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ABSTRACT

Object-centric learning aims to break down complex visual scenes into more man-
ageable object representations, enhancing the understanding and reasoning abili-
ties of machine learning systems toward the physical world. Recently, slot-based
video models have demonstrated remarkable proficiency in segmenting and track-
ing objects. Although most modules in these models are well-designed, they over-
look the importance of the effective reasoning module. In the real world, espe-
cially in complex scenes, reasoning and predictive abilities play a crucial role
in human perception and object tracking; in particular, these abilities are closely
related to human intuitive physics. Inspired by this, we designed a novel reason-
ing module called the Slot-based Time-Space Transformer with Memory buffer
(STATM) to enhance the model’s perception ability in complex scenes. The mem-
ory buffer primarily serves as storage for slot information from upstream modules,
akin to human memory or field of view. The Slot-based Time-Space Transformer
makes predictions through slot-based spatiotemporal attention computations and
fusion. We demonstrated that the improved deep learning model exhibits certain
degree of rationality imitating human behavior. This has crucial implications for
understanding the relationship between deep learning and human cognition, espe-
cially in the context of intuitive physics.

1 INTRODUCTION

Objects are the fundamental elements that constitute our world, which adhere to the fundamental
laws of physics. Humans learn through activities such as observing the world and interacting with
it. They utilize the knowledge acquired via these processes for reasoning and prediction. All these
aspects are crucial components of human intuitive physics (Lake et al., 2017; Kubricht et al., 2017;
Riochet et al., 2018; Smith, 2019). Therefore, object-centric research is pivotal for comprehending
human cognitive processes and for developing more intelligent artificial intelligence (AI) systems.
By studying the properties, movements, interactions, and behaviors of objects, we can uncover the
ways and patterns in which humans think and make decisions in the domains of perception, learning,
decision-making, and planning. This contributes to the advancement of more sophisticated machine
learning algorithms and AI systems, enabling them to better understand and emulate human intuitive
physical abilities (Janner et al., 2019; Tang et al., 2023).

Recently, the representative SAVi (Kipf et al., 2021) and SAVi++ (Elsayed et al., 2022) models
have demonstrated impressive performance in object perception. SAVi (Slot Attention for Video)
employed optical flow as a prediction target and leveraged a small set of abstract hints as condi-
tional inputs in the first frame to acquire object-centric representations of dynamic scenes. SAVi++
(Towards End-to-End Object-Centric Learning from Real-World Videos) enhanced the SAVi by in-
tegrating depth prediction and implementing optimal strategies for architectural design and data
augmentation. Both SAVi and SAVi++ execute two steps on observed video frames: a prediction
step and a correction step. The correction step uses inputs to update the slots. The prediction step
uses the slots information of the objects provided by the correction step for prediction. The pre-
dictor’s output initializes the correction process in the subsequent time step, ensuring the model’s
consistent ability to track objects over time.

The two main steps of such a model operate in a positive feedback loop. The more accurate the
predictions, the better the corrections become. Consequently, the more accurate the corrections, the
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Figure 1: Slot-based Time-Space Transformer with Memory buffer architecture overview.

more precise the information provided for the prediction step is, leading to better predictions. There-
fore, having a reasonable and efficient predictor is crucial for the entire model. In real-world scenar-
ios, humans also engage in prediction as a crucial aspect of their object perception and tracking, but
human prediction behaviors often involve more intricate processes. Humans typically combine the
motion state of an object with the interactions of other objects to predict possible future states and
positions of the object. The object’s motion state is inferred by humans using their common sense
from the object’s past positions over a period of time. In so doing, humans enhance their ability
to recognize and track relevant objects within complex scenes, which is an integral component of
human intuitive physics (Sudderth, 2006; Ullman et al., 2017; Mitko & Fischer, 2020). In simpler
environments, considering our ability to instantly recognize objects in a single shot, the potential of
humans in this regard may be underestimated. The prediction step in SAVi and SAVi++ is similar to
human inference, but the predictor module in SAVi and SAVi++ is somewhat simplistic, as it relies
solely on single-frame information from the current time step for prediction.

Drawing inspiration from human behavior, we introduce a novel prediction module aimed at en-
hancing slot-based models for video. This module comprises two key components: 1) Slot-based
Memory Buffer: primarily designed to store historical slot information obtained from the upstream
modules; and 2) Slot-based Time-Space Transformer Module: designed by applying spatiotemporal
attention mechanisms to slots for inferring the temporal motion states of objects and calculating spa-
tial objects interactions, which also integrates time and space attention results. We term the proposed
model as Slot-based Time-Space Transformer with Memory buffer (STATM). Upon substituting the
prediction module of SAVi and SAVi++ into the STATM, we observe distinct impacts of different
spatiotemporal fusion methods on SAVi and SAVi++. By employing an appropriate fusion method
and memory buffer sizes, we observed a significant enhancement in the object segmentation and
tracking capabilities of SAVi and SAVi++ on videos containing complex backgrounds and a large
number of objects per scene.

