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Abstract

We present a method to control the emotional001
prosody of Text to Speech (TTS) systems by us-002
ing phoneme-level intermediate features (pitch,003
energy, and duration) as levers. As a key idea,004
we propose Differential Scaling (DS) to dis-005
entangle features relating to affective prosody006
from those arising due to acoustics conditions007
and speaker identity. With thorough experimen-008
tal studies, we show that the proposed method009
improves over the prior art in accurately em-010
ulating the desired emotions while retaining011
the naturalness of speech. We extend the tradi-012
tional evaluation of using individual sentences013
for a more complete evaluation of HCI systems.014
We present a novel experimental setup by re-015
placing an actor with a TTS system in offline016
and live conversations. The emotion to be ren-017
dered is either predicted or manually assigned.018
The results show that the proposed method is019
strongly preferred over the state-of-the-art TTS020
system and adds the much-coveted “human021
touch” in machine dialogue. Audio samples022
from our experiments are available at: https:023
//emtts.github.io/tts-demo/024

1 Introduction025

“The text is like a canoe, and the river on which
it sits is the emotion. It all depends on the flow
of the river, which is your emotion. The text
takes on the character of your emotion.”

026

— Sanford Meisner027

In natural language processing, vocabulary and028

grammar tend to take center stage, but those ele-029

ments of speech only tell half the story. Affective030

prosody provides context and gives meaning to031

words, and keeps listeners engaged. Understand-032

ing emotional prosody is central to language and033

social development. Studies suggest that we show034

remarkable sensitivity to prosody "even as infants"035

(Nazzi et al., 1998; Massicotte-Laforge and Shi,036

2015). Recently Kraus (2017) shows that voice-037

only communication likely elicits higher empathic038
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Figure 1: Dialogues can have different meaning despite
having same text. Also, starting at same emotion Juliet
has different emotion post Romeo’s response.

accuracy than even multi-sense modes including 039

facial expressions. 040

Buchholz (2016) shows that any meaningful spo- 041

ken dialogue cannot happen without some amount 042

of prosodic matching. As humans, we naturally an- 043

ticipate and adapt with emotional cues in convers- 044

ing with others, see Figure 1 for an example. Cele- 045

brated trainer Sanford Meisner employed this to de- 046

velop Meisner technique for theatre actors to react 047

naturally to others in the environment as opposed 048

to method acting. The importance of emotional 049

prosody in conversations cannot be overstated and 050

TTS models need to fill this gap to make human- 051

like conversations possible in HCI systems. 052

Mitchell and Xu (2015) study the value of emo- 053

tional prosody in HCI and emphasize its role in 054

healthcare dialogue systems, improving social in- 055

teraction skills in people with autism, augmentative 056

and alternative communication devices and gaming 057

narratives. They explain that successfully incorpo- 058

rating expressive speech into HCI, involves two as- 059

pects: (a) prosodic emotion recognition and (b) ex- 060

pression of emotional prosody. Considerable effort 061

has been made towards recognizing and predicting 062

the emotional nuances in human dialogues (Kim 063

and Vossen, 2021; Poria et al., 2019b; Zhu et al., 064

2021; Li et al., 2017; Poria et al., 2021; Vinyals 065

and Le, 2015). However, current TTS systems are 066

yet to improve on rendering emotive or expressive 067

speech for real-world HCI systems. 068

State-of-the-art TTS systems (Ren et al., 2020; 069
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Wang et al., 2017) tend to exhibit average emo-070

