, we consider the setting in which the intermediate observations are

drawn from Gaussian distributions with mean 𝜇𝑖,𝑎𝑖 (𝑡 ) for every action component 𝑎𝑖 (𝑡) in position 𝑖 of the action vector a, formally

𝑥𝑖 (𝑡) ∼ N (𝜇𝑖,𝑎𝑖 (𝑡 ) , 𝜎2), ∀𝑖 ∈ J𝑑K. We consider values of 𝑘 ∈ J3, 5K, and values of 𝑑 ∈ J4K. We draw the expected values 𝜇𝑖, 𝑗 for 𝑖 ∈ J𝑑K
and 𝑗 ∈ J𝑘K from a uniform distribution in the range [0.7, 1]. We fix a value of 𝜎 = 0.1. It is worth noting that the results in the following

paragraph are not comparable among the different 𝑘 and 𝑑 , mostly for what concerns the comparison between different values of 𝑑 . We

evaluate the performances in terms of cumulative regret with 𝑇 = 10
4
, averaged over 50 trials.

Results. In Figure 3, we present the cumulative regret for the F-UCB algorithm and the other bandit baselines.
12

The value of 𝑘 increases with

the columns, and the value of 𝑑 increases with the rows of the figure. The following comments are valid for all the considered values of 𝑘 ,

as no unexpected or relevant behaviors are present when we increase the number of actions for each action component. We observe that

12
We do not consider F-Track for the numerical validation since we believe it is unfair to compare it with algorithms endowed with finite time guarantees.

https://github.com/marcomussi/FRB


for 𝑑 = 1, F-UCB achieves a cumulative regret that matches that of UCB1. This is expected, as F-UCB collapses to UCB1 for 𝑑 = 1. RUCB-MoM
achieves a sublinear regret, although higher than the previous algorithms, whereas TEA suffers a cumulative regret that is linear in the

considered time horizon. The behavior changes for 𝑑 = 2. F-UCB achieves a low cumulative regret. The cumulative regret of UCB1, instead,
constantly increases over the time horizon. RUCB-MoM continues to achieve a sublinear regret, however it is higher, due to the increased

cardinality of the equivalent action space and the incremented effect of the noise. The behavior of TEA remains the same as for 𝑑 = 1. For

𝑑 ≥ 3, we observe a stabilization of the behavior. F-UCB manages to achieve a cumulative regret that scales well as 𝑑 and 𝑘 increase. UCB1
now suffers a linear regret, RUCB-MoM a sublinear regret worse with the increase of 𝑑 , and TEA behaves as in the previous cases.
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(a) 𝑑 = 1, 𝑘 = 3.

0 0.2 0.4 0.6 0.8 1
¨104

0

500

1,000

1,500

2,000

Rounds

C
u
m
u
la
ti
ve

R
eg
re
t F-UCB

UCB1

RUCB-MoM

TEA

(b) 𝑑 = 1, 𝑘 = 4.
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(c) 𝑑 = 1, 𝑘 = 5.
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(d) 𝑑 = 2, 𝑘 = 3.
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(e) 𝑑 = 2, 𝑘 = 4.
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(f) 𝑑 = 2, 𝑘 = 5.
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(g) 𝑑 = 3, 𝑘 = 3.
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(h) 𝑑 = 3, 𝑘 = 4.
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(i) 𝑑 = 3, 𝑘 = 5.
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(j) 𝑑 = 4, 𝑘 = 3.
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(k) 𝑑 = 4, 𝑘 = 4.
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(l) 𝑑 = 4, 𝑘 = 5.

Figure 3: Performance of F-UCB, UCB1, RUCB-MoM and TEA considering 𝑘 ∈ J3, 5K and 𝑑 ∈ J4K (50 runs, mean ± std).
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