Published as a conference paper at COLM 2025

Efficient Process Reward Model Training via Active Learning

Keyu Duan'?* Zichen Liu'? Xin Mao!

Tianyu Pang! Changyu Chen'?

Qiguang Chen Michael Qizhe Shieh?’ Longxu Dou!?

!Sea Al Lab 2National University of Singapore 3Singapore Management University

Abstract

Process Reward Models (PRMs) provide step-level supervision to large
language models (LLMs), but scaling up training data annotation remains
challenging for both humans and LLMs. To address this limitation, we
propose an active learning approach, ACTPRM, which proactively selects
the most uncertain samples for training, substantially reducing labeling
costs. During training, we use the PRM to estimate uncertainty after the
forward pass, retaining only highly uncertain data. A capable yet costly
reasoning model then labels this data. Then we compute the loss w.r.t. the
labels and update the PRM’s weights. We compare ACTPRM vs. vanilla
fine-tuning, on a pool-based active learning setting, demonstrating that
ACTPRM reduce 50% annotation, but achieving the comparable or even
better performance. Beyond annotation efficiency, we further advance the
actively trained PRM by filtering over 1M+ math reasoning trajectories
with ACTPRM, retaining 60% of the data. A subsequent training on this
selected dataset yields a new state-of-the-art (SOTA) PRM on ProcessBench

(75.0%) and PRMBench (65.5%) compared with same sized models !.

1 Introduction

Recently, Large Language Models
(LLMs) (DeepSeek-Al et al., 2025; Yang
et al.,, 2024; OpenAl et al., 2024b) have
shown remarkable advances in mathemat-
ical reasoning, yet they can make mistakes
during chain-of-thought (CoT) reasoning
despite correct final answers(Zheng et al.,
2024). To address this challenge, process
reward models (Lightman et al., 2023;
Wang et al., 2024; Zhang et al., 2025) were
proposed, aiming to identify process errors
and provide finer-grained supervision of
the training process.

The main challenge in training Process Re-
ward Models (PRMs) lies in obtaining fine-
grained step-level annotations, which re-
main prohibitively expensive. Lightman
et al. (2023) pioneered PRM training by em-
ploying human experts to label 75K ques-
tions at the step level. While their approach

0.76
4.8x Costo_'-;il3
L 074 " 17.3x Cost 0.735
5 Fos-mmm--- *
9
w
-
= 0.72
L
on
£
L
2 Model
< 0.70
Y ActPRM
Y Universal PRM
0.68 % Qwen2.5-Math-PRM-7B
1
228 230 232 234
Est. Annotation Cost (Gen. Tokens)

Figure 1: = Average F1 score on Process-

Bench (Zheng et al., 2024) versus estimated
annotation cost. ACTPRM outperforms prior
SOTA models while requiring merely 20% of
the annotation costs.

achieved high-quality results (reaching 57.5% on ProcessBench (Zheng et al., 2024)), it does
not scale automatically due to the heavy reliance on manual annotation. To reduce human

*Work done during the internship in Sea Al Lab. Email: k.duan@u.nus.edu

tCorresponding authors.

IThe code is available at https://github.com/sail-sg/ ActivePRM

mailto:k.duan@u.nus.edu
https://github.com/sail-sg/ActivePRM

Published as a conference paper at COLM 2025

efforts, Monte Carlo (M.C.) Estimation Methods (Wang et al., 2024; Wei et al., 2024; Luo
et al., 2024) were proposed. However, these approaches come with high computational costs
(massive rollouts are required for accurate estimation) and struggle to accurately identify the
first error step (Zheng et al., 2024). To address this challenge, Qwen2.5-Math-PRM (Zhang
et al., 2025) proposed using LLM-as-Judge — leveraging LLMs to detect the first error step
— and filter out unreliable M.C. labels. It significantly boosts the performance of PRM on
both ProcessBench (Zheng et al., 2024) and PRMBench (Song et al., 2025). More recently,
UniversalPRM (Tan et al., 2025) relies solely on LLM-as-Judge with ensemble prompting
(via majority voting), achieving new SOTA performance on ProcessBench within the same
model size. However, the annotation costs are still considerable. We estimate the labeling
costs of Qwen2.5-Math-PRM (Zhang et al., 2025) and UniversalPRM (Tan et al., 2025) and
illustrate them in Figure 1. It shows that Qwen-Math-PRM-7B and UniversalPRM consume

over 23 and 232 generated tokens, respectively. Refer to Appendix C for estimation strategy.

To reduce annotation costs, we propose ACTPRM, which uses a trained ensemble PRM to
identify and select uncertain data for annotation by a high-capability reasoning model. Our
approach trains a PRM with ensemble heads for uncertainty estimation. For each reasoning
step, we compute the mean p and standard deviation ¢ of ensemble predictions, identifying
uncertain steps when prediction confidence is outside threshold 1 — 6,00 < p < Sprea
or variation exceeds ds;. We consider a CoT trajectory uncertain if any step up to and
including the first predicted error meets these criteria. By annotating only uncertain
data and training exclusively on this subset, we significantly reduce labeling costs while
maintaining PRM performance.

To validate the effectiveness and efficiency of ACTPRM, we conducted comprehensive
experiments in multiple settings:

* Pool-based Evaluation (Section 5.1): Using 100K labeled samples, ACTPRM
achieved performance comparable to full-data tuning while reducing annotation
costs by 50%. It consistently outperformed random selection under identical budget
constraints.

* One-shot Active Learning (Section 5.2): Starting with our pool-based model, we
applied ACTPRM to select uncertain samples from 1M+ unlabeled CoT trajectories
from NuminaMath (Li et al., 2024). After annotation and fine-tuning, we achieved
new SOTA performance of 75.0% on ProcessBench. As shown in Figure 1, ACTPRM
surpasses prior SOTA models with significantly lower costs—outperforming Uni-
versalPRM (Tan et al., 2025) by 0.7% using only 20% of its annotation budget and
exceeding Qwen2.5-Math-PRM-7B by 1.5% with just 6% of its annotation budget.

