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ABSTRACT

We present Contrastive Similarity Space — ContraSim , a novel paradigm designed to
establish a global semantic understanding of how daily financial headlines influence market
movements. ContraSim works in two steps: (i) Weighted Headline Augmentation, which
generates augmented financial headlines with known semantic distances from the original,
and (ii) Weighted Self-Supervised Contrastive Learning (WSSCL), an extension of
classical binary contrastive learning that leverages these distances to create a finely tuned
embedding space where semantically similar headlines are clustered together. To evaluate
ContraSim, we introduce a novel information density metric, g-kNN, which measures its
ability to inherently group news headlines associated with homogeneous market movement
directions. We empirically demonstrate that incorporating ContraSim features into financial
forecasting tasks yields a 7% improvement in classification accuracy. Furthermore, we
show that ContraSim enables the identification of historical news-days that most resemble
the financial headlines of the current day, offering analysts actionable insights to better
predict market trends and movements by juxtaposing closest historical occurrences.

1 INTRODUCTION

With recent explosion in the capabilities of Large Language Models (LLMs), researchers have been able to
dramatically increase the ability to break down the semantic richness in textual data to be used in downstream
tasks. Mature fields such as Sentiment Analysis Devlin et al. [2019], Spam Detection Aggarwal et al. [2022],
Machine Translation Vaswani et al. [2017], and many more Liu et al. [2019], Brown et al. [2020], Radford
et al. [2019] have been completely revolutionized by the advent of deep LLMs. Likewise, because a key
source of information in the the domain of financial market movement prediction is encoded in textual
representations (news, reports, social media, etc.), a predictable field of study has been how LLMs can be
used to better predict market movement.

It is known that the direction of a stock’s price is impacted by a plethora of temporally linked features,
like overall market movement, industry trends and company-specific news. It has been a daunting task for
researchers to build machine learning algorithms that are able to interpret the complex and noisy feature space
of textual financial news, to repeatedly perform well in market movement prediction. Previous models created
the majority of their predictive powers by solely looking at historic financial indicators Fischer & Krauss
[2018], Sezer & Ozbayoglu [2018]. However, with LLM’s ability to create dense feature representations from
human text, composite models that utilize financial indicators in conjunction with news, and social-media
posts were able to improve predictive performance Saqur [2024], Liu et al. [2021]. Multiple projects have
found success doing this by using a mixture of classical and deep learning approaches Ding et al. [2015],
Fischer & Krauss [2018], Hu et al. [2018], Sezer & Ozbayoglu [2018], Xu et al. [2018], Liu et al. [2021].
State of the art approaches to stock market prediction is outlined in section 2.
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Figure 1: Overview of our proposed Contrastive Similarity (ContraSim) embedding approach. In training, we
use a LLaMA chat model to generate augmented financial news headlines with varying degrees of semantic
similarity to the original. We then use a Weighted Self-Supervised Contrastive Learning (WSSCL) approach
to create an embedding space that clusters semantically similar prompts closer together. In deployment, the
embeddings from the similarity space, can be used to i) Make better predictions on the direction of today’s
stock movement, ii) Find the most similar financial news to today’s.

While composite models that blend financial indicators with language features have improved market
movement predictions, they often function as “black boxes.” They predict market changes without offering
any insight into why a particular prediction was made, making them less useful for financial analysts seeking
interpretability. To address this, we propose a Contrastive Self-Supervised Learning approach that not only
enhances market movement predictions using financial text data but also preserves interpretability. Our
method aims to: a) predict the current day’s market direction using Wall Street Journal (WSJ) headlines The
Wall Street Journal [2024], and b) provide a ranked list of similar past financial news events.

The idea behind our approach is straightforward. We treat a day’s news as a combined list of all WSJ (and
other relevant, reputable sources) headlines for that day. For example, a headline like “Canadian Crude
Prices Hit by Keystone Pipeline Shutdown” (2019-11-05) serves as input, much like other models. However,
in addition to predicting market changes, our approach also identifies other days when similar events occurred.
For instance, the most similar past headline might be “Russian Pipeline Shutdown Shifts Balance in Oil
Market” (2019-05-22). This method offers a balance of interpretability and simplicity, allowing analysts to
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identify patterns in current news and historical contexts without relying on a complex “Explainable AI” (XAI)
component.

We propose ContraSim, a method that leverages a novel textual augmentation algorithm powered by LLMs
to generate diverse news headlines with varying degrees of semantic similarity to the original. Augmented
headlines are assigned similarity scores ranging from 1.0 (high semantic alignment) to 0.0 (completely
disjoint meaning). Using these augmented pairs, we introduce Weighted Self-Supervised Contrastive Learning
(WSSCL) to build an embedding space where semantically similar headlines are naturally clustered. This
embedding algorithm enables the calculation of similarity scores between any two real-world headlines based
on their semantic proximity.

This approach is validated through two key findings: a) WSSCL inherently groups headlines associated with
similar market directions closer in the embedding space. Even without explicit market movement labels, the
model intuitively captures the relationship between headlines and market behavior using an information-gain
framework, and b) A large language model (LLM) trained with WSSCL-enhanced embeddings outperforms
an LLM relying solely on raw financial headlines for market movement prediction, demonstrating the added
value of this semantic embedding strategy.

Contributions : We introduce the Contrastive Similarity Space Embedding Algorithm (ContraSim), a
method that generates prompt augmentations with meaningful and nuanced similarity coefficients. We
demonstrate that:

a) ContraSim enables inter-day financial comparisons, allowing forecasters to identify historic market days
similar to the current day.

b) ContraSim learns a mapping between news headlines and market direction in an unsupervised manner.
This is evidenced by emergent structures in the embedding space that increase global insight into stock
movement – i.e., by identifying similar prompts, we gain insight into why stocks move.

c) The similarity embedding spaces created by ContraSim enhance the performance of financial forecasting
classification algorithms when used together.

Organization: Section §2 provides background using related works. Section §3 outlines our main method-
ologies. Section §4 explicates our experiments and empirical results, alongside an outline for future work and
training details. Other additional information like headline transformation A, g-KNN C, and our datasets D,
are relegated to the appendix.

2 RELATED WORKS

Machine Learning in Financial Forecasting Early approaches to predicting stock market movements
relied heavily on classical statistical models. One foundational method, the Autoregressive Integrated
Moving Average (ARIMA) Box & Jenkins [1970], utilized time series data to forecast trends. Subsequent
models, such as Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Bollerslev [1986],
Vector Autoregression (VAR) Sims [1980], and Holt-Winters exponential smoothing Holt [1957], extended
these capabilities by capturing more intricate patterns in financial time series. Other notable contributions
include techniques for cointegration analysis Engle & Granger [1987], Kalman filtering Kalman [1960], and
Hamilton’s regime-switching models Hamilton [1989].

While effective, these classical models were primarily limited to tabular datasets and struggled with nonlinear
relationships and multimodal inputs. The rise of Large Language Models (LLMs) transformed financial
forecasting by enabling the incorporation of richer, more complex data sources. For example, integrating
financial news articles Yang et al. [2020], sentiment analysis Yang et al. [2020], social media activity Bollen
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et al. [2011], and earnings call transcripts Tsai & Wang [2016] significantly enhanced market movement
predictions, demonstrating the versatility and power of LLMs in handling diverse financial modalities.