2 RELATED WORK

Object-centric Learning. In recent years, object-centric learning has emerged as a significant re-
search direction in computer vision and machine learning. It aims to enable machines to perceive
and understand the environment from an object-centered perspective, thereby constructing more in-
telligent visual systems. There is a rich literature on this research, including SQAIR (Kosiorek et al.,
2018), R-SQAIR (Stanić & Schmidhuber, 2019), SCALOR (Jiang et al., 2019), Monet (2019), OP3
(Veerapaneni et al., 2020), ViMON (Weis et al., 2020), PSGNet (Bear et al., 2020), SIMONe (Kabra
et al., 2021), and others (Kahneman et al., 1992; Kipf et al., 2019; Zhang et al., 2022; Xie et al.,
2022; Seitzer et al., 2023; Zadaianchuk et al., 2023; ZHANG et al., 2023; Nakano et al., 2023;
Jia et al., 2023). Slot-based Models represent a prominent approach within object-centric learning.
They achieve this by representing each object in a scene as an individual slot, which is used to store
object features and attributes (Locatello et al., 2020; Kumar et al., 2020; Zoran et al., 2021; Singh
et al., 2021; Yang et al., 2021; Zoran et al., 2021; Ye et al., 2021; Hassanin et al., 2022; Wang et al.,
2023; Heravi et al., 2023; Wu et al., 2023).
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Prediction and Inference on Physics. The implementation of object-centric physical reasoning
is crucial for human intelligence and is also a key objective in artificial intelligence. Interaction
Network (Battaglia et al., 2016) as the first general-purpose learnable physics engine, is capable
of performing reasoning tasks centered around objects or relationships. Another similar study is
the Neural Physics Engine (Chang et al., 2016). On the other hand, Visual Interaction Networks
(Watters et al., 2017) can learn physical laws from videos to predict the future states of objects.
Additionally, there are many models developed based on this foundation (Engelcke et al., 2019;
Henderson & Lampert, 2020; Chen et al., 2021; Dittadi et al., 2021; Jusup et al., 2022; Meng et al.,
2022; Piloto et al., 2022; Singh et al., 2022; Driess et al., 2023; Cornelio et al., 2023). In order
to achieve a deeper understanding of commonsense intuitive physics within artificial intelligence
systems, Piloto et al. (2022) have built a system capable of learning various physical concepts, albeit
requiring access to privileged information such as segmentation. Our research primarily aims to
construct an object-centric system for object perception, learning of physics, and reasoning.

Slot-based Attention and spatiotemporal Attention. Our current work is closely related to slot-
based attention and spatiotemporal attention. There are a lot of works related to slot-based attention
(Locatello et al., 2020; Hu et al., 2020; Kumar et al., 2020; Zoran et al., 2021; Singh et al., 2021;
Yang et al., 2021; Zoran et al., 2021; Ye et al., 2021; Hassanin et al., 2022; Wang et al., 2023; Heravi
et al., 2023; Wu et al., 2023). Spatiotemporal attention mechanisms are particularly effective in
handling video data or time-series data, allowing networks to understand and leverage relationships
between different time steps or spatial positions (Li et al., 2020; Luo et al., 2021). Currently, they
find wide applications in various fields such as video object detection and tracking (Lin et al., 2021;
Chen et al., 2022), action recognition (Yang et al., 2022), natural language processing (Xu et al.,
2020; Weld et al., 2022), medical image processing (Zhang et al., 2020), among many others (Ding
et al., 2020; Yuan et al., 2020; Cheng et al., 2020; de Medrano & Aznarte, 2020).

3 SLOT-BASED TIME-SPACE TRANSFORMER WITH MEMORY BUFFER

To enhance the slot-based video models, e.g., SAVi and SAVi++, we introduce a new module called
the Slot-based Time-Space Transformer with Memory Buffer (STATM) as the predictor. STATM is
primarily designed to support causal reasoning and prediction for object-centric downstream tasks
based on slots. This module consists of two key components: 1) the memory buffer, and 2) the
Slot-based Time-Space Transformer (STAT). The memory buffer serves as a repository for storing
historical slot information obtained from upstream modules, while STAT utilizes the information
stored in the memory buffer for prediction and causal reasoning.

3.1 MEMORY BUFFER

The memory module is utilized for storing slot information from the upstream modules. We employ
a queue-based storage mechanism. The representation of the memory buffer at time t is given by:

Mt = Queue(Si, . . . , St), (1)

where St = {s(0,t), . . . , s(N,t)} represents the slot information extracted from the corrector module
of SAVi and SAVi++ at time t. Here, N signifies the number of slots, which is associated with the
number of objects within the scene. The size of M can be fixed or infinite. The new information is
appended at the end of the queue.

3.2 SLOT-BASED TIME-SPACE TRANSFORMER (STAT)

The primary role of STAT lies in leveraging slot data from the memory buffer to facilitate slot-based
dynamic temporal reasoning and spatial interaction computations. Furthermore, it integrates the
outcomes of temporal reasoning and spatial interactions to achieve a unified understanding. Specif-
ically, for temporal dynamic reasoning, a cross-attention mechanism is employed, which effectively
utilizes historical context stored in the memory buffer to enable accurate predictions of future states.
Meanwhile, for spatial interaction computations, we employ a self-attention mechanism that oper-
ates on slot representations to compute the relevance between different slots within the S. The results
obtained from temporal dynamic reasoning and spatial interaction computation are merged to pro-
vide a holistic understanding encompassing both temporal dynamics and spatial interactions. This
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Figure 2: Left: Fusion approaches of spatiotemporal attention explored in our study. (a) The sum
of computed temporal attention and spatial attention results (T+S). (b) Spatial attention computation
followed by using the outcome as input for temporal attention (ST). (c) Temporal attention com-
putation followed by using the outcome as input for spatial attention (TS). Right: Spatiotemporal
attention computation architectures explored in our study. The green slots represent those employed
for spatial attention computation, while the orange slots are indicative of those used for temporal
attention computation. (d) Corresponding Slot Attention (CS). (e) All Slot Attention (AS).

comprehensive representation enhances the model’s capability for accurate prediction and reasoning
in object-centric tasks. We propose three approaches as illustrated in Figure 2a-c.

