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ABSTRACT

Sparse rewards are double-edged training signals in reinforcement learning: easy
to design but hard to optimize. Intrinsic motivation guidances have thus been
developed toward alleviating the resulting exploration problem. They usually in-
centivize agents to look for new states through novelty signals. Yet, such methods
encourage exhaustive exploration of the state space rather than focusing on the
environment’s salient interaction opportunities. We propose a new exploration
method, called Relevant Actions Matter (RAM), shifting the emphasis from state
novelty to state with relevant actions. While most actions consistently change the
state when used, e.g. moving the agent, some actions are only effective in specific
states, e.g., opening a door, grabbing an object. RAM detects and rewards ac-
tions that seldom affect the environment. We evaluate RAM on the procedurally-
generated environment MiniGrid, against state-of-the-art methods and show that
RAM greatly reduces sample complexity. 1

1 INTRODUCTION

We consider the reinforcement learning (RL) problem in which an agent learns to interact with its
environment optimally w.r.t. a cumulative function of reward signals collected along its trajecto-
ries (Sutton and Barto, 2018; Kaelbling et al., 1996). To do so, an RL agent explores its surround-
ing, aiming at retrieving the most prominent course of actions, and updates its behavior accordingly.
When the environment provides abundant rewards, the agent may successfully collect enough train-
ing signals by performing random actions (Mnih et al., 2016; Lillicrap et al., 2015). But as soon as
the environment provides scarce rewards, the agent is reduced to inefficiently waver around without
being able to update its policy. To palliate this lack of training signals, one common method con-
sists in intrinsically motivating the agent to explore its environment using a self-rewarding mecha-
nism (Schmidhuber, 1991; Oudeyer et al., 2007; 2008; Schmidhuber, 2010).

In the online RL literature, a widespread strategy is to augment the sparse extrinsic reward from the
environment with a generated dense intrinsic reward that steers exploration (Chentanez et al., 2005;
Şimşek and Barto, 2006). Hence, the intrinsic reward should encode a degree of “novelty,” “sur-
prise,” or “curiosity” (Berlyne, 1965) which is often encoded as an estimate of the agent’s visitation
frequency of state-action pairs. The agent is incentivized to diversely interact with its environment
to collect intrinsic rewards, which may ultimately trigger extrinsic rewards. Nonetheless, establish-
ing intrinsic motivation signals remains double-edged as it introduces human-priors, may lead to
sub-optimal policies or foster reward hacking behavior.

All in all, different novelty measures have been studied, where each of them entails different ex-
ploration behaviors. For instance, count-based methods keep counts of previous observations to

1Source code available at https://github.com/Mathieu-Seurin/impact-driven-exploration
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bait the agent to explore unseen states (Lopes et al., 2012; Ostrovski et al., 2017; Bellemare et al.,
2016; Ecoffet et al., 2019). Yet, these approaches implicitly encourage an exhaustive search of the
state space. Differently, curiosity-based methods train a model that encapsulates the environment
dynamics, before nudging the agent to visit state-transitions with high prediction errors (Pathak et

al., 2017; Burda et al., 2018; Haber et al., 2018; Houthooft et al., 2016) or large change in the
value of state features (Raileanu and Rocktäschel, 2019). However, the first category suffers from
reward decay across episodes and poor generalization within procedurally-generated environments.
We here observe that the second category insufficiently favors exploration towards novel and useful
actions.

In this paper, we therefore aim to shift the emphasis from state novelty distributions towards novel
action distributions to develop new intrinsic motivation signals, and consequently, change the explo-
ration behavior. More precisely, we aim at encouraging the agent to visit states that allow rare and
relevant actions, i.e. actions that can only be performed in rare occasions. Imagine that an infant
discovers that pushing a button triggers a light; s/he is likely to push everywhere to switch on new
lights. By repeating his/her action, the infant may eventually uncover new buttons, and start asso-
ciating the action push to the relevant state features of buttons. A similar observation can be made
within virtual environments and embodied agents. We expect the agent to first detect rare actions to
learn while being nudged towards the states that allow performing such actions.

