
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DELTA-CODE: HOW RL UNLOCKS AND TRANSFERS
NEW PROGRAMMING ALGORITHMS IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

It remains an open question whether LLMs can acquire or generalize genuinely
new reasoning strategies, beyond the sharpened skills encoded in their parameters
during pre-training or post-training. To attempt to answer this debate, we introduce
DELTA-Code —Distributional Evaluation of Learnability and Transferrability in
Algorithmic Coding, a controlled benchmark of synthetic coding problem families
designed to probe two fundamental aspects: learnability—can LLMs, through rein-
forcement learning (RL), solve problem families where pretrained models exhibit
failure with large enough attempts (pass@K=0)?—and transferability— if learn-
ability happens, can such skills transfer systematically to out-of-distribution (OOD)
test sets? Unlike prior public coding datasets, DELTA isolates reasoning skills
through templated problem generators and introduces fully OOD problem families
that demand novel strategies rather than tool invocation or memorized patterns. Our
experiments reveal a striking grokking phase transition: after an extended period
with near-zero reward, RL-trained models abruptly climb to near-perfect accuracy.
To enable learnability on previously unsolvable problem families, we explore key
training ingredients such as staged warm-up with dense rewards, experience re-
play, curriculum training, and verification-in-the-loop. Beyond learnability, we
use DELTA to evaluate transferability or generalization along exploratory, compo-
sitional, and transformative axes, as well as cross-family transfer. Results show
solid gains within families and for recomposed skills, but persistent weaknesses on
transformative cases. DELTA thus offers a clean testbed for probing the limits of
RL-driven reasoning and for understanding how models can move beyond existing
priors to acquire new algorithmic skills.

1 INTRODUCTION

A central question for RL on language models is whether it merely sharpens latent skills or enables
genuinely new reasoning. Some argue RL only refines existing heuristics embedded in the model’s
parameters (Yue et al., 2025; Wu et al., 2025), while others see it as a way to unlock emergent problem-
solving (Liu et al., 2025b;a). We make this debate testable using two criteria: learnability, which
asks if RL can instill a procedure the model could not previously execute; and generalization, which
asks if that procedure transfers to diverse Out-of-distribution (OOD) cases rather than memorized
patterns. Addressing these questions requires a dataset with tightly controlled train–test splits that
can systematically probe both properties.

Why controlled problem families matter? Uncontrolled open benchmarks in math/coding (e.g.,
Numina-Math (Li et al., 2024), DeepMath (He et al., 2025), OpenCodeReasoning (NVIDIA, 2025))
mix topics and difficulty, blurring the line between capability sharpening and genuine acquisition.
Controlled synthetic families remove these confounds: we can precisely vary distributions and
difficulty, attribute gains to specific skills, detect phase transitions, and systematically test transfer to
OOD variants.

Why programming problems? GRPO/PPO pipelines typically rely on a pass/fail reward: a perfect
solution earns +1, anything else earns 0 Guo et al. (2025). This sparsity can stall learning on hard
families. In math, grading intermediate steps is expensive and hard to scale. Programming, however,
naturally supplies fine-grained feedback through test cases, which act as dense rewards. A practical
approach is to start training with test-case–based rewards to encourage partial progress, then transition
to a binary outcome reward to lock in exact solutions. This staged scheme is crucial for helping LLMs
acquire genuinely new procedural strategies, and while coding offers a uniquely scalable setting, the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Boxes:
 shape: hexagon,
 diameter: 360.85,
 center: [250,250]
 orientation": 14.0
objects:
 shape: triangle
 radius: 25.0,
 position: [250,250]
 velocity: [17.32, 10]

Puzzle Rule
Manufactoria

Pullers remove one front
color and route by color

Painters add color to end

Input colored tape

Solution Code
START start:
 NEXT blue_check
PULLER_RB blue_check:
 [R] None
 [B] blue_check
 [EMPTY] end
END end

Problem: ACCEPT tape with NO red

Toy Example

Game
Screen

BouncingSim

Competition Coding

Task:
predict
position
at time t.