We also introduced two computational architectures for spatiotemporal attention as illustrated in
Figure 2d-e. (1) Corresponding Slot Attention (CS): For slot s(i,t), temporal attention is computed
by using it and corresponding slots in {s(i,0), . . . , s(i,t−1)}, while spatial attention computation is
performed using it and all slots within {s(0,t), . . . , s(N,t)}. (2) All Slot Attention (AS): For slot
s(i,t), temporal attention is computed by using it and all slots in {s(0,0), . . . , s(N,t−1)}. The spatial
attention computation remains the same as in approach CS.

In the CS architecture, s(i,t) undergoes temporal attention computation exclusively with its corre-
sponding slots. This design offers several notable advantages. Firstly, it enables a more robust
association between objects and slots in terms of temporal sequences, preserving the slot’s invari-
ance with respect to the object. Additionally, this approach significantly reduces computational costs
when compared to the AS structure. This efficiency makes the CS architecture an appealing choice
for achieving effective temporal binding while optimizing computational resources.

In the AS architecture, the temporal attention involves calculating the attention between s(i,t) and all
previous slots. The AS structure is designed to achieve improved slot-based prediction and reasoning
in complex, unguided scenarios. The design rationale for AS is as follows. In previous time steps,
objects were not effectively bound to specific slots, requiring each slot to search through memory to
link relevant object information.

For example, when a person observes a car in a scene at time t (assuming it was not noticed before),
they often rely on their memory of previous scenes to determine where the car was previously
located. This recall allows them to identify the previous position of this car and use it, along with
the current one, to infer its future state. The AS architecture assumes that objects were not segmented
in previous frames or that effective hints for segmentation were absent. In summary, if the upstream
task effectively segments objects into slots, the CS architecture is preferred. Otherwise, the AS
architecture can be considered.

For SAVi and SAVi++ models with hints in the first frame, the AS enhancement might not be sig-
nificantly effective and could increase computational load. Since the predictor in both SAVi and
SAVi++ is a transformer encoding block, all experiments and investigations in this paper only in-
volve a STAT encoding block. We adopt the CS attention architecture with the T+S spatiotemporal
fusion approach for our proposed STATM predictor. The memory buffer stores the slot information
from the corrector for time steps. We then explain the calculation of spatiotemporal attention:

Mt = Queue (S0, . . . , St) . (2)
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For a STAT encoding block, query/key/value vectors are computed for each slot:
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where k, q, and v represent learned linear projections. s(i,t) denotes the vector of the i-th slot at time
t. The latent dimensionality for each attention head is set to Dh = D/A.

The computation of spatiotemporal attention is also slot-based, and weights are calculated using
dot-product. For the slot s(i,t), the spatiotemporal attention weights are computed as follows:
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For each slot at time t, we calculate the weighted sum of value vectors using spatiotemporal attention
coefficients from each attention head. The individual spatial or temporal attention systems in the CS
structure can refer to Equation (5).
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The combined spatiotemporal vectors are individually linearly transformed, summed, and input into
an MLP, where layer normalization (LN) is applied after each residual structure, v.i.z.,
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In this section, we focus on the computation process of the CS architecture using the T+S fusion
approach for the STAT encoding block. In summary, temporal attention is calculated by jointly in-
corporating historical information from the memory buffer and spatial attention’s slot s(i,t). Across
all structural approaches, computations are based on slots, and the equation formulations remain
consistent. Specific computation methods and procedures can be found in Figure 2.

4 EXPERIMENTS

The central aims of our experiments include: 1) To validate the efficacy of our model, incorporating
STATM as a substitute for the transformer encoding block predictor within the SAVi and SAVi++
frameworks. 2) To investigate the effects of varying memory buffer sizes during both the training and
inference stages on the performance of the model. 3) To assess the impact of different spatiotemporal
methods integrated within STATM on the model’s effectiveness.

Metrics. We selected the Adjusted Rand Index (ARI) (Rand, 1971; Hubert & Arabie, 1985) and the
mean Intersection over Union (mIoU) as evaluation metrics. ARI quantifies the alignment between
predicted and ground-truth segmentation masks. For scene decomposition assessment, we com-
monly employ FG-ARI, which is a permutation-invariant clustering similarity metric. It allows us
to compare inferred segmentation masks to ground-truth masks while excluding background pixels.
mIoU is a widely used segmentation metric that calculates the mean Intersection over Union values
for different classes or objects in a segmentation task. It measures the overlap between the predicted
segmentation masks and the ground-truth masks, indicating the quality of object segmentation. In
the context of video analysis, mIoU is adapted to evaluate the consistency and accuracy of object
segmentation and tracking across frames. It provides insights into how well the model captures the
spatial relationships between objects in consecutive frames.
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Table 1: Segmentation results on the MOVi dataset. All models were trained for 100k steps with a
batch size of 32, which differs from the official implementation of SAVi (small, 100k steps, batch
size of 64) and SAVi++ (500k steps, batch size of 64).