In this spirit, we propose a new approach we name Relevant Actions Matter (RAM). Instead of
uniformly seeking for novel states, RAM encourages exploring states allowing actions that are rarely
useful; those rarely relevant actions are generally hard to retrieve by random exploration. In other
words, the agent is intrinsically rewarded when successfully performing an action that is usually
ineffectual. We observe that this simple mechanism induces a remarkably different exploration
behavior differing from the common state-count and curiosity-based patterns.

Formally, RAM keeps track of two quantities for each action: the number of times the action has
been used and the number of times the action led to a state change. The resulting intrinsic reward is
inversely proportional to the number of times the action has led to a state change. Noticeably, RAM
primarily keeps count of actions, and can thus be defined as an action count-based method. Besides,
tracking actions (as opposed to states) naturally scales in RL: in the discrete case, there is generally
less than a few thousand actions, allowing for an exact count. In the continuous case, actions may
easily be discretized without using complex density models (Tang and Agrawal, 2020).

This paper first provides an overview of recent exploration methods before introducing RAM as an
action-driven intrinsic motivation method. We then study this approach in the MiniGrid procedurally
generated environment (Chevalier-Boisvert et al., 2018). Despite their apparent simplicity, these
tasks contain intermediate decisive actions, e.g. picking keys, which have kept in check advanced
exploration methods (Raileanu and Rocktäschel, 2019; Campero et al., 2020). We empirically show
that RAM reduces the sample complexity by a factor of 2 to 10 in a diverse set of environments while
resolving the hardest tasks. We then study how RAM amends the agent’s behavior and compare it to
other methods. Finally, we also analyze whether RAM may lead to unwanted agent behavior when
facing environment with multiple interactions, which we refer as the BallPit-problem.

2 RELATED WORKS

RL algorithms require the agents to acquire knowledge about their environment to update their pol-
icy; exploration has thus been one of the longest running problems of RL (Sutton and Barto, 2018;
Mozer and Bachrach, 1990; Sato et al., 1988; Schmidhuber, 1991; Barto and Singh, 1991). Explo-
ration methods have quickly been categorized into two broad categories: directed and undirected

exploration (Thrun, 1992).

On the one hand, undirected exploration does not use any domain knowledge and ensures explo-
ration by introducing stochasticity in the agent’s policy. This approach includes methods such as
random walk, ✏-greedy, or Boltzmann exploration. Although they enable learning the optimal pol-
icy in the tabular setting, they require a number of steps that grows exponentially with the state
space (Whitehead, 1991; Kakade and others, 2003; Strehl et al., 2006). Despite this inherent lack of
sample efficiency, they remain valuable task-agnostic exploration strategies in large-scale problems
with dense rewards (Mnih et al., 2016). Besides, recent undirected exploration methods have been
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developed to fit deep neural architectures such as injecting random noise in the network parameter
space (Fortunato et al., 2018; Plappert et al., 2018). Yet, undirected methods still struggle with
sparse reward signals (Plappert et al., 2018), or any task requiring deep exploration (Osband et al.,
2016). On the other hand, directed methods incorporate external priors to orient the exploration
strategy through diverse heuristics or measures. Among others, uncertainty has been used to guide
exploration towards ill-estimated state-action pairs by relying on the Bellman equation (Geist and
Pietquin, 2010; O’Donoghue et al., 2018) or by bootstrapping multiple Q-functions (Osband et al.,
2016). Despite being theoretically sound, these methods face scaling difficulties. In this paper, we
study another directed exploration approach based on reward bonuses to densify the reward signal.

