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Abstract

Process Reward Models (PRMs) provide step-level supervision to large
language models (LLMs), but scaling up training data annotation remains
challenging for both humans and LLMs. To address this limitation, we
propose an active learning approach, ACTPRM, which proactively selects
the most uncertain samples for training, substantially reducing labeling
costs. During training, we use the PRM to estimate uncertainty after the
forward pass, retaining only highly uncertain data. A capable yet costly
reasoning model then labels this data. Then we compute the loss w.r.t. the
labels and update the PRM’s weights. We compare ACTPRM vs. vanilla
fine-tuning, on a pool-based active learning setting, demonstrating that
ACTPRM reduce 50% annotation, but achieving the comparable or even
better performance. Beyond annotation efficiency, we further advance the
actively trained PRM by filtering over 1M+ math reasoning trajectories
with ACTPRM, retaining 60% of the data. A subsequent training on this
selected dataset yields a new state-of-the-art (SOTA) PRM on ProcessBench

(75.0%) and PRMBench (65.5%) compared with same sized models !.

1 Introduction

Recently, Large Language Models
(LLMs) (DeepSeek-Al et al., 2025; Yang
et al.,, 2024; OpenAl et al., 2024b) have
shown remarkable advances in mathemat-
ical reasoning, yet they can make mistakes
during chain-of-thought (CoT) reasoning
despite correct final answers(Zheng et al.,
2024). To address this challenge, process
reward models (Lightman et al., 2023;
Wang et al., 2024; Zhang et al., 2025) were
proposed, aiming to identify process errors
and provide finer-grained supervision of
the training process.

The main challenge in training Process Re-
ward Models (PRMs) lies in obtaining fine-
grained step-level annotations, which re-
main prohibitively expensive. Lightman
et al. (2023) pioneered PRM training by em-
ploying human experts to label 75K ques-
tions at the step level. While their approach
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Figure 1: = Average F1 score on Process-

Bench (Zheng et al., 2024) versus estimated
annotation cost. ACTPRM outperforms prior
SOTA models while requiring merely 20% of
the annotation costs.

achieved high-quality results (reaching 57.5% on ProcessBench (Zheng et al., 2024)), it does
not scale automatically due to the heavy reliance on manual annotation. To reduce human
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efforts, Monte Carlo (M.C.) Estimation Methods (Wang et al., 2024; Wei et al., 2024; Luo
et al., 2024) were proposed. However, these approaches come with high computational costs
(massive rollouts are required for accurate estimation) and struggle to accurately identify the
first error step (Zheng et al., 2024). To address this challenge, Qwen2.5-Math-PRM (Zhang
et al., 2025) proposed using LLM-as-Judge — leveraging LLMs to detect the first error step
— and filter out unreliable M.C. labels. It significantly boosts the performance of PRM on
both ProcessBench (Zheng et al., 2024) and PRMBench (Song et al., 2025). More recently,
UniversalPRM (Tan et al., 2025) relies solely on LLM-as-Judge with ensemble prompting
(via majority voting), achieving new SOTA performance on ProcessBench within the same
model size. However, the annotation costs are still considerable. We estimate the labeling
costs of Qwen2.5-Math-PRM (Zhang et al., 2025) and UniversalPRM (Tan et al., 2025) and
illustrate them in Figure 1. It shows that Qwen-Math-PRM-7B and UniversalPRM consume

over 23 and 232 generated tokens, respectively. Refer to Appendix C for estimation strategy.

To reduce annotation costs, we propose ACTPRM, which uses a trained ensemble PRM to
identify and select uncertain data for annotation by a high-capability reasoning model. Our
approach trains a PRM with ensemble heads for uncertainty estimation. For each reasoning
step, we compute the mean p and standard deviation ¢ of ensemble predictions, identifying
uncertain steps when prediction confidence is outside threshold 1 — 6,00 < p < Sprea
or variation exceeds ds;. We consider a CoT trajectory uncertain if any step up to and
including the first predicted error meets these criteria. By annotating only uncertain
data and training exclusively on this subset, we significantly reduce labeling costs while
maintaining PRM performance.

To validate the effectiveness and efficiency of ACTPRM, we conducted comprehensive
experiments in multiple settings:

* Pool-based Evaluation (Section 5.1): Using 100K labeled samples, ACTPRM
achieved performance comparable to full-data tuning while reducing annotation
costs by 50%. It consistently outperformed random selection under identical budget
constraints.