tions for a given phoneme sequence by taking the071

mean of utterances from training data. Some ef-072

forts towards improving expressiveness (like Bat-073

tenberg et al., 2019; Karlapati et al., 2020) pro-074

vide prosody control using a reference clip. Oth-075

ers like Sivaprasad et al. (2021) and Habib et al.076

(2019) further focused on controllability exposing077

levers that can be manipulated at inference-time078

to derive the intended expression. However, the079

quality and stability of synthesized speech heavily080

depends on various modeling choices. Emotion or081

prosody modeling, for example, could pick from082

numerous available discrete or continuous space083

representations. The encoder network module cho-084

sen might vary in its ability to disentangle prosody085

from other acoustic features like speaker identity086

and adaptability to content. For example, those087

relying on reference clip to replicate prosody might088

perform poorly when input text is unsuitable for089

rendering with prosody of reference. Some models090

feed prosody features with phoneme embeddings091

directly into the decoder while others use them to092

predict intermediate features that are used in condi-093

tioning the decoder. It is empirically verified (like094

in Sivaprasad et al., 2021) that intermediate fea-095

tures could be suitably manipulated to bring about096

the desired change in expression.097

We take this direction forward to endow the in-098

termediate feature prediction module with affective099

state control over the final rendering. We propose100

Differential Scaling (DS) of the predicted intermedi-101

ates to bring about the required change in emotion.102

The DS module is aimed to effect only emotion as103

intended while remaining agnostic to all other fea-104

tures like speakers identities or acoustic conditions105

as seen in train data. We show that this significantly106

improves the naturalness of the generated speech,107

while allowing finer control over prosody.108

In addition to comparing our model’s renderings109

against various others’ from literature for natural-110

ness and emotion control on conventional single111

utterances drawn from disconnected contexts, we112

also evaluate them in conversations. We curate data113

with conversational theatre dialogues and replace114

an actor with a TTS system. We use its response115

as a proxy to evaluate the empathic accuracy. In116

another experiment, we had a theatre director con-117

trol the emotion levers of our TTS model in a live118

conversation with the actor to evaluate controllabil-119

ity. As demonstrated in the results, our proposed120

method significantly improves over existing meth- 121

ods in producing suitable prosodic variation lend- 122

ing closer to human-like conversations. The rest of 123

this paper will elaborate on the following contribu- 124

tions of this work. 125

• We propose a simple technique of using 126

a DS module to better emulate emotions 127

in TTS rendered speech. This works as 128

plug-and-play with both autoregressive and 129

non-autoregressive TTS models that predict 130

prosodic features as an intermediate step. 131

• Our work extends the literature of training 132

controllable and expressive TTS models with 133

improved empathic accuracy and without spe- 134

cific studio recorded data. 135

• Finally, we present novel methods and data 136

for evaluating TTS models in real conversa- 137

tions with human subjects. The method of 138

evaluation is a useful step towards filling the 139

gap of emulating emotional speech that needs 140

more work. 141

2 Related Work 142

Prosody and conversational speech. Unlike in 143

written text, spoken words contain additional non- 144

verbal information. These cues are collectively 145

termed prosody (Leentjens et al., 1998) that include 146

variations in tone, pitch, energy, duration, accents, 147

intonation, stress, etc. Buchholz (2016) showed 148

that prosodic exchange is unavoidable in human 149

dialogue. Various machine learning methods have 150

been proposed to predict emotion in speech from its 151

prosody variations (Asgari et al., 2014; Kamarud- 152

din and Abdul Rahman, 2013). Variations in pitch 153

accents (Nielsen et al., 2020), for example, lead to a 154

significant difference in how the receiver perceives 155

the content. A sentence (like I said unlock 156

the door, not lock it from (Rosenberg 157

and Hirschberg, 2009)) could be delivered both as 158

a statement and a command by merely changing 159

prosody. 160

Emotion recognition in conversations has gained 161

increasing attention for developing empathetic ma- 162

chines with emotion-tagged multi-modal data pub- 163

licly available for modeling like (Li et al., 2017; 164

Poria et al., 2019a; Busso et al., 2008). While most 165

methods like (Majumder et al., 2019; Jiao et al., 166

2019) use a combination of text and speech infor- 167

mation, some leverage additional side-information 168
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from broader context (Ghosal et al., 2020) and the169