Model mIoU↑ (%) FG-ARI↑ (%)
A B C D E A B C D E

SAVi 62.8 41.6 22.0 6.8 4.0 91.1 70.2 50.4 18.4 10.8
STATM-SAVi 67.5 42.8 34.0 17.0 9.0 91.1 70.1 57.7 40.9 36.9
SAVi++ 82.8 52.5 47.8 43.6 26.1 96.7 78.5 76.3 81.5 81.7
STATM-SAVi++ 83.5 52.5 49.5 50.1 27.9 96.9 78.9 77.7 85.8 85.0

Datasets. To evaluate the performance of our model, we utilized the synthetic Multi-Object Video
(MOVi) datasets (Research, 2020; Greff et al., 2022), the same datasets used for SAVi++ training.
These datasets are divided into five distinct categories: A, B, C, D, and E. MOVi-A and B depict
relatively straightforward scenes, each containing a maximum of 10 objects. MOVi-C, D, and E
present more intricate scenarios with complex natural backgrounds. MOVi-C, generated using a
stationary camera, presents scenes with up to 10 objects. Transitioning to MOVi-D, the dataset
extends the object count to accommodate a maximum of 23 objects. Lastly, MOVi-E introduces
an additional layer of complexity by incorporating random linear camera movements. Each video
sequence is sampled at a rate of 12 frames per second, resulting in a total of 24 frames per second.

Training Setup. We conducted our experiments in JAX (Bradbury et al., 2018) using the Flax
(Heek et al., 2020) neural network library. In all experiments except the ablation study in section
4.2, we used the STAT encoding block in combination with the CS attention architecture, featur-
ing the T+S spatiotemporal fusion approach. For training the STATM-SAVi and SAVi models, we
utilized videos comprising of 6 frames at a resolution of 64×64 pixels. The training process is con-
ducted over 100,000 iterations. Similarly, the STATM-SAVi++ and SAVi++ models were trained
on continuous videos consisting of 6 frames at a higher resolution of 128×128 pixels, with training
duration encompassing 100,000 iterations. The batch size for training all models was set to 32. The
buffer size was unconstrained during training, and the maximum length of effective information was
limited to 6 due to the utilization of a 6-frame training sequence. The training process was executed
on two A100 80GB GPUs, and bounding boxes were used as the conditioning for all models. The
settings of other hyperparameters were consistent with those presented in SAVi and SAVi++.

4.1 IMPROVEMENT OF SAVI AND SAVI++ WITH STATM

To evaluate the STATM module, we chose: 1) using SAVi-small as the baseline model to compare
the results of SAVi-small and STATM-SAVi; and 2) using SAVi++ as the baseline model to com-
pare the results of SAVi++ and STATM SAVi++. Note that other baseline models that performed
worse compared with SAVi (Kipf et al., 2021) and SAVi++ (Elsayed et al., 2022) were therefore not
considered herein. The results are presented in Table 1.

It is observed that compared with SAVi and SAVi++, our model achieves higher mIoU and FG-ARI
on the relatively simple MOVi-A and B datasets. As the dataset complexity increases, the advan-
tages of our model become even more pronounced. We also conducted supplementary evaluations
of our model, please refer to Appendix B. Clearly, utilizing STATM as the predictor significantly
enhances the object tracking and segmentation capabilities of the slot-based video model, especially
in complex scenarios. This also proves the importance and rationality of STATM, where slot-based
temporal dynamic reasoning and spatial interactive computations combine to improve predictions,
resulting in better object segmentation and slot alignment. Essentially, higher prediction accuracy
leads to better segmentation performance. If predictions are highly accurate, we don’t need to track
objects at every step. Instead, we can focus on predicted locations, optimizing resource usage.

However, much like humans cannot predict the appearance of new objects in the next moment, the
predictor faces similar limitations. At the initial moment, if the corrector cannot provide sufficiently
accurate object information to the predictor, the predictor cannot offer precise prediction information
for the corrector either. This situation leads to a vicious cycle, causing a gradual deterioration in
the model’s perceptual performance. When new objects appear, the model’s performance drops
dramatically (e.g., as seen in Figure 3 of the MOVi-D, when a new object emerges at t = 5, our
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Figure 3: Qualitative results of our model compared to SAVi and SAVi++ on the MOVi dataset.
Compared with SAVi and SAVi++, our model is slightly better than the SAVi/SAVi++ mode on the
relatively simple MOVi-A and B data sets. However, as the complexity of the datasets increases, the
advantage of our model becomes more pronounced.

model’s segmentation quality deteriorates rapidly after that). In such cases, a simple predictor might
even yield better results. This may also explain why using an MLP as a predictor in SAVi results
in more stable training on complex datasets. If both the corrector and predictor are robust enough,
this situation can be improved. The predictor can make accurate predictions based on the precise
object information provided by the corrector, and the corrector can distinguish new objects from the
predicted existing ones, thereby assigning new objects to separate slots.