In this setting, the environment reward, namely extrinsic rewards, is augmented with an exploration
guidance reward signal, namely intrinsic rewards (Chentanez et al., 2005; Şimşek and Barto, 2006).
This intrinsic reward spurs exploration by tipping the agent to take a specific course of actions.
Furthermore, it makes undirected exploration mechanism applicable again by spreading milestone
rewards during training. Inspired by cognitive science, this intrinsic reward often encodes a degree
of “novelty,” “surprise,” ,“curiosity” (Oudeyer et al., 2007; Berlyne, 1965; Schmidhuber, 1991) ,
“learning progress” (Lopes et al., 2012) or “boredom” (Schmidhuber, 1991; Oudeyer et al., 2008).
These common intrinsic motivation mechanisms are broadly categorized into three families: count-
based, curiosity-based, and goal-based methods.

Count-based exploration aims to catalog visited states (or action-states pairs) along episodes to de-
tect unseen states, and drive the agent towards them. It has first been proposed as an exploration
heuristic in the early days of RL (Thrun, 1992; Sato et al., 1988; Barto and Singh, 1991) before being
framed as an intrinsic exploration reward mechanisms in the tabular case (Strehl and Littman, 2008;
Kolter and Ng, 2009). Pseudo-counts were then introduced to approximate the state counts (Lopes et

al., 2012), where pseudo-counts were estimated through different density models to produce intrin-
sic rewards. Density models range from raw image downscaling with or without handcrafted state
features (Ecoffet et al., 2019; Zhang et al., 2020), contextual trees (Bellemare et al., 2016), genera-
tive neural models, e.g. PixelCNN (Ostrovski et al., 2017), or autoencoders combined with a local
hashing function (Tang et al., 2017). Differently, Burda et al. (2018) use the prediction error between
a randomly initialized network and a trained network as a state-count proxy. Yet, count-based meth-
ods may explore the immediate surrounding and heavily depend on the state representation quality.
By shifting the emphasis on counting action, we thus address these representation constraints and
push for distant interactions.

Curiosity-based exploration aims to encourage the agent to uncover the environment dynamics rather
than cataloging states. Inspired by cognitive science, such agents learn a world model predicting the
consequences of their actions; and they take an interest in challenging and refining it (Haber et al.,
2018; Oudeyer et al., 2007). In RL, this intuition is transposed by taking the current state and action
to predict the next state representation; the resulting prediction error is then turned into the intrinsic
reward signal. Approaches mostly differ in learning the state representation: Stadie et al. (2015)
compress raw observation with autoencoders, Burda et al. (2019) use random projections, Houthooft
et al. (2016) capture the environment stochasticity by maximizing mutual information with Bayesian
Networks. In parallel, Pathak et al. (2017) argue that the state representation should mainly encode
features altered by the agent. They thus introduce an inverse model that predicts the action given
two consequent states as a training signal. Yet, those intrinsic rewards based on prediction errors
may attract the agent into irrelevant yet unpredictable transitions. Another drawback is reward
evanescence: the intrinsic reward slowly vanishes as the model is getting better. Schmidhuber (1991)
originally proposed to measure the mean error evolution rather than immediate errors to account for
the agent progress. Differently, Raileanu and Rocktäschel (2019) replace the error prediction by
the difference between consecutive representation states, removing the need to compute a vanishing
prediction error. In this paper, we also compare successive states in a similar spirit, but we use it to
catalog actions and bias state visitation through a different exploration scheme.

Goal-based methods (Colas et al., 2020) provide identifiable and intermediate goals to reward the
agent upon completion. Such approaches perform an explicit curriculum by slowly increasing the
exploration depth through goal difficulties. They often build on top of the UVFA framework to con-
dition the agent policy (Schaul et al., 2015). Goal-based methods may take several forms ranging
from hindsight experience replay (Andrychowicz et al., 2017), adversarial goal-generation (Forestier
et al., 2017; Campero et al., 2020) and hand-crafted goals.Yet, they may face to unstable training,
complex goal definition, or require fully observable environment (Campero et al., 2020). Other
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Figure 1: Minigrid instances used, from top left to down right : MultiRoom (N7S4, N12S10), ObstructedMaze
(2Dlh, 2Dlhb), KeyCorridor (S4R3, S5R3), ObstructedMaze (1Q, Full)

forms of intrinsic reward have been explored with empowerment (Mohamed and Jimenez Rezende,
2015) or trajectory diversities (Savinov et al., 2018), but they are facing scalability issues. Hussenot
et al. (2020) also tried to retrieve intrinsic motivation signals from human trajectories through in-
verse reinforcement learning. Finally, intrinsic motivation have been explored in hierarchical rein-
forcement learning (Barto et al., 2004; Kulkarni et al., 2016), but it goes beyond the scope of this
paper.

