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Abstract

Learning object-level, structured representations is widely regarded as a key to bet-
ter generalization in vision and underpins the design of next-generation Pre-trained
Vision Models (PVMs). Mainstream Object-Centric Learning (OCL) methods
adopt Slot Attention or its variants to iteratively aggregate objects’ super-pixels
into a fixed set of query feature vectors, termed slots. However, their reliance on
a static slot count leads to an object being represented as multiple parts when the
number of objects varies. We introduce MetaSlot, a plug-and-play Slot Attention
variant that adapts to variable object counts. MetaSlot (i) maintains a codebook that
holds prototypes of objects in a dataset by vector-quantizing the resulting slot rep-
resentations; (ii) removes duplicate slots from the traditionally aggregated slots by
quantizing them with the codebook; and (iii) injects progressively weaker noise into
the Slot Attention iterations to accelerate and stabilize the aggregation. MetaSlot is
a general Slot Attention variant that can be seamlessly integrated into existing OCL
architectures. Across multiple public datasets and tasks—including object discovery
and recognition—models equipped with MetaSlot achieve significant performance
gains and markedly interpretable slot representations, compared with existing Slot
Attention variants. The code is available at https://github.com/lhj-1hj/MetaSlot.

1 Introduction

Human intelligence is rooted in limited perceptual experience—especially visual information—which
enables it to demonstrate outstanding transfer and generalization abilities in entirely new task scenarios
[} 2]]. In recent years, major breakthroughs in embodied intelligence have further underscored the
inevitable trend of artificial intelligence moving into the physical world [3H5]. However, the key
challenge in achieving high-level cognitive reasoning [6} [7] and compositional generalization [8} 9]
lies in transforming visual inputs into structured, discrete, and independent object-level representations
[LOH12], thereby granting agents a deep understanding of physical objects and their dynamic relations
(13 [14].

Object-Centric Learning (OCL) has rapidly developed against this backdrop. Its goal is to extract
object-level structured representations in an unsupervised manner, rather than relying on attribute-
level features or global scene features. Among numerous methods [15H20], Slot Attention (SA) [11]
is currently the most influential and widely adopted. Through a competition mechanism among slots,
it iteratively clusters distributed scene representations into several object-oriented feature vectors,
named slots; each slot can then be decoded separately [11, 21]], or all slots can be decoded jointly
in an autoregressive fashion [22} 23] to produce semantically consistent segmentation masks. This
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strategy not only efficiently captures object-level information but also lays a solid foundation for
subsequent physical reasoning and relational modeling [24-26]].

Nevertheless, classic Slot Attention [[L1]] still suffers from two key limitations: (1) the number of
slots must be preset as a fixed hyper-parameter; (2) slot initialization relies on random sampling. The
former conflicts with the dynamic variability of object counts in real visual scenes, easily leading
to under-segmentation or over-segmentation and harming the identifiability of the representations
[27, 28]]; the latter often results in object-centric representations that lack a clear correspondence
with true object concepts [29]. Overall, a fixed slot count and random initialization are equivalent
to imposing inappropriate prior assumptions on the latent space, making the model more prone to
sub-optimal solutions and limiting its generalization capability.

Vector quantization (VQ) [30] offers a viable pathway: It has recently shown great value in generative
modeling by enabling models to extract and reuse semantic structural patterns [31-33]]. Inspired by
this insight, we incorporate a VQ codebook that supplies globally shared object prototypes, guiding
slot initialization structurally; meanwhile, we prune duplicate slots to provide explicit semantic cues
about "objects" from the very start of the aggregation process. In particular, this idea of "object
prototypes" echoes Plato’s "world of forms" [34]: every concrete object in the perceptual world
is a projection of some eternal and perfect ideal form. Analogously, we regard each prototype
vector in the VQ codebook as an idealized object concept, whereas the input features are concrete
mappings of these forms. Based on this intuition, we propose MetaSlot, a novel object-centric
learning framework that employs a unified prior of global prototype slots and a dynamically adaptive
two-stage aggregation method to flexibly match the slot count to the objects present in a scene.
Specifically, our study introduces two important technical innovations:

Dynamic slot allocation. To address the above limitations, we design the MetaSlot framework to
adaptively adjust the number of slots through two-stage aggregation. First, to match input features
with the prototype codebook, we perform initial aggregation using Slot Attention in first stage. The
resulting slot vectors are then matched to the global discrete codebook, producing semantically
consistent discrete slot indices. Next, to allow the model to adjust the effective slot count according
to scene complexity, we apply a de-duplication operation to slot indices that correspond to the
same prototype, retaining only distinct prototype slots as the initialization for second stage. The
object-aware initial slots are then fed into a mask slot attention module for a second aggregation
stage, enabling fine-grained object-level assignment. Throughout this stage, the aggregator applies an
attention mask to redundant slots and shares the same weights as the first-stage Slot Attention.

Consistent prototypes and stable optimization. To ensure that all parts of the same object converge
to a consistent prototype, we use the final slot representations obtained from the second stage to
update the codebook. Simultaneously, we employ a k-means-based exponential moving average
(EMA) strategy to update the codebook stably and suppress high variance in the early training
phase. In addition, we introduce a progressive noise-injection mechanism during training as implicit
simulated annealing [35]], further reinforcing efficient alignment between the prototype prior and the
posterior over targets in latent space.