Due to constraints of computing resources, our models were trained for 100k steps with a batch size
of 32, which differs from the official implementation of SAVi (small, 100k steps, batch size of 64)
and SAVi++ (500k steps, batch size of 64). Nevertheless, under equivalent conditions, our models
consistently outperform the original counterparts: e.g., for the FG-ARI, STATM-SAVi (small, 100k
steps, batch size of 32) achieves comparable performance to the official SAVi (large, 500k steps,
batch size of 64) on MOVi-E datasets, while STATM-SAVi++ (100k steps, batch size of 32) per-
forms comparably to SAVi++ (500k steps, batch size of 64). Importantly, the integration of a STAT
encoding block does not lead to a significant increase in model parameters. Further improvements
can be explored by increasing batch size and training steps, especially for STATM-SAVi++. We plan
to investigate this in the future. A detailed comparison of parameters can be found in Appendix A.

4.2 ABLATION STUDY

In this section, we aim to evaluate the influence of different components of STATM, using STATM-
SAVi as a baseline. Given the indispensability of the memory module for temporal attention, we
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Figure 4: Segmentation results with different memory buffers on the MOVi dataset. (a) During
training, all available information is utilized with an unlimited buffer length. The x-axis represents
the model results during testing with buffer sizes ranging from unlimited to limited (6, 4, and 2
frames). (b) During training, the buffer length is limited to 6 frames. The different bars represent
the model results during testing with buffer sizes of 6, 4, and 2 frames.

focus on two key aspects: 1) The effect of memory buffer size on the model during both training and
inference phases; and 2) The influence of different spatiotemporal attention competition and fusion
methods on the model.

Ablation Experiment of Memory Module. We have designed two sets of experiments to evaluate
the impact of the memory buffer: 1) In the first set, we allowed an unlimited memory buffer length
during training, but restricted it to a fixed length during testing, ensuring it didn’t exceed the training
buffer’s length. To facilitate evaluation, we have not only assessed the model trained with 6 frames
but also extended the training frames to 12, with the 12-frame results available in Appendix C. 2) In
the second set, we fixed the buffer length during training, not exceeding the maximum buffer length,
and removed any buffer length restrictions during testing. The results are shown in Figure 4.

Longer-duration video processing presents a challenge to the prediction and inference abilities of
the model. It requires that the model extrapolate the learned physical laws of object motion to
previously invisible segments. Therefore, the buffer’s role during the testing becomes crucial for
inference, especially for object tracking and segmentation beyond the training frame number (see
Figure 4a). The prediction module requires additional information to summarize the physical laws
of object motion, enabling it to make accurate predictions. This is similar to the human behavior.

Limiting the buffer length during the training phase reduces the segmentation and tracking capa-
bilities of the model, but the decline is not overly serious. This aligns with human learning habits.
Gathering more information at once is more conducive to humans in recognizing and summarizing
patterns. However, when the overall learning duration remains constant, limitations in the field of
view or learning content may lead to a decline in a person’s ability to recognize and reason, but
these abilities are not entirely lost. The model’s tracking and segmentation capabilities over a dura-
tion equal to the training frames are less affected by memory (see Figure 4b). This is analogous to
a scenario where a person has observed a significant amount of object motion in various scenarios
over a time duration t. Subsequently, when asked to predict or describe how objects move within
that t time duration, as long as the inquiry doesn’t extend beyond t, the person should still be able
to provide reasonably accurate predictions and explanations, even if their view is obstructed or their
memory is restricted. For more detailed analysis, please refer to Appendix C.

In summary, increasing the memory buffer size during both training and testing phases benefits the
improvement of the model’s perceptual capabilities across all datasets. However, for particularly
complex datasets like MOVi-E, the excessive increase in the number of training frames may lead
to a decline in the model’s segmentation capabilities. In such cases, it might be worth considering
improvements to modules like the encoder or corrector to enhance feature extraction capabilities.

Ablation Experiments of Spatiotemporal Fusion and Computation. We conducted ablation ex-
periments of the spatiotemporal fusion method via the CS structure on the MOVi-A dataset. For
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the ablation experiments related to the spatiotemporal computation structure, we chose the T+S fu-
sion method. Since the AS structure was primarily designed for complex datasets, the computation
method ablation experiments were conducted on the MOVi-E dataset. All models were trained using
the first 6 frames of the video. The experimental results can be found in Table 2.

Table 2: Result of spatiotemporal fusion method.

Model mIoU↑ (%) FG-ARI↑ (%)
A E A E

STATM (CS, ST) 58.4 - 90.9 -
STATM (CS, TS) 61.2 - 89.7 -
STATM (CS, T+S) 67.5 8.5 91.1 36.8
STATM (AS, T+S) - 3.8 - 12.2

On the MOVi-E dataset, the segmentation
capability of the AS structure is not as ro-
bust as that of the CS structure, but it’s FG-
ARI still outperforms the baseline. This
suggests the following. 1) Compared to the
transform encoding block, it produces more
precise predictions for the STATM encod-
ing block with the AS structure as the pre-
dictor, enhancing the object segmentation
and tracking abilities of slot-based models like SAVi in complex video scenes. 2) As mentioned
earlier, the AS structure is designed to handle scenes where objects are not effectively segmented
into corresponding slots. Appendix C indicates that with the assistance of initial frame cues, SAVi
exhibits decent scene decomposition in the early frames of test videos from the MOVi-E dataset.
However, as time progresses, the lack of dynamic temporal interactions among corresponding slots
and the impact of complex backgrounds lead to declining segmentation and tracking performance.
Currently, models without prompts have limited relevance to our objectives. Hence, we choose not
to conduct extensive experiments to verify the capabilities of the STATM with the AS structure.