3 REINFORCEMENT LEARNING BACKGROUND

Notation The environment is modeled as a Markov Decision Problem (MDP), where the MDP
is defined as a tuple {S,A,P,R, �}. At each time step t, the agent is in a state st 2 S , where
it selects an action at 2 A according to its policy ⇡ : S ! A. It then receives a reward rt
from the environment’s reward function r : S ⇥ A ⇥ S ! R and moves to the next state st+1

with probability p(st+1|st, at) according to the transition kernel P . Hence, the agent generates a
trajectory ⌧ = [s0, a0, r0, s1, r1, a1, . . . , sT , aT , rT ] of length T . In practice, the policy is often
parameterized by a weight vector ✓ 2 ⇥. The goal is then to search for the optimal policy ⇡✓⇤

that maximizes the expected return J(✓) = E⇡✓
⇥P

t=0 �
tr(st, at, st+1)

⇤
by directly optimizing

the policy parameters ✓.

Intrinsic Motivation In this setting, the reward function is decomposed into an extrinsic reward
returned by the environment re(st, at) and a new intrinsic reward ri(st, at, st+1). Therefore, the
new reward function is defined as r(st, at, st+1) = re(st, at, st+1) + �ri(st, at, st+1) where � is
an hyperparameter to balance the two return signals. In practice, the extrinsic reward is often a
sparse task-specific signal while the intrinsic reward is usually a dense training signal that fosters
exploration.

4 RELEVANT ACTIONS MATTER

Intuition While most actions consistently move the agent to a new state, some actions do not
affect specific states, i.e., the agent remains in the same state after performing it. We hence define
an effective action if the new state of the environment is different from what it would have been if
no action were to be taken. For instance, in tasks involving embodied interaction, such state-action
pairs include moving forward while facing a wall or grabbing non-existent objects. Although one
may update the MDP only to keep effective actions, such an operation may not always be feasible
or desirable in practice. It is thus up to the agent to learn the correct actionable states through
exploration. Noticeably, those rare state-actions are often landmarks in the environment dynamics,
e.g., triggering buttons or opening doors. One idea is thus to bias the agent to visit states that
effectively allow rare actions. RAM encapsulates this exploration pattern by (1) detecting rare but
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effective actions, (2) rewarding the agent when effectively performing these rare actions. In short,
rare and effective actions are the relevant actions that matter.

Method For every action ai, the agent tracks two quantities. The number U of times an action
has been used during past trajectories, and the number E of times the action was effective, i.e.
change the state st 6= st+1. Formally, given the whole history of transitions (across all episodes)
H = (sh, ah, sh+1)Hh=0:

UH(a) =
HX

h=0

1{ah=a}, (1)

EH(a) =
HX

h=0

(1{ah=a} ⇥ 1{sh 6=sh+1}
), (2)

where 1 is the indicator function and ⇥ the product operator.

Intuitively, the ratio EH(a)/UH(a) indicates how often the action a has been effective along the
history H. For instance, actions that move an agent would update the state most of the time, therefore
U(ai) ⇡ E(ai). On the other hand, grabbing objects only changes the state in rare occurrences, and
U(ai) � E(ai). We then define the bonus as:

B(at) =
⌘
1�EH(at)

UH(at) � 1

⌘ � 1
, (3)

where ⌘ is a hyperparameter. This function is a continuous approximation of an exponential decay
exp�⌘E

H(at)/U
H(at). It ranges from 1 when EH = 0 and goes to 0 when EH = UH. Small ⌘ leads

to a uniform bonus on all actions whereas, large values favor rare and efficient actions

An intrinsic reward mechanism often requires to discount the intrinsic bonus within an episode.
Hence, it prevents the agent from overexploiting, and being stuck in local exploration minima. In-
spired by theoretically sound count-based methods (Strehl and Littman, 2008), we thus divide the
previous ratio by an episodic state-count.