Example Config:

Toy Example

SQRT_DC

CDQ_DC… MO_ALG

Problem Families

Controlled RL Study Synthetic Coding Problem Scope/Families

Problem Families
START REGEX EXACT HAS

Problem Families

ROTAT_OBJ ROTAT_BOX
Train Test

Explorative Gen.

Special: periodic bouncing

Train Test
Transformative Gen.

Compositional Gen.

Domain Generalization

Rotating Box

Train

Rotating Objects

Test

RL Generalization Study

RL Learnability Study

Exploration
Phase

Conver-
gence
Phase

Grokking!

Clear Evidence:
RL can uncover
strategies beyond
the limits of
reference models.

Rotating
Objects/Box

+
Train Test

Rotating ObjectsRotating Box

SEGMENT_TREE_DC

MEET_IN_MID

MULTI_BOX GRAVITY

MOV_BOX
MULTI_OBJ

Figure 1: Overview of DELTA with controlled RL studies. Left: Synthetic Programming Problem fami-
lies—Manufactoria with custom syntax and puzzle-like rules, BounceSim with physical simulation, etc. Right:
Controlled RL experiments. Top: Learnability shows grokking, where RL shifts from long exploration to sudden
convergence, uncovering strategies beyond reference models. Bottom: Generalization extends OMEGA (Sun
et al., 2025) across four axes—Exploratory, Compositional, Transformative, and Domain-level—testing adapta-
tion to harder or recombined tasks.

underlying insight of using intermediate signals before enforcing strict correctness may apply to other
reasoning-heavy domains such as math or formal logic.

To address this need, we introduce DELTA, a controlled yet diverse benchmark for programming
problems. DELTA consists of synthetic problem families drawn from different domains, each
generated from templated problem generators, allowing us to study phenomena such as difficulty
scaling, knowledge transfer, and learnability in a clean and isolated setting.

RL Learnability Study. We reveal an underexplored grokking phenomenon during RL training.
While recent works argue that RL cannot exceed the limits of its reference model (Yue et al., 2025;
Wu et al., 2025), our evidence suggests otherwise. On hard problems where the base model achieves
pass@K = 01, standard RL with binary rewards collapses due to the absence of positive signals. By
contrast, a staged regime—warming up with fine-grained proxy rewards before switching to strict
pass/fail—first guides exploration into a region where full solutions become reachable, then sharpens
these into verified completions, producing a long exploratory plateau followed by sudden grokking to
near-perfect accuracy (Figure 1, top-right).

RL Generalization Study. DELTA extends OMEGA’s controlled tests along three axes aligned
with Boden’s creativity typology (Boden, 1998): (1) Exploratory—extend known skills within a
family (e.g., hexagon to octagon); (2) Compositional—combine previously separate skills (e.g.,
bouncing ball with both rotating obstacles and boxes); (3) Transformative—discover unconventional
solutions (e.g., special initial states that guarantee periodicity). Our results show that RL-trained
models generalize to harder and composed variants, but performance drops with complexity, and
transformative cases remain the most challenging.

Main contributions. 1) A controlled dataset (DELTA): We design a suite of synthetic programming
problem families that isolate reasoning skills, enabling clean tests of learnability (can RL unlock
procedures absent in the base model) and generalization (do these procedures transfer systematically
to OOD cases). Unlike prior coding or math datasets, DELTA introduces fully OOD problems
(Manufactoria) and richly graded rewards, avoiding tool-based shortcuts and data confounds.

2) Sharpening or discovery, depending on setup: We provide clear evidence that RL is not
limited to sharpening existing abilities in reference models. On hard families where base models fail

1Here pass@K refers to a large value of K (e.g., 128). Thus, pass@K = 0 indicates that the model fails to
solve the task even after many sampled attempts.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(pass@K=0), staged training with dense-to-binary rewards produces a grokking phase transition —
a sudden leap from failure to mastery — showing that RL can indeed discover strategies the base
model could not execute. At the same time, in easier regimes or with weaker setups, RL primarily
sharpens existing skills. Which outcome emerges depends critically on the reward design, data mix,
task hardness, and training recipes.