Contrastive Learning Contrastive learning has emerged as a powerful paradigm in unsupervised and
self-supervised learning, focusing on representation learning through comparisons. The core idea is to bring
similar data points closer in the representation space while distancing dissimilar ones. A key milestone
in this field was SimCLR Chen et al. [2020], which used data augmentations and contrastive loss to learn
high-quality representations without requiring labels. MoCo He et al. [2020] further advanced this approach
by introducing a memory bank to efficiently manage negative examples, making it more scalable for larger
datasets. Recent innovations like SimSiam Chen & He [2021] have shown that competitive representations
can be learned without relying on negative pairs, streamlining computation and improving accessibility.
These advancements are particularly relevant for financial applications, where large-scale and heterogeneous
datasets are common, enabling contrastive learning to uncover nuanced relationships in financial data.

3 METHODS

In this section, we introduce ContraSim, a self-supervised contrastive learning algorithm that creates aug-
mented news headlines with fine-grained degrees of similarity to the base. Then using a weighted self-
supervised learning paradigm, we create an embedding space, where semantically similar news headlines
are clustered together. Additionally, we outline how we can measure the efficacy of ContraSim by using an
information density approach in our similarity space to see if there is inherent market-movement knowledge
being learned by optimizing for news headline similarity.

3.1 CONTRASIM: CONTRASTIVE SIMILARITY SPACE EMBEDDING ALGORITHM

Here, we formulate the news headline augmentation pipeline and the Weighted Self-Supervised Contrastive
Learning (WSSCL) approach that in tandem generate the ContraSim. The contrastive similarity space,
generated from ContraSim, is optimized to put the headlines with semantically similar news into local
proximity.

We define the news headline dataset as:

Dnews headlines = {(di,Ni) | i = 1, 2, . . . , n}, where Ni = (hi1, hi2, . . . , him), 10 ≤ m ≤ 30 (1)

Where, n is the total number of news headlines within the news headline dataset, Ni is news headline object
containing a tuple of 10-30 headlines strings h, and di is the corresponding date identifier string for a day
i. In this context, a news headline is collection of WSJ The Wall Street Journal [2024] (or other relevant,
reputable market sources) headlines, however in this paper we explore how well ContraSim performs on other
textual domains (e.g. list of movie reviews).

1. Defining the Augmentation Objective Below, we propose a stochastic transformation T : N → (s, N̂ ),
where N is an input news headline, N̂ is the augmented news headline, and s ∈ [0.0, 1.0] represents the
similarity score between N and N̂ . In subsection 3. we further discuss our implementation details and our
process of measuring inter-news headline semantic similarity.

The dominant strategy for creating contrastive embedding spaces defines inter-object relationships in binary
terms: two objects are either within the same class or outside the same class. However, for this objective, we
do not have access to binary class labels between news headlines, as the similarity between news headlines is
inherently regressive and varies along a continuous spectrum. Weighted contrastive approaches, such as Xi
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et al. [2022], better align with this setting by leveraging nuanced similarity scores to guide the embedding
space construction, enabling more accurate representation of the semantic relationships between augmented
news headlines.

2. Generating Augmented News Headlines Augmented news headlines are generated through the follow-
ing discrete actions: i) Rewording the original headline (Re), ii) Generating a semantically shifted version
(S), iii) Negating the original headline (N), and iv) Selecting a random headline from a different day (Ra).

To achieve these transformations, we leveraged the LLaMA-3-7b-chat model AI [2024], prompting it with
carefully crafted instructions tailored to each specific action. For rewording (Re), the model was prompted
to retain the original meaning of the headline while rephrasing it with alternative wording and sentence
structure. For semantic-shifting (S), the prompt instructed the model to subtly alter the meaning of the
headline, introducing slight semantic deviations while maintaining topical relevance. For negation (N), the
model was guided to generate a headline that conveyed the direct opposite meaning of the original. By using
these tailored prompts, the LLaMA model provided high-quality augmented news headlines that covered
a broad spectrum of semantic variations. A further exploration on the specifics of the three (steps (i)-(iii))
headline transformations are expanded upon in appendix section A. Table 1 depict a pedagogical example
illustrating these transformations:

Transformation Action Example Headline

Original Johnson & Johnson to Buy Surgical Robotics Maker Auris
Reworded (Re) Auris Acquired by Pharmaceutical Giant Johnson & Johnson
Semantically-Shifted (S) Abbott Laboratories Acquires Medical Imaging Specialist Siemens Healthineers
Negated (N) Auris to Sell Off Stake in Surgical Robotics Business to Johnson & Johnson

Table 1: Example transformations of a news headline using the LLaMA-3-7b-chat model.

The final augmentation action Ra, is a function that randomly selects a headline from the training split
(ignoring headlines within the base news headline N ). This acts similarity to randomly sampling negatives in
a traditional contrastive learning mechanism.

Our augmentation stochastic transformation T : N → (s, N̂ ), generates augmented news headlines defined
fully in Appendix A. However, the intuition is quite straightforward. For each news headline, we can generate
an augmentation by: 1) Randomly sample the number of headlines within the augmented news headline (N̂ )
according to the global distribution. 2) According to Pactions, randomly sample a augmentation action. 3)
For each sampled augmentation action, perform that action. Note that the actions Re, S, and N each randomly
sample a headline from the base news headline (N ), and use that to create an augmented headlines (N̂ ). 4)
Randomly shuffle the order of the augmented headlines in N̂ .

In our experiments we set Pactions such that: P (Re) = 0.05, P (S) = 0.025, P (N) = 0.05, and P (Ra) =
0.775. These values were used because augmented news headlines produced a similarity score distribution
with a high skew to negative scores (as common in contrastive learning), while not overly-depending on
negative actions networks. We leave finetuning this probability distribution as a task for future work.

3. Generating Similarity Scores For each augmented news headline N̂ , we calculate the similarity score
S(N ) using a logarithmic weighting function:

S(N̂ ) = ln

(
1 +

∑
a∈N̂A

Sim(a)

Smax
· (e− 1)

)
(2)
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where a is an augmentation action within the list of augmentation action tuple N̂A, Smax is the maximum
possible total score to normalize the sum to the range [0, 1], and Sim(.) is the function mapping each
augmentation action to its corresponding similarity score, such that:

Sim(Re) = 1.0, Sim(S) = 0.5, Sim(N) = 0.0, Sim(Ra) = 0.0

Re S N Ra S(N̂ )

N̂1 15 1 0 15 1.00
N̂2 5 3 1 21 0.53
N̂3 1 4 4 17 0.29
N̂4 0 0 1 26 0.00

Table 2: List of augmentation actions from a
base news headline, and their accompanying
similarity score.

Intuition: The goal of generating a similarity score is to create
a metric between 0.0 and 1.0 that measures how similar a news
headline is semantically to its augmentation. When comparing
two headlines, we assign high similarity if they are rephrased
but semantically identical to each other (Re), medium similarity
if they are slightly semantically-shifted (S), and low similarity
if they are semantic opposites (N) or completey different (Ra).

A simple approach to generating a similarity scores between a
news headline and its augmentation could be to take the simple
mean of all of the augmentation action scores. However, if we
observe that two news headlines each have a headline that is
semantically identical but just reworded, then we want to take
note that those news headlines are so similar. Equation 2, skews
the similarity scores such that actions with higher similarity scores have an exponentially larger affect in news
headline similarity, than semantically different actions. An example of similarity scores is outlines in table 2.
There, we see that if we have an augmented news headline, N̂∞, that has 15 semantically identical headlines
to the base news headline, then the similarity score should be very high. Furthermore, N̂△ is a headline with
one semantically negated headline from the original, and the rest are completely disjoint headlines, and so it
has a very low semantic similarity.