Finally, we want to reward action only in context where they are effective, thus the agent is rewarded
only when st 6= st+1, defining the final RAM intrinsic reward:

ri
RAM

(st, at, st+1) =

(
B(at)p
N⌧ (st+1)

if st 6= st+1

0 otherwise
(4)

where N⌧ (s) =
P

t

h=0 1{s=sh}
is an episodic state count which is reset at the beginning of each

episode. In high-dimensional state space, the episodic state count can be replaced by a pseudo-
count (Bellemare et al., 2016) or an episodic novelty mechanism (Badia et al., 2020).

Action-based Counter As counting methods may sound anachronistic, we emphasize again that
actions are ascertainable in RL, i.e. they can be easily enumerated. As opposed to state-counting
which requires complex density models (Ostrovski et al., 2017), discrete action suffers less from the
curse of dimensionality, and can easily be binned together in the case of a large action set (Dulac-
Arnold et al., 2015). Besides, although RAM relies on an episodic state count, a raw approximation
is sufficient as it encodes a reward decay.

5 EXPERIMENTAL SETTINGS

We evaluate RAM in the procedurally-generated environments MiniGrid (Chevalier-Boisvert et al.,
2018). MiniGrid is a partially observable 2D gridworld with a diverse set of tasks. The RL agent
needs to collect items and open locked doors before reaching a final destination. Despite its ap-
parent simplicity, several MiniGrid environments require the agent to perform exploration with few
specific interactions, and have kept in check state-of-the-art exploration procedures (Raileanu and
Rocktäschel, 2019). For each experiment, we report the rolling mean (over 40k timesteps) and
standard deviation over 5 seeds.
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Figure 2: Comparison between intrinsically motivated methods on multiple MiniGrid tasks.

5.1 MINIGRID ENVIRONMENT

Each new MiniGrid world contains a combination of rooms that are populated with objects (balls,
boxes or keys), and are linked together through (locked/unlocked) doors. Balls and keys can be
picked up or dropped and the agent may only carry one of them at a time. Boxes can be opened to
discover a hidden colored key. Doors can be unlocked with keys matching their color. The agent
is rewarded after reaching the goal tile. At each step, the agent observes a 7x7 representation of
its field of view and the item it carries if any. The agent may perform one out of seven actions:
move forward, turn right, turn left, pick-up object, drop object, toggle. Noticeably, some actions are
ineffective in specific states, e.g. moving forward in front of a wall, picking-up/dropping/toggling
objects when none is available. Following (Raileanu and Rocktäschel, 2019; Campero et al., 2020),
we focus on three hard exploration tasks, which are illustrated in Figure 2.

MultiRoom(N -S): The agent must navigate through a sequence of empty rooms connected by
doors of different colors. A map contains N rooms, whose indoor width and height are sampled
within 2 and S � 2 tiles. MultiRoom maps entail limited interaction as the agent only has to toggle
doors and no object manipulation is required. Yet, this bare-bone environment constitutes a good
preliminary trial.

KeyCorridor(S-R): The agent must explore multiple adjacent unlocked rooms to retrieve a key,
open the remaining locked room, and collect the green ball. A map contains a large main corridor
connected to 2 ⇥ R square rooms of fixed indoor dimension S � 2. Solving a KeyCorridor map
requires the agent to perform a specific sequence of interactions, which makes the task more difficult
than MultiRoom.

ObstructedMaze: The agent must explore a grid of rooms that are randomly connected to each
others in order to collect a blue ball. Some of the doors are locked and the agent has to either directly
collect the keys or toggle boxes to reveal them. Besides, distractor balls are added to block door
access. ObstructedMaze can quickly become a hard maze with false leads and complex interactions.