* One-shot Active Learning (Section 5.2): Starting with our pool-based model, we
applied ACTPRM to select uncertain samples from 1M+ unlabeled CoT trajectories
from NuminaMath (Li et al., 2024). After annotation and fine-tuning, we achieved
new SOTA performance of 75.0% on ProcessBench. As shown in Figure 1, ACTPRM
surpasses prior SOTA models with significantly lower costs—outperforming Uni-
versalPRM (Tan et al., 2025) by 0.7% using only 20% of its annotation budget and
exceeding Qwen2.5-Math-PRM-7B by 1.5% with just 6% of its annotation budget.

Our contributions are summarized as follows: @ We propose an uncertainty-aware active
learning approach ACTPRM for PRM training that selectively annotates informative rea-
soning steps using ensemble-based uncertainty estimation, significantly reducing labeling
costs while maintaining performance. ® ACTPRM achieves state-of-the-art results (75.0%
on ProcessBench, 65.5% on PRMBench) while requiring only 20% of the annotation budget
compared to prior SOTA method UniversalPRM. ® We release all trained models, datasets,
and code to ensure reproducibility and facilitate community adoption.

2 Preliminaries

2.1 Process Reward Models

Problem Formulation. Given a math problem g and a corresponding solution trajectory
s = [s1,S2,...,5u], where s; denotes i-th step., we require a PRM to identify the correctness
of each step until a wrong step is identified. We only label the steps up to and including the
first error step following prior works (Lightman et al., 2023; Zheng et al., 2024), since the
afterward steps are genuinely difficult to define their correctness. As a result, in practice
the labels for a solution trajectory are either [1,1,...,1] or [1,1,...,0]. Then a PRM could be
trained using the typical BCE loss:
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1

where Py is the PRM parameterized by 6 and s|;; denotes the steps before s;. When using

PRM for inference, we set a threshold ¢ (usually 0.5) to identify the first step that has a
correctness probability Py(s;[s|.;), q) less than J.

PRM Implementation Details. A typical PRM is built upon a pretrained generative LLM
by replacing the causal language model head with a binary classification head that outputs
the probability of correctness at corresponding token position. In practice, we solely need
the prediction at the end of each reasoning step and thus a prediction mask is used to mask
out the prediction at the other positions.

2.2 Uncertainty Estimation for Classification

Aleatoric Uncertainty. As aforementioned, a typical PRM P, is trained as a binary clas-
sification task. The simplest way to measure the uncertainty for it is to use aleatoric

uncertainty (Valdenegro-Toro & Saromo, 2022):2.
Aleatoric Uncertainty o Py(s;) log Py(s;). (2)

Epistemic Uncertainty. In addition, ensemble of models is also a common way to estimate
epistemic uncertainty (Valdenegro-Toro & Saromo, 2022) by quantifying the disagreement
among ensemble models. For example, Liang et al. (2022); Gleave & Irving (2022) use an
ensemble of reward models to estimate uncertainty in preference learning. for process
reward modeling, we could leverage the standard deviation of the ensemble predictions as
the uncertainty estimation:

Epistemic Uncertainty o« Var({Py(s;)}), ©)]

where {Py} is a set of models. It is worth noting that employing an ensemble of heads
built upon a shared backbone is a common strategy to mitigate computational costs. We
empirically study the combination of aleatoric and epistemic uncertainty and find that they
are complementary to each other. Experimental results are shown in Section 5.1.

3 Related Work

Active Learning and Uncertainty Estimation. Active learning has been widely explored
in the alignment of LLMs. Several studies adopt an online bandit formulation, leveraging
uncertainty-aware reward models (RMs) for active exploration in response selection (Mehta
et al., 2023; Dwaracherla et al., 2024; Liu et al., 2024; Melo et al., 2024; Gleave & Irving, 2022).
For instance, Mehta et al. (2023) and Dwaracherla et al. (2024) use ensemble-based LLM
heads to estimate epistemic uncertainty, prioritizing data most informative for preference
learning. Similarly, Melo et al. (2024) propose an acquisition function combining both
entropy (aleatoric uncertainty) and epistemic uncertainty. Our work builds on these ap-
proaches, empirically evaluating the role of both uncertainty types in the context of process
reward modeling. Beyond active learning, ensemble methods—such as those in Coste et al.
(2024)—have also proven effective in mitigating reward hacking (Amodei et al., 2016).