3.2 WEIGHTED SELF-SUPERVISED CONTRASTIVE LEARNING (WSSCL)

Now that we have generated augmented news headlines from training set of anchor headlines, and we have
given similarity scores to each of these anchor-augmentation news headlines, we can proceed to generating our
news headline similarity embedding space through a weighted self-supervised contrastive learning approach.

Our embedding space optimization task is inspired by Supervised Contrastive Learning Khosla et al. [2021],
but is augmented to allow for regressive similarity measurements between anchor and augmented projections
instead of binary positive / negative labels. Our representation learning framework consists of 3 sections, the
Encoder Network, the Projection Network, and the Classification Networks:

Encoder Network: e = Enc(x) is a LLaMA-3 AI [2024] 7 billion parameter chat model. It was fine-tuned
to predict market movement direction (Fall, Neutral, or Rise) from the NIFTY dataset Raeid et al. [2024].
Additional details of SFT implementation are available from Saqur [2024]. news headlines are tokenized and
propagated through the encoder network, and the mean values from the last hidden layer are returned, such
that e = Enc(x) ∈ RDE . e is then normalized to a hypersphere, which in our implantation had dimensions of
4096.

Projection Network: p = Proj(e) is a feedforward neural network with a single hidden layer, and a shape
of (4096, 256, 128), and a single ReLU nonlinearlity unit. The role of this network is to project embeddings e
into our embedding space. After projection, the output values are again normalized. We found negligible
effects on the quality of the embedding space by increasing the complexity of the projection network.

Classification Networks: ClassProj(p), ClassLLM (e) and ClassBoth(p, e), are tasked with classifying
the market movement as rising, falling or neutral. ClassProj takes the projections from the embedding space
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as an input and ClassLLM takes the final hidden states from the encoder LLM. ClassBoth(p, e) takes both
projection and LLM embeddings as inputs. Training of the classification networks is done after the projection
network is optimized. Note that for training of the classification networks all augmentations are discarded,
and our classifiers are optimized on real news headlines only.

The optimization task we define for our projection network are defined the Weighted Similarity Contrastive
Loss (Equation 3).

LWSCL =
1

|Dnewsheadlines|

N∑
i=1

Mi∑
j=1

[
sij · d2ij + (1− sij) ·max(0, δ − dij)

2
]
, (3)

Where, N : Total number of anchor news headlines in a batch, Mi: Number of augmented samples for anchor
i, dij = ||pi − qij ||2, sij ∈ [0, 1]: Similarity score between the anchor and augmented embeddings, and δ is
the hyperparameter defining the contrastive margin.

The proposed loss (LWSCL) extends the classical triplet loss by incorporating a fuzzy similarity score sij ∈
[0, 1], enabling a more nuanced handling of relationships between anchor and augmented samples. This
formulation draws inspiration from the traditional triplet loss introduced by Schroff et al. [2015]. in FaceNet,
which minimizes the distance between anchor-positive pairs while maximizing the distance between anchor-
negative pairs using a fixed margin. By replacing binary labels with continuous similarity values, LWSCL
facilitates a finer gradient flow and captures graded relationships, making it particularly suitable for tasks
involving regressive or weighted similarity measures.

The pull loss term, sij · d2ij , minimizes the distance between anchor and augmented embeddings when sij is
high (e.g., sij ≈ 1.0). Conversely, the push loss term, (1− sij) ·max(0, δ − dij)

2, increases the distance
between embeddings when sij is low (e.g., sij ≈ 0.0), ensuring proper separation within the embedding
space.

In addition to LWSCL, the Continuously Weighted Contrastive Loss (CWCL) proposed by Srinivasa et al.
[2023] is another approach for weighted similarity learning. Unlike LWSCL, CWCL uses cosine similarity
instead of Euclidean distance and incorporates a softmax normalization across all pairs in the batch to enforce
global consistency. The CWCL loss is defined as:

LCWCL = − 1

|Dnewsheadlines|

N∑
i=1

Mi∑
j=1

sij · log
exp(dij/τ)∑Mi

k=1 exp(dik/τ)
, (4)

Where τ is the temperature scaling parameter that controls the sharpness of the distribution. CWCL allows
for fine-grained alignment of embeddings by normalizing similarity scores within the batch, providing a
complementary perspective to the pull-push mechanics of LWSCL.

Both approaches aim to improve the representation of graded relationships in embedding spaces but differ
in their distance metrics and weighting strategies. In Section 4, we explore each loss function and measure
which one performs better on our evaluation tasks.

It is notable that for the WSSCL task, the ground truth market direction corresponding to the news headline’s
day is not used at all in clustering. The ground truth market direction is saved only for our evaluation tasks
(see subsection 3.3). This is so we can measure if the self-supervised task, optimized only for similarity
inherently encodes market direction features, without giving them specifically. This lends credence to the
idea that through WSSCL information on markets are created.
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3.3 EVALUATING SIMILARITY SPACE INFORMATION RICHNESS

Metrics 1) Geometric K-Nearest Neighbors (g-KNN) evaluates the quality of local label distributions
by measuring the entropy of the labels among the k-nearest neighbors of each data point, averaged over
the entire dataset. This entropy-based measure provides insights into the local clustering structure of the
embedding space. Lord et al. [2018] 2) Nearest Neighbor Accuracy assesses the proportion of data points
whose closest neighbor shares the same category label, providing a direct measure of clustering performance.
3) Kullback-Leibler (KL) Divergence measures the difference between the local label distribution among
the k-nearest neighbors and the global label distribution, indicating the extent to which local clusters differ
from random chance Shlens [2014]. 4) Jensen-Shannon Divergence (JSD) offers a symmetric and bounded
evaluation of the similarity between local and global label distributions, enhancing interpretability. These
metrics are widely recognized in the literature for their effectiveness in quantifying clustering quality and
information richness in embedding spaces Lin [1991].

4 EXPERIMENTAL RESULTS AND INTERPRETATIONS

To analyze the effectiveness of ContraSim we perform two experiemnts. 1) We train a classification network
to predict rising, neutral, or falling markets for each provided news headline. We run ablations in which the
classification network predicts with only the similarity space embeddings, only the news headline embeddings
or both, and compare their performance with accuracy and F1 score. 2) We measure the density of similiarity
embeddings by measuring whether ContraSim inherently clusters news headlines of similar market movement
together (without knowledge of ground truth market movement) by using g-KNN as a metric.

4.1 DATASETS

For each of these experiments, we compare results on 3 datasets: NIFTY-SFT Saqur et al. [2024], BigData22
Soun et al. [2022], and the IMDB review dataset Maas et al. [2011]. A full analysis of this is outlined in
Table 3. NIFTY-SFT Saqur et al. [2024] is the collection of WSJ headlines The Wall Street Journal [2024]
collected and concatenated together alongside the movement of the US equities market (ticker: $SPY) for
the corresponding day. BigData22 Soun et al. [2022] likewise is a financial news headline dataset, but news
headlines are composed of tweets as apposed to WSJ headlines. Finally, we evaluate with the IMDB review
dataset, which is a collection of human-written reviews for a list of movies alongside the movie’s overall
review score. An extended analysis of the datasets used is available in Appendix D.

For the IMDB review example, we define a news headline as the concatenated movie reviews, and the
prediction task into Low (0.0 - 5.5 stars), Medium (5.6 - 7.5 stars) and High (7.6 - 10.0 stars). We evaluate
ContraSim on this dataset to assess its generalizability to orthogonal tasks beyond financial domain prediction.