In short, MetaSlot leverages a global VQ codebook of object prototypes. Slot Attention clusters
features, aligns them with their nearest prototypes, prunes duplicates, and passes the resulting seman-
tically rich slots to a second aggregation stage. Moreover, injecting progressive noise during this stage
helps stabilize convergence, yielding robust and accurate object representations. Our work makes
three primary contributions: (i) MetaSlot module: We devise a two-stage aggregation framework that
couples a global vector-quantized codebook with a slot-masking mechanism, enabling dynamic slot
allocation for arbitrary numbers of objects. (ii) Progressive noise injection: By injecting gradually
diminishing Gaussian noise throughout the Slot Attention iterations, MetaSlot both accelerates con-
vergence and stabilizes the aggregation. (iii) Large-scale validation: Extensive experiments across
diverse vision tasks and datasets show that MetaSlot yields substantial improvements on key metrics
and exhibits strong adaptability to a wide range of scenes.

2 Method

In this section, we present MetaSlot with (i) First-stage Aggregation for Prototype-guided Pruning;
(ii) Second-stage Aggregation with Mask-guided Refinement; and (iii) Prototype update via mini-
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Figure 1: Overview of the MetaSlot framework (depicted on the DINOSAUR backbone for clarity;
agnostic to the underlying object-centric architecture). (i) We build and continually update a codebook
of "prototype slots" by vector-quantizing slots sampled across the dataset. (ii) Input features Z are
first aggregated via Slot Attention to produce an intermediate slot set S™; we then remove duplicate

slots in S™id by matching them against the prototype slots, yielding the masked subset Sinask-

(iii) Finally, Spask is passed through Masked Slot Attention with progressively attenuated noise to
generate the refined slots S"2!, which are then decoded to reconstruct the original input.

batch K-means. Notably, the two aggregation modules share weights and are jointly trained. In
addition, we include pseudocode in Appendix A to provide additional implementation details.

2.1 Background

Slot Attention (SA). Slot Attention (SA) [I1] transforms a set of input features Z € RV *? into
K object-centric representations S € R¥* P through iterative cross-attention. Each iteration, slots
compete by applying a softmax over themselves to claim parts of the visual input, and each slot’s
incremental information S is computed as the attention-weighted sum of visual feature vectors.

.
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In the slot update stage, the incremental information S and the previous slot state S(*) are fed into
a Gated Recurrent Unit (GRU) [36]. The GRU output is then refined by a small MLP, yielding the
updated slot state:

S = MLP(GRU(S®, §)). @

After T iterations, the final slots S” are employed as the object-centric representation passed to
downstream modules. Crucially, these slots are randomly initialized from a learnable Gaussian
distribution NV (u, diag(o)).

2.2 First-Stage Aggregation for Prototype-guided Pruning

In the first-stage aggregation, MetaSlot performs global prototype alignment, merging all features of
an object into one slot, pruning duplicate slots, and yielding a compact, semantically coherent basis
for later fine-grained aggregation.

To obtain prototype slot representations from the codebook that faithfully capture the input features,
we first perform a preliminary aggregation of the feature maps, producing a set of softly assigned
intermediate slots S™9. Each intermediate slot is then matched to the global discrete codebook &£ via

a nearest-neighbour search, yielding the semantically aligned discrete slots S,



Given the intermediate slots §™9 produced by the original Slot Attention [11]], the fixed number
of slots can lead to a single object’s features being scattered across multiple slots. To resolve this,
prototype matching maps every slot encoding the same object onto a shared prototype, thereby
eliminating redundancy. As a result, among slots with identical indices only the unique prototypes

Shask are retained, and this compact set is used to initialize the next stage.

Intermediate slots. As in the original formulation, we sample the initial slots S(®©) € RV*P from
a learnable Gaussian N (u, diag(o)), and then perform T iterative slot updates on the input feature
set Z € REXD,

S™id — SlotAttn(Z, S, T). 3)

Nearest-neighbour quantisation. Let & = {e, € RP}E | denote a global codebook of K

prototypes. For each intermediate slot vector s™9, we find the index of its nearest prototype and
replace it accordingly:

idr; = argmkian?‘idfekHz, S8 = €ids,, )

where §; is the quantised slot vector, set to the prototype €;4s, .

Duplicate-removal mask. Slots that pick the same prototype are treated as redundant. We mark
the first occurrence and mask out the rest:

1, if idz; is the first hit,
smask; = 5)

0, otherwise.
The surviving slot set is Sinask = {8; | smask; =1} C RV x4 with N < N.

2.3 Second-Stage Aggregation with Mask-guided Refinement

In the second-stage aggregation, we refine the pruned prototypes via masked attention with annealed
noise injection, producing the final semantically coherent slot set Sfinal,

We re-initialize the slot states with the pruned prototype set Shmask and perform T iterations of
attention-based updates. At each step, the raw attention logits are masked by the binary slot mask
smask, so that only retained prototypes participate in computing the attention-weighted slot in-
crements. To alleviate the “cold-start” misalignment between prior prototypes and current inputs,
we also inject progressively isotropic Gaussian noise into the features before each iteration, with
variance o linearly annealed from o2, to zero. This implicit simulated annealing encourages early
exploration and late-stage convergence, yielding the final semantically coherent slot set Sfinal,

Implicit Simulated Annealing via Noise Injection In the classic Slot Attention module, slots
aggregate visual features through iterative attention and GRU updates. However, when prototype
slots are generated by offline vector quantization (VQ), initial misalignment often occurs between
the prior slots and posterior slots derived from the current input in the latent space. To reduce this
"cold-start" distance, we explicitly inject decreasing noise into the features before each iteration. This
strategy can be interpreted as a form of implicit simulated annealing: injecting large-magnitude noise
at early stages relaxes the entropy constraints of soft matching, encouraging exploration among slots;
gradually reducing noise at later stages facilitates convergence to precise alignment. At any iteration
step ¢, we add isotropic Gaussian noise to the features Z € RNV*P:

Z(t)

noise
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Eq. corresponds to a gradual decrease in temperature T < oy 2 and opojse is a tunable hyperpa-
rameter that specifies the initial standard deviation of the injected isotropic Gaussian noise (i.e. the
noise amplitude at ¢ = 0) before annealing.