5.2 EXPERIMENTAL SETTING

Training We follow the training protocol defined in (Raileanu and Rocktäschel, 2019; Campero et

al., 2020). We use 3 convolution layers with a kernel size of 3, followed by 2 fully-connected layers
of size 1024, and an LSTM of hidden size 1024. Finally, we use two separate fully-connected layers
of size 1024 for the actor’s and critic’s head. We train our model with the distributed actor-critic
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Figure 3: States visitation in Playground environment. Bright orange means more visits, darker and blue

means less visits

algorithm IMPALA (Espeholt et al., 2018) TorchBeast implementation (Küttler et al., 2019). (All
parameters in subsection A.3).

Baselines We here cover the three common families of intrinsically motivated reward mechanisms.
COUNT (Strehl and Littman, 2008) is a counting method that baits the agent to explore less visited
states. In this setting, we use a tabular-count to catalog the state-action pairs. RND (Burda et

al., 2018) acts as a states’ pseudo-count method. A network is trained to predict randomly pro-
jected states and the normalized predicton error is used as intrinsic reward. RIDE (Raileanu and
Rocktäschel, 2019) is a curiosity-based model that builds upon (Pathak et al., 2017). It computes
the difference between two consecutive states, encouraging the agent to perform actions that lead it
to a maximally different states. AMIGO (Campero et al., 2020) is a hierarchical goal-based method,
splitting the agent into two components: an adversarial goal-setter and a goal-condition learner that
adversarially creates goals.

6 EXPERIMENTAL RESULTS

6.1 BASE ENVIRONMENT

Figure 2 displays the results on 8 MiniGrid tasks. Noticeably, RAM outperforms all the baselines
in sample complexity, and even solves among the most complex worlds. In MultiRoom, we observe
that RAM outperforms RIDE, RND, and COUNT in the simple setup (N7S4), and matches RIDE’s
sample complexity performance on the challenging setup (N12S10). Note RAM does not seem to be
penalized by the small amount of possible interactions. In KeyCorridor and ObstructedMaze, RIDE,
RND, and AMIGO learn in the easiest instances but they struggle as the difficulty, i.e. exploration
depth, increases as first observed in (Campero et al., 2020). On the other hand, RAM consistently
solves all the environments, even the challenging ObstructedMaze-Full.

We derive two hypotheses from those results: (1) State-count rewards exhaustively explore the state
space, reducing the overall exploration coverage (2) Curiosity-based rewards do not emphasize
enough salient interactions and then explore new but irrelevant state-action pairs. Although such
approaches were successful in many environments, those exploration behaviors may fail as soon as
specific interactions must be regularly performed in the exploration process. In the following, we
thus try to assess those hypotheses.

6.2 INTRINSIC EXPLORATION BEHAVIOR

We first conduct a series of experiments without external reward to study what type of exploration

each bonus creates. In other words, what are the inductive exploration biases that arise from the
different intrinsic reward mechanisms. To do so, we rely on two metrics: the state visit (plotted as
heatmaps) and the action distribution (plotted as bar plots).

Rewardless Playground In this spirit, we design a sandbox environment without any specific
goal to observe the agent behavior visually, akin to a kindergarten. This environment contains
multiple keys, balls, and boxes located in the corners and spawns the agent facing a random direction.
Figure 3 shows the agent state visits for during 106 training timesteps when only using the intrinsic
reward signal.
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We observe that RND and RAM are both attracted by the objects and explore the space thoroughly,
whereas RIDE and COUNT remain close to the center and seldomly reach the objects. This ob-
servation backs our results in ObstructedMaze2Dlh, where RND and RAM are the only methods
exploring thoughtfully the environment. It also confirms our hypothesis that standard state-based
approaches, e.g., COUNT, may not be pushed enough to perform in-depth exploration. Surpris-
ingly, the curiosity-based method RIDE has not been strongly incentivized to interact with remote
objects, suggesting that it may suffer from its dependency on the state representation. However,
these experiments do not explain the performance difference between RND and RAM on the most
challenging setups. Thus, looking at the action distribution is necessary.

Figure 4: State and action distributions in rewardless KeyCorridor (S4R3). UH(a) and EH(a) action-count
are in blue and green. Only RAM correctly uses pickup/drop/toggle during exploration.

Rewardless KeyCorridorS4R3 We then study the behavior that is solely intrinsically motivated
in the KeyCorridor environment to better grasp the RAM performance in this setting. Similarly, we
trained the agents on KeyCorridorS4R3 for 107 timesteps with only the intrinsic reward signal, and
results are displayed in Figure 4.

All the baselines – RIDE, RND, and COUNT – remain mostly stuck in the central corridor, where
RAM explores rooms more uniformly. More impressively, the RAM agent naturally picks the key,
enters the locked room, and grabs the ball 7% of the times without any extrinsic reward. COUNT,
RIDE, and RND all have a success ratio below 0.6%, which may explain why RAM manages to
solve this task. Further details can be found in Figure 9 and Table 1.

We also observe a large discrepancy in the action distribution between the different methods. First,
we observe that RND and RAM action distributions remain approximately uniform while RIDE and
COUNT favor moving actions, reducing the opportunity for interactions. Second, and crucially,
the impact distributions EH(a) differs drastically between RAM and other methods. All agents
are trying actions such as pick, toggle or drop, but those actions are rarely changing the agent’s
state. These actions are not used in the appropriate context, i.e., in front of an object. It means that
rewarding state novelty might not be enough to discover effective actions, thus wasting samples.
Although RAM and RND had similar state-visitation and action distribution patterns, only RAM
correctly apprehend rarely effective actions, and correctly use them to explore its environment.

6.3 INTRINSIC MOTIVATION PITFALLS

The Ball Pit Problem As RAM biases the state visit distribution towards performing rare actions,
it may introduce a poor exploration pattern when facing too many of such states. We refer to this
potential issue as the Ballpit problem: the agent remains in rooms with plenty of balls to interact
with. We created four versions of Multiroom (normal, small, more, max), and randomly spawned
objects to assess the agent behavior (more details in subsection A.1).

8



Published at the SSL-RL Workshop at ICLR 2021

Figure 5: As distractors are added (from left to right), we observe a drop in performance for all methods.

As the number of objects grows, the performance of all algorithms deteriorates. RND, COUNT are
mostly affected by this problem, as the number of states is growing exponentially; thus, counting
state occurrence is challenging. RIDE is less affected by the BallPit problem, but most surprisingly,
RAM is the only one to reach the exit consistently in the most challenging setup. The EH(a)/UH(a)
ratio correctly balances the exploration bonus, and does not take over the final extrinsic reward.

The Noisy-TV problem State-count based agent are attracted to state-action pairs with random
noise. In its current definition, RAM is also affected while computing EH. Similar to (Burda et al.,
2018), this effect can be circumvented by using an inverse model, and we leave it for future work.

ColorMaze In Figure 6, we design a map with a sequence of open rooms, colored floor changing
every episode, two boxes with one hidden key, and a locked door leading to the reward. All baselines
remain in the first part of the maze while RAM quickly reaches the objects and solves the task. This
experiment highlights again how shifting the emphasis from exhaustive state-visit to relevant state-
visit can be beneficial, and change the exploration pattern.

Figure 6: RND, RIDE and COUNT remain within the colored region whereas RAM learns to go straight to the
boxes and keys.

7 CONCLUSION

We introduce Relevant Actions Matter (RAM), a new action-based intrinsic exploration algorithm.
As opposed to count-based and curiosity-driven methods, RAM shifts the emphasis from novel
state to state with relevant actions, rewarding actions that are rarely effective in the environment.
Combined with a simple episodic count, RAM outperforms recent exploration methods on a variety
of hard exploratory tasks in a Minigrid environment. This proof of concept illustrates that action-
based exploration is a promising approach as it induces surprisingly different exploration patterns.
We also pointed out a new category of problems called BallPit, which deteriorate performance of
many intrinsically motivated reward approaches.
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