4.3 LIMITATIONS

We used STATM as a prediction module to enhance the perceptual capabilities of slot-based models
like SAVi and SAVi++. However, we didn’t assess our model using real-world datasets. The foun-
dation of our model’s construction is based on the principle that “prediction and correction mutually
reinforce each other”. However, our evaluation of the rationality and effectiveness of STATM is
based on the experimental results from the correction step, and we haven’t directly tested its physi-
cal learning and reasoning abilities. This remains a significant focus for our future research. In this
article, we didn’t explore models with unconditional prompts. Verifying and improving the effec-
tiveness of STATM models with different structures under unconditional prompts will be one of our
main tasks in the future. In addition, the relationship between the model and humans is currently
explained and analyzed from a rationality perspective. In the future, we intend to further optimize
and improve our models by incorporating expertise from other domains (e.g., brain science). We
will continue to explore the connection between deep learning, human causal reasoning, as well as
intuitive physics.

5 CONCLUSION

In the real world, all objects follow the laws of physics. Intuitive physics serves as the bridge and
connection through which humans comprehend the world. Our research aims to construct biolog-
ically plausible deep learning models to explore whether deep learning models can learn physical
concepts like humans, and use these learned physical laws to make inferences and predictions about
the future motion of objects.

We have designed a more reasonable prediction module called STATM, which clearly improved
SAVi and SAVi++ models in the context of scene understanding and prediction. We demonstrated
that reasoning and prediction abilities influence the model’s scene object segmentation and track-
ing. The more accurate the reasoning and prediction abilities, the stronger the segmentation and
tracking of objects. Through a series of experiments, we investigated the influence of memory and
spatiotemporal reasoning on the model’s perceptual abilities. We also attempted to provide rea-
sonable explanations, which hold importance for the present interdisciplinary research across fields
of AI and brain science. Although there still remain many challenges on this topic, the results in
this paper illustrate that well-designed deep learning models can mimic human perception. Yet, in
the future, we will continue exploring more cognitive theories as a basis, further improving and
optimizing our model.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. Advances in neural information processing
systems, 29, 2016.

Daniel Bear, Chaofei Fan, Damian Mrowca, Yunzhu Li, Seth Alter, Aran Nayebi, Jeremy Schwartz,
Li F Fei-Fei, Jiajun Wu, Josh Tenenbaum, et al. Learning physical graph representations from
visual scenes. Advances in Neural Information Processing Systems, 33:6027–6039, 2020.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, et al. Jax:
composable transformations of python+ numpy programs. 2018.

Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt
Botvinick, and Alexander Lerchner. Monet: Unsupervised scene decomposition and represen-
tation. arXiv preprint arXiv:1901.11390, 2019.

Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A compositional
object-based approach to learning physical dynamics. arXiv preprint arXiv:1612.00341, 2016.

Beijing Chen, Tianmu Li, and Weiping Ding. Detecting deepfake videos based on spatiotemporal
attention and convolutional lstm. Information Sciences, 601:58–70, 2022.

Chang Chen, Fei Deng, and Sungjin Ahn. Roots: Object-centric representation and rendering of 3d
scenes. The Journal of Machine Learning Research, 22(1):11770–11805, 2021.

Dawei Cheng, Sheng Xiang, Chencheng Shang, Yiyi Zhang, Fangzhou Yang, and Liqing Zhang.
Spatio-temporal attention-based neural network for credit card fraud detection. In Proceedings of
the AAAI conference on artificial intelligence, volume 34, pp. 362–369, 2020.

Cristina Cornelio, Jan Stuehmer, Shell Xu Hu, and Timothy Hospedales. Learning where and when
to reason in neuro-symbolic inference. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=en9V5F8PR-.

Rodrigo de Medrano and Jose L Aznarte. A spatio-temporal attention-based spot-forecasting frame-
work for urban traffic prediction. Applied Soft Computing, 96:106615, 2020.

Yukai Ding, Yuelong Zhu, Jun Feng, Pengcheng Zhang, and Zirun Cheng. Interpretable spatio-
temporal attention lstm model for flood forecasting. Neurocomputing, 403:348–359, 2020.

Andrea Dittadi, Samuele Papa, Michele De Vita, Bernhard Schölkopf, Ole Winther, and Francesco
Locatello. Generalization and robustness implications in object-centric learning. arXiv preprint
arXiv:2107.00637, 2021.

Danny Driess, Zhiao Huang, Yunzhu Li, Russ Tedrake, and Marc Toussaint. Learning multi-object
dynamics with compositional neural radiance fields. In Conference on Robot Learning, pp. 1755–
1768. PMLR, 2023.

Gamaleldin Elsayed, Aravindh Mahendran, Sjoerd van Steenkiste, Klaus Greff, Michael C Mozer,
and Thomas Kipf. Savi++: Towards end-to-end object-centric learning from real-world videos.
Advances in Neural Information Processing Systems, 35:28940–28954, 2022.

Martin Engelcke, Adam R Kosiorek, Oiwi Parker Jones, and Ingmar Posner. Genesis: Gener-
ative scene inference and sampling with object-centric latent representations. arXiv preprint
arXiv:1907.13052, 2019.

Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J
Fleet, Dan Gnanapragasam, Florian Golemo, Charles Herrmann, et al. Kubric: A scalable dataset
generator. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 3749–3761, 2022.

Mohammed Hassanin, Saeed Anwar, Ibrahim Radwan, Fahad S Khan, and Ajmal Mian. Visual
attention methods in deep learning: An in-depth survey. arXiv preprint arXiv:2204.07756, 2022.

