
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RIEMANNIAN FUZZY K-MEANS
ON PRODUCT MANIFOLDS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we address an open problem: how to perform fast clustering on
product manifolds. With the increasing interest in non-Euclidean data representa-
tions, clustering such data has become an important problem. However, a naive
extension of the classic K-Means algorithm to product manifolds requires O(νω)
time, where ω is the number of alternating iterations and ν is the time complexity
of each Riemannian optimization. Due to the need for numerous Riemannian
optimizations, the naive Riemannian K-Means (NRK) is not suitable for large-scale
data. To this end, we propose the Riemannian Fuzzy K-Means (RFK) algorithm for
product manifolds, which reduces the time complexity to O(ν). Importantly, RFK
is not a straightforward extension of K-Means or Fuzzy K-Means to manifolds,
it avoids the computation of the Fréchet mean and and achieve a true single-loop
optimization. Furthermore, we introduce Radan to accelerate the optimization of
RFK. We conduct extensive experiments. RFK and Radan outperform across nearly
all metrics in almost every dataset, reaching an impressive level of performance.
RFK and Radan have been integrated into several non-Euclidean machine
learning libraries, such as here. (See Appendix G)

1 INTRODUCTION

Non-Euclidean data representations have received widespread attention. Examples include text
embeddings in hyperbolic space (Dhingra et al., 2018), tree embeddings in the Poincaré disk (Nickel
& Kiela, 2017), and representations of cell-cycle data on the sphere (Bjerregaard et al., 2025). This
is because many real-world datasets exhibit non-Euclidean structure, and embedding such data in
appropriate non-Euclidean spaces can better preserve those structures (Sinha et al., 2024; Khan et al.,
2025). For example, hyperbolic space captures the hierarchical structure (Mandica et al., 2024a;
Chlenski et al., 2024), while spheres retain the periodic information (Bonev et al., 2025). Many
datasets not only have a single structure, so to preserve as much information as possible (Gu et al.,
2018), it is necessary to represent them on product manifolds.

A product manifold is formed by the Cartesian product of multiple manifolds (Wang et al., 2021),
i.e.,M =M1 × · · · ×MQ = ⊗Qp=1Mp, whereMp denotes the p-th component manifold of the
product manifold, with p ∈ {1, . . . , Q}. The product manifold inherits the characteristics of each
component manifold and possesses greater expressive power (Chlenski et al., 2025a). As a result,
product manifolds have been widely used for representing data from diverse domains (Sun et al.,
2022; McNeela et al., 2023; Xu et al., 2022; Chen et al., 2025), and clustering data represented on
such manifolds or their components has become an important problem (Sun et al., 2023a).

A natural approach is to naively extend the K-Means to product manifolds, referred to as Naive
Riemannian K-Means (NRK) (Miolane et al., 2020). However, we point out that NRK incurs a time
complexity of O(νω), where ω is the number of alternating iterations and ν is the time complexity
of each Riemannian optimization (Yuan et al., 2025b). This results in a double-loop structure to
solve the clustering problem, which is unacceptable for large-scale data. Therefore, how to perform
clustering efficiently remains an open problem that requires a solution (Tepper et al., 2018).

To address this problem, we propose Riemannian Fuzzy K-Means, abbreviated as RFK. Specifically,
we consider the equivalent relaxed version of K-Means, namely Fuzzy K-Means (Dehariya et al.,
2010). We identify a special structure of Fuzzy K-Means and leverage a particular technique to

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

transform the required double loop into a single loop and reduces the time from complexity O(νω)
to O(ν). In other words, the previously required ω times Riemannian optimizations are reduced to
only 1, significantly lowering the computational cost, where ω � 1.

To further accelerate RFK, we adapt the well-known Nesterov adaptive optimization algorithm (Adan)
(Xie et al., 2024) to product manifolds, resulting in a Riemannian Nesterov acceleration method,
termed Radan. We also establish the regret bound (Mukkamala & Hein, 2017) and convergence
properties of Radan under certain conditions.

We validate our algorithm on a wide range of datasets. Specifically, we perform clustering using
various methods on data represented in hyperbolic space, spherical manifolds, Euclidean space, and
their product manifolds. We compare the speed of RFK with that of NRK, the speed of Radan with
that of Riemannian Adam (Becigneul & Ganea, 2019), and the clustering performance of RFK with
several state-of-the-art clustering algorithms. We conducted extensive experiments, which yielded
remarkable results: RFK significantly outperforms NRK in speed, Radan converges faster than
Radam, and RFK achieved the best clustering performance on nearly all datasets. In summary, our
contributions are following.

• We address the open problem of fast clustering on product manifolds by proposing the
RFK algorithm, which reduces the time complexity from O(νω) of the naive Riemannian
K-Means to O(ν).

• We modify the Adan optimizer to make it compatible with product manifolds, resulting in
Radan, and provide theoretical guarantees including a regret bound and convergence proof.

• We conduct extensive numerical experiments to demonstrate the effectiveness of our al-
gorithm. RFK is significantly faster than NRK, Radan provides acceleration over the
Riemannian Adam (Radam), and RFK substantially outperforms existing algorithms in
clustering metrics on manifold-represented data.

In addition, we propose a new insight, pointing out that the reason NRK cannot be accelerated lies in
its hard assignment. We recommend RFK instead of NRK for clustering on manifolds.

2 PRELIMINARIES

2.1 NOTATIONS

Let the dataset be X = {x1, . . . , xN}, and let cj denote the j-th cluster center. C is the number
of clusters. For a product manifold denoted by M, each of its component manifolds is written
as Mp, such that M = ⊗Qp=1Mp. For any x ∈ M, x can be represented as (x1, x2, . . . , xQ),
where xp ∈Mp. For any points xp and yp on the component manifoldMp, dp(xp, yp) denotes the
geodesic distance between xp and yp onMp, the geodesic distance onM is denoted by d(x, y).

Let Hhi,K denote a Lorentz hyperbolic space of dimension hi with curvature K, Ssi,K denote a
spherical manifold of dimension si with curvature K, Rri denote a Euclidean space of dimension ri,
and D denote a two-dimensional Poincaré disk. Especially, when the curvatures of Ssi,K and Hhi,K

are (1,−1), we denote them simply as Ssi and Hhi , respectively.

TxpMp denotes the tangent space of the component manifoldMp at point xp, and ‖ · ‖ denotes
the norm in Euclidean space. The parallel transport on Mp from point xp to yp is denoted by
ϕpxp→yp(up), where up ∈ TxpMp. When there is no ambiguity, it is abbreviated as ϕp(up). The
parallel transport on the product manifoldM is denoted by ϕx→y(u). The exponential map onMp

is denoted by Exppcp(up), and the exponential map onM is denoted by Expc(u). Logpcp(xp) denotes
the logarithmic map onMp. Logc(x) denotes the logarithmic map on the product manifoldM;
log(·) refers to the natural logarithm. All the notations are summarized in Table 4.

2.2 CONSTANT-CURVATURE SPACES AND PRODUCT MANIFOLDS

Constant-curvature spaces (Jos et al., 1967) refer to one of the following: spherical spaces (positive
curvature), hyperbolic spaces (negative curvature) or Euclidean spaces(Alekseevskij et al., 1993).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

For an s-dimensional sphere Ss,K , it can be represented as Ss,K =
{
x ∈ Rs+1

∣∣ ‖x‖ = 1
K , K > 0

}
.

∀x, y ∈ Ss,K , the geodesic distance between x and y is d(x, y) = cos−1(K2〈x,y〉)
K , where 〈x, y〉

denotes the normal inner product in Rs+1 (Whittlesey, 2019).

For an h-dimensional hyperbolic space Hh,K , it can be represented as: Hh,K ={
x ∈ Rh+1

∣∣ ‖x‖h = 〈x, x〉h = − 1
K2 , K < 0, x0 ≥ 0

}
, where any x ∈ Hh,K is written as x =

(x0, . . . , xh), with xi ∈ R1 (Iversen, 1992), and the Lorentzian inner product (Tsamparlis, 2024) is
defined as 〈x, y〉h = −x0y0 +

∑h
i=1 x

iyi. For any x, y ∈ Hh,K , the geodesic distance (He et al.,

2025) between x and y is given by d(x, y) = − cosh−1(K2〈x,y〉h)
K . where H is also known as the

well-known Lorentz (hyperboloid) model of hyperbolic space.

A product manifold can be represented asM = ⊗Qp=1Mp. For any x, y ∈M, the geodesic distance
is generally given by Equation (1), where xp ∈Mp (Fumero et al., 2021).

d(x, y) =

√√√√ Q∑
p=1

d2p(xp, yp), x, y ∈M = ⊗Q
p=1Mp, x

p, yp ∈Mp (1)

When we focus on product manifolds composed of constant-curvature spaces, the structure becomes
M = ⊗ni=1Ssi,K ×⊗mj=1Hhj ,K × Rr. The dimension is

∑n
i=1 si +

∑m
j=1 hj + r (Lui, 2012).

2.3 K-MEANS AND FUZZY K-MEANS

The K-Means algorithm is a well-known clustering method (Likas et al., 2003; Na et al., 2010), and
its optimization problem can be formulated as following(Sinaga & Yang, 2020):

min
cj ,uij

JKM =

N∑
i=1

C∑
j=1

uij‖xi − cj‖2

s.t.
C∑

j=1

uij = 1, uij ∈ {0, 1}, ∀i = 1, . . . , N, ∀j = 1, . . . , C

(2)

Here, uij is an indicator variable, where uij = 1 indicates that the i-th sample belongs to the j-th
cluster. This problem is typically solved by alternating updates of {uij} and {cj}.
Fuzzy K-Means is a relaxed version of K-Means (Xu et al., 2016; Krasnov et al., 2023), in which the
constraint uij ∈ {0, 1} is relaxed to 0 ≤ uij ≤ 1, with the additional requirement that

∑C
j=1 uij = 1,

where C is the number of clusters. Moreover, the loss term of K-Means uij‖xi − cj‖2 is replaced by
umij‖xi − cj‖2 when using fuzzy K-Means , where m is the fuzziness parameter (Li & Wang, 2023;
Suganya & Shanthi, 2012; Bezdek et al., 1984). Other related work can be found in Appendix C.

Cluster Center

Data Point

Geodesic
Straight Line

Figure 1: Visualization of the two reasons

3 OUR PROPOSED METHOD

3.1 NAIVE EXTENSION OF K-MEANS

The K-Means is clearly unsuitable for data
represented on a manifoldM, for two fol-
lowing reasons and shown in Figure 1.

• Incorrect distance comparisons: When data lie on a manifold, the Euclidean distance may
have ‖xi−cj‖ < ‖xi−ck‖, while the actual geodesic distances satisfy d(xi, cj) > d(xi, ck).
This mismatch can lead to incorrect cluster assignments.

• Invalid cluster centers: Without appropriate constraints, the computed cluster centers cj
may lie outside the manifold, i.e., cj /∈M, rendering the cluster centers meaningless in the
context of the manifold. Meanwhile, the geodesic distance d(xi, cj) is not well-defined.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Therefore, a naive approach is to replace the Euclidean distance with geodesic distance and impose
the constraint that the cluster centers lie on the manifold. This leads to the following Equation (3).

min
cj ,uij

JKM (uij , cj) =

N∑
i=1

C∑
j=1

uijd
2(xi, cj) =

N∑
i=1

C∑
j=1

Q∑
p=1

uijd
2
p(x

p
i , c

p
j)

s.t.
C∑

j=1

uij = 1, uij ∈ {0, 1}, ∀i = 1, . . . , N, ∀j = 1, . . . , C

s.t. cj ∈M, M = ⊗Q
p=1Mp, ∀j = 1, . . . , C

(3)

Similar to K-Means in Euclidean space, this problem can be solved by alternating updates of {uij}
and {cj}. The update of {uij} is identical to that in the Euclidean case: for each xi, one simply
identifies the cluster center cj that minimizes

∑Q
p=1 d

2
p(x

p
i , c

p
j), and sets the corresponding uij = 1.

However, the update of {cj} differs significantly from the Euclidean case.

When updating {cj}, the constraint cj ∈M, M = ⊗Qp=1Mp leads to the Riemannian optimization
problem (4), which can typically be addressed using methods such as Riemannian gradient descent.

min
cj

JKM (cj) =

N∑
i=1

C∑
j=1

uijd
2(xi, cj) =

N∑
i=1

C∑
j=1

Q∑
p=1

uijd
2
p(x

p
i , c

p
j)

s.t. cj ∈M, M = ⊗Q
p=1Mp, ∀j = 1, . . . , C

(4)

This is the well-known problem of finding Fréchet means (Iao et al., 2025; Wu & Pan, 2025a) on a
manifold. In general, closed-form solutions do not exist (Capitaine et al., 2024), it’s the fundamental
difference from the flat Euclidean spaces. It is also means that the naive extension of Fuzzy K-Means
to manifolds also requires computing the Fréchet centers, which entails the same time complexity.
This highlights that our proposed RFK algorithm is not a naive extension of Fuzzy K-Means.

This approach to performing K-Means clustering on product manifolds is referred to as Naive
Riemannian K-Means (NRK). Analyzing this algorithm, it is not difficult to see that if computing
the Fréchet mean in each iteration requires Riemannian optimization with time complexity O(ν)
(Lou et al., 2020), and the clustering process involves O(ω) alternating updates of {uij} and {cj},
then the total time complexity is O(νω). Since both ν and ω are typically large, clustering becomes
unacceptable for large-scale data. Therefore, reducing the time complexity is of critical importance.

3.2 RIEMANNIAN FUZZY K-MEANS

From the above analysis, it is clear that due to the constraint cj ∈M, M = ⊗Qp=1Mp, Riemannian
optimization is unavoidable. Therefore, if we aim to reduce the overall complexity, the only viable
approach is to reconsider the treatment of {uij}.

If a smooth mapping uij = f(cj) can be found, such that JKM becomes a differentiable function of
cj , then alternating optimization can be avoided entirely. However, for standard K-Means, this is not
possible. The update rule for uij is inherently non-smooth and discrete:

uij =

{
1, j = argminj∈{1,...,C}

∑Q
p=1 d

2
p(x

p
i , c

p
j),

0, otherwise.
(5)

To address this issue, we adopt the relaxed version of K-Means, Fuzzy K-Means, whose optimization
objective is given by:

min
cj ,uij

JFK(uij , cj) =

N∑
i=1

C∑
j=1

um
ijd

2(xi, cj) =

N∑
i=1

C∑
j=1

Q∑
p=1

um
ijd

2
p(x

p
i , c

p
j)

s.t.
C∑

j=1

uij = 1, uij ≥ 0, ∀i = 1, . . . , N, ∀j = 1, . . . , C

s.t. cj ∈M, M = ⊗Q
p=1Mp, ∀j = 1, . . . , C

(6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

For fixed {cj}, the optimal memberships uij are given in closed form by:

uij(cj) = argmin
uij≥0,

∑C
j=1 uij=1

(
N∑
i=1

C∑
j=1

Q∑
p=1

um
ijd

2
p(x

p
i , c

p
j)

)
=

 C∑
k=1

(∑Q
p=1 d

2
p(x

p
i , c

p
j)∑Q

p=1 d
2
p(x

p
i , c

p
k)

) 1
m−1

−1

, (7)

By substituting uij(cj) into JFK , the objective function JFK can be expressed as an optimization
problem depending solely on {cj}, specifically:

JFK

(
uij(cj), cj

)
=

N∑
i=1

C∑
j=1

[
C∑

k=1

(∑Q
p=1 d

2
p(x

p
i , c

p
j)∑Q

p=1 d
2
p(x

p
i , c

p
k)

) 1
m−1

]−m Q∑
p=1

d2p(x
p
i , c

p
j)︸ ︷︷ ︸

A1

=

N∑
i=1

C∑
j=1

((Q∑
p=1

d2p(x
p
i , c

p
j)
) 1

m−1 Si

)−m
Q∑

p=1

d2p(x
p
i , c

p
j) =

N∑
i=1

C∑
j=1

(Q∑
p=1

d2p(x
p
i , c

p
j)
)− 1

m−1 S−m
i

=

N∑
i=1

S−m
i

C∑
j=1

(Q∑
p=1

d2p(x
p
i , c

p
j)
)− 1

m−1 =

N∑
i=1

S1−m
i =

N∑
i=1

(
C∑

j=1

(Q∑
p=1

d2p(x
p
i , c

p
j)
)− 1

m−1

)1−m

︸ ︷︷ ︸
A2

.

(8)

Let Si =
∑C
j=1

(∑Q
p=1 d

2
p(x

p
i , c

p
j)
)− 1

m−1

be an intermediate variable introduced during simplifica-
tion. By simplifying to form A2, the objective function JFK is expressed solely in terms of {cj}.
This enables Riemannian optimization to be performed directly on {cj}, without alternating between
{uij} and {cj}.
It is important to note that the simplification from A1 to A2 is necessary, because computing the
gradient of Equation (4) requires evaluating a triple sum, while differentiatingA1 involves a quadruple
sum. Only by converting to the A2 form, also involving a triple sum, can we ensure that this step
does not introduce additional computational cost.

Analyze the time complexity of optimizing JFK : since the time complexity of taking the derivative
of Equation (4) and that of A2 are the same (both have closed-form solutions), and operations such as
computing the Riemannian gradient during the optimization process also have identical complexity,
while Equation (4) requires ω times alternating updates between {uij} and {cj}, A2 only requires
one optimization. Therefore, we have successfully reduced the time complexity fromO(νω) toO(ν).

Specifically, when the distance on the product manifold is replaced by the distance on the manifold
M, A2 can be further simplified as Equation (9). For convenience, we will also use the notation
in Equation (9) in the following sections.

JFK

(
uij(cj), cj

)
=

N∑
i=1

(
C∑

j=1

d(xi, cj)
− 2

m−1

)1−m

, d(xi, cj) =

√√√√ Q∑
p=1

d2p(x
p
i , c

p
j), cj ∈M = ⊗Q

p=1Mp

(9)

3.3 RADAN ON PRODUCT MANIFOLDS

To further accelerate the RFK algorithm, we modify the Adan optimizer (Xie et al., 2024) and adapt
it to product manifolds. Adan is an algorithm that incorporates Nesterov acceleration (Zhou et al.,
2024) into adaptive optimization (Yue et al., 2021). We expect that this type of Nesterov method can
also be effective for optimization on product manifolds.