Masked Slot Attention (MSA). To ensure that only surviving slots steer the refinement, we
introduce Masked Slot Attention (MSA). At each iteration, a binary mask smask zeros out rows
corresponding to duplicate slots, so the attention-weighted update is computed solely from the
retained, semantically meaningful prototype slots. This prevents any duplicate-induced interference.
It is worth noting that the MSA shares the same set of weights with the SA used in the first-stage
aggregation. For each iterationt = 0,...,7T — 1 we compute the MSA:

- i) \T _
SO = f,.(80, ZzW ) = (fiA()) w(Z0), A = smask; AV, (8)
1=14,j
with " e
AWM = softmax(%) e RV*K )

where ¢, k,v € RP are the linearly projected queries, keys and values.

Finally, the slot states are updated as in Eq. (), yielding S®*+1).

Gradient Truncation and Bi-level Optimization. Because the vector-quantization (VQ) mecha-
nism truncates gradients—producing instability between Two-stage Slot Aggregation iterations, we
stop the gradient flow at the first Slot-aggregation stage. In addition, inspired by the bi-level opti-
mization strategy [29]], we further detach gradients during the first 7' — 1 iterations of the second
Slot-aggregation stage.

Let SéT) be the slots after the ¢-th refinement step in second-stage aggregation. Thus all paths
that reach the encoder features Z through S%O), ey SéT_l) are detached, and only the T-th (final)
refinement step S5° ib i

p S5 ’ contributes gradients.

2.4 Prototype update via mini-batch K-means.

To encourage the codebook slots to converge toward identifiable slot prototypes, we use the final

S;T) to update the codebook. To ensure stable updates to the codebook, we adopt a K-means-based

exponential moving average (EMA) update strategy. Specifically, at each training step we shift every

prototype e toward the mini-batch centroid ¢ computed over SéT):

e, < (l—n)ex + ney, (10)
where 7 € (0, 1] is a small learning rate.

Prototypes that remain unselected for a predefined timeout window are marked as dead. For each
such code we sample a replacement vector ¢ from the current mini-batch by choosing the slot that is
least similar (cosine distance) to all active prototypes, and reset the dead code via

ey « ¢ (1D

3 Related Work

In recent years, unsupervised representation learning has made significant progress, with Slot Atten-
tion (SA) [[L1] playing a pivotal role in advancing this field. SA learns distinct latent representations
for each object in an image through an iterative mechanism, and these latent "slots" can subsequently
be decoded back into pixel space. Early slot-based methods [[11} 21-23| [3/]] typically employed
simple small-scale CNNs [38]] or pre-trained ResNet models [39] as feature encoders, and used Spatial
Broadcast Decoders [40] or Vision Transformers [41] as decoders, with tests mainly conducted on
synthetic datasets. Recent approaches such as SlotDiffusion [42] and LSD [43] integrate SA with
diffusion-model decoders [44, [45]. DINOSAUR and its variants [46-48]] constructs reconstruction
objectives based on DINO [49]50] features to enhance object discovery in real-world data.

To enhance Slot Attention’s intrinsic object-awareness, BO-QSA [29] introduces bi-level mechanisms
and slot-level initialization, whereas ISA [S1] incorporates pose-equivariance within its attention and
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Figure 2: Qualitative results show that MetaSlot’s dynamic slot allocation mitigates BO-QSA’s
over-segmentation, such as splitting a train into unrelated parts, due to its fixed slot count.

generative modules. However, these methods remain constrained by a fixed number of slots, resulting
in persistent over-segmentation issues. FT-DINOSAUR [47] mitigates redundancy by selecting the
top k£ most probable slots during the decoding phase, and SOLV [52] clusters aggregated slots to
improve semantic consistency. Nonetheless, these approaches rely on heuristic, non-learning-based
strategies with explicit thresholding during decoding. While AdaSlot [533]] directly predicts the
number of slots from feature maps, it does not achieve quantitative improvements over standard Slot
Attention on real-world datasets. Furthermore, none of these existing methods incorporate explicit
object priors or semantic cues during initialization.

On the theoretical front, a number of studies have offered formal interpretations of object-centric
learning (OCL) [34, 27, [55-58]]. In terms of evaluation methodologies, recent works have examined
the generalization ability of object-centric representations across various downstream tasks, including
visual question answering (VQA) [39], world modeling [61]), and video generation [62]).
Furthermore, several studies have investigated the robustness of object-centric models under out-of-
distribution (OOD) conditions [63, i47]). Other works have explored the use of vector quantization
mechanisms to improve object disentanglement and interpretability. For instance, methods such as
(63, learn hierarchical, compositional discrete representations that align with objects and their
attributes.

