
Under review as a conference paper at ICLR 2024

MASSIVELY PARALLEL ENVIRONMENTS FOR LARGE-
SCALE COMBINATORIAL OPTIMIZATIONS USING REIN-
FORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Most combinatorial optimization (CO) problems are NP-hard and difficult to find
high-quality solutions. Reinforcement learning (RL) is a promising technique due
to its powerful search capability; however, sampling speed is a common bottleneck.
Current benchmark works only provide instance-wise approaches, while our work
cover both instance-wise and distribution-wise approaches, especially in large-
scale CO problems. In this paper, we build 24 GPU-based massively parallel
environments for 12 CO problems, i.e., each problem has two environments; and
use them to train RL-based approaches. We reproduce benchmark RL algorithms,
including instance-wise and distribution-wise approaches especially in large-scale
CO problems, on both synthetic datasets and real-world datasets. Take the graph
maxcut problem as an example. The sampling speed is improved by at least two
orders over conventional implementations, and the scale (i.e., number of nodes)
of trained problems in a distribution-wise approach is up to thousands of nodes,
i.e., improved by one order. The objective value obtained by inference (100 ∼ 200
seconds) in the distribution-wise scenario is almost the same as the state-of-the-art
(SOTA) solver Gurobi (running for 1 hour), and better than the SOTA RL-based
approach. The code is available at: https://github.com/OpenAfterReview.

1 INTRODUCTION

Combinatorial optimization (CO) problems are critical in many domains, such as financial portfolio
allocation Hautsch & Voigt (2019); Zhou et al. (2019); Liu et al. (2022), smart grids Chakraborty et al.
(2017); Morstyn (2022), and transportation Zhu et al. (2016; 2019). These problems are generally
NP-hard, which is difficult to obtain high-quality solutions due to the exponential growth of the
solution space with problem size. Conventional methods such as heuristics Atkinson (1994) and
evolutionary algorithms Cai et al. (2014) often fail to find good solutions in a short time frame. Deep
reinforcement learning (RL) Mazyavkina et al. (2021); Bengio et al. (2021); Liu et al. (2021) offers
a promising approach to solving CO problems for three advantages. First, RL possesses powerful
search capabilities especially in large solution space. Second, RL leverages GPUs for training neural
networks Makoviychuk et al. (2021). Third, RL can learn automatic heuristics Dai et al. (2017); Chen
et al. (2023); Sun et al. (2023) from data without the need to hand-craft heuristics on a case-by-case
basis.

Sampling is a bottleneck of RL algorithm for solving large-scale CO problems Makoviychuk et al.
(2021); Sun et al. (2023). Training the policy network is essentially estimating the gradients via a
Markov chain Monte Carlo (MCMC) simulation, which requires a large number of samples from
environments. Moreover, the solution space in CO problems increases exponentially with the problem
size, which makes the sampling more important. Existing CPU-based environments have two
significant disadvantages: 1) The number of CPU cores is typically small, generally ranging from 16
to 256, resulting in a small number of parallel environments. 2) The communication link between
CPUs and GPUs has limited bandwidth. The samples obtained on CPUs are sent to GPUs for training
a policy network, then the new policy will be returned to CPUs, which is inefficient.

Researchers propose to use GPU-based parallel environments for RL methods Gulino et al. (2024);
Lechner et al. (2024); Rutherford et al. (2024); Bonnet et al. (2024); Berto et al. (2023). Our work has

1

Under review as a conference paper at ICLR 2024

several differences with current works. First, the current works such as Jumanji Bonnet et al. (2024)
and RL4CO Berto et al. (2023) only provide instance-wise approaches, ignoring the distribution-wise
approaches. Our work cover both instance-wise and distribution-wise approaches. Second, the
current works do not cover all typical patterns in this community: Jumanji and RL4CO only provide
the methods only in one pattern, which as based on Markov decision process (MDP) model and
conventional RL methods such as PPO Schulman et al. (2017) and DQN Dai et al. (2017), ignoring the
RL-based annealing methods. The experiments in Section 5 show that the performance of annealing
methods is generally better.

To address the bottleneck of sampling speed, we use GPU-based massively parallel environments that
have several advantages. 1) There are several thousands of cores on a GPU that can be used to build
massively parallel environments. Our implementations allow up to 32, 768 parallel environments.
2) The communication between CPUs and GPUs is bypassed, since the samples are stored as GPU
tensors and thus readily available for training policy networks. 3) The RL-based methods using
GPU-based parallel environments in two important patterns of this community are implemented,
which cover most of existing RL methods. Users can implement their RL methods using parallel
environments easily following the common instructions. 4) With the help of GPU-based parallel
environments, RL-based distribution-wise approaches can be trained on large-scale CO problems.

Our contributions are summarized as follows:

• We build 24 GPU-based massively parallel environments for 12 CO problems, i.e., each
problem has two environments, inspired by Isaac gym Makoviychuk et al. (2021) (i.e.,
physical simulations for robot learning). Our implementations allow up to 32, 768 parallel
environments. The communication bottleneck between CPUs and GPUs is bypassed.

• We reproduce benchmark RL algorithms using GPU-based massively parallel environments,
including both instance-wise and distribution-wise approaches, on both synthetic datasets
and real-world datasets. These approaches cover most important patterns in this community.
We will add new RL algorithms if they spring in the future which fall in these patterns. The
results demonstrate a significant speedup in both training efficiency and sampling speed.