Our contributions are summarized as follows: @ We propose an uncertainty-aware active
learning approach ACTPRM for PRM training that selectively annotates informative rea-
soning steps using ensemble-based uncertainty estimation, significantly reducing labeling
costs while maintaining performance. ® ACTPRM achieves state-of-the-art results (75.0%
on ProcessBench, 65.5% on PRMBench) while requiring only 20% of the annotation budget
compared to prior SOTA method UniversalPRM. ® We release all trained models, datasets,
and code to ensure reproducibility and facilitate community adoption.

2 Preliminaries

2.1 Process Reward Models

Problem Formulation. Given a math problem g and a corresponding solution trajectory
s = [s1,S2,...,5u], where s; denotes i-th step., we require a PRM to identify the correctness
of each step until a wrong step is identified. We only label the steps up to and including the
first error step following prior works (Lightman et al., 2023; Zheng et al., 2024), since the
afterward steps are genuinely difficult to define their correctness. As a result, in practice
the labels for a solution trajectory are either [1,1,...,1] or [1,1,...,0]. Then a PRM could be
trained using the typical BCE loss:

Published as a conference paper at COLM 2025

1 Is|
Lpce (s, y]0) = e Y yilog(Py(silsp.y, q)) + (1 — y;) log(1 — Py(silsp,q)), M
1

where Py is the PRM parameterized by 6 and s|;; denotes the steps before s;. When using

PRM for inference, we set a threshold ¢ (usually 0.5) to identify the first step that has a
correctness probability Py(s;[s|.;), q) less than J.

PRM Implementation Details. A typical PRM is built upon a pretrained generative LLM
by replacing the causal language model head with a binary classification head that outputs
the probability of correctness at corresponding token position. In practice, we solely need
the prediction at the end of each reasoning step and thus a prediction mask is used to mask
out the prediction at the other positions.

2.2 Uncertainty Estimation for Classification

Aleatoric Uncertainty. As aforementioned, a typical PRM P, is trained as a binary clas-
sification task. The simplest way to measure the uncertainty for it is to use aleatoric

uncertainty (Valdenegro-Toro & Saromo, 2022):2.
Aleatoric Uncertainty o Py(s;) log Py(s;). (2)

Epistemic Uncertainty. In addition, ensemble of models is also a common way to estimate
epistemic uncertainty (Valdenegro-Toro & Saromo, 2022) by quantifying the disagreement
among ensemble models. For example, Liang et al. (2022); Gleave & Irving (2022) use an
ensemble of reward models to estimate uncertainty in preference learning. for process
reward modeling, we could leverage the standard deviation of the ensemble predictions as
the uncertainty estimation:

Epistemic Uncertainty o« Var({Py(s;)}), ©)]

where {Py} is a set of models. It is worth noting that employing an ensemble of heads
built upon a shared backbone is a common strategy to mitigate computational costs. We
empirically study the combination of aleatoric and epistemic uncertainty and find that they
are complementary to each other. Experimental results are shown in Section 5.1.

3 Related Work

Active Learning and Uncertainty Estimation. Active learning has been widely explored
in the alignment of LLMs. Several studies adopt an online bandit formulation, leveraging
uncertainty-aware reward models (RMs) for active exploration in response selection (Mehta
et al., 2023; Dwaracherla et al., 2024; Liu et al., 2024; Melo et al., 2024; Gleave & Irving, 2022).
For instance, Mehta et al. (2023) and Dwaracherla et al. (2024) use ensemble-based LLM
heads to estimate epistemic uncertainty, prioritizing data most informative for preference
learning. Similarly, Melo et al. (2024) propose an acquisition function combining both
entropy (aleatoric uncertainty) and epistemic uncertainty. Our work builds on these ap-
proaches, empirically evaluating the role of both uncertainty types in the context of process
reward modeling. Beyond active learning, ensemble methods—such as those in Coste et al.
(2024)—have also proven effective in mitigating reward hacking (Amodei et al., 2016).

Process Reward Models. Different from outcome rewards (e.g., verifiable re-
wards (DeepSeek-Al et al., 2025) for mathematical reasoning problems) that assign rewards
based on the final outcome, process rewards are assigned based on the intermediate steps of
the problem-solving process. For a question and a corresponding solution with several steps,
a PRM provides finer-grained rewards for each step. Til current stage, process reward mod-
eling contains two categories: (i) Process Reward as Q-values and (ii) Process Reward as Judger.
The former one (Wang et al., 2024; Luo et al., 2024; Wei et al., 2024; Li & Li, 2024) regards the
process reward as the Q-values of the steps that estimate the probability of the policy model

2For simplicity, we use Py(s;) as the aleatoric probability for the i-th step in the solution trajectory,
where the full representation is py(si[sy;, 7) as in Equation 1

Published as a conference paper at COLM 2025

Algorithm 1 PRM Active Learning with Cold Start.

1: // The difference with full data tuning is colored.
Input: Ensemble PRM Py, dataset D = {(g,s) }, uncertainty thresholds J,,.4 and dy4, gener-
ative LLM M, batch size B, learning rate 7
2: for BC D do
Py(B) < Forward(B)
B={}
for (q,5) € Bdo
if Z/lgjea (s)~\/ U™ (s) then > Equation 5
B« BU{(q,s)}
end if
end for _
Yg 1abeling(8) > Labeling using generative LLM
L+ il E(s,y)e(g,Yg) L(s,y) > Equation 4
12: VoL < Backward(L)
13: 0 0—yVoLl
14: end for
Output: P

@O XN > Ol ®

_ =
—_

to reach the final correct answer. Specifically, they leverage the policy model that generates
the solution steps to do Monte Carlo Estimation for each step. The estimated Q-values are
used as the process rewards. However, recent works (Zhang et al., 2025; Zheng et al., 2024)
show that this kind of process reward modeling suffers from identifying the process errors
because it highly depends on the policy model and has large bias with the ground truth
distribution. In contrast, the latter one (Lightman et al., 2023; Zhang et al., 2025) regards the
process reward model as a proxy for identifying the intermediate process errors and the
corresponding trained model achieves better performance on several benchmarks (Zheng
et al., 2024; Song et al., 2025). In this work, we follow the latter one and regard the process
reward as a judge that tries to identify the first error steps in the solutions if any. In addition,
there are other works related to PRM. For example, Yuan et al. (2024) tries to train a PRM
with a fashion of outcome reward modeling (ORM). Cheng et al. (2025); Cui et al. (2025)
proposed RL training frameworks that integrate PRM as finer-grained supervison.

4 Efficient Process Reward Labeling via Active Learning

Labeling the process rewards for a large-scale dataset is very expensive as it either requires
human experts to annotate the correctness of each step for each solution as in the previous
work (Lightman et al., 2023) or leverages highly capable generative models to imitate
human experts (Zhang et al., 2025). Even though the latter one is automated, it is still
resource-consuming since the test time scales up with the difficulty of math problems.

To mitigate this issue, we propose to leverage active learning to make the PRM proactively
select the data that is most informative to train on. Specifically, we train a PRM with
ensemble heads to enable uncertainty estimation following Liang et al. (2022); Gleave &
Irving (2022). As shown in Algorithm 1, We forward the data candidates to the ensemble
PRM (line 3) and estimate the prediction uncertainty for each data point (line 5-6). Then
we omit the data that the ensemble PRM is confident about (line 7) and only label the other
retained data with a generative reasoning LLM (line 10). Then, we only backpropagate from
the loss of labeled data (line 11). By doing so, we could considerably reduce the labeling
cost while maintaining the PRM performance. Now we introduce our two key differences
with the original finetuning: ensemble PRM training and uncertain data selection.

Ensemble PRM Training. In this work, we use ensemble of PRMs to estimate the epistemic
uncertainty following Gleave & Irving (2022); Liang et al. (2022). Specifically, we use
a shared LLM backbone and build multiple binary classification heads on top of it. In
our training, the diversity of ensemble models is ensured by two ways: (i) the random
initialization of the head layers and (ii) a diversity regularization term (Dwaracherla et al.,
2024): Lgiy = A+ 3 Yiq |¢f — ¢l i¢l12, where {¢'} are the parameters of the ensemble heads
and n is the number of ensemble heads. It is a L2 term penalizing the distance between

S W N =

~

Published as a conference paper at COLM 2025

Listing 1: Pseudo code of uncertainty estimation.

Compute ensemble predictions (num_ensemble, num_step)

score = 1llm(input_ids)

means, stds = score.mean(@), score.std(@) # Per-step statistics
Equ. 5 left

epistemic_uncertainty = stds >= std_threshold

Equ. 5 right

alearotic_uncertainty = (means <= pred_threshold) & (means >= 1 -

pred_threshold)
Alg. 1 line 6
uncertainty = any(epistemic_uncertainty | alearotic_uncertainty)

the ensemble head parameters and their initial parameters. Our training objective for the
ensemble PRM is therefore formulated as follows

n

1 ; . .
£1,5) = 3 (Loce(y,516,9) + Allg' — cll) @

i=1

where 6 denotes the backbone parameters and LzCE is from Equation 1, that computes the
loss for a certain head.

Uncertain Data Selection. Considering a batch of data candidates D = {(g,s)}, we first for-

ward the data to the ensemble PRM P to get the ensemble predictions Py(D) € R"*IPI*lsl,
for each data (q,s) € D, we could determine the hard-value aleatoric and epistemic uncer-
tainty with pre-set thresholds. Briefly, the aleatoric (or epistemic) uncertainty is defined as 1
if uncertainty occurs at any step prior to the first predicted error step; otherwise, it is 0. A
formal definition is as follows:

E(s) _ E(s)
U2 (s) = \/ (max (1(Po(si)), 1 — pu(Po(si))) < 5pred> ; U (s) =\ (0(Py(si) > bsta),
i=0 '

=0
©)

where y(+) and o (+) are the mean and standard deviation of the ensemble predictions among
ensemble heads and V denotes the logical ‘OR’ operation. Moreover, the £(s) denotes the
first error step in the solution trajectory s, defined as £(s) = min{j | u(s;) < ¢}, where ¢
is the threshold for the correctness, typically set to 0.5. This is because we only care about
the correctness of the steps before the first error step since it is genuinely difficult to define
the correctness of the steps afterwards. For further illustration, we also provide the pseudo
code of the uncertainty estimation as in Listing 1. By following the uncertainty estimation
strategy, we retain the data in D that satisfies either U3 or U,P" as D. Then we could
leverage expensive generative LLMs as judger (Zheng et al., 20243 to label the retained data

in D.

5 Experiments

In Section 5.1, we first validate ACTPRM in a pool-based active learning setting using 100K
labeled samples, including ablation studies on our uncertainty estimation strategy. Based on
the optimal configuration, we then scale up to 1M unlabeled samples in Section 5.2, further
proving our pipeline’s efficiency and effectiveness.

5.1 Pool-Based Active Learning

5.1.1 Experimental Settings

To evaluate our active learning strategy’s effectiveness, we first conduct experiments in an
offline setting where ACTPRM iteratively selects the most informative examples from a
large unlabeled pool as detailed in Algorithm 1. We establish a strong baseline by comparing

Published as a conference paper at COLM 2025

1
0.70 |
1
1

F1=0.673 4
___________________ - - 8
£ 0.60
0.65 5
Po.ss
] b
| 54 Model
| < 0.50 - (std: 0.005, p: 0.95)
. i -+ (p: 0.95)
§ 0.60 1 0.45 = (std: 0.005)
i : 0.2 0.4 0.6
o Budget
& ! (b)
g
1 1
Z0ss :
1
, © 0.650
[&
0.50 1 Model -
’ ! © ActPRM 5 0.625
Budget =05, <O Full Data Tuning ?
1 o
>
: < 0.600
0.45 1
1
0.0 0.2 0.4 0.6 0.8 1.0 2 " s 6 32 o4
Budget H :
(a) (C) #Heads

Figure 2: (a) Comparison of the average F1 score on ProcessBench between ACTPRM and
random selection, plotted against the normalized budget positively correlated the number
of labeled data instances consumed. The semi-transparent points represent all results in grid
searching w.rt. .4 and Jy. For the highlighted ACTPRM curve in the figure, 6,y = 0.95
and dg;y = 0.005. (b) Ablation: uncertainty estimation strategies. (c) Ablation: number of
ensemble PRM heads.

against full data tuning, where a model is trained on the complete dataset labeled by a
single annotator. It is worth noting that as our data is randomly shuffled, the performance
of full data tuning at intermediate training steps is essentially equivalent to the performance
of random selection with the corresponding budget.

Evaluation Benchmark. We utilize ProcessBench (Zheng et al., 2024) to evaluate the ef-
fectiveness of PRMs. The test data in ProcessBench contains intermediate step errors and
requires the PRM to identify the first error step. ProcessBench contains four subsets, and we
report the average F1 score following the original work.

Models. We train ACTPRM based on Qwen2.5-Math-7B-Instruct.

Training Dataset. For dataset construction, we randomly select 100K data from Numi-
namath (Li et al., 2024) dataset after decontamination against the ProcessBench (Zheng
et al., 2024) and PRMBench (Song et al., 2025). We leverage Qwen-2.5-Math-7B-Instruct
to generate CoT reasoning trajectories for the selected data and further use QwQ-32B as a
judge to annotate the process correctness for all trajectories following Zhang et al. (2025).
For completeness, we provide the prompt template in Appendix A.

5.1.2 Experimental Results

ACTPRM achieves comparable performance while reducing annotation costs by 50%.
We compare ACTPRM with full data tuning across a normalized budget, as illustrated
in Figure 2 (a). The results demonstrate that ACTPRM achieves an average F1 score of
0.673 on ProcessBench, matching baseline performance while using only half the annotation
budget. Furthermore, ACTPRM consistently outperforms random selection under the same
budget constraints. Notably, at 50% budget, ACTPRM surpasses random selection by a
significant margin of 3.3%. at the end of pool-based active training, ACTPRM achieves a
better performance of 0.680 on ProcessBench while consuming solely 62.5% budget.

ACTPRM Consistently Outperforms Random Selection Under Diverse 6,5 and Jgg.
As shown in Figure 2 (a), the semi-transparent blue points represent all results of a grid
searching over d,,,; € {0.9,0.95,0.97} and J;y € {0.01,0.005,0.002,0.001}. One can see

that most blue points are above the baseline (gray line) with the same budget, further
demonstrating the effectiveness and robustness of ACTPRM.

Published as a conference paper at COLM 2025

Ablation Study on Uncertainty Estimation Strategies. We conduct an ablation study on
uncertainty estimation strategies, i.e. using epistemic and aleatoric uncertainty. We selected
the best setting (05¢y = 0.005, 6,04 = 0.95) searched by a grid search as in Figure 2 and ablates
epistemic and aleatoric uncertainty by setting d5;y = inf and J,,.,y = 0.5, respectively. As
shown illustrated in Figure 2 (b), solely use either epistemic or aleatoric uncertainty under-
performs using both, indicating that epistemic and aleatoric uncertainty are complementary
to each other.

Ablation Study on Number of Heads for Ensemble PRM. The number of heads for
ensemble PRM controls how accurate our estimated epistemic uncertainty is. To find the
trade-off between good estimation and computational overhead, we conduct an ablation
study regarding it and show the results in Figure 2 (c), where we only consider epistemic
uncertainty by setting d;y = 0.005, .4 = 0.5 and report the averaged results with 3 runs.
We empirically find that the performance continually grows with the number of heads and
converges at about 32.

5.2 Achieving New SOTA Performance on ProcessBench (75.0%) with Solely 6%

Annotation Cost.

Obtaining high-quality process supervision la-
bels is costly. To demonstrate the efficiency of

Str] * 2.0e+10 15.9x

ACTPRM, we evaluate it in a one-shot active
learning setting. Starting with the model trained £1.
in Section 5.1, we select the most uncertain sam-

1.0e+10

4.8x
5.0e+09 l
; 0.0e+00

17.3x

en. Toke:

(
-
W
[+
+
o
o

ples from over 1M+ unlabeled examples and an-
notate them using a powerful reasoning model.

Figure 3 compares our estimated labeling costs
with those of other real-world datasets for train- Ours Ensemble Math Consensus
ing PRMs, including MathShepherd (Wang et al., Prompting Shepherd Filtering
2024), Consensus Filtering (Zhang et al., 2025),

and Ensemble Prompting (Tan et al., 2025). Since Figure 3: Estimated annotation costs (gen-
the training data for Consensus Filtering is not erated tokens) comparison between ACT-
publicly available, we estimate costs based on PRM and popular methods, including
our data statistics. We introduce our estimation Ensemble Prompting (Tan et al., 2025),
strategy in Appendix C. MathShepherd (Wang et al., 2024) and
Consensus Filtering (Zhang et al., 2025).

Est. Annotation Cos

Training a Qwen2.5-Math-7B-Instruct on our
data, Ensemble Prompting data, MathShepherd data, and Consensus Filtering data yields
ACTPRM, UniversalPRM, Qwen2.5-Math-7B-Math-Shepherd, and Qwen2.5-Math-PRM-7B
in Table 1. We evaluated the performance of models trained on this labeled data on both
ProcessBench and PRMBench benchmarks.

5.2.1 Experimental Settings

Data Filtering with ACTPRM. We used Qwen2.5-Math-7B-Instruct and Qwen2.5-Math-72B-
Instruct to collect over 1 million (1,061,763) Chain-of-Thought (COT) trajectories from the
Numinamath problem set (Li et al., 2024), after decontamination against the test benchmarks.
ACTPRM was then applied to filter out high-confidence (6,04 > 0.95 and Jy < 0.005
following Section 5.1) data instances that were unnecessary for training, retaining the
remaining data for labeling and training. This process resulted in a final dataset of 563,030
PRM data points labeled by QwQ-32B, reducing annotation costs by 47.0%.

Models. Obtaining the dataset, we continually train our ACTPRM in Section 5.1 on our
filtered dataset. In addition, we empirically find that our retrained data is generally useful
to other PRMs. Specifically, we also continually train Qwen2.5-Math-PRM-7B (the previous
SOTA model on ProcessBench) on our constructed data. The resultant model is named
ACTPRM-X°.

3X stands for extended version.

Published as a conference paper at COLM 2025

Models GSMSK MATH Olg’mplad OmniMath Average F1
ench
LLM-as-judge
01-Mini® 0.932 0.889 0.872 0.824 0.879
Deepseek-R1-Distill-32B 0.817 0.739 0.659 0.585 0.700
QwQ-32B 0.871 0.834 0.787 0.771 0.816
Process Reward Models (72B)
Qwen2.5-Math-PRM-72B° 0.873 0.806 0.743 0.711 0.783
Process Reward Models (7B+)
Math-Shepherd-PRM-7B° 0.479 0.295 0.248 0.238 0.315
Qwen?2.5-Math-7B-Math-Shepherd® 0.625 0.316 0.137 0.077 0.289
EurusPRM-Stage2® 0.473 0.357 0.212 0.209 0.313
Qwen2.5-Math-7B-PRM800K*® 0.683 0.626 0.507 0.443 0.565
Ensemble-PRM-PRMS800K (ours) 0.705 0.630 0.472 0.433 0.560
PURE-PRM-7B 0.690 0.665 0.484 0.459 0.575
Qwen2.5-Math-PRM-7B® 0.824 0.776 0.675 0.663 0.735
Universal-PRM 0.858 0.777 0.676 0.664 0.743
ACTPRM (ours) 0.816 0.798 0.714 0.670 0.750
ACTPRM-X (ours) 0.827 0.820 0.720 0.673 0.760

Table 1: Performance comparison on ProcessBench. We report the results in the same calcu-
lation method with ProcessBench. © denotes the results are from Qwen PRM’s report (Zhang
et al., 2025).

Benchmarks. We use ProcessBench (Zheng et al., 2024) and PRMBench (Song et al., 2025) to
evaluate the effectiveness of our trained model. Different from ProcessBench that collects
intermediate errors from real-world generative models, PRMBench heuristically builds
intermediate errors by manipulating correct steps.

Baselines. We compare with the following PRMs: @ Qwen2.5-Math-PRM-7B (Zhang et al.,
2025): This model uses consensus filtering for labeling. It labels 860K data twice using two
methods (LLM-as-judge [Zheng et al., 2024] and Mathshepherd [Wang et al., 2024]) and
filters out 40% of the data where the labels disagree. @& Pure-PRM-7B (Cheng et al., 2025):
A Qwen2.5-Math-based PRM trained on PRM800K using a two-stage strategy: warming
up the PRM head and then fine-tuning the entire model. ®: EurusPRM-Stage2 (Cui et al.,
2025): A PRM resulting from the Implicit PRM approach (Yuan et al., 2024), which derives
process rewards from an ORM. @ Universal-PRM (Tan et al., 2025): A Qwen2.5-Math-
based model trained with data augmentation techniques like ensemble prompting and
reverse verification. @ Math-Shepherd-PRM-7B (Wang et al., 2024): a PRM trained on
process labels that estimates hard Q-values for the policy model. ® Quwen2.5-Math-7B-Math-
Shepherd (Zhang et al., 2025): a PRM trained on 860K data labeled using MathShepherd.
@ Ensemble-PRM-PRMS800K (ours): a model with ensemble heads trained by ourselves on
PRMS800K without active learning.

5.2.2 Experimental Results

ACTPRM and ACTPRM-X achieve new SOTA performance on ProcessBench compared
with same size models. The evaluation results on ProcessBench are shown in Table 1.
ACTPRM achieves an average F1 score of 0.750, outperforming Qwen2.5-Math-PRM-7B
by a margin of 1.5%. Furthermore, ACTPRM-X training based on Qwen2.5-Math-PRM-7B
achieves a new SOTA performance on ProcessBench with an average F1 of 0.760, outper-
forming the second-place model (Universal-PRM) with a margin of 1.7% and improve the
performance of Qwen2.5-Math-PRM-7B by a significant margin of 2.5%.

QOwQ-32B (our PRM label annotator) outperforms all PRMs on ProcessBench. As shown
in Table 1, QwQ-32B outperforms all PRMs including 72B models. It indicates the reliability
of utilizing QwQ-32B as a PRM label annotator as it provides a high empirical upperbound
for the training PRMs.

ACTPRM-X achieves new SOTA performance on PRMBench, on-par with GPT-40. We
further test our models on PRMBench and show the results in Table 2. As on the leaderboard,
ACTPRM achieves the best performance within 7B PRMs and ACTPRM-X achieves new

Published as a conference paper at COLM 2025

Models Simlicity Soundness Sensitivity Average
LLM-as-judge

1 Gemini-2.0-thinking-exp-1219 0.662 0.718 0.753 0.688

1 ol-mini 0.646 0.721 0.755 0.688

4 GPT-4o 0.597 0.709 0.758 0.668

6 Gemini-2.0-flash-exp 0.627 0.673 0.754 0.660
Process Reward Models (72B)

3 Qwen-2.5-Math-PRM-72B 0.546 0.739 0.770 0.682
Process Reward Models (7B+)

7 Qwen2.5-Math-PRM-7B 0.521 0.710 0.755 0.655

9 Pure-PRM-7B 0.522 0.702 0.758 0.653

7 ACTPRM (ours) 0.536 0.713 0.752 0.655

5 ACTPRM-X (ours) 0.545 0.727 0.756 0.667

Table 2: Performance comparison on PRMBench. All results of the other models are from

the(ceeoco11 11
0.73

Data

== ActPRM Selected
== Randomly Selected

e
N
N

0.15

e
~
—-

Training Loss

0.10

Average F1 Score
S
=]

Data

=== ActPRM Selected
=~ Randomly Selected

500 1000 1500 2000 0 500 1000 1500 2000
Step Step

Figure 4: ProcessBench performance (left) and training loss (right): ActPRM v.s. random
data selection on 1M NuminaMath Rollouts.

SOTA performance (0.667), outperforming the other models by a large margin of at least
1.2% and on-par with GPT-40 (OpenAl et al., 2024a).

5.2.3 Comparative Experiment with Random Selection

A potential concern is that while ACTPRM achieves state-of-the-art (SOTA) performance
on several benchmarks, this success might be attributed solely to the high quality of our
collected data pool, rather than the method itself. To address this, we conducted a compar-
ative study with random selection. Specifically, we randomly selected 256K data points
from our retained dataset as the experimental group. For the control group, we randomly
selected the same number of data points from the entire data pool (over 1M) and used
the same annotator to label any unlabeled data (i.e., data not in the retained set). We then
continually train ACTPRM checkpoint, as in Sec 5.1, on both datasets. The results, including
performance on ProcessBench and training loss, are shown in Figure 4.

ACTPRM outperforms random selection of the same amount of data. As illustrated
in Figure 4 (left), the model trained on data selected by ACTPRM consistently achieves
significantly better results than the model trained on randomly selected data. To further
validate this, we compare their training losses in Figure 4 (right). The model trained on
ACTPRM-selected data exhibits a consistently higher training loss, with a margin of 0.05,
suggesting that the data selected by ACTPRM is more challenging and informative, thereby
enhancing the learning process.

6 Conclusion and Future Work

In this work, we address the high annotation costs associated with training Process Reward
Models (PRMs) by proposing ACTPRM, an uncertainty-aware active learning framework

Published as a conference paper at COLM 2025

that selectively annotates the most informative reasoning steps. By leveraging an ensemble
PRM to estimate uncertainty and strategically labeling only uncertain data, ACTPRM sig-
nificantly reduces annotation costs while maintaining competitive performance. Extensive
experiments demonstrate that ACTPRM achieves a new state-of-the-art (75.0% on Process-
Bench) with merely at most 20% of the labeling budget required by prior methods. Our
results highlight the potential of efficient data selection for scalable PRM training, and we
commit to releasing all models, datasets, and code to foster further research in this direction.

To further enhance PRM’s performance, several promising directions can be explored. First,
leveraging larger base models and more advanced LLM judges (e.g., O1-mini) could yield
significant improvements. Second, implementing the framework in an online setting would
ultimately enable PRM to iteratively refine its performance through active learning. Addi-
tionally, integrating online PRM training with reinforcement learning frameworks—such as
actor-critic methods—presents an exciting avenue for research.

Acknowledgement

This project was partly supported by the MOE AcRF Tier 1 grant with grant number
251RES2514.

References

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan
Mané. Concrete problems in ai safety, 2016. URL https://arxiv.org/abs/1606.06565.

Jie Cheng, Lijun Li, Gang Xiong, Jing Shao, and Yisheng Lv. Stop gamma decay: Min-form
credit assignment is all process reward model needs for reasoning, 2025. Notion Blog.

Thomas Coste, Usman Anwar, Robert Kirk, and David Krueger. Reward Model Ensembles
Help Mitigate Overoptimization, 2024.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan,
Tianyu Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards.
arXiv preprint arXiv:2502.01456, 2025.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu,
Z.F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan
Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu
Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong
Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu,
Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong
Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin
Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang,
Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun
Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu
Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu
Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu,
Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao,
Wen Liu, Wenfeng Liang, Wenjun Gao, Wengin Yu, Wentao Zhang, W. L. Xiao, Wei An,
Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie,
Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou,
Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao
Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong,
Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo,

10

https://arxiv.org/abs/1606.06565

Published as a conference paper at COLM 2025

Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui
Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren,
Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie,
Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang.
Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Vikranth Dwaracherla, Seyed Mohammad Asghari, Botao Hao, and Benjamin Van Roy.
Efficient exploration for llms. In International Conference on Machine Learning, 2024.

Adam Gleave and Geoffrey Irving. Uncertainty Estimation for Language Reward Models,
2022.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the
math dataset, 2021. URL https://arxiv.org/abs/2103.03874.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa
Huang, Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin
Dong, Li Zhou, Yann Fleureau, Guillaume Lample, and Stanislas Polu. Nu-
minamath. [https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/
project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf), 2024.

Wendi Li and Yixuan Li. Process reward model with g-value rankings. arXiv preprint
arXiv:2410.11287, 2024.

Xinran Liang, Katherine Shu, Kimin Lee, and Pieter Abbeel. Reward Uncertainty for
Exploration in Preference-based Reinforcement Learning, 2022.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s Verify Step by Step, 2023.

Zichen Liu, Changyu Chen, Chao Du, Wee Sun Lee, and Min Lin. Sample-efficient alignment
for llms, 2024. URL https://arxiv.org/abs/2411.01493.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan
Li, Lei Shu, Yun Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve Mathematical
Reasoning in Language Models by Automated Process Supervision, 2024.

Viraj Mehta, Vikramjeet Das, Ojash Neopane, Yijia Dai, Ilija Bogunovic, Jeff Schneider, and
Willie Neiswanger. Sample efficient reinforcement learning from human feedback via
active exploration. arXiv preprint arXiv:2312.00267, 2023.

Luckeciano C. Melo, Panagiotis Tigas, Alessandro Abate, and Yarin Gal. Deep bayesian
active learning for preference modeling in large language models, 2024. URL https:
//arxiv.org/abs/2406.10023.

OpenAl, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh,
Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry,
Alex Baker-Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov,
Alex Nichol, Alex Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi
Christakis, Alexis Conneau, Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou
Crookes, Amin Tootoochian, Amin Tootoonchian, Ananya Kumar, Andrea Vallone, An-
drej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codispoti, Andrew Galu,
Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek, Angela Jiang,
Antoine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi
Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben
Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob McGrew, Bobby
Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan Quinn,
Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo Lugaresi, Carroll
Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li, Chan Jun

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2103.03874
 [https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
 [https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://arxiv.org/abs/2411.01493
https://arxiv.org/abs/2406.10023
https://arxiv.org/abs/2406.10023

Published as a conference paper at COLM 2025

Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu, Chong
Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim,
Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Win-
ter, Coley Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn,
Daniel Kappler, Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David
Robinson, David Sasaki, Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong
Nguyen, Duncan Findlay, Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl,
Elizabeth Yang, Eric Antonow, Eric Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene
Brevdo, Evan Mays, Farzad Khorasani, Felipe Petroski Such, Filippo Raso, Francis Zhang,
Fred von Lohmann, Freddie Sulit, Gabriel Goh, Gene Oden, Geoff Salmon, Giulio Starace,
Greg Brockman, Hadi Salman, Haiming Bao, Haitang Hu, Hannah Wong, Haoyu Wang,
Heather Schmidt, Heather Whitney, Heewoo Jun, Hendrik Kirchner, Henrique Ponde
de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won Chung, lan Kivlichan, Ian
O’Connell, Ian O’Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan,
Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon, Jacob
Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James Lennon, Jamie
Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei, Jason
Wolfe, Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui Yu,
Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beutler, Joe
Landers, Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan
McKay, Jonathan Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin,
Jos Kraaijeveld, Josh Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce
Lee, Juntang Zhuang, Justyn Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy
Shi, Kavin Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu, Kenny Nguyen, Keren
Gu-Lemberg, Kevin Button, Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle Luther,
Lama Ahmad, Larry Kai, Lauren Itow, Lauren Workman, Leher Pathak, Leo Chen, Li Jing,
Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian Weng, Lindsay McCallum,
Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kondraciuk, Lukasz
Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine
Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall,
Marvin Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya
Shetty, Mayank Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong,
Mia Glaese, Mianna Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael Wu,
Michele Wang, Michelle Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Temudo
de Castro, Mikhail Pavlov, Miles Brundage, Miles Wang, Minal Khan, Mira Murati,
Mo Bavarian, Molly Lin, Murat Yesildal, Nacho Soto, Natalia Gimelshein, Natalie Cone,
Natalie Staudacher, Natalie Summers, Natan LaFontaine, Neil Chowdhury, Nick Ryder,
Nick Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige, Nitish Keskar, Noah
Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko, Oleg
Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen Campbell-Moore, Patrick
Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter
Dolan, Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla
Dhariwal, Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Randall Lin,
Rapha Gontijo Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza
Zamani, Ricky Wang, Rob Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit
Ramchandani, Romain Huet, Rory Carmichael, Rowan Zellers, Roy Chen, Ruby Chen,
Ruslan Nigmatullin, Ryan Cheu, Saachi Jain, Sam Altman, Sam Schoenholz, Sam Toizer,
Samuel Miserendino, Sandhini Agarwal, Sara Culver, Scott Ethersmith, Scott Gray, Sean
Grove, Sean Metzger, Shamez Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu,
Shino Jomoto, Shirong Wu, Shuaiqi, Xia, Sonia Phene, Spencer Papay, Srinivas Narayanan,
Steve Coffey, Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao Xu, Tarun
Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan, Thomas Cunninghman,
Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas Shadwell, Tianhao Zheng, Todd
Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan, Tristan
Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie
Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam
Manassra, Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim, Youlong
Cheng, Yu Zhang, Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury Malkov.
Gpt-4o system card, 2024a. URL https://arxiv.org/abs/2410.21276.

12

https://arxiv.org/abs/2410.21276

Published as a conference paper at COLM 2025

OpenAl, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky,
Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex
Karpenko, Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei,
Allison Tam, Ally Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew
Duberstein, Andrew Kondrich, Andrey Mishchenko, Andy Applebaum, Angela Jiang,
Ashvin Nair, Barret Zoph, Behrooz Ghorbani, Ben Rossen, Benjamin Sokolowsky, Boaz
Barak, Bob McGrew, Borys Minaiev, Botao Hao, Bowen Baker, Brandon Houghton, Bran-
don McKinzie, Brydon Eastman, Camillo Lugaresi, Cary Bassin, Cary Hudson, Chak Ming
Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang, Chris Koch, Chris Orsinger,
Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel Kappler, Daniel
Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson, Dimitris
Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Eliz-
abeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan
Wang, Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Fran-
cis Song, Fred von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo,
Gildas Chabot, Grace Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming
Bao, Hao Sheng, Hart Andrin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman,
Hyung Won Chung, Ian Kivlichan, Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte,
Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever, Irina Kofman, Jakub Pachocki, James Lennon,
Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu,
Joaquin Quifionero Candela, Joe Palermo, Joel Parish, Johannes Heidecke, John Hallman,
John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan Ward, Joost Huizinga, Julie
Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl Cobbe, Katy Shi, Kayla
Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu, Kevin Stone, Kevin Yu,
Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam Fedus, Lilian Weng,
Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kondraciuk, Lukasz
Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen, Marko
Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet Yat-
baz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael
Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov,
Miles Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat
McAleese, Neil Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown,
Ofir Nachum, Oleg Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne,
Pavel Izmailov, Peter Zhokhov, Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo
Lopes, Raz Gaon, Reah Miyara, Reimar Leike, Renny Hwang, Rhythm Garg, Robin Brown,
Roshan James, Rui Shu, Ryan Cheu, Ryan Greene, Saachi Jain, Sam Altman, Sam Toizer,
Sam Toyer, Samuel Miserendino, Sandhini Agarwal, Santiago Hernandez, Sasha Baker,
Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani Santurkar, Shraman Ray
Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph Lin, Suchir Balaji, Suvansh
Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Taylor Gordon, Ted Sanders,
Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson, Tianhao Zheng,
Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna Eloundou,
Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi Zheng,
Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan
Li. Openai o1 system card, 2024b. URL https://arxiv.org/abs/2412.16726.

Mingyang Song, Zhaochen Su, Xiaoye Qu, Jiawei Zhou, and Yu Cheng. PRMBench: A
Fine-grained and Challenging Benchmark for Process-Level Reward Models, 2025.

Xiaoyu Tan, Tianchu Yao, Chao Qu, Bin Li, Minghao Yang, Dakuan Lu, Haozhe Wang,
Xihe Qiu, Wei Chu, Yinghui Xu, and Yuan Qi. Aurora:automated training framework of
universal process reward models via ensemble prompting and reverse verification, 2025.
URL https://arxiv.org/abs/2502.11520.

Matias Valdenegro-Toro and Daniel Saromo. A deeper look into aleatoric and epistemic
uncertainty disentanglement, 2022. URL https://arxiv.org/abs/2204.09308.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and
Zhifang Sui. Math-Shepherd: Verify and Reinforce LLMs Step-by-step without Human
Annotations, 2024.

13

https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2502.11520
https://arxiv.org/abs/2204.09308

Published as a conference paper at COLM 2025

Xiong Wei, Zhang Hanning, Jiang Nan, and Zhang Tong. An implementation of generative
prm., 2024. URL https://github.com/RLHFlow/RLHF-Reward-Modeling.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei
Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqgin
Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin,
Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yugiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical
report. arXiv preprint arXiv:2412.15115, 2024.

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou,
Zhiyuan Liu, and Hao Peng. Free process rewards without process labels. arXiv preprint
arXiv:2412.01981, 2024.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng
Liu, Jingren Zhou, and Junyang Lin. The Lessons of Developing Process Reward Models
in Mathematical Reasoning, 2025.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayi-
heng Liu, Jingren Zhou, and Junyang Lin. ProcessBench: Identifying Process Errors in
Mathematical Reasoning, 2024.

14

https://github.com/RLHFlow/RLHF-Reward-Modeling

15
16
17
18
19
2

21

22
23
24
25
26
27
28

29

44
45
16

47

48

49
5(

Published as a conference paper at COLM 2025

A LLM-as-Judger Prompt Template

For LLM-as-Judger, we follow the prompt in Zhang et al. (2025).

I will provide a math problem along with a solution. They will be formatted as follows:
[Math Problem]

<math_problem>

...(math problem)...

</math_problem>

[Solution]

<paragraph_1>

...(paragraph 1 of solution)...

</paragraph_1>

<paragraph_n>
...(paragraph n of solution)...
</paragraph_n>

Your task is to review each paragraph of the solution in sequence, analyzing,
verifying, and critiquing the reasoning in detail. You need to provide the
analyses and the conclusion in the following format:

<analysis_1>

...(analysis of paragraph 1)...

</analysis_1>

<analysis_n>

...(analysis of paragraph n)...
</analysis_n>

<conclusion>

Correct/Incorrect

</conclusion>

* When you analyze each paragraph, you should use proper verification, recalculation, or

reflection to indicate whether it is logically and mathematically valid. Please

elaborate on the analysis process carefully.

* If an error is detected in any paragraph, you should describe the nature and cause of the

error in detail, and suggest how to correct the error or the correct approach. Once a

paragraph is found to contain any error, stop further analysis of subsequent

paragraphs (as they may depend on the identified error) and directly provide the

conclusion of "Incorrect.” For instance, given a solution of five paragraphs, if an

error is found in the third paragraph, you should reply in the following format:

<analysis_1>

...(analysis of paragraph 1)...

</analysis_1>

<analysis_2>

...(analysis of paragraph 2)...

</analysis_3>

<analysis_3>

...(analysis of paragraph 3; since an error is found here, also provide detailed critique and
< correction guideline)...

</analysis_3>

<conclusion>

Incorrect

</conclusion>

Note that the analyses of paragraphs 4 and 5 should be skipped as the paragraph 3 has been
— found to contain an error.

* Respond with your analyses and conclusion directly.

Ll

Loy

The following is the math problem and the solution for your task:
[Math Problem]

{tagged_problem}

[Solution]

{tagged_response}

B More Experiment Results

B.1 Problem diversity is important for Training PRMs

PRMBS800K (Lightman et al., 2023) is a widely used and human-annotated dataset for PRM
training, which contains 800K step-level labels across 75K tree-of-thoughts solutions to 12K

MATH (Hendrycks et al., 2021). Our empirical results show that models trained on our
dataset (100K samples from 100K diverse questions) consistently and significantly outper-

15

Published as a conference paper at COLM 2025

Problem set # CoT Trajectories ProcessBench F1 score

PRMS800K 7,500 460,000 0.575
NuminaMath (Random Selected) 100,000 100,000 0.673

Table 3: Comparison between PRM800K and 100K data collected from NuminaMath labeled
by Qwen-QwQ.

form those trained on PRM800K* (369K samples from only 12K questions) on ProcessBench.
These findings suggest that problem diversity plays a more crucial role in PRM training
than the number of step-level annotations.

C Annotation Cost Estimation

We estimate the labeling cost based on the statistics of our 1M data collected from Numina-
Math Li et al. (2024) using Qwen2.5-Math-7B-Instruct and Qwen2.5-Math-72B-Instruct. We
introduce the statistics in Table 4.

Value Source
Reasoning Steps (S) 8.845 Qwen Models’ rollouts
Tokens per Rollout (R) 625.098 Qwen Models’ rollouts

Tokens per Critic Response from Judge (C) 1,919.860 Qwen-QwQ’s responses as LLM-as-Judge

Table 4: Statistics of 1M NuminaMath CoT Trajectories collected by Qwen2.5-Math Models.

In addition to the statistics, we also use N to denote the data number of the dataset and
show this statistic of each model’s training dataset in Table 5

Dataset # Labeled Data

ACTPRM 624,000 (labeled in two stages)
Qwen2.5-Math-PRM-Math-shepherd 860,000

Qwen2.5-Math-PRM 860,000

Universal PRM 690,000

Table 5: Data number of datasets.

Using the statistics, we compute the estimated labeling cost for ACTPRM, Qwen2.5-Math-
PRM-Math-shepherd (Zhang et al., 2025), Qwen2.5-Math-PRM(Zhang et al., 2025), Univer-
salPRM Tan et al. (2025) as follows:

* Qwen2.5-Math-PRM-Math-shepherd: N x S x 8 x R/2, where 8 is the number of
rollouts per step set in Zhang et al. (2025). We divided by two since the number
of tokens for rollouts varies based on the position of reasoning step. For latter
reasoning step, it requires less reasoning tokens. As a result, the expectation of
tokens per rollout should be half of the number of tokens of the complete rollout.

* Qwen2.5-Math-PRM: N x S x 8 x R/2 4 N x C. It used consensus filtering for each
data, the cost is both from MathShepherd (S x 8 x R/2) and LLM-as-Judge (C).

® UniversalPRM: N x C x 4+ N x S, where 4 is the number of ensemble prompts
from the original paper (Tan et al., 2025) and another N x S is for its semantic-based
step seperation.

e ACTPRM: N x C. We solely use Qwen-QwQ as Judge and do not include any other
operations.

4https://huggingface.co/datasets/HuggingFaceH4/prm8ook-trl-dedup

16

https://huggingface.co/datasets/HuggingFaceH4/prm800k-trl-dedup

	Introduction
	Preliminaries
	Process Reward Models
	Uncertainty Estimation for Classification

	Related Work
	Efficient Process Reward Labeling via Active Learning
	Experiments
	Pool-Based Active Learning
	Experimental Settings
	Experimental Results

	Achieving New SOTA Performance on ProcessBench (75.0%) with Solely 6% Annotation Cost.
	Experimental Settings
	Experimental Results
	Comparative Experiment with Random Selection

	Conclusion and Future Work
	LLM-as-Judger Prompt Template
	More Experiment Results
	Problem diversity is important for Training PRMs

	Annotation Cost Estimation