Name of the Dataset Problem Domain Headlines Days/Movies Date Range
NIFTY-SFT Financial Headlines - - -
BigData22 Financial Tweets - - -
IMDB Review Movie Reviews - - -

Table 3: Summary of the datasets used in the experiments, including their problem domain, the number of
headlines (or reviews), the number of days covered, and the date range.

8
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4.2 RESULTS

Table 4 shows that a conjunction of projection, and LLM embeddings are better able to classify news headlines
as rising, neutral, or falling when both similarity space projections, and LLM final layer embeddings are used.
Using this conjunctive method we achieve a balanced accuracy of .3774%, a 13% increase on the baseline,
and a 7% increase on the model using only the LLM embeddings. The model trained only on the projection
did worse, just marginally beating the baseline.

Model NIFTY-SFT BigData22 IMDB
Baseline .3333 / .3333 .5000 / .5000 .3333 / .3333
ClassProj .3434 / .3389
ClassLLM .3522 / .3833
ClassBoth .3774 / .4670

Table 4: Accuracies and F1 scores (Accuracy / F1 Score) for classification models across datasets. The
NIFTY dataset was subsetted to achieve a (33%, 33%, 33%) split.

Table 5 displays embedding space density metrics for a baseline, and our similarity space projection. We
observe an increase in clustering accuracies in g-KNN, and KNN, indicating that in the process of ContraSim
augmentation and self-supervised contrastive learning, the projection model was able to map points of
homogeneous market direction to closer points in space. However, we observe that the projection network
actually does worse in KL-Divergence and JSD over the baseline.

Dataset Model g-KNN (k=5) KNN (k=5) KL-Divergence JSD

NIFTY-SFT
Baseline .5916 .4668 .3539 .1054
LCWCL .7647 .4732 .3821 .1164
LWSCL .7219 .5205 .3740 .1144

BigData22
Baseline .7951 .5506 .1499 .0452
LCWCL .9084 .7101 .2030 .0607
LWSCL .8590 .5507 .2246 .0640

IMDB
Baseline .7456 .5781 .2919 .0818
LCWCL .7626 .7500 .3957 .1120
LWSCL .8252 .6875 .3024 .0908

Table 5: Comparison of Baseline and Projection models across datasets and evaluation metrics. Note that
finding true baseline values for these metrics on unbalanced sets of labels is nontrivial and out of scope for
this paper. As a result, estimated baseline values are the mean of 1000 cases of randomly distributed points
following the respective label splits for each dataset. The best results are in bold.

4.3 DISCUSSIONS

[RS: TODO: @NV UPDATE THE CONCLUSON]

We conclude that by using ContraSim to generate a similarity space, and using that similarity space as a
feature for supervised learning, we generate domain information that was not there originally. This is also
reinforced in the structure of the similarity space itself, as we some have evidence that the method is able to
clump homogeneous market movement days closer together than by chance.
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4.4 TRAINING DETAILS

The Projection Network was trained for 50 epochs using Lcombined loss. Hyperparameter search was done in
three phases. First, a small set of learning rates (0.1, 0.001, 0.0001), and gamma decay values (0.95, 0.90,
0.85) where optimized for.

The Classification Networks were all optimized in very similar ways. Like the projection network we
performed a sweep on learning rate and gamma decay. Cross entropy loss was used, and projection values
that were used as inputs to ClassProj , came from the best performing projection model based on the test set
g-KNN (k=5) scores.

5 FUTURE WORK

For future work, we aim to expand ContraSim beyond financial data by testing it on other domains such as
healthcare, legal, and social media datasets. This will help assess the model’s generalizability across diverse
text types and semantic contexts. Additionally, we plan to incorporate more recent language models, like
GPT-4 or Meta LLaMA 3, to enhance the embedding quality and clustering performance. Exploring these
models’ fine-tuning capabilities in unsupervised financial forecasting could further strengthen ContraSim’s
ability to handle complex text data. We could also incorperate other Contrastive Learning features such as
hard negative mining, and dynamic temperature scaling.

10



470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2025

Ethics Statement [RS: here explicate why the ‘S’ step (i.e. shifted semantic headline) is not harmful and
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A HEADLINE TRANSFORMATIONS

Algorithm 1: Stochastic news headline Augmentation Transformation T

Input: Original news headline N = (h1, h2, . . . , hm)
Input: Action distribution Pactions over actions {Re,S,N,Ra}
Output: Augmented news headline (N̂ , s) with similarity score s

1 Sample n ∼ Distribution of news headline lengths in corpus
2 Initialize N̂ ← ∅, S ← 0
3 for i← 1 to n do
4 Sample ai ∼ Pactions
5 if ai ∈ {Re,S,N} then
6 Sample headline h ∼ N
7 else if ai = Ra then
8 Sample random headline h ∼ corpus
9 end if

10 if ai = Re then
11 h′ ← Reword(h)
12 S ← S + 1.0
13 else if ai = S then
14 h′ ← SemanticShift(h)
15 S ← S + 0.5
16 end if
17 else if ai = N then
18 h′ ← Negate(h)
19 S ← S + 0.0
20 end if
21 else if ai = Ra then
22 h′ ← h
23 S ← S + 0.0
24 end if
25 Append h′ to N̂
26 end for
27 Shuffle N̂
28 Compute similarity score s← S/n

29 return (N̂ , s)

B NEWS HEADLINE SIMILARITY EXAMPLES

C MEASURING INFORMATION DENSITY OF NIFTY AND RAEID MODELS WITH
IG-CLUPE

In this section, we do an analysis of prompt embeddings to provide evidence for the efficacy of RAEiD
finetuning, and the information density of NIFTY over other Flare stock movement datasets. When processing
prompts, transformer models like LLaMA-2 Touvron et al. [2023] and LLaMA-3 AI [2024] produce large-
dimensional vectors that capture the structure and semantic features. Consequentially, we find that prompt-
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Original Headline
“Johnson & Johnson to Buy Surgical Robotics Maker Auris”

Reworded Augmentation
System Please reword this headline for me, preserving the exact semantic meaning perfectly. Your

returned headline should contain the exact information with no meaning added or subtracted,
but just rephrased. Please generate the headline, and return only that with no other text.
Thanks.

User "Johnson & Johnson to Buy Surgical Robotics Maker Auris"
Responses 1. Auris Acquired by Pharmaceutical Giant Johnson & Johnson

2. Auris Acquired by Pharmaceutical Giant Johnson & Johnson in Deal Involving Surgical
Robot Technology
3. Auris Acquired by Pharmaceutical Giant Johnson & Johnson in Deal Involving Surgical
Robot Manufacturer
4. Auris Manufacturer of Surgical Robots Acquired by Johnson & Johnson
5. Auris Medical Acquired by Pharmaceutical Giant Johnson & Johnson in Deal Involving
Surgical Robotics Manufacturer

Semantic-Shift Augmentation
System Please modify this headline slightly, so it is about something related but different. If the

headline is good news, ensure it remains good news, and if it is bad news, ensure it remains
bad news. Please generate the headline, and return only that with no other text. Thanks.

User "Johnson & Johnson to Buy Surgical Robotics Maker Auris"
Responses 1. Abbott Laboratories Acquires Medical Imaging Specialist Siemens Healthineers

2. J&J Acquires Medtech Firm Verb for Improved Cancer Treatment Options
3. J&J Acquires Orthopedic Implant Company Zimmer Biomet in $14 Billion Deal
4. J&J Acquires Orthopedic Implant Company DePuy Synthes for $21 Billion
5. J&J Acquires Medtech Company Verb Surgical in $3 Billion Deal

Negative Augmentation
System Please reword this headline for me such that the information is the same except that it now is

about the opposite meaning. Please generate the headline, and return only that with no other
text. Thanks.