• By utilizing GPU-based massively parallel environments, RL-based distribution-wise ap-
proaches can be trained on large-scale CO problems, e.g., thousands of nodes compared
with hundreds of nodes in current works. That is, the scale is improved by one order.

• In a distribution-wise approach supported by massively parallel environments, the objective
value by inference (100 ∼ 200 seconds) is almost the same as Gurobi (running for 1 hour)
and better than the current SOTA distribution-wise approach.

The remainder of this paper is organized as follows. Section 2 describes two formulations of CO
problems. Section 3 describes existing methods for CO problems. In Section 4, we develop massively
parallel environments for RL algorithms. Section 5 demonstrates the performance.

2 COMBINATORIAL OPTIMIZATION PROBLEMS

Combinatorial optimization (CO) problems aim to find a high-quality solution from a large search
space, where the number of feasible solutions grows exponentially with the problem size. There are
two common formulations for CO problems: integer linear programming (ILP) model and quadratic
unconstrained binary programming (QUBO) model (a.k.a., Ising model formulation).

2.1 ILP FORMULATION

Integer linear programming (ILP) is a standard formulation Ibaraki (1976) with the canonical form:

min cTx

s.t. Ax ≤ b, x ≥ 0, x ∈ Zn,
(1)

where x is a vector of n decision variables, c is a vector of n coefficients, A ∈ Rm×n and b ∈ Rm

together denote m linear constraints, and x ∈ Zn implies that we are interested in integer solutions.

2

Under review as a conference paper at ICLR 2024

2.2 QUBO FORMULATION

Consider a 1D Ising model Cipra (1987) with a ring structure and an external magnetic field hi, there
are N nodes with (N + 1) = 1 mod N ; a node i has a spin xi ∈ {+1,−1} (where +1 for up and
−1 for down). Two adjacent sites i and i+ 1 have an energy w(i, i+ 1) or −w(i, i+ 1) if they have
the same direction or different directions, respectively.

The whole system will evolve into the ground state with the minimum Hamiltonian:

min f(x) = −
N∑
i=1

hixi − α

N∑
i=1

w(i, i+ 1)xixi+1, (2)

where α > 0 is a weight, the first term is defined on nodes, and the second term is defined on nodes’
interactions.

3 EXISTING METHODS FOR CO PROBLEMS

3.1 CLASSICAL METHODS

To solve CO problems, researchers may first formulate them as integer linear programming (ILP).
Then ILP is relaxed to linear programming (LP), i.e., change integer variables to continuous ones.
And then LP solutions are obtained by using the simplex method Nash (2000). However, the LP
solutions may not be all integers; and therefore, the following two methods are used to obtain integer
solutions.

Branch-and-bound method Brusco et al. (2005) iteratively selects a non-integer variable to branch,
i.e., dividing the original problem into two smaller subproblems, and then chooses a branch that may
result in a good solution. This process iterates until a good integer solution is obtained.

Cutting plane method Marchand et al. (2002) adds a series of cutting planes (linear constraints) so
that the feasible region of the relaxation problem is reduced, but all the feasible integer solutions are
retained. Finally, the original constraints and the added cutting planes constitute a minimum convex
hull so that we obtain the optimal integer solution by directly solving the new LP using the simplex
method Nash (2000).

3.2 HEURISTIC METHODS

Greedy algorithm starts from empty set S = ∅ and will construct a solution by sequentially adding
nodes to a partial solution S, based on maximizing some evaluation function Q(·) that measures the
quality of a node in the context of the current partial solution.

Local search starts with an initial solution and searches a better neighborhood solution. It improves
the current solution iteratively: it replaces the current solution and the search continues if such a
solution is found, and returns a locally optimal solution otherwise.

Simulated annealing Dowsland & Thompson (2012) is a metaheuristic to approximate global
optimization. It is based on the analog of metal’s cool and anneal. It selects a better/worse neighboring
state with a high/low acceptance probability over many neighboring states according to the current
temperature. This prevents being stuck in local optima. The temperature decreases and finally
converges over iterations, i.e., reaching a solid state with minimum energy.

3.3 REINFORCEMENT LEARNING METHODS

RL-driven heuristics such as greedy Dai et al. (2017), k-opt Ma et al. (2024), beam search Choo
et al. (2022) and local search Chen et al. (2023) can learn heuristics from data automatically. Dai
et al. (2017) propose an approach to learn a greedy policy that exploit the structure of such recurring
problems, which combines RL and graph embedding. They build MDP models for CO problems,
and then combine graph embedding Dai et al. (2016) and RL to obtain the policy. The solution
starts from a partial solution, and a new node is added iteratively until a whole solution is obtained.
In the traveling salesman problem (TSP), Fu et al. (2021) propose to train a small-scale model,
and then build heat maps for instances with larger size. Chen et al. (2023) propose a Monte carlo

3

Under review as a conference paper at ICLR 2024

policy gradient method for binary optimization, which combines RL with local search to improve the
quality when searching better neighborhood nodes. Choo et al. (2022) propose a simulation-guided
beam search method, which examines solutions within a fixed-width tree search that both a neural
network-learned policy and a simulation identify as promising. Ma et al. (2024) propose a learning
to search the k-opt method which focuses on the routing problem, so that it can perform flexible
k-opt exchanges. Most of the above works target on how to use RL-based methods for CO problems,
ignoring the effectiveness of massively parallel environments. Therefore, the size of trained problems
may be small, e.g., hundreds of nodes in graph maxcut problem or routing problems.