For Adan, we adopt a standard modification strategy (Boumal, 2023). Our adaptation of Adan consists
of three main components: updating momentum via parallel transport, maintaining the second-order
moment as a scalar, and performing updates using the exponential map. Specifically, let Riemannian
Adan at the t-th iteration involve parameters {gpt ,m

p
t , v

p
t , z

p
t , n

p
t , u

p
t , α

p
t }, p ∈ {1, . . . , Q}, where

g denotes the Riemannian gradient, m the momentum, v an estimate of the Riemannian gradient
difference, z and n the estimations of the second-order moment of the gradient, u the update direction,
and α the learning rate, with p indicating the component on the p-th manifoldMp. During the update

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

of mp
t+1, we apply parallel transport, i.e., mp

t = βp1tϕ
p(mp

t−1) + (1 − βp1t)g
p
t , similar updates are

applied to all other vector-based quantities involving subtraction. For the scalar maintenance of npt ,
we use the update npt = βp3tn

p
t−1 + (1− βp3t)‖z

p
t ‖2ypt . Finally, the parameter update is conducted via

the exponential map: ypt+1 = Expp(−αptu
p
t).

No. 1 / 1

(a) Adan optimizer

No. 1 / 1

(b) Radan optimizer

No. 1 / 1

(c) Radam optimizer

Figure 2: Update Process Illustration of Adan, Radan, and Radam Optimizers.

Figure 2 presents the update details of Adan, Radan, and Radam on the product manifold, using the
simplified notation from Equation (9). Here, mt = (m1

t , . . . ,m
Q
t), β1t = (β1

1t, . . . , β
Q
1t), and other

variables are similarly updated on each component manifold.

To characterize its local convergence rate, We adopt a standard approach by analyzing the algorithm
in a region where geodesic convexity holds, as the vicinity of a local minimum is guaranteed to
be geodesically convex under standard second-order optimality conditions (Boumal, 2023). In this
setting, we assume the product manifold M is bounded by a diameter D∞ and has a curvature
function ζ(κ, c). This is also a common assumption in the literature (Becigneul & Ganea, 2019).

Theorem 3.1. Let yt be the sequence generated by the Radan algorithm. Under the standard
assumptions, the regret bound RT satisfies the following. The proof is in Appendix A.1.

RT ≤
ζ(κ, c) · (3− 2β1)ηG

2
√
T
√
1 + logT

2(1− β1)3
+

2ηβ1G

(1− β1)3
√
T

+
GD2

∞(1 + 2β2)
√
T

2(1− β1) · η
+

T∑
t=1

4D2
∞G

2β2t
1− β1

+

T∑
t=1

√
t(1 + 2β2)GD

2
∞β1t

η(1− β1)

(10)

Theorem 3.2. In the bound Equation (10), any non-summation term K(T) satisfies o
(
K(T)
T

)
=

0. For the summation terms, as long as the parameter decay conditions o
(∑T

t=1 β1t

√
t

T

)
= 0,

o
(∑T

t=1 β2t

T

)
= 0 and β3t = 1− 1

t are met, Radan converges to the optimum. Here, o(·) represent
asymptotically vanishing terms. The proof is in Appendix A.2.

While our convergence proof requires decaying β, our experiments adopt the standard practice of
using fixed values for their proven empirical effectiveness and simplicity (Becigneul & Ganea, 2019;
Kochurov et al., 2020). By optimizing Equation (9), we obtain the final cluster centers {cj} upon
completion. Then, by applying Equation (7), we compute the assignment results {uij}, completing
the clustering process.

3.4 CALCULATE RIEMANNIAN GRADIENT

During the Riemannian optimization process, it is also necessary to compute the Riemannian gradient.
Below, we provide the expressions for the Riemannian gradient on three constant curvature manifolds:
Euclidean space, hyperspherical manifold, and hyperbolic space.

Theorem 3.3. On a single constant-curvature manifold Rr, Ss,K , or Hh,K , the Riemannian gradient
of the Riemannian Fuzzy K-Means objective function JFK with respect to the cluster center ck is
uniformly expressed as:

gradck
JFK = −2

N∑
i=1

S−m
i d(xi, ck)

− 2m
m−1 Logck (xi), (11)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where Logck(xi) denotes the logarithmic map of point xi at ck. The Logck(xi) on three types of
constant-curvature manifolds are given as follows. The proof is in Appendix A.3.

Logc(x) =


x− c, if x, c ∈ Rr,
θ

sin(θ)
(x− cos(θ) c) , θ = cos−1(K2〈c, x〉), if x, c ∈ Ss,K ,

θ

sinh(θ)

(
x+K2〈c, x〉h c

)
, θ = cosh−1(K2〈c, x〉h), if x, c ∈ Hh,K .

(12)

After computing according to Equation (11), the expression of the Riemannian gradient can be
obtained. By combining the Riemannian gradient with the corresponding logarithmic map, exponen-
tial map, and other operations on different manifolds, all steps of the Riemannian optimization to
solve RFK can be completed. Thereafter, we conduct extensive experiments on the RFK and Radan
algorithms to validate their speed and superior performance.

4 EXPERIMENTS

In this section, we conducted extensive experiments aiming to answer the following three questions:

• Q1: How much faster is the RFK algorithm compared to the NRF algorithm when run on
product manifolds? Does it achieve a lower loss value?

• Q2: When running Radan on product manifolds, does it accelerate the RFK algorithm
compared to Radam with standard hyperparameters?

• Q3: Compared to the current state-of-the-art clustering algorithms, can RFK demonstrate
better advantages for data represented on product manifolds?

We also provide several sensitivity analyses, including those on the fuzziness index m, the number of
cluster centers, and other key hyperparameters in the Appendix F.2.

4.1 DATASETS

The datasets on product manifolds include four parts: synthetic data, graph embedding data and
mixed-curvature VAE latent space data. More details are in Table 5.

Synthetic Data: We use the ’gaussian mixture’ function from Manify (Chlenski et al., 2025b) to
generate data with 3 clusters on different product manifolds, and generate a set of labels for clustering.

Graph Embedding Data: For the graph embedding data, it is divided into two parts. One part
selects the optimal embedding from

{(
H2
)2
, H2E2, H2S2, S2E2,

(
S2
)2
, H4, E4, S4

}
by means

of curvature estimation (Gu et al., 2018). The other part embeds the data into the 2D Poincaré disk D.

Mixed-curvature VAE Latent Space: We use data from the latent space of a mixed-curvature
variational autoencoder (Skopek et al., 2020) as the datasets, including the MNIST with over 600,000
samples. These product manifold representations are derived from the Manify (Chlenski et al.,
2025b).

We emphasize that the data already lying on the manifolds are the actual data we use, without
requiring any additional preprocessing.

4.2 EXPERIMENTS SETUP

4.2.1 EXPERIMENT SETUP FOR Q1

To verify that our RFK algorithm is faster than NRK, we ran both algorithms on the aforementioned
datasets and recorded their execution times. To ensure fair timing comparisons, we replaced non-
vectorized operations with matrix-based implementations for NRK (see Equation (7)). For the
optimization part, we used the proposed Radan optimizer for both methods, with parameters set as
{Radan: βp1 = 0.7, βp2 = 0.99, βp3 = 0.99}, and a common learning rate of 0.5 for testing. For RFK, the
stopping criterion for Radan was that the change in loss between iteration t and t+ 1 was less than
1e− 4. For NRK, there are two convergence criteria: the condition for updating the Fréchet mean is

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: RFK & NRK Time (s) and Cost on Datasets, OT means out-of-time
Method Gauss R4 Gauss H4 Gauss S2H2 Gauss R2S2H2 Gauss S2(H2)2 Gauss R4S4H4 Gauss R16S16H16 CiteSeer

Time Loss Time Loss Time Loss Time Loss Time Loss Time Loss Time Loss Time Loss

RFK 0.07 1499.84 0.21 1832.57 0.19 791.87 0.23 1569.92 0.45 1518.82 0.28 3549.86 0.25 35869.52 1.02 17.77
NRK 0.60 1451.24 36.27 1845.32 2.37 791.87 6.12 1569.92 63.90 1518.82 2.78 3549.86 0.82 35869.54 52.23 17.89

Method Cora PolBlogs Olsson Paul PoolBooks CIFAR-100 Lymphoma MNIST
Time Loss Time Loss Time Loss Time Loss Time Loss Time Loss Time Loss Time Loss

RFK 0.29 16.00 0.13 39.54 0.17 65.88 0.25 88.06 0.07 127.00 67.28 46450.93 3.61 878.25 82.76 668268.50
NRK 68.46 16.01 0.44 39.54 4.82 65.88 606.23 88.47 2.40 127.01 OT OT OT OT OT OT

the same as in RFK, while the global convergence condition is that the distance between the Fréchet
centers of two consecutive iterations is less than 1e−4.

4.2.2 EXPERIMENT SETUP FOR Q2

To evaluate the optimization capabilities of Radan and Radam on the RFK loss function, we designed
Experiment 2, where both optimizers adopt their standard parameter settings: {Radan: βp1 = 0.7,
βp2 = 0.99, βp3 = 0.99}, {Radam: βp1 = 0.99, βp2 = 0.999}. We trained using a range of learning
rates {0.1, 0.3, 0.5, 0.7, 1}, comparing the minimum and last values of the mean RFK loss under
different learning rates. Each optimizer was run for 300 iterations. Notably, we use standard
hyperparameters since adaptive optimizers are considered insensitive to them (Gkouti et al., 2024),
and we aim to spare users from tuning when applying RFK.

4.2.3 EXPERIMENT SETUP FOR Q3

To compare the clustering performance of the RFK algorithm, we evaluated it on the above datasets
against 10 competitive algorithms (Hu et al., 2023; Abdullah et al., 2024; Nie et al., 2024; Zhong
& Pun, 2021; Chen et al., 2017; Huang et al., 2019; Nie et al., 2023; Liu et al., 2012; Elhamifar &
Vidal, 2013), using five metrics: ACC (Yuan et al., 2025a; Wang et al., 2025), NMI (Xie et al., 2025),
ARI (Yuan et al., 2024), F1 (Du et al., 2024), and Purity (Huang et al., 2024). RFK was optimized by
Radan. Detailed experimental settings are in Appendix E.2.

4.3 EXPERIMENTS RESULT

4.3.1 EXPERIMENT RESULT FOR Q1

Table 1 presents the runtime and final loss of the RFK and NRK algorithms. As shown, RFK achieves
speedups of over 100× compared to NRK on some datasets. On certain large-scale datasets, NRK
runs out of time. Although RFK and NRK optimize the same objective, RFK generally attains a
lower final loss. Figure 3 shows the loss curves of RFK and NRK. The NRK curves exhibit step-like
drops due to alternating updates of the assignment and the Fréchet center, whereas the RFK curves
decrease more smoothly, require significantly fewer iterations, and converge to a lower final value.

0 50 100 150 200 250 300

Iteration Count

1000

1500

2000

2500

3000

3500

4000

C
lu

st
er

in
g

Lo
ss

RFK

NRK

(a) Gauss R4

0 2000 4000 6000 8000 10000 12000 14000 16000

Iteration Count

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

C
lu

st
er

in
g

Lo
ss

RFK
NRK

100 150 200 250
1800

2000

2200

2400

2600

(b) Gauss H4

0 50 100 150 200 250 300 350 400 450

Iteration Count

700

800

900

1000

1100

1200

1300

1400

1500

C
lu

st
er

in
g

Lo
ss

RFK

NRK

(c) Gauss S2H2

0 100 200 300 400 500 600 700 800 900

Iteration Count

1500

2000

2500

3000

C
lu

st
er

in
g

Lo
ss

RFK
NRK

(d) Gauss R2S2H2

0 1000 2000 3000 4000 5000 6000 7000

Iteration Count

1400

1600

1800

2000

2200

2400

2600

2800

C
lu

st
er

in
g

Lo
ss

RFK

NRK

-50 0 50 100

1600

1800

2000

2200

2400

2600

(e) Gauss S2(H2)2

0 50 100 150 200 250 300 350 400

Iteration Count

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

C
lu

st
er

in
g

Lo
ss

RFK
NRK

(f) Gauss R4S4H4

0 20 40 60 80 100 120

Iteration Count

3.5

4

4.5

5

5.5

6

6.5

C
lu

st
er

in
g

Lo
ss

104

RFK
NRK

(g) Gauss R16S16H16

0 500 1000 1500 2000 2500 3000 3500 4000

Iteration Count

0

100

200

300

400

500

600

700

800

900

1000

C
lu

st
er

in
g

Lo
ss

RFK
NRK

50 100 150 200

18

19

20

21

22

(h) CiteSeer

0 1000 2000 3000 4000 5000 6000 7000 8000

Iteration Count

0

50

100

150

200

250

300

350

400

450

C
lu

st
er

in
g

Lo
ss

RFK

NRK

0 50 100 150
0

100

200

300

400

(i) Cora

0 50 100 150

Iteration Count

0

50

100

150

200

250

300

350

400

C
lu

st
er

in
g

Lo
ss

RFK
NRK

(j) PolBlogs

Figure 3: Clustering loss curves for RFK and NRK

4.3.2 EXPERIMENT RESULT FOR Q2

Table 2 presents the average loss reduction results using the Radan and Radam optimizers. It can be
seen that Radan generally achieves lower loss values than Radam. Figure 4 shows the loss curves,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Radan & Radam Min and Last Loss on Various Datasets, OT means out-of-time
Method Gauss R4 Gauss H4 Gauss S2H2 Gauss R2S2H2 Gauss S2(H2)2 Gauss R4S4H4 Gauss R16S16H16 CiteSeer

Min Last Min Last Min Last Min Last Min Last Min Last Min Last Min Last

Radan 1499.84 1499.84 1832.57 1832.58 791.87 792.61 1518.82 1518.89 1569.92 1569.98 3459.86 3459.86 35869.50 35869.50 18.61 18.62
Radam 1533.27 1533.27 2016.92 2016.92 814.98 814.98 1544.57 1546.15 1619.51 1621.24 3627.76 3627.76 36047.06 36090.44 39.35 41.45

Method Cora PolBlogs Olsson Paul PoolBooks CIFAR-100 Lymphoma MNIST
Min Last Min Last Min Last Min Last Min Last Min Last Min Last Min Last

Radan 17.23 17.23 39.60 39.74 66.92 66.93 83.95 84.11 126.65 126.71 48850.73 49127.77 878.26 878.27 662611.31 667403.93
Radam 36.60 44.79 61.43 64.19 66.08 66.08 80.70 80.70 126.86 126.86 70860.14 71248.29 3381.86 3716.99 746378.43 727619.73

Table 3: ACC for all benchmarks. OT means out-of-time
Dataset Signature RFK NRK K-Means Ncut FCM UFCM LRR SSC SBMC USPEC Fast-CD

Sy
nt

he
tic

Gaussian R4 96.00 95.40 96.02 99.00 96.00 96.10 88.80 37.30 78.05 73.60 97.20
H4 99.80 99.00 40.42 99.10 55.40 39.30 99.80 47.80 60.30 90.41 66.50

S2H2 95.20 94.80 83.91 88.00 87.70 87.30 97.70 41.20 68.46 74.00 87.70
R2S2H2 96.20 95.80 61.20 99.40 75.80 60.36 93.70 45.10 82.07 46.22 86
S2(H2)2 97.80 97.80 44.23 77.05 47.70 44.67 96.60 43.60 73.21 60.37 61.20
R4S4H4 99.10 98.90 39.55 68.40 64.70 41.50 97.20 38.70 87.17 62.21 95.90

R16S16H16 98.00 77.10 37.98 76.30 40.50 37.71 38.60 37.40 55.38 63.93 53.50

G
ra

ph

CiteSeer (H2)2 25.36 20.09 20.80 24.91 20.05 21.60 19.86 25.35 19.81 23.92 20.62
Cora H4 29.22 18.19 18.06 20.57 18.27 18.83 18.15 29.10 17.08 20.00 18.19

PolBlogs (S2)2 94.36 93.62 93.90 54.66 93.54 94.01 68.66 51.96 54.65 59.16 93.70
Olsson D 67.72 67.45 61.57 60.24 60.37 60.71 44.16 60.73 51.31 57.25 60.21

Paul D 52.73 48.15 47.05 45.47 46.57 46.86 22.94 13.88 26.01 46.00 44.03
PolBooks D 81.90 68.57 39.68 34.27 36.34 42.44 OT OT 8.81 44.12 36.12

VA
E CIFAR-100 (H2)4 71.19 OT 5.75 OT 6.00 5.53 OT OT OT 5.21 OT

Lymphoma (S2)2 100.00 OT 78.28 OT 78.28 OT OT OT OT 78.28 OT
MNIST S2E2H2 96.09 OT 12.09 OT 15.40 13.01 OT OT OT 11.42 OT

with the red curve representing the mean loss of Radan and the blue representing Radam. The shaded
areas indicate variance. Radan consistently converges faster than Radam, typically within 50–100
iterations, whereas Radam requires around 300 iterations. Additionally, Radan generally achieves
lower final loss values.