4 Experiments

Overall, our study targets two goals: first, to show that MetaSlot—when substituted for vanilla slot
attention—consistently enhances the performance of object-centric learning (OCL) models; and second,
to demonstrate that MetaSlot plugs in naturally to both Transformer-based and diffusion-based OCL
frameworks, underscoring its broad applicability. We evaluate its impact on two canonical tasks:
object discovery, which demands pixel-accurate masks for every object instance, and set prediction,
where classification accuracy reveals how much object information the slots capture and thus reflects
the quality of the learned representations.

Datasets We include both synthetic and real-world datasets. ClevrTex [67] comprises synthetic
images, each with about 10 geometric objects scattered in complex backgrounds. MS COCO 2017
[68] is a recognized real-world image dataset, and we use its challenging panoptic segmentation and
instance-level object annotations. PASCAL VOC 2012 is a real-world image dataset, and we use
its instance segmentation. We also report results on the real-world video dataset HQ-YTVIS [70],
which contains large-scale short videos from YouTube.

Training Details To eliminate confounding implementation differences, we re-implemented every
baseline from scratch rather than reusing published results. All experiments share identical data
augmentation pipelines and use the DINOv2 ViT(s/14) [50] as the OCL encoder, with matched



training hyperparameters. Every model—including both the baselines and our variants augmented
with MetaSlot—was trained for 50 k steps with the Adam optimizer [[71] on a single NVIDIA V100
GPU using 16-bit mixed precision and a batch size of 32; the MetaSlot codebook size was fixed to
512 throughout. As the most advanced publicly available aggregator currently surpassing vanilla
Slot Attention, BO-QSA [29] is adopted as the default module in all baselines. This uniform setup
ensures fair and reproducible comparisons, enabling precise evaluation of MetaSlot’s contribution.
All reported results are averaged over three random seeds to mitigate stochastic variance.

4.1 Evaluate on Object Discovery

Models We integrate MetaSlot into object-centric learning (OCL) frameworks and systematically
benchmark it against a range of classic models (Table|1)) as well as state-of-the-art models (Table
[2) to highlight its performance gains. Concretely, SLATE [22] employs a Transformer decoder for
autoregressive reconstruction. DINOSAUR [46] uses an MLP-based hybrid decoder to reconstruct
directly in DINO feature space, while VideoSAUR [72]] adapts this design to video. SlotDiffusion [42]
performs decoding with a conditional diffusion model, and SPOT [73]] combines nine permutation-
based Transformer decoders with a self-training strategy. Evaluating MetaSlot within each of these
heterogeneous decoding paradigms enables a comprehensive assessment of its versatility. We exclude
IODINE [49]], ISA [74]], SAVi [21]], SAVi++ [37]], and MoTok [75] due to outdated performance or
reliance on multi-modal priors that hinder fair comparison under our unified setting. Appendix E
presents a comparative evaluation of MetaSlot against AdaSlot[53]], SlotContrast[76]], SysBinder[65]],
and NLoTM[66] across multiple datasets, further demonstrating the effectiveness of MetaSlot.

Metrics The object-discovery task provides a straightforward view of how effectively individual
slots separate distinct objects. Following standard practice in OCL research, we assess representation
quality by comparing the mask assigned to each slot with the instance-level ground-truth masks.
Concretely, we report the Adjusted Rand Index (ARI) and Foreground Adjusted Rand Index (FG-ARI)
[77] to measure clustering similarity, and evaluate mean Intersection-over-Union (mIoU) and mean
Best Overlap (mBO) to quantify how well the discovered masks align with the real objects.

Analysis To comprehensively evaluate the effectiveness of the proposed MetaSlot aggregator, we in-
tegrate it into several mainstream OCL decoding frameworks (MetaSlotyy,, MetaSlotrey, MetaSlotpy,)
and directly compare it against their original implementations (DINOSAUR, SLATE, SlotDiffusion).

As shown in TabldI] MetaSlot consistently outperforms its corresponding baseline across all de-
coding frameworks. In the MLP setting, MetaSlotyy, yields higher decoding accuracy and better
reconstruction quality than DINOSAUR. Under the autoregressive setting, MetaSlotygy achieves
substantial performance gains over the original SLATE. Similarly, in the diffusion-based framework,
MetaSlotpg, consistently surpasses SlotDiffusion. These results demonstrate MetaSlot’s strong com-
patibility and generalization ability across diverse decoder architectures, highlighting its robustness
and superiority in complex visual reconstruction tasks. We also visualize the object-segmentation
results of MetaSlotyy, on the COCO and VOC datasets in Fig@ The examples show that MetaSlot
performs dynamic slot allocation effectively, eliminating the over-segmentation problem that afflicts
the DINOSAUR baseline, whose BO-QSA [29] aggregator enforces a fixed number of slots.

Furthermore, as shown in Table [2, we compare MetaSlot with recent state-of-the-art methods.
Because our goal is not to challenge the entire model architecture but to isolate the impact of the
aggregator module. Therefore, in comparing with SPOT [73]], MetaSlotrgg is trained using only
the decoder from SPOT in a single training round, without adopting the two-stage self-distillation
strategy proposed in the original work. Remarkably, even under this simplified training setup, our
method achieves comparable or even superior performance across all evaluation metrics. Similarly,
when comparing with VideoSAUR on the YTVIS(HQ) dataset, simply replacing its aggregator with
MetaSlot yields substantial performance improvements—particularly in FG-ARI (+18.3) and mBO
(+2.9). These results highlight MetaSlot’s adaptability, proving effective in both static and video-level
object discovery tasks.