Current RL-based methods for CO problems are classified to two categories: instance-wise and
distribution-wise scenarios. In the instance-wise scenario, also named as end-to-end, RL-based
methods solve the problem case by case. In the distribution-wise scenario, RL-based methods train
neural networks based on samples, and then obtain the solution by inference. Both scenarios require
a large number of samples, especially the distribution-wise scenario since it requires the samples
over all the distribution. The scale of trained problems in current research works is generally small,
e.g., 20∼50 nodes in TSP Fu et al. (2021) or 50∼100 nodes in the graph maxcut problem Dai et al.
(2017). With the support of GPU-based massively parallel environments, the performance of current
RL-based methods, especially the trained problem size in the distribution-wise scenario, can be
significantly improved.

GPU-based massively parallel environments for RL methods can significantly improve the
sampling speed for training. Gigastep Lechner et al. (2024) and JaxMARL Rutherford et al. (2024)
are two typical multi-agent RL (MARL) libraries with parallel environments. The RL4CO library
Berto et al. (2023) provides a unified framework for RL-based CO algorithms. Jumanji Bonnet
et al. (2024) presents a diverse suite of scalable reinforcement learning environments in JAX. All
the above research works show the significance of GPU-based parallel environments in RL. Jumanji
and RL4CO provide only instance-wise methods for CO problems, and Gigastep and JaxMARL
only provide MARL algorithms without using them for CO problems. Pgx Koyamada et al. (2023)
and Craftax Matthews et al. (2024) focus on parallel simulators for games. Moreover, RL-based
annealing algorithms such as Chen et al. (2023); Liu & Zhang (2024); Lu & Liu (2023); Li et al.
(2021); Lu et al. (2023) are typical methods, which fall in an important pattern that we propose in
Section 4, while the above works do not cover them. Different from the above benchmark works, we
use GPU-based parallel environments in RL for CO problems over all important patterns, including
instance-wise and distribution-wise approaches, especially in large-scale problems.

4 MASSIVELY PARALLEL CO ENVIRONMENTS ON GPUS

Table 1: Existing RL algorithms follow two patterns.
Pattern I Pattern II

Space MDP: (S,A,R,P, γ) (S, f)
Deterministic No Yes

Initial distribution d(s0) d(s0)
Reward r(s, a) = f(s

⋃
{a})− f(s) r(s, s′) = f(s′)

Policy π(a|s) : S −→ A π(s′|s) : S −→ S
Transition S ×A −→ S S −→ S
Trajectory τ = (s0, a0, r1, . . . , sT , aT , rT+1) τ = (s0, s1, . . . , sT)

Trajectory probability P (τ) = d(s0)Π
T
t=1[π(at−1|st−1) P (τ) = d(s0)Π

T
t=1π(st|st−1)

× P (st|st−1, at−1)]

For RL algorithms, the sampling is based on Monte Carlo Markov chain (MCMC) simulations. We
build massively parallel environments on GPUs. In particular, we propose gym-style templates of
building parallel environments: all components such as parallel solutions and objective values are
stored as GPU tensors, thus all operations are executed parallelly on GPUs.

Example. Take the graph maxcut problem as an example, we assume the graph has n nodes, and we
build k environments on one GPU. To enable parallel operations, we use a tensor of size k × n to
store all the solutions for these parallel environments. All the operations are executed parallelly using
PyTorch Paszke et al. (2019), and if we use m GPUs, it will support k ×m environments.

4

Under review as a conference paper at ICLR 2024

1

3

54

s=[] s=[1]

2

Pattern I

1

3

54

2

a = 1
r = 2

s=[0,1,1,0,0]
f(s) = 2

s=[1,0,1,1,0]
f(s) = 4

Pattern II

1

3

54

2
1

3

54

2

Figure 1: Two patterns for graph maxcut.

We introduce two typical patterns for massively parallel MCMC simulations:

• Pattern I: RL-based heuristic Dai et al. (2017); Sun et al. (2023) formulates the CO problem
as Markov decision process (MDP), and then use RL algorithms to select the node with the
maximum Q-value and add it into the solution set. Take graph maxcut as an example. In left
part of Fig. 1, the initial solution set (a state) is empty, i.e., no node is selected, and then we
select the node 1 with the maximum Q-value and add it into the solution set.

• Pattern II: policy-based methods Liu & Zhu (2023); Mohseni et al. (2022); Liu & Zhang
(2024); Lu & Liu (2023) first formulate the CO problem as a QUBO problem, and then learn
a policy using say REINFORCE algorithm Zhang et al. (2021) to minimize the Hamiltonian
Liu & Zhu (2023); Liu & Zhang (2024) objective function. Take graph maxcut as an
example. In right part of Fig. 1, the initial solution set has node 2 and 3, and then it transition
to a new solution set with node 1 and 4.

Table 1 compared the above two patterns in detail. γ is the discount factor, and θ is the parameters of
neural networks, and f is the objective function of CO problems.

The two patterns have several differences. First, their application scopes are different. The application
scope of Pattern I may be smaller than Pattern II since it may not handle the problems which can not
be modeled by adding node one by one, e.g., the portfolio optimization problem. Pattern II has wider
application scope since most CO problems can be formulated by QUBO. Second, the functionalities
of the neural works are different. In Pattern I, the neural works are used for approximating the
policy and Q-value. While in Pattern II, the neural works are only used for approximating the
policy. Third, the sampling speed in Pattern I is generally faster than Pattern II since there are some
complex functions in Pattern II. Moreover, from experiments, we see that the methods in Pattern II
are generally better than that in Pattern I.

