Under review as a conference paper at ICLR 2026

RIEMANNIAN Fuzzy K-MEANS
ON PRODUCT MANIFOLDS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we address an open problem: how to perform fast clustering on
product manifolds. With the increasing interest in non-Euclidean data representa-
tions, clustering such data has become an important problem. However, a naive
extension of the classic K-Means algorithm to product manifolds requires O(vw)
time, where w is the number of alternating iterations and v is the time complexity
of each Riemannian optimization. Due to the need for numerous Riemannian
optimizations, the naive Riemannian K-Means (NRK) is not suitable for large-scale
data. To this end, we propose the Riemannian Fuzzy K-Means (RFK) algorithm for
product manifolds, which reduces the time complexity to O(v). Importantly, RFK
is not a straightforward extension of K-Means or Fuzzy K-Means to manifolds,
it avoids the computation of the Fréchet mean and and achieve a true single-loop
optimization. Furthermore, we introduce Radan to accelerate the optimization of
RFK. We conduct extensive experiments. RFK and Radan outperform across nearly
all metrics in almost every dataset, reaching an impressive level of performance.
RFK and Radan have been integrated into several non-Euclidean machine
learning libraries, such as here. (See Appendix

1 INTRODUCTION

Non-Euclidean data representations have received widespread attention. Examples include text
embeddings in hyperbolic space (Dhingra et al., 2018)), tree embeddings in the Poincaré disk (Nickel
& Kielal, 2017)), and representations of cell-cycle data on the sphere (Bjerregaard et al., [2025). This
is because many real-world datasets exhibit non-Euclidean structure, and embedding such data in
appropriate non-Euclidean spaces can better preserve those structures (Sinha et al.} 2024; Khan et al.|
2025). For example, hyperbolic space captures the hierarchical structure (Mandica et al., 2024aj
Chlenski et al., [2024), while spheres retain the periodic information (Bonev et al., [2025). Many
datasets not only have a single structure, so to preserve as much information as possible (Gu et al.|
2018)), it is necessary to represent them on product manifolds.

A product manifold is formed by the Cartesian product of multiple manifolds (Wang et al.,[2021)),
e, M=M; x - xMg= ®§:1Mp, where M, denotes the p-th component manifold of the
product manifold, with p € {1,...,Q}. The product manifold inherits the characteristics of each
component manifold and possesses greater expressive power (Chlenski et al.l [2025a). As a result,
product manifolds have been widely used for representing data from diverse domains (Sun et al.,
2022; McNeela et al. 2023} Xu et al., 2022} |Chen et al.,|2025)), and clustering data represented on
such manifolds or their components has become an important problem (Sun et al.| [2023al).

A natural approach is to naively extend the K-Means to product manifolds, referred to as Naive
Riemannian K-Means (NRK) (Miolane et al., 2020). However, we point out that NRK incurs a time
complexity of O(vw), where w is the number of alternating iterations and v is the time complexity
of each Riemannian optimization (Yuan et al., |2025b)). This results in a double-loop structure to
solve the clustering problem, which is unacceptable for large-scale data. Therefore, how to perform
clustering efficiently remains an open problem that requires a solution (Tepper et al., 2018).

To address this problem, we propose Riemannian Fuzzy K-Means, abbreviated as RFK. Specifically,
we consider the equivalent relaxed version of K-Means, namely Fuzzy K-Means (Dehariya et al.|
2010). We identify a special structure of Fuzzy K-Means and leverage a particular technique to

Under review as a conference paper at ICLR 2026

transform the required double loop into a single loop and reduces the time from complexity O(rvw)
to O(v). In other words, the previously required w times Riemannian optimizations are reduced to
only 1, significantly lowering the computational cost, where w > 1.

To further accelerate RFK, we adapt the well-known Nesterov adaptive optimization algorithm (Adan)
(Xie et al., [2024) to product manifolds, resulting in a Riemannian Nesterov acceleration method,
termed Radan. We also establish the regret bound (Mukkamala & Heinl |2017) and convergence
properties of Radan under certain conditions.

We validate our algorithm on a wide range of datasets. Specifically, we perform clustering using
various methods on data represented in hyperbolic space, spherical manifolds, Euclidean space, and
their product manifolds. We compare the speed of RFK with that of NRK, the speed of Radan with
that of Riemannian Adam (Becigneul & Ganeal 2019)), and the clustering performance of RFK with
several state-of-the-art clustering algorithms. We conducted extensive experiments, which yielded
remarkable results: RFK significantly outperforms NRK in speed, Radan converges faster than
Radam, and RFK achieved the best clustering performance on nearly all datasets. In summary, our
contributions are following.

* We address the open problem of fast clustering on product manifolds by proposing the
RFK algorithm, which reduces the time complexity from O(vw) of the naive Riemannian
K-Means to O(v).

* We modify the Adan optimizer to make it compatible with product manifolds, resulting in
Radan, and provide theoretical guarantees including a regret bound and convergence proof.

* We conduct extensive numerical experiments to demonstrate the effectiveness of our al-
gorithm. RFK is significantly faster than NRK, Radan provides acceleration over the
Riemannian Adam (Radam), and RFK substantially outperforms existing algorithms in
clustering metrics on manifold-represented data.

In addition, we propose a new insight, pointing out that the reason NRK cannot be accelerated lies in
its hard assignment. We recommend RFK instead of NRK for clustering on manifolds.

2 PRELIMINARIES

2.1 NOTATIONS

Let the dataset be X = {1,...,zn}, and let ¢; denote the j-th cluster center. C' is the number
of clusters. For a product manifold denoted by M, each of its component manifolds is written
as M,, such that M = ®§:1Mp. For any x € M, x can be represented as (z!,22,...,2%),
where 2P € M,,. For any points z? and y” on the component manifold M, d,(z?, y”) denotes the
geodesic distance between 2 and y? on M,, the geodesic distance on M is denoted by d(z,y).

Let H"-% denote a Lorentz hyperbolic space of dimension h; with curvature K, S*+* denote a
spherical manifold of dimension s; with curvature K, R"¢ denote a Euclidean space of dimension 7,
and I denote a two-dimensional Poincaré disk. Especially, when the curvatures of S%-% and H"# %
are (1, —1), we denote them simply as S* and H":, respectively.

T,» M, denotes the tangent space of the component manifold M, at point z?, and || - || denotes
the norm in Euclidean space. The parallel transport on M,, from point x? to y? is denoted by
oo (uP), where uP € T,» M,,. When there is no ambiguity, it is abbreviated as ¢”(u”). The
parallel transport on the product manifold M is denoted by ¢, (v). The exponential map on M,,
is denoted by Exp?, (u?), and the exponential map on M is denoted by Exp,.(u). Log?, (zP) denotes
the logarithmic map on M,,. Log.(x) denotes the logarithmic map on the product manifold M;
log(-) refers to the natural logarithm. All the notations are summarized in Table E}

2.2 CONSTANT-CURVATURE SPACES AND PRODUCT MANIFOLDS

Constant-curvature spaces (Jos et al.| [{1967) refer to one of the following: spherical spaces (positive
curvature), hyperbolic spaces (negative curvature) or Euclidean spaces(Alekseevskij et al., |1993).

Under review as a conference paper at ICLR 2026

For an s-dimensional sphere S*%, it can be represented as S*% = {2 € R**! | ||z|| = &, K > 0}.

Va,y € S%K, the geodesic distance between = and y is d(z,y) = M? where (x,y)
denotes the normal inner product in RS+ (Whittlesey, [2019).

For an h-dimensional hyperbolic space H™X, it can be represented as: HMK =
{z e RV |||l = (z,2)p, = — 2, K <0, 2° > 0}, where any z € H"X is written as z =
(2°,...,2z"), with 2° € R! (Iversen,|1992), and the Lorentzian inner product (Tsamparlis, 2024) is
defined as (z,y), = —2%° + Z?:l x'y’. For any x,y € H™X the geodesic distance (He et al.,

2025) between z and y is given by d(z,y) = 7%}:@%)” where H is also known as the

well-known Lorentz (hyperboloid) model of hyperbolic space.

A product manifold can be represented as M = ®Q:1Mp. For any x,y € M, the geodesic distance
is generally given by Equation (TJ), where z? € /\/fp (Fumero et al.| [2021).

Q
d(z,y) = | Y d2(ar,yP), 2,y € M= Q7 M,, a”,y" € M, ¢))
p=1

When we focus on product manifolds composed of constant-curvature spaces, the structure becomes
M = @ S%0F x @ H"K x R The dimension is 377" | s; + ") hj + 7 (Lui, 2012).

2.3 K-MEANS AND Fuzzy K-MEANS

The K-Means algorithm is a well-known clustering method (Likas et al., 2003; Na et al., [2010), and
its optimization problem can be formulated as following(Sinaga & Yang, 2020):

N C
min Jew =3 > uigllwi o
e i=1 j=1

o @)
st Y wy=1, u;€{0,1}, Vi=1,...,N,Vj=1,...,C
j=1

Here, u;; is an indicator variable, where u;; = 1 indicates that the i-th sample belongs to the j-th
cluster. This problem is typically solved by alternating updates of {u;; } and {c;}.

Fuzzy K-Means is a relaxed version of K-Means (Xu et al., [2016; [Krasnov et al., [2023), in which the
constraint u;; € {0, 1} isrelaxed to 0 < w;; < 1, with the additional requirement that chzl uj; =1,
where C is the number of clusters. Moreover, the loss term of K-Means u;;||z; — ¢;||? is replaced by

u||x; — ¢;]|* when using fuzzy K-Means , where m is the fuzziness parameter (Li & Wang, 2023;
Suganya & Shanthi| 2012; Bezdek et al.,[1984). Other related work can be found in Appendix

— = = = = Geodesic Cluster Center C;
Straight Line

3 OUR PROPOSED METHOD

3.1 NAIVE EXTENSION OF K-MEANS

The K-Means is clearly unsuitable for data
represented on a manifold M, for two fol-
lowing reasons and shown in Figure[T] (ol >l e ¢ M
Figure 1: Visualization of the two reasons
¢ Incorrect distance comparisons: When data lie on a manifold, the Euclidean distance may
have ||z; —c¢;|| < ||z; —cx]|, while the actual geodesic distances satisfy d(z;, ¢;) > d(z;, cx).
This mismatch can lead to incorrect cluster assignments.

* Invalid cluster centers: Without appropriate constraints, the computed cluster centers c;
may lie outside the manifold, i.e., ¢; ¢ M, rendering the cluster centers meaningless in the
context of the manifold. Meanwhile, the geodesic distance d(x;, ¢;) is not well-defined.

Under review as a conference paper at ICLR 2026

Therefore, a naive approach is to replace the Euclidean distance with geodesic distance and impose
the constraint that the cluster centers lie on the manifold. This leads to the following Equation (3).

N C Q
2¢,..D
min JKM UZJ,CJ E g uL] xucj § E § u’ijdp(x
Ci,Uj
ot i=1 j=1p=1

i=1 j=1

(3)
sty iy =1u; €{0,1}, Vi=1,...,NVj=1,...,C

st. G EM, M=03 M, Vj=1,...C

Similar to K-Means in Euclidean space, this problem can be solved by alternating updates of {u;;}
and {c;}. The update of {u;;} is identical to that in the Euclidean case: for each x;, one simply

identifies the cluster center c; that minimizes Zg L2 (2, c?), and sets the corresponding u;; = 1.

However, the update of {c; } differs significantly from the Euclidean case.

When updating {c;}, the constraint ¢; € M, M = ®§:1Mp leads to the Riemannian optimization
problem (@), which can typically be addressed using methods such as Riemannian gradient descent.

N C Q

N C
2
min Jx(cj) E E xz,C] :E E E wijdy(faf

I i=1 j=1p=1 @

s.t. ¢y GM, M:®p:1Mp7 V.]:]-v?C

This is the well-known problem of finding Fréchet means ([ao et al., 2025} [Wu & Panl 2025a) on a
manifold. In general, closed-form solutions do not exist (Capitaine et al.,[2024), it’s the fundamental
difference from the flat Euclidean spaces. It is also means that the naive extension of Fuzzy K-Means
to manifolds also requires computing the Fréchet centers, which entails the same time complexity.
This highlights that our proposed RFK algorithm is not a naive extension of Fuzzy K-Means.

This approach to performing K-Means clustering on product manifolds is referred to as Naive
Riemannian K-Means (NRK). Analyzing this algorithm, it is not difficult to see that if computing
the Fréchet mean in each iteration requires Riemannian optimization with time complexity O(v)
(Lou et al.| 2020), and the clustering process involves O(w) alternating updates of {u;;} and {c,},
then the total time complexity is O(vw). Since both v and w are typically large, clustering becomes
unacceptable for large-scale data. Therefore, reducing the time complexity is of critical importance.

3.2 RIEMANNIAN Fuzzy K-MEANS

From the above analysis, it is clear that due to the constraint ¢; € M, M = ®§:1Mp, Riemannian
optimization is unavoidable. Therefore, if we aim to reduce the overall complexity, the only viable
approach is to reconsider the treatment of {u;; }.

If a smooth mapping u;; = f(c;) can be found, such that Jx s becomes a differentiable function of
c;, then alternating optimization can be avoided entirely. However, for standard K-Means, this is not
possible. The update rule for u;; is inherently non-smooth and discrete:

R 17 j:argminje{l C} ZpQ le(CL‘mC])
uij = ; 3)
0, otherwise.

To address this issue, we adopt the relaxed version of K-Means, Fuzzy K-Means, whose optimization
objective is given by:

N C Q

_ m 32/ p p
min Jrk (uij, c;j) g g ufyd*(zi, c5) 75 E g uiz dy (27, %)

Ci, Uy
EA i=1 j=1 i=1 j=1p=1

c (6)
sy wy=1lu; >0, Vi=1,...,NVj=1,...,C

j=1

st. G EM, M=03 M, Vj=1,..C

Under review as a conference paper at ICLR 2026

For fixed {c;}, the optimal memberships w;; are given in closed form by:
N C Q ZQ d2(pp)ﬁ_l
ui;(cj) = argmin (Ugs d2 (af,)) = (M> , (D
o uijZO,ZJC:l ui;j=1 ;;p 1 ! ! Z ZQ d2(£f7cz)

By substituting u;;(c;) into Jp g, the objective function Jp can be expressed as an optimization
problem depending solely on {c; }, specifically:

N C Z;C;?:l d§($f7 cf) ﬁ -m Q i
JFK(UU(CJ) CJ) = ZZ[Z(W)] de(l'?,c;’)

i=1 j=1 [k=1 p=1 2(z7,cp) =1
A
N C Q 1 —m @ 1 N C Q .,
=33 (@) s) TS dEhd) =YY (Y deh) TS @)
i=1j=1 p=1 p=1 i=1j=1 p=1
N c Q N N c Q . 1—-m
=2 S (el) T =3 s =3 <Z <Zdi<xf,c§>)‘ml>
=1 j=1 p=1 =1 =1 \j=1 p=1

Az

—

Let S; = 3¢ i1 (Zf L d2(af,)) " be an intermediate variable introduced during simplifica-

tion. By simplifying to form As, the objective function Jr is expressed solely in terms of {c; }.
This enables Riemannian optimization to be performed directly on {c; }, without alternating between

{u;;} and {c;}.

It is important to note that the simplification from A; to A, is necessary, because computing the
gradient of Equation (@) requires evaluating a triple sum, while differentiating A; involves a quadruple
sum. Only by converting to the A form, also involving a triple sum, can we ensure that this step
does not introduce additional computational cost.

Analyze the time complexity of optimizing Jrx: since the time complexity of taking the derivative
of Equation (@) and that of Ao are the same (both have closed-form solutions), and operations such as
computing the Riemannian gradient during the optimization process also have identical complexity,
while Equation () requires w times alternating updates between {u;;} and {c,}, A2 only requires
one optimization. Therefore, we have successfully reduced the time complexity from O(vw) to O(v).

Specifically, when the distance on the product manifold is replaced by the distance on the manifold
M, Ay can be further simplified as Equation (9). For convenience, we will also use the notation
in Equation (9) in the following sections.

N /C I Q
JFK(Uij(cj)vc.j) = Z (Zd(ﬂ/’hc.i)_’”zl) d(zi,cj) = Z p), ¢j EM = ® 1 Mp
(C)]

3.3 RADAN ON PRODUCT MANIFOLDS

To further accelerate the RFK algorithm, we modify the Adan optimizer (Xie et al.| 2024) and adapt
it to product manifolds. Adan is an algorithm that incorporates Nesterov acceleration (Zhou et al.,
2024) into adaptive optimization (Yue et al.l 2021). We expect that this type of Nesterov method can
also be effective for optimization on product manifolds.

For Adan, we adopt a standard modification strategy (Boumal,|2023). Our adaptation of Adan consists
of three main components: updating momentum via parallel transport, maintaining the second-order
moment as a scalar, and performing updates using the exponential map. Specifically, let Riemannian
Adan at the ¢-th iteration involve parameters {g?, m?, of 20 n¥ ¥ o}, p € {1,...,Q}, where
g denotes the Riemannian gradient, m the momentum, v an estimate of the Riemannian gradient
difference, z and n the estimations of the second-order moment of the gradient, « the update direction,
and « the learning rate, with p indicating the component on the p-th manifold M,,. During the update

Under review as a conference paper at ICLR 2026

of m},, we apply parallel transport, i.e., m; = B7,¢P(mj_;) + (1 — 37,)g;, similar updates are

applied to all other vector-based quantities involving subtraction. For the scalar maintenance of n?,

we use the update nf = gh,nt_| + (1 — 8%,)||27 ||§p Finally, the parameter update is conducted via
t

the exponential map: y, ; = Exp?(—afuy).

my = g"mf 1 *((1 *[fl;)(-‘h) mi = B (me1) + (1 — Bur)ge my = Brp (me—1) + (1 — Bue)ge
201 + (1 — Bar) (9t — g¢1 v = Borp (vi—1) + (1 = Bar) (¢ — ¢ (9i-1)) o - 2

Zi:gt+ﬂ2t (gt — g+-1) 2t = gi + Par (9t — ¥ (9:-1)) vt = 6290 (Utfl) + (1 'Bg)HgtHJf

ny = Pane-1 + (1= B3) (2 © z) e = Bymng 1+ (1 - 5:5«,)“21“; Ut = My

Zz i mn,LnL [ftevf w : E [j:,v, o = b e,

t = \/'rTf t ap = e €t \/’U—g
Yir1 = Yr — oy Ye+1 = Expy, (o) Yt+1 = EXPyL (*Oétut)
(a) Adan optimizer (b) Radan optimizer (c) Radam optimizer

Figure 2: Update Process Illustration of Adan, Radan, and Radam Optimizers.

Figure 2] presents the update details of Adan, Radan, and Radam on the product manifold, using the
simplified notation from Equation (9). Here, m; = (mj,. .. m&), Bre = (B, . .., ,63), and other
variables are similarly updated on each component manifold.

To characterize its local convergence rate, We adopt a standard approach by analyzing the algorithm
in a region where geodesic convexity holds, as the vicinity of a local minimum is guaranteed to
be geodesically convex under standard second-order optimality conditions (Boumal, |2023)). In this
setting, we assume the product manifold M is bounded by a diameter D, and has a curvature
function (., ¢). This is also a common assumption in the literature (Becigneul & Ganeal [2019).

Theorem 3.1. Let y; be the sequence generated by the Radan algorithm. Under the standard
assumptions, the regret bound Ry satisfies the following. The proof is in Appendix[A.]|

C(r,¢) - (3—2B1)nG*VT T TogT 208G
fir = 21— Br) taoppT .
GDZ (14 2B82)VT N Z 4D2. G? By ZT: t(1 4+ 282)G D2, Bt (1o
2(1—=p1)-n — 1-P po n(1— p1)

. . . KM\ _
Theorem 3.2. In the bound Equation (I0), any non-summation term K (T) satisfies o (T) =

T
0. For the summation terms, as long as the parameter decay conditions o (Z*%W) = 0,

T
o (M =0and f3s =1— % are met, Radan converges to the optimum. Here, o(-) represent

asymptotically vanishing terms. The proof is in Appendix[A.2]

While our convergence proof requires decaying /3, our experiments adopt the standard practice of
using fixed values for their proven empirical effectiveness and simplicity (Becigneul & Ganeal 2019
Kochurov et al.| [2020). By optimizing Equation (), we obtain the final cluster centers {c; } upon
completion. Then, by applying Equation (7), we compute the assignment results {u;; }, completing
the clustering process.

3.4 CALCULATE RIEMANNIAN GRADIENT

During the Riemannian optimization process, it is also necessary to compute the Riemannian gradient.
Below, we provide the expressions for the Riemannian gradient on three constant curvature manifolds:
Euclidean space, hyperspherical manifold, and hyperbolic space.

Theorem 3.3. On a single constant-curvature manifold R”, SsK or H X the Riemannian gradient
of the Riemannian Fuzzy K-Means objective function Jp i with respect to the cluster center cy, is
uniformly expressed as:

N
—-m _2m_
grad,, Jrx = —QZSi d(zi, ck)” ™1 Loge,, (x:), (11)

i=1

Under review as a conference paper at ICLR 2026

where Log., (x;) denotes the logarithmic map of point x; at c,. The Log., (z;) on three types of
constant-curvature manifolds are given as follows. The proof is in Appendix

T —c, ifr,c e R",

o —cos(f)c), 0=-cos (K*(c,zx)), ifz,ccSoK,

Log.(a) = {) (2 (12)

—_— 2 _ —1/7-2 . hK
sinh(6) ($+K<C’x>h0)7 6 =cosh™ (K°(c,x)n), ifz,ceH

After computing according to Equation (TI)), the expression of the Riemannian gradient can be
obtained. By combining the Riemannian gradient with the corresponding logarithmic map, exponen-
tial map, and other operations on different manifolds, all steps of the Riemannian optimization to

solve RFK can be completed. Thereafter, we conduct extensive experiments on the RFK and Radan
algorithms to validate their speed and superior performance.

4 EXPERIMENTS

In this section, we conducted extensive experiments aiming to answer the following three questions:

* QI1: How much faster is the RFK algorithm compared to the NRF algorithm when run on
product manifolds? Does it achieve a lower loss value?

* Q2: When running Radan on product manifolds, does it accelerate the RFK algorithm
compared to Radam with standard hyperparameters?

* Q3: Compared to the current state-of-the-art clustering algorithms, can RFK demonstrate
better advantages for data represented on product manifolds?

We also provide several sensitivity analyses, including those on the fuzziness index m, the number of
cluster centers, and other key hyperparameters in the Appendix [F2}

4.1 DATASETS

The datasets on product manifolds include four parts: synthetic data, graph embedding data and
mixed-curvature VAE latent space data. More details are in Table 5]

Synthetic Data: We use the ’gaussian mixture’ function from Manify (Chlenski et al., [2025b)) to
generate data with 3 clusters on different product manifolds, and generate a set of labels for clustering.

Graph Embedding Data: For the graph embedding data, it is divided into two parts. One part
selects the optimal embedding from {(H2)2 , H?E?, H?S?, S?E?, (82)2 , H*, E*, 84} by means
of curvature estimation (Gu et al.| [2018]). The other part embeds the data into the 2D Poincaré disk D.

Mixed-curvature VAE Latent Space: We use data from the latent space of a mixed-curvature
variational autoencoder (Skopek et al.,|2020) as the datasets, including the MNIST with over 600,000
samples. These product manifold representations are derived from the Manify (Chlenski et al.,
2025b).

We emphasize that the data already lying on the manifolds are the actual data we use, without
requiring any additional preprocessing.

4.2 EXPERIMENTS SETUP

4.2.1 EXPERIMENT SETUP FOR Q1

To verify that our RFK algorithm is faster than NRK, we ran both algorithms on the aforementioned
datasets and recorded their execution times. To ensure fair timing comparisons, we replaced non-
vectorized operations with matrix-based implementations for NRK (see Equation (7)). For the
optimization part, we used the proposed Radan optimizer for both methods, with parameters set as
{Radan: 87 =0.7, 85 =0.99, 85 = 0.99}, and a common learning rate of 0.5 for testing. For RFK, the
stopping criterion for Radan was that the change in loss between iteration ¢ and ¢ 4+ 1 was less than
le — 4. For NRK, there are two convergence criteria: the condition for updating the Fréchet mean is

Under review as a conference paper at ICLR 2026

Table 1: RFK & NRK Time (s) and Cost on Datasets, OT means out-of-time

Gauss R* Gauss H* Gauss S?H? Gauss R?S2H? Gauss S?(H?)? Gauss R'S'H* | Gauss RI6SICH!6
Time Loss Time Loss Time Loss Time Loss Time Loss Time Loss Time Loss
RFK ‘ 0.07 1499.84 ‘ 0.21 183257 ‘ 0.19 79187 | 0.23 1569.92 ‘ 045 1518.82 ‘ 0.28 3549.86 ‘ 0.25 35869.52 ‘ 1.02 17.77

Method CiteSeer

Time Loss

NRK 0.60 145124 | 36.27 1845.32 | 237 791.87 | 6.12 1569.92 | 63.90 1518.82 | 2.78 3549.86 | 0.82 35869.54 | 52.23 17.89
Method Cora PolBlogs Olsson Paul PoolBooks CIFAR-100 Lymphoma MNIST
Time Loss Time Loss Time Loss Time Loss Time Loss Time Loss Time Loss Time Loss
RFK 0.29 16.00 0.13 39.54 0.17 65.88 0.25 88.06 0.07 127.00 | 67.28 46450.93 | 3.61 878.25 82.76 668268.50
NRK | 68.46 16.01 0.44 39.54 | 482 65.88 | 60623 8847 240 127.01 oT oT oT oT oT oT

the same as in RFK, while the global convergence condition is that the distance between the Fréchet
centers of two consecutive iterations is less than le—4.

4.2.2 EXPERIMENT SETUP FOR Q2

To evaluate the optimization capabilities of Radan and Radam on the RFK loss function, we designed
Experiment 2, where both optimizers adopt their standard parameter settings: {Radan: 7 = 0.7,
g5 =0.99, 85 = 0.99}, {Radam: Y = 0.99, 85 = 0.999}. We trained using a range of learning
rates {0.1,0.3,0.5,0.7,1}, comparing the minimum and last values of the mean RFK loss under
different learning rates. Each optimizer was run for 300 iterations. Notably, we use standard
hyperparameters since adaptive optimizers are considered insensitive to them (Gkouti et al.|[2024)),
and we aim to spare users from tuning when applying RFK.

4.2.3 EXPERIMENT SETUP FOR Q3

To compare the clustering performance of the RFK algorithm, we evaluated it on the above datasets
against 10 competitive algorithms (Hu et al.| 2023 |/Abdullah et al., 2024} Nie et al., [2024} |[Zhong
& Punl 20215 |Chen et al.,[2017; Huang et al.,[2019; [Nie et al., 2023} |[Liu et al.,|2012; |Elhamifar &
Vidall 2013)), using five metrics: ACC (Yuan et al.| 2025a; |Wang et al., 2025), NMI (Xie et al.,2025),
ARI (Yuan et al.} |2024)), F1 (Du et al.| 2024), and Purity (Huang et al.,|2024)). RFK was optimized by
Radan. Detailed experimental settings are in Appendix

4.3 EXPERIMENTS RESULT

4.3.1 EXPERIMENT RESULT FOR Q1

Table|[T] presents the runtime and final loss of the RFK and NRK algorithms. As shown, RFK achieves
speedups of over 100x compared to NRK on some datasets. On certain large-scale datasets, NRK
runs out of time. Although RFK and NRK optimize the same objective, RFK generally attains a
lower final loss. Figure [3|shows the loss curves of RFK and NRK. The NRK curves exhibit step-like
drops due to alternating updates of the assignment and the Fréchet center, whereas the RFK curves
decrease more smoothly, require significantly fewer iterations, and converge to a lower final value.

=

(c) Gauss S’H? (d) Gauss R*S?H? (e) Gauss S*(H?)?
i -
ol PP]

il

(f) Gauss R*S*H* (g) Gauss R16S16H10 (h) CiteSeer (i) Cora (j) PolBlogs
Figure 3: Clustering loss curves for RFK and NRK

(a) Gauss R*

ootk
¥

4.3.2 EXPERIMENT RESULT FOR Q2

Table 2] presents the average loss reduction results using the Radan and Radam optimizers. It can be
seen that Radan generally achieves lower loss values than Radam. Figure @] shows the loss curves,

Under review as a conference paper at ICLR 2026

Table 2: Radan & Radam Min and Last Loss on Various Datasets, OT means out-of-time

Method Gauss R* Gauss H* Gauss S?H? Gauss R2S?H? Gauss S2(]H[2)2 Gauss RYSH* Gauss R10S0H10 CiteSeer
Min Last ‘ Min Last Min Last ‘ Min Last ‘ Min Last ‘ Min Last ‘ Min Last ‘ Min Last
Radan 1499.84 1499.84 | 1832.57 1832.58 | 791.87 792.61 | 1518.82 1518.89 | 1569.92 1569.98 | 3459.86 3459.86 | 35869.50 35869.50 18.61 18.62
Radam | 153327 1533.27 ‘ 2016.92 2016.92 | 814.98 814.98 | 1544.57 1546.15 | 1619.51 1621.24‘ 3627.76 3627.76 | 36047.06 36090.44 39.35 41.45
Method Cora ‘ PolBlogs Olsson ‘ Paul ‘ PoolBooks ‘ CIFAR-100 ‘ Lymphoma ‘ MNIST
Min Last Min Last Min Last Min Last Min Last Min Last Min Last Min Last
Radan 17.23 17.23 39.60 39.74 66.92 66.93 83.95 84.11 126.65 126.71 | 48850.73 49127.77 878.26 878.27 662611.31 667403.93
Radam 36.60 44.79 61.43 64.19 ‘ 66.08 66.08 80.70 80.70 126.86 126.86 ‘70860.]4 7124829 | 3381.86 3716.99 ‘746378,43 727619.73
Table 3: ACC for all benchmarks. OT means out-of-time
Dataset Signature RFK NRK K-Means Ncut FCM UFCM LRR SSC SBMC USPEC Fast-CD
. Gaussian R* 96.00 9540 96.02 99.00 9600 96.10 88.80 37.30 78.05 73.60 97.20
] H* 99.80 99.00 4042 99.10 5540 3930 99.80 47.80 60.30 90.41 66.50
E S?H? 9520 9480 8391 88.00 8770 8730 9770 4120 6846 74.00 87.70
& R2S?H? 96.20 9580 6120 99.40 7580 60.36 9370 45.10 82.07 46.22 86
S?(H?)? 97.80 97.80 44.23 77.05 4770 4467 96.60 43.60 7321 60.37 61.20
RAS*H* 99.10 9890 3955 6840 6470 41.50 9720 3870 87.17 6221 95.90
RISS'°H'® 98.00 77.10 37.98 7630 4050 3771 38.60 3740 5538 63.93 53.50
= CiteSeer (H%)? 2536 2009 2080 2491 20.05 21.60 19.86 2535 19.81 23.92 20.62
g Cora 4 2922 18.19 1806 2057 1827 18.83 1815 29.10 17.08 20.00 18.19
) PolBlogs (S%)? 9436 93.62 9390 54.66 9354 9401 68.66 5196 5465 59.16 93.70
Olsson D 6772 6745 6157 6024 6037 60.71 4416 60.73 51.31 57.25 60.21
Paul D 5273 4815 47.05 4547 4657 4686 2294 1388 2601 46.00 44.03
PolBooks D 81.90 68.57 39.68 3427 3634 4244 OT or 8.81 44.12 36.12
m CIFAR-100 (HZ)* 7119 OT 5.75 OT 600 553 oT oT oT 521 OoT
< Lymphoma (S?)? 100.00 OT 78.28 OoT 7828 OT oT or oT 78.28 oT
MNIST S°E2H? 96.09 OT 12.09 OT 1540 13.01 oT or oT 11.42 oT

with the red curve representing the mean loss of Radan and the blue representing Radam. The shaded
areas indicate variance. Radan consistently converges faster than Radam, typically within 50-100
iterations, whereas Radam requires around 300 iterations. Additionally, Radan generally achieves
lower final loss values.

£

(c) Gauss S’H? (d) Gauss RZS*H? (e) Gauss S?

(a) Gauss R*

(b) Gause H* (H?)?

(f) Gauss R*S*H* (g) Gauss R!6S'H'® (h) CiteSeer (i) Cora
Figure 4: Clustering loss curves for Radan and Radam

-
e

(j) PolBlogs

4.3.3 EXPERIMENT RESULT FOR Q3

Table [3] presents the ACC metric of different clustering algorithms across various datasets. The
Dataset column lists all the datasets used, and Signature indicates the geometric structure of each
dataset. RFK is our proposed algorithm. As shown in the table, our method achieves the best
performance on nearly every dataset. In particular, for the MNIST dataset with 600,000 data points,
most clustering algorithms fail to produce results; K-Means achieves only about 12% accuracy,
whereas RFK reaches 96.09 % accuracy, which is a remarkable outcome. This result is reasonable
because MNIST is well represented in non-Euclidean space, where existing algorithms cannot respect
the intrinsic geometric structure, while RFK effectively operates in non-Euclidean space, yielding this
impressive performance. Other results can be found in Appendix [FI} Here, OT denotes out-of-time.
All experiments were run on an Intel(R) Core(TM) 15-10200H CPU @ 2.40 GHz, with a predefined
time limit of 3600 seconds (1 hour). Any algorithm that fails to converge within this time window is
marked as out-of-time (OT).

Under review as a conference paper at ICLR 2026

5 LIMITATIONS

We acknowledge that this work still has several limitations that warrant further investigation. First, our
theoretical assumptions rely on geodesic convexity, meaning that the convergence analysis of Radan
focuses on its behavior in a neighborhood around a local optimum. In future work, we aim to establish
convergence guarantees under more general conditions. Second, our analysis of Radan’s convergence
relies on a decaying learning rate, whereas our experiments use a fixed learning rate. Although this is
a common practice in Riemannian adaptive optimization, we plan to explore how to bridge this gap.
Finally, Riemannian Fuzzy K-Means requires access to closed-form geodesic distance formulas for
the manifolds on which it operates. While these formulas are known for commonly used manifolds
such as spheres, hyperbolic spaces, and their product manifolds, future work will investigate how to
extend our method to manifolds whose geodesic distances lack closed-form expressions.

6 CONCLUSION

In this paper, we address an open problem and propose the RFK algorithm, which reduces the time
complexity from O(vw) to O(v). Furthermore, we introduce Radan as an optimizer for product
manifolds. Extensive experiments demonstrate that our algorithm achieves remarkable performance:
on some certain datasets, it runs over 100 times faster than NRK while achieving better clustering
results and lower loss values. Additionally, Radan converges faster than Radam under the RFK loss
with standard hyperparameters. Across almost all datasets, RFK significantly outperforms other
state-of-the-art clustering algorithms in all clustering metrics.

7 STATEMENT

For the reproducibility of this paper, we have submitted the complete anonymized code, data, and
experiment files with fixed random seeds, as detailed in Appendix [G] In addition, large language
models (LLMs) were only used for language polishing.

REFERENCES

Abdulhady Abas Abdullah, Aram Mahmood Ahmed, Tarik Rashid, Hadi Veisi, Yassin Hussein
Rassul, Bryar Hassan, Polla Fattah, Sabat Abdulhameed Ali, and Ahmed S Shamsaldin. Advanced
clustering techniques for speech signal enhancement: A review and metanalysis of fuzzy c-means,
k-means, and kernel fuzzy c-means methods. arXiv preprint arXiv:2409.19448, 2024.

Dmitrij V Alekseevskij, Ernest B Vinberg, and Aleksandr S Solodovnikov. Geometry of spaces of
constant curvature. In Geometry I1: Spaces of Constant Curvature, pp. 1-138. Springer, 1993.

Foivos Alimisis and Bart Vandereycken. Geodesic convexity of the symmetric eigenvalue problem
and convergence of steepest descent. Journal of Optimization Theory and Applications, 203(1):
920-959, 2024.

Horst Alzer and Man Kam Kwong. On young’s inequality. Journal of Mathematical Analysis and
Applications, 469(2):480-492, 2019.

Marc Arnaudon and Frank Nielsen. On approximating the riemannian 1-center. Computational
Geometry, 46(1):93—-104, 2013.

Mina Ashizawa, Hiroaki Sasaki, Tomoya Sakai, and Masashi Sugiyama. Least-Squares Log-Density
Gradient Clustering for Riemannian Manifolds. In Aarti Singh and Jerry Zhu (eds.), Proceed-
ings of the 20th International Conference on Artificial Intelligence and Statistics, volume 54
of Proceedings of Machine Learning Research, pp. 537-546. PMLR, 20-22 Apr 2017. URL
https://proceedings.mlr.press/vb54/ashizawal7a.html.

Gregor Bachmann, Gary Becigneul, and Octavian Ganea. Constant curvature graph convolutional
networks. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pp. 486—496. PMLR, 13-18 Jul 2020. URL https://proceedings.mlr.press/v119/
bachmannz20a.html.

10

https://proceedings.mlr.press/v54/ashizawa17a.html
https://proceedings.mlr.press/v119/bachmann20a.html
https://proceedings.mlr.press/v119/bachmann20a.html

Under review as a conference paper at ICLR 2026

Gary Becigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. In Inter-
national Conference on Learning Representations, 2019. URL https://openreview.net/
forum?id=rleigi09K7.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798—1828,
2013.

James C Bezdek, Robert Ehrlich, and William Full. Fecm: The fuzzy c-means clustering algorithm.
Computers & geosciences, 10(2-3):191-203, 1984.

Andreas Bjerregaard, Sgren Hauberg, and Anders Krogh. Riemannian generative decoder. In ICML
2025 Generative Al and Biology (GenBio) Workshop, 2025. URL https://openreview.
net/forum?id=514ABK5Q0p.

Boris Bonev, Max Rietmann, Andrea Paris, Alberto Carpentieri, and Thorsten Kurth. Attention on
the sphere. arXiv preprint arXiv:2505.11157, 2025.

Nicolas Boumal. An introduction to optimization on smooth manifolds. Cambridge University Press,
2023.

Louis Capitaine, Jérémie Bigot, Rodolphe Thiébaut, and Robin Genuer. Fréchet random forests
for metric space valued regression with non euclidean predictors. Journal of Machine Learning
Research, 25(355):1-41, 2024.

Alex Chen, Philippe Chlenski, Kenneth Munyuza, Antonio Khalil Moretti, Christian A. Naesseth,
and Itsik Pe’er. Variational combinatorial sequential monte carlo for bayesian phylogenetics in
hyperbolic space. In Yingzhen Li, Stephan Mandt, Shipra Agrawal, and Emtiyaz Khan (eds.),
Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, volume
258 of Proceedings of Machine Learning Research, pp. 2962-2970. PMLR, 03-05 May 2025.
URLhttps://proceedings.mlr.press/v258/chen25f.html.

Xiaojun Chen, Joshua Zhexue Haung, Feiping Nie, Renjie Chen, and Qingyao Wu. A self-balanced
min-cut algorithm for image clustering. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 2061-2069, 2017.

Philippe Chlenski, Ethan Turok, Antonio Khalil Moretti, and Itsik Pe’er. Fast hyperboloid decision
tree algorithms. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=TTonmgTT9X.

Philippe Chlenski, Quentin Chu, Raiyan R. Khan, Kaizhu Du, Antonio Khalil Moretti, and Itsik Pe’er.
Mixed-curvature decision trees and random forests. In Forty-second International Conference on
Machine Learning, 2025a. URL https://openreview.net/forum?id=wpt 1UkP48t.

Philippe Chlenski, Kaizhu Du, Dylan Satow, Raiyan R Khan, and Itsik Pe’er. Manify: A python
library for learning non-euclidean representations. arXiv preprint arXiv:2503.09576, 2025b.

Jose A Costa and Alfred O Hero. Manifold learning using euclidean k-nearest neighbor graphs
[image processing examples]. In 2004 IEEE International Conference on Acoustics, Speech, and
Signal Processing, volume 3, pp. iii—988. IEEE, 2004.

{Tim R.} Davidson, Luca Falorsi, Nicola {De Cao}, Thomas Kipf, and {Jakub M.} Tomczak.
Hyperspherical variational auto-encoders. In Ricardo Silva, Amir Globerson, and Amir Globerson
(eds.), 34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018, 34th Conference
on Uncertainty in Artificial Intelligence 2018, UAI 2018, pp. 856-865. Association For Uncertainty
in Artificial Intelligence (AUAI), January 2018. 34th Conference on Uncertainty in Artificial
Intelligence 2018, UAI 2018 ; Conference date: 06-08-2018 Through 10-08-2018.

Vinod Kumar Dehariya, Shailendra Kumar Shrivastava, and RC Jain. Clustering of image data set
using k-means and fuzzy k-means algorithms. In 2010 International conference on computational
intelligence and communication networks, pp. 386-391. IEEE, 2010.

Bhuwan Dhingra, Christopher J Shallue, Mohammad Norouzi, Andrew M Dai, and George E Dahl.
Embedding text in hyperbolic spaces. arXiv preprint arXiv:1806.04313, 2018.

11

https://openreview.net/forum?id=r1eiqi09K7
https://openreview.net/forum?id=r1eiqi09K7
https://openreview.net/forum?id=5i4ABK5QQp
https://openreview.net/forum?id=5i4ABK5QQp
https://proceedings.mlr.press/v258/chen25f.html
https://openreview.net/forum?id=TTonmgTT9X
https://openreview.net/forum?id=wptlUkP48t

Under review as a conference paper at ICLR 2026

Jiarui Ding and Aviv Regev. Deep generative model embedding of single-cell rna-seq profiles on
hyperspheres and hyperbolic spaces. Nature communications, 12(1):2554, 2021.

Liang Du, Yunhui Liang, Mian Ilyas Ahmad, and Peng Zhou. K-means clustering based on chebyshev
polynomial graph filtering. In ICASSP 2024-2024 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 7175-7179. IEEE, 2024.

Ehsan Elhamifar and René Vidal. Sparse subspace clustering: Algorithm, theory, and applications.
IEEE transactions on pattern analysis and machine intelligence, 35(11):2765-2781, 2013.

Tadashi Fujioka. Noncritical maps on geodesically complete spaces with curvature bounded above.
Annals of Global Analysis and Geometry, 62(3):661-677, 2022.

Marco Fumero, Luca Cosmo, Simone Melzi, and Emanuele Rodola. Learning disentangled repre-
sentations via product manifold projection. In International conference on machine learning, pp.
3530-3540. PMLR, 2021.

Sagar Ghosh and Swagatam Das. Consistent spectral clustering in hyperbolic spaces. arXiv preprint
arXiv:2409.09304, 2024.

Nefeli Gkouti, Prodromos Malakasiotis, Stavros Toumpis, and Ion Androutsopoulos. Should i try
multiple optimizers when fine-tuning pre-trained transformers for nlp tasks? should i tune their
hyperparameters?, 2024. URL https://arxiv.org/abs/2402.06948.

Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning mixed-curvature representations
in product spaces. In International conference on learning representations, 2018.

Neil He, Menglin Yang, and Rex Ying. Lorentzian residual neural networks. In Proceedings of the
31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 1, pp. 436447,
2025.

Haize Hu, Jianxun Liu, Xiangping Zhang, and Mengge Fang. An effective and adaptable k-means
algorithm for big data cluster analysis. Pattern Recognition, 139:109404, 2023.

Dong Huang, Chang-Dong Wang, Jian-Sheng Wu, Jian-Huang Lai, and Chee-Keong Kwoh. Ultra-
scalable spectral clustering and ensemble clustering. IEEE Transactions on Knowledge and Data
Engineering, 32(6):1212-1226, 2019.

Huajie Huang, Bo Liu, Xiaoyu Xue, Jiuxin Cao, and Xinyi Chen. Imbalanced credit card fraud
detection data: A solution based on hybrid neural network and clustering-based undersampling
technique. Applied Soft Computing, 154:111368, 2024.

Su I Iao, Yidong Zhou, and Hans-Georg Miiller. Deep fréchet regression. Journal of the American
Statistical Association, (just-accepted):1-30, 2025.

Birger Iversen. Hyperbolic geometry. Number 25. Cambridge University Press, 1992.

Alan Julian Izenman. Introduction to manifold learning. Wiley Interdisciplinary Reviews: Computa-
tional Statistics, 4(5):439-446, 2012.

Vladimir Ja¢imovi¢ and Aladin Crnki¢. Clustering in hyperbolic balls. arXiv preprint
arXiv:2501.19247, 2025.

Francisco Jos, AuthorNameForHeading-FJ Herranz, and A Ballesteros. Spaces of constant curvature.
In none, 1967.

Raiyan R. Khan, Philippe Chlenski, and Itsik Pe’er. Hyperbolic genome embeddings. In
The Thirteenth International Conference on Learning Representations, 2025. URL https
//openreview.net/forum?id=NkGDNMS8LEO.

Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in pytorch,
2020. URL https://arxiv.org/abs/2005.028109.

12

https://arxiv.org/abs/2402.06948
https://openreview.net/forum?id=NkGDNM8LB0
https://openreview.net/forum?id=NkGDNM8LB0
https://arxiv.org/abs/2005.02819

Under review as a conference paper at ICLR 2026

Daniel Krasnov, Dresya Davis, Keiran Malott, Yiting Chen, Xiaoping Shi, and Augustine Wong.
Fuzzy c-means clustering: A review of applications in breast cancer detection. Entropy, 25(7):
1021, 2023.

Hongzong Li and Jun Wang. From soft clustering to hard clustering: A collaborative annealing fuzzy
c-means algorithm. IEEE Transactions on Fuzzy Systems, 32(3):1181-1194, 2023.

Jun Li, Jinpeng Wang, Chaolei Tan, Niu Lian, Long Chen, Yaowei Wang, Min Zhang, Shu-Tao Xia,
and Bin Chen. Enhancing partially relevant video retrieval with hyperbolic learning. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 23074-23084, October
2025.

Aristidis Likas, Nikos Vlassis, and Jakob J Verbeek. The global k-means clustering algorithm. Pattern
recognition, 36(2):451-461, 2003.

Fang-Yu Lin, Bing Bai, Kun Bai, Yazhou Ren, Peng Zhao, and Zenglin Xu. Contrastive multi-view
hyperbolic hierarchical clustering. In International Joint Conference on Artificial Intelligence,
2022. URL https://api.semanticscholar.org/CorpusID:248525138.

Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, and Yi Ma. Robust recovery
of subspace structures by low-rank representation. IEEE transactions on pattern analysis and
machine intelligence, 35(1):171-184, 2012.

Aaron Lou, Isay Katsman, Qingxuan Jiang, Serge Belongie, Ser-Nam Lim, and Christopher De Sa.
Differentiating through the fréchet mean. In International conference on machine learning, pp.
6393-6403. PMLR, 2020.

Yui Man Lui. Human gesture recognition on product manifolds. The Journal of Machine Learning
Research, 13(1):3297-3321, 2012.

Paolo Mandica, Luca Franco, Konstantinos Kallidromitis, Suzanne Petryk, and Fabio Galasso.
Hyperbolic learning with multimodal large language models. In European Conference on Computer
Vision, pp. 382-398. Springer, 2024a.

Paolo Mandica, Luca Franco, Konstantinos Kallidromitis, Suzanne Petryk, and Fabio Galasso.
Hyperbolic learning with multimodal large language models. In European Conference on Computer
Vision, pp. 382-398. Springer, 2024b.

Leland Mclnnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Daniel McNeela, Frederic Sala, and Anthony Gitter. Mixed-curvature representation learning for
biological pathway graphs. In 2023 ICML Workshop on Computational Biology, Honolulu, Hawaii,
USA, 2023.

Nina Miolane, Nicolas Guigui, Alice Le Brigant, Johan Mathe, Benjamin Hou, Yann Thanwerdas,
Stefan Heyder, Olivier Peltre, Niklas Koep, Hadi Zaatiti, et al. Geomstats: A python package for
riemannian geometry in machine learning. Journal of Machine Learning Research, 21(223):1-9,
2020.

Gal Mishne, Zhengchao Wan, Yusu Wang, and Sheng Yang. The numerical stability of hyperbolic
representation learning. In International Conference on Machine Learning, pp. 24925-24949.
PMLR, 2023.

Mahesh Chandra Mukkamala and Matthias Hein. Variants of rmsprop and adagrad with logarithmic
regret bounds. In International conference on machine learning, pp. 2545-2553. PMLR, 2017.

Shi Na, Liu Xumin, and Guan Yong. Research on k-means clustering algorithm: An improved
k-means clustering algorithm. In 2010 Third International Symposium on intelligent information
technology and security informatics, pp. 63-67. leee, 2010.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations.
Advances in neural information processing systems, 30, 2017.

13

https://api.semanticscholar.org/CorpusID:248525138

Under review as a conference paper at ICLR 2026

Feiping Nie, Jitao Lu, Danyang Wu, Rong Wang, and Xuelong Li. A novel normalized-cut solver with
nearest neighbor hierarchical initialization. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 46(1):659-666, 2023.

Feiping Nie, Runxin Zhang, Yu Duan, and Rong Wang. Unconstrained fuzzy c-means based
on entropy regularization: An equivalent model. /EEE Transactions on Knowledge and Data
Engineering, 2024.

Huan Ren, Wenfei Yang, Xiang Liu, Shifeng Zhang, and Tianzhu Zhang. Learning shape-
independent transformation via spherical representations for category-level object pose estima-
tion. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=D4xztKoz0Y.

Frederic Sala, Chris De Sa, Albert Gu, and Christopher Ré. Representation tradeoffs for hyperbolic
embeddings. In International conference on machine learning, pp. 4460-4469. PMLR, 2018.

Kristina P Sinaga and Miin-Shen Yang. Unsupervised k-means clustering algorithm. IEEE access, 8:
80716-80727, 2020.

Aditya Sinha, Siqi Zeng, Makoto Yamada, and Han Zhao. Learning structured representations with
hyperbolic embeddings. Advances in Neural Information Processing Systems, 37:91220-91259,
2024.

Ondrej Skopek, Octavian-Eugen Ganea, and Gary Bécigneul. Mixed-curvature variational au-
toencoders. In 8th international conference on learning representations (ICLR 2020)(virtual).
International Conference on Learning Representations, 2020.

Raghav Subbarao and Peter Meer. Nonlinear mean shift over riemannian manifolds. International
Jjournal of computer vision, 84(1):1-20, 2009.

R Suganya and R Shanthi. Fuzzy c-means algorithm-a review. International Journal of Scientific and
Research Publications, 2(11):1, 2012.

Li Sun, Zhongbao Zhang, Junda Ye, Hao Peng, Jiawei Zhang, Sen Su, and Philip S Yu. A self-
supervised mixed-curvature graph neural network. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 41464155, 2022.

Li Sun, Feiyang Wang, Junda Ye, Hao Peng, and S Yu Philip. Congregate: Contrastive graph
clustering in curvature spaces. In IJCAI pp. 2296-2305, 2023a.

Li Sun, Feiyang Wang, Junda Ye, Hao Peng, and Philip S Yu. Contrastive graph clustering in
curvature spaces. arXiv preprint arXiv:2305.03555, 2023b.

Puoya Tabaghi, Chao Pan, Eli Chien, Jianhao Peng, and Olgica Milenkovic. Linear classifiers in
product space forms. arXiv preprint arXiv:2102.10204, 2021.

Mariano Tepper, Anirvan M Sengupta, and Dmitri Chklovskii. Clustering is semidefinitely not that
hard: Nonnegative sdp for manifold disentangling. Journal of Machine Learning Research, 19(82):
1-30, 2018.

Michael Tsamparlis. Lorentz inner product and lorentz tensors. In Solved Problems and Systematic
Introduction to Special Relativity, pp. 69-96. Springer, 2024.

Shen Wang, Xiaokai Wei, Cicero Nogueira Nogueira dos Santos, Zhiguo Wang, Ramesh Nallapati,
Andrew Arnold, Bing Xiang, Philip S Yu, and Isabel F Cruz. Mixed-curvature multi-relational
graph neural network for knowledge graph completion. In Proceedings of the web conference
2021, pp. 1761-1771, 2021.

Shuo Wang, Shunyang Huang, Jinghui Yuan, Zhixiang Shen, and zhao kang. Cooperation of experts:
Fusing heterogeneous information with large margin. In Forty-second International Conference on
Machine Learning, 2025. URL https://openreview.net/forum?id=1218hxItYI.

Marshall Whittlesey. Spherical geometry and its applications. Chapman and Hall/CRC, 2019.

14

https://openreview.net/forum?id=D4xztKoz0Y
https://openreview.net/forum?id=lZ18hxItYI

Under review as a conference paper at ICLR 2026

Chengmao Wu and Sifan Pan. Fuzzy c-poincaré fréchet means clustering in hyperbolic space. Expert
Systems with Applications, pp. 128245, 2025a.

Chengmao Wu and Sifan Pan. Fuzzy c-poincaré fréchet means clustering in hyperbolic space. Expert
Systems with Applications, 288:128245, 2025b. ISSN 0957-4174. doi: https://doi.org/10.1016/
j-eswa.2025.128245. URL https://www.sciencedirect.com/science/article/
pi1i1/S0957417425018640.

Fangyuan Xie, Jinghui Yuan, Feiping Nie, and Xuelong Li. Dual-bounded nonlinear optimal transport
for size constrained min cut clustering. arXiv preprint arXiv:2501.18143,2025.

Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov
momentum algorithm for faster optimizing deep models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 46(12):9508-9520, 2024.

Jinglin Xu, Junwei Han, Kai Xiong, and Feiping Nie. Robust and sparse fuzzy k-means clustering.
In 1JCAI pp. 22242230, 2016.

Zhirong Xu, Shiyang Wen, Junshan Wang, Guojun Liu, Liang Wang, Zhi Yang, Lei Ding, Yan Zhang,
Di Zhang, Jian Xu, et al. Amcad: adaptive mixed-curvature representation based advertisement
retrieval system. In 2022 IEEE 38th International Conference on Data Engineering (ICDE), pp.
3439-3452. IEEE, 2022.

Menglin Yang, Min Zhou, Rex Ying, Yankai Chen, and Irwin King. Hyperbolic representation
learning: Revisiting and advancing. In International Conference on Machine Learning, pp.
39639-39659. PMLR, 2023.

Kisung You. Gradient of squared distance on a Riemannian manifold. URL https://kisungyou.
com/Blog/blog_004_GradientSquaredDistance.html.

Jinghui Yuan, Chusheng Zeng, Fangyuan Xie, Zhe Cao, Mulin Chen, Rong Wang, Feiping Nie,
and Yuan Yuan. Doubly stochastic adaptive neighbors clustering via the marcus mapping. arXiv
preprint arXiv:2408.02932, 2024.

Jinghui Yuan, Hao Chen, Renwei Luo, and Feiping Nie. A margin-maximizing fine-grained ensemble
method. In ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 1-5. IEEE, 2025a.

Jinghui Yuan, Fangyuan Xie, Feiping Nie, and Xuelong Li. Riemannian optimization on relaxed
indicator matrix manifold. arXiv preprint arXiv:2503.20505, 2025b.

Dongdong Yue, Simone Baldi, Jinde Cao, and Bart De Schutter. Distributed adaptive optimization
with weight-balancing. IEEE Transactions on Automatic Control, 67(4):2068-2075, 2021.

Kun Zhao, Azadeh Alavi, Arnold Wiliem, and Brian C Lovell. Efficient clustering on riemannian
manifolds: A kernelised random projection approach. Pattern Recognition, 51:333-345, 2016.

Guo Zhong and Chi-Man Pun. Improved normalized cut for multi-view clustering. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(12):10244—-10251, 2021.

Pan Zhou, Xingyu Xie, Zhouchen Lin, Kim-Chuan Toh, and Shuicheng Yan. Win: Weight-decay-
integrated nesterov acceleration for faster network training. Journal of Machine Learning Research,
25(83):1-74, 2024.

Yidong Zhou, Su I Iao, and Hans-Georg Miiller. Fréchet geodesic boosting. In Advances in Neural
Information Processing Systems, 2025. in press.

15

https://www.sciencedirect.com/science/article/pii/S0957417425018640
https://www.sciencedirect.com/science/article/pii/S0957417425018640
https://kisungyou.com/Blog/blog_004_GradientSquaredDistance.html
https://kisungyou.com/Blog/blog_004_GradientSquaredDistance.html

Under review as a conference paper at ICLR 2026

CONTENTS

2.2 Constant-curvature Spaces and Product Manifolds|.

2.3 K-Means and Fuzzy K-Means|

[3 Our proposed method|

3.2 Riemannian Fuzzy K-Means|00,

4 xperiments

4.2 Experiments Setup| e e e e e

4.2.1 Expertment Setup for Q1f. oL,

4.2.2 Expertment Setup for Q2. oo oo

4.2.3 Experiment Setup for Q3| Lo

4.3 ExpermmentsResult) o oo

4.3.1 Expertment Result for Q1|
4.3.2 Experiment Resultfor Q2|
4.3.3 Experiment Resultfor Q3|

5 Limitation

(SSHE (SR S I)

AN L B W W

O o0 0 0 0 0 I N 9 3

6 Conclusion

[7_Statement]

App

[A__Proofs of Theorems|

IA.LL1T Assumptions|
1.2 Proof Details|

10

10

18

Under review as a conference paper at ICLR 2026

[B_Notations|

|C Related Work about Clustering on Manifold|

hat kind of dat:

learn/l e

ID.2 " Difference from manifold learning| 0oL

ID.3 Basic principles of Riemannian machine learning|

ID.4 Miscellaneous questions| L L e

[E Details of the Experimental Setup)|

|[E.1 Datasets Description|

|[E.2 Experiment 3 Setup| .

[E.2.1 Benchmark Clustering Algorithms|

[E.2.2 Clustering Accuracy (ACC)|

IE.2.3 Normalized Mutual Information (NMD|

EJ24 Adjusted Rand Tndex (ARD)| o o vooee e

[Additional Experimental Results|

IE.1 - Experimental 3Results| o o oo oo

|[E2 Sensitivity Analysis| .

[E2.1 Sensitivity Analysisof m|. oo L

[E.2.2 Sensitivity analysis of random 1nitialization|

[E.2.3 Sensitivity Analysis of the Number of Cluster Centers|

17

28

28

29
29
29
29
29

30
30
31
31
32
32
33
33
33

34
34
34
34
35
36

Under review as a conference paper at ICLR 2026

A PROOFS OF THEOREMS

A.1 PROOF OF THEOREM 3.1

In this section, we will prove the Theorem [3.1} which provides the regret bound for the Radan
algorithm. Before proceeding, we make the following assumption. These assumptions are all
standard assumptions in Riemannian optimization.

A.1.1 ASSUMPTIONS

Assumption 1. In the optimization problem solved by the Radan algorithm, the feasible domain is
geodesically bounded (Fujioka, 2022). That is, for any geodesic ~(¢) within the feasible domain D,
its length satisfies that:

/ I (#) s dt < Do a3)

to

Furthermore, let Log denote the logarithmic map. Then we have the inequality

||L09yt (y)”yt < Do (14)

which we state as Lemma 1, and will prove later in the paper.

Assumption 2. We assume that in the Riemannian optimization problem solved by the Radan
algorithm, the curvature ¢ of the Riemannian manifold on which the constraints are defined is
bounded. Specifically, in the Riemannian cosine law (Arnaudon & Nielsen| [2013):

& (Y1, Y") < P (Wes1,9e) - C(ky€) + (Yo, ™) — 2d(Yes1, e)d(ye, y*) cos A (15)

For general spherical, hyperbolic, and their product manifolds, the curvature function {(x, ¢) also
admits a unified formulation:

|k| ¢
Kk <0,

“) | (16)
k>0,

tanh(K
Ck,e) =
tan(y/k ¢)
NI
which is a function of curvature and distance, and is commonly used in the convergence analysis of
Riemannian optimization algorithms. Here, ¢ denotes the distance function, and it satisfies ¢ < D..
The function (k, ¢) is assumed to be bounded (Becigneul & Ganeal [2019).

Assumption 3. We assume that the gradient is bounded, i.e., the norm of the gradient at y,
satisfies||g;||y, < G, which is a standard assumption commonly used in the proof of the theorem.
Assumption 4. Let the parallel transport of the vector m;_; from y,_; to y, be denoted by
@y, 21—y, (Mi—1), which we abbreviate as ¢(m,_1) when there is no ambiguity. We assume that the
parallel transport preserves the inner product of the vector, i.e.,

(Mmi—1,0-1)y, ., = (P(Mu—1), o(Ve-1))y,-)
Assumption 5. We assume that in the Riemannian optimization problem solved by the Radan

algorithm, the objective function is geodesically convex (Alimisis & Vandereycken| |[2024). That is,
for any p,q € M and ¢ € [0, 1], the following holds:

fOy(@®) < (=) f(p) + 1/ (q), (18)
where 7y is the geodesic connecting p and ¢. Furthermore, it can be shown that
f(yt) - f(y*) < <_gt7L09yt (y*)>yu (19)

and we will provide a proof of this in Lemma 2.

18

Under review as a conference paper at ICLR 2026

A.1.2 PROOF DETAILS

We now present Theorem [3.1]along with its proof.

Theorem A.1. Let y; be the sequence generated by the Radan algorithm. Under the standard
assumptions, the regret bound Ry satisfies the following.

Ry < T/ +logTG |:C(KL7 c)(3—-28)G + B1]
- A=/ 2(1 = p1) VT = B3 (1 —9) 0
L GDLO+28)VT i ADLG B i V(L + 282)GDZ, B
2(1=p1)-m —~ 1-h — n(l—pB1)
Proof. According to the Radan algorithm, the update from step ¢ to step ¢ 4 1 is as follows:
my = Brep(mi—1) + (1 — Bre)ge
vy = Barp(ve-1) + (1 = Bar) (9¢ — p(g-1))
ze = g¢ + Bat(gt — p(gi-1))
ny = Basng—1 + (1 — Bar)||zel3, @1
up = my + Poyvy
_ M
ap = e + €

Yi+1 = Bxpy, (—oyuy)

Here, ¢ is a parallel translation, which is assumed to preserve the inner product. Exp(-) is the
exponential map, and Log(-) is the logarithmic map. Also, 51; = 81 - f1(t), where f1(t) is a decay
function, and Bo: = B3 - f2(t), where f5(¢) is a decay function.

Given y;+1 = Fxp(—auy), according to the cosine theorem on the manifold, we have:

a® < b*¢(k,c) 4+ ¢® — 2bccos A (22)
Based on the assumption of bounded curvature, we have that ((k, ¢) is bounded, let:
a = d(yt+17y*)7 b: d(yt+lvyt)7 c= d(ytay*) (23)

Then , that is:
dQ(thy*) < d2(yt+1, yt) C(l‘i C) + d? (yt,) - 2d(yt+1»yt)d(yt7y*) cos A (24)

According to the definition of cos A, we have:
d(Ye+1,y)d(ye, y*) cos A = (Logy, (Ye+1), Logy, (y"))y, = —ou(ue, Logy, (y7))y, (25)
Substituting this into the above Equation (Z4), we get:
2d(ye+1,y¢)d(ye, y™) cos A = =2 (uy, Logy, (y*))y,
<Py, y*) = A (Yrr1,y") + (8, 0) - P (Yeyr,) (26)
= (Yo, y") = @ Yer1,y") + C(r, 0)af uel?,

By rearranging the terms and dividing both sides by o, we obtain the following expression:

. 1 . o SRy e)a|Juell
(—ut, Logy, (y*))y, < T%[d2(yt’y) = (Y1, y7)] + fyt 27
Since u; = my + Posvy, then:
. 1 . oy ClRyQ)a]luef7,

(=mu, Logy, (y"))y, < E[dQ(yhy) = d*(yes1,¥")) + fy + Bar(ve, Logy, (Y"))y,
(28)

Also, because my = Srro(mi—1) + (1 — B1t)gt, finally we have:

. 1 . o SRy Qafuelly,

<7(1 - 51t)gt7 LOQyt (y >>yf § th[dQ(yt,y) - dz(yﬁ-lay)] + fy (29)

+ Bau(ve, Logy, (y"))y, + Bre{e(mi—1), Logy, (y"))y,

19

Under review as a conference paper at ICLR 2026

Dividing both sides of the equation by (1 — 31;), we get the following expression:

1 C(k,c)
73L0f*f< d23*7d2 7*+ : u12
(o Lo 0 < gy 000~ Pl N+ g,

Bat Bt
—— (v, L * 1), L *
+ (1 - 6”) <Ut? 08y, (y)>’Ut + 1— ﬁlt <50(mt 1)7 08y, (y)>yt
Since f(x) is geodesically convex, according to Lemma 2, we have the following:
fye) = F(") < (=gt, Logy, (y"))y, G
The regret bound is:
T T
RT = Zf(yt) - f(y*) S Z<7gta LOgyt (y*)>y1
t=1 t=1
<Y s Py’ - G +i ”’C 5 el
< 57T o t t+1,Y Ug
— 20¢(1 — Br) — 2(1— Pu) 32)
B1 B>
~_ 8 8
2t 1t *
+ ———— (v, Logy, (Y"))y, w(my—1), Log,, ,
; (1 . Blt)< t 9y y Z 1 _6115 t 1) Gy (y)>y
Bs By
For Bj: First, we estimate the B; term and identify its upper bound.
T
1 1 1
B < — 7d2 *\ 7d2 *
'S 3Ty Lz_; (Oét (y™) = (s y))]
1 /11 1 1
- - - d2 7*+7d2 7*_7d2 7*
N Lz; (at at_1> (o) + - d* o y") = - dyrany)
T
1 1
< — D% + —D?
= 1_51 ;(a o 1) o F g oo (33)
1 1 1
R
2(1-p1) ar aq aq
1
= D%
2(1 — Bl)aT
D? n
=——=_/n where) =
21— gy VT Ve =)

The first inequahty follows from the fact that 51, = (1 f1(t), which decays term by term. Therefore,
lflﬁu < = ﬁ The second inequality follows from the assumption that the feasible domain is

bounded, i.e.,

zeD

The mathematical logic behind the second inequality also includes a% > i which is derived from
Bz =1— %

For By4: Next, we provide the upper bound for the fourth term B4. By Young’s inequality (Alzer &
Kwong|, 2019), after making simple transformations, we can obtain the following expression:

(p(mi-1), Logy, (Y"))y, < \ﬁHw(mt] \FllLogyt(I3, (35)

B Byo

Considering By;: Since ¢ preserves the inner product, we can obtain the following equality:

le(me-)l5, = (e(me-1), e(me—1))y, = (M1, me1)y,y = [meally, . (36)

20

Under review as a conference paper at ICLR 2026

Furthermore, we can perform an equivalence transformation on By; .

Z =l me-1)]l5, = Z mially, (37)

Since ||g¢+1]|y,., is bounded, it is evident that ||m1],,,, is also bounded. Therefore, to prove that
By, is bounded, it suffices to show that Zthl \;’—?% [|m.|2, is bounded.

Since m; = Brrp(mi—1) + (1 — B1¢)g:, by using the recurrence relation and mathematical induction,
it can be proven that:

my = Brip(mo) + (1 = Bi1)gr = (1 = Bi1)gr
= Bizp(mi) + (1 — B12)g2 = Bi2(1 — Si1)e(g1) + (1 — B12)92
ms = Bigp(ma) + (1 — Bi13)g3 = B12813(1 — Bi1)e(g1) + (1 — Bi2)Bizw(g2) + (1 — Bi3)gs

me = Zl—ﬁh <Hﬁ1(t k+1> ©(9;)

According to Lemma 3, using the inequality

2 n n
< (Z ai) (Z ai|pi||2>, (39)
i=1 i=1
J

t
lmell?, = Z (1= pBj) (H (t—k+1) e(9:)l3,

(38)

iDi

we can derive the following.

t—j t t—j
(1—By) H B, (t—k+1) Z(l - B1j) H B, (t—k+1) H%Hi (40)
k=1 j=1 k=1

t
(L=Bu)B) [Do =By)Bllgll;,

j=1 j=1

IN

M- T

Using the formula for the sum of a geometric series combined with the fact that 8 < 1:

g\~ g g B (=B 1
L=y <1, Zﬁ A6 =0 e s 1y, (1)
we can proceed to derive the desired result.
¢ t
lmall, < { DA =838 | [D= BB Ngilly, | < 7= - Zﬁi Tllgslly, 42)
j=1 j=1

For ny, because ny = fB3ini—1 + (1 — B3t) Hzt||72h, a similar discussion still applies:

ny = fB31-no+ (1 - 531)”21”51 =031-0+(1- 531)”21”51
Ba2(1 = Baa)||z1ll7, + (1 — Bs2) |22,

UP)

(43)

t

1 2

ne=y Z ||z]||y]
Jj=1

21

Under review as a conference paper at ICLR 2026

For z;, because of following:
zj = gj + Pat(g; — v(gj-1)) = (1 + Bat)g; — Parp(gj—1) (44)

we have that:

1jlly; = (U4 Ba)llgilly; = Batlle(gi—)ll; = Ngilly; + B2e(ligilly; = lp(gi-lly;) 45
g; is the gradient at ;, g;j_; is the gradient at ;. For the step - size formula, n; = % when t is

large, y; ~ y;_1, assume ||g;||,, = [[©(gj—1)l[y,. similar to the Lipschitz continuity of the gradient.

Therefore, we have ||z]||§] >l gj||ij From another perspective, if ||z]H <\g; ||y] one can always
I3

restrict 3, = 0, in which case ||z; |2 > [|g; |13, Then for n;:

Z 25115, > Z lg; 11, (46)

Next, consider the sum:

SV TS A8 I gl
iy Tl

—— (47)
O N SN P

T

> llgilI2,
j=1

Since we assume the gradient is bounded, i.e., ||g;||,, < G, we can proceed accordingly in the
analysis.

T n 2n

t 2
E ——1m < —
t=1V Lt” tHyt (1= p1)?

Tz = 218 T us)

Z 95115,

) (1-p1)?
In summary, we have:
MB1G
Zﬁ”-thEZ& Tl < P VT @

Considering B42, we can directly use the boundedness of the feasible domain to obtain the following
expression:

1
Z¥|L<wifh<1&z“fpz@ 50
t

Since n; = + 23:1 l|z; ||§] , we have the following:

~+ | =

M- 104

ne = H%‘Hi

1
< n (HQJHy7 +52t||gj||yj +52t||90(9] 1)”?4;)
Jj=1 (28
1 t
< ; Z: (1+ 25%
1
<SG+ 265)* < (1 +25,)°G?

22

Under review as a conference paper at ICLR 2026

The above expression still uses the bounded gradient assumption. Substituting the earlier result, we
obtain:

T
7 *\ 112 Bt (14 2B2)GDZ, \[ﬁlt
~—1||Log,, . < (52)
S Log,, (1), - 724 < Z
For By, we aim to provide an upper bound for Zthl 5 ((1“ cﬁit) [luee ||2 According to the update rules:

{ut =my + Borvs (53)

vy = Barp(vi—1) + (1 — Bar)(g9: — w(g:-1))

According to the update rule for v; and using the triangle inequality, we have

vellye < ((1=B2e)-[lge=2(ge—1)lly, +B2ellp(ve-1) Iy,) < ((1—52t)-(||9tHyt+||s0(gt_1)IIyt)+ﬁ(§t4||)<p(vt—1)llyt)

Since (1 — Bar) - ([|gell + lo(ge—1)ly.) + Batll¢(ve—1)|ly, can be viewed as a convex combination
of (lgell + ¢(g:-1)lly,) and [l@(vi—1)lly,, we have:

(1= Bat) - (gelly, + le(ge-1)lly.) + Baell(ve-1)lly, < sup(ligelly, + [l(ge-1)lly.) < 2G. (55)
Yt

Therefore, based on the update rule for u;, together with the above result and the triangle inequality,
we obtain the following inequality:
l[uell?, = llme + Baevll7,
< (Imelly, + B2 - velly,)?

< (SuPytht”yt + supyzﬁ?t : Hvt”yt)Q

G 2 (56)
< (——+2
< (1) +26:G)
3—281.9 2
< G
< (5
Therefore, we can obtain the upper bound for B, as follows:
~ (k) (i) n 3—28
’ — 4P1y2.2
G
;2 ol Z(l)
(57)
_ ((m0)- (3~ 28:) _ Clr.0) - (3~ 28)nG>V/Ty/ T+ TogT
- 2(1 - 5)3 - 2(1—p1)3
For Bs, we can directly apply the Cauchy-Schwarz inequality to estimate it.
T 3 T 3
2t * 2t 2 *) (12
L < L
; 1— 5” <Ut7 Ogyt (y)>yt ; 61 ”vt”yt” Ogyt (y)”yt
~_f
2t 2 2
< L (2G)2 - D2, (58)
; g5 (20

o

<

Z 46% DgOGQ
o 1A

We also need to slightly rearrange and simplify the previously obtained expression for Bj.

B D2 D2, f GD2 1+252)f
PR S a T T ay @

23

Under review as a conference paper at ICLR 2026

By organizing all the terms, we obtain the regret bound:

T
RT:Z(f(yt Z —9t, Logy, (y"))y,
t=1 t=1
GD2(1+28)0VT C(k,c)- (3= 2B0)nGVTVIFlogT = 4Bst 9 -
< —a-g).n T AL +;1_51DO®G (60)
mpG (1+428)GD2 <~ Vi ﬁu
gy VT 1o, >

t=1

Simplification yields the final expression for the regret bound:

C(H7C)'(3_2ﬂ1)77G2\/T\/1+109T+ 206G JT

Ry < 201 — 51)3 (1— 51)3 o)
GDZ(1+2B8)VT AD2.G2Bar <= V(1 +26:)GD2 By,
2(1=p51)n +; 1—5 +; n(1—B1)

A.1.3 PROOF OF LEMMA

In this section, we will provide proofs for the three lemmas used in Theorem 3.1]

Lemma 1. If the feasible domain D C M is geodesically bounded (i.e., there exists a constant D,
such that d(x,y) < Do forall 2,y € D), then for any « € D,

||L0gyt(37)Hyt < D, (62)

where z is any point, and Log, (-) is the logarithmic map on M.

Proof. By definition, the logarithmic map Log,, () maps a point y € M to a tangent vector in T, M
whose norm equals the geodesic distance d(x, y):

| Loge(y)l|e = d(z,y). (63)

Since D is geodesically bounded, for any y; € D and x € D, d(ys, x) < Dy . Combining the above
two results,

[ILog,, ()lly, = d(ys,#) < Dec. (64)
This completes the proof.

Lemma 2. If f : M — R is a geodesically convex function, then for any y; € M,
fye) — fly*) < (—gradf(y;),Log,, (v)), (65)

Yt

where gradf(y;) is the Riemannian gradient of f at y;.

Proof. A function f is geodesically convex if, for any geodesic « : [0, 1] — M,

fOr(@) < (A=) f(v(0)) +tf(v(1)), vVt €0, 1]. (66)
Let v(0) = y; and y(1) = y*. Then,
fO@) <@ =)f(ye) +f(y7). (67)
Expand f(v(t)) around ¢ = 0 using the exponential map (t) = Exp,, (¢ - Log,, (y*)):
FOy(#)) = f(ye) + t (gradf(ye), Log,, (y7)), + o(t). (68)
Substituting into the geodesic convexity inequality:
Flye) +t (gradf(y:), Log,, (7)), +o(t) < (1—1)f(y) +tf(y"). (69)

24

Under review as a conference paper at ICLR 2026

Rearranging terms and dividing by ¢ > 0:

o(t)

(gradf(y:), Log,, (v")), + == < f(y") = f(ve)- (70)

Taking ¢ — 0, the higher-order term O(f) — 0, yielding:
Fly) = F(y") < — (gradf(y,), Log,, (v7)),, - (71)

Yt

This completes the proof.

Lemma 3. Let py,..., px € R and weights aq,...,ar > 0. Then

(&) (o)

Proof. Define w; = \/a;, v; := y/a;p;. Then

2 k 2 k k k
E w;v; = E W;V;, E w;v4 = E E wW; W, Uz,’l}]
i=1 i=1

2

iDi

iDi
= =1 j=1
k k k k (73)
< (Z%Z) > ol | = (Z%) > allpsl* |
i=1 j=1 = j=1
(by Cauchy Schwarz)
which proves the claim.
A.2 PROOF OF THEOREM 3.2
Theorem A.2. In the bound Equation (10), any non-summation term K (T') satisfies o (K(TT)> =
0. For the summation terms, as long as the parameter decay conditions o (Z’ 15 ”\/{)
T
o (M) =0and B3 =1 — % are met, Radan converges to the optimum.
Proof. Recall from Theorem [3.2]that the total regret Ry obeys:
T T
V(1 +28:)GD2 B
R < K) 4 3 A= K+ S5 B+ Al RIODO 4
—) N———r~ -1 77(- 61)
=:az¢ —:a1s
where we have that:
,¢)-(3—2 G*VT/1+logT 201G GD? (1+2 T
(1) = S50 (3= 200)n \37\/ ool | 204G (1 20)VT g
2(1 =) (1—p1) 2(1=51)n
Dividing both sides by 7" gives:
T T
Ry K(T) 1 1
- < —7 — — . 7
o < +T;au+T;a2t (76)
Set the constants ¢; = %, cy = 4?2502 so that:
lia :ﬂiﬁ Vi lia :Qiﬁ (77)
T = - 1V, T 2t = 7 2 2t-

25

Under review as a conference paper at ICLR 2026

Each summand in K (T') scales like 7~/2 (up to logarithmic factors), hence @ =o(l) =

0(@) = 0. By hypothesis, 0(% S Bu\/i) = 0, o(% S th) = 0. Multiplying by

the constants ¢y, o preserves the vanishing rate, so - Zthl aiy = o(1) and Zthl as: = o(1).
Combining these,

%g o1) + o(l) + o) = o(l) (78)
— —— ——

K(Ty/T (/7)Y a1 (1/T) X ax
Hence limr_, o Rr/T = 0, i.e. Radan attains vanishing average regret and converges to the global

optimum.

A.3 PROOF OF THEOREM 3.3

A.3.1 PROOF DETAILS

Theorem A.3. On a single constant-curvature manifold R”, S$K or H"X | the Riemannian gradient
of the Riemannian Fuzzy K-Means objective function Jp i with respect to the cluster center cy, is
uniformly expressed as:

N
—m _2m_
grad,, Jrx = *sti d(ys, ck)” ™=1 Loge, (i), (79)
i=1

where Log., (z;) denotes the logarithmic map of point x; at c,. The Log., (z;) on three types of
constant-curvature manifolds are given as follows.

x —c, lfl', c e RT,
0 (z —cos(0)c), 0=cos ' (K*(c,x)) ifx,ce S
Logc(x) = q sin(6) ’ e ’ ’ (80)
2 _ 1,72 . h,K
Sh(0) (x4 K*(c,z)nc), 6=cosh™ (K*(c,x)n), ifw,ceH"".
Proof. To transform it into the above form, we simplify Jp using the expression of .S;.
1-m
N [cC
__2
Trx (uij(ci),e5) = d(ws,c;)” ™1 ;
i=1 \j=1
. 8D
C Q T m—1 C
__2
S; = Z(dg(xﬂcg)) = d(z,¢j) T
j=1 \p=1 j=1
Due to Equation [81] we can simply express Jrx as Equation [82]
1-m
N [cC N
__2 —m
Trr (uij(cj), ¢j) = Z d(zi,cj)” ™1 = ZS} (82)
i=1 \j=1 i=1

Consider taking the Riemannian gradient with respect to the kk-th center c;. Obviously, when
differentiating .S; with respect to ¢, only the term with j = k is nonzero. Therefore, according to the
chain rule of Riemannian gradients, we obtain Equation [83]

N
grad,, Jri = (1—m) Y S; ™ grad,, (d(zs, cr)"77) (83)
i=1
According to the lemma grad, d(z,c) = fL;(?T“(S) (proved later), we further simplify Equation
and obtain Equation [84]
grad, d(z,c)® = ad(zx,c)* ! grad, d(z, c) = —ad(z,c)* 2 Log.(x). (84)

26

Under review as a conference paper at ICLR 2026

By setting a = ——2—, we obtain Equation

2 2 m
grad,, (d(aci,ck)_%) = —ﬁd(xi,ck)%_QLogck (x;) = —ﬁd(xz,ck)mril Loge, (z;)
m— _
(85)
Simply substituting Equation[85]into Equation [83] yields Equation [TT]
grad, Jrix = ZS " grad,, (mi,ck)_m%l)
i=1
N 9 B
Z _m 1d(xi, ¢k) ™1 Loge, (x,)) (86)

=—2 ZS;m d(xl, Ck)i"?‘$l11 Logc;C (xz)
i=1

A.3.2 PROOF OF LEMMA

We now prove a key lemma.

Lemma A4. Let x,c € M, and let d(x, c) denote the geodesic distance between x and c. Then we

have grad,, d(z,c) = 7%@_

Proof. First, consider the function f(c) = 1d?(z, ¢) and its directional derivative along the direction
w, denoted by g—f
of —lim 1 d*(x, Exp.(tw)) — d*(z, c)

ow 50 2 t

Let v(t) = Exp.(tw), which is the geodesic starting from ¢ along w. The directional derivative can
then be written as:

(87)

2 2
O _ PPt~ 4y L,)
According to the standard formula in Riemannian geometry (You)), we have:
L] S (0) = (~Loge(e), w). (59)
dtlt=02
Therefore, we obtain the final equation:
o] L PaA0) = (~Loge(w) w)e = (grad G) whe (90)

So that:

grad,(d(z, c)) = On

With this, we complete all the proofs.

27

Under review as a conference paper at ICLR 2026

B NOTATIONS

Table [@lists all the symbols used and their corresponding meanings.

Table 4: Notations in this paper.

Notation | Description

X =A{z1,...,zn} Dataset notation, consisting of N samples

z; The ¢-th sample

Yt The coordinate of optimization variable y at step ¢

c;j The j-th cluster center

M, The p-th component manifold

®g:1/\/lp The product manifold of () component manifolds

(@}, 22, ... ,J‘?) The coordinate representation of z; under @) product manifolds ®pQ:1Mp
dy(xP, yP) The geodesic distance computed from the coordinates of = and y on the p-th component manifold
d(z,y) The distance between x and y on the product manifold ®$:1Mp

Hhi K The hyperbolic space of dimension %; and curvature K, with K < 0

Hh The hyperbolic space of dimension %; and curvature K, with K = —1
IS The spherical space of dimension s; and curvature K, with K > 0

Sei The spherical space of dimension s; and curvature K, with K =1

R™ The Euclidean space of dimension 7;

D The 2-dimensional Poincaré disk

T M, The tangent space at x” on the p-th component manifold

.M The tangent space at x on the product manifold ®?:1M p

[Euclidean norm
I 1l Riemannian norm at z; on the product manifold

o Sy (UP) On the p-th component manifold, parallel transport u? from z? to yP.
Pasy(u) On the product manifold, parallel transport u from z to y.

Expk, (uP) Apply the exponential map to u® at ¢? on the p-th component manifold.
Exp,(u) Apply the exponential map to u at ¢ on the product manifold.

Logh, (zP) Apply the logarithmic map to u? at c? on the p-th component manifold.
Log.(z) Apply the logarithmic map to u at ¢ on the produc manifold.

log(-) Logarithmic function

{gf,my, vl 20 n¥ ul ol} | Intermediate quantity of Radan on the p-th component manifold

{gt, M, v, 20, g, we, o} Intermediate quantity of Radan on the product manifold

((k,c) Curvature function

Do Upper bound of the size of the geodesically convex region

~(t) Geodesic

(-)y Riemannian inner product at ,

(y)n hyperbolic inner product

S; Intermediate variable of RFK

Bt First hyperparameter of Radan

Bat Second hyperparameter of Radan

Bat Third hyperparameter of Radan

o) Infinitely large of the same order

o(+) infinitely small of the same order

Rt Regret bound

C RELATED WORK ABOUT CLUSTERING ON MANIFOLD

In terms of clustering algorithm design for data distributed on manifolds, there has not been extensive
research so far. In (Miolane et al.l [2020), an iterative Riemannian K-Means—style algorithm was
implemented by alternately updating the assignments {u,;} and the centers {c;}, with a time
complexity of O(wv). Many application scenarios adopt this alternating update paradigm, such as
(Wu & Pan| 2025b)). Some recent methods for clustering data distributed in hyperbolic spaces have
been proposed (Ja¢imovi¢ & Crnkic|, |2025; |Ghosh & Das| [2024; |Lin et al.,[2022)). However, these
approaches are not applicable to product manifolds and therefore cannot be compared with RFK.
There also exist deep learning—based clustering methods (Sun et al., 2023b). However, they lack
flexibility, lightweight implementation, and interpretability compared to machine learning—based
algorithms. Moreover, deep clustering frameworks often require a clustering procedure similar to
RFK to generate pseudo-labels for the learned deep representations. Hence, RFK can serve as a
natural and effective replacement for NRK in this context. Moreover, some clustering algorithms
assume data lie on an unknown submanifold; algorithms based on this idea still fail to fully respect
the data’s geometry. Such methods, e.g.,Zhong & Pun|(2021)), are included in our comparisons. In
addition, we further compare with several clustering approaches defined on other manifolds (Subbarao
& Meer [2009; |Ashizawa et al., [2017; [Zhao et al.| [2016)).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

D BACKGROUND

Since Riemannian machine learning is a relatively novel research direction and not yet widely familiar
to all readers, we provide a detailed introduction to the background of this field in this section.

D.1 WHAT KIND OF DATA DO WE LEARN?

In fact, Riemannian machine learning focuses on data that have already been represented on manifolds.
With the development of representation learning, researchers commonly use neural networks to
automatically extract features and obtain new representations of data (Bengio et al.| 2013). However,
scientists soon realized that many types of data possess non-Euclidean structures, and forcibly

embedding them into Euclidean space causes distortions (Yang et al|[2023} [Ren et al [2023).

For example, for periodic data such as cells at different stages of a division cycle, Euclidean
embedding fails to capture periodicity, representing them on spheres, hyperspheres, or tori is more
appropriate (Davidson et al | [2018). Data with hierarchical structures—such as graphs or trees—are

better represented on hyperbolic manifolds (Sala et al] 2018} [Mishne et al} 2023). Hyperbolic
representations have been widely used in video retrieval (Li et al.| [2025)), bioinformatics (Ding &

2021)), and large language models (Mandica et al. [2024b).

Moreover, if data simultaneously exhibit multiple structural properties, they are often embedded into
product manifolds composed of several manifolds (Chlenski et al| [2025al)

Riemannian machine learning focuses on such data that are already represented on manifolds, aiming
to perform classification (Bachmann et al.| [2020)), clustering (Ashizawa et al| [2017), and regression
[2025). In the narrow sense, Riemannian machine learning extracts information from
these non-Euclidean data, whereas obtaining these manifold-valued representations is the task of
Riemannian representation learning.

D.2 DIFFERENCE FROM MANIFOLD LEARNING

A standard assumption in machine learning is that data lie on some unknown manifold
[2012). Manifold learning typically exploits local Euclidean approximations—for example, construct-
ing a KNN graph (Costa & Hero} [2004) and applying spectral clustering methods such as Ncut.
The key distinction from Riemannian machine learning is that manifold learning does not know
the underlying manifold structure. As a result, its algorithms do not leverage manifold geometry
explicitly and often perform poorly when data lie on a known manifold with known structure.

D.3 BASIC PRINCIPLES OF RIEMANNIAN MACHINE LEARNING

The fundamental principle of Riemannian machine learning is that problems should be considered
from the perspective of the manifold itself rather than the Euclidean embedding space

A simple example is the construction of an airport at the geometric center of several countries: the
center should be computed using a manifold center (the Fréchet mean) and distances measured on the
manifold (the Earth’s sphere is a manifold). In contrast, using an Euclidean center could lead to a
meaningless point, such as somewhere inside the Earth’s interior.

D.4 MISCELLANEOUS QUESTIONS

Q1: How do we determine which manifold a dataset belongs to?

A1: Several established methods can identify intrinsic structures in raw data (such as periodicity or
hierarchy) and recommend an appropriate embedding manifold (Tabaghi et al| 202T]).

Q2: How do we embed data onto these manifolds?

A2: This has also been extensively studied. Methods such as graph neural networks
[2021)), UMAP (Mclnnes et al] 2018), and coordinate-learning approaches [2018) can

effectively map data into their corresponding manifolds.

29

Under review as a conference paper at ICLR 2026

Table 5: Description Table of the benchmark datasets

Dataset Signature =~ Dimension Class Objects

, Gaussian R* 4 3 1000
Z H* 5 3 1000
= S?H? 6 3 1000
= R2S?H? 8 3 1000
S?(H?)? 9 3 1000
R*S*H* 14 3 1000
RI6SOH 6 50 3 1000
= CiteSeer (H*)? 6 6 2110
& Cora H* 5 7 2485
© PolBlogs (S?)? 6 2 1222
Olsson D 2 9 382
Paul D 2 20 2730
PolBooks D 2 3 106
o CIFAR-100 (H?)* 12 10 500000
< Lymphoma (S%)? 6 10 134100
MNIST S’E*H? 8 10 600000

E DETAILS OF THE EXPERIMENTAL SETUP

E.1 DATASETS DESCRIPTION

Table [5] presents the basic information of the datasets we used. Here, Signature refers to the type
of manifold onto which the dataset is embedded, Dimension indicates the dimensionality of the
embedding space, Class denotes the number of clusters in the data, and Objects specifies the total
number of samples in the dataset.

Here, we also provide a brief introduction to the background of these datasets, along with the sources
from which each dataset can be obtained.

» All Gaussian datasets are generated using Manify’s ’gaussian mixture’ function, with the
specific code as follows:

from manify.manifolds import ProductManifold

signature = [
(0.0, 16), # R"16 (Euclidean space)
(1.0, 16), # S”16 (Spherical space)
(-1.0, 1l6), # H"16 (Hyperbolic space)

1

P = ProductManifold(signature, device="cpu", stereographic=False)
n_clusters = 3
X, y_true = P.gaussian_mixture (

num_points=1000,
num_classes=n_clusters,
task="classification",
cov_scale_points=.1

)

To ensure reproducibility, we also saved the generated data, which can be found hereﬂ

* CiteSeer, Cora, and PolBlogs are graph datasets, which can be represented in non-Euclidean
spaces using the following code:

import manify
from manify.utils.dataloaders import load_hf

'https://anonymous.4open.science/r/Manifold-Clustering-Data-3C53/

30

Under review as a conference paper at ICLR 2026

features, dists, adj, labels = load_hf ("polblogs")
pm = manify.ProductManifold(signature=[(1.0, 4), (-1.0, 4)1)

embedder = manify.CoordinatelLearning (pm=pm)
X_embedded = embedder.fit_transform(X=None, D=dists,
burn_in_iterations=200, training_iterations=800)

In fact, the Manify GitHub repository already provides the pre-trained embeddings of these
datasets, which you can access ther% or alternatively obtain from our anonymous GitHub
repositor

* Olsson, Paul, and PolBooks are also graph datasets, which are embedded in the Poincaré
disk. You can access the data hereﬂ or alternatively obtain it through our anonymous link.

* The datasets CIFAR-100, Lymphoma, and MNIST are obtained using the VAE method
provided in Manify. The reference code is as follows:

encoder = torch.nn.Sequential (
torch.nn.Linear (784, 128),
torch.nn.RelLU(),
torch.nn.Linear (128, 2 * euclidean_manifold.dim), # The
INTRINSIC dimension of the manifold
)
decoder = torch.nn.Sequential (
torch.nn.Linear (euclidean_manifold.ambient_dim, 128), # The
AMBIENT dimension of the manifold
torch.nn.RelLU(),
torch.nn.Linear (128, 784),
torch.nn.Sigmoid(),

vae = manify.ProductSpaceVAE (pm=euclidean_manifold, encoder=
encoder, decoder=decoder)

mnist_embeddings = vae.fit_transform(
X=mnist_features.reshape (-1, 784), burn_in_iterations=1,
training_iterations=9, batch_size=128

)

Manify also provides the precomputed embeddings of these datasets, which can be accessed
hereﬂ or through our anonymous link. In particular, MNIST performs poorly under small
learning rates. In the RFK algorithm, its learning rate is set to 3, while in Experiment 2 we
adopt the settings {2.1,2.3,2.5,2.7,3.0}.

E.2 EXPERIMENT 3 SETUP

E.2.1 BENCHMARK CLUSTERING ALGORITHMS

We compare it with 10 benchmark clustering algorithms across 7 toy datasets and 9 real-world
datasets. These algorithms include K-Means-based methods, graph-based methods, and subspace-
based methods. A detailed introduction to each algorithm is provided below.

* NRK, i.e., Naive Riemannian K-Means, is a K-Means-based algorithm that respects the
manifold structure but requires double loops. Our main contribution is to modify it in order
to reduce its complexity.

* KM partitions data into predefined clusters by minimizing the sum of squared distances
between data points and their corresponding cluster centers. It is simple but sensitive to
initial centroids and struggles with non-spherical clusters.

“https://github.com/pchlenski/manify/tree/Dataset-Generation/data/graphs/embeddings
3https://anonymous.4open.science/r/Manifold-Clustering-Data-3C53/
*https://github.com/drewwilimitis/hyperbolic-learning/tree/master/data/ucidata-zachary
>https://github.com/pchlenski/manify/tree/Dataset-Generation/data/mnist/embeddings

31

Under review as a conference paper at ICLR 2026

* Ncut improves on Ratio-Cut by normalizing the cut, balancing the partition while considering
the total graph weight. It’s better suited for non-convex and unevenly distributed clusters.

* FCM Fuzzy C-Means (or Fuzzy K-Means), can be regarded as a relaxation of K-Means.
Instead of hard assignments, it computes the similarity between each sample and each cluster
center as the assignment criterion. It is also a well-known clustering algorithm.

e UFCM This is an unconstrained Fuzzy C-Means algorithm, which aims to replace the
constrained alternating optimization in traditional Fuzzy C-Means with an unconstrained
gradient descent approach.

* LRR This is a subspace-based clustering method, which leverages low-rank representations
to obtain robust subspace clustering results.

» SSC This is also a subspace clustering method, characterized by sparse representation.
Through sparse representation, SSC can often identify the core low-rank structure of the
data, achieving excellent clustering performance while simultaneously reducing data dimen-
sionality.

* SBMC is a graph-based balanced clustering method. Being graph-based means it clusters
data by constructing a graph adjacency matrix. Balanced clustering indicates that the
clustering results tend to have roughly equal numbers of samples in each cluster.

» USPEC is one of the representative ensemble clustering algorithms. Ensemble clustering
integrates the information from multiple base clusterers to produce a final result, achieving
performance far superior to any single clusterer.

 Fast-CD This is a fast and stable clustering algorithm for solving the Ncut loss function,
which often achieves clustering results with lower loss than the Ncut itself, combining
efficiency and robustness.

To evaluate the clustering performance comprehensively, three metrics are applied, which are clus-
tering accuracy (ACC), normalized mutual information (NMI) and adjusted rand index (ARI). The
calculation of these three metrics are displayed below.

E.2.2 CLUSTERING ACCURACY (ACC)

Clustering Accuracy measures the proportion of correctly clustered data points by aligning predicted
cluster labels with ground truth labels. Since clustering algorithms do not inherently assign specific
labels, a permutation mapping is applied, often using the Hungarian algorithm, to maximize alignment.
The formula for ACC is:

ACC — 5(map£yi),yi) ©92)
where d(a, b) is an indicator function defined as:
1, ifa=b
9(a,b) = {O, otherwise, ©3)

Here, y; is the predicted label, y; is the true label, n is the total number of data points, and map(y;) is
the permutation mapping function that aligns predicted labels with ground truth labels. ACC ranges
from O to 1, with higher values indicating better clustering performance.

E.2.3 NORMALIZED MUTUAL INFORMATION (NMI)

Normalized Mutual Information quantifies the mutual dependence between clustering results and
ground truth labels, normalized to account for differences in label distributions. It evaluates the
overlap between clusters and true classes using information theory. Given predicted partitions

{é’i}:zl and ground truth partitions {C;}5_,, NMI is calculated as:

i X5 €0 €y og S5
\/(Zle ’C’Z‘ log |(;f|) (ijl |Cj| log %)

32

NMI =

(94)

Under review as a conference paper at ICLR 2026

Here, | - | denotes the size of a set, and Cin C represents the number of data points belonging to both
the i-th predicted cluster and the j-th ground truth class. NMI ranges from O to 1, where 1 indicates
perfect agreement between clustering results and ground truth. It is particularly effective in scenarios
with imbalanced class distributions.

E.2.4 ADJUSTED RAND INDEX (ARI)

The Adjusted Rand Index measures the similarity between predicted clustering and ground truth by
comparing all pairs of samples and evaluating whether they are assigned to the same cluster in both
results. A contingency table H is first constructed, where each element h,;; represents the number of

samples in both predicted cluster C; and ground truth cluster C;. The formula for ARI is:
S () = [() 2, (9] /6)

LS)+, ()] - [) 5 ()] /6)

where ("QJ) = W ARI ranges from -1 to 1, where 1 indicates perfect clustering, O represents

random assignments, and negative values indicate worse-than-random clustering. ARI is robust to
differences in cluster sizes and does not favor a large number of clusters.

ARI(C,C) = (95)

E.2.5 FI1 SCORE

The F1 Score evaluates the balance between clustering precision and recall, capturing both the
completeness and exactness of the clustering results. It is computed based on pairwise precision and
recall between predicted clusters and ground truth classes. The F1 Score is defined as:

2 Precision - Recall

Fl = 96
Precision + Recall °6)
where Precision and Recall are given by:
TP TP
Precision = ———, Recall = ———
recision TP+ TP’ eca TP+ TN o7

Here, TP (true positives) is the number of data point pairs correctly assigned to the same cluster,
FP (false positives) is the number of pairs incorrectly assigned to the same cluster, and FN (false
negatives) is the number of pairs that belong to the same ground truth cluster but are assigned to
different clusters. F1 Score ranges from O to 1, with higher values indicating better clustering quality.

E.2.6 PURITY

Purity measures the extent to which clusters contain data points from a single ground truth class. For
each cluster, the class with the maximum frequency is identified, and the sum of these maximum
frequencies over all clusters is normalized by the total number of data points. Purity is defined as:

1
Purity = — Cp,NL; 98
y nzk:m?XI kN Lyl (98)

where Cj; denotes the set of data points in cluster k, L; denotes the set of data points in ground
truth class 7, and n is the total number of data points. Purity ranges from O to 1, with higher values
indicating that clusters are more homogeneous with respect to the true labels.

33

Under review as a conference paper at ICLR 2026

Table 6: NMI for all benchmarks. OT means out-of-time
Dataset Signature RFK NRK K-Means Ncut FCM UFCM LRR SSC SBMC USPEC Fast-CD

. Gaussian R? 88.49 8837 8839 9587 8836 88.54 69.01 051 5281 6261 91.18
£ H* 98.89 98.24 3.82 96.02 2088 637 9887 771 2922 8041 38.75
= S?H? 84.16 8416 69.67 73.00 7190 7158 89.96 035 4212 62.28 72.39
S R2S?H? 8427 8395 3994 9622 4506 39.84 7479 025 61.67 127 60.58
S?(H?)2 90.37 89.25 0.53 5831 844 450 8562 399 4049 4256 29.40
RASTH* 9570 95.42 7.13 57.73 5758 897 87.58 546 6857 4500 86.70
RISS'°H'® 9198 73.62 0.53 5595 1.99 0.52 043 112 2002 2985 23.68
= CiteSeer (H?) 028 054 0.63 057 048 058 060 029 053 0.59 0.66
g Cora H 0.00 074 0.70 065 071 060 070 024 048 0.70 0.74
o PolBlogs (8%)? 68.76 6577 66.94 402 6541 6726 1861 0.8 1.41 3.79 66.09
Olsson D 70.34 7026 6735 6644 6693 6677 3773 5829 5492 51.96 65.77
Paul D 61.70 5978 5828 5595 58.11 5824 2725 0.67 3206 5859 56.41
PolBooks D 4548 4159 3683 3471 3436 3617 734 734 3013 2950 39.34
m CIFAR-100 (H%)* 8824 OT 0.52 OT 062 024 oT oT oT 0.17 oT
< Lymphoma (S%)? 100.00 OT 0.00 OoT 0.00 or or or oT 0.00 or
MNIST S?E’H? 93.00 oT 0.56 oT 276 0.99 oT oT oT 0.20 oT
Table 7: ARI for all benchmarks. OT means out-of-time
Dataset Signature RFK NRK K-Means Ncut FCM UFCM LRR SSC SBMC USPEC Fast-CD
. Gaussian R* 90.12 89.63 90.17 97.42 90.12 90.35 7299 046 5268 6573 95.09
= H* 99.47 99.07 -0.27 9735 1768 -0.55 99.48 250 2741 83.48 62.88
= S2H? 87.70 8545 7089 74.88 7424 73.64 9358 0.16 41.03 6574 82.90
& R2S?H? 88.04 87.56 33.34 98.15 3876 3277 8347 0.09 60.88 0.02 74.92
S?(H?)? 9248 9212 -1.55 4272 -1.06 -127 88.69 -150 3929 36.48 60.84
RAS*H* 97.34 96.25 0.99 5554 5328 207 91.78 032 6888 44.29 92.57
RISS'CH'® 94.62 64.65 -0.09 52.69 008 -007 005 -030 1854 2925 50.03
= CiteSeer (HZ)? 0.04 020 0.33 0.09 018 031 030 007 0.15 0.50 0.19
g Cora H* 0.00 0.20 0.15 030 020 015 018 000 007 -0.29 0.14
o PolBlogs (§%)? 78.67 7608 77.09 117 7579 7746 1382 -001 1.83 4.84 88.67
Olsson D 51.10 50.88 4934 47.10 48.02 4874 22.86 4450 33.58 44.06 4533
Paul D 37.36 3348 3526 3171 3484 3576 1034 -0.02 1219 3524 30.90
PolBooks D 5538 44.87 4647 4399 4466 4601 858 5334 3574 3640 51.02
CIFAR-100 (I)” 78.67 OT 0.05 OT 0.0 001 oT oT oT 0.01 oT
< Lymphoma (8%)? 100.00 OT 0.00 OoT 0.00 or oT or oT 0.00 or
MNIST S?E2H? 91.52 oT 0.06 oT 1.20 0.42 oT oT oT 4.84 oT

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 EXPERIMENTAL 3 RESULTS

In this section, we present the experimental results of NMI, ARI, F1, and Purity from Experiment 3.
Tables [6] [7][8] and P]respectively present the NMI, ARI, F1, and Purity metrics of different algorithms
across various datasets. It can be observed that, except for the first dataset, RFK consistently and
significantly outperforms the other methods on all metrics. This is because the Gauss R* dataset
lies in Euclidean space, where RFK degenerates to Fuzzy K-Means, thus yielding results similar
to K-Means and other implementations of Fuzzy K-Means. Moreover, it is worth noting that for
large-scale datasets, RFK is always able to complete execution while achieving highly competitive
results.

In addition, we further compare our method with several clustering approaches defined on other
manifolds, such as those presented in (Subbarao & Meer} 2009} [Ashizawa et al.|[2017), and (Zhao
et al] 2016). Result is shown in Table [10}

F.2 SENSITIVITY ANALYSIS
F.2.1 SENSITIVITY ANALYSIS OF m

In addition, we conducted a sensitivity analysis on the parameter m in RFK. The parameter m repre-
sents the fuzziness, reflecting the degree of uncertainty in the assignment. In typical implementations
of Fuzzy K-Means, m is usually set to the default value of 2. Similarly, in the RFK algorithm, we
consistently use the default m = 2. This choice is justified because within a sufficiently wide range,
the influence of m on the final results is minimal, as illustrated in Figure 5] Specifically, we set
m = {1.5,1.75,2,2.25,2.5} and computed the evaluation metrics. It can be observed that m = 2
consistently achieves good performance, and the metrics vary only slightly with changes in m.

34

Under review as a conference paper at ICLR 2026

Table 8: F1 for all benchmarks. OT means out-of-time
Dataset Signature RFK NRK K-Means Ncut FCM UFCM LRR SSC SBMC USPEC Fast-CD

. Gaussian R? 9549 9535 9353 9830 9350 93.65 8233 4126 6874 79.84 95.39
£ H* 99.77 9842 4825 9826 5135 46.87 99.66 50.51 52.04 90.09 60.52
= S?H? 94.60 9455 8135 8348 8306 8266 9381 5111 61.03 79.84 83.17
S R2S?H? 9627 9627 6232 98.85 6173 6231 89.57 5479 7480 54.41 7435
S?(H?)? 98.17 98.05 5207 66.03 51.15 5251 9297 5241 6087 6771 55.66
RASTH* 99.09 9825 48.18 7407 7215 48.17 9452 4871 7931 69.17 92.48
RISS'°H'® 9775 6493 5026 70.18 48.14 5046 5090 5046 46.16 54.03 46.08
= CiteSeer (HZ)? 0.07 1847 19.21 3132 1829 2022 1823 31.98 1800 2374 19.31
g Cora jsig 0.06 16.89 1652 2077 1617 1772 1628 3012 1608 20.64 16.15
o PolBlogs (8%)? 9433 93.60 8856 64.80 87.92 88.74 6453 66.66 5099 53.83 88.21
Olsson D 6474 6445 5654 5459 5490 5659 3296 5355 4244 5514 52.51
Paul D 4775 4608 40.14 3640 3936 4122 1601 1495 1798 40.74 35.41
PolBooks D 7260 5723 6696 6724 6620 66.85 4329 7112 5009 63.27 70.79
m CIFAR-100 (E)” 69.08 OT 6.83 OT 601 871 oT oT oT 6.57 oT
< Lymphoma (S%)? 100.00 OT 79.51 OT 7951 OT oT oT oT 79.51 or
MNIST S?E’H? 96.18 OT 18.17 OoT 1813 18.18 oT or oT 18.21 oT
Table 9: Purity for all benchmarks. OT means out-of-time
Dataset Signature RFK NRK K-Means Ncut FCM UFCM LRR SSC SBMC USPEC Fast-CD
o Gaussian R* 96.00 9584 9380 9847 9377 93.92 8175 3458 6947 66.61 97.20
£ H* 99.80 99.00 3425 98.62 43.13 3414 99.62 3524 5268 86.04 66.50
E S?H? 9520 94.80 7931 83.73 8336 8293 9502 3440 6178 66.63 87.70
& R2S2H? 9620 9580 5455 9876 62.12 53.89 91.64 37.77 7925 3775 86.00
S?(H?)? 97.80 97.80 3722 6124 3737 3732 9265 3725 6456 51.98 68.50
RAS*H* 99.10 9890 3381 5943 5973 3422 9464 3355 79.18 54.16 95.90
RISSISH® 98.00 7710 34.17 6626 3423 3418 3422 3410 4659 5282 57.20
= CiteSeer (?) 2536 20.09 1929 1898 19.17 1926 1928 19.05 19.15 1933 2531
g Cora H* 2922 18.19 1789 17.55 1793 17.87 1791 17.75 1781 17.56 29.22
o PolBlogs (8%)? 9436 93.62 8849 5038 87.85 8870 54.88 50.04 5096 5237 93.70
Olsson D 7638 7638 73.69 6840 7445 7136 5010 6571 61.15 58.85 71.20
Paul D 5878 59.51 5821 5757 59.82 5404 3578 1432 3519 51.19 56.30
PolBooks D 8190 77.14 7880 78.10 77.14 77.62 5524 79.05 7648 75.05 80.95
n CIFAR-100 (HZ)* 7957 OT 5.04 OT 508 501 oT oT oT 5.00 oT
< Lymphoma S%)? 100.00 OT 65.99 OT 6599 OT oT or oT 65.99 oT
MNIST S*E*H? 96.09 OT 10.06 OoT 1061 1023 oT or oT 10.03 oT

—— — . =

(f) Gauss R*S*H* (g) Gauss RSO0 (h) CiteSeer (i) Cora (j) Po

Figure 5: Sensitivity Analysis of m

IBlogs

F.2.2 SENSITIVITY ANALYSIS OF RANDOM INITIALIZATION

We have provided the complete implementation of Riemannian Fuzzy K-Means. It is worth noting
that our algorithm adopts random initialization of cluster centers. Therefore, it is necessary to include
a sensitivity analysis with respect to random initialization.

We have released the full experimental code from the original paper and fixed all parameters and
random seeds. In our experiments, the default seed is set to 1. To assess the robustness of random
initialization, we additionally run the algorithm on several datasets with seeds set to 2, 3, and 4,
respectively, and obtain the following results:

The column origin corresponds to our default random seed, while each subsequent column reports
results obtained using different random seeds. As shown, our algorithm is not sensitive to random
initialization of cluster centers. When using different seeds, most of the best results are even better

35

Under review as a conference paper at ICLR 2026

Method (ACC) RFK NMS LSLDGC KGRP
Gaussian R? 96.00 95.40 94.30 95.40
Gaussian H* 99.80 94.40 96.30 98.10
Gaussian S2H? 95.20 94.50 93.10 95.00
Gaussian R2S2H? 96.20 95.10 94.70 94.70
Gaussian S? (H?)? 97.80 90.20 96.40 96.00
Gaussian R*S*H* 99.10 99.00 98.80 95.00
Gaussian R16S16 16 98,00 88.10 90.50 94.90
CiteSeer 25.36 20.04 21.66 22.23
Cora 29.22 26.27 25.03 20.93
PolBlogs 94.36 94.07 92.94 90.45
CIFAR-100 71.19 oT oT oT
Lymphoma 100.00 OT oT oT
MNIST 96.09 oT oT oT

Table 10: Comparison of RFK with other manifold-based clustering methods.

Seed (ACC) origin seed=2 seed=3 seed=4
Gaussian R? 96.00 96.00 96.00 96.10
Gaussian H* 99.80 99.80 99.80 99.80
Gaussian S?H? 95.20 95.30 95.10 95.50

CiteSeer 25.36 25.45 25.21 24.79
Cora 29.22 29.25 28.49 29.22
PolBlogs 94.36 93.62 93.78 94.68
CIFAR-100 71.19 71.23 71.11 71.16
Lymphoma 100.00 100.00 100.00 100.00
MNIST 96.09 95.91 96.12 95.93

Table 11: Sensitivity analysis of random initialization.

than those originally reported, and in all cases, the clustering performance obtained with different
seeds remains close to our reported results.

F.2.3 SENSITIVITY ANALYSIS OF THE NUMBER OF CLUSTER CENTERS

In Riemannian Fuzzy K-Means, an important hyperparameter is the number of cluster centers.
Typically, the number of clusters is set to the known number of classes in the dataset. Nevertheless, it
is still necessary to analyze the sensitivity of the algorithm to this hyperparameter.

We primarily conduct the sensitivity analysis on the GAUSS datasets, each of which contains three
classes regardless of dimensionality. Accordingly, we vary the number of cluster centers to 2, 4, and
5, and evaluate how the clustering ACC changes. In addition, we include real datasets in our analysis,
with the true number of classes labeled inside the table.

Data (ACC) C = Creal c=2 c=4 c=5
Gaussian R? 96.00 67.10 91.40 64.40
Gaussian H* 99.80 73.80 87.00 64.40
Gaussian S?H? 95.20 72.90 90.30 65.90
Gaussian R2S2H? 96.20 58.60 75.20 59.10
Gaussian S?(H?)? 97.80 74.20 79.80 61.00
Gaussian R*S*H* 99.10 69.30 90.50 94.60
Gaussian R16S6H16 98.00 70.40 83.50 97.40
CiteSeer (a1 = 6) 25.36 25.26(c=5) 23.60(c=7) 24.93(c=8)
Cora (Creq = 7) 29.22 29.21(c=6) 23.98(c=8) 28.37(c=9)

PolBlogs (Creal = 2) 94.36 70.70(c=3) 59.00(c=4) 42.79(c=5)
Table 12: Sensitivity analysis of the number of cluster centers.

We observe that Riemannian Fuzzy K-Means is relatively sensitive to the number of cluster centers.
In fact, this is a well-known property of the entire K-Means family, which explains why the number
of centers is the most critical hyperparameter in K-Means—type algorithms.

36

Under review as a conference paper at ICLR 2026

G RUN AND REFERENCE CODE

G.1 RUN THE CODE

The simplest way to run the code is by using the Anonymous Library. The library submitted in
the supplementary material is not developed by us, but is part of a publicly available open-source
community library. To ensure the double-blind review process, we have anonymized the library name
and included only its minimal implementation unit in the supplementary material.

First, import the packagtﬂ

import AnonymousLibrary

You can simply perform clustering with the following code.

pm=AnonymousLibrary.ProductManifold(signature=[(0, 16), (1, 16), (-1, 16)1)

Use classification labels, which identify clusters by their center
X_clustering, y_clustering = pm.gaussian_mixture (
num_points=1000, num_classes=4, seed=2025, task="classification",
cov_scale_points=0.1

)

The RFK algorithm is essentially a sklearn-styled clustering algorithm,
so we call it 1like this:
rfk = AnonymouslLibrary.RiemannianFuzzyKMeans (pm=pm, n_clusters=4,
random_state=2025)
rfk.fit (X_clustering)
y_pred = rfk.predict (X_clustering)

from sklearn.metrics import normalized_mutual_info_score
nmi = normalized_mutual_info_score(y_clustering, y_pred)
print (f"Riemannian Fuzzy K-Means nmi: {nmi:.2f}")

We kindly suggest that during the review process, reviewers refrain from searching for the source
code related to Riemannian Fuzzy K-Means and Riemannian Adan, as this may violate the double-
blind policy. We will provide the fully anonymized versions of RFK and Radan later in the paper.

G.2 REPLICATION STATEMENT

We fully understand the astonishment when seeing the experimental results, especially the clustering
outcomes in Experiment 3. On some datasets, traditional K-Means achieves only 12% accuracy,
while RFK reaches 96 %. Reporting such a striking gap obliges the authors to provide code during
the review stage. We are not only willing to provide the source code of RFK but also offer a DEMO
that can reproduce the experimental results with a single command, with parameters and random
seeds fixed for verification. Our code is available hereE[g and our datasets are available hereﬂ

Shttps://anonymous.4open.science/status/AnonymousLibrary-32EB
"https://anonymous.4open.science/r/Demo-of-RFK-243B/
8https://anonymous.4open.science/r/Manifold-Clustering-Data-3C53/

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

G.3 CODE OF RIEMANNIAN Fuzzy K-MEANS
from __ future_ import annotations
from typing import TYPE_CHECKING

import numpy as np

import torch

from geoopt import ManifoldParameter

from geoopt.optim import RiemannianAdam

from sklearn.base import BaseEstimator, ClusterMixin

if TYPE_CHECKING:
from beartype.typing import Literal
from jaxtyping import Float, Int

from ..manifolds import Manifold, ProductManifold
from ..optimizers.radan import RiemannianAdan
class RiemannianFuzzyKMeans (BaseEstimator, ClusterMixin):

"""Riemannian Fuzzy K-Means.

Attributes:
n_clusters: The number of clusters to form.

pm: An initialized manifold object (from manifolds.py)

clustering will be performed.

on which

m: Fuzzifier parameter. Controls the softness of the partition.

lr: Learning rate for the optimizer.

max_iter: Maximum number of iterations for the optimization.
tol: Tolerance for convergence. If the change in loss is less

than tol, iteration stops.

optimizer: The optimizer to use for updating cluster centers.

random_state: Seed for random number generation for
reproducibility.

verbose: Whether to print loss information during iterations.

losses_: List of loss values during training.
u_: Final fuzzy partition matrix.

labels_: Cluster labels for each sample.
cluster_centers_: Final cluster centers.

Args:
n_clusters: The number of clusters to form.

manifold: An initialized manifold object (from manifolds.py)

which clustering will be performed.

on

m: Fuzzifier parameter. Controls the softness of the partition.

lr: Learning rate for the optimizer.

max_iter: Maximum number of iterations for the optimization.
tol: Tolerance for convergence. If the change in loss 1is less

than tol, iteration stops.

optimizer: The optimizer to use for updating cluster centers.

random_state: Seed for random number generation for
reproducibility.

verbose: Whether to print loss information during iterations.

wnn

def __init_ (
self,
n_clusters: int,
pm: Manifold | ProductManifold,
m: float = 2.0,
lr: float = 0.1,
max_iter: int = 100,
tol: float = le-4,
optimizer: Literal["adan", "adam"] = "adan",

38

Under review as a conference paper at ICLR 2026

def

random_state: int | None = None,
verbose: bool = False,

self.n_clusters = n_clusters

self.pm = pm

self.m = m

self.lr = 1r

self.max_iter = max_iter

self.tol = tol

if optimizer not in ("adan", "adam"):
raise ValueError ("optimizer must be 'adan' or 'adam'")

self.optimizer = optimizer

self.random_state = random_state

self.verbose = verbose

_init_centers(self, X: Float[torch.Tensor, "n_points n_features"

1) —-> None:

if self.random_state is not None:
torch.manual_seed(self.random_state)
np.random.seed(self.random_state)

Input data X's second dimension should match the pm's ambient
dimension
if X.shapel[l] != self.pm.ambient_dim:
raise ValueError (
f"Input data X's dimension ({X.shape[l]}) does not match
n
f"the manifold's ambient dimension ({self.pm.ambient_dim
Py "
)

Generate initial centers using the manifold's sample method
We want n_clusters points, each sampled around the manifold's
origin (mu0)

The .sample() method in manifolds.py handles z_mean and sigma/
sigma_factorized

defaulting to muO and identity covariances if z_mean or sigma
are not fully specified

or are set to None in a way that triggers this default.

+

For sampling initial centers, we want n_clusters distinct
points.

The .sample () method typically takes a z_mean of shape (
num_points_to_sample, ambient_dim) .

If we provide self.pm.mu0 repeated n_clusters times,

it samples n_clusters points, each around muO.

centers = self.pm.sample(self.n_clusters)

IMPORTANT: Use self.manifold.manifold for ManifoldParameter,

as self.manifold is our wrapper and self.manifold.manifold is
the geoopt object.

self.mu_ = ManifoldParameter (
centers.clone () .detach (), # type: ignore
manifold=self.pm.manifold,

) # Ensure centers are detached

self.mu_.requires_grad_(True)

if self.optimizer == "adan":
self.opt_ = RiemannianAdan([self.mu_], lr=self.lr, betas
=[0.7, 0.999, 0.999])
else:
self.opt_ = RiemannianAdam([self.mu_], lr=self.lr, betas

=[0.99, 0.999])

39

Under review as a conference paper at ICLR 2026

def fit(self, X: Float[torch.Tensor, "n_points n_features"], y: None
= None) -> "RiemannianFuzzyKMeans":
"""Fit the Riemannian Fuzzy K-Means model to the data X.

Args:
X: Input data. Features should match the manifold's geometry.
y: Ignored, present for compatibility with scikit-learn's API

Returns:
self: Fitted RiemannianFuzzyKMeans instance.

Raises:
ValueError: If the input data's dimension does not match the
manifold's ambient dimension.
RuntimeError: If the optimizer is not set correctly or if the
model has not been initialized properly.
if isinstance (X, np.ndarray):
X = torch.from_ numpy (X) .type (torch.get_default_dtype())
elif not isinstance (X, torch.Tensor):
X = torch.tensor (X, dtype=torch.get_default_dtype())

Ensure X is on the same device as the manifold
X = X.to(self.pm.device)

if X.shape[l] != self.pm.ambient_dim:
raise ValueError (
f"Input data X's dimension ({X.shape[l]}) in fit () does
not match "
f"the manifold's ambient dimension ({self.pm.ambient_dim
})‘"
)

self._init_centers (X)
m, tol = self.m, self.tol
losses = []
for i in range(self.max_iter):
self.opt_.zero_grad()
self.pm.dist is implemented in manifolds.py and handles
broadcasting
d = self.pm.dist (X, self.mu_) # X is (N,D), mu_ is (K,D) —>
d is (N,K)
Original RFK: d = self.pm.dist (X.unsqueeze(l), self.mu_.
unsqueeze (0))
The .dist in manifolds.py uses X[:, None] and Y[None, :],
so direct call should work if mu_ is (K,D)

S = torch.sum(d.pow (-2 / (m - 1)) + le—-8, dim=1) # Add
epsilon for stability

loss = torch.sum(S.pow (1l — m))

loss.backward()

losses.append(loss.item())

self.opt_.step()

if self.verbose:

print (f"RFK iter {i + 1}, loss={loss.item():.4£f}")
if 1 > 0 and abs(losses[-1] - losses[-2]) < tol:
break

save the result
self.losses_ = np.array(losses)
with torch.no_grad(): # Ensure no gradients are computed for
final calculations
dfin = self.pm.dist (X, self.mu_) # Re-calculate dist to
final centers

40

Under review as a conference paper at ICLR 2026

def

inv = dfin.pow

(=2 / (m — 1)) + le-8 # Add epsilon
u_final = inv / (

inv.sum(dim=1, keepdim=True) + le-8) # Add
epsilon
self.u_ = u_final.detach () .cpu() .numpy ()
self.labels_ = np.argmax(self.u_, axis=1)
self.cluster_centers_ = self.mu_.data.clone().detach().cpu().
numpy ()

return self

predict (self, X: Float[torch.Tensor, "n_points n_features"]) ->
Int[torch.Tensor, "n_points"]:
"""Predict the closest cluster each sample in X belongs to.

Args:
X: Input data. Features should match the manifold's geometry.

Returns:
labels: Cluster labels for each sample in X.

Raises:
ValueError: If the input data's dimension does not match the
manifold's ambient dimension.
RuntimeError: If the model has not been fitted yet.
if isinstance (X, np.ndarray):
X = torch.from_numpy (X) .type (torch.get_default_dtype())
elif not isinstance (X, torch.Tensor):
X = torch.tensor (X, dtype=torch.get_default_dtype())

Ensure X is on the same device as the manifold
X = X.to(self.pm.device)

if X.shape[l] != self.pm.ambient_dim:
raise ValueError (
f"Input data X's dimension ({X.shape[l]}) 1in predict ()
does not match "
f"the manifold's ambient dimension ({self.pm.ambient_dim
})‘"
)

if not hasattr(self, "mu_") or self.mu_ is None:
raise RuntimeError ("The RFK model has not been fitted yet.
Call '"fit' before 'predict'.")

with torch.no_grad() :
dmat = self.pm.dist (X, self.mu_) # X is (N,D), mu_ is (K,D)
-> dmat is (N,K)
inv = dmat.pow (-2 / (self.m - 1)) + le-8 # Add epsilon
u = inv / (inv.sum(dim=1, keepdim=True) + le-8) # Add
epsilon
labels = torch.argmax (u, dim=1) .cpu() .numpy ()
return labels

41

Under review as a conference paper at ICLR 2026

G.4 CODE OF RIEMANNIAN ADAN
from __future__ import annotations
from typing import TYPE_CHECKING

import torch
from geoopt import ManifoldParameter, ManifoldTensor
from geoopt.optim.mixin import OptimMixin

if TYPE_CHECKING:
from beartype.typing import Any, Callable
from jaxtyping import Float

from . import _adan

class RiemannianAdan (OptimMixin, _adan.Adan):
"""Riemannian Adan with the same API as :class:adan.Adan.

Attributes:
param_groups: iterable of parameter groups, each containing
parameters to optimize and optimization options
_default_manifold: the default manifold used for optimization if
not specified in parameters

Args:

params: iterable of parameters to optimize or dicts defining
parameter groups

lr: learning rate (default: 1le-3)

betas: coefficients used for computing (default: (0.98, 0.92,
0.99))

eps: term added to the denominator to improve numerical stability

(default: 1e-8)
weight_decay: weight decay (L2 penalty) (default: 0)

wnun

def step(self, closure: Callable | None = None) —-> Float[torch.Tensor
""] | None:
"""pPerforms a single optimization step.

Args:
closure: A closure that reevaluates the model and returns the
loss.

Returns:
The loss value if closure is provided, otherwise None.
nmmon
loss = None
if closure is not None:
loss = closure()

with torch.no_grad() :
for group in self.param groups:
betas = group|["betas"]
weight_decay = group["weight_decay"]
eps = group|["eps"]
learning_rate = group["lr"]
stablilize = False
for point in group["params"]:
grad = point.grad
if grad is None:
continue
if isinstance (point, ManifoldParameter |
ManifoldTensor) :

42

Under review as a conference paper at ICLR 2026

manifold = point.manifold
else:
manifold = self._default_manifold

if grad.is_sparse:
raise RuntimeError ("RiemannianAdan does not
support sparse gradients")

state = self.state[point]

State initialization
if len(state) ==

state["step"] = 0

Exponential moving average of gradient values

state["exp_avg"] = torch.zeros_like (point)

Exponential moving average of squared gradient
values

state["exp_avg_sg"] = torch.zeros_like (point)

new param

state["exp_avg_diff"] = torch.zeros_like (point)

last step grad

state["last_grad"] = torch.zeros_like (point)

state["step"] += 1

make local variables for easy access
exp_avg = state["exp_avg"]
exp_avg_diff = state["exp_avg diff"]
exp_avg_sq = state["exp_avg_sqg"]
last_grad = state["last_grad"]

actual step

grad.add_ (point, alpha=weight_decay)

grad = manifold.egrad2rgrad(point, grad)

grad_last_diff

grad_last_diff = grad - last_grad

exp_avg.mul_ (betas[0]) .add_(grad, alpha=1 - betas[0])

grad_last_diff

exp_avg_diff.mul_(betas[l]).add_(grad_last_diff,
alpha=1 - betas[1l])

z_ t

zt = grad_last_diff.mul (betas[1l]) .add_(grad)

z tr2

exp_avg_sqg.mul_ (betas[2]) .add_(manifold.
component_inner (point, zt), alpha=1 - betas([2])

[
bias_correctionl = 1 - betas[0] xx state["step"]
bias_correction2 = 1 - betas[l] =*% state["step"]
bias_correction3 = 1 - betas[2] xx state["step"]

denom = exp_avg_sqg.div (bias_correction3) .sqgrt_()

copy the state, we need it for retraction
get the direction for ascend
direction = (
(exp_avg.div(bias_correctionl)) .add_ ((
exp_avg_diff.div (bias_correction2)), alpha=
betas[1])
) / denom.add_ (eps)

transport the exponential averaging to the new
point

new_point, exp_avg_new = manifold.retr_transp (point,
—-learning_rate * direction, exp_avg)

last_grad.copy_ (manifold.transp (point, new_point,
grad))

43

Under review as a conference paper at ICLR 2026

transport v_t

exp_avg_diff.copy_(manifold.transp (point, new_point,
exp_avg_diff))

exp_avg.copy_ (exp_avg_new)

point.copy_ (new_point)

if group["stabilize"] is not None and state["step"] %
group|["stabilize"] ==
stablilize = True

if stablilize:
self.stabilize_group (group)
return loss

@torch.no_grad() # type: ignore
def stabilize_group(self, group: dict[str, Any]) —-> None:
"""Stabilizes the parameters in the group by projecting them onto
their respective manifolds.

Args:
group: A dictionary containing the parameters and their
states.
Returns:
None

nmn
for p in group["params"]:
if not isinstance(p, ManifoldParameter | ManifoldTensor) :
continue
state = self.state[p]
if not state: # due to None grads
continue
manifold = p.manifold
exp_avg = state["exp_avg"]
exp_avg_diff = state["exp_avg diff"]
last_grad = state["last_grad"]
p.copy_(manifold.projx(p))
exp_avg.copy_ (manifold.proju(p, exp_avg))
exp_avg_diff.copy_ (manifold.proju(p, exp_avg_diff))
last_grad.copy_ (manifold.proju(p, last

44

	Introduction
	Preliminaries
	Notations
	Constant-curvature Spaces and Product Manifolds
	K-Means and Fuzzy K-Means

	Our proposed method
	Naive Extension of K-Means
	Riemannian Fuzzy K-Means
	Radan on Product Manifolds
	Calculate Riemannian Gradient

	Experiments
	Datasets
	Experiments Setup
	Experiment Setup for Q1
	Experiment Setup for Q2
	Experiment Setup for Q3

	Experiments Result
	Experiment Result for Q1
	Experiment Result for Q2
	Experiment Result for Q3

	Limitations
	Conclusion
	Statement
	Appendices
	Proofs of Theorems
	Proof of Theorem 3.1
	Assumptions
	Proof Details
	Proof of Lemma

	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof Details
	Proof of Lemma

	Notations
	Related Work about Clustering on Manifold
	Background
	What kind of data do we learn?
	Difference from manifold learning
	Basic principles of Riemannian machine learning
	Miscellaneous questions

	Details of the Experimental Setup
	Datasets Description
	Experiment 3 Setup
	Benchmark Clustering Algorithms
	Clustering Accuracy (ACC)
	Normalized Mutual Information (NMI)
	Adjusted Rand Index (ARI)
	F1 Score
	Purity

	Additional Experimental Results
	Experimental 3 Results
	Sensitivity Analysis
	Sensitivity Analysis of m
	Sensitivity analysis of random initialization
	Sensitivity Analysis of the Number of Cluster Centers

	Run and Reference Code
	Run the Code
	Replication Statement
	Code of Riemannian Fuzzy K-Means
	Code of Riemannian Adan