0 50 100 150 200 250 300

Iteration Count

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

C
lu

st
er

in
g

Lo
ss

Radan ± std
Radam ± std
Radan mean
Radam mean

(a) Gauss R4

0 50 100 150 200 250 300

Iteration Count

1000

2000

3000

4000

5000

6000

7000

8000

C
lu

st
er

in
g

Lo
ss

Radan ± std
Radam ± std
Radan mean
Radam mean

(b) Gauss H4

0 50 100 150 200 250 300

Iteration Count

500

1000

1500

2000

2500

3000

3500

C
lu

st
er

in
g

Lo
ss

Radan ± std
Radam ± std
Radan mean
Radam mean

(c) Gauss S2H2

0 50 100 150 200 250 300

Iteration Count

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

C
lu

st
er

in
g

Lo
ss

Radan ± std
Radam ± std
Radan mean
Radam mean

(d) Gauss R2S2H2

0 50 100 150 200 250 300

Iteration Count

1000

2000

3000

4000

5000

6000

7000

C
lu

st
er

in
g

Lo
ss

Radan ± std
Radam ± std
Radan mean
Radam mean

(e) Gauss S2(H2)2

0 50 100 150 200 250 300

Iteration Count

3000

4000

5000

6000

7000

8000

9000

10000

11000

C
lu

st
er

in
g

Lo
ss

Radan ± std
Radam ± std
Radan mean
Radam mean

(f) Gauss R4S4H4

0 50 100 150 200 250 300

Iteration Count

3

3.5

4

4.5

5

5.5

6

C
lu

st
er

in
g

Lo
ss

104

Radan ± std
Radam ± std
Radan mean
Radam mean

(g) Gauss R16S16H16

0 50 100 150 200 250 300

Iteration Count

-200

0

200

400

600

800

1000

1200

1400

C
lu

st
er

in
g

Lo
ss

Radan ± std
Radam ± std
Radan mean
Radam mean

(h) CiteSeer

0 50 100 150 200 250 300

Iteration Count

-200

0

200

400

600

800

1000

1200

1400

C
lu

st
er

in
g

Lo
ss

Radan ± std
Radam ± std
Radan mean
Radam mean

(i) Cora

0 50 100 150 200 250 300

Iteration Count

-500

0

500

1000

1500

2000

2500

C
lu

st
er

in
g

Lo
ss

Radan ± std
Radam ± std
Radan mean
Radam mean

(j) PolBlogs

Figure 4: Clustering loss curves for Radan and Radam

4.3.3 EXPERIMENT RESULT FOR Q3

Table 3 presents the ACC metric of different clustering algorithms across various datasets. The
Dataset column lists all the datasets used, and Signature indicates the geometric structure of each
dataset. RFK is our proposed algorithm. As shown in the table, our method achieves the best
performance on nearly every dataset. In particular, for the MNIST dataset with 600,000 data points,
most clustering algorithms fail to produce results; K-Means achieves only about 12% accuracy,
whereas RFK reaches 96.09% accuracy, which is a remarkable outcome. This result is reasonable
because MNIST is well represented in non-Euclidean space, where existing algorithms cannot respect
the intrinsic geometric structure, while RFK effectively operates in non-Euclidean space, yielding this
impressive performance. Other results can be found in Appendix F.1. Here, OT denotes out-of-time.
All experiments were run on an Intel(R) Core(TM) i5-10200H CPU @ 2.40 GHz, with a predefined
time limit of 3600 seconds (1 hour). Any algorithm that fails to converge within this time window is
marked as out-of-time (OT).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 LIMITATIONS

We acknowledge that this work still has several limitations that warrant further investigation. First, our
theoretical assumptions rely on geodesic convexity, meaning that the convergence analysis of Radan
focuses on its behavior in a neighborhood around a local optimum. In future work, we aim to establish
convergence guarantees under more general conditions. Second, our analysis of Radan’s convergence
relies on a decaying learning rate, whereas our experiments use a fixed learning rate. Although this is
a common practice in Riemannian adaptive optimization, we plan to explore how to bridge this gap.
Finally, Riemannian Fuzzy K-Means requires access to closed-form geodesic distance formulas for
the manifolds on which it operates. While these formulas are known for commonly used manifolds
such as spheres, hyperbolic spaces, and their product manifolds, future work will investigate how to
extend our method to manifolds whose geodesic distances lack closed-form expressions.

6 CONCLUSION

In this paper, we address an open problem and propose the RFK algorithm, which reduces the time
complexity from O(νω) to O(ν). Furthermore, we introduce Radan as an optimizer for product
manifolds. Extensive experiments demonstrate that our algorithm achieves remarkable performance:
on some certain datasets, it runs over 100 times faster than NRK while achieving better clustering
results and lower loss values. Additionally, Radan converges faster than Radam under the RFK loss
with standard hyperparameters. Across almost all datasets, RFK significantly outperforms other
state-of-the-art clustering algorithms in all clustering metrics.

7 STATEMENT

For the reproducibility of this paper, we have submitted the complete anonymized code, data, and
experiment files with fixed random seeds, as detailed in Appendix G. In addition, large language
models (LLMs) were only used for language polishing.

REFERENCES

Abdulhady Abas Abdullah, Aram Mahmood Ahmed, Tarik Rashid, Hadi Veisi, Yassin Hussein
Rassul, Bryar Hassan, Polla Fattah, Sabat Abdulhameed Ali, and Ahmed S Shamsaldin. Advanced
clustering techniques for speech signal enhancement: A review and metanalysis of fuzzy c-means,
k-means, and kernel fuzzy c-means methods. arXiv preprint arXiv:2409.19448, 2024.

Dmitrij V Alekseevskij, Ernest B Vinberg, and Aleksandr S Solodovnikov. Geometry of spaces of
constant curvature. In Geometry II: Spaces of Constant Curvature, pp. 1–138. Springer, 1993.

Foivos Alimisis and Bart Vandereycken. Geodesic convexity of the symmetric eigenvalue problem
and convergence of steepest descent. Journal of Optimization Theory and Applications, 203(1):
920–959, 2024.

Horst Alzer and Man Kam Kwong. On young’s inequality. Journal of Mathematical Analysis and
Applications, 469(2):480–492, 2019.

Marc Arnaudon and Frank Nielsen. On approximating the riemannian 1-center. Computational
Geometry, 46(1):93–104, 2013.

Mina Ashizawa, Hiroaki Sasaki, Tomoya Sakai, and Masashi Sugiyama. Least-Squares Log-Density
Gradient Clustering for Riemannian Manifolds. In Aarti Singh and Jerry Zhu (eds.), Proceed-
ings of the 20th International Conference on Artificial Intelligence and Statistics, volume 54
of Proceedings of Machine Learning Research, pp. 537–546. PMLR, 20–22 Apr 2017. URL
https://proceedings.mlr.press/v54/ashizawa17a.html.

Gregor Bachmann, Gary Becigneul, and Octavian Ganea. Constant curvature graph convolutional
networks. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pp. 486–496. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
bachmann20a.html.

10

https://proceedings.mlr.press/v54/ashizawa17a.html
https://proceedings.mlr.press/v119/bachmann20a.html
https://proceedings.mlr.press/v119/bachmann20a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Gary Becigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. In Inter-
national Conference on Learning Representations, 2019. URL https://openreview.net/
forum?id=r1eiqi09K7.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

James C Bezdek, Robert Ehrlich, and William Full. Fcm: The fuzzy c-means clustering algorithm.
Computers & geosciences, 10(2-3):191–203, 1984.

Andreas Bjerregaard, Søren Hauberg, and Anders Krogh. Riemannian generative decoder. In ICML
2025 Generative AI and Biology (GenBio) Workshop, 2025. URL https://openreview.
net/forum?id=5i4ABK5QQp.

Boris Bonev, Max Rietmann, Andrea Paris, Alberto Carpentieri, and Thorsten Kurth. Attention on
the sphere. arXiv preprint arXiv:2505.11157, 2025.

Nicolas Boumal. An introduction to optimization on smooth manifolds. Cambridge University Press,
2023.

Louis Capitaine, Jérémie Bigot, Rodolphe Thiébaut, and Robin Genuer. Fréchet random forests
for metric space valued regression with non euclidean predictors. Journal of Machine Learning
Research, 25(355):1–41, 2024.

Alex Chen, Philippe Chlenski, Kenneth Munyuza, Antonio Khalil Moretti, Christian A. Naesseth,
and Itsik Pe’er. Variational combinatorial sequential monte carlo for bayesian phylogenetics in
hyperbolic space. In Yingzhen Li, Stephan Mandt, Shipra Agrawal, and Emtiyaz Khan (eds.),
Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, volume
258 of Proceedings of Machine Learning Research, pp. 2962–2970. PMLR, 03–05 May 2025.
URL https://proceedings.mlr.press/v258/chen25f.html.

Xiaojun Chen, Joshua Zhexue Haung, Feiping Nie, Renjie Chen, and Qingyao Wu. A self-balanced
min-cut algorithm for image clustering. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 2061–2069, 2017.

Philippe Chlenski, Ethan Turok, Antonio Khalil Moretti, and Itsik Pe’er. Fast hyperboloid decision
tree algorithms. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=TTonmgTT9X.

Philippe Chlenski, Quentin Chu, Raiyan R. Khan, Kaizhu Du, Antonio Khalil Moretti, and Itsik Pe’er.
Mixed-curvature decision trees and random forests. In Forty-second International Conference on
Machine Learning, 2025a. URL https://openreview.net/forum?id=wptlUkP48t.

Philippe Chlenski, Kaizhu Du, Dylan Satow, Raiyan R Khan, and Itsik Pe’er. Manify: A python
library for learning non-euclidean representations. arXiv preprint arXiv:2503.09576, 2025b.

Jose A Costa and Alfred O Hero. Manifold learning using euclidean k-nearest neighbor graphs
[image processing examples]. In 2004 IEEE International Conference on Acoustics, Speech, and
Signal Processing, volume 3, pp. iii–988. IEEE, 2004.

{Tim R.} Davidson, Luca Falorsi, Nicola {De Cao}, Thomas Kipf, and {Jakub M.} Tomczak.
Hyperspherical variational auto-encoders. In Ricardo Silva, Amir Globerson, and Amir Globerson
(eds.), 34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018, 34th Conference
on Uncertainty in Artificial Intelligence 2018, UAI 2018, pp. 856–865. Association For Uncertainty
in Artificial Intelligence (AUAI), January 2018. 34th Conference on Uncertainty in Artificial
Intelligence 2018, UAI 2018 ; Conference date: 06-08-2018 Through 10-08-2018.

Vinod Kumar Dehariya, Shailendra Kumar Shrivastava, and RC Jain. Clustering of image data set
using k-means and fuzzy k-means algorithms. In 2010 International conference on computational
intelligence and communication networks, pp. 386–391. IEEE, 2010.

Bhuwan Dhingra, Christopher J Shallue, Mohammad Norouzi, Andrew M Dai, and George E Dahl.
Embedding text in hyperbolic spaces. arXiv preprint arXiv:1806.04313, 2018.

11

https://openreview.net/forum?id=r1eiqi09K7
https://openreview.net/forum?id=r1eiqi09K7
https://openreview.net/forum?id=5i4ABK5QQp
https://openreview.net/forum?id=5i4ABK5QQp
https://proceedings.mlr.press/v258/chen25f.html
https://openreview.net/forum?id=TTonmgTT9X
https://openreview.net/forum?id=wptlUkP48t

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jiarui Ding and Aviv Regev. Deep generative model embedding of single-cell rna-seq profiles on
hyperspheres and hyperbolic spaces. Nature communications, 12(1):2554, 2021.

Liang Du, Yunhui Liang, Mian Ilyas Ahmad, and Peng Zhou. K-means clustering based on chebyshev
polynomial graph filtering. In ICASSP 2024-2024 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 7175–7179. IEEE, 2024.

Ehsan Elhamifar and René Vidal. Sparse subspace clustering: Algorithm, theory, and applications.
IEEE transactions on pattern analysis and machine intelligence, 35(11):2765–2781, 2013.

Tadashi Fujioka. Noncritical maps on geodesically complete spaces with curvature bounded above.
Annals of Global Analysis and Geometry, 62(3):661–677, 2022.

Marco Fumero, Luca Cosmo, Simone Melzi, and Emanuele Rodolà. Learning disentangled repre-
sentations via product manifold projection. In International conference on machine learning, pp.
3530–3540. PMLR, 2021.

Sagar Ghosh and Swagatam Das. Consistent spectral clustering in hyperbolic spaces. arXiv preprint
arXiv:2409.09304, 2024.

Nefeli Gkouti, Prodromos Malakasiotis, Stavros Toumpis, and Ion Androutsopoulos. Should i try
multiple optimizers when fine-tuning pre-trained transformers for nlp tasks? should i tune their
hyperparameters?, 2024. URL https://arxiv.org/abs/2402.06948.

Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning mixed-curvature representations
in product spaces. In International conference on learning representations, 2018.

Neil He, Menglin Yang, and Rex Ying. Lorentzian residual neural networks. In Proceedings of the
31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 1, pp. 436–447,
2025.

Haize Hu, Jianxun Liu, Xiangping Zhang, and Mengge Fang. An effective and adaptable k-means
algorithm for big data cluster analysis. Pattern Recognition, 139:109404, 2023.

Dong Huang, Chang-Dong Wang, Jian-Sheng Wu, Jian-Huang Lai, and Chee-Keong Kwoh. Ultra-
scalable spectral clustering and ensemble clustering. IEEE Transactions on Knowledge and Data
Engineering, 32(6):1212–1226, 2019.

Huajie Huang, Bo Liu, Xiaoyu Xue, Jiuxin Cao, and Xinyi Chen. Imbalanced credit card fraud
detection data: A solution based on hybrid neural network and clustering-based undersampling
technique. Applied Soft Computing, 154:111368, 2024.

Su I Iao, Yidong Zhou, and Hans-Georg Müller. Deep fréchet regression. Journal of the American
Statistical Association, (just-accepted):1–30, 2025.

Birger Iversen. Hyperbolic geometry. Number 25. Cambridge University Press, 1992.

Alan Julian Izenman. Introduction to manifold learning. Wiley Interdisciplinary Reviews: Computa-
tional Statistics, 4(5):439–446, 2012.

Vladimir Jaćimović and Aladin Crnkić. Clustering in hyperbolic balls. arXiv preprint
arXiv:2501.19247, 2025.

Francisco Jos, AuthorNameForHeading-FJ Herranz, and A Ballesteros. Spaces of constant curvature.
In none, 1967.

Raiyan R. Khan, Philippe Chlenski, and Itsik Pe’er. Hyperbolic genome embeddings. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=NkGDNM8LB0.

Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in pytorch,
2020. URL https://arxiv.org/abs/2005.02819.

12

https://arxiv.org/abs/2402.06948
https://openreview.net/forum?id=NkGDNM8LB0
https://openreview.net/forum?id=NkGDNM8LB0
https://arxiv.org/abs/2005.02819

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Daniel Krasnov, Dresya Davis, Keiran Malott, Yiting Chen, Xiaoping Shi, and Augustine Wong.
Fuzzy c-means clustering: A review of applications in breast cancer detection. Entropy, 25(7):
1021, 2023.

Hongzong Li and Jun Wang. From soft clustering to hard clustering: A collaborative annealing fuzzy
c-means algorithm. IEEE Transactions on Fuzzy Systems, 32(3):1181–1194, 2023.

Jun Li, Jinpeng Wang, Chaolei Tan, Niu Lian, Long Chen, Yaowei Wang, Min Zhang, Shu-Tao Xia,
and Bin Chen. Enhancing partially relevant video retrieval with hyperbolic learning. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 23074–23084, October
2025.

Aristidis Likas, Nikos Vlassis, and Jakob J Verbeek. The global k-means clustering algorithm. Pattern
recognition, 36(2):451–461, 2003.

Fang-Yu Lin, Bing Bai, Kun Bai, Yazhou Ren, Peng Zhao, and Zenglin Xu. Contrastive multi-view
hyperbolic hierarchical clustering. In International Joint Conference on Artificial Intelligence,
2022. URL https://api.semanticscholar.org/CorpusID:248525138.

Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, and Yi Ma. Robust recovery
of subspace structures by low-rank representation. IEEE transactions on pattern analysis and
machine intelligence, 35(1):171–184, 2012.

Aaron Lou, Isay Katsman, Qingxuan Jiang, Serge Belongie, Ser-Nam Lim, and Christopher De Sa.
Differentiating through the fréchet mean. In International conference on machine learning, pp.
6393–6403. PMLR, 2020.

Yui Man Lui. Human gesture recognition on product manifolds. The Journal of Machine Learning
Research, 13(1):3297–3321, 2012.

Paolo Mandica, Luca Franco, Konstantinos Kallidromitis, Suzanne Petryk, and Fabio Galasso.
Hyperbolic learning with multimodal large language models. In European Conference on Computer
Vision, pp. 382–398. Springer, 2024a.

Paolo Mandica, Luca Franco, Konstantinos Kallidromitis, Suzanne Petryk, and Fabio Galasso.
Hyperbolic learning with multimodal large language models. In European Conference on Computer
Vision, pp. 382–398. Springer, 2024b.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Daniel McNeela, Frederic Sala, and Anthony Gitter. Mixed-curvature representation learning for
biological pathway graphs. In 2023 ICML Workshop on Computational Biology, Honolulu, Hawaii,
USA, 2023.

Nina Miolane, Nicolas Guigui, Alice Le Brigant, Johan Mathe, Benjamin Hou, Yann Thanwerdas,
Stefan Heyder, Olivier Peltre, Niklas Koep, Hadi Zaatiti, et al. Geomstats: A python package for
riemannian geometry in machine learning. Journal of Machine Learning Research, 21(223):1–9,
2020.

Gal Mishne, Zhengchao Wan, Yusu Wang, and Sheng Yang. The numerical stability of hyperbolic
representation learning. In International Conference on Machine Learning, pp. 24925–24949.
PMLR, 2023.

Mahesh Chandra Mukkamala and Matthias Hein. Variants of rmsprop and adagrad with logarithmic
regret bounds. In International conference on machine learning, pp. 2545–2553. PMLR, 2017.

Shi Na, Liu Xumin, and Guan Yong. Research on k-means clustering algorithm: An improved
k-means clustering algorithm. In 2010 Third International Symposium on intelligent information
technology and security informatics, pp. 63–67. Ieee, 2010.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations.
Advances in neural information processing systems, 30, 2017.

13

https://api.semanticscholar.org/CorpusID:248525138

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Feiping Nie, Jitao Lu, Danyang Wu, Rong Wang, and Xuelong Li. A novel normalized-cut solver with
nearest neighbor hierarchical initialization. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 46(1):659–666, 2023.

Feiping Nie, Runxin Zhang, Yu Duan, and Rong Wang. Unconstrained fuzzy c-means based
on entropy regularization: An equivalent model. IEEE Transactions on Knowledge and Data
Engineering, 2024.

Huan Ren, Wenfei Yang, Xiang Liu, Shifeng Zhang, and Tianzhu Zhang. Learning shape-
independent transformation via spherical representations for category-level object pose estima-
tion. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=D4xztKoz0Y.