Process Reward Models. Different from outcome rewards (e.g., verifiable re-
wards (DeepSeek-Al et al., 2025) for mathematical reasoning problems) that assign rewards
based on the final outcome, process rewards are assigned based on the intermediate steps of
the problem-solving process. For a question and a corresponding solution with several steps,
a PRM provides finer-grained rewards for each step. Til current stage, process reward mod-
eling contains two categories: (i) Process Reward as Q-values and (ii) Process Reward as Judger.
The former one (Wang et al., 2024; Luo et al., 2024; Wei et al., 2024; Li & Li, 2024) regards the
process reward as the Q-values of the steps that estimate the probability of the policy model

2For simplicity, we use Py(s;) as the aleatoric probability for the i-th step in the solution trajectory,
where the full representation is py(si[sy;, 7) as in Equation 1
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Algorithm 1 PRM Active Learning with Cold Start.

1: // The difference with full data tuning is colored.
Input: Ensemble PRM Py, dataset D = {(g,s) }, uncertainty thresholds J,,.4 and dy4, gener-
ative LLM M, batch size B, learning rate 7
2: for BC D do
Py(B) < Forward(B)
B={}
for (q,5) € Bdo
if Z/lgjea (s)~\/ U™ (s) then > Equation 5
B« BU{(q,s)}
end if
end for _
Yg 1abeling(8 ) > Labeling using generative LLM
L+ il E(s,y)e(g,Yg) L(s,y) > Equation 4
12: VoL < Backward(L)
13: 0 0—yVoLl
14: end for
Output: P

@O XN > Ol ®

_ =
—_

to reach the final correct answer. Specifically, they leverage the policy model that generates
the solution steps to do Monte Carlo Estimation for each step. The estimated Q-values are
used as the process rewards. However, recent works (Zhang et al., 2025; Zheng et al., 2024)
show that this kind of process reward modeling suffers from identifying the process errors
because it highly depends on the policy model and has large bias with the ground truth
distribution. In contrast, the latter one (Lightman et al., 2023; Zhang et al., 2025) regards the
process reward model as a proxy for identifying the intermediate process errors and the
corresponding trained model achieves better performance on several benchmarks (Zheng
et al., 2024; Song et al., 2025). In this work, we follow the latter one and regard the process
reward as a judge that tries to identify the first error steps in the solutions if any. In addition,
there are other works related to PRM. For example, Yuan et al. (2024) tries to train a PRM
with a fashion of outcome reward modeling (ORM). Cheng et al. (2025); Cui et al. (2025)
proposed RL training frameworks that integrate PRM as finer-grained supervison.

4 Efficient Process Reward Labeling via Active Learning

Labeling the process rewards for a large-scale dataset is very expensive as it either requires
human experts to annotate the correctness of each step for each solution as in the previous
work (Lightman et al., 2023) or leverages highly capable generative models to imitate
human experts (Zhang et al., 2025). Even though the latter one is automated, it is still
resource-consuming since the test time scales up with the difficulty of math problems.

To mitigate this issue, we propose to leverage active learning to make the PRM proactively
select the data that is most informative to train on. Specifically, we train a PRM with
ensemble heads to enable uncertainty estimation following Liang et al. (2022); Gleave &
Irving (2022). As shown in Algorithm 1, We forward the data candidates to the ensemble
PRM (line 3) and estimate the prediction uncertainty for each data point (line 5-6). Then
we omit the data that the ensemble PRM is confident about (line 7) and only label the other
retained data with a generative reasoning LLM (line 10). Then, we only backpropagate from
the loss of labeled data (line 11). By doing so, we could considerably reduce the labeling
cost while maintaining the PRM performance. Now we introduce our two key differences
with the original finetuning: ensemble PRM training and uncertain data selection.

Ensemble PRM Training. In this work, we use ensemble of PRMs to estimate the epistemic
uncertainty following Gleave & Irving (2022); Liang et al. (2022). Specifically, we use
a shared LLM backbone and build multiple binary classification heads on top of it. In
our training, the diversity of ensemble models is ensured by two ways: (i) the random
initialization of the head layers and (ii) a diversity regularization term (Dwaracherla et al.,
2024): Lgiy = A+ 3 Yiq |¢f — ¢l i¢l12, where {¢'} are the parameters of the ensemble heads
and n is the number of ensemble heads. It is a L2 term penalizing the distance between
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Listing 1: Pseudo code of uncertainty estimation.

# Compute ensemble predictions (num_ensemble, num_step)

score = 1llm(input_ids)

means, stds = score.mean(@), score.std(@) # Per-step statistics
# Equ. 5 left

epistemic_uncertainty = stds >= std_threshold

# Equ. 5 right

alearotic_uncertainty = (means <= pred_threshold) & (means >= 1 -

pred_threshold)
# Alg. 1 line 6
uncertainty = any(epistemic_uncertainty | alearotic_uncertainty)

the ensemble head parameters and their initial parameters. Our training objective for the
ensemble PRM is therefore formulated as follows

n

1 ; . .
£1,5) = 3 (Loce(y,516,9) + Allg' — cll) @

i=1

where 6 denotes the backbone parameters and LzCE is from Equation 1, that computes the
loss for a certain head.

Uncertain Data Selection. Considering a batch of data candidates D = {(g,s)}, we first for-

ward the data to the ensemble PRM P to get the ensemble predictions Py(D) € R"*IPI*lsl,
for each data (q,s) € D, we could determine the hard-value aleatoric and epistemic uncer-
tainty with pre-set thresholds. Briefly, the aleatoric (or epistemic) uncertainty is defined as 1
if uncertainty occurs at any step prior to the first predicted error step; otherwise, it is 0. A
formal definition is as follows:

E(s) _ E(s)
U2 (s) = \/ (max (1(Po(si)), 1 — pu(Po(si))) < 5pred> ; U (s) =\ (0(Py(si) > bsta),
i=0 '

=0
©)

where y(+) and o (+) are the mean and standard deviation of the ensemble predictions among
ensemble heads and V denotes the logical ‘OR’ operation. Moreover, the £(s) denotes the
first error step in the solution trajectory s, defined as £(s) = min{j | u(s;) < ¢}, where ¢
is the threshold for the correctness, typically set to 0.5. This is because we only care about
the correctness of the steps before the first error step since it is genuinely difficult to define
the correctness of the steps afterwards. For further illustration, we also provide the pseudo
code of the uncertainty estimation as in Listing 1. By following the uncertainty estimation
strategy, we retain the data in D that satisfies either U3 or U,P" as D. Then we could
leverage expensive generative LLMs as judger (Zheng et al., 20243 to label the retained data

in D.

5 Experiments

In Section 5.1, we first validate ACTPRM in a pool-based active learning setting using 100K
labeled samples, including ablation studies on our uncertainty estimation strategy. Based on
the optimal configuration, we then scale up to 1M unlabeled samples in Section 5.2, further
proving our pipeline’s efficiency and effectiveness.

5.1 Pool-Based Active Learning

5.1.1 Experimental Settings

To evaluate our active learning strategy’s effectiveness, we first conduct experiments in an
offline setting where ACTPRM iteratively selects the most informative examples from a
large unlabeled pool as detailed in Algorithm 1. We establish a strong baseline by comparing
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Figure 2: (a) Comparison of the average F1 score on ProcessBench between ACTPRM and
random selection, plotted against the normalized budget positively correlated the number
of labeled data instances consumed. The semi-transparent points represent all results in grid
searching w.rt. .4 and Jy. For the highlighted ACTPRM curve in the figure, 6,y = 0.95
and dg;y = 0.005. (b) Ablation: uncertainty estimation strategies. (c) Ablation: number of
ensemble PRM heads.

against full data tuning, where a model is trained on the complete dataset labeled by a
single annotator. It is worth noting that as our data is randomly shuffled, the performance
of full data tuning at intermediate training steps is essentially equivalent to the performance
of random selection with the corresponding budget.

Evaluation Benchmark. We utilize ProcessBench (Zheng et al., 2024) to evaluate the ef-
fectiveness of PRMs. The test data in ProcessBench contains intermediate step errors and
requires the PRM to identify the first error step. ProcessBench contains four subsets, and we
report the average F1 score following the original work.

Models. We train ACTPRM based on Qwen2.5-Math-7B-Instruct.

Training Dataset. For dataset construction, we randomly select 100K data from Numi-
namath (Li et al., 2024) dataset after decontamination against the ProcessBench (Zheng
et al., 2024) and PRMBench (Song et al., 2025). We leverage Qwen-2.5-Math-7B-Instruct
to generate CoT reasoning trajectories for the selected data and further use QwQ-32B as a
judge to annotate the process correctness for all trajectories following Zhang et al. (2025).
For completeness, we provide the prompt template in Appendix A.

5.1.2 Experimental Results

ACTPRM achieves comparable performance while reducing annotation costs by 50%.
We compare ACTPRM with full data tuning across a normalized budget, as illustrated
in Figure 2 (a). The results demonstrate that ACTPRM achieves an average F1 score of
0.673 on ProcessBench, matching baseline performance while using only half the annotation
budget. Furthermore, ACTPRM consistently outperforms random selection under the same
budget constraints. Notably, at 50% budget, ACTPRM surpasses random selection by a
significant margin of 3.3%. at the end of pool-based active training, ACTPRM achieves a
better performance of 0.680 on ProcessBench while consuming solely 62.5% budget.

ACTPRM Consistently Outperforms Random Selection Under Diverse 6,5 and Jgg.
As shown in Figure 2 (a), the semi-transparent blue points represent all results of a grid
searching over d,,,; € {0.9,0.95,0.97} and J;y € {0.01,0.005,0.002,0.001}. One can see

that most blue points are above the baseline (gray line) with the same budget, further
demonstrating the effectiveness and robustness of ACTPRM.
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Ablation Study on Uncertainty Estimation Strategies. We conduct an ablation study on
uncertainty estimation strategies, i.e. using epistemic and aleatoric uncertainty. We selected
the best setting (05¢y = 0.005, 6,04 = 0.95) searched by a grid search as in Figure 2 and ablates
epistemic and aleatoric uncertainty by setting d5;y = inf and J,,.,y = 0.5, respectively. As
shown illustrated in Figure 2 (b), solely use either epistemic or aleatoric uncertainty under-
performs using both, indicating that epistemic and aleatoric uncertainty are complementary
to each other.

Ablation Study on Number of Heads for Ensemble PRM. The number of heads for
ensemble PRM controls how accurate our estimated epistemic uncertainty is. To find the
trade-off between good estimation and computational overhead, we conduct an ablation
study regarding it and show the results in Figure 2 (c), where we only consider epistemic
uncertainty by setting d;y = 0.005, .4 = 0.5 and report the averaged results with 3 runs.
We empirically find that the performance continually grows with the number of heads and
converges at about 32.

5.2 Achieving New SOTA Performance on ProcessBench (75.0%) with Solely 6%

Annotation Cost.

Obtaining high-quality process supervision la-
bels is costly. To demonstrate the efficiency of
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Figure 3 compares our estimated labeling costs
with those of other real-world datasets for train- Ours  Ensemble  Math  Consensus
ing PRMs, including MathShepherd (Wang et al., Prompting Shepherd  Filtering
2024), Consensus Filtering (Zhang et al., 2025),

and Ensemble Prompting (Tan et al., 2025). Since  Figure 3: Estimated annotation costs (gen-
the training data for Consensus Filtering is not erated tokens) comparison between ACT-
publicly available, we estimate costs based on PRM and popular methods, including
our data statistics. We introduce our estimation Ensemble Prompting (Tan et al., 2025),
strategy in Appendix C. MathShepherd (Wang et al., 2024) and
Consensus Filtering (Zhang et al., 2025).

Est. Annotation Cos

Training a Qwen2.5-Math-7B-Instruct on our
data, Ensemble Prompting data, MathShepherd data, and Consensus Filtering data yields
ACTPRM, UniversalPRM, Qwen2.5-Math-7B-Math-Shepherd, and Qwen2.5-Math-PRM-7B
in Table 1. We evaluated the performance of models trained on this labeled data on both
ProcessBench and PRMBench benchmarks.

5.2.1 Experimental Settings

Data Filtering with ACTPRM. We used Qwen2.5-Math-7B-Instruct and Qwen2.5-Math-72B-
Instruct to collect over 1 million (1,061,763) Chain-of-Thought (COT) trajectories from the
Numinamath problem set (Li et al., 2024), after decontamination against the test benchmarks.
ACTPRM was then applied to filter out high-confidence (6,04 > 0.95 and Jy < 0.005
following Section 5.1) data instances that were unnecessary for training, retaining the
remaining data for labeling and training. This process resulted in a final dataset of 563,030
PRM data points labeled by QwQ-32B, reducing annotation costs by 47.0%.

Models. Obtaining the dataset, we continually train our ACTPRM in Section 5.1 on our
filtered dataset. In addition, we empirically find that our retrained data is generally useful
to other PRMs. Specifically, we also continually train Qwen2.5-Math-PRM-7B (the previous
SOTA model on ProcessBench) on our constructed data. The resultant model is named
ACTPRM-X°.

3X stands for extended version.
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Models GSMSK MATH Olg’mplad OmniMath Average F1
ench
LLM-as-judge
01-Mini® 0.932 0.889 0.872 0.824 0.879
Deepseek-R1-Distill-32B 0.817 0.739 0.659 0.585 0.700
QwQ-32B 0.871 0.834 0.787 0.771 0.816
Process Reward Models (72B)
Qwen2.5-Math-PRM-72B° 0.873 0.806 0.743 0.711 0.783
Process Reward Models (7B+)
Math-Shepherd-PRM-7B° 0.479 0.295 0.248 0.238 0.315
Qwen?2.5-Math-7B-Math-Shepherd® 0.625 0.316 0.137 0.077 0.289
EurusPRM-Stage2® 0.473 0.357 0.212 0.209 0.313
Qwen2.5-Math-7B-PRM800K*® 0.683 0.626 0.507 0.443 0.565
Ensemble-PRM-PRMS800K (ours) 0.705 0.630 0.472 0.433 0.560
PURE-PRM-7B 0.690 0.665 0.484 0.459 0.575
Qwen2.5-Math-PRM-7B® 0.824 0.776 0.675 0.663 0.735
Universal-PRM 0.858 0.777 0.676 0.664 0.743
ACTPRM (ours) 0.816 0.798 0.714 0.670 0.750
ACTPRM-X (ours) 0.827 0.820 0.720 0.673 0.760

Table 1: Performance comparison on ProcessBench. We report the results in the same calcu-
lation method with ProcessBench. © denotes the results are from Qwen PRM’s report (Zhang
et al., 2025).

Benchmarks. We use ProcessBench (Zheng et al., 2024) and PRMBench (Song et al., 2025) to
evaluate the effectiveness of our trained model. Different from ProcessBench that collects
intermediate errors from real-world generative models, PRMBench heuristically builds
intermediate errors by manipulating correct steps.

Baselines. We compare with the following PRMs: @ Qwen2.5-Math-PRM-7B (Zhang et al.,
2025): This model uses consensus filtering for labeling. It labels 860K data twice using two
methods (LLM-as-judge [Zheng et al., 2024] and Mathshepherd [Wang et al., 2024]) and
filters out 40% of the data where the labels disagree. @& Pure-PRM-7B (Cheng et al., 2025):
A Qwen2.5-Math-based PRM trained on PRM800K using a two-stage strategy: warming
up the PRM head and then fine-tuning the entire model. ®: EurusPRM-Stage2 (Cui et al.,
2025): A PRM resulting from the Implicit PRM approach (Yuan et al., 2024), which derives
process rewards from an ORM. @ Universal-PRM (Tan et al., 2025): A Qwen2.5-Math-
based model trained with data augmentation techniques like ensemble prompting and
reverse verification. @ Math-Shepherd-PRM-7B (Wang et al., 2024): a PRM trained on
process labels that estimates hard Q-values for the policy model. ® Quwen2.5-Math-7B-Math-
Shepherd (Zhang et al., 2025): a PRM trained on 860K data labeled using MathShepherd.
@ Ensemble-PRM-PRMS800K (ours): a model with ensemble heads trained by ourselves on
PRMS800K without active learning.

5.2.2 Experimental Results

ACTPRM and ACTPRM-X achieve new SOTA performance on ProcessBench compared
with same size models. The evaluation results on ProcessBench are shown in Table 1.
ACTPRM achieves an average F1 score of 0.750, outperforming Qwen2.5-Math-PRM-7B
by a margin of 1.5%. Furthermore, ACTPRM-X training based on Qwen2.5-Math-PRM-7B
achieves a new SOTA performance on ProcessBench with an average F1 of 0.760, outper-
forming the second-place model (Universal-PRM) with a margin of 1.7% and improve the
performance of Qwen2.5-Math-PRM-7B by a significant margin of 2.5%.

QOwQ-32B (our PRM label annotator) outperforms all PRMs on ProcessBench. As shown
in Table 1, QwQ-32B outperforms all PRMs including 72B models. It indicates the reliability
of utilizing QwQ-32B as a PRM label annotator as it provides a high empirical upperbound
for the training PRMs.

ACTPRM-X achieves new SOTA performance on PRMBench, on-par with GPT-40. We
further test our models on PRMBench and show the results in Table 2. As on the leaderboard,
ACTPRM achieves the best performance within 7B PRMs and ACTPRM-X achieves new
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# Models Simlicity Soundness Sensitivity Average
LLM-as-judge

1 Gemini-2.0-thinking-exp-1219 0.662 0.718 0.753 0.688

1 ol-mini 0.646 0.721 0.755 0.688

4 GPT-4o 0.597 0.709 0.758 0.668

6 Gemini-2.0-flash-exp 0.627 0.673 0.754 0.660
Process Reward Models (72B)

3  Qwen-2.5-Math-PRM-72B 0.546 0.739 0.770 0.682
Process Reward Models (7B+)

7  Qwen2.5-Math-PRM-7B 0.521 0.710 0.755 0.655

9 Pure-PRM-7B 0.522 0.702 0.758 0.653

7 ACTPRM (ours) 0.536 0.713 0.752 0.655

5 ACTPRM-X (ours) 0.545 0.727 0.756 0.667

Table 2: Performance comparison on PRMBench. All results of the other models are from
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Figure 4: ProcessBench performance (left) and training loss (right): ActPRM v.s. random
data selection on 1M NuminaMath Rollouts.

SOTA performance (0.667), outperforming the other models by a large margin of at least
1.2% and on-par with GPT-40 (OpenAl et al., 2024a).

5.2.3 Comparative Experiment with Random Selection

A potential concern is that while ACTPRM achieves state-of-the-art (SOTA) performance
on several benchmarks, this success might be attributed solely to the high quality of our
collected data pool, rather than the method itself. To address this, we conducted a compar-
ative study with random selection. Specifically, we randomly selected 256K data points
from our retained dataset as the experimental group. For the control group, we randomly
selected the same number of data points from the entire data pool (over 1M) and used
the same annotator to label any unlabeled data (i.e., data not in the retained set). We then
continually train ACTPRM checkpoint, as in Sec 5.1, on both datasets. The results, including
performance on ProcessBench and training loss, are shown in Figure 4.

ACTPRM outperforms random selection of the same amount of data. As illustrated
in Figure 4 (left), the model trained on data selected by ACTPRM consistently achieves
significantly better results than the model trained on randomly selected data. To further
validate this, we compare their training losses in Figure 4 (right). The model trained on
ACTPRM-selected data exhibits a consistently higher training loss, with a margin of 0.05,
suggesting that the data selected by ACTPRM is more challenging and informative, thereby
enhancing the learning process.

6 Conclusion and Future Work

In this work, we address the high annotation costs associated with training Process Reward
Models (PRMs) by proposing ACTPRM, an uncertainty-aware active learning framework
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that selectively annotates the most informative reasoning steps. By leveraging an ensemble
PRM to estimate uncertainty and strategically labeling only uncertain data, ACTPRM sig-
nificantly reduces annotation costs while maintaining competitive performance. Extensive
experiments demonstrate that ACTPRM achieves a new state-of-the-art (75.0% on Process-
Bench) with merely at most 20% of the labeling budget required by prior methods. Our
results highlight the potential of efficient data selection for scalable PRM training, and we
commit to releasing all models, datasets, and code to foster further research in this direction.

To further enhance PRM’s performance, several promising directions can be explored. First,
leveraging larger base models and more advanced LLM judges (e.g., O1-mini) could yield
significant improvements. Second, implementing the framework in an online setting would
ultimately enable PRM to iteratively refine its performance through active learning. Addi-
tionally, integrating online PRM training with reinforcement learning frameworks—such as
actor-critic methods—presents an exciting avenue for research.
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A LLM-as-Judger Prompt Template

For LLM-as-Judger, we follow the prompt in Zhang et al. (2025).

I will provide a math problem along with a solution. They will be formatted as follows:
[Math Problem]

<math_problem>

...(math problem)...

</math_problem>

[Solution]

<paragraph_1>

...(paragraph 1 of solution)...

</paragraph_1>

<paragraph_n>
...(paragraph n of solution)...
</paragraph_n>

Your task is to review each paragraph of the solution in sequence, analyzing,
verifying, and critiquing the reasoning in detail. You need to provide the
analyses and the conclusion in the following format:

<analysis_1>

...(analysis of paragraph 1)...

</analysis_1>

<analysis_n>

...(analysis of paragraph n)...
</analysis_n>

<conclusion>

Correct/Incorrect

</conclusion>

* When you analyze each paragraph, you should use proper verification, recalculation, or

reflection to indicate whether it is logically and mathematically valid. Please

elaborate on the analysis process carefully.

* If an error is detected in any paragraph, you should describe the nature and cause of the

error in detail, and suggest how to correct the error or the correct approach. Once a

paragraph is found to contain any error, stop further analysis of subsequent

paragraphs (as they may depend on the identified error) and directly provide the

conclusion of "Incorrect.” For instance, given a solution of five paragraphs, if an

error is found in the third paragraph, you should reply in the following format:

<analysis_1>

...(analysis of paragraph 1)...

</analysis_1>

<analysis_2>

...(analysis of paragraph 2)...

</analysis_3>

<analysis_3>

...(analysis of paragraph 3; since an error is found here, also provide detailed critique and
< correction guideline)...

</analysis_3>

<conclusion>

Incorrect

</conclusion>

Note that the analyses of paragraphs 4 and 5 should be skipped as the paragraph 3 has been
— found to contain an error.

* Respond with your analyses and conclusion directly.

Ll

Loy

The following is the math problem and the solution for your task:
[Math Problem]

{tagged_problem}

[Solution]

{tagged_response}

B More Experiment Results

B.1 Problem diversity is important for Training PRMs

PRMBS800K (Lightman et al., 2023) is a widely used and human-annotated dataset for PRM
training, which contains 800K step-level labels across 75K tree-of-thoughts solutions to 12K

MATH (Hendrycks et al., 2021). Our empirical results show that models trained on our
dataset (100K samples from 100K diverse questions) consistently and significantly outper-
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# Problem set # CoT Trajectories ProcessBench F1 score

PRMS800K 7,500 460,000 0.575
NuminaMath (Random Selected) 100,000 100,000 0.673

Table 3: Comparison between PRM800K and 100K data collected from NuminaMath labeled
by Qwen-QwQ.

form those trained on PRM800K* (369K samples from only 12K questions) on ProcessBench.
These findings suggest that problem diversity plays a more crucial role in PRM training
than the number of step-level annotations.

C Annotation Cost Estimation

We estimate the labeling cost based on the statistics of our 1M data collected from Numina-
Math Li et al. (2024) using Qwen2.5-Math-7B-Instruct and Qwen2.5-Math-72B-Instruct. We
introduce the statistics in Table 4.

Value Source
# Reasoning Steps (S) 8.845 Qwen Models’ rollouts
# Tokens per Rollout (R) 625.098 Qwen Models’ rollouts

# Tokens per Critic Response from Judge (C) 1,919.860 Qwen-QwQ’s responses as LLM-as-Judge

Table 4: Statistics of 1M NuminaMath CoT Trajectories collected by Qwen2.5-Math Models.

In addition to the statistics, we also use N to denote the data number of the dataset and
show this statistic of each model’s training dataset in Table 5

Dataset # Labeled Data

ACTPRM 624,000 (labeled in two stages)
Qwen2.5-Math-PRM-Math-shepherd 860,000

Qwen2.5-Math-PRM 860,000

Universal PRM 690,000

Table 5: Data number of datasets.

Using the statistics, we compute the estimated labeling cost for ACTPRM, Qwen2.5-Math-
PRM-Math-shepherd (Zhang et al., 2025), Qwen2.5-Math-PRM(Zhang et al., 2025), Univer-
salPRM Tan et al. (2025) as follows:

* Qwen2.5-Math-PRM-Math-shepherd: N x S x 8 x R/2, where 8 is the number of
rollouts per step set in Zhang et al. (2025). We divided by two since the number
of tokens for rollouts varies based on the position of reasoning step. For latter
reasoning step, it requires less reasoning tokens. As a result, the expectation of
tokens per rollout should be half of the number of tokens of the complete rollout.

* Qwen2.5-Math-PRM: N x S x 8 x R/2 4 N x C. It used consensus filtering for each
data, the cost is both from MathShepherd (S x 8 x R/2) and LLM-as-Judge (C).

® UniversalPRM: N x C x 4+ N x S, where 4 is the number of ensemble prompts
from the original paper (Tan et al., 2025) and another N x S is for its semantic-based
step seperation.

e ACTPRM: N x C. We solely use Qwen-QwQ as Judge and do not include any other
operations.

4https://huggingface.co/datasets/HuggingFaceH4/prm8ook-trl-dedup

16


https://huggingface.co/datasets/HuggingFaceH4/prm800k-trl-dedup

	Introduction
	Preliminaries
	Process Reward Models
	Uncertainty Estimation for Classification

	Related Work
	Efficient Process Reward Labeling via Active Learning
	Experiments
	Pool-Based Active Learning
	Experimental Settings
	Experimental Results

	Achieving New SOTA Performance on ProcessBench (75.0%) with Solely 6% Annotation Cost.
	Experimental Settings
	Experimental Results
	Comparative Experiment with Random Selection


	Conclusion and Future Work
	LLM-as-Judger Prompt Template
	More Experiment Results
	Problem diversity is important for Training PRMs

	Annotation Cost Estimation