User "Johnson & Johnson to Buy Surgical Robotics Maker Auris"
Responses 1. Auris to Sell Off Stake in Surgical Robotics Business to Johnson & Johnson

2. Auris Abandons Plans to Acquire Surgical Robot Business from Johnson & Johnson
3. Auris to Sell Majority Stake to Rival of Johnson & Johnson’s Surgical Robot Division
4. Auris Acquires Surgical Robotics Leader Johnson & Johnson
5. Auris Abandons Plans to Acquire Surgical Robotics Giant Johnson & Johnson

Table 6: Rephrasing, slight ablation, and negative modification of the headline "Johnson & Johnson to Buy
Surgical Robotics Maker Auris." Each augmentation displays the system prompt, user-provided headline, and
model-generated responses listed with numbers.

embeddings localized in a group contain more similar semantic features than those of sentences of further
distance in the embedding space Wieting et al. [2017]. We propose Information Gain in Clustered Prompt
Embeddings (IG-CluPE), that measures regional prompt similarity by measuring homogeneity of clustered
embedding. Using IG-CluPE, we investigate to what degree expert models is able to group prompts with the
same direction of market movement together. We show that this information density approach provides insights
to both the efficacy of each finetuning stage in RaEID, and to provide evidence that NIFTY encapsulates a
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Figure 2: Information Gain in Clustered Prompt Embeddings (IG-CluPE): A novel method of measuring
a LLM’s ability to capture rich semantic contextualization of a corpus of text prompts with corresponding
classifications. Prompt embeddings are extracted from outputs of the last-hidden-layer of transformer models
to create an embedding space optimized for linear separability of points from each class. The effectiveness of
a model’s ability to group points with similar features together is measured through t-SNE clustering and
information gain.

richer set of features than ACL18 Xu & Cohen [2018], BigData22 Soun et al. [2022], or CIKM18 Wu et al.
[2018].

Contributions Below we highlight the contributions of this embedded prompt analysis:

1. Information Gain in Clustered Prompt Embeddings (IG-CluPE) : Inspired by from insight in the
optimization of decision trees, we outline IG-CluPE: an algorithm that measures cluster similarity
of categorical prompts. We verify that large language models trained on classification tasks, like
predicting the direction of market movement, cluster points of similar financial features together
through clustered information gain and an analysis of cluster similarity.

2. RaEID Information Gain: Using IG-CluPE, we measure information gain between a pretrained
LLaMA-2 model, an UnREAL model with only SFT, and an UnREAL model with both SFT and
RLMF.

3. Dataset Information Richness: We measure IG-CluPE on ACL18, BigData22, and CIKM18, using
information gain as evidence that NIFTY is more information dense, extending the capabilities of
SOTA stock price movement datasets.

C.1 IG-CLUPE: INFORMATION GAIN IN CLUSTERED PROMPT EMBEDDINGS

We introduce IG-CluPE, a method of measuring the density of information in classification models. In this
section, we show that outputs from LLaMA-2 and LLaMA-3 last-hidden layer can be used as a method
of investigating localized information richness within a embedding space in a prompt classification task.
IG-CluPE is acquired as a result of the finetuning task in a classification task, and does not need to be created
through additional training steps. We find that without explicit guidance, like those used in contrastive
learning, localized prompt structures reveal themselves within an embedding space through optimizing a
model for a classification task alone. This phenomenon is shown in detail in subsections C.2 and C.3.

Generating prompt embeddings with LLMs is a rich and vibrant field of study, owing to their usefulness
in knowledge representation in a field dominated by "black box" algorithms. Examples like Jiang et al.
(2023) Jiang et al. [2023] enhancing sentence embeddings through in-context learning, Kervadec et al. (2023)
Kervadec et al. [2023] analyzing responses to machine-generated prompts, reveal significant differences in
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both model responses and network processing pathways. However, each of these methods require training
regiments to generate their rich embeddings. Our method of embedding analysis is unique that it is a product
of learning intrinsically.

S. Singh (2023) Singh [2023] explores the intelligent behaviors exhibited by Transformer-based language
models through the lens of their movement in embedding space. It establishes a theory that maps these
intelligent behaviors to paths in embedding space, which are traversed by the transformer during inference,
with learning occurring by assigning higher probabilities to paths representing intelligent actions. This study
highlights the benefits of viewing learning through the lens of traversing an embedding space. However, since
this approach focuses on creating embeddings through a transformer’s parameter space, approaches like these
lose the ability to parse inter-prompt semantic similarities.

Generating information gain of an embedded space using IG-CluPE is outlined in these steps:

1. Embedding Generation: We feed through each tokenized prompt (xp) through our LLaMA model,
extracting and saving the outputs from the final hidden layer of the transformer as prompt embeddings.

2. Prompt Clustering: Once embeddings are generated for all prompts, we use t-distributed Stochastic
Neighbor Embedding (t-SNE) van der Maaten & Hinton [2008] to cluster all prompts. For purposes of
visualization we also use HDBSCAN Campello et al. [2013] for creating cluster figures in Cartesian space.

3. Information Gain Measurement: We measure the information gain of clustering each prompt with
equations 5 - 8, where L is a set of M tags (l1, l2, . . . , lM ), T is a multiset of N classification tags such that
each element t ∈ T is also in L, and {P1, P2, . . . , PK} is a partition of T into K clusters.

p(l, T ) =
|{i ∈ T : label of i = l}|

|T |
(5)

H(T ) = −
∑
l∈L

p(l, T ) log2 p(l, T ) (6)

HC(P ) =

K∑
k=1

|Pk|
|T |

H(Pk) (7)

IG = HC(P )−H(T ) (8)

The intuition behind using a last-hidden-layer embedding clustering-based approach to measure information
richness is rooted in the optimization processes of classification models. By analyzing the embeddings from
the final hidden layer of a neural network, we can assess how well the model captures and discriminates
between different classes of data. Clustering these embeddings allow us to both qualitatively and quantitatively
evaluate the separability and density of the data representations, reflecting the model’s ability to generalize
and its sensitivity to various financial features. This approach not only offers insights into the model’s internal
representations but also allows us to generalize which datapoints share pertinent features to stock movement
prediction.

By using the last-hidden-layer of a transformer architecture, preceding a single-layer fully connected neural
module, we ensure that during training the model is optimized for linear separability of the last-hidden-layer
embedding space. Therefore, we pose that in an optimized model a single data point has an increased
probability of being surrounded by data points of the same class, as compared to a worse performing model.

We borrow a technique of measuring the degree of cluster homogeneity through information gain in decision
tree optimization, described in equations 5 - 8. When optimizing a decision tree for a classification task, we
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s̈plitän initial set of datapoints based on differing features of each point. For example, in classifying a set
of apples as McIntosh or Granny Smith, we may choose to based on whether each apple is red or green, or
if each apple is above 200g or below 200g. Decision trees are optimally split by choosing the feature that
creates the highest amount of information gain post clustering. Intuitively we can see that colour is likely to
be a more informationally dense feature when classifying McIntosh or Granny Smith apples as compared to
weight.

IG-CluPE leverages insights from decision tree optimization and flips the process in the opposite direction.
Instead of using information gain to guide method of clustering, with IG-CluPE clustering is provided through
t-SNE localized clustering, and is used to measure information gain of the model.