4.2 Evaluate on Set Prediction

The set prediction task explicitly reveals the effectiveness of each slot in capturing object information.
Following this work [46], images from the MS COCO 2017 dataset are encoded into object-centric



Table 1: Object discovery performance with DINOv2 ViT (s/14) for OCL encoding. The input
resolution is 256 x256 (224 x224). Tfd, MLP and Dfz are Transformer, MLP, and Diffusion [78]] for
OCL decoding respectively.

ClevrTex #slot=11 COCO #slot=7 VOC #slot=6
ARI  FG-ARI mBO mloU | ARI FG-ARI mBO mloU | ARI FG-ARI mBO mloU
SLATE 174429 874417 445477 433494 | 175406 288403 268103 254403 | 18.640; 262408 372405 36.1404

MetaSlotrea  40.9117 924407 493.05 48.8.16 18.6112 33.5:10 282107 267106 204105 30.7r05 390103 378505

DINOSAUR  50.71241 894403 533150 528452182110 350112 283105 269105 |21.5107 352113 40.6106 39.7+06
MetaSlotMlp 64.6193 89.6. 94 552405 54-5i0.6‘22'4i0‘3 40395 29.5.> 27'9i0A2‘32'2i1.2 433197 439,03 421,

SlotDiffusion 66.li|'3 82'7il.6 54-3i0.5 53~4i0.8‘17-7i045 28.710{] 27010‘4 25-6i0,4‘17~0il.2 21-7il.8 35-2i0.9 34-0i1‘0
MetaSlothz 81.9i0_2 77.611_] 64.210,6 62.8i(]_7 ‘ 17'7i0.2 32-210.7 27-210.2 25.8i0_1 ‘ 19'0i0.3 24'1i0.3 36.5i0_1 35'3i0.1

Table 2: Comparison with SOTA methods: SPOT on MS COCO 2017 (images) and VideoSAUR
on YTVIS-HQ (videos). All models use a DINOv2 ViT(s/14) backbone. The input resolution is
256x256 (224 x224).

COCO #slot=7 YTVIS(HQ) #slot=7
ARI FG-ARI mBO mloU ARI FG-ARI mBO mloU
SPOT 2034107 4l.1193 304101 29.0.99 VideoSAUR 33.0406 49.0109 30.8404 30.1pg6

MetaSlotrigg 231492 412403 305103 28.6103 MetaSlot-VideoSAUR  60.0.,3 67.315; 3371908 28.3107

representations using OCL. Each slot is tasked with predicting the object category labels and bounding
box coordinates via a small MLP. We evaluate classification performance using top-1 accuracy of
the category labels and assess regression performance using the R? score of the bounding box
coordinates.

Table E] shows that the proposed MetaSlot (i.e., MetaSlotyy;,,) consistently outperforms the baseline
[46] in both object classification and bounding box regression tasks. These results indicate that the
object representations captured by MetaSlot are superior, effectively improving the encoding of both
categorical and spatial information.

Table 3: Set prediction performance Table 4: Aggregator comparison.
COCO class labels  bounding boxes COCO #slot=7
#slot=7 topl T top2t ARI FG-ARI  mBO mloU
DINOSAUR + MLP 0.33 0.54 Slot Attention 172105 38.6406 27.7404 265403
MetaSlotyy p + MLP 0.36 0.56 BO-QSA 1824110 350112 283105 269405
MetaSlot 224,03 403105 29502 279102

4.3 Interpretability Analysis

Kori et al. [55] interpret Slot Attention (SA) [[L1] as a Gaussian Mixture Model (GMM), where each
slot acts as a Gaussian component explaining a subset of pixels. Building on this view, we shift
the focus from concrete objects to abstract prototypes, positing that the real-world distribution can
likewise be factorized into a mixture of such prototypes. Concrete objects in the feature map can
then be regarded as samples or projections from these prototype distributions. In slot-attention-based
object-centric learning, matching these abstract prototypes manifests as slot initialization, while
the iterative attention updates project and refine the prototype distributions onto concrete visual
appearances.

In SA, all slots are sampled from a shared Gaussian prior, which lacks object-level inductive cues
during initialization. BO-QSA [29] mitigates this limitation by assigning independent Gaussian priors
to each slot, thereby promoting greater diversity and improving object-attribute binding. However,
its fixed slot count limits its adaptability to the diverse objects encountered in real-world scenes. To
address this, our proposed MetaSlot introduces a set of adaptive prototype slots that capture abstract
representations of real-world entities, further enhancing object binding and improving flexibility in
complex scenes.

As shown in Fig. 3] MetaSlot’s prototype-based initialization yields slots with pronounced semantic
consistency and strong object binding—e.g., all slots from prototype 268 correspond to "keyboard"
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BO-QSA
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Figure 3: We visualize slot representations initialized from different prototype slots on the COCO
dataset, where each column shows a specific initialization slot index—prototype slots in MetaSlot (out
of 512) and fixed slots in BO-QSA [29]. MetaSlot’s prototype-based initialization yields slots with
strong semantic consistency and object binding (e.g., #slot 208 for trucks, #slot 445 for persons). By
comparison, the fixed slots in BO-QSA frequently lack such coherent semantic grouping.

objects, while those from prototype 240 correspond to "umbrella" objects. In contrast, BO-QSA,
limited by its fixed number of slots, struggles to achieve such fine-grained prototype binding. Addi-
tional results on the VOC dataset are reported in Appendix B. Quantitative comparisons under the
DINOSAUR [46] decoding framework (Table [) further confirm that MetaSlot surpasses both SA
and BO-QSA on all object discovery metrics, highlighting its superiority in producing disentangled
and interpretable slot representations.