topic of conversation (Zhu et al., 2021).170

In such labeled data, emotion is often rep-171

resented as a categorical variable over a dis-172

crete space following models like Ekman’s ba-173

sic emotions (Ekman, 1992) or the wheel of174

Plutchik (Plutchik, 1980). This choice is largely175

owing to the ease of annotating data. Russell (1980)176

proposed a continuous two-dimensional space as177

an alternative called valence-arousal model for hu-178

man emotions. Arousal signifies the intensity of179

the emotion while valence captures its polarity. It180

has been extended to add a third dimension of dom-181

inance, making it the valence-arousal-dominance182

(VAD) model. VAD has since been widely used in183

modelling emotion in music (Grekow, 2016; Rach-184

man et al., 2019), speech (Asgari et al., 2014; Ka-185

maruddin and Abdul Rahman, 2013) and other con-186

tent (Joshi et al., 2019; Buechel and Hahn, 2017).187

We use the continuous space representation as it is188

richer and more convenient to handle in our model.189

Expressive and controllable TTS. Neural190

TTS systems are now increasingly popular, im-191

proving upon older concatenative statistical sys-192

tems (Michelle and Georgia, 2020) in synthesized193

speech naturalness. These are broadly sequence-194

to-sequence networks with an encoder processing195

the input text or phoneme sequence followed by a196

decoder that generates the sequence of Mel frames197

for output speech. Mel frames are then projected198

into the time domain by a vocoder (van den Oord199

et al., 2016; Griffin and Lim, 1984) to generate200

the speech. Decoding could be autoregressive with201

Tacotron-like models (Wang et al., 2017) or non-202

autoregressive with Fastspeech-like models (Ren203

et al., 2019).204

Non-autoregressive models are faster at infer-205

ence than autoregressive models with about com-206

parable naturalness of speech quality (Ren et al.,207

2020). The trick non-autoregressive models use208

to generate Mel frames in parallel is to predict the209

relevant features as an intermediate step and con-210

dition the independent decoding of Mels on them.211

This technique is now increasingly adopted for au-212

toregressive models as well (Wang et al., 2021)213

to predict features like phoneme duration that im-214

prove decoding stability avoiding alignment issues.215

Our method is compatible with any architecture216

that predicts prosodic features of pitch, energy, and217

duration as an intermediate step before decoding.218

Going beyond the naturalness of speech, there219

has been considerable effort to improve the expres- 220

siveness of the renderings. Some focused on learn- 221

ing a linear space of variations in speech expres- 222

sions for selecting a suitable variation at inference 223

time. Wang et al. (2018) learn this space unsuper- 224

vised by encouraging it to explain all variations in 225

training data not captured in content embedding. 226

A reference encoder maps an input utterance to a 227

style embedding as a linear combination of basis 228

style vectors. Manual analysis is required to un- 229

derstand the prosody feature learned into a basis 230

vector that could include variations like vocal depth 231

or pitch, speaking rate, or even background noise 232

as available in training data. While this offers style 233

control, it does not explicitly learn the prosody vari- 234

ations of interest into the style space. Our work 235

focuses on the same level of control but specifically 236

over the affective state as labeled in some data for 237

supervision. 238

Sivaprasad et al. (2021) propose a model sim- 239

ilar to (Wang et al., 2018) with style tokens re- 240

stricted to valence and arousal. However, the ab- 241

solute (pitch, energy, duration) feature predictions 242

restrict prosody control, leading to unnatural dis- 243

tortions. Specifically, it skews more towards retain- 244

ing the speaker’s voice identity than the emotion 245

and entangles emotion with other acoustic features. 246

Karlapati et al. (2020) replace the linear style space 247

with a variational reference encoder to generate 248

prosody embedding to condition the decoder. Bat- 249

tenberg et al. (2019) use a similar variational model 250

but instead force its posterior to match that of the 251

reference utterance to copy prosody with a con- 252

trollable parameter determining the closeness of 253

the match. This trick alleviates certain issues like 254

in pitch-range (Younggun and Taesu, 2019) and 255

transfer to unrelated sentences but exposes a lower 256

degree of control with no explicit levers to operate, 257

as possible in our work. 258

Habib et al. (2019) propose to learn explicit la- 259

tent representation for various prosodic variables, 260

segregating them into explicitly controlable (like 261

affect, speaking rate, etc) and implicit (like intona- 262

tion, rhythm, stress, etc). While the model offers a 263

higher degree of explicit control, it requires using 264

a proprietary studio recorded data with utterances 265

reflecting prompted emotions at specified arousal. 266

Dependence on explicit supervision from studio 267

recorded data makes it harder scale this model 268

across languages and other prosodic variations. In 269

contrast, we use publicly available data with emo- 270
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Figure 2: Backbone TTS architectures.