3) Three-axis generalization analysis: We evaluate how these learned strategies transfer along
exploratory, compositional, and transformative axes. Results show strong generalization in exploratory
and recomposed cases, but persistent failures in transformative shifts, highlighting both the promise
and limits of RL-driven reasoning and the generalization challenges we must work on.

2 BACKGROUND

Goal of the RL learnability study. A central open question in post-training research is whether
reinforcement learning (RL) can endow language models with genuinely new reasoning capabilities
beyond those supported by the base model: (a) The skeptical view. Yue et al. (2025) argue that
although RLVR-trained models may outperform their base models at small k (e.g., k=1), the
advantage disappears when evaluating pass@k at larger k, where the base model often matches or
exceeds RLVR performance. Their coverage and perplexity analyses suggest that RL does not expand
the underlying support of the model’s reasoning distribution. (b) The optimistic view. In contrast,
Liu et al. (2025b) report that ProRL can push models beyond base-model capabilities on certain
structured reasoning tasks, such as the letter-shaped 2D puzzles in Reasoning Gym (Stojanovski et al.,
2025). However, because their training mix combines heterogeneous tasks with varying difficulty
and domain structure, it is difficult to pinpoint what specific skills the model actually acquires. Our
goal is therefore to construct a pure, tightly controlled OOD testbed which the reference model
fails consistently (pass@K = 0) across all attempts. If RL can succeed on such tasks despite the
base model’s deterministic failure, this would provide conclusive evidence that RL can induce novel
reasoning abilities rather than merely reshaping existing ones.

Goal of the RL generalization study. OMEGA Sun et al. (2025) provides controlled tests along
three axes aligned with Boden’s creativity typology (Boden, 1998): (1) Exploratory—assessing
whether models can apply known problem-solving skills to more complex instances within the
same problem domain. ; (2) Compositional—evaluating their ability to combine distinct reasoning
skills, previously learned in isolation, to solve novel problems that require integrating these skills in
new and coherent ways; and (3) Transformative—testing whether models can adopt unconventional
strategies by moving beyond familiar approaches to solve problems more effectively. Our goal is to
systematically show whether RL-trained models generalize to harder and composed variants.

3 DELTA: CONTROLLED PROGRAMMING PROBLEM FAMILIES

We operationalize learnability and generalization with DELTA, a controlled suite of synthetic
programming families.

From OMEGA to DELTA. OMEGA (Sun et al., 2025) offers 40 synthesizable math families to
study exploratory, compositional, and transformative generalization in the spirit of Boden (Boden,
1998). DELTA complements this by shifting to programming, where templated generators yield
automatically verifiable tasks with tunable difficulty and clean distributional controls. Compared
to OMEGA, DELTA further provides unique benefits and improvements: a) Novel OOD problem
family. Math tasks in OMEGA remain within familiar domains (e.g., algebra, geometry), which
can plausibly appear in pretraining corpora. In contrast, DELTA includes a hand-crafted out-of-
distribution (OOD) problem scope called Manufactoria, which uses entirely novel program
syntax and problem-solving strategies. b) Harder to shortcut with tools. Many synthetic math
items can be solved by executing Python (e.g., computing a matrix rank). In DELTA, the target is
the program itself: models must synthesize a correct solution rather than delegate computation to
external tools. c) Rich reward signal. Programming enables cheap, graded feedback via per–test
case pass rates, which supports staged training (dense reward then binary full-pass reward).

In DELTA, we design problems from five major scopes, illustrated in Figure 1. We next introduce the
problem families in detail.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Eg: Only accept
tape 'BRB’

Eg: Accept tapes w/
subsequence 'GGRBB'

Difficulty Ladder of Manufactoria (Out-of-distribution Coding Puzzles)

BASIC EASY MEDIUM HARDEg: Prepend
'RRB'
Eg: Replace
'RB' to 'BR'

Eg: Accept pattern
‘R{n}B{n}R{n}’ (n>1)

Eg: Accept tapes w/
subsequence 'GGRBB'

Figure 2: The Manufactoria difficulty ladder. 14 problem families are grouped into Basic, Easy, Medium,
and Hard levels according to average performance across four popular LLMs. Each test split contains 20–50
problems, and full pass rate are averaged over 4 independent runs.