Although we state that a model’s IG-CluPE score is proportional of the model’s ability to perform a down-
stream classification task it was optimized for, we find that using IG-CluPE has a set of marked advantages
over only using classification accuracy for model evaluation. Clustering prompt allows us to better interpret
model decision, and lets us view which prompt features the model finds useful in prompt classification.
Whereas viewing model performance solely through the lens of classification accuracy groups each prompt
into one of N categories, IG-CluPE allows us to peer into the prompt space and visualize how the model
groups similar points. We can look at false negatives and see which other prompts are closest to that prompt
in the embedding space.

Model information density analysis through IG-CluPE is additionally insightful in the domain of comparing
the efficacy of similar LLM models, or when comparing the information density of similar datasets. A
IG-CluPE can guide model design by peering into the inner workings of the model and identifying weak
points. For example, in the context of semantic classification, if a model predominantly groups prompts of
classes HAPPY and EUPHORIC together, we could tweak training methodology to include more cases of
these classes in the dataset. Then another embedding space can be created, and results compared. Additionally,
we can also look at how information density in the context of identically trained models embedding prompts
of similar datasets. A dataset with a modified/additional set of features can guide the models ability to
correctly classify text phrases. A clustered embedding space for each dataset can highlight how our model
utilize changes in the feature set.

In sections C.2 and C.3, we test both of these cases by using IG-CluPE to measure information richness of
a base pretrained LLaMA-2 model, an UnREAL model trained with only SFT, and a full UnREAL model
with SFT and RLMF. We also use IG-CluPE to measure the information richness of ACL18, BigData22,
CIKM18, and NIFTY. In both of these experiments we analyze the clustered embedding space, and describe
both qualitative and quantitative results, revealing a model’s semantic structures and identifying strengths and
points of weakness. All prompt clusters for both experiments were done with 3000 iterations of t-SNE with a
minimum cluster size of 3 on the test section of each of the datasets of interest.

C.2 RAEID INFORMATION GAIN

In this section we outline an IG-CluPE approach to measuring information richness of various training
stages of the UnREAL model. For each stage in the UnREAL training algorithm ??, we generate prompt
embeddings over the entire NIFTY test set. Embeddings are taken as the output of the final transformer layer
in the LLaMA-2 encoder architecture. Embeddings are clustered using t-SNE with a minimum cluster size
of 5, where the category of each point corresponds to ’rise’, ’fall’ or ’neutral’ stock movement. Below we
interpret the IG-CluPE score and take a deeper look into the embedding space structure with qualitative and
quantitaive metrics.

Additionally, we measure how the correlation between increased IG-CluPE information gain and classification
accuracy of the model. If we find there is a high correlation, then that provides evidence that through
finetuning a model for a classification task intrinsically creates clustering of same category points.
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Finally, IG-CluPE is predicated on the idea that an increase in information gain is indicative of a better
performing model. Only from that axiom, can we explore inter-prompt relationships on the basis that
finetuning a model on a classification task creates dense homogenous regions in the embedding space. To
explore this relationship we calculate a Pearson’s correlation coefficient between both Accuracy and F1 score
with IG-CluPE.

RaEID Models Tested: Here we list the models we are interested in testings.

1. LLaMA-2-7b

2. LLaMA-2-7b-chat

3. LLaMA-2-7b-chat + SFT

4. LLaMA-2-7b-chat + SFT + RLMF (UnREAL)

By testing LLaMA-2-7b models from no finetuning to a full UnREAL model, we intend to observe how
clustered points change. We measure the shift of prompts of the same market direction clump together through
the context of information gain and extend that through a deeper cluster analysis.

Table 7: F1 Score, Accuracy, and Information Gain from Clustered Prompt Embeddings (IG-CluPE) for
different stages of training in the RAEiD training algorithm ?? - ??.

Model Acc. F1 IG-CluPE

LLaMA-2-7b 0.23 0.21 0.0117
LLaMA-2-7b-chat 0.27 0.22 0.0835
LLaMA-2-7b-chat + SFT 0.45 0.28 0.0835
LLaMA-2-7b-chat + SFT + RLMF (UnREAL) 0.71 0.72 0.1039

Discussion In Table 7 we observe an increase/maintaining of clustered information gain throughout training.
This gives evidence that IG-CluPE is an appropriate metric for measuring information richness of prompt
embeddings. We see as the model’s classification ability increases, it creates more dense regions of high
information within the embedding space. We also observe very similar scores in Table 7 and a very similar
embedding structure in Figure 3. Information gain increases considerably post reinforcement learning with
market feedback, showing the importance and quality that stage brings to model performance.

Additionally, we investigate inter-cluster trends highlighted in Tables 10 and 11. In Table 10, we observe
as the complexity of training from the base model to UnREAL increases, the prompt embedding space is
better clustered in terms of information gained. While the set of unclustered prompts has around a 23%, 60%,
17% split of rising, neutral and falling stock days, post clustering we find specific clusters that contain much
less ambiguity. For example, clusters 15, 16, and 17 are in a region of the embedding space that is extremely
conducive to neutral stock movement with nearly all stocks in this group being neutral stock movement.
However, cluster 9 shows the opposite with no points being labelled as neutral.

In Table 11, we observe the results of tokenizing each news headline and analyzing the most significant
words within each cluster. By employing a TF-IDF Jones [1972] algorithm, we identified the top words that
characterize each cluster. This analysis reveals interesting trends within the stocks and provides insights
into market sentiment. For example, Cluster 3, characterized by words like "Hole," "Crash," and "Johnson,"
indicates a strong positive trend, reflected in its highest normalized market movement of 1.0000. Conversely,
Cluster 11, with prominent words such as "Last," "Place," and "EU," shows a strong negative trend, evidenced
by its normalized market movement of -1.0000. Clusters 15 and 13, featuring terms like "Shift," "Glitch,"
and "Complaint," are situated in the negative movement region, suggesting a downturn in market sentiment.
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These findings highlight the effectiveness of clustering and TF-IDF analysis in uncovering nuanced patterns
and trends in stock movement data, as evidenced by the frequently occurring words in each cluster.

(a) LLama-2-7b (b) LLaMA-2-7b-chat

(c) LLaMA-2-7b-chat + SFT (d) LLaMA-2-7b-chat + SFT + RLMF (UnREAL)

Figure 3: Clustered prompt embeddings for each point in NIFTY-test, generated from LLaMA-2-7b models
from no finetuning to full RLMF. Prompts embeddings were clustered and generated with the IG-CLuPE
algorithm. Symbols ▲, ▼, and - corresponds to rising, falling and neutral market movement. Each prompt
is clustered in a group that can be differentiated by color with notably dark blue corresponding to outlier
prompts belonging to no cluster. With points. An embedding space with the highest information gain is one
that groups the most points of the same cardinality together. We observe each step of training increasing the
amount of information gain.

C.3 DATASET INFORMATION RICHNESS

Here we outline an experiment on information richness in our dataset NIFTY, and we compare it to other
SOTA financial movement tasks, ACL18, BigData22, and CIKM18. Where in the previous section we created
embeddings on NIFTY from various models in training, here we keep training constant and we change which
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dataset embeddings are being generated for. The models generating the embeddings will be UnREAL models
fintunied on the training set of their respective financial dataset. Then we will generate prompt embeddings
for each of our datasets and compare information density with IG-CluPE.

It is notable that ACL18, BigData22, and CIKM18 only contain 2 categories: Rise and Fall. In order to
maintain parity, we omit all Neutral prompts from the test set and use the subsetted NIFTY dataset for
evaluation.