tion labels to train our models.271

There are other methods that try to predict suit-272

able prosody features from text content. Raitio273

et al. (2020) add a prosody encoder module to274

standard TTS network that predicts certain hand-275

crafted prosody features from text embedding of276

input. This prosody encoder is used with a small op-277

tional bias for affect variations at inference. Hodari278

et al. (2021) extend this to replace hand-crafting279

prosody features with explicit training followed by280

their prediction from text. Karlapati et al. (2021)281

further enrich the textual context using BERT em-282

beddings and parse-trees. These methods are lim-283

ited in expressiveness offering no control over ren-284

dering emotion that our work focuses on.285

3 Model286

Our network uses a backbone TTS that can be bor-287

rowed from any model which predicts pitch, energy288

and duration as intermediates features from input289

phoneme sequence. This network learns to predict290

the average features for given phonemes. Follow-291

ing the convention in earlier works, we refer to292

the intermediate features as variances and the mod-293

ule that predicts them as variance adaptor. Prior294

work improves standard variance adaptors in, say295

FastSpeech2, by conditioning on emotion variables296

of valence-arousal in addition to the phoneme se-297

quence to generate expressive speech. We refer to298

it as Emotional Variance Adaptor (EVA) for which299

we propose an alternative. Our proposed Differ-300

ential Scaler (DS) module determines how best to301

vary the output of the EVA to bring the desired302

change in emotion. We describe the details of these303

network choices in this section; specifically, the304

broader backbone network architecture and the dif-305

ferent variance adaptor modules from non-emotive306

baseline, emotive baseline and our proposal. 307

3.1 Backbone 308

We present experiments with two suitable choices 309

for our backbone systems, FastSpeech2 and FCL- 310

Taco2. The backbone has three modules; an en- 311

coder, variance adaptor and decoder. The encoder 312

maps an input phoneme sequence to its embedding. 313

Given this representation, the variance adaptor pre- 314

dicts the pitch, energy and duration for each of 315

the phonemes. These intermediate features are pro- 316

cessed by the decoder module downstream to return 317

Mel-spectrogram frames. We reuse the encoder and 318

decoder modules as designed in their original archi- 319

tectures without any changes. We refer readers to 320

the respective papers for details of these networks. 321

Wavenet (van den Oord et al., 2016) vocoder is used 322

to map Mel-spectrogram outputs of the decoder to 323

time-domain raw audio. 324

3.2 Variance adaptor module 325

Non-emotive baselines. Our baseline models of 326

FastSpeech2 and FCL-Taco2 are trained with the 327

variance adaptors as described by their authors. We 328

also train a derivative of the FastSpeech2 with the 329

variance adaptor modified to make predictions at 330

the phoneme-level and not at frame-level. A dura- 331

tion dπ is predicted for each phoneme π, following 332

which the length regulator repeats the hidden state 333

of that phoneme .π times. Also unlike Fastspeech2, 334

we use this length regulator after the predicted pitch 335

and energy are added to the encoder output. We 336

refer to this derivative as FastSpeech2π. 337

Emotive baseline. Sivaprasad et al. (2021) con- 338

ditioned the variance adaptor of FastSpeech2 on 339

additional emotion embedding that gives the model 340

control over prosody of the rendered speech. It gen- 341

erates the emotion embedding as a linear weighted 342

combination of the the valence and arousal vectors 343

that are learned from data during training. The 344

weights are valence and arousal values as anno- 345

tated for training and can be used as control levers 346

to modify emotion during inference. This emotion 347

variance adaptor (EVA) module generates suitable 348

intermediate features of pitch and energy at frame- 349

level and duration at phoneme-level. These features 350

are consumed by the decoder along with the en- 351

coder output in generating Mel frames. While this 352

helps control emotional prosody rendered speech, 353

it leads to a significant drop in perceptual qual- 354

ity and naturalness relative to the baselines. Our 355

contribution is an alternative design of the variance 356
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adaptor module that improves upon Sivaprasad et al.357