ROT_OBJ
(Rotating Object)

ROT_BOX
(Rotating Box)

MOV_BOX
(Moving Box)

GRAVITY
(Gravity Included)

MULTI_BOX
(multiple boxes)

MULTI_OBJ
(multiple objects)

Diffi
cul

ty

Models

Figure 3: Full-pass rate (%) on BouncingSim by model, family (ROT OBJ, ROT BOX, MOV BOX, GRAVITY,
MULTI BOX, MULTI OBJ), and difficulty tier (BASIC→EXTREME). Warmer colors denote higher accuracy;
cell values are mean full-pass rates per split over 4 runs on 50 test problems each.

3.1 MANUFACTORIA (OUT-OF-DISTRIBUTION PROBLEMS FOR LEARNABILITY STUDY)

Manufactoria is a classic Flash game (2010) in which players build automated factories to sort
robots based on their colored tape patterns. The underlying logic resembles constructing finite-state
automata or tag systems using two special node types (puller, painter). While the original game
is implemented in 2D space, we re-formalize it into a custom programmatic syntax, as illustrated in
Figure 1. Details are provided in Appendix A.1.

Justified OOD-ness. This task is OOD for several reasons: a) The original game solutions were
stored only as images on legacy websites. Our converted program syntax is entirely novel and
unavailable to any LLM during pretraining; b) We do not reuse existing game challenges. Instead, we
design new problem families inspired by the mechanics but synthesized by the authors, and these
are entirely unseen to LLMs; c) The puzzle strategies are qualitatively different from conventional
programming or Turing-machine tasks. With only two available node types with limited functionality,
solving requires distinctive reasoning patterns not captured by standard coding strategies.

A scalable difficulty ladder. In total, we construct 14 synthetic problem families. For example,
the family tagged HAS (Figure 2) requires accepting tapes that contain a subsequence such as
GGRBB, which can be synthesized by using arbitrary color strings. Manufactoria is organized
into BASIC → EASY → MEDIUM → HARD tiers, enabling matched studies across model scales.
BASIC/EASY families (e.g., START, EXACT) suit small models (e.g., 1.5B, 4B) for learnability,
while MEDIUM/HARD families require more advanced insight and are appropriate for probing SOTA
systems (e.g., GPT-5–class). Because the syntax and families are novel, Manufactoria also serves as
an OOD benchmark for open LLMs, enabling apples-to-apples comparisons with SOTA LLMs on
truly novel tasks. Medium tasks expose a larger gap: only GPT-5 achieves non-trivial success, while
other models collapse near zero. Hard families remain unsolved across the board, underscoring the
sharp transition in difficulty and the limits of the current model.

3.2 BOUNCINGSIM (2D SIMULATION PROGRAMMING TASKS FOR GENERALIZATION STUDY)

We include a widely used community test—a 2D bouncing-ball simulation program—often treated
as a proxy for geometry-aware reasoning in LLMs (Wiggers, 2025). The goal is to synthesize a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

program that simulates elastic collisions in polygonal containers and returns the exact object state at
a queried timestamp; strong solutions require precise collision detection/response and numerically
stable integration.

Task design. To replace informal, visually judged demos with a rigorous benchmark, we make
the task: (a) verifiable—each prompt specifies a deterministic initial state (positions, velocities,
container geometry); the program must output the object’s location at a target time and is scored
against an oracle; (b) synthesizable—instances are generated by varying the configuration in Figure 1,
with ground-truth trajectories produced by Box2D2; (c) composable—single-skill families (e.g.,
ROT BOX, ROT OBJ) can be combined into multi-skill families (e.g., ROT BOX OBJ); and (d)
difficulty-controlled—we vary polygon vertex counts, object speeds, box motion, gravity, and the
number of objects/boxes to create BASIC→EASY→MEDIUM→HARD→EXTREME tiers. Detailed
configurations are provided in Appendix A.