Table 8: Information Gain (IG), Accuracy, and F1 Score for LLaMA-2-7b-chat across different datasets

Model Acc. F1 IG-CluPE

LLaMA-2-7b-chat + ACL18 0.25 0.20 0.0000
LLaMA-2-7b-chat + BigData22 0.29 0.29 0.0061
LLaMA-2-7b-chat + CIKM18 0.27 0.27 0.0107
LLaMA-2-7b-chat + NIFTY 0.45 0.28 0.0997

Discussion We observe much higher information gain from clustered prompt embeddings in the model that
is finetuned and evaluated on the NIFTY dataset. This coincides with a larger accuracy score on the financial
movement classification task. We conclude that the NIFTY dataset contains more pertinent information that
allows the model to better predict movement in $SPY prices. Interestingly, we find that ACL18, BigData22,
and CIKM18 create extremely dense point clusters, compared to NIFTY, once condensing down to a two
dimensional representation. However, these clusters do not have a strong direction homogenity, and thus
do not provide much information on the basis of trends in market movement. Thus we conclude that the
model finetuned on NIFTY is better able to represent and understand concepts of the factors in daily news
and financial data to predict market movement.

Table 9: Pearson correlation coefficients and p-values for the correlation between Accuracy, F1, and IG-CluPE.
The evaluation was performed using Pearson correlation tests on the combined data from different stages of
training in the RAEiD algorithm and different datasets.

Metric Pearson Correlation Coefficient p-value

Accuracy 0.759 0.029 **
F1 0.514 0.192

Discussion: In this experiment highlighted in Table 9, we look at Accuracy, F1 and IG-CluPE scores from
Tables 7 and 8. We find that within a 95% statistical level of significance that there is a correlation between
accuracy of downstream prediction and IG-CluPE score. However, this does not apply to F1 score. The
significance between IG-CluPE and accuracy provides evidence that IG-CluPE is a useful tool for measuring
a model’s effectiveness, and that there is evidence that richer models create richer regions of information
within a prompt-wise embedding space. However, we would like to further investigate correlation between
IG-CluPE and F1.
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(a) ACL18 (b) BigData22

(c) CIKM18 (d) NIFTY

Figure 4: Clustered prompt embeddings for LLaMA-2-7b-chat models finetuned on ACL18, BigData22,
CIKM18, and NIFTY datasets. Prompts embeddings were clustered and generated with the IG-CLuPE
algorithm. Symbols ▲, ▼, and - corresponds to rising, falling and neutral market movement. Each prompt
is clustered in a group that can be differentiated by color with notably dark blue corresponding to outlier
prompts belonging to no cluster. With points. An embedding space with the highest information gain is one
that groups the most points of the same cardinality together. We observe each step of training increasing the
amount of information gain.

Table 11: Clusters Ordered by Normalized Market Movement

Cluster Market Movement Top 10 Words (TF-IDF)
3 0.005480 (1.0000) Hole, Crash, Johnson, Suing, Audit, Rubin, Combinator, Jackson,

CEOs, Gap
17 0.001771 (0.1838) Shuts, Bank, Refinements, Brokerages, Normalization, Stock,

LIBOR, Momentum, Revenue, Ex
Continued on the next page
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Cluster Market Movement Top 10 Words (TF-IDF)
Outliers 0.001724 (0.1735) Removal, Slot, Critic, GOP, Consulting, Tracy, Cordray, Housing,

Plants, Price
4 0.002000 (0.2343) Scotsman, Sushi, Sponsor, Zions, Peace, Economies, Brexit,

Tracy, Wage, Euro
12 0.001578 (0.1414) Mr, Funding, Clayton, Results, Amendment, Nominee, Things,

Withdraws, Way, Series
5 0.001560 (0.1375) Sailing, Justices, Protections, Powell, CFPB, Produce, Misfires,

Resilinc, Baer, Prognos
1 0.001443 (0.1117) Test, Waves, Let, Affects, BofA, Holders, Analyst, Mills, Conflict,

Carney
8 0.001375 (0.0968) Standard, Words, Trustee, Transcript, Broker, York, Take, Wynn,

Dudley, Interview
7 0.001060 (0.0275) Aid, Exempts, Tracy, Tests, Regulation, Payout, Cyberattack,

Tries, Measures, Pressure
2 0.000671 (-0.0580) Emails, Recess, Outcry, Denials, Bipartisanship, Pressure, Pound,

LA, Paloma, Las
10 0.000543 (-0.0861) Ambitions, June, Reluctant, FTI, Consulting, Jolt, Rubin, Budget,

CFTC, London
16 0.000462 (-0.1042) Burn, Conn, Seritage, Pit, Stability, Hartford, Triggers, Future,

Lawmakers, Phone
14 0.000425 (-0.1122) Arbitration, Database, Defections, Peltz, Senators, CFPB, Urges,

Control, Sets, Support
6 -0.000108 (-0.2294) State, Collection, Hayashi, Contenders, Coin, Votes, Agenda,

Gasoline, Boards, Statement
9 -0.000080 (-0.2232) Solution, Crisis, Conviction, Bondholder, Breitburn, Policy, Team,

Deng, Scurria, Bet
15 -0.000500 (-0.3157) Monte, Italy, Shift, Benefits, Worldpay, Control, Glitch, Minutes,

Meeting, Roundup
13 -0.001876 (-0.6186) Program, Water, Scaramucci, Complaint, Communications,

Database, Director, HNA, Banker, Path
0 -0.003443 (-0.9632) Expectancy, Quarles, Ackerman, Broadbent, Sheet, Senate, CFPB,

Arbitration, Czar, Life
11 -0.003610 (-1.0000) Last, Place, EU, Punts, Mooch, Banking, Verlaine, Fees, Con-

sumers, Entertainment

D DATASETS AND BENCHMARKS

D.1 NIFTY DATASET

The News-Informed Financial Trend Yield (NIFTY) dataset Raeid et al. [2024] is a processed and curated
daily news headlines dataset for the stock (US Equities) market price movement prediction task. NIFTY is
comprised of two related datasets, NIFTY-LM and NIFTY-RL. In this section we outline the composition of
the two datasets, and comment on additional details.

Dataset statistics Table 12 and Table 13 present pertinent statistics related to the dataset.

26

https://huggingface.co/datasets/raeidsaqur/NIFTY
https://huggingface.co/datasets/raeidsaqur/nifty-rl


1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

Under review as a conference paper at ICLR 2025

Anticipate the direction of the $SPY by analyzing market data and news from 2020-02-06.

(a) Instruction component of a πLM policy query xq .

date, open, high, •••,  pct_change, macd, boll_ub, boll_lb, rsi_30,  •••, close_60_sma

2020-01-27, 323.03, 325.12, •••,  -0.016, 2.89, 333.77, 319.15, 56.26, ••• , 317.40
2020-01-28, 325.06, 327.85, •••, 0.0105, 2.59, 333.77, 319.55, 59.57, ••• , 317.78

•••.          ••••

2020-02-04, 328.07, 330.01, •••, 0.0152, 1.3341, 333.60, 321.26, •••, 319.41
2020-02-05, 332.27, 333.09, •••, 0.0115, 1.7247, 334.15, 321.73, •••, 319.82

(b) The market’s history is provided as the past t days of numerical statistics like the (OHLCV) price (in blue) and
common technical indicators (in orange) (e.g. moving averages) data.

Figure 5: Breaking down the instruction or prompt prefix, and market context components of a prompt, xp.