4.1 PATTERN I FOR CO ENVIRONMENTS

The objective function and gradient are

JI(θ) = E

[
T∑

t=0

r(st, at) + γQ′(st+1, π(st+1))

]
, (3)

∇θJI(θ) = ∇θE

[
T∑

t=0

r(st, at) + γQ′(st+1, π(st+1))

]
, (4)

where s is the state, r is the reward function, π is the policy, and the T is the length of the trajectory.

There are three important functions for a gym-style environment:

• reset(): Set the selected nodes as an empty set.

• step(): Select the node with maximum Q-value and then add it to the set.

• reward(): Calculate the objective values over all simulation environments.

5

Under review as a conference paper at ICLR 2024

Policy

JIIreset()

Parallel environments
env-K

s0, f(s0)

s, f(s)a

env-2env-1

sampling(s, p)
s, f(s)

local_search(s)

step(s, p)

reset()

batch

Policy

step(s,a)

env-1

step(s,a)

env-2

step(s,a)

env-K

Parallel environments

JI

Replay buffer

s0

a r, s'

(s, a, r, s')

Pattern I Pattern II

sampling(s, p)
s, f(s)

local_search(s)

step(s, p)
sampling(s, p)

s, f(s)
local_search(s)

step(s, p)

Figure 2: Massively parallel environments for two patterns.

Take graph maxcut as an example, we present the Markov decision process (MDP).

• State S: a set of selected nodes on a graph.

• Transition S a−→ S ′: is deterministic, and the new state S ′ will be S
⋃
{a} if the action a is

taken based on the current state S.
• Action A: is to select a node in another set on a graph.
• Reward R(S, a): is the the new cut value after taking action a (adding a node to the state S)

minus the current cut value.
• Policy π(a|S): is to select a node a to add to the the set or state S, which obtains a reward
R(S, a).

4.2 PATTERN II FOR CO ENVIRONMENTS

The objective function and gradient are

JII(θ) = E

[
T∑

t=1

f(st)

]
, ∇θJII(θ) = ∇θE

[
T∑

t=1

f(st)

]
, (5)

where f is the objective function and the T is the length of the trajectory.

We introduce four important functions Dai et al. (2017); Sun et al. (2023) for a gym-style environment:

• reset(): Generate a random initial solution.
• step(): Search for better solutions based on the current solution. It has two sub-functions.

– sampling() is the sampling method.
– local_search() returns a better solution by flipping some bits. It can improve the quality

of the current solution in a local domain.
• pick_good_xs(): Select the good solutions in all parallel environments, where each environ-

ment returns exactly one good solution with corresponding objective value.
• obj(): Calculate the objective value.

Take graph maxcut as an example, we list the training process.

• Initialize a random solution S.
• Select some nodes and flip them, and obtain a new solution S ′, and then calculate the cut

value f ′. Execute the above operation for plenty of times. Through the sampling method to
filter the samples. Use the local search method to improve the quality of samples, e.g., the
cut value improves from f ′ to f ′′.

6

Under review as a conference paper at ICLR 2024

Pa
rti

tio
ni

ng

MILP

Covering

Hamiltonian cycle Transportation

QuantumFinance

TSP

MIS

Set cover

VRP

BI
LPGraph coloring

Number partitioning
Graph partitioning

Graph maxcut

Portfolio optim
ization

TN
C

O

Coloring

Knapsack

Figure 3: Typical CO problems.

• In each environment, reserve the sample with the maximum cut value.

• Update the gradient based on the reserved samples.

With respect to the objective to optimize for neural networks, we set it as the cut value plus a weighted
entropy, and the temperature decreases with iterations. Finally, the algorithm converges and we obtain
the maximum cut value.

5 PERFORMANCE EVALUATION

We select 12 typical CO problems over 8 areas in Fig 3. The ILP and QUBO formulations of these
problems are moved to the Appendix for limited pages. We implement the algorithms on a DGX-2
server with NVIDIA A100 GPUs. Take graph maxcut as an example, we show the performance. We
use several datasets: Gset 1, and generated graphs in three distributions: barabasi albert (BA), erdos
renyi (ER), and powerlaw (PL).

5.1 IMPROVING THE QUALITY OF SOLUTIONS AND CONVERGENCE

GPU-based parallel environments can significantly improve the quality of solutions during training,
since RL methods require many high-quality samples from the environments. Take graph maxcut as
an example. We select G22 in the Gset dataset. The number of epochs is set to 30, and the number
of steps in each epoch is set to 24. Fig. 4 shows the objective values vs. number of epochs with
different number of GPU-based parallel environments in MCPG Chen et al. (2023), which belongs to
Pattern II. We see that, when the number of environments is 1, the highest objective value is 13,257,
and the convergence is very slow; however, when the number of environments is 1,024 ∼ 4,096, the
highest objective value is approaching the best-known solution 13,359, and the convergence is very
fast. Therefore, generally, the more parallel environments, the higher objective values, and the faster
convergence.

5.2 IMPROVING THE SPEED OF DATA SAMPLING

We use 256 environments on CPU, and 512, 1024, 2048, 4096, 8192, 16384 and 32768 environments
on GPU to test the speedup, and the length of the trajectory is set at 512, 256, 128, 64, 31, 16, and 8
correspondingly. We test graph maxcut on a BA graph with 1000 nodes and 3984 edges. We select
S2V-DQN Dai et al. (2017) in Pattern I, and MCPG Chen et al. (2023) in Pattern II. From Fig. 5,
we see that the reward or objective value with more environments changes much faster than others.