Generalization axes. To align explicitly with the three generalization axes defined in OMEGA (Sun
et al., 2025), as exemplified in Figure 1: a) Exploratory generalization: Training problems feature
standard box sizes with relatively sparse collisions, while test problems use smaller containers that
induce denser and more frequent collisions. b) Compositional generalization: Training isolates
distinct skills—handling rotating boxes (ROTAT BOX) and rotating objects (ROTAT OBJ). Testing
then evaluates the combined scenario (ROTAT BOX OBJ), where both the box and the object rotate
simultaneously, requiring the model to integrate the two skills. c) Transformative generalization:
Training covers common variants such as ROTAT BOX, but testing introduces qualitatively different
dynamics—for example, special initial conditions that yield perfectly periodic bouncing trajectories
(e.g., an object oscillating vertically with no horizontal drift). Further examples and details of these
generalization setups are provided in Appendix A.

Evaluation results. Figure 3 summarizes full-pass rates across six families—ROT OBJ, ROT BOX,
MOV BOX, GRAVITY, MULTI BOX, MULTI OBJ—and five difficulty tiers for four representative
models. GPT-5 leads overall, but accuracy degrades with difficulty and composition: MULTI BOX is
challenging even at BASIC (∼30%), and MULTI OBJ drops sharply—from∼80% at BASIC to∼10%
by MEDIUM. Other LLMs trail substantially—typically ≤30–40% on the easy-to-medium tiers and
near-zero on HARD/EXTREME and most compositional settings. Overall, BouncingSim represent
a valuable testbed for understanding what these models can and cannot do; whether they reinforce
existing skills or discover new ones; by enabling systematic study of learnability and generalization.

3.3 COMPETITION CODING PROBLEM FAMILIES

We add competitive programming, which serve as a real-world domain. Although not strictly OOD
(given their online popularity), they remain challenging (e.g., gpt-5-high reaches only 2% on hard-tier
LiveCodeBench-Pro (Zheng et al., 2025)). We include them in DELTA to expand seed problems into
fully controlled families that support learnability and generalization studies. A brief construction
overview appears in the main text. Specifically, Each family groups problems sharing the same
core algorithm (e.g., Mo’s algorithm, CDQ divide-and-conquer), and is named after that algorithm.
For each family, we: (1) gather 5–7 seed tasks verified to use the target algorithm; (2) perturb their
contexts by relying on an expert-provided solution strategy and background, then use LLM to change
narrative surface while preserving the solution; and (3) filter and verify by requiring a brute-force
solution to pass all tests, ensuring perturbation consistency. We release 5 families (∼500 items each)
with details in Appendix A.3.

4 LEARNABILITY STUDY: CAN RL UNCOVER NEW STRATEGIES AND HOW
TO ACCELERATE IT?

A central debate in recent research concerns whether reinforcement learning (RL) can endow models
with reasoning abilities beyond those of their base model.

The skeptical view. Yue et al. (2025) argue that although RLVR-trained models outperform their base
models at small k (e.g., k = 1), the base models achieve equal or superior pass@k performance when
k is large. Their coverage and perplexity analyses suggest that reasoning capabilities are ultimately
bounded by the base model’s support. Similarly, Wu et al. (2025) provide a theoretical argument that
RLVR cannot extend beyond the base model’s representational limits.

2https://box2d.org/

5

https://box2d.org/

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The optimistic view. In contrast, Liu et al. (2025b) demonstrates that ProRL can expand reasoning
boundaries on tasks where the base model performs poorly—specifically in letter-formed 2D puzzles
from Reasoning Gym (Stojanovski et al., 2025).

Clear Evidence:
RL can uncover
strategies beyond
the limits of
reference models.

148 16

Figure 4: Pass@k comparison
before and after RL training on
the Manufactoria-HAS.