10

https://openreview.net/forum?id=en9V5F8PR-


Under review as a conference paper at ICLR 2024

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for jax, 2020. URL
http://github. com/google/flax, 1, 2020.

Paul Henderson and Christoph H Lampert. Unsupervised object-centric video generation and de-
composition in 3d. Advances in Neural Information Processing Systems, 33:3106–3117, 2020.

Negin Heravi, Ayzaan Wahid, Corey Lynch, Pete Florence, Travis Armstrong, Jonathan Tompson,
Pierre Sermanet, Jeannette Bohg, and Debidatta Dwibedi. Visuomotor control in multi-object
scenes using object-aware representations. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pp. 9515–9522. IEEE, 2023.

Jiaying Hu, Yan Yang, Chencai Chen, Liang He, and Zhou Yu. Sas: Dialogue state tracking via
slot attention and slot information sharing. In Proceedings of the 58th annual meeting of the
association for computational linguistics, pp. 6366–6375, 2020.

Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of classification, 2:193–218,
1985.

Michael Janner, Sergey Levine, William T. Freeman, Joshua B. Tenenbaum, Chelsea Finn, and
Jiajun Wu. Reasoning about physical interactions with object-oriented prediction and planning.
In International Conference on Learning Representations, 2019.

Baoxiong Jia, Yu Liu, and Siyuan Huang. Improving object-centric learning with query opti-
mization. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=_-FN9mJsgg.

Jindong Jiang, Sepehr Janghorbani, Gerard De Melo, and Sungjin Ahn. Scalor: Generative world
models with scalable object representations. arXiv preprint arXiv:1910.02384, 2019.

Marko Jusup, Petter Holme, Kiyoshi Kanazawa, Misako Takayasu, Ivan Romić, Zhen Wang,
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APPENDIX

A ADDITIONAL PARAMETER

Using the STTM structure as a predictor does lead to a slight increase in the parameter count of the
SAVi and SAVi++ models. However, under the same training settings, our model achieves supe-
rior metrics. This suggests that the moderate increase in the parameter count doesn’t significantly
increase the training complexity of our model.

STATM-SAVi-Small indeed has a parameter increase of approximately 66K compared to SAVi-
Small, which is notably smaller than the parameter increase seen in SAVi-Large compared to SAVi-
Small (around 21378K parameters). Moreover, our STATM-SAVi-Small model, trained for 100k
steps with a batch size of 32, performs similarly to the official SAVi-Large model, trained for 5000k
steps with a batch size of 64. This further highlights the reasonableness and superiority of our
designed prediction module.

B ADDITIONAL SEGMENTATION RESULTS

In order to better assess our model, we conducted an evaluation using the first 6 frames of the videos.
Referring to Tables 1 in the main text, we can observe the following trends: on simple datasets, the
decline in our model’s object segmentation and tracking capabilities over extended time sequences
is comparable to that of the baseline model. However, on complex datasets like MOVi-C, D, and E,
the decrease in our model’s performance is significantly less than that of the baseline model. This
indicates that the STATM is more suitable for handling object segmentation and tracking tasks in
longer-time sequences and complex environments. This finding further validates the effectiveness
of our STATM model, as it draws inspiration from how humans track and segment objects in the real
world.

C ADDITIONAL ABLATION EXPERIMENT OF MEMORY MODULE

Training with unlimited buffer length and testing with limited buffer length. To better assess
the impact of the buffer on the model, we trained the model using the first 12 video frames, as shown
in Table A.3 and A.4. We observed that: 1) On relatively simple datasets like MOVi-A, B, C, and D
dataset, increasing the amount of training data with additional information would lead to a stronger

Table A.1: Comparison of the parameter number for different models.

Model Parameter Number Model Parameter Number
SAVi-Small 895,268 STATM-SAVi-Small 961,572
SAVi-Medium 1,140,740 STATM-SAVi-Medium 1,207,044
SAVi-Large 22,273,412 STATM-SAVi-Large 22,339,716
SAVi++ 23,132,165 STATM-SAVi++ 23,264,389

Table A.2: Segmentation results on the first 6 frames of the MOVi dataset.

Model mIoU↑ (%) FG-ARI↑ (%)

A B C D E A B C D E
SAVi 66.9 49.3 29.7 13.9 8.3 92.3 80.1 69.2 45.5 32.2
STATM-SAVi 71.0 51.6 43.5 21.9 12.5 92.6 81.7 73.0 50.2 54.7
SAVi++ 85.2 59.5 55.3 49.8 30.7 97.2 86.3 83.9 87.1 88.2
STATM-SAVi++ 85.8 59.8 56.8 56.7 31.1 97.2 86.6 83.9 89.2 88.6
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Table A.3: Evaluation on all video frames of the model trained using 12 frames (B represents the
size of the buffer during the testing phase).

Model mIoU↑ (%) FG-ARI↑ (%)

A B C D E A B C D E
STATM (Ball) 66.9 39.3 26.1 13.8 4.3 92.3 72.9 62.5 59.6 17.9
STATM (B12) 66.2 39.3 25.9 13.2 3.9 91.3 73.0 60.8 55.6 10.4
STATM (B6) 64.3 39.3 25.4 12.3 3.6 89.3 72.7 57.4 50.6 5.6
STATM (B4) 62.8 39.1 24.8 11.8 3.4 88.4 72.5 55.1 47.7 4.4
STATM (B2) 59.1 38.2 23.9 11.2 3.1 85.5 70.6 51.1 44.0 3.5

Table A.4: Evaluation on the first 6 video frames of the models trained by 6 frames and 12 frames (T
represents the number of frames used for training model, B represents the size of the buffer during
the testing phase).