Frederic Sala, Chris De Sa, Albert Gu, and Christopher Ré. Representation tradeoffs for hyperbolic
embeddings. In International conference on machine learning, pp. 4460–4469. PMLR, 2018.

Kristina P Sinaga and Miin-Shen Yang. Unsupervised k-means clustering algorithm. IEEE access, 8:
80716–80727, 2020.

Aditya Sinha, Siqi Zeng, Makoto Yamada, and Han Zhao. Learning structured representations with
hyperbolic embeddings. Advances in Neural Information Processing Systems, 37:91220–91259,
2024.

Ondrej Skopek, Octavian-Eugen Ganea, and Gary Bécigneul. Mixed-curvature variational au-
toencoders. In 8th international conference on learning representations (ICLR 2020)(virtual).
International Conference on Learning Representations, 2020.

Raghav Subbarao and Peter Meer. Nonlinear mean shift over riemannian manifolds. International
journal of computer vision, 84(1):1–20, 2009.

R Suganya and R Shanthi. Fuzzy c-means algorithm-a review. International Journal of Scientific and
Research Publications, 2(11):1, 2012.

Li Sun, Zhongbao Zhang, Junda Ye, Hao Peng, Jiawei Zhang, Sen Su, and Philip S Yu. A self-
supervised mixed-curvature graph neural network. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 4146–4155, 2022.

Li Sun, Feiyang Wang, Junda Ye, Hao Peng, and S Yu Philip. Congregate: Contrastive graph
clustering in curvature spaces. In IJCAI, pp. 2296–2305, 2023a.

Li Sun, Feiyang Wang, Junda Ye, Hao Peng, and Philip S Yu. Contrastive graph clustering in
curvature spaces. arXiv preprint arXiv:2305.03555, 2023b.

Puoya Tabaghi, Chao Pan, Eli Chien, Jianhao Peng, and Olgica Milenkovic. Linear classifiers in
product space forms. arXiv preprint arXiv:2102.10204, 2021.

Mariano Tepper, Anirvan M Sengupta, and Dmitri Chklovskii. Clustering is semidefinitely not that
hard: Nonnegative sdp for manifold disentangling. Journal of Machine Learning Research, 19(82):
1–30, 2018.

Michael Tsamparlis. Lorentz inner product and lorentz tensors. In Solved Problems and Systematic
Introduction to Special Relativity, pp. 69–96. Springer, 2024.

Shen Wang, Xiaokai Wei, Cicero Nogueira Nogueira dos Santos, Zhiguo Wang, Ramesh Nallapati,
Andrew Arnold, Bing Xiang, Philip S Yu, and Isabel F Cruz. Mixed-curvature multi-relational
graph neural network for knowledge graph completion. In Proceedings of the web conference
2021, pp. 1761–1771, 2021.

Shuo Wang, Shunyang Huang, Jinghui Yuan, Zhixiang Shen, and zhao kang. Cooperation of experts:
Fusing heterogeneous information with large margin. In Forty-second International Conference on
Machine Learning, 2025. URL https://openreview.net/forum?id=lZ18hxItYI.

Marshall Whittlesey. Spherical geometry and its applications. Chapman and Hall/CRC, 2019.

14

https://openreview.net/forum?id=D4xztKoz0Y
https://openreview.net/forum?id=lZ18hxItYI

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Chengmao Wu and Sifan Pan. Fuzzy c-poincaré fréchet means clustering in hyperbolic space. Expert
Systems with Applications, pp. 128245, 2025a.

Chengmao Wu and Sifan Pan. Fuzzy c-poincaré fréchet means clustering in hyperbolic space. Expert
Systems with Applications, 288:128245, 2025b. ISSN 0957-4174. doi: https://doi.org/10.1016/
j.eswa.2025.128245. URL https://www.sciencedirect.com/science/article/
pii/S0957417425018640.

Fangyuan Xie, Jinghui Yuan, Feiping Nie, and Xuelong Li. Dual-bounded nonlinear optimal transport
for size constrained min cut clustering. arXiv preprint arXiv:2501.18143, 2025.

Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov
momentum algorithm for faster optimizing deep models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 46(12):9508–9520, 2024.

Jinglin Xu, Junwei Han, Kai Xiong, and Feiping Nie. Robust and sparse fuzzy k-means clustering.
In IJCAI, pp. 2224–2230, 2016.

Zhirong Xu, Shiyang Wen, Junshan Wang, Guojun Liu, Liang Wang, Zhi Yang, Lei Ding, Yan Zhang,
Di Zhang, Jian Xu, et al. Amcad: adaptive mixed-curvature representation based advertisement
retrieval system. In 2022 IEEE 38th International Conference on Data Engineering (ICDE), pp.
3439–3452. IEEE, 2022.

Menglin Yang, Min Zhou, Rex Ying, Yankai Chen, and Irwin King. Hyperbolic representation
learning: Revisiting and advancing. In International Conference on Machine Learning, pp.
39639–39659. PMLR, 2023.

Kisung You. Gradient of squared distance on a Riemannian manifold. URL https://kisungyou.
com/Blog/blog_004_GradientSquaredDistance.html.

Jinghui Yuan, Chusheng Zeng, Fangyuan Xie, Zhe Cao, Mulin Chen, Rong Wang, Feiping Nie,
and Yuan Yuan. Doubly stochastic adaptive neighbors clustering via the marcus mapping. arXiv
preprint arXiv:2408.02932, 2024.

Jinghui Yuan, Hao Chen, Renwei Luo, and Feiping Nie. A margin-maximizing fine-grained ensemble
method. In ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 1–5. IEEE, 2025a.

Jinghui Yuan, Fangyuan Xie, Feiping Nie, and Xuelong Li. Riemannian optimization on relaxed
indicator matrix manifold. arXiv preprint arXiv:2503.20505, 2025b.

Dongdong Yue, Simone Baldi, Jinde Cao, and Bart De Schutter. Distributed adaptive optimization
with weight-balancing. IEEE Transactions on Automatic Control, 67(4):2068–2075, 2021.

Kun Zhao, Azadeh Alavi, Arnold Wiliem, and Brian C Lovell. Efficient clustering on riemannian
manifolds: A kernelised random projection approach. Pattern Recognition, 51:333–345, 2016.

Guo Zhong and Chi-Man Pun. Improved normalized cut for multi-view clustering. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(12):10244–10251, 2021.

Pan Zhou, Xingyu Xie, Zhouchen Lin, Kim-Chuan Toh, and Shuicheng Yan. Win: Weight-decay-
integrated nesterov acceleration for faster network training. Journal of Machine Learning Research,
25(83):1–74, 2024.

Yidong Zhou, Su I Iao, and Hans-Georg Müller. Fréchet geodesic boosting. In Advances in Neural
Information Processing Systems, 2025. in press.

15

https://www.sciencedirect.com/science/article/pii/S0957417425018640
https://www.sciencedirect.com/science/article/pii/S0957417425018640
https://kisungyou.com/Blog/blog_004_GradientSquaredDistance.html
https://kisungyou.com/Blog/blog_004_GradientSquaredDistance.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

2 Preliminaries 2

2.1 Notations . 2

2.2 Constant-curvature Spaces and Product Manifolds 2

2.3 K-Means and Fuzzy K-Means . 3

3 Our proposed method 3

3.1 Naive Extension of K-Means . 3

3.2 Riemannian Fuzzy K-Means . 4

3.3 Radan on Product Manifolds . 5

3.4 Calculate Riemannian Gradient . 6

4 Experiments 7

4.1 Datasets . 7

4.2 Experiments Setup . 7

4.2.1 Experiment Setup for Q1 . 7

4.2.2 Experiment Setup for Q2 . 8

4.2.3 Experiment Setup for Q3 . 8

4.3 Experiments Result . 8

4.3.1 Experiment Result for Q1 . 8

4.3.2 Experiment Result for Q2 . 8

4.3.3 Experiment Result for Q3 . 9

5 Limitations 10

6 Conclusion 10

7 Statement 10

Appendices 18

A Proofs of Theorems 18

A.1 Proof of Theorem 3.1 . 18

A.1.1 Assumptions . 18

A.1.2 Proof Details . 19

A.1.3 Proof of Lemma . 24

A.2 Proof of Theorem 3.2 . 25

A.3 Proof of Theorem 3.3 . 26

A.3.1 Proof Details . 26

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.3.2 Proof of Lemma . 27

B Notations 28

C Related Work about Clustering on Manifold 28

D Background 29

D.1 What kind of data do we learn? . 29

D.2 Difference from manifold learning . 29

D.3 Basic principles of Riemannian machine learning 29

D.4 Miscellaneous questions . 29

E Details of the Experimental Setup 30

E.1 Datasets Description . 30

E.2 Experiment 3 Setup . 31

E.2.1 Benchmark Clustering Algorithms . 31

E.2.2 Clustering Accuracy (ACC) . 32

E.2.3 Normalized Mutual Information (NMI) 32

E.2.4 Adjusted Rand Index (ARI) . 33

E.2.5 F1 Score . 33

E.2.6 Purity . 33

F Additional Experimental Results 34

F.1 Experimental 3 Results . 34

F.2 Sensitivity Analysis . 34

F.2.1 Sensitivity Analysis of m . 34

F.2.2 Sensitivity analysis of random initialization 35

F.2.3 Sensitivity Analysis of the Number of Cluster Centers 36

G Run and Reference Code 37

G.1 Run the Code . 37

G.2 Replication Statement . 37

G.3 Code of Riemannian Fuzzy K-Means . 38

G.4 Code of Riemannian Adan . 42

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A PROOFS OF THEOREMS

A.1 PROOF OF THEOREM 3.1

In this section, we will prove the Theorem 3.1, which provides the regret bound for the Radan
algorithm. Before proceeding, we make the following assumption. These assumptions are all
standard assumptions in Riemannian optimization.

A.1.1 ASSUMPTIONS

Assumption 1. In the optimization problem solved by the Radan algorithm, the feasible domain is
geodesically bounded (Fujioka, 2022). That is, for any geodesic γ(t) within the feasible domain D,
its length satisfies that: ∫ ∞

t0

‖γ(t)‖yt dt ≤ D∞ (13)

Furthermore, let Log denote the logarithmic map. Then we have the inequality

‖Logyt(y)‖yt ≤ D∞ (14)

which we state as Lemma 1, and will prove later in the paper.

Assumption 2. We assume that in the Riemannian optimization problem solved by the Radan
algorithm, the curvature ζ of the Riemannian manifold on which the constraints are defined is
bounded. Specifically, in the Riemannian cosine law (Arnaudon & Nielsen, 2013):

d2(yt+1, y
∗) ≤ d2(yt+1, yt) · ζ(κ, c) + d2(yt, y

∗)− 2d(yt+1, yt)d(yt, y
∗) cosA (15)

For general spherical, hyperbolic, and their product manifolds, the curvature function ζ(κ, c) also
admits a unified formulation:

ζ(κ, c) =


√
|κ| c

tanh
(√
|κ| c

) , κ < 0,

tan(
√
κ c)√

κ c
, κ > 0,

(16)

which is a function of curvature and distance, and is commonly used in the convergence analysis of
Riemannian optimization algorithms. Here, c denotes the distance function, and it satisfies c ≤ D∞.
The function ζ(κ, c) is assumed to be bounded (Becigneul & Ganea, 2019).

Assumption 3. We assume that the gradient is bounded, i.e., the norm of the gradient at yt
satisfies‖gt‖yt ≤ G, which is a standard assumption commonly used in the proof of the theorem.

Assumption 4. Let the parallel transport of the vector mt−1 from yt−1 to yt be denoted by
ϕyt−1→yt(mt−1), which we abbreviate as ϕ(mt−1) when there is no ambiguity. We assume that the
parallel transport preserves the inner product of the vector, i.e.,

〈mt−1, vt−1〉yt−1
= 〈ϕ(mt−1), ϕ(vt−1)〉yt . (17)

Assumption 5. We assume that in the Riemannian optimization problem solved by the Radan
algorithm, the objective function is geodesically convex (Alimisis & Vandereycken, 2024). That is,
for any p, q ∈M and t ∈ [0, 1], the following holds:

f(γ(t)) ≤ (1− t)f(p) + tf(q), (18)

where γ is the geodesic connecting p and q. Furthermore, it can be shown that

f(yt)− f(y∗) ≤ 〈−gt, Logyt(y∗)〉yt , (19)

and we will provide a proof of this in Lemma 2.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.1.2 PROOF DETAILS

We now present Theorem 3.1 along with its proof.
Theorem A.1. Let yt be the sequence generated by the Radan algorithm. Under the standard
assumptions, the regret bound RT satisfies the following.

RT ≤
η
√
T
√
1 + logTG

(1− β1)2

[
ζ(κ, c)(3− 2β1)G

2(1− β1)
+

β1√
1− β3t(1− δ)

]
+
GD2

∞(1 + 2β2)
√
T

2(1− β1) · η
+

T∑
t=1

4D2
∞G

2β2t
1− β1

+

T∑
t=1

√
t(1 + 2β2)GD

2
∞β1t

η(1− β1)

(20)

Proof. According to the Radan algorithm, the update from step t to step t+ 1 is as follows:

mt = β1tϕ(mt−1) + (1− β1t)gt
vt = β2tϕ(vt−1) + (1− β2t)(gt − ϕ(gt−1))

zt = gt + β2t(gt − ϕ(gt−1))

nt = β3tnt−1 + (1− β3t)‖zt‖2yt
ut = mt + β2tvt

αt =
ηt√
nt

+ εt

yt+1 = Expyt(−αtut)

(21)

Here, ϕ is a parallel translation, which is assumed to preserve the inner product. Exp(·) is the
exponential map, and Log(·) is the logarithmic map. Also, β1t = β1 · f1(t), where f1(t) is a decay
function, and β2t = β2 · f2(t), where f2(t) is a decay function.

Given yt+1 = Exp(−αtut), according to the cosine theorem on the manifold, we have:

a2 ≤ b2ζ(κ, c) + c2 − 2bc cosA (22)

Based on the assumption of bounded curvature, we have that ζ(κ, c) is bounded, let:

a = d(yt+1, y
∗), b = d(yt+1, yt), c = d(yt, y

∗). (23)

Then , that is:

d2(yt+1, y
∗) ≤ d2(yt+1, yt) · ζ(κ, c) + d2(yt, y

∗)− 2d(yt+1, yt)d(yt, y
∗) cosA (24)

According to the definition of cosA, we have:

d(yt+1, yt)d(yt, y
∗) cosA = 〈Logyt(yt+1), Logyt(y

∗)〉yt = −αt〈ut, Logyt(y∗)〉yt (25)

Substituting this into the above Equation (24), we get:

2d(yt+1, yt)d(yt, y
∗) cosA = −2αt〈ut, Logyt(y∗)〉yt

≤ d2(yt, y
∗)− d2(yt+1, y

∗) + ζ(κ, c) · d2(yt+1, yt)

= d2(yt, y
∗)− d2(yt+1, y

∗) + ζ(κ, c)α2
t ‖ut‖2yt

(26)

By rearranging the terms and dividing both sides by αt, we obtain the following expression:

〈−ut, Logyt(y∗)〉yt ≤
1

2αt
[d2(yt, y

∗)− d2(yt+1, y
∗)] +

ζ(κ, c)αt‖ut‖2yt
2

(27)

Since ut = mt + β2tvt, then:

〈−mt, Logyt(y
∗)〉yt ≤

1

2αt
[d2(yt, y

∗)− d2(yt+1, y
∗)] +

ζ(κ, c)αt‖ut‖2yt
2

+ β2t〈vt, Logyt(y∗)〉yt
(28)

Also, because mt = β1tϕ(mt−1) + (1− β1t)gt, finally we have:

〈−(1− β1t)gt, Logyt(y∗)〉yt ≤
1

2αt
[d2(yt, y

∗)− d2(yt+1, y
∗)] +

ζ(κ, c)αt‖ut‖2yt
2

+ β2t〈vt, Logyt(y∗)〉yt + β1t〈ϕ(mt−1), Logyt(y
∗)〉yt

(29)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Dividing both sides of the equation by (1− β1t), we get the following expression:

〈−gt, Logyt(y∗)〉yt ≤
1

2αt(1− β1t)
[d2(yt, y

∗)− d2(yt+1, y
∗)] +

ζ(κ, c) · αt
2(1− β1t)

‖ut‖2yt

+
β2t

(1− β1t)
〈vt, Logyt(y∗)〉yt +

β1t
1− β1t

〈ϕ(mt−1), Logyt(y
∗)〉yt

(30)

Since f(x) is geodesically convex, according to Lemma 2, we have the following:

f(yt)− f(y∗) ≤ 〈−gt, Logyt(y∗)〉yt (31)

The regret bound is:

RT =

T∑
t=1

f(yt)− f(y∗) ≤
T∑
t=1

〈−gt, Logyt(y∗)〉yt

≤
T∑
t=1

1

2αt(1− β1t)
[d2(yt, y

∗)− d2(yt+1, y
∗)]︸ ︷︷ ︸

B1

+

T∑
t=1

ζ(κ, c)αt
2(1− β1t)

‖ut‖2yt︸ ︷︷ ︸
B2

+

T∑
t=1

β2t
(1− β1t)

〈vt, Logyt(y∗)〉yt︸ ︷︷ ︸
B3

+

T∑
t=1

β1t
1− β1t

〈ϕ(mt−1), Logyt(y
∗)〉yt︸ ︷︷ ︸

B4

(32)

For B1: First, we estimate the B1 term and identify its upper bound.

B1 ≤
1

2(1− β1)

[
T∑
t=1

(
1

αt
d2(yt, y

∗)− 1

αt
d2(yt+1, y

∗)

)]

=
1

2(1− β1)

[
T∑
t=2

(
1

αt
− 1

αt−1

)
d2(yt, y

∗) +
1

α1
d2(y1, y

∗)− 1

αT
d2(yT+1, y

∗)

]

≤ 1

2(1− β1)
·
T∑
t=2

(
1

αt
− 1

αt−1

)
D2
∞ +

1

α1
D2
∞

=
1

2(1− β1)
· 1

αT
D2
∞ −

1

α1
D2
∞ +

1

α1
D2
∞

=
1

2(1− β1)αT
D2
∞

=
D2
∞

2(1− β1) · ηT
√
nT (where ηT =

η√
T

)

(33)

The first inequality follows from the fact that β1t = β1f1(t), which decays term by term. Therefore,
1

1−β1t
≤ 1

1−β1
. The second inequality follows from the assumption that the feasible domain is

bounded, i.e.,
d(yt, y

∗) ≤ sup
x∈D

d(x, y∗) ≤ D∞. (34)

The mathematical logic behind the second inequality also includes 1
αt
≥ 1

αt−1
, which is derived from

β3t = 1− 1
t .