Our contribution: a clean testbed and clear evidence for RL
enable grokking in LLMs. Existing evidence in favor of RL’s gen-
eralization often comes from large, heterogeneous training corpora.
This makes it difficult to isolate why and how RL might discover
novel strategies. To address this, DELTA offers a controlled environ-
ment: synthetic problem families that are both out-of-distribution
(requiring novel strategies) and internally consistent (free of data
confounds). We focus on the Manufactoria-HAS family (742
training / 100 test instances), where the reference model Qwen3-4B-
Instruct-2507 achieves 0% full pass rate at pass@128. As shown
in Figure 4, our staged RL training strategies enables the model to
fully solve this family, achieving 100% full pass rate. Next, we detail
how this is made possible.

4.1 BASIC SETUP

Unless otherwise specified, the reference model is Qwen3-4B-
Instruct. Training and testing datasets are drawn from single or
combined problem families introduced in Section 3. By default, each training step consists of 48
prompts with 16 rollouts. The learning rate is set to 5× 10−7. For code training, the default reward
signal is full pass, a binary indicator of whether a program passes all test cases. In later experiments,
we also consider per-test pass rate as the reward signal, measuring the fraction of test cases passed.
A more detailed experiment setup parameter descriptions are included in Appendix B. We also
provide complementary experiments with alternative model families, sizes, and problem domains in
Appendix C.1.

4.2 HOW TO SOLVE “PASS@K=0” TASKS WITH RL?

The skeptical position that RL cannot exceed the boundaries of the base model is understandable
for a simple reason: GRPO (Guo et al., 2025) depends on reward differences across rollouts. If no
rollout ever succeeds (as in “pass@K=0” tasks), there is no gradient signal to learn from. Indeed, as
Figure 5(a) shows, naı̈ve GRPO training stagnates. Thus, the central challenge is:

If no rollout achieves a full pass, how can RL propagate a meaningful learning signal?

Per-test pass rate training. One solution is to exploit partial credit. Instead of the all-or-nothing full
pass rate (reward = 1 only if all test cases pass), we use a finer-grained per-test pass rate, a continuous
reward in [0, 1]. As Figure 5(b) shows, this signal provides initial learning traction. However, it
quickly saturates after ∼100 steps, and the full-pass rate remains negligible (<0.01%).

Warm-up phase. Even though it can not serve as a full surrogate loss, we find that the per-test pass
rate can serve as an important warm-up stage that pushes the model out of the all-zero region. As
shown in Figure 5(a), this signal allows the model to move beyond the all-zero region: although the
full-pass rate remains < 1%, the model begins to accumulate positive gradients.

Exploration and grokking. From this warm-up checkpoint, we switch to RL with the binary full-pass
reward. Figure 5(b) illustrates the dynamics: For ∼450 steps, the model remains in an exploration
phase, with full-pass rate still < 1%. After a sudden grokking moment, the model discovers the
key strategy to solve the family. Training then enters a convergence phase, where RL sharpens and
consistently reinforces the successful reasoning path. At convergence, the RL-trained model achieves
nearly a 100% absolute improvement in pass@k compared to the reference model (Figure 4). We
also observe this phenomena with other model families, sizes, and problem domains in Appendix C.1

4.3 ATTEMPTS TO ACCELERATE RL GROKKING

A natural follow-up question is how to shorten the exploration phase and enable grokking to emerge
earlier. We examine the following strategies:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

zero

Full Pass Rate

non-zero

Exploration
Phase

Convergence
Phase

Grokking!

After “warm-up”
training with

per-test
pass rate,
resumed

with the full
pass rate

Strategy (a): RL (GRPO) with Full-pass Rate Strategy (b): RL (GRPO) with Per-test Pass Rate

Strategy (c): RL (GRPO) with Warm-up Phase (Per-test Pass Rate) + Continued (Full Pass Rate)

Figure 5: Comparison of strategies solving “pass@K=0” tasks. (a) Directly optimizing for full-pass rate under
GRPO fails. (b) Training with a per-test pass rate provides a smoother reward but quickly saturates. (c) A
two-phase training—warming up with per-test pass rate, then switching to full-pass reward. All training is
performed on Manufactoria-HAS family and the reference model Qwen3-4B-Instruct-2507.