1Gset: https://web.stanford.edu/~yyye/yyye/Gset/

7

https://web.stanford.edu/~yyye/yyye/Gset/

Under review as a conference paper at ICLR 2024

0 10 20 30
Number of epochs

13220

13240

13260

13280

13300

13320

13340

13360

Ob
je

ct
iv

e
va

lu
es

 in
 g

ra
ph

 m
ax

cu
t 1

2
4
8
16
32
64
128
256
512
1024
2048
4096

Figure 4: Objective values in graph maxcut vs. number of epochs with different number of GPU-
based parallel environments in Pattern II.

100 101 102

Time (second)

0

200

400

600

800

Re
wa

rd

100 101 102 103

Time (second)

1250

1500

1750

2000

2250

2500

2750

Ob
je

ct
iv

e
va

lu
e

(256CPU, 512)
(512, 256)
(1024, 128)
(2048, 64)
(4096, 32)
(8192, 16)
(16384, 8)

Figure 5: Reward/objective vs. time for graph maxcut (left: Pattern I, right: Pattern II)

Fig. 6 shows the speedup for graph cut in two patterns. The speedup with the most environments is
two orders compared with that with the least environments. The number of collected samples per
second in Pattern I is larger than Pattern II since there exist several complicated processes such as the
sampling algorithms in Pattern II.

256CPU 512 1024 2048 4096 8192 16384 32768
Number of parallel environments

0

50000

100000

150000

200000

250000

300000

350000

400000

Nu
m

be
r o

f s
am

pl
es

 p
er

 se
co

nd Pattern I
Pattern II

Figure 6: Speed of data sampling in graph maxcut

8

Under review as a conference paper at ICLR 2024

5.3 RESULTS FOR INSTANCE-WISE SCENARIO

In Table 2, we selected 10 instances in each dataset, and we implemented 11 algorithms: Greedy
(Approximation ratio = 2), SDP (Approximation ratio = 1

0.878), simulated annealing (SA), genetic
algorithm (GA), Gurobi (QUBO) 2, S2V-DQN Dai et al. (2017) in Pattern I, physical-inspired GNN
(PI-GNN) Schuetz et al. (2022) in Pattern I, iSCO Sun et al. (2023) in Pattern II, dREINFORCE Liu
& Zhang (2024); Lu & Liu (2023) in Pattern II, MCPG Chen et al. (2023) in Pattern II, and Jumanji
Bonnet et al. (2024) in Pattern I. Considering that Jumanji has not implemented the RL method for
the graph maxcut problem, we implemented it using the PPO algorithm Schulman et al. (2017) with
GPU-based parallel environments, following the codes of TSP in Jumanji. We see that the methods
in Pattern II are generally better than Pattern I, since some techniques (e.g., sampling algorithms) are
added to improve the quality. With respect to the Gurobi method (running for 1 hour), and it is more
easily to obtain better results using QUBO than MILP; therefore, we only present the results using
QUBO. The best objective value is denoted by boldface. The results on ER and PL distributions are
moved to the Appendix.

Table 2: Results for graph maxcut on BA distribution in instance-wise scenario
Nodes Greedy SDP SA GA Gurobi S2V-DQN PI-GNN iSCO dREINFORCE MCPG Jumanji

(Pattern I) (Pattern I) (Pattern II) (Pattern II) (Pattern II) (Pattern I)
100 272.1 272.5 272.6 284.1 284.1 283.1 273.0 284.1 284.1 284.1 284.1
200 546.9 552.9 552.0 582.9 583.0 580.8 560.6 581.5 583.0 583.0 583.0
300 833.2 839.3 834.7 880.4 880.4 875.1 846.3 877.2 880.4 880.4 880.4
400 1112.1 1123.9 1116.4 1180.9 1180.4 1175.3 1174.6 1176.5 1181.9 1179.5 1181.9
500 1383.8 1406.3 1387.7 1477.7 1476.0 1453.4 1436.8 1471.3 1478.3 1478.3 1471.3
600 1666.7 1701.2 1670.6 1780.3 1777.0 1730.7 1768.5 1771.0 1781.5 1778.6 1779.2
700 1961.9 1976.7 1966.0 1989.2 2071.2 2038.9 1989.4 2070.2 2076.6 2076.6 2071.3
800 2237.9 2268.8 2244.9 2375.5 2358.9 2333.7 2365.9 2366.9 2377.8 2372.9 2373.4
900 2518.1 2550.3 2524.8 2670.1 2658.3 2614.9 2539.7 2662.4 2675.1 2670.6 2671.2
1000 2793.8 2834.3 2800.8 2967.9 2950.2 2906.3 2846.8 2954.0 2972.3 2968.7 2951.4

Table 3: Results for graph maxcut on the Gset dataset in instance-wise scenario.
Graph Nodes Edges BLS DSDP KHLWG RUN-CSP PI-GNN iSCO dREINFORCE MCPG Jumanji