4.4 Ablations

To assess the effectiveness of the key architectural components of MetaSlot, we perform a com-
prehensive ablation study on the MS COCO 2017 dataset. All experiments adopt the DINOSAUR
framework with a DINOv2 ViT (s/14) encoder and fix the number of slots to seven. To validate
the contribution of individual design choices, we further evaluate two ablated variants: "MetaSlot
w/o noise’ omits progressively attenuated noise during slot updates. As shown in FigH] injecting
noise leads to a lower Adjusted Rand Index (ARI, left) and a higher mean best overlap (mBO, right),
implying faster and more stable slot aggregation. "MetaSlot w/o mask’ disables the prototype-based
masking strategy. Table 5| summarizes performance across three metrics—Foreground ARI (FG-ARI),
mean best overlap (mBO), and mean Intersection-over-Union (mloU), indicating that each component
is pivotal for precise slot-to-object alignment and effective spatial disentanglement. In addition,
Appendix E presents an analysis of the codebook prototype size, where we observe that increasing
the number of prototypes yields only marginal improvements in performance. We also compare
MetaSlot models with varying slot counts, and the empirically optimal number of slots aligns with the
long-established consensus within the object-centric learning community. Furthermore, we include
additional ablations on architectural components, which provide further evidence for the robustness
and effectiveness of our model design.

5 Conclusion

This paper introduces MetaSlot, a novel aggregator for object-centric learning (OCL) that addresses
two long-standing limitations of conventional Slot Attention models: the fixed number of slots and
reliance on random initialization. MetaSlot incorporates a global vector-quantized (VQ) prototype
codebook alongside a two-stage aggregate-and-deduplicate framework. This design enables the
model to adaptively adjust the number of slots based on scene complexity and to initialize slots



Table 5: Ablation study on architectural Figure 4: Training curves for MetaSlotyyp

components. Backbone: DINOv2 ViT with/without progressively attenuated noise.

(s/14). ot
1 T [EEmr AL S

COCO #slot=7 wl N

FG-ARI mBO  mloU S SO AT =
MetaSlot w/o noise 394103 289104 274104 1 / N
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with semantically meaningful object representations. Extensive experiments show that MetaSlot
consistently achieves substantial gains across a range of OCL tasks and offers a robust foundation for
future research in OCL and its downstream applications.

6 Limitations and Future Directions

Despite its promising results, MetaSlot still faces several limitations that point to fruitful directions
for future research. First, the use of absolute positional encoding inherited from the original Slot
Attention makes the model non-equivariant to image translations, potentially causing the codebook
prototypes to capture position-dependent noise patterns. Future work could leverage translation-
equivariant mechanisms such as ISA [74] to promote the emergence of consistent, position-agnostic
representations. Second, current object prototypes primarily encode global shape or semantic infor-
mation while overlooking finer-grained attribute compositions. Enhancing prototype optimization
through compositional generalization—that is, constructing compound prototypes integrating multiple
attribute-level features—may yield richer and more discriminative object cues for downstream tasks.
Third, owing to MetaSlot’s two-stage and iterative optimization design, the framework inherently
contains self-supervisory signals. Exploring ways to identify the semantically complete object slots
emerging in the second stage and using them to provide weak supervision for the aggregation process
in the first stage could further advance the development of variable-slot object-centric learning.
Finally, MetaSlot has yet to be extensively evaluated under out-of-distribution (OOD) conditions.
Systematic studies across diverse domains, coupled with efforts to better align the learned code-
book prototype distributions with real-world object distributions, could further improve the model’s
cross-sample and cross-domain generalization.
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A  Method

Algorithm 1: MetaSlot.

Input: input features input, learnable queries init, number of iterations T’

Output: object-centric representation S/

Modules: stop gradient module SG(-), slot attention module SA(-, -), masked slot attention
module MSA(, -, -), vector quantization VQ(-), prune duplicate slots module Prune(-), update
prototype codebook module Update(-, -), noise injection module Noisy (-, -)

4 # First-Stage Aggregation :

Smid « init.detach();

6 fort =1to7T do

10

11
12
13
14
15
16
17

18

19

20
21

L Smid « SA(S™ inputs);
S, idx < VQ(S™id);
Smask, mask < Prune(S, idz);
# Second-Stage Aggregation :
SInal S ek
fort=1toT — 1do

INPUtyeisy <— Noisy(input, t);
Sfinal « MSA (ST input ,pisy, mask);

gfinal  SG(SFmal) + init — SG(init);
INPUtyoisy <— Noisy(input, T');

Gfinal  NMSA(Sfinal, INPUtpoisy, Mask);
# Prototype update :

Update(SG(S7mal) mask);

return S/

B Visualization of prototype slots

As shown in Fig. [5| we visualize the refined slots Sf"! corresponding to the initialization prototype
slots on the VOC dataset. The codebook contains 512 object prototypes in total. However, since the
VOC-trained model is relatively limited in object diversity and scale, many prototype slots receive
few or no refined slots assigned to them, making comprehensive visualization infeasible. Therefore,
for practical and technical reasons, we focus on the top 20 most active prototype slots—defined as
those associated with the largest number of refined slots in the model trained on the VOC dataset.
For each selected prototype slot, we randomly sample six refined slots from its assigned set and
visualize their corresponding image patches. As shown in the figure, the results clearly demonstrate
that the prototype slots exhibit strong concept binding behavior, with refined slots consistently
aligned to semantically coherent object categories. These findings are consistent with our theoretical
expectations regarding the semantic consistency induced by prototype-guided initialization.