(2021)’s FastSpeech2 + EVA model in emotion con-358

trol and expressiveness and upon the baselines in359

terms of naturalness.360

Differential Scaler. We extend the emotion rep-361

resentation from EVA to include dominance in ad-362

dition to valence and arousal values. Dominance363

is the degree of control exerted by an emotion. In-364

cluding dominance dimension to the emotion space365

expands the range of emotions the TTS model can366

express. For example, by introducing this dimen-367

sion, we can better distinguish outputs for emotions368

like ‘anger and fear’ or ‘sad and contempt’.369

The Differential Scaler module further extends370

EVA to estimate the change in variances neces-371

sary for a pronounced effect of the target emotion372

relative to its neutral counterpart. As shown in Fig-373

ure 3(b), the variances are estimated using the EVA374

module for a given phoneme sequence at two dif-375

ferent triplets of VAD values. One prediction cor-376

responds to the neutral emotion with VAD values377

all set to zeros. The other prediction corresponds378

to the chosen VAD values of target emotion. We379

take the difference of these two estimates as the380

direction along which the variances can be varied381

for the desired change in emotion without effecting382

other acoustic features. We are implicitly making383

two assumptions here. Emotion variations are cap-384

tured as linear transformations in this space and385

that there is a strong disentangling of emotional386

prosody with other acoustic features in this space.387

Results from our empirical evaluation favorably388

support the above assumptions.389

4 Training390

Modelling with intermediate features facilitates391

training the backbone and the variance adaptors392

independently on different data. We exploit this 393

to train our variance adaptor on scarcely available 394

VAD annotated data while reusing backbone mod- 395

els trained on abundant transcribed speech data. 396

Backbone. We train two backbone networks 397

Fastspeech2π (non-autoregressive) and FCL-Taco2 398

(autoregressive) on Blizzard 2013 dataset (King 399

and Karaiskos, 2014). It contains 147 hours of 400

Catherine Bayers’s speech, reading books in Ameri- 401

can English. Due to the style of reading, the dataset 402

is rich in expressiveness and spans different combi- 403

nations of pitch, energy and duration. Both models 404

are trained with Mel loss (mean absolute error be- 405

tween predicted and ground truth Mels), pitch loss, 406

energy loss and duration loss (mean square error 407

between predicted and ground truth features). Both 408

models are trained for 200K iterations using Adam 409

optimizer with warm-up learning rate scheduler 410

and batch size of 16. 411

EVA. We train EVA on MSP-Podcast corpus 412

(Lotfian and Busso, 2019) annotated with arousal, 413

valance and dominance values. The corpus consists 414

of around 100 hours speech data but their transcrip- 415

tions are not available. We generate transcripts 416

using a speech-to-text model. We use Montreal- 417

Forced-Aligner (MFA) (McAuliffe and Sondereg- 418

ger, 2017) for phoneme alignments. Those tran- 419

scripts that MFA fails to find a good alignment for 420

are filtered out. The remaining utterances add up 421

to about 71 hours of emotive speech data which 422

we use to train our EVA. We train pitch, energy 423

and duration predictors conditioned on VAD values 424

minimizing only the sum of variance losses. For 425

all the experiments, text transcripts are converted 426

to phonemes using (Sun et al., 2019). We generate 427

Mel spectrogram from the audio files similar to 428

(Wang et al., 2017). Pitch and energy are computed 429
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from the Mel spectrogram and we use MFA for430