Model mIoU↑ (%) FG-ARI↑ (%)

A B C D E A B C D E
STATM (T6, Ball) 71.0 51.6 43.5 21.9 12.5 92.6 81.7 73.0 50.2 54.7
STATM (T6, B6) 71.0 51.6 43.5 21.9 12.5 92.6 81.7 73.0 50.2 54.7
STATM (T6, B4) 71.0 51.3 42.7 19.7 12.0 92.6 81.7 72.5 46.8 51.0
STATM (T6, B2) 70.8 49.2 38.7 14.6 10.2 91.8 80.6 69.1 34.6 37.3
STATM (T12, Ball) 60.2 42.7 28.1 15.4 7.6 92.7 82.9 73.6 55.5 33.5
STATM (T12, B12) 60.2 42.7 28.1 15.4 7.6 92.7 82.9 73.6 55.5 33.5
STATM (T12, B6) 60.2 42.7 28.1 15.4 7.6 92.7 82.9 73.6 55.5 33.5
STATM (T12, B4) 59.7 42.8 28.0 15.4 7.3 92.1 82.9 73.3 54.5 29.3
STATM (T12, B2) 58.3 42.5 27.7 14.9 6.4 89.6 82.5 71.6 50.2 19.4

model, as expected. 2) On the MOVi-E dataset, increasing the number of training frames resulted
in a decrease in the model’s tracking and segmentation capabilities. This could be attributed to the
limitations in the ability of the upstream modules to effectively extract image features. The findings
from the SAVi and SAVi+, which used more powerful encoders and data augmentation to improve
segmentation performance on MOVi-E, support this observation. Therefore, exploring the design
of a more robust encoder and refining the corrector and guidance modules may yield unexpected
improvements. We plan to further investigate this direction in future research.

Training with limited buffer length and testing with limited buffer length. During our research,
we developed an intriguing idea that aligns to some extent with human behavior: In the process
of learning and memory, individuals need to observe and summarize the motion patterns of objects.
They can then use these learned physical principles to predict the motion of objects in various scenar-
ios. Two conditions can significantly influence an individual’s learning outcomes and adaptability:

1) If individuals are not constrained by the field of vision during the learning phase, meaning they
can observe the complete motion trajectory of objects at once, they may establish a more exten-
sive and comprehensive understanding of physical principles. Consequently, they may have higher
expectations for scenarios in the testing phase where there are no vision constraints. However, dur-
ing the testing phase, suddenly restricting their field of vision within a certain range might lead to
confusion and discomfort because they have become accustomed to a broader perspective.

2) Conversely, if individuals are subject to the field of vision constraints during the learning phase,
meaning they can only observe partial motion trajectories of objects, they may have already adapted
to this restricted condition and developed corresponding knowledge of physical principles. There-
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Table A.5: Evaluation result of the model trained limited buffer length (T represents the size of the
buffer during the training phase, B represents the size of the buffer during the testing phase).

Model
mIoU↑ (%) FG-ARI↑ (%)

First 6 frames All frames First 6 frames All frames
A E A E A E A E

STATM (T2, Ball) 71.6 9.9 66.9 6.2 92.6 41.2 90.7 23.6
STATM (T2, B6) 71.6 9.9 69.0 5.7 92.6 41.2 91.5 22.7
STATM (T2, B4) 71.7 9.9 69.3 5.4 92.6 41.5 91.2 20.0
STATM (T2, B2) 71.9 9.5 69.5 4.8 92.6 41.3 91.2 15.5
STATM (T4, Ball) 73.6 9.8 68.0 6.8 92.5 41.7 90.4 30.1
STATM (T4, B6) 73.6 9.8 69.5 4.7 92.5 41.7 90.3 15.1
STATM (T4, B4) 73.7 9.7 69.6 4.3 92.4 41.3 90.1 11.8
STATM (T4, B2) 74.0 9.0 69.3 3.9 92.1 38.4 89.2 9.1
STATM (T6, Ball) 71.0 12.5 67.5 8.5 92.6 54.7 91.1 36.8
STATM (T6, B6) 71.0 12.5 66.1 5.4 92.6 54.7 89.8 12.8
STATM (T6, B4) 71.0 12.0 64.2 4.9 92.6 51.0 87.6 9.9
STATM (T6, B2) 70.8 10.2 61.6 4.2 91.8 37.3 85.5 6.8

fore, in the testing phase, under similar vision constraints, they might perform relatively better be-
cause their learning background has already adapted to these limitations.

To examine whether our model exhibits these characteristics, we intentionally limited the buffer size
during both the training and testing phases, and the model evaluation results are presented in Table
A.5. Remarkably, we found that the model trained with a smaller buffer (equivalent to restricted
vision) experienced less impact from the buffer during the testing phase. This suggests that our
model aligns to some extent with human behavior. This has intriguing implications for the fusion of
deep learning and cognitive science. However, it’s important to note that real human learning and
cognitive processes are likely more complex and influenced by various factors. This study provides
a theoretical framework, but further theoretical substantiation and experimental validation are still
needed.
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