For B4: Next, we provide the upper bound for the fourth term B4. By Young’s inequality (Alzer &
Kwong, 2019), after making simple transformations, we can obtain the following expression:

〈ϕ(mt−1), Logyt(y
∗)〉yt ≤

ηt√
nt
‖ϕ(mt−1)‖2yt︸ ︷︷ ︸
B41

+

√
nt
ηt
‖Logyt(y∗)‖2yt︸ ︷︷ ︸

B42

(35)

Considering B41: Since ϕ preserves the inner product, we can obtain the following equality:

‖ϕ(mt−1)‖2yt = 〈ϕ(mt−1), ϕ(mt−1)〉yt = 〈mt−1,mt−1〉yt−1 = ‖mt−1‖2yt−1
. (36)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Furthermore, we can perform an equivalence transformation on B41.

T∑
t=1

ηt√
nt
‖ϕ(mt−1)‖2yt =

T∑
t=1

ηt√
nt
‖mt−1‖2yt−1

(37)

Since ‖gt+1‖yt+1 is bounded, it is evident that ‖mt+1‖yt+1 is also bounded. Therefore, to prove that
B41 is bounded, it suffices to show that

∑T
t=1

ηt√
nt
‖mt‖2yt is bounded.

Since mt = β1tϕ(mt−1) + (1− β1t)gt, by using the recurrence relation and mathematical induction,
it can be proven that:

m1 = β11ϕ(m0) + (1− β11)g1 = (1− β11)g1

m2 = β12ϕ(m1) + (1− β12)g2 = β12(1− β11)ϕ(g1) + (1− β12)g2

m3 = β13ϕ(m2) + (1− β13)g3 = β12β13(1− β11)ϕ(g1) + (1− β12)β13ϕ(g2) + (1− β13)g3

...

mt =
t∑

j=1

(1− β1j)

(
t−j∏
k=1

β1,(t−k+1)

)
ϕ(gj)

(38)
According to Lemma 3, using the inequality∥∥∥∥∥

n∑
i=1

aipi

∥∥∥∥∥
2

≤

(
n∑
i=1

ai

)(
n∑
i=1

ai‖pi‖2
)
, (39)

we can derive the following.

‖mt‖2yt = ‖
t∑

j=1

(1− β1j)

(
t−j∏
k=1

β1,(t−k+1)

)
ϕ(gj)‖2yt

≤

 t∑
j=1

(1− β1j)
t−j∏
k=1

β1,(t−k+1)

 t∑
j=1

(1− β1j)
t−j∏
k=1

β1,(t−k+1) · ‖gj‖2yj


≤

 t∑
j=1

(1− β1j)βt−j1

 t∑
j=1

(1− β1j)βt−j1 ‖gj‖2yj


(40)

Using the formula for the sum of a geometric series combined with the fact that β1 < 1:

1− β1j < 1,

t∑
j=1

βt−j1 = βt1

t∑
j=1

β−j1 = βt1 ·
β−11 (1− β−t1)

1− β−11

≤ 1

1− β1
(41)

we can proceed to derive the desired result.

‖mt‖2yt ≤

 t∑
j=1

(1− β1j)βt−j1

 t∑
j=1

(1− β1j)βt−j1 ‖gj‖2yj

 ≤ 1

1− β1

t∑
j=1

βt−j1 ‖gj‖2yj (42)

For nt, because nt = β3tnt−1 + (1− β3t)‖zt‖2yt , a similar discussion still applies:

n1 = β31 · n0 + (1− β31)‖z1‖2y1 = β31 · 0 + (1− β31)‖z1‖2y1
n2 = β32(1− β32)‖z1‖2y1 + (1− β32)‖z2‖2y2

...

nt =
1

t

t∑
j=1

‖zj‖2yj

(43)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

For zj , because of following:

zj = gj + β2t(gj − ϕ(gj−1)) = (1 + β2t)gj − β2tϕ(gj−1) (44)

we have that:

‖zj‖yj ≥ (1 + β2t)‖gj‖yj − β2t‖ϕ(gj−1)‖yj = ‖gj‖yj + β2t(‖gj‖yj − ‖ϕ(gj−1)‖yj) (45)

gj is the gradient at yj , gj−1 is the gradient at yj−1. For the step - size formula, ηt = η√
t
, when t is

large, yj ≈ yj−1, assume ‖gj‖yj ≈ ‖ϕ(gj−1)‖yj , similar to the Lipschitz continuity of the gradient.
Therefore, we have ‖zj‖2yj ≥ ‖gj‖

2
yj . From another perspective, if ‖zj‖2yj ≤ ‖gj‖

2
yj , one can always

restrict β2t = 0, in which case ‖zj‖2yj ≥ ‖gj‖
2
yj . Then for nt:

nt =
1

t

t∑
j=1

‖zj‖2yj ≥
1

t

t∑
j=1

‖gj‖2yj (46)

Next, consider the sum:
T∑
t=1

ηt√
nt
‖mt‖2yt ≤

T∑
t=1

ηt
(1− β1)

·
∑t
j=1(βt−j1 ‖gj‖2yj)√
1
t

∑t
j=1 ‖gj‖2yj

=

T∑
t=1

η

(1− β1)
·
∑t
j=1(βt−j1 ‖gj‖2yj)√∑t

j=1 ‖gj‖2yj

≤ 2η

(1− β1)2
·

√√√√ T∑
j=1

‖gj‖2yj

(47)

Since we assume the gradient is bounded, i.e., ‖gj‖yj ≤ G, we can proceed accordingly in the
analysis.

T∑
t=1

ηt√
nt
‖mt‖2yt ≤

2η

(1− β1)2
·

√√√√ T∑
j=1

‖gj‖2yj ≤
2η

(1− β1)2
·
√
TG2 =

2ηG

(1− β1)2
·
√
T (48)

In summary, we have:

T∑
t=1

β1t
1− β1t

· ηt√
nt
‖mt‖2yt ≤

T∑
t=1

β1
1− β1

· ηt√
nt
‖mt‖2yt ≤

2ηβ1G

(1− β1)3
·
√
T (49)

Considering B42, we can directly use the boundedness of the feasible domain to obtain the following
expression:

T∑
t=1

√
nt
ηt
‖Logyt(y∗)‖2yt ·

β1t
1− β1t

≤ 1

1− β1

T∑
t=1

√
t · √nt
η

D2
∞ · β1t (50)

Since nt = 1
t

∑t
j=1 ‖zj‖2yj , we have the following:

nt =
1

t

t∑
j=1

‖zj‖2yj

≤ 1

t

t∑
j=1

(
‖gj‖yj + β2t‖gj‖yj + β2t‖ϕ(gj−1)‖yj

)2
≤ 1

t
G2

t∑
j=1

(1 + 2β2t)
2

≤ 1

t
G2t (1 + 2β2)

2 ≤ (1 + 2β2)2G2

(51)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

The above expression still uses the bounded gradient assumption. Substituting the earlier result, we
obtain:

T∑
t=1

√
nt
ηt
‖Logyt(y∗)‖2yt ·

β1t
1− β1t

≤ (1 + 2β2)GD2
∞

1− β1

T∑
t=1

√
tβ1t
η

(52)

For B2, we aim to provide an upper bound for
∑T
t=1

ζ(κ,c)αt

2(1−β1t)
‖ut‖2yt . According to the update rules:{

ut = mt + β2tvt

vt = β2tϕ(vt−1) + (1− β2t)(gt − ϕ(gt−1))
(53)

According to the update rule for vt and using the triangle inequality, we have

‖vt‖yt ≤
(
(1−β2t)·‖gt−ϕ(gt−1)‖yt+β2t‖ϕ(vt−1)‖yt

)
≤
(
(1−β2t)·(‖gt‖yt+‖ϕ(gt−1)‖yt)+β2t‖ϕ(vt−1)‖yt

)
(54)

Since (1− β2t) · (‖gt‖+ ‖ϕ(gt−1)‖yt) + β2t‖ϕ(vt−1)‖yt can be viewed as a convex combination
of (‖gt‖+ ϕ(gt−1)‖yt) and ‖ϕ(vt−1)‖yt , we have:

(1− β2t) · (‖gt‖yt + ‖ϕ(gt−1)‖yt) + β2t‖ϕ(vt−1)‖yt ≤ sup
yt

(‖gt‖yt + ‖ϕ(gt−1)‖yt) ≤ 2G. (55)

Therefore, based on the update rule for ut, together with the above result and the triangle inequality,
we obtain the following inequality:

‖ut‖2yt = ‖mt + β2tvt‖2yt
≤ (‖mt‖yt + β2t · ‖vt‖yt)2

≤ (supyt‖mt‖yt + supytβ2t · ‖vt‖yt)2

≤
(G

1− β1
+ 2β2G

)2
≤ (

3− 2β1
1− β1

)2G2

(56)

Therefore, we can obtain the upper bound for B2 as follows:

B2 =

T∑
t=1

ζ(κ, c)αt
2(1− β1t)

‖ut‖2yt ≤
T∑
t=1

ζ(κ, c) · η
2(1− β1)

√
t
(
3− 2β1
1− β1

)2G2

≤ ζ(κ, c) · η(3− 2β1)

2(1− β1)3

√√√√ T∑
t=1

1

t

√√√√ T∑
t=1

G4 ≤ ζ(κ, c) · (3− 2β1)ηG2
√
T
√

1 + logT

2(1− β1)3

(57)

For B3, we can directly apply the Cauchy-Schwarz inequality to estimate it.

T∑
t=1

β2t
1− β1t

〈vt, Logyt(y∗)〉yt ≤
T∑
t=1

β2t
1− β1

‖vt‖2yt‖Logyt(y
∗)‖2yt

≤
T∑
t=1

β2t
1− β1

· (2G)2 ·D2
∞

≤
T∑
t=1

4β2t
1− β1

D2
∞G

2

(58)

We also need to slightly rearrange and simplify the previously obtained expression for B1.

B1 =
D2
∞

2(1− β1) · ηT
√
nT ≤

D2
∞
√
T

2(1− β1) · η
√

(1 + 2β2)2G2 =
GD2

∞(1 + 2β2)
√
T

2(1− β1) · η
(59)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

By organizing all the terms, we obtain the regret bound:

RT =

T∑
t=1

(f(yt)− f(y∗)) ≤
T∑
t=1

〈−gt, Logyt(y∗)〉yt

≤ GD2
∞(1 + 2β2)

√
T

2(1− β1) · η
+
ζ(κ, c) · (3− 2β1)ηG2

√
T
√

1 + logT

2(1− β1)3
+

T∑
t=1

4β2t
1− β1

D2
∞G

2

+
2ηβ1G

(1− β1)3
·
√
T +

(1 + 2β2)GD2
∞

1− β1

T∑
t=1

√
tβ1t
η

(60)

Simplification yields the final expression for the regret bound:

RT ≤
ζ(κ, c) · (3− 2β1)ηG2

√
T
√

1 + logT

2(1− β1)3
+

2ηβ1G

(1− β1)3

√
T

+
GD2

∞(1 + 2β2)
√
T

2(1− β1) · η
+

T∑
t=1

4D2
∞G

2β2t
1− β1

+

T∑
t=1

√
t(1 + 2β2)GD2

∞β1t
η(1− β1)

(61)

A.1.3 PROOF OF LEMMA

In this section, we will provide proofs for the three lemmas used in Theorem 3.1.

Lemma 1. If the feasible domain D ⊂M is geodesically bounded (i.e., there exists a constant D∞
such that d(x, y) ≤ D∞ for all x, y ∈ D), then for any x ∈ D,

‖Logyt(x)‖yt ≤ D∞, (62)

where x is any point, and Logyt(·) is the logarithmic map onM.

Proof. By definition, the logarithmic map Logx(y) maps a point y ∈M to a tangent vector in TxM
whose norm equals the geodesic distance d(x, y):

‖Logx(y)‖x = d(x, y). (63)

Since D is geodesically bounded, for any yt ∈ D and x ∈ D , d(yt, x) ≤ D∞. Combining the above
two results,

‖Logyt(x)‖yt = d(yt, x) ≤ D∞. (64)
This completes the proof.

Lemma 2. If f :M→ R is a geodesically convex function, then for any yt ∈M,

f(yt)− f(y∗) ≤
〈
−gradf(yt),Logyt(y

∗)
〉
yt
, (65)

where gradf(yt) is the Riemannian gradient of f at yt.

Proof. A function f is geodesically convex if, for any geodesic γ : [0, 1]→M,

f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1)), ∀t ∈ [0, 1]. (66)

Let γ(0) = yt and γ(1) = y∗. Then,

f(γ(t)) ≤ (1− t)f(yt) + tf(y∗). (67)

Expand f(γ(t)) around t = 0 using the exponential map γ(t) = Expyt(t · Logyt(y
∗)):

f(γ(t)) = f(yt) + t
〈
gradf(yt),Logyt(y

∗)
〉
yt

+ o(t). (68)

Substituting into the geodesic convexity inequality:

f(yt) + t
〈
gradf(yt),Logyt(y

∗)
〉
yt

+ o(t) ≤ (1− t)f(yt) + tf(y∗). (69)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Rearranging terms and dividing by t > 0:〈
gradf(yt),Logyt(y

∗)
〉
yt

+
o(t)

t
≤ f(y∗)− f(yt). (70)

Taking t→ 0, the higher-order term o(t)
t → 0, yielding:

f(yt)− f(y∗) ≤ −
〈
gradf(yt),Logyt(y

∗)
〉
yt
. (71)

This completes the proof.

Lemma 3. Let p1,..., pk ∈ Rd and weights a1,...,ak ≥ 0. Then∥∥∥∥∥
k∑
i=1

aipi

∥∥∥∥∥
2

≤

(
k∑
i=1

ai

)(
k∑
i=1

ai‖pi‖2
)
. (72)

Proof. Define wi =
√
ai, vi :=

√
aipi. Then∥∥∥∥∥

k∑
i=1

aipi

∥∥∥∥∥
2

=

∥∥∥∥∥
k∑
i=1

wivi

∥∥∥∥∥
2

=

〈
k∑
i=1

wivi,

k∑
j=1

wjvj

〉
=

k∑
i=1

k∑
j=1

wiwj〈vi, vj〉

≤

(
k∑
i=1

w2
i

) k∑
j=1

‖vj‖2


︸ ︷︷ ︸
(by Cauchy Schwarz)

=

(
k∑
i=1

ai

) k∑
j=1

aj‖pj‖2
 ,

(73)

which proves the claim.

A.2 PROOF OF THEOREM 3.2

Theorem A.2. In the bound Equation (10), any non-summation term K(T) satisfies o
(
K(T)
T

)
=

0. For the summation terms, as long as the parameter decay conditions o
(∑T

t=1 β1t

√
t

T

)
= 0,

o
(∑T

t=1 β2t

T

)
= 0 and β3t = 1− 1

t are met, Radan converges to the optimum.

Proof. Recall from Theorem 3.2 that the total regret RT obeys:

RT ≤ K(T) +

T∑
t=1

At = K(T) +
T∑
t=1

4D2
∞G

2

1−β1
β2t︸ ︷︷ ︸

=:a2t

+

T∑
t=1

√
t(1 + 2β2)GD2

∞β1t
η(1− β1)︸ ︷︷ ︸

=:a1t

, (74)

where we have that:

K(T) =
ζ(κ, c) · (3− 2β1)ηG2

√
T
√

1 + logT

2(1− β1)3
+

2ηβ1G

(1− β1)3

√
T +

GD2
∞(1 + 2β2)

√
T

2(1− β1) · η
(75)

Dividing both sides by T gives:

RT
T
≤ K(T)

T
+

1

T

T∑
t=1

a1t +
1

T

T∑
t=1

a2t. (76)

Set the constants c1 =
(1+2β2)GD

2
∞

η(1−β1)
, c2 =

4D2
∞G

2

1−β1
, so that:

1

T

T∑
t=1

a1t =
c1
T

T∑
t=1

β1t
√
t,

1

T

T∑
t=1

a2t =
c2
T

T∑
t=1

β2t. (77)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Each summand in K(T) scales like T−1/2 (up to logarithmic factors), hence K(T)
T = o(1) =⇒

o
(
K(T)
T

)
= 0. By hypothesis, o

(
1
T

∑T
t=1 β1t

√
t
)

= 0, o
(

1
T

∑T
t=1 β2t

)
= 0. Multiplying by

the constants c1, c2 preserves the vanishing rate, so 1
T

∑T
t=1 a1t = o(1) and 1

T

∑T
t=1 a2t = o(1).

Combining these,

RT
T
≤ o(1)︸︷︷︸

K(T)/T

+ o(1)︸︷︷︸
(1/T)

∑
a1t

+ o(1)︸︷︷︸
(1/T)

∑
a2t

= o(1). (78)

Hence limT→∞RT /T = 0, i.e. Radan attains vanishing average regret and converges to the global
optimum.

A.3 PROOF OF THEOREM 3.3

A.3.1 PROOF DETAILS

Theorem A.3. On a single constant-curvature manifold Rr, Ss,K , or Hh,K , the Riemannian gradient
of the Riemannian Fuzzy K-Means objective function JFK with respect to the cluster center ck is
uniformly expressed as:

gradck
JFK = −2

N∑
i=1

S−m
i d(yi, ck)

− 2m
m−1 Logck (yi), (79)

where Logck(xi) denotes the logarithmic map of point xi at ck. The Logck(xi) on three types of
constant-curvature manifolds are given as follows.

Logc(x) =


x− c, if x, c ∈ Rr,
θ

sin(θ)
(x− cos(θ) c) , θ = cos−1(K2〈c, x〉), if x, c ∈ Ss,K ,

θ

sinh(θ)

(
x+K2〈c, x〉h c

)
, θ = cosh−1(K2〈c, x〉h), if x, c ∈ Hh,K .

(80)

Proof. To transform it into the above form, we simplify JFK using the expression of Si.

JFK
(
uij(cj), cj

)
=

N∑
i=1

 C∑
j=1

d(xi, cj)
− 2

m−1

1−m

,

Si =

C∑
j=1

(
Q∑
p=1

d2p(x
p
i , c

p
j)

)− 1
m−1

=

C∑
j=1

d(xi, cj)
− 2

m−1

(81)

Due to Equation 81, we can simply express JFK as Equation 82.

JFK
(
uij(cj), cj

)
=

N∑
i=1

 C∑
j=1

d(xi, cj)
− 2

m−1

1−m

=

N∑
i=1

S1−m
i (82)

Consider taking the Riemannian gradient with respect to the kk-th center ck. Obviously, when
differentiating Si with respect to ck, only the term with j = k is nonzero. Therefore, according to the
chain rule of Riemannian gradients, we obtain Equation 83.

gradck JFK = (1−m)

N∑
i=1

S−mi gradck
(
d(xi, ck)−

2
m−1

)
(83)

According to the lemma gradc d(x, c) = −Logc(x)d(x,c) (proved later), we further simplify Equation 83
and obtain Equation 84.

gradc d(x, c)a = ad(x, c)a−1 gradc d(x, c) = −ad(x, c)a−2Logc(x). (84)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

By setting a = − 2
m−1 , we obtain Equation 85.

gradck
(
d(xi, ck)−

2
m−1

)
= − 2

m− 1
d(xi, ck)

2
m−1−2Logck(xi) = − 2

m− 1
d(xi, ck)

−2m
m−1Logck(xi)

(85)
Simply substituting Equation 85 into Equation 83 yields Equation 11.

gradck JFK =(1−m)

N∑
i=1

S−mi gradck
(
d(xi, ck)−

2
m−1

)
=(1−m)

N∑
i=1

S−mi
(
− 2

m− 1
d(xi, ck)

−2m
m−1Logck(xi)

)
=− 2

N∑
i=1

S−mi d(xi, ck)−
2m

m−1 Logck(xi)

(86)

A.3.2 PROOF OF LEMMA

We now prove a key lemma.

Lemma A.4. Let x, c ∈M, and let d(x, c) denote the geodesic distance between x and c. Then we
have gradc d(x, c) = −Logc(x)d(x,c) .

Proof. First, consider the function f(c) = 1
2d

2(x, c) and its directional derivative along the direction
w, denoted by ∂f

∂w .
∂f

∂w
= lim

t→0

1

2

d2(x,Expc(tw))− d2(x, c)

t
(87)

Let γ(t) = Expc(tw), which is the geodesic starting from c along w. The directional derivative can
then be written as:

∂f

∂w
= lim

t→0

1

2

d2(x,Expc(tw))− d2(x, c)

t
=

d

dt
|t=0

1

2
d2(x, γ(t)) (88)

According to the standard formula in Riemannian geometry (You), we have:

d

dt

∣∣∣
t=0

1

2
d2(x, γ(t)) = 〈−Logc(x), w〉c (89)

Therefore, we obtain the final equation:

∂f

∂w
=

d

dt

∣∣∣
t=0

1

2
d2(x, γ(t)) = 〈−Logc(x), w〉c = 〈gradc(

1

2
d2(x, c)), w〉c (90)

So that:

gradc(d(x, c)) =
gradc(

1
2d

2(x, c))

d(x, c)
= −Logc(x)

d(x, c)
(91)

With this, we complete all the proofs.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

B NOTATIONS

Table 4 lists all the symbols used and their corresponding meanings.

Table 4: Notations in this paper.

Notation Description
X = {x1, . . . , xN} Dataset notation, consisting of N samples
xi The i-th sample
yt The coordinate of optimization variable y at step t
cj The j-th cluster center
Mp The p-th component manifold
⊗Qp=1Mp The product manifold of Q component manifolds
(x1i , x

2
i , . . . , x

Q
i) The coordinate representation of xi under Q product manifolds ⊗Qp=1Mp

dp(x
p, yp) The geodesic distance computed from the coordinates of x and y on the p-th component manifold

d(x, y) The distance between x and y on the product manifold ⊗Qp=1Mp

Hhi,K The hyperbolic space of dimension hi and curvature K, with K < 0
Hhi The hyperbolic space of dimension hi and curvature K, with K = −1
Ssi,K The spherical space of dimension si and curvature K, with K > 0

Ssi The spherical space of dimension si and curvature K, with K = 1
Rri The Euclidean space of dimension ri
D The 2-dimensional Poincaré disk
TxpMp The tangent space at xp on the p-th component manifold
TxM The tangent space at x on the product manifold ⊗Qp=1Mp

‖ · ‖ Euclidean norm
‖ · ‖xt

Riemannian norm at xt on the product manifold

ϕpxp→yp(up) On the p-th component manifold, parallel transport up from xp to yp.
ϕx→y(u) On the product manifold, parallel transport u from x to y.
Exppcp(up) Apply the exponential map to up at cp on the p-th component manifold.
Expc(u) Apply the exponential map to u at c on the product manifold.
Logpcp(xp) Apply the logarithmic map to up at cp on the p-th component manifold.
Logc(x) Apply the logarithmic map to u at c on the produc manifold.
log(·) Logarithmic function
{gpt ,m

p
t , v

p
t , z

p
t , n

p
t , u

p
t , α

p
t } Intermediate quantity of Radan on the p-th component manifold

{gt,mt, vt, zt, nt, ut, αt} Intermediate quantity of Radan on the product manifold
ζ(κ, c) Curvature function
D∞ Upper bound of the size of the geodesically convex region
γ(t) Geodesic

〈·, ·〉yt Riemannian inner product at yt
〈·, ·〉h hyperbolic inner product
Si Intermediate variable of RFK
β1t First hyperparameter of Radan
β2t Second hyperparameter of Radan
β3t Third hyperparameter of Radan
O(·) Infinitely large of the same order
o(·) infinitely small of the same order
RT Regret bound

C RELATED WORK ABOUT CLUSTERING ON MANIFOLD

In terms of clustering algorithm design for data distributed on manifolds, there has not been extensive
research so far. In (Miolane et al., 2020), an iterative Riemannian K-Means–style algorithm was
implemented by alternately updating the assignments {uij} and the centers {cj}, with a time
complexity of O(ων). Many application scenarios adopt this alternating update paradigm, such as
(Wu & Pan, 2025b). Some recent methods for clustering data distributed in hyperbolic spaces have
been proposed (Jaćimović & Crnkić, 2025; Ghosh & Das, 2024; Lin et al., 2022). However, these
approaches are not applicable to product manifolds and therefore cannot be compared with RFK.
There also exist deep learning–based clustering methods (Sun et al., 2023b). However, they lack
flexibility, lightweight implementation, and interpretability compared to machine learning–based
algorithms. Moreover, deep clustering frameworks often require a clustering procedure similar to
RFK to generate pseudo-labels for the learned deep representations. Hence, RFK can serve as a
natural and effective replacement for NRK in this context. Moreover, some clustering algorithms
assume data lie on an unknown submanifold; algorithms based on this idea still fail to fully respect
the data’s geometry. Such methods, e.g., Zhong & Pun (2021), are included in our comparisons. In
addition, we further compare with several clustering approaches defined on other manifolds (Subbarao
& Meer, 2009; Ashizawa et al., 2017; Zhao et al., 2016).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

D BACKGROUND

Since Riemannian machine learning is a relatively novel research direction and not yet widely familiar
to all readers, we provide a detailed introduction to the background of this field in this section.

D.1 WHAT KIND OF DATA DO WE LEARN?

In fact, Riemannian machine learning focuses on data that have already been represented on manifolds.
With the development of representation learning, researchers commonly use neural networks to
automatically extract features and obtain new representations of data (Bengio et al., 2013). However,
scientists soon realized that many types of data possess non-Euclidean structures, and forcibly
embedding them into Euclidean space causes distortions (Yang et al., 2023; Ren et al., 2025).

For example, for periodic data such as cells at different stages of a division cycle, Euclidean
embedding fails to capture periodicity, representing them on spheres, hyperspheres, or tori is more
appropriate (Davidson et al., 2018). Data with hierarchical structures—such as graphs or trees—are
better represented on hyperbolic manifolds (Sala et al., 2018; Mishne et al., 2023). Hyperbolic
representations have been widely used in video retrieval (Li et al., 2025), bioinformatics (Ding &
Regev, 2021), and large language models (Mandica et al., 2024b).

Moreover, if data simultaneously exhibit multiple structural properties, they are often embedded into
product manifolds composed of several manifolds (Chlenski et al., 2025a).

Riemannian machine learning focuses on such data that are already represented on manifolds, aiming
to perform classification (Bachmann et al., 2020), clustering (Ashizawa et al., 2017), and regression
(Zhou et al., 2025). In the narrow sense, Riemannian machine learning extracts information from
these non-Euclidean data, whereas obtaining these manifold-valued representations is the task of
Riemannian representation learning.

D.2 DIFFERENCE FROM MANIFOLD LEARNING

A standard assumption in machine learning is that data lie on some unknown manifold (Izenman,
2012). Manifold learning typically exploits local Euclidean approximations—for example, construct-
ing a KNN graph (Costa & Hero, 2004) and applying spectral clustering methods such as Ncut.
The key distinction from Riemannian machine learning is that manifold learning does not know
the underlying manifold structure. As a result, its algorithms do not leverage manifold geometry
explicitly and often perform poorly when data lie on a known manifold with known structure.

D.3 BASIC PRINCIPLES OF RIEMANNIAN MACHINE LEARNING

The fundamental principle of Riemannian machine learning is that problems should be considered
from the perspective of the manifold itself rather than the Euclidean embedding space (Miolane et al.,
2020).

A simple example is the construction of an airport at the geometric center of several countries: the
center should be computed using a manifold center (the Fréchet mean) and distances measured on the
manifold (the Earth’s sphere is a manifold). In contrast, using an Euclidean center could lead to a
meaningless point, such as somewhere inside the Earth’s interior.

D.4 MISCELLANEOUS QUESTIONS

Q1: How do we determine which manifold a dataset belongs to?

A1: Several established methods can identify intrinsic structures in raw data (such as periodicity or
hierarchy) and recommend an appropriate embedding manifold (Tabaghi et al., 2021).

Q2: How do we embed data onto these manifolds?

A2: This has also been extensively studied. Methods such as graph neural networks (Wang et al.,
2021), UMAP (McInnes et al., 2018), and coordinate-learning approaches (Gu et al., 2018) can
effectively map data into their corresponding manifolds.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 5: Description Table of the benchmark datasets

Dataset Signature Dimension Class Objects

Sy
nt

he
tic

Gaussian R4 4 3 1000
H4 5 3 1000

S2H2 6 3 1000
R2S2H2 8 3 1000
S2(H2)2 9 3 1000
R4S4H4 14 3 1000

R16S16H16 50 3 1000

G
ra

ph

CiteSeer (H2)2 6 6 2110
Cora H4 5 7 2485

PolBlogs (S2)2 6 2 1222
Olsson D 2 9 382

Paul D 2 20 2730
PolBooks D 2 3 106

VA
E CIFAR-100 (H2)4 12 10 500000

Lymphoma (S2)2 6 10 134100
MNIST S2E2H2 8 10 600000

E DETAILS OF THE EXPERIMENTAL SETUP

E.1 DATASETS DESCRIPTION

Table 5 presents the basic information of the datasets we used. Here, Signature refers to the type
of manifold onto which the dataset is embedded, Dimension indicates the dimensionality of the
embedding space, Class denotes the number of clusters in the data, and Objects specifies the total
number of samples in the dataset.

Here, we also provide a brief introduction to the background of these datasets, along with the sources
from which each dataset can be obtained.

• All Gaussian datasets are generated using Manify’s ’gaussian mixture’ function, with the
specific code as follows:

from manify.manifolds import ProductManifold
signature = [

(0.0, 16), # R^16 (Euclidean space)
(1.0, 16), # S^16 (Spherical space)
(-1.0, 16), # H^16 (Hyperbolic space)

]
P = ProductManifold(signature, device="cpu", stereographic=False)
n_clusters = 3
X, y_true = P.gaussian_mixture(

num_points=1000,
num_classes=n_clusters,
task="classification",
cov_scale_points=.1

)

To ensure reproducibility, we also saved the generated data, which can be found here1.

• CiteSeer, Cora, and PolBlogs are graph datasets, which can be represented in non-Euclidean
spaces using the following code:

import manify
from manify.utils.dataloaders import load_hf

1https://anonymous.4open.science/r/Manifold-Clustering-Data-3C53/

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

features, dists, adj, labels = load_hf("polblogs")

pm = manify.ProductManifold(signature=[(1.0, 4), (-1.0, 4)])

embedder = manify.CoordinateLearning(pm=pm)
X_embedded = embedder.fit_transform(X=None, D=dists,

burn_in_iterations=200, training_iterations=800)

In fact, the Manify GitHub repository already provides the pre-trained embeddings of these
datasets, which you can access there2, or alternatively obtain from our anonymous GitHub
repository3.

• Olsson, Paul, and PolBooks are also graph datasets, which are embedded in the Poincaré
disk. You can access the data here4, or alternatively obtain it through our anonymous link.

• The datasets CIFAR-100, Lymphoma, and MNIST are obtained using the VAE method
provided in Manify. The reference code is as follows:
encoder = torch.nn.Sequential(

torch.nn.Linear(784, 128),
torch.nn.ReLU(),
torch.nn.Linear(128, 2 * euclidean_manifold.dim), # The

INTRINSIC dimension of the manifold
)
decoder = torch.nn.Sequential(

torch.nn.Linear(euclidean_manifold.ambient_dim, 128), # The
AMBIENT dimension of the manifold

torch.nn.ReLU(),
torch.nn.Linear(128, 784),
torch.nn.Sigmoid(),

)

vae = manify.ProductSpaceVAE(pm=euclidean_manifold, encoder=
encoder, decoder=decoder)

mnist_embeddings = vae.fit_transform(
X=mnist_features.reshape(-1, 784), burn_in_iterations=1,

training_iterations=9, batch_size=128
)

Manify also provides the precomputed embeddings of these datasets, which can be accessed
here5 or through our anonymous link. In particular, MNIST performs poorly under small
learning rates. In the RFK algorithm, its learning rate is set to 3, while in Experiment 2 we
adopt the settings {2.1, 2.3, 2.5, 2.7, 3.0}.

E.2 EXPERIMENT 3 SETUP

E.2.1 BENCHMARK CLUSTERING ALGORITHMS

We compare it with 10 benchmark clustering algorithms across 7 toy datasets and 9 real-world
datasets. These algorithms include K-Means-based methods, graph-based methods, and subspace-
based methods. A detailed introduction to each algorithm is provided below.

• NRK, i.e., Naive Riemannian K-Means, is a K-Means-based algorithm that respects the
manifold structure but requires double loops. Our main contribution is to modify it in order
to reduce its complexity.

• KM partitions data into predefined clusters by minimizing the sum of squared distances
between data points and their corresponding cluster centers. It is simple but sensitive to
initial centroids and struggles with non-spherical clusters.

2https://github.com/pchlenski/manify/tree/Dataset-Generation/data/graphs/embeddings
3https://anonymous.4open.science/r/Manifold-Clustering-Data-3C53/
4https://github.com/drewwilimitis/hyperbolic-learning/tree/master/data/ucidata-zachary
5https://github.com/pchlenski/manify/tree/Dataset-Generation/data/mnist/embeddings

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

• Ncut improves on Ratio-Cut by normalizing the cut, balancing the partition while considering
the total graph weight. It’s better suited for non-convex and unevenly distributed clusters.

• FCM Fuzzy C-Means (or Fuzzy K-Means), can be regarded as a relaxation of K-Means.
Instead of hard assignments, it computes the similarity between each sample and each cluster
center as the assignment criterion. It is also a well-known clustering algorithm.

• UFCM This is an unconstrained Fuzzy C-Means algorithm, which aims to replace the
constrained alternating optimization in traditional Fuzzy C-Means with an unconstrained
gradient descent approach.

• LRR This is a subspace-based clustering method, which leverages low-rank representations
to obtain robust subspace clustering results.

• SSC This is also a subspace clustering method, characterized by sparse representation.
Through sparse representation, SSC can often identify the core low-rank structure of the
data, achieving excellent clustering performance while simultaneously reducing data dimen-
sionality.

• SBMC is a graph-based balanced clustering method. Being graph-based means it clusters
data by constructing a graph adjacency matrix. Balanced clustering indicates that the
clustering results tend to have roughly equal numbers of samples in each cluster.

• USPEC is one of the representative ensemble clustering algorithms. Ensemble clustering
integrates the information from multiple base clusterers to produce a final result, achieving
performance far superior to any single clusterer.

• Fast-CD This is a fast and stable clustering algorithm for solving the Ncut loss function,
which often achieves clustering results with lower loss than the Ncut itself, combining
efficiency and robustness.

To evaluate the clustering performance comprehensively, three metrics are applied, which are clus-
tering accuracy (ACC), normalized mutual information (NMI) and adjusted rand index (ARI). The
calculation of these three metrics are displayed below.

E.2.2 CLUSTERING ACCURACY (ACC)

Clustering Accuracy measures the proportion of correctly clustered data points by aligning predicted
cluster labels with ground truth labels. Since clustering algorithms do not inherently assign specific
labels, a permutation mapping is applied, often using the Hungarian algorithm, to maximize alignment.
The formula for ACC is:

ACC =
δ(map(ŷi), yi)

n
(92)

where δ(a, b) is an indicator function defined as:

δ(a, b) =

{
1, if a = b

0, otherwise,
(93)

Here, ŷi is the predicted label, yi is the true label, n is the total number of data points, and map(ŷi) is
the permutation mapping function that aligns predicted labels with ground truth labels. ACC ranges
from 0 to 1, with higher values indicating better clustering performance.

E.2.3 NORMALIZED MUTUAL INFORMATION (NMI)

Normalized Mutual Information quantifies the mutual dependence between clustering results and
ground truth labels, normalized to account for differences in label distributions. It evaluates the
overlap between clusters and true classes using information theory. Given predicted partitions

ˆ{Ci}
c

i=1 and ground truth partitions {Ci}ci=1, NMI is calculated as:

NMI =

∑c
i=1

∑c
j=1

∣∣∣Ĉi ∩ Cj∣∣∣ log
n|Ĉi∩Cj|
|Ĉi||Cj |√(∑c

i=1

∣∣∣Ĉi∣∣∣ log
|Ĉi|
n

)(∑c
j=1 |Cj | log

Cj

n

) (94)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Here, | · | denotes the size of a set, and Ĉi ∩Cj represents the number of data points belonging to both
the i-th predicted cluster and the j-th ground truth class. NMI ranges from 0 to 1, where 1 indicates
perfect agreement between clustering results and ground truth. It is particularly effective in scenarios
with imbalanced class distributions.

E.2.4 ADJUSTED RAND INDEX (ARI)

The Adjusted Rand Index measures the similarity between predicted clustering and ground truth by
comparing all pairs of samples and evaluating whether they are assigned to the same cluster in both
results. A contingency table H is first constructed, where each element hij represents the number of
samples in both predicted cluster Ĉi and ground truth cluster Cj . The formula for ARI is:

ARI(C̄, C) =

∑
ij

(
nij

2

)
−
[∑

i

(
ni

2

)∑
j

(
nj

2

)]
/
(
n
2

)
1
2

[∑
i

(
ni

2

)
+
∑
j

(
nj

2

)]
−
[∑

i

(
ni

2

)∑
j

(
nj

2

)]
/
(
n
2

) (95)

where
(
nij

2

)
=

nij(nij−1)
2 . ARI ranges from -1 to 1, where 1 indicates perfect clustering, 0 represents

random assignments, and negative values indicate worse-than-random clustering. ARI is robust to
differences in cluster sizes and does not favor a large number of clusters.

E.2.5 F1 SCORE

The F1 Score evaluates the balance between clustering precision and recall, capturing both the
completeness and exactness of the clustering results. It is computed based on pairwise precision and
recall between predicted clusters and ground truth classes. The F1 Score is defined as:

F1 =
2 · Precision · Recall
Precision + Recall

(96)

where Precision and Recall are given by:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(97)

Here, TP (true positives) is the number of data point pairs correctly assigned to the same cluster,
FP (false positives) is the number of pairs incorrectly assigned to the same cluster, and FN (false
negatives) is the number of pairs that belong to the same ground truth cluster but are assigned to
different clusters. F1 Score ranges from 0 to 1, with higher values indicating better clustering quality.

E.2.6 PURITY

Purity measures the extent to which clusters contain data points from a single ground truth class. For
each cluster, the class with the maximum frequency is identified, and the sum of these maximum
frequencies over all clusters is normalized by the total number of data points. Purity is defined as:

Purity =
1

n

∑
k

max
j
|Ck ∩ Lj | (98)

where Ck denotes the set of data points in cluster k, Lj denotes the set of data points in ground
truth class j, and n is the total number of data points. Purity ranges from 0 to 1, with higher values
indicating that clusters are more homogeneous with respect to the true labels.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 6: NMI for all benchmarks. OT means out-of-time
Dataset Signature RFK NRK K-Means Ncut FCM UFCM LRR SSC SBMC USPEC Fast-CD

Sy
nt

he
tic

Gaussian R4 88.49 88.37 88.39 95.87 88.36 88.54 69.01 0.51 52.81 62.61 91.18
H4 98.89 98.24 3.82 96.02 20.88 6.37 98.87 7.71 29.22 80.41 38.75

S2H2 84.16 84.16 69.67 73.00 71.90 71.58 89.96 0.35 42.12 62.28 72.39
R2S2H2 84.27 83.95 39.94 96.22 45.06 39.84 74.79 0.25 61.67 1.27 60.58
S2(H2)2 90.37 89.25 0.53 58.31 8.44 4.50 85.62 3.99 40.49 42.56 29.40
R4S4H4 95.70 95.42 7.13 57.73 57.58 8.97 87.58 5.46 68.57 45.00 86.70

R16S16H16 91.98 73.62 0.53 55.95 1.99 0.52 0.43 1.12 20.02 29.85 23.68

G
ra

ph

CiteSeer (H2)2 0.28 0.54 0.63 0.57 0.48 0.58 0.60 0.29 0.53 0.59 0.66
Cora H4 0.00 0.74 0.70 0.65 0.71 0.60 0.70 0.24 0.48 0.70 0.74

PolBlogs (S2)2 68.76 65.77 66.94 4.02 65.41 67.26 18.61 0.08 1.41 3.79 66.09
Olsson D 70.34 70.26 67.35 66.44 66.93 66.77 37.73 58.29 54.92 51.96 65.77

Paul D 61.70 59.78 58.28 55.95 58.11 58.24 27.25 0.67 32.06 58.59 56.41
PolBooks D 45.48 41.59 36.83 34.71 34.36 36.17 7.34 7.34 30.13 29.50 39.34

VA
E CIFAR-100 (H2)4 88.24 OT 0.52 OT 0.62 0.24 OT OT OT 0.17 OT

Lymphoma (S2)2 100.00 OT 0.00 OT 0.00 OT OT OT OT 0.00 OT
MNIST S2E2H2 93.00 OT 0.56 OT 2.76 0.99 OT OT OT 0.20 OT

Table 7: ARI for all benchmarks. OT means out-of-time
Dataset Signature RFK NRK K-Means Ncut FCM UFCM LRR SSC SBMC USPEC Fast-CD

Sy
nt

he
tic

Gaussian R4 90.12 89.63 90.17 97.42 90.12 90.35 72.99 0.46 52.68 65.73 95.09
H4 99.47 99.07 -0.27 97.35 17.68 -0.55 99.48 2.50 27.41 83.48 62.88

S2H2 87.70 85.45 70.89 74.88 74.24 73.64 93.58 0.16 41.03 65.74 82.90
R2S2H2 88.04 87.56 33.34 98.15 38.76 32.77 83.47 0.09 60.88 0.02 74.92
S2(H2)2 92.48 92.12 -1.55 42.72 -1.06 -1.27 88.69 -1.50 39.29 36.48 60.84
R4S4H4 97.34 96.25 0.99 55.54 53.28 2.07 91.78 0.32 68.88 44.29 92.57

R16S16H16 94.62 64.65 -0.09 52.69 0.08 -0.07 0.05 -0.30 18.54 29.25 50.03

G
ra

ph

CiteSeer (H2)2 0.04 0.20 0.33 -0.09 0.18 0.31 0.30 0.07 0.15 0.50 0.19
Cora H4 0.00 0.20 0.15 -0.30 0.20 0.15 0.18 0.00 0.07 -0.29 0.14

PolBlogs (S2)2 78.67 76.08 77.09 1.17 75.79 77.46 13.82 -0.01 1.83 4.84 88.67
Olsson D 51.10 50.88 49.34 47.10 48.02 48.74 22.86 44.50 33.58 44.06 45.33

Paul D 37.36 33.48 35.26 31.71 34.84 35.76 10.34 -0.02 12.19 35.24 30.90
PolBooks D 55.38 44.87 46.47 43.99 44.66 46.01 8.58 53.34 35.74 36.40 51.02

VA
E CIFAR-100 (H2)4 78.67 OT 0.05 OT 0.10 0.01 OT OT OT 0.01 OT

Lymphoma (S2)2 100.00 OT 0.00 OT 0.00 OT OT OT OT 0.00 OT
MNIST S2E2H2 91.52 OT 0.06 OT 1.20 0.42 OT OT OT 4.84 OT

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 EXPERIMENTAL 3 RESULTS

In this section, we present the experimental results of NMI, ARI, F1, and Purity from Experiment 3.
Tables 6, 7, 8, and 9 respectively present the NMI, ARI, F1, and Purity metrics of different algorithms
across various datasets. It can be observed that, except for the first dataset, RFK consistently and
significantly outperforms the other methods on all metrics. This is because the Gauss R4 dataset
lies in Euclidean space, where RFK degenerates to Fuzzy K-Means, thus yielding results similar
to K-Means and other implementations of Fuzzy K-Means. Moreover, it is worth noting that for
large-scale datasets, RFK is always able to complete execution while achieving highly competitive
results.

In addition, we further compare our method with several clustering approaches defined on other
manifolds, such as those presented in (Subbarao & Meer, 2009; Ashizawa et al., 2017), and (Zhao
et al., 2016). Result is shown in Table 10.

F.2 SENSITIVITY ANALYSIS

F.2.1 SENSITIVITY ANALYSIS OF m

In addition, we conducted a sensitivity analysis on the parameter m in RFK. The parameter m repre-
sents the fuzziness, reflecting the degree of uncertainty in the assignment. In typical implementations
of Fuzzy K-Means, m is usually set to the default value of 2. Similarly, in the RFK algorithm, we
consistently use the default m = 2. This choice is justified because within a sufficiently wide range,
the influence of m on the final results is minimal, as illustrated in Figure 5. Specifically, we set
m = {1.5, 1.75, 2, 2.25, 2.5} and computed the evaluation metrics. It can be observed that m = 2
consistently achieves good performance, and the metrics vary only slightly with changes in m.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 8: F1 for all benchmarks. OT means out-of-time
Dataset Signature RFK NRK K-Means Ncut FCM UFCM LRR SSC SBMC USPEC Fast-CD

Sy
nt

he
tic

Gaussian R4 95.49 95.35 93.53 98.30 93.50 93.65 82.33 41.26 68.74 79.84 95.39
H4 99.77 98.42 48.25 98.26 51.35 46.87 99.66 50.51 52.04 90.09 60.52

S2H2 94.60 94.55 81.35 83.48 83.06 82.66 93.81 51.11 61.03 79.84 83.17
R2S2H2 96.27 96.27 62.32 98.85 61.73 62.31 89.57 54.79 74.80 54.41 74.35
S2(H2)2 98.17 98.05 52.07 66.03 51.15 52.51 92.97 52.41 60.87 67.71 55.66
R4S4H4 99.09 98.25 48.18 74.07 72.15 48.17 94.52 48.71 79.31 69.17 92.48

R16S16H16 97.75 64.93 50.26 70.18 48.14 50.46 50.90 50.46 46.16 54.03 46.08

G
ra

ph

CiteSeer (H2)2 0.07 18.47 19.21 31.32 18.29 20.22 18.23 31.98 18.00 23.74 19.31
Cora H4 0.06 16.89 16.52 20.77 16.17 17.72 16.28 30.12 16.08 20.64 16.15

PolBlogs (S2)2 94.33 93.60 88.56 64.80 87.92 88.74 64.53 66.66 50.99 53.83 88.21
Olsson D 64.74 64.45 56.54 54.59 54.90 56.59 32.96 53.55 42.44 55.14 52.51

Paul D 47.75 46.08 40.14 36.40 39.36 41.22 16.01 14.95 17.98 40.74 35.41
PolBooks D 72.60 57.23 66.96 67.24 66.20 66.85 43.29 71.12 50.09 63.27 70.79

VA
E CIFAR-100 (H2)4 69.08 OT 6.83 OT 6.01 8.71 OT OT OT 6.57 OT

Lymphoma (S2)2 100.00 OT 79.51 OT 79.51 OT OT OT OT 79.51 OT
MNIST S2E2H2 96.18 OT 18.17 OT 18.13 18.18 OT OT OT 18.21 OT

Table 9: Purity for all benchmarks. OT means out-of-time
Dataset Signature RFK NRK K-Means Ncut FCM UFCM LRR SSC SBMC USPEC Fast-CD

Sy
nt

he
tic

Gaussian R4 96.00 95.84 93.80 98.47 93.77 93.92 81.75 34.58 69.47 66.61 97.20
H4 99.80 99.00 34.25 98.62 43.13 34.14 99.62 35.24 52.68 86.04 66.50

S2H2 95.20 94.80 79.31 83.73 83.36 82.93 95.02 34.40 61.78 66.63 87.70
R2S2H2 96.20 95.80 54.55 98.76 62.12 53.89 91.64 37.77 79.25 37.75 86.00
S2(H2)2 97.80 97.80 37.22 61.24 37.37 37.32 92.65 37.25 64.56 51.98 68.50
R4S4H4 99.10 98.90 33.81 59.43 59.73 34.22 94.64 33.55 79.18 54.16 95.90

R16S16H16 98.00 77.10 34.17 66.26 34.23 34.18 34.22 34.10 46.59 52.82 57.20

G
ra

ph

CiteSeer (H2)2 25.36 20.09 19.29 18.98 19.17 19.26 19.28 19.05 19.15 19.33 25.31
Cora H4 29.22 18.19 17.89 17.55 17.93 17.87 17.91 17.75 17.81 17.56 29.22

PolBlogs (S2)2 94.36 93.62 88.49 50.38 87.85 88.70 54.88 50.04 50.96 52.37 93.70
Olsson D 76.38 76.38 73.69 68.40 74.45 71.36 50.10 65.71 61.15 58.85 71.20

Paul D 58.78 59.51 58.21 57.57 59.82 54.04 35.78 14.32 35.19 51.19 56.30
PolBooks D 81.90 77.14 78.80 78.10 77.14 77.62 55.24 79.05 76.48 75.05 80.95

VA
E CIFAR-100 (H2)4 79.57 OT 5.04 OT 5.08 5.01 OT OT OT 5.00 OT

Lymphoma (S2)2 100.00 OT 65.99 OT 65.99 OT OT OT OT 65.99 OT
MNIST S2E2H2 96.09 OT 10.06 OT 10.61 10.23 OT OT OT 10.03 OT

1.5 1.75 2 2.25 2.5

Parameter m

80

85

90

95

100

M
et

ric
 V

al
ue

ACC NMI ARI F1 Purity

(a) Gauss R4

1.5 1.75 2 2.25 2.5

Parameter m

99

99.25

99.5

99.75

100

M
et

ric
 V

al
ue

ACC NMI ARI F1 Purity

(b) Gauss H4

1.5 1.75 2 2.25 2.5

Parameter m

80

85

90

95

100

M
et

ric
 V

al
ue

ACC NMI ARI F1 Purity

(c) Gauss S2H2

1.5 1.75 2 2.25 2.5

Parameter m

80

85

90

95

100

M
et

ric
 V

al
ue

ACC NMI ARI F1 Purity

(d) Gauss R2S2H2

1.5 1.75 2 2.25 2.5

Parameter m

80

85

90

95

100

M
et

ric
 V

al
ue

ACC NMI ARI F1 Purity

(e) Gauss S2(H2)2

1.5 1.75 2 2.25 2.5

Parameter m

95

96

98

100

M
et

ric
 V

al
ue

ACC NMI ARI F1 Purity

(f) Gauss R4S4H4

1.5 1.75 2 2.25 2.5

Parameter m

80

85

90

95

100

M
et

ric
 V

al
ue

ACC NMI ARI F1 Purity

(g) Gauss R16S16H16

1.5 1.75 2 2.25 2.5

Parameter m

5

10

15

20

25

M
et

ric
 V

al
ue

ACC NMI ARI F1 Purity

(h) CiteSeer

1.5 1.75 2 2.25 2.5

Parameter m

5

10

15

20

25

30

35

M
et

ric
 V

al
ue

ACC NMI ARI F1 Purity

(i) Cora

1.5 1.75 2 2.25 2.5

Parameter m

60

65

70

75

80

85

90

95

100

M
et

ric
 V

al
ue

ACC NMI ARI F1 Purity

(j) PolBlogs

Figure 5: Sensitivity Analysis of m

F.2.2 SENSITIVITY ANALYSIS OF RANDOM INITIALIZATION

We have provided the complete implementation of Riemannian Fuzzy K-Means. It is worth noting
that our algorithm adopts random initialization of cluster centers. Therefore, it is necessary to include
a sensitivity analysis with respect to random initialization.

We have released the full experimental code from the original paper and fixed all parameters and
random seeds. In our experiments, the default seed is set to 1. To assess the robustness of random
initialization, we additionally run the algorithm on several datasets with seeds set to 2, 3, and 4,
respectively, and obtain the following results:

The column origin corresponds to our default random seed, while each subsequent column reports
results obtained using different random seeds. As shown, our algorithm is not sensitive to random
initialization of cluster centers. When using different seeds, most of the best results are even better

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Method (ACC) RFK NMS LSLDGC KGRP
Gaussian R4 96.00 95.40 94.30 95.40
Gaussian H4 99.80 94.40 96.30 98.10
Gaussian S2H2 95.20 94.50 93.10 95.00
Gaussian R2S2H2 96.20 95.10 94.70 94.70
Gaussian S2(H2)2 97.80 90.20 96.40 96.00
Gaussian R4S4H4 99.10 99.00 98.80 95.00
Gaussian R16S16H16 98.00 88.10 90.50 94.90
CiteSeer 25.36 20.04 21.66 22.23
Cora 29.22 26.27 25.03 20.93
PolBlogs 94.36 94.07 92.94 90.45
CIFAR-100 71.19 OT OT OT
Lymphoma 100.00 OT OT OT
MNIST 96.09 OT OT OT

Table 10: Comparison of RFK with other manifold-based clustering methods.

Seed (ACC) origin seed=2 seed=3 seed=4
Gaussian R4 96.00 96.00 96.00 96.10
Gaussian H4 99.80 99.80 99.80 99.80
Gaussian S2H2 95.20 95.30 95.10 95.50
CiteSeer 25.36 25.45 25.21 24.79
Cora 29.22 29.25 28.49 29.22
PolBlogs 94.36 93.62 93.78 94.68
CIFAR-100 71.19 71.23 71.11 71.16
Lymphoma 100.00 100.00 100.00 100.00
MNIST 96.09 95.91 96.12 95.93
Table 11: Sensitivity analysis of random initialization.

than those originally reported, and in all cases, the clustering performance obtained with different
seeds remains close to our reported results.

F.2.3 SENSITIVITY ANALYSIS OF THE NUMBER OF CLUSTER CENTERS

In Riemannian Fuzzy K-Means, an important hyperparameter is the number of cluster centers.
Typically, the number of clusters is set to the known number of classes in the dataset. Nevertheless, it
is still necessary to analyze the sensitivity of the algorithm to this hyperparameter.

We primarily conduct the sensitivity analysis on the GAUSS datasets, each of which contains three
classes regardless of dimensionality. Accordingly, we vary the number of cluster centers to 2, 4, and
5, and evaluate how the clustering ACC changes. In addition, we include real datasets in our analysis,
with the true number of classes labeled inside the table.

Data (ACC) c = creal c = 2 c = 4 c = 5
Gaussian R4 96.00 67.10 91.40 64.40
Gaussian H4 99.80 73.80 87.00 64.40
Gaussian S2H2 95.20 72.90 90.30 65.90
Gaussian R2S2H2 96.20 58.60 75.20 59.10
Gaussian S2(H2)2 97.80 74.20 79.80 61.00
Gaussian R4S4H4 99.10 69.30 90.50 94.60
Gaussian R16S16H16 98.00 70.40 83.50 97.40
CiteSeer (creal = 6) 25.36 25.26(c=5) 23.60(c=7) 24.93(c=8)
Cora (creal = 7) 29.22 29.21(c=6) 23.98(c=8) 28.37(c=9)
PolBlogs (creal = 2) 94.36 70.70(c=3) 59.00(c=4) 42.79(c=5)

Table 12: Sensitivity analysis of the number of cluster centers.

We observe that Riemannian Fuzzy K-Means is relatively sensitive to the number of cluster centers.
In fact, this is a well-known property of the entire K-Means family, which explains why the number
of centers is the most critical hyperparameter in K-Means–type algorithms.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

G RUN AND REFERENCE CODE

G.1 RUN THE CODE

The simplest way to run the code is by using the Anonymous Library. The library submitted in
the supplementary material is not developed by us, but is part of a publicly available open-source
community library. To ensure the double-blind review process, we have anonymized the library name
and included only its minimal implementation unit in the supplementary material.

First, import the package6

import AnonymousLibrary

You can simply perform clustering with the following code.

pm=AnonymousLibrary.ProductManifold(signature=[(0, 16),(1, 16),(-1, 16)])

Use classification labels, which identify clusters by their center
X_clustering, y_clustering = pm.gaussian_mixture(

num_points=1000, num_classes=4, seed=2025, task="classification",
cov_scale_points=0.1

)

The RFK algorithm is essentially a sklearn-styled clustering algorithm,
so we call it like this:

rfk = AnonymousLibrary.RiemannianFuzzyKMeans(pm=pm, n_clusters=4,
random_state=2025)

rfk.fit(X_clustering)
y_pred = rfk.predict(X_clustering)

from sklearn.metrics import normalized_mutual_info_score
nmi = normalized_mutual_info_score(y_clustering, y_pred)
print(f"Riemannian Fuzzy K-Means nmi: {nmi:.2f}")

We kindly suggest that during the review process, reviewers refrain from searching for the source
code related to Riemannian Fuzzy K-Means and Riemannian Adan, as this may violate the double-
blind policy. We will provide the fully anonymized versions of RFK and Radan later in the paper.

G.2 REPLICATION STATEMENT

We fully understand the astonishment when seeing the experimental results, especially the clustering
outcomes in Experiment 3. On some datasets, traditional K-Means achieves only 12% accuracy,
while RFK reaches 96%. Reporting such a striking gap obliges the authors to provide code during
the review stage. We are not only willing to provide the source code of RFK but also offer a DEMO
that can reproduce the experimental results with a single command, with parameters and random
seeds fixed for verification. Our code is available here7, and our datasets are available here8.

6https://anonymous.4open.science/status/AnonymousLibrary-32EB
7https://anonymous.4open.science/r/Demo-of-RFK-243B/
8https://anonymous.4open.science/r/Manifold-Clustering-Data-3C53/

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

G.3 CODE OF RIEMANNIAN FUZZY K-MEANS

from __future__ import annotations

from typing import TYPE_CHECKING

import numpy as np
import torch
from geoopt import ManifoldParameter
from geoopt.optim import RiemannianAdam
from sklearn.base import BaseEstimator, ClusterMixin

if TYPE_CHECKING:
from beartype.typing import Literal
from jaxtyping import Float, Int

from ..manifolds import Manifold, ProductManifold
from ..optimizers.radan import RiemannianAdan

class RiemannianFuzzyKMeans(BaseEstimator, ClusterMixin):
"""Riemannian Fuzzy K-Means.

Attributes:
n_clusters: The number of clusters to form.
pm: An initialized manifold object (from manifolds.py) on which

clustering will be performed.
m: Fuzzifier parameter. Controls the softness of the partition.
lr: Learning rate for the optimizer.
max_iter: Maximum number of iterations for the optimization.
tol: Tolerance for convergence. If the change in loss is less

than tol, iteration stops.
optimizer: The optimizer to use for updating cluster centers.
random_state: Seed for random number generation for

reproducibility.
verbose: Whether to print loss information during iterations.
losses_: List of loss values during training.
u_: Final fuzzy partition matrix.
labels_: Cluster labels for each sample.
cluster_centers_: Final cluster centers.

Args:
n_clusters: The number of clusters to form.
manifold: An initialized manifold object (from manifolds.py) on

which clustering will be performed.
m: Fuzzifier parameter. Controls the softness of the partition.
lr: Learning rate for the optimizer.
max_iter: Maximum number of iterations for the optimization.
tol: Tolerance for convergence. If the change in loss is less

than tol, iteration stops.
optimizer: The optimizer to use for updating cluster centers.
random_state: Seed for random number generation for

reproducibility.
verbose: Whether to print loss information during iterations.

"""

def __init__(
self,
n_clusters: int,
pm: Manifold | ProductManifold,
m: float = 2.0,
lr: float = 0.1,
max_iter: int = 100,
tol: float = 1e-4,
optimizer: Literal["adan", "adam"] = "adan",

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

random_state: int | None = None,
verbose: bool = False,

):
self.n_clusters = n_clusters
self.pm = pm
self.m = m
self.lr = lr
self.max_iter = max_iter
self.tol = tol
if optimizer not in ("adan", "adam"):

raise ValueError("optimizer must be 'adan' or 'adam'")
self.optimizer = optimizer
self.random_state = random_state
self.verbose = verbose

def _init_centers(self, X: Float[torch.Tensor, "n_points n_features"
]) -> None:
if self.random_state is not None:

torch.manual_seed(self.random_state)
np.random.seed(self.random_state)

Input data X's second dimension should match the pm's ambient
dimension

if X.shape[1] != self.pm.ambient_dim:
raise ValueError(

f"Input data X's dimension ({X.shape[1]}) does not match
"

f"the manifold's ambient dimension ({self.pm.ambient_dim
})."

)

Generate initial centers using the manifold's sample method
We want n_clusters points, each sampled around the manifold's

origin (mu0)
The .sample() method in manifolds.py handles z_mean and sigma/

sigma_factorized
defaulting to mu0 and identity covariances if z_mean or sigma

are not fully specified
or are set to None in a way that triggers this default.

For sampling initial centers, we want n_clusters distinct
points.

The .sample() method typically takes a z_mean of shape (
num_points_to_sample, ambient_dim).

If we provide self.pm.mu0 repeated n_clusters times,
it samples n_clusters points, each around mu0.
centers = self.pm.sample(self.n_clusters)

IMPORTANT: Use self.manifold.manifold for ManifoldParameter,
as self.manifold is our wrapper and self.manifold.manifold is

the geoopt object.
self.mu_ = ManifoldParameter(

centers.clone().detach(), # type: ignore
manifold=self.pm.manifold,

) # Ensure centers are detached
self.mu_.requires_grad_(True)

if self.optimizer == "adan":
self.opt_ = RiemannianAdan([self.mu_], lr=self.lr, betas

=[0.7, 0.999, 0.999])
else:

self.opt_ = RiemannianAdam([self.mu_], lr=self.lr, betas
=[0.99, 0.999])

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

def fit(self, X: Float[torch.Tensor, "n_points n_features"], y: None
= None) -> "RiemannianFuzzyKMeans":
"""Fit the Riemannian Fuzzy K-Means model to the data X.

Args:
X: Input data. Features should match the manifold's geometry.
y: Ignored, present for compatibility with scikit-learn's API

.

Returns:
self: Fitted RiemannianFuzzyKMeans instance.

Raises:
ValueError: If the input data's dimension does not match the

manifold's ambient dimension.
RuntimeError: If the optimizer is not set correctly or if the

model has not been initialized properly.
"""
if isinstance(X, np.ndarray):

X = torch.from_numpy(X).type(torch.get_default_dtype())
elif not isinstance(X, torch.Tensor):

X = torch.tensor(X, dtype=torch.get_default_dtype())

Ensure X is on the same device as the manifold
X = X.to(self.pm.device)

if X.shape[1] != self.pm.ambient_dim:
raise ValueError(

f"Input data X's dimension ({X.shape[1]}) in fit() does
not match "

f"the manifold's ambient dimension ({self.pm.ambient_dim
})."

)

self._init_centers(X)
m, tol = self.m, self.tol
losses = []
for i in range(self.max_iter):

self.opt_.zero_grad()
self.pm.dist is implemented in manifolds.py and handles

broadcasting
d = self.pm.dist(X, self.mu_) # X is (N,D), mu_ is (K,D) ->

d is (N,K)
Original RFK: d = self.pm.dist(X.unsqueeze(1), self.mu_.

unsqueeze(0))
The .dist in manifolds.py uses X[:, None] and Y[None, :],

so direct call should work if mu_ is (K,D)

S = torch.sum(d.pow(-2 / (m - 1)) + 1e-8, dim=1) # Add
epsilon for stability

loss = torch.sum(S.pow(1 - m))
loss.backward()
losses.append(loss.item())
self.opt_.step()
if self.verbose:

print(f"RFK iter {i + 1}, loss={loss.item():.4f}")
if i > 0 and abs(losses[-1] - losses[-2]) < tol:

break

save the result
self.losses_ = np.array(losses)
with torch.no_grad(): # Ensure no gradients are computed for

final calculations
dfin = self.pm.dist(X, self.mu_) # Re-calculate dist to

final centers

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

inv = dfin.pow(-2 / (m - 1)) + 1e-8 # Add epsilon
u_final = inv / (inv.sum(dim=1, keepdim=True) + 1e-8) # Add

epsilon
self.u_ = u_final.detach().cpu().numpy()
self.labels_ = np.argmax(self.u_, axis=1)
self.cluster_centers_ = self.mu_.data.clone().detach().cpu().

numpy()
return self

def predict(self, X: Float[torch.Tensor, "n_points n_features"]) ->
Int[torch.Tensor, "n_points"]:
"""Predict the closest cluster each sample in X belongs to.

Args:
X: Input data. Features should match the manifold's geometry.

Returns:
labels: Cluster labels for each sample in X.

Raises:
ValueError: If the input data's dimension does not match the

manifold's ambient dimension.
RuntimeError: If the model has not been fitted yet.

"""
if isinstance(X, np.ndarray):

X = torch.from_numpy(X).type(torch.get_default_dtype())
elif not isinstance(X, torch.Tensor):

X = torch.tensor(X, dtype=torch.get_default_dtype())

Ensure X is on the same device as the manifold
X = X.to(self.pm.device)

if X.shape[1] != self.pm.ambient_dim:
raise ValueError(

f"Input data X's dimension ({X.shape[1]}) in predict()
does not match "

f"the manifold's ambient dimension ({self.pm.ambient_dim
})."

)

if not hasattr(self, "mu_") or self.mu_ is None:
raise RuntimeError("The RFK model has not been fitted yet.

Call 'fit' before 'predict'.")

with torch.no_grad():
dmat = self.pm.dist(X, self.mu_) # X is (N,D), mu_ is (K,D)

-> dmat is (N,K)
inv = dmat.pow(-2 / (self.m - 1)) + 1e-8 # Add epsilon
u = inv / (inv.sum(dim=1, keepdim=True) + 1e-8) # Add

epsilon
labels = torch.argmax(u, dim=1).cpu().numpy()

return labels

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

G.4 CODE OF RIEMANNIAN ADAN

from __future__ import annotations

from typing import TYPE_CHECKING

import torch
from geoopt import ManifoldParameter, ManifoldTensor
from geoopt.optim.mixin import OptimMixin

if TYPE_CHECKING:
from beartype.typing import Any, Callable
from jaxtyping import Float

from . import _adan

class RiemannianAdan(OptimMixin, _adan.Adan):
"""Riemannian Adan with the same API as :class:adan.Adan.

Attributes:
param_groups: iterable of parameter groups, each containing

parameters to optimize and optimization options
_default_manifold: the default manifold used for optimization if

not specified in parameters

Args:
params: iterable of parameters to optimize or dicts defining

parameter groups
lr: learning rate (default: 1e-3)
betas: coefficients used for computing (default: (0.98, 0.92,

0.99))
eps: term added to the denominator to improve numerical stability

(default: 1e-8)
weight_decay: weight decay (L2 penalty) (default: 0)

"""

def step(self, closure: Callable | None = None) -> Float[torch.Tensor
, ""] | None:
"""Performs a single optimization step.

Args:
closure: A closure that reevaluates the model and returns the

loss.

Returns:
The loss value if closure is provided, otherwise None.

"""
loss = None
if closure is not None:

loss = closure()

with torch.no_grad():
for group in self.param_groups:

betas = group["betas"]
weight_decay = group["weight_decay"]
eps = group["eps"]
learning_rate = group["lr"]
stablilize = False
for point in group["params"]:

grad = point.grad
if grad is None:

continue
if isinstance(point, ManifoldParameter |

ManifoldTensor):

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

manifold = point.manifold
else:

manifold = self._default_manifold

if grad.is_sparse:
raise RuntimeError("RiemannianAdan does not

support sparse gradients")

state = self.state[point]

State initialization
if len(state) == 0:

state["step"] = 0
Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(point)
Exponential moving average of squared gradient

values
state["exp_avg_sq"] = torch.zeros_like(point)
new param
state["exp_avg_diff"] = torch.zeros_like(point)
last step grad
state["last_grad"] = torch.zeros_like(point)

state["step"] += 1
make local variables for easy access
exp_avg = state["exp_avg"]
exp_avg_diff = state["exp_avg_diff"]
exp_avg_sq = state["exp_avg_sq"]
last_grad = state["last_grad"]
actual step

grad.add_(point, alpha=weight_decay)
grad = manifold.egrad2rgrad(point, grad)
grad_last_diff
grad_last_diff = grad - last_grad
exp_avg.mul_(betas[0]).add_(grad, alpha=1 - betas[0])
grad_last_diff
exp_avg_diff.mul_(betas[1]).add_(grad_last_diff,

alpha=1 - betas[1])
z_t
zt = grad_last_diff.mul(betas[1]).add_(grad)
z_t^2
exp_avg_sq.mul_(betas[2]).add_(manifold.

component_inner(point, zt), alpha=1 - betas[2])
bias_correction1 = 1 - betas[0] ** state["step"]
bias_correction2 = 1 - betas[1] ** state["step"]
bias_correction3 = 1 - betas[2] ** state["step"]

denom = exp_avg_sq.div(bias_correction3).sqrt_()

copy the state, we need it for retraction
get the direction for ascend
direction = (

(exp_avg.div(bias_correction1)).add_((
exp_avg_diff.div(bias_correction2)), alpha=
betas[1])

) / denom.add_(eps)

transport the exponential averaging to the new
point

new_point, exp_avg_new = manifold.retr_transp(point,
-learning_rate * direction, exp_avg)

last_grad.copy_(manifold.transp(point, new_point,
grad))

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

transport v_t
exp_avg_diff.copy_(manifold.transp(point, new_point,

exp_avg_diff))
exp_avg.copy_(exp_avg_new)
point.copy_(new_point)

if group["stabilize"] is not None and state["step"] %
group["stabilize"] == 0:
stablilize = True

if stablilize:
self.stabilize_group(group)

return loss

@torch.no_grad() # type: ignore
def stabilize_group(self, group: dict[str, Any]) -> None:

"""Stabilizes the parameters in the group by projecting them onto
their respective manifolds.

Args:
group: A dictionary containing the parameters and their

states.

Returns:
None

"""
for p in group["params"]:

if not isinstance(p, ManifoldParameter | ManifoldTensor):
continue

state = self.state[p]
if not state: # due to None grads

continue
manifold = p.manifold
exp_avg = state["exp_avg"]
exp_avg_diff = state["exp_avg_diff"]
last_grad = state["last_grad"]
p.copy_(manifold.projx(p))
exp_avg.copy_(manifold.proju(p, exp_avg))
exp_avg_diff.copy_(manifold.proju(p, exp_avg_diff))
last_grad.copy_(manifold.proju(p, last

44

	Introduction
	Preliminaries
	Notations
	Constant-curvature Spaces and Product Manifolds
	K-Means and Fuzzy K-Means

	Our proposed method
	Naive Extension of K-Means
	Riemannian Fuzzy K-Means
	Radan on Product Manifolds
	Calculate Riemannian Gradient

	Experiments
	Datasets
	Experiments Setup
	Experiment Setup for Q1
	Experiment Setup for Q2
	Experiment Setup for Q3

	Experiments Result
	Experiment Result for Q1
	Experiment Result for Q2
	Experiment Result for Q3

	Limitations
	Conclusion
	Statement
	Appendices
	Proofs of Theorems
	Proof of Theorem 3.1
	Assumptions
	Proof Details
	Proof of Lemma

	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof Details
	Proof of Lemma

	Notations
	Related Work about Clustering on Manifold
	Background
	What kind of data do we learn?
	Difference from manifold learning
	Basic principles of Riemannian machine learning
	Miscellaneous questions

	Details of the Experimental Setup
	Datasets Description
	Experiment 3 Setup
	Benchmark Clustering Algorithms
	Clustering Accuracy (ACC)
	Normalized Mutual Information (NMI)
	Adjusted Rand Index (ARI)
	F1 Score
	Purity

	Additional Experimental Results
	Experimental 3 Results
	Sensitivity Analysis
	Sensitivity Analysis of m
	Sensitivity analysis of random initialization
	Sensitivity Analysis of the Number of Cluster Centers

	Run and Reference Code
	Run the Code
	Replication Statement
	Code of Riemannian Fuzzy K-Means
	Code of Riemannian Adan