aligning phonemes to train the duration predictor.431

5 Experiments and user study432

We present three experiments; comparison with433

prior-art using conventional evaluation metrics,434

those for emotional consistency with pre-recorded435

audio, and finally, live conversations with humans.436

5.1 Comparisons with prior-art437

We compare the proposed approach against four438

state of the art TTS models. The list includes two439

non-emotive TTS models (FastSpeech2 and FCL-440

Taco2), one reference-based method (Cai et al.,441

2021) and one AV conditioned model (FastSpeech2442

+ EVA). We also compare our method with the443

modified backbone, Fastspeech2π.444

To evaluate the perceptual-quality/naturalness445

we compare Mean Opinion Score (MOS) (Chu and446

Peng, 2006) averaged across forty subjects profi-447

cient in English. We synthesize twenty different448

sentences from the test set using each of the seven449

models. We prepare user study by picking five450

samples rendered by each model to make a survey.451

Annotator rates each sample on a Likert scale of452

one for ‘completely unnatural’ to five for ‘com-453

pletely natural’.454

To evaluate the emotional expressiveness of the455

proposed model, we perform two surveys. In the456

first survey, given a sample, we ask the user to457

choose the best perceived emotion from a set of458

four, namely, ‘Happy’, ‘Sad’, ‘Angry’ and ‘Fear’.459

We ask the raters to not judge the textual content460

and annotate the emotion for each sample based on461

the rendering alone. In the second survey we evalu-462

ate the efficacy of the models to bring about finer463

control over emotion. We generate two samples464

with same broader emotion category but with two465

levels of intensity. The subject now has to identify466

the sample with higher intensity. For both surveys467

we generate five samples per emotion and twenty468

samples for each model. We aggregate the rating469

across forty proficient English language speakers.470

5.2 Emotional consistency in dialogues471

Previous efforts in prosody controlled TTS have472

been evaluated on individual sentences without con-473

text. We propose a novel evaluation strategy us-474

ing excerpts from theater recordings. We replace475

the audio of one of the actors in the conversation476

with renderings from a TTS model and have a hu-477

man subject evaluate it for emotional consistency. 478

The emotion for TTS renderings are chosen man- 479

ually by a theater director. We compare this with 480

TTS rendered with emotion predicted using Tod- 481

Kat (Zhu et al., 2021) from the dialogues spoken 482

so far. This study consolidates the two aspects of 483

HCI we mentioned in the introduction; prosodic 484

emotion recognition and its expression in TTS ut- 485

terances. 486

The dataset is curated using segments from four 487

popular plays, namely, ‘Speed-the-Plow’, ‘Night, 488

Mother’, ‘Bobby Gould in Hell’ and ‘Death of a 489

Salesman’. We select 30 dialogue segments collec- 490

tively from the four plays with an average dialogue 491

length of 90 seconds per segment. Timestamps of 492

segments selected from each play is given in sup- 493

plementary material. We replace the female voice 494

in the segment with (a) non-emotive TTS model 495

(Fastspeech2π) (b) our model with emotion pre- 496

dicted for each utterance using TodKat and (c) our 497

model with a senior theatre director picking the 498

emotion for each utterance. We randomly pick five 499

dialogues from the 30 samples in all three settings 500

for each of our surveys. We ask forty raters to rank 501

the three setting in terms of the emotional consis- 502

tency of the dialogue i.e., to judge the naturalness 503

and aptness of the emotional prosody in the given 504

context. 505

5.3 Conversation with Meisner trained actor 506

A Meisner trained actor responds to another actor 507

taking into account his/her behavior. In this experi- 508

ment, we observe how a Meisner trained actor (Ac- 509

tor M) reacts in a live dialogue initiated by (a) an- 510

other trained human actor, (b) a non-emotive TTS 511

(Fastspeech2π) and (c) our model (Fastspeech2π 512

with DS). We use the same neutral script with 18 513

lines in all three cases. We use the behavior of 514

Actor M during interaction with the human as refer- 515

ence. The closeness of Actor M’s behavior to this 516

reference while interacting with the two TTS mod- 517

els is used as a measure of the latter’s effectiveness 518

in rendering speech expressive enough to evoke an 519

emotive response. 520

For each of the three scenarios, the conversation 521

is initiated with two different emotional states, viz. 522

(a) highly positive and (b) highly negative. The 523

emotion for our TTS model is chosen live on-the- 524

fly by a theatre director from fourteen bins in the 525

discretized arousal-valence space. The bins are 526

chosen to span the V-shape around high-arousal- 527
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Model MOS Finer Control Coarse Control
Happy Sad Angry Fear Average

Fastspeech2 3.80 - - - - - -
FCL-Taco2 3.39 - - - - - -

Fastspeech2π 3.84 - - - - - -
Cai et al., 2021 3.08 80.0 22.7 40.9 52.3 - 38.7

FastSpeech2 + EVA 3.01 81.2 20.0 68.7 52.9 - 47.2
Fcl-Taco2 + DS (our model) 3.30 83.5 90.1 53.3 56.5 46.8 61.8

Fastspeech2π + DS (our model) 3.91 85.0 68.4 50.0 59.5 79.1 64.2

Table 1: Results for qualitative analysis comparing our model with prior art.