(Pattern I) (Pattern II) (Pattern II) (Pattern II) (Pattern I)
G14 800 4694 3064 - 2922 3061 2943 3056 3064 3064 3064
G15 800 4661 3050 2938 3050 2928 2990 3046 3050 3050 2979
G22 2000 19990 13359 12960 13359 13028 13181 13289 13359 13359 13261
G49 3000 6000 6000 6000 6000 6000 5918 5940 6000 6000 5987
G50 3000 6000 5880 5880 5880 5880 5820 5874 5880 5880 5872
G55 5000 12468 10294 9960 10236 10116 10138 10218 10298 10296 10283
G70 10000 9999 9541 9456 9458 - 9421 9442 9586 9578 9554

Table 3 presents the results of 9 approaches in seven instances from Gset: breakout local search (BLS)
Benlic & Hao (2013), SDP (DSDP) Choi & Ye (2000), Tabu search (KHLWG) Kochenberger et al.
(2013), recurrent GNN (RUN-CSP) Toenshoff et al. (2021), PI-GNN Schuetz et al. (2022), iSCO Sun
et al. (2023), dREINFORCE Liu & Zhang (2024); Lu & Liu (2023), MCPG Chen et al. (2023), and
Jumanji Bonnet et al. (2024). We see that RL methods (e.g., dREINFORCE and MCPG) of Pattern
II demonstrate clearer advantages over RL methods of Pattern I (e.g., S2V-DQN and Jumanji) and
conventional methods (e.g., DSDP), especially in larger instances.

5.4 RESULTS FOR DISTRIBUTION-WISE SCENARIO

Considering of limited scope, we only show the results of the graph maxcut problem, which suffi-
ciently reveal the effectiveness of massively parallel environments. In each dataset, we selected 30
instances. To clearly show the comparisons, we introduce a metric: Alg1#Alg2 = obj1−obj2

obj2 , which is
the increasing ratio of the objective value of Alg1 compared with Alg2.

From Tab. 4 and Tab. 5, we see that, with the support of massively parallel environments, the scale of
trained graphs and the quality of solutions are improved. For the graphs with nodes ranging from 100
to 1200 nodes, the objective value obtained by inference (100 ∼ 200 seconds) is almost the same as
Gurobi (running for 1 hour), and improved by 0.05% ∼ 5% compared with SOTA distribution-wise
approach S2V-DQN Dai et al. (2017). For the graphs with nodes ranging from 2000 to 4000 nodes,
the objective value obtained by inference is improved by about 1% compared with Gurobi. The

2Gurobi: https://www.gurobi.com

9

https://www.gurobi.com

Under review as a conference paper at ICLR 2024

Table 4: Results for graph maxcut on BA distribution in distribution-wise scenario
#Nodes dREINFORCE Gurobi dREINFORCE#Gurobi S2V-DQN#Gurobi dREINFORCE#S2V-DQN

100 283.7 283.7 0 -1.63% (100 ∼ 200) 1.63%
200 583.27 583.27 0 -1.79% (200 ∼ 300) 1.79%
300 880.43 880.43 0 -1.63% (300 ∼ 400) 1.63%
400 1179.70 1179.17 0.0452% -1.03% (400 ∼ 500) 1.08%
500 1479.53 1477.60 0.131% -1.63% (500 ∼ 600) 1.76%
1000 2970.50 2952.20 0.487% -2.38% (1000 ∼ 1200) 2.87%
1100 3265.73 3250.17 0.264% -2.38% (1000 ∼ 1200) 2.64%
1200 3557.93 3547.07 0.392% -2.38% (1000 ∼ 1200) 2.77%
2000 4060.92 4025.89 0.87% - -
3000 5676.26 5624.51 0.92% - -
4000 11942.50 11821.92 1.02% - -

Table 5: Results for graph maxcut on ER distribution in distribution-wise scenario
#Nodes dREINFORCE Gurobi dREINFORCE#Gurobi S2V-DQN#Gurobi dREINFORCE#S2V-DQN

100 507.83 507.83 0 -0.05% (100-200) 0.05%
200 1858.93 1856.13 0.151% -1.05% (200 ∼ 300) 1.20%
300 4063.20 4062.93 0 -2.65% (300 ∼ 400) 2.66%
400 7042.10 7041.67 0 -3.59% (400 ∼ 500) 3.60%
500 10862.30 10862.40 0 -5.77% (500 ∼ 600) 5.77%

1000 41735.16 41765.87 -0.0735% -5.07% (1000 ∼ 1200) 5.00%
1100 50219.47 50286.8 -0.134% -5.07% (1000 ∼ 1200) 4.94%
1200 59506.30 59561.83 -0.093% -5.07% (1000 ∼ 1200) 4.98%
2000 163587.11 162111.89 0.91% - -
3000 363365.19 359767.52 1.00% - -
4000 643101.65 634848.62 1.30% - -

scale of trained graphs for distribution-wise approaches is 2,000∼4,000 nodes, and is improved by
one order compared with 50∼100 nodes of current research works Dai et al. (2017); Drakulic et al.
(2024).

The reasons why massively parallel environments supported approach (dREINFORCE) has better
performance (in terms of size of graphs and quality of solutions) than S2V-DQN and Gurobi are
as follows. First, by using massively parallel environments, we can obtain many many samples for
training. Second, the obtained samples are of high-quality since RL has powerful search skills with
the help of GPUs, so better policy can be obtained. Moreover, we use several tricks to improve the
quality of solutions, e.g., sampling algorithms. Gurobi may obtain worse solutions when the size of
problems increases, since its knowledge/heuristic may not work well in larger instances. Third, we
use graph auto-encoder Kipf & Welling (2016); Fan et al. (2021) to learn the topology and meaningful
representations of graphs, and use decoder to predict the probability distribution.

6 CONCLUSION

We noticed that sampling is a bottleneck for large-scale combinatorial optimization (CO) problems
using reinforcement learning (RL) algorithms; therefore, we propose to use GPU-based massively
parallel environments to speed up the sampling process. We build a benchmark, including instance-
wise and distribution-wise approaches, using GPU-based massively parallel environments (say up
to 32,768 environments). The results demonstrate that the sampling speed is increased by at least
two orders. The scale (i.e., number of nodes) of trained problems in distribution-wise approaches
increases one order, and the performance is almost the same as Gurobi (running for 1 hour) and better
than the SOTA distribution-wise approach.

However, if the CO environments are very complicated, the operations on tensors may be hard and
they require large memory for GPUs. We only implemented parallel environments on typical CO
problems, and the implementation on real-world complicated CO problems will be done in the future,
including the large-scale dynamic ridesharing problem in transportation, power scheduling in smart
grids, portfolio allocation in finance, and supply chain optimization in industrial internet.

10

Under review as a conference paper at ICLR 2024

REFERENCES

J Ben Atkinson. A greedy look-ahead heuristic for combinatorial optimization: An application to
vehicle scheduling with time windows. Journal of the Operational Research Society, 45:673–684,
1994.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421,
2021.

Una Benlic and Jin-Kao Hao. Breakout local search for the max-cut problem. Engineering Applica-
tions of Artificial Intelligence, 26(3):1162–1173, 2013.

Federico Berto, Chuanbo Hua, Junyoung Park, Minsu Kim, Hyeonah Kim, Jiwoo Son, Haeyeon
Kim, Joungho Kim, and Jinkyoo Park. Rl4co: a unified reinforcement learning for combinatorial
optimization library. In NeurIPS 2023 Workshop: New Frontiers in Graph Learning, 2023.

Clément Bonnet, Daniel Luo, Donal Byrne, Shikha Surana, Sasha Abramowitz, Paul Duckworth,
Vincent Coyette, Laurence I Midgley, Elshadai Tegegn, Tristan Kalloniatis, et al. Jumanji: a
diverse suite of scalable reinforcement learning environments in jax. ICLR, 2024.

Michael J Brusco, Stephanie Stahl, et al. Branch-and-bound applications in combinatorial data
analysis, volume 2. Springer, 2005.

Xinye Cai, Yexing Li, Zhun Fan, and Qingfu Zhang. An external archive guided multiobjective
evolutionary algorithm based on decomposition for combinatorial optimization. IEEE Transactions
on Evolutionary Computation, 19(4):508–523, 2014.

Nilotpal Chakraborty, Arijit Mondal, and Samrat Mondal. Efficient scheduling of nonpreemptive
appliances for peak load optimization in smart grid. IEEE Transactions on Industrial Informatics
(TII), 14(8):3447–3458, 2017.

Cheng Chen, Ruitao Chen, Tianyou Li, Ruichen Ao, and Zaiwen Wen. Monte carlo policy gradient
method for binary optimization. arXiv preprint arXiv:2307.00783, 2023.

Changhui Choi and Yinyu Ye. Solving sparse semidefinite programs using the dual scaling algorithm
with an iterative solver. Manuscript, Department of Management Sciences, University of Iowa,
Iowa City, IA, 52242, 2000.

Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney, and
Youngjune Gwon. Simulation-guided beam search for neural combinatorial optimization. Advances
in Neural Information Processing Systems (NeurIPS), 35:8760–8772, 2022.

Barry A Cipra. An introduction to the ising model. The American Mathematical Monthly, 94(10):
937–959, 1987.

Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for structured
data. In International conference on machine learning (ICML), pp. 2702–2711. PMLR, 2016.

Hanjun Dai, Elias Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. Advances in Neural Information Processing Systems (NeurIPS),
30, 2017.

Kathryn Anne Dowsland and Jonathan Thompson. Simulated annealing. Handbook of natural
computing, pp. 1623–1655, 2012.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco: Bisimu-
lation quotienting for efficient neural combinatorial optimization. Advances in Neural Information
Processing Systems (NeurIPS), 36, 2024.

Wei Fan, Kunpeng Liu, Rui Xie, Hao Liu, Hui Xiong, and Yanjie Fu. Fair graph auto-encoder for
unbiased graph representations with wasserstein distance. In IEEE International Conference on
Data Mining (ICDM), pp. 1054–1059, 2021.

11

Under review as a conference paper at ICLR 2024

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 7474–7482, 2021.

Cole Gulino, Justin Fu, Wenjie Luo, George Tucker, Eli Bronstein, Yiren Lu, Jean Harb, Xinlei Pan,
Yan Wang, Xiangyu Chen, et al. Waymax: An accelerated, data-driven simulator for large-scale
autonomous driving research. Advances in Neural Information Processing Systems (NeurIPS), 36,
2024.

Nikolaus Hautsch and Stefan Voigt. Large-scale portfolio allocation under transaction costs and
model uncertainty. Journal of Econometrics, 212(1):221–240, 2019.

Toshimde Ibaraki. Integer programming formulation of combinatorial optimization problems. Dis-
crete Mathematics, 16(1):39–52, 1976.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

Gary A Kochenberger, Jin-Kao Hao, Zhipeng Lü, Haibo Wang, and Fred Glover. Solving large scale
max cut problems via tabu search. Journal of Heuristics, 19:565–571, 2013.

Sotetsu Koyamada, Shinri Okano, Soichiro Nishimori, Yu Murata, Keigo Habara, Haruka Kita, and
Shin Ishii. Pgx: Hardware-accelerated parallel game simulators for reinforcement learning. In
Advances in Neural Information Processing Systems (NeurIPS), volume 36, pp. 45716–45743,
2023.

Mathias Lechner, Tim Seyde, Tsun-Hsuan Johnson Wang, Wei Xiao, Ramin Hasani, Joshua Rountree,
Daniela Rus, et al. Gigastep-one billion steps per second multi-agent reinforcement learning.
Advances in Neural Information Processing Systems (NeurIPS), 36, 2024.

Kaiwen Li, Tao Zhang, Rui Wang, Yuheng Wang, Yi Han, and Ling Wang. Deep reinforcement
learning for combinatorial optimization: Covering salesman problems. IEEE transactions on
cybernetics, 52(12):13142–13155, 2021.

Xiao-Yang Liu and Zeliang Zhang. Classical simulation of quantum circuits: Parallel environments
and benchmark. Advances in Neural Information Processing Systems (NeurIPS), 36, 2024.

Xiao-Yang Liu and Ming Zhu. K-spin ising model for combinatorial optimizations over graphs: A
reinforcement learning approach. In NeurIPS workshop: OPT Optimization for Machine Learning,
2023.

Xiao-Yang Liu, Zechu Li, Zhuoran Yang, Jiahao Zheng, Zhaoran Wang, Anwar Walid, Jian Guo,
and Michael Jordan. Elegantrl-podracer: Scalable and elastic library for cloud-native deep
reinforcement learning. In NeurIPS Workshop: Deep RL, 2021.

Xiao-Yang Liu, Ziyi Xia, Jingyang Rui, Jiechao Gao, Hongyang Yang, Ming Zhu, Christina Wang,
Zhaoran Wang, and Jian Guo. FinRL-Meta: Market environments and benchmarks for data-driven
financial reinforcement learning. Advances in Neural Information Processing Systems (NeurIPS),
35:1835–1849, 2022.

Han Lu, Zenan Li, Runzhong Wang, Qibing Ren, Xijun Li, Mingxuan Yuan, Jia Zeng, Xiaokang
Yang, and Junchi Yan. Roco: A general framework for evaluating robustness of combinatorial
optimization solvers on graphs. In International Conference on Learning Representations (ICLR),
2023.

Yicheng Lu and Xiao-Yang Liu. Reinforcement learning for ising model. Advances in Neural
Information Processing Systems (NeurIPS), Machine Learning and the Physical Sciences Workshop,
2023.

Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to search feasible and infeasible regions
of routing problems with flexible neural k-opt. Advances in Neural Information Processing Systems
(NeurIPS), 36, 2024.

12

Under review as a conference paper at ICLR 2024

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

Hugues Marchand, Alexander Martin, Robert Weismantel, and Laurence Wolsey. Cutting planes in
integer and mixed integer programming. Discrete Applied Mathematics, 123(1-3):397–446, 2002.

Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Jackson,
Samuel Coward, and Jakob Foerster. Craftax: A lightning-fast benchmark for open-ended rein-
forcement learning. In International Conference on Machine Learning (ICML), 2024.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for
combinatorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

Naeimeh Mohseni, Peter L McMahon, and Tim Byrnes. Ising machines as hardware solvers of
combinatorial optimization problems. Nature Reviews Physics, 4(6):363–379, 2022.

Thomas Morstyn. Annealing-based quantum computing for combinatorial optimal power flow. IEEE
Transactions on Smart Grid (TSG), 14(2):1093–1102, 2022.

John C Nash. The (dantzig) simplex method for linear programming. IEEE Computing in Science &
Engineering, 2(1):29–31, 2000.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems (NeurIPS),
2019, 32, 2019.

Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Garðar Ing-
varsson, Timon Willi, Akbir Khan, Christian Schroeder de Witt, Alexandra Souly, et al. Jaxmarl:
Multi-agent rl environments and algorithms in jax. In International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pp. 2444–2446, 2024.

Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Haoran Sun, Katayoon Goshvadi, Azade Nova, Dale Schuurmans, and Hanjun Dai. Revisiting
sampling for combinatorial optimization. In International Conference on Machine Learning
(ICML), pp. 32859–32874. PMLR, 2023.

Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph neural networks for maximum
constraint satisfaction. Frontiers in Artificial Intelligence, 3:580607, 2021.

Junzi Zhang, Jongho Kim, Brendan O’Donoghue, and Stephen Boyd. Sample efficient reinforcement
learning with reinforce. In AAAI conference on artificial intelligence, volume 35, pp. 10887–10895,
2021.

Chunyang Zhou, Chongfeng Wu, and Yudong Wang. Dynamic portfolio allocation with time-varying
jump risk. Journal of Empirical Finance, 50:113–124, 2019.

Ming Zhu, Xiao-Yang Liu, Feilong Tang, Meikang Qiu, Ruimin Shen, Wennie Shu, and Min-You Wu.
Public vehicles for future urban transportation. IEEE Transactions on Intelligent Transportation
Systems (TITS), 17(12):3344–3353, 2016.

Ming Zhu, Xiao-Yang Liu, and Xiaodong Wang. An online ride-sharing path-planning strategy for
public vehicle systems. IEEE Transactions on Intelligent Transportation Systems (TITS), 20(2):
616–627, 2019.

13