0 100 200 300 400 500 600 700 800
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Fu
ll

Pa
ss

 R
at

e

No Trick
Experience Replay
Experience Replay + Feedback-in-the-loop

Figure 6: Comparison of training strategies
for accelerating RL grokking. “No Trick”
denotes the standard training setup as in
Figure 5(b), “Experience Replay” logs and
reuses successful traces, and “Experience Re-
play + Feedback-in-the-loop” further injects
verifier’s feedback into the inference.

Experience replay. The long exploration phases mainly
stem from the sparsity of positive reward signals. A nat-
ural way to alleviate this is to retain successful reasoning
traces and reinsert them into future rollouts—a technique
known as experience replay (Zhang et al., 2025), closely
related to expert iteration (Anthony et al., 2017). In our
experiments, we log successful traces in each sampling
round and, when the same query reappears, append up to
three of the most recent successful traces to the rollout. As
shown in Figure 6, experience replay does help the model
grok at an earlier stage. However, its convergence speed
is still slower than the baseline GRPO algorithm, likely
because the reused traces are off-policy.

Feedback-in-the-loop. Another plausible strategy is to
directly include failure feedback in the generation process,
encouraging the model to improve its full pass rate earlier.
We achieve this by replacing the EOS token with feedback
(e.g., failure test cases) and letting the model continue generating. As shown in Figure 6, applying
this feedback-in-the-loop once can indeed expedite the grokking moment. However, it also reduces
training stability, likely due to the off-policy injection of feedback tokens. A common failure case is
that the model, even after receiving explicit feedback, persists in its original (incorrect) solution.

4.4 MORE INVESTIGATION INTO THE WARM-UP PHASE

Selective curriculum learning as an alternative. A natural question is whether the warm-
up effect can be achieved through curriculum learning across problem families. To explore
this (Figure 7), we designed a three-stage curriculum training. After training on basic families
(START/APPEND/EXACT), models were exposed either to Stage 2–REGEX or Stage 2–COMPR
before transferring to the target HAS tasks. These two problem families have similar difficulty levels
according to Figure 2. Despite similar difficulty, the outcomes diverge: the REGEX curriculum
leads to successful transfer and near-complete mastery of HAS at final RL stage, while the COMPR
curriculum fails to progress beyond low pass rates. This difference can be traced to task compatibil-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Curriculum Stage 1
(Basic Level Problems):

Manufactoria-START/APPEND/EXACT

Curriculum Stage 2:
Problems: Manufactoria-REGEX Final Stage on Target Problems:

Problems: Manufactoria-HAS

Curriculum
Learning on

Different
Problems

Final Stage on Target Problems:
Problems: Manufactoria-HAS

Curriculum Stage 2:
Problems: Manufactoria-COMPR

Resumed
Training

w/ Different
Problems

Figure 7: Contrast of the two-stage curriculum learning for Manufactoria-HAS. Models first train on
basic problems (START/APPEND/EXACT) before branching into one of two intermediate curricula: (i) Stage
2–REGEX, which leads to successful transfer and high pass rates on the target HAS family, or (ii) Stage 2–COMPR,
which fails to transfer and plateaus at low performance.

ity—both REGEX and HAS revolve around detecting or matching subpatterns (e.g., “accept tapes with
pattern (BRB)+(RR)∗” vs. “accept tapes with subsequence GGRBB”), whereas COMPR emphasizes
numerical interpretation and branching tests (e.g., “treat color B as 1 and R as 0, accept if the number
≥ 27”). These results suggest that effective curricula must not only control difficulty but also align
structurally with the target family. While curriculum learning can thus be highly effective, its success
depends on finding suitably related families to bridge the reasoning gap—something that is not
always feasible. In contrast, warm-up training with dense rewards remains broadly useful as it does
not require additional family design or mixing.

Warm-up Helps Beyond the “pass@k=0” Regime Even when the base model exhibits a small but
non-zero success rate (pass@k= ϵ > 0), a brief per-test–reward warm-up improves stability and
speed. Empirically, we observe faster and smoother convergence compared to training full-pass from
scratch (see Appendix C.2).