(a) Cai et al. (2021) (b) Sivaprasad et al. (2021) (c) Fcl-Taco2 + DS (d) Fastspeechπ + DS

Figure 4: Confusion matrices of models performance in the survey to pick the correct emotion. Rows are true
emotions and columns are picked emotions. Figure to be viewed in color.

high-valence and low-arousal-neutral-valence (Di-528

etz and Lang, 1999). We take majority vote of three529

listener ratings for each utterance of Actor M on530

the same discretized arousal-valence space to allow531

quantitative comparisons.532

6 Results533

6.1 Comparing with prior art534

Naturalness. Table 1 compares the audio quality535

of the TTS models listed in Section 5.1. It can be536

seen that the proposed model achieves affective537

control, without drop in perceived audio quality.538

In contrast, previous SOTA emotive models ( Cai539

et al. (2021) and Fastspeech2 + EVA) achieve con-540

trol over emotion at the cost of naturalness (MOS541

of 3.08 and 3.01 respectively). This result demon-542

strates the efficacy of using DS module over EVA543

and validates its ability to disentangle affective fea-544

tures from the acoustic ones. The MOS score of545

Fastspeech2π improves with addition of DS, as546

some samples appear more natural when rendered547

in intended emotions.548

Coarse affective control. Results correspond-549

ing to emotion detection are presented in Table 1.550

For each sample, the raters were asked to choose551

one among the four discrete emotions. On an av-552

erage, the Fastspeech2π + DS gives best results,553

outperforming the other models by a significant554

margin. We observe 17%, and 25.5% improvement555

over ( Cai et al. (2021), Fastspeech2 + EVA) respec-556

tively. Figure 4 shows the confusion matrix for this557

survey. Our models are better at differentiating 558

positive valence emotions from the negative ones. 559

There is still a scope of improvement in distinctly 560

expressing low valence emotions. 561

Finer affective control. When asked raters to 562

pick the sample from a pair that expresses a par- 563

ticular emotion better, 85% of the times they were 564

able to pick the sample that was actually rendered 565

with a higher arousal value (Table 1). Our best 566

performing model shows 3.8% improvement over 567

Fastspeech2 + EVA and 4.0% improvement over 568

Cai et al. (2021). 569

6.2 Emotional consistency in dialogues 570

As described in Section 5.2, we evaluate the emo- 571

tional consistency of a dialogue when a TTS model 572

replaces an actor in excerpts from a play. Figure 5 573

shows that emotive models bring significant im- 574

provement in emphatic quality of conversations and 575

are picked 80% of the times as the first preference. 576

This result reiterates the hypothesis (Wang et al., 577

2018) that prosody averaging as in non-emotive 578

TTS is insufficient for emulating emotionally con- 579

sistent conversations. 580

Another important observation is how emphatic 581

quality measured as user’s first preference falls 582

from 52% to 27% in moving away from hand- 583

picked to model-predicted emotions. This suggests 584

a scope for improvement for emotion prediction 585

models. Nonetheless the results present clear evi- 586

dence that tying together emotion prediction mod- 587

els to expressive TTS is significantly more prefer- 588
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Figure 5: Comparison of emotional consistency in con-
versations across the three settings described in sec-
tion 5.2. Figure best viewed in color.

able to a non-emotive TTS.589

This proposed evaluation methodology is more590

comprehensive and enables assessment of a con-591

solidated conversational system as required in ex-592

pressive HCI that includes various moving parts593

like causal emotion recognition in conversation594

and expressive TTS. This is not feasible with the595

traditional approach of evaluating on individual596

sentences drawn from distinct contexts. We argue597

that this evaluation with contextual dialogues from598

a conversation is more coherent to humans as re-599

flected in inter-annotator agreement measured by600

Fleiss’s Kappa Score (FKS). FKS goes up by 34%601

from 0.43 in traditional coarse affective control (Ta-602

ble 1) to 0.58 for our evaluation strategy (Figure 5).603

We hope this will be useful in a more thorough604

evaluation of expressive HCI systems.605

6.3 Conversation with Meisner trained actor606

As mentioned in Section 5.3, we gather the be-607

havioural response of a Meisner trained human608

actor to TTS systems (emotive and non-emotive)609

and compare it against his/her reference response610

to another human actor. We use Pearson’s corre-611

lation ρ with reference for valence and compare612

mean-std (µ, σ) for arousal values.613

When the conversation was triggered with614

a positive initial emotion, we had a high615

ρ(Fastspeech2π+DS, human) of 0.702 for our616

model compared to negative correlation for non-617

emotive TTS at ρ(Fastspeech2π, human) of618

−0.282. Similarly for a negative initial emotion619

ρ(Fastspeech2π+DS, human) was high 0.838 rela-620

tive to low ρ(Fastspeech2π, human) of 0.158.621

We find that the average arousal for the human622

response to our TTS (µ=3.5, σ=1.06) is comparable623

to a human-human conversation (µ=3.94, σ=0.97),624

as opposed to the response to a non-emotive TTS625

(µ=2.55, σ=0.49). This indicates that the range of626

arousal response elicited from a human actor by our 627

TTS is comparable to a human-human conversation 628

as opposed to that of a prosody unaware TTS. 629

We also interviewed the human actor about the 630

experience of conversing with the TTS systems. 631

He reported that our TTS gave him "an emotional 632

structure". He felt that the TTS could "dictate the 633

neutral part of the script to change it". He could "re- 634

member specific utterances" by our TTS and their 635

emotional content which "drove him" to respond 636

in an emotional manner. In contrast, he reported 637

that the prosody unaware TTS gave "dry answers", 638

made him feel that it was "disinterested", "auto 639

generated" and "did not evoke excitement". He 640

expressed that he "could not have a longer conver- 641

sation with it". 642

7 Conclusion 643

This work presents a novel way to lever the 644

prosodic features (pitch, energy and duration) to 645

modify emotions in the output of a TTS system. 646

Our method is model agnostic and can be used with 647

any TTS backbone that predicts prosodic features 648

in an intermediate step. This method outperforms 649

existing approaches by a significant margin in its 650

ability to accurately render desired emotions, while 651

preserving the naturalness of speech. We curated 652

theatre conversation data to evaluate and show that 653

our prosody-aware TTS better maintains the natu- 654

ral flow of emotions in conversations. Our work 655

shows promise in consolidation of prosodic emo- 656

tional recognition and expression, a coveted pursuit 657

in the field of HCI. We present further qualitative 658

experiments involving professional theatre artists 659

and demonstrate that the proposed TTS method 660

leads to more human-like conversations. While 661

exposing valence, arousal and dominance values as 662

model levers improves control over the final ren- 663

dering, in reality it is overwhelming for the user to 664

choose them correctly for a desired output. This 665

is further aggravated by the fact that some sen- 666

tences cannot be suitably spoken with a chosen 667

set of values, degrading output quality. These are 668

limitations that need to be addressed and appropri- 669

ately deriving these values from semantics of text 670

input or reference clips could be relevant future 671

directions. Affective control is incomplete without 672

explicit levers on the intonations, which is another 673

limitation to be looked upon in the future work. 674
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8 Ethical concerns675

This work shares the same concerns as with oth-676

ers in the domain of TTS systems as discussed677

by Habib et al. (2019). With TTS outputs getting678

closer to actual human speech, there could be a679

potential misuse. The threat of abuse of fake voices680

is particularly high with similar developments in681

conjugate areas like computer vision. However, the682

benefits of improvements to emotive TTS technol-683

ogy could significantly benefit HCI and the cor-684

responding applications to problems in healthcare685

and other domains. Example applications include686

healthcare dialogue systems, improving social in-687

teraction skills in people with autism and augmen-688

tative communication devices. TTS systems syn-689

thesizing speech with empathy can ease machine690

interaction in many touchpoint applications. While691

the benefits seem to outweigh the concerns at this692

point, we believe the research community should693

proactively continue to identify methods for detec-694

tion and prevention of misuse.695
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