C Experimental Details

Implementation and Reproducibility. To ensure a fair comparison, we re-implemented all baseline
models from scratch rather than relying on publicly reported results. Throughout all experiments, we
kept data augmentation strategies, the visual feed-forward module (VFM) in the OCL encoder—based
on DINOV2 ViT-s/14 [50]—and all training hyperparameters identical to those reported in the original
papers. Furthermore, we replaced each model’s original variational autoencoder (VAE) component
with a large-scale pre-trained TAESD module [78]], which is based on Stable Diffusion.

16



yocC
72

voc
328

vocC
62

voc voc

96 414

voC A voC

125 e 361

voc - ' voc

130 ' 352
_A -l

voc
506

voc
291
voc

298

30 Y |
voC Ly s -~ N
309 ; : i = B
voc o™

310

Figure 5: Visualize slot representations initialized from different prototype slots on the VOC dataset.

All models—including both the MetaSlot-augmented variants and their respective baselines—were
trained using the Adam optimizer [71]] on a single NVIDIA V100 GPU with 16-bit mixed precision.
Each run consisted of 50000 training steps, with a batch size of 32 and four data-loading workers. We
set the initial learning rate to 2 x 10~ and maintained it throughout training. For the MetaSlot module,
the codebook size was fixed at 512, the feature map resolution at 256 x 256, and the embedding
dimension at 256. The number of slots for each model remained consistent with its original baseline
configuration. To reduce the impact of randomness, all experiments were repeated with three different
random seeds, and we report the mean results.

Pre-trained VQ-VAE Configuration for SLATE and Slot Diffusion. For the SLATE and Slot
Diffusion baselines, we adhered to the standard VQ-VAE implementation based on ResNet-18.
Specifically, we used a codebook size of 4096 and an embedding dimension of 256. Pre-training was
conducted for 30000 steps with a batch size of 64 shared between the text and vision branches, four
data-loading workers, and an initial learning rate of 2 x 103, The feature map resolution remained
256 x 256. As before, each configuration was evaluated over three independent runs, and the reported
metrics represent the averaged performance across these trials.

D Supplementary Ablation Experiments

Impact of Codebook Size As shown in table[6] we investigated the impact of different codebook
sizes (256, 512, and 1024) on model performance. We observed that codebook size has a limited
effect on performance; however, a larger prototype set allows for finer distinctions between slots
that share semantic concepts but differ in spatial location. For example, as shown in Fig. [3] slot
#445 corresponds to the concept of “person” located on the right side of the image, while slot #337
represents the same concept but appears at the center of the scene.

Impact of Slot Number As shown in table[/, we examined how the number of slots affects final
performance. Since the codebook and the aggregator module are jointly optimized, the quality of the
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Table 6: Results of MetaSlot with varying codebook sizes on MS COCO.
DINOSAUR on MS COCO
ARI  FG-ARI mBO mloU

MetaSlot, codebook_size=256 26.7 38.1 29.4 27.5
MetaSlot, codebook_size=512 22.4 40.3 29.5 27.9
MetaSlot, codebook_size=1024  20.0 40.4 29.2 27.3

Table 7: Results of MetaSlot with varying slot numbers on MS COCO.
DINOSAUR on MS COCO
ARI FG-ARI mBO mloU

MetaSlot, slot_num=5 25.5 37.8 29.3 27.4
MetaSlot, slot_num=7 22.4 40.3 29.5 27.9
MetaSlot, slot_num=11 19.8 38.7 28.4 26.9
MetaSlot, slot_num=15 15.9 36.0 272 260

aggregator—particularly in early training stages—can significantly influence codebook convergence.
We found that the empirically optimal slot count aligns well with long-standing choices commonly
adopted in the community.

Impact of Architectural Components As shown in table[8] we conducted additional experiments
to gain deeper insight into the working mechanism of MetaSlot. Specifically, we tested two variants:
(1) removing the prototype guidance and instead initializing slots in the second stage by sampling
from separate Gaussian distributions, as done in the first stage; and (2) disabling the reactivation
mechanism for stale (dead) prototypes during the codebook update process. The results confirm the
effectiveness of our module design and are consistent with the theoretical assumptions proposed in
the paper.

Furthermore, prior studies in object-centric learning have consistently shown that simply increasing
the number of Slot Attention iterations does not lead to meaningful performance gains. To validate
this observation, we performed an additional ablation study on the BO-QSA model by increasing its
iteration count to 6, matching that of MetaSlot. As shown in the results, increasing the iteration count
alone does not improve BO-QSA’s performance, further highlighting the importance of our design
choices beyond iteration depth.