Warm-up Phase (a): RL (GRPO) with Full-pass Rate
Problems: Manufactoria-PREPEND (MEDIUM)

Stays with all-0

Figure 8: Warm-up training on the harder
Manufactoria-PREPEND family.

Limitation. It is important to note that not every problem
family can be “unlocked” by warm-up training. For instance,
as shown in Figure 8, even when using per-test pass rate
rewards, the model fails to escape the all-zero regime on the
harder Manufactoria-PREPEND family. The per-test
signal rises modestly but quickly saturates, while the full-
pass rate remains stuck at zero throughout training. This
suggests that warm-up with per-test pass rate training is not
a universal recipe: its effectiveness depends on the model’s
capacity and difficulty of the target family.

5 GENERALIZATION STUDY

Setup. We study how far the learned programmatic skills transfer beyond the training distri-
bution. Unless noted, the reference model is Qwen3-4B-Instruct. We train on a Basic-level
mixture of six single-skill families—ROT OBJ, ROT BOX, MOV BOX, GRAVITY, MULTI BOX,
MULTI OBJ—with 1k instances per family (6k total). Because the base model has non-zero full-pass
on some basic instances, we directly optimize a binary full-pass reward (all tests pass) for 300
gradient steps; all other hyperparameters follow Section 4. Evaluation spans three axes—explorative,
compositional, and transformative—and reports full pass rate (fraction of prompts for which the
synthesized program exactly matches the oracle on all unit tests). For explorative generalization we
consider four difficulty tiers (Basic=ID, Easy/Medium/Hard=OOD) crossed with the six families;
each bar in Figure 9 aggregates. More detailed setup is in Appendix B.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(b) Explorative Generalization
(Before RL)

(After RL)

(c) Compositional Gen.
 (Before RL)

(After RL)

(d) Transformative Gen.
(Before RL)

(After RL)

(a) Training Curve
(Basic Level)

Grokking!

Figure 9: Generalization Study on BOUNCINGSIM. (a) Training full-pass rate on the Basic-level mixture
(6 families, 1k each) for Qwen3-4B-Instruct with binary full-pass reward shows a sharp grokking jump near
step 200. (b) Explorative generalization: Before RL (top) the model rarely solves any OOD cases; after RL
(bottom) it transfers to Easy/Medium/Hard variants with diminishing gains as difficulty increases (bars aggregate
6 families × 4 tiers; 100 prompts per cell, averaged over 4 runs). (c) Compositional generalization: Zero-shot
composition of skills. (d) Transformative generalization: Qualitatively new dynamics (e.g., special periodic
trajectories) remain near zero after RL. Results are averaged over 4 runs.

Training dynamics (Fig. 9a). We again observe a sharp grokking phase transition: after a long
plateau of near-zero reward, performance on the training mixture jumps around the step 200 to 0.7
full pass rate, indicating the emergence of stable simulation code that handles elastic collisions.

Generalization results (Fig. 9b–d). RL-trained models transfer beyond the training distribution, but
with varying success across axes. In explorative generalization, performance is strong on Basic (ID,
70–85%) and carries over to Easy (50–75%), though gains shrink on Medium (15–50%) and nearly
vanish on Hard (single digits). For compositional generalization, the model demonstrates surprising
skill integration: unseen combinations such as ROT BOX+MOV BOX, MOV BOX+GRAVITY, and
MULTI BOX+MULTI OBJ achieve 60–70% full-pass (vs. near-zero before RL), in contrast to the
weak compositional transfer reported in OMEGA (Sun et al., 2025). We attribute this to coding
tasks composing structurally (merging simulation modules) rather than strategically (inventing new
reasoning steps). Finally, in transformative generalization, models remain near zero on qualitatively
novel dynamics such as perfectly periodic or degenerate trajectories, which demand the discovery of
new invariants and align with the persistent difficulty of transformative math generalization.

Takeaways. RL discovers executable simulators that (i) transfer well to parametric shifts and (ii)
compose across