D.1.1 NIFTY-LM: SFT FINE-TUNING DATASET

The NIFTY-LM prompt dataset was created to finetune and evaluate LLMs on predicting future stock
movement given previous market data and news headlines. The dataset was assembled by aggregating
information from three distinct sources from January 6, 2010, to September 21, 2020. The compilation
includes headlines from The Wall Street Journal and Reuters News, as well as market data of the $SPY
index from Yahoo Finance. The NIFTY-LM dataset consists of:

• Meta data: Dates and data ID.

• Prompt (xp): LLM question (xquestion), market data from previous days (xcontext), and news
headlines (xnews).

• Response: Qualitative movement label (xr) ∈ {Rise, Fall,Neutral}, and percentage change of
the closing price of the $SPY index.

To generate LLM questions, (xquestion), the authors used the self-instruct Wang et al. [2023] framework
and OpenAI GPT4 to create 20 synthetic variations of the instruction below:

Create 20 variations of the instruction below.
Examine the given market information and news headlines data on DATE to forecast
whether the $SPY index will rise, fall, or remain unchanged. If you think the movement
will be less than 0.5%, then return ’Neutral’. Respond with Rise, Fall, or Neutral and your
reasoning in a new paragraph.

Where DATE would be substituted later, during the training phase with a corresponding date.
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Context The key ‘context’ (xcontext) was constructed to have newline delimited market metrics over the
past T (≈ 10) days (N.B. Not all market data for the past days for were available and therefore prompts might
have less than 10 days of market metrics.).

Table 14 show the details of financial context provided in each day’s sample.

News Headlines (xnews): Final list of filtered headlines from the aggregation pipeline. The non-finance
related headlines were filtered out by performing a similarity search with SBERT model, "all-MiniLM-L6-v2"
Reimers & Gurevych [2019]. Each headline was compared to a set of artificially generated financial headlines
generated by GPT-4, with the prompt "Generate 20 financial news headlines". Headlines with a similarity
score below 0.2, were excluded from the dataset. To respect the prompting ‘context length’ of LLMs, in
instances where the prompt exceeded a length of 3000 words, a further refinement process was employed.
This process involved the elimination of words with a tf-idf Sammut & Webb [2010] score below 0.2 and
truncating the prompt to a maximum of 3000 words.

It is also important to note that the dataset does not encompass all calendar dates within the specified time
range. This limitation emanates from the trading calendar days, and absence of relevant financial news
headlines for certain dates.

Label (xr): The label is determined by the percentage change in closing prices from one day to the next,
as defined in equation 9. This percentage change is categorized into three labels: {Rise, Fall, Neutral}, based
on the thresholds specified in equation 10.

PCTchange =

(
Closing Pricet − Closing Pricet−1

Closing Pricet−1

)
× 100% (9)

xr =


Fall if PCTchange < −0.5%
Neutral if − 0.5% ≤ PCTchange ≤ 0.5%

Rise if PCTchange > 0.5%

(10)

D.2 BIGDATA22

D.3 IMDB REVIEWS DATASET
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Table 10: Cluster Information and Differences for Different Runs

Cluster Number Points Cluster Split (%) Entropy Weighted IG
Rise Neutral Fall

Base Data
All prompts 317 23.66 59.62 16.72 1.3683 -

LLama-2-7b
Cluster 0 175 25.71 54.29 20.00 1.4467 -0.0439
Cluster 1 46 21.74 65.22 13.04 1.2641 0.0152
Outliers 96 20.83 66.67 12.50 1.2364 0.0402

Total Information Gain 0.0117
LLaMA-2-7b-chat + SFT

Cluster 0 53 32.08 45.28 22.64 1.5289 -0.0269
Cluster 1 5 40.00 40.00 20.00 1.5219 -0.0024
Cluster 2 24 25.00 50.00 25.00 1.5000 -0.0100
Cluster 3 16 31.25 56.25 12.50 1.3663 0.0010
Outliers 153 25.49 62.09 12.42 1.3033 0.0314
Cluster 4 4 50.00 50.00 0.00 1.0000 0.0046
Cluster 5 5 60.00 40.00 0.00 0.9710 0.0063
Cluster 6 3 33.33 66.67 0.00 0.9183 0.0042
Cluster 7 3 33.33 66.67 0.00 0.9183 0.0042
Cluster 8 5 20.00 80.00 0.00 0.7219 0.0102
Cluster 9 4 0.00 100.00 0.00 0.0000 0.0173

Cluster 10 4 0.00 100.00 0.00 0.0000 0.0173

Total Information Gain 0.0835
LLaMA-2-7b-chat + SFT + RLMF

Cluster 0 7 28.57 42.86 28.57 1.5567 -0.0417
Cluster 1 43 23.26 55.81 20.93 1.4312 -0.0086
Cluster 2 44 20.45 56.82 22.73 1.4175 -0.0064
Cluster 3 17 35.29 47.06 17.65 1.4837 -0.0062
Cluster 4 23 30.43 52.17 17.39 1.4509 -0.0060
Cluster 5 26 26.92 57.69 15.38 1.3829 -0.0012
Cluster 6 27 25.93 59.26 14.81 1.3604 0.0007
Cluster 7 13 15.38 61.54 23.08 1.3347 0.0014
Cluster 8 10 40.00 50.00 10.00 1.3610 0.0023
Outliers 34 29.41 58.82 11.76 1.3328 0.0037
Cluster 9 4 50.00 0.00 50.00 1.0000 0.0046

Cluster 10 7 14.29 71.43 14.29 1.1488 0.0049
Cluster 11 17 11.76 64.71 23.53 1.2608 0.0058
Cluster 12 5 60.00 40.00 0.00 0.9710 0.0063
Cluster 13 10 10.00 70.00 20.00 1.1568 0.0067
Cluster 14 4 25.00 75.00 0.00 0.8113 0.0070
Cluster 15 4 0.00 100.00 0.00 0.0000 0.0173
Cluster 16 7 0.00 100.00 0.00 0.0000 0.0302
Cluster 17 15 6.67 93.33 0.00 0.3534 0.0480

Total Information Gain 0.1039
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Table 12: Statistics and breakdown of splits sizes

Category Statistics

Number of data points 2111
Number of Rise/Fall/Neutral label 558 / 433 / 1122
Train/Test/Evaluation split 1477 / 317 / 317

Table 13: Date Ranges of news headlines in splits

Split Num. Samples Date range

Train 1477 2010-01-06 to 2017-06-27
Valid 317 2017-06-28 to 2019-02-12
Test 317 2019-02-13 to 2020-09-21

Table 14: Summary of the dataset columns with their respective descriptions.

Column Name Description

Date Date of the trading session
Opening Price Stock’s opening market price
Daily High Highest trading price of the day
Daily Low Lowest trading price of the day
Closing Price Stock’s closing market price
Adjusted Closing Price Closing price adjusted for splits and dividends
Volume Total shares traded during the day
Percentage Change Day-over-day percentage change in closing price
MACD Momentum indicator showing the relationship between two moving averages
Bollinger Upper Band Upper boundary of the Bollinger Bands, set at two standard deviations above the average
Bollinger Lower Band Lower boundary, set at two standard deviations below the average
30-Day RSI Momentum oscillator measuring speed and change of price movements
30-Day CCI Indicator identifying cyclical trends over 30 days
30-Day DX Indicates the strength of price trends over 30 days
30-Day SMA Average closing price over the past 30 days
60-Day SMA Average closing price over the past 60 days
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