Table 8: Supplementary ablation on ar- Table 9: Comparison with SlotContrast on the
chitectural components. MOVi-C dataset.
MS COCO #slot=7 Method FG-ARI mBO

FG-ARI mBO__mloU SlotContrast ~ 62.4  30.6
MetaSlot w/o proto 40.2 29.1 276 MetaSlot 63.9 35.0
MetaSlot w/o prune 40.0 29.1 27.5
MetaSlot 403 295 279
BO-QSA,iter_num=6 379 277 263

E Supplementary Comparative Experiments

Comparative Evaluation against SlotContrast As shown in table we further include a
comparison with the SlotContrast[76] model on the MOVi-C dataset. In these experiments, MetaSlot
does not employ SlotContrast losses or any temporal-specific enhancements. Due to constraints in
time and computational resources, we used a batch size of 8 (vs. 64 in SlotContrast), 24 frames per
sample, and trained for up to 20,000 steps (vs. 100,000 in SlotContrast). Despite these limitations,
MetaSlot still demonstrates notable performance advantages.

It is worth noting that SlotContrast’s contrastive loss was originally designed for a fixed number of
slots, and extending it to handle variable slot counts would require additional effort. Nevertheless,
as discussed earlier, even without incorporating SlotContrast’s core contribution—the contrastive
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loss—MetaSlot achieves comparable or even superior performance in object discovery tasks. We
believe that integrating SlotContrast’s contrastive learning objective in the first stage with MetaSlot’s
dynamic aggregation in the second stage could further enhance performance, particularly for temporal
object discovery. However, this would necessitate architectural modifications that are beyond the
scope of the current work and are left for future research.

Table 10: Comparison with SlotContrast Table 11: Comparison with AdaSlot on the MS

on the MOVi-C dataset. COCO dataset.
Method FG-ARI mBO Method FG-ARI mBO
SlotContrast 62.4 30.6 AdaSlot 35.6 29.4
MetaSlot 63.9 35.0 BO-QSA 35.0 28.3

MetaSlot 40.3 29.5

Comparative Evaluation against AdaSlot As shown in Table|l1] we further report the results
of AdaSlot[53]] compared with MetaSlot. All models use a DINOv2 ViT-S/14 backbone, and the
input resolution is 256x256 (or 224x224). We speculate that the performance difference is partly due
to the fact that, when the number of slots varies, the model can no longer apply separate Gaussian
initialization to each slot individually.

Additional Evaluation of VQ-based Object-Centric Methods We further evaluated several
object-centric learning methods that employ vector quantization. In SysBinder[[65] and NLoTM[66],
the quantization mechanisms operate at the attribute level within each slot. However, this design
does not necessarily lead to improved representation quality in unsupervised settings. In synthetic
datasets, object attributes such as color, size, shape, and material are relatively fixed and can often
be described using fewer than ten shared labels. In contrast, real-world datasets such as COCO and
VOC contain objects with far more diverse and non-shared attributes. For instance, the object person
cannot be meaningfully described with the same attribute set as the object mouse. This discrepancy
likely explains why SysBinder and NLoTM were not originally evaluated on real-world benchmarks.

Furthermore, the initial intuition behind MetaSlot is inspired by Platonic philosophy. In Plato’s
theory of Forms, sensible particulars are intelligible only insofar as they “participate” (metech€) in a
transcendent Form (Phaedo 100c—d). Similarly, Aristotle maintains in the Categories that accidents
belong to substances only as predicates of discourse, not as essential ingredients shared by all beings
(Categories 2al1-19).

Our empirical evaluation on COCO and ClevrTex shows that MetaSlot substantially outperforms both
SysBinder and NLoTM. Although SysBinder achieves a slight advantage in FG-ARI on ClevrTex, it
underperforms the DINOSAUR baseline on other key metrics such as ARI, mBO, and mIoU. More-
over, the SysBinder paper only reports FG-ARI and does not include ARI, mBO, or mloU—metrics
widely regarded as standard for evaluating object discovery. All models use a DINOv2 ViT-S/14
backbone, and the input resolution is 256x256 (or 224x224).

Table 12: Comparative results of Sys- Table 13: Comparative results of SysBinder,
Binder, NLoTM, DINOSAUR, and NLoTM, DINOSAUR, and MetaSlot on ClevrTex.
MetaSlot on MS COCO. ClevrTex
MS coCco ARl FG-ARI mBO mloU
ARl FG-ARI mBO  mloU SysBinder ~ 21.7 914 468 465
SysBinder 168 377 272 260 NLoTM 215 887 44.1 431
NLoTM 57.8 14.7 23.6 17.8 DINOSAUR 50.7 89.4 533 528
DINOSAUR 18.2 35.0 28.3 26.9 MetaSlot 64.6 89.6 55.2 54.5

MetaSlot 224 40.3 295 279
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All statements in the abstract and introduction accurately reflect the scope and
contributions of this paper, which introduces MetaSlot, a novel variant of Slot Attention.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We provide additional discussion of the limitations of our method in Appendix
B.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The innovation of our work lies at the practical level, guided by intuition. More
rigorous theoretical justification remains an open direction for future research.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in the Appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide experimental details in the paper and the Appendix to ensure the
reproducibility of our work. And we will make the code publicly available.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We use publicly available datasets and provide anonymous links to our project.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide the key experimental setups in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in the Appendix, or as supplemen-
tal material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All reported results are averaged over three random seeds to mitigate stochastic
variance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide sufficient information on the computer resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Our research conducted in the paper conforms with the NeurIPS Code of
Ethics in every respect.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the potential societal impacts of our work in the Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: When using code from a third party, we report the source of the code directly
with the block of code used.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our anonymous URL includes these new codes, new results, and related
documentation.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not use LLMs as an important, original, or non-standard
component of the core methods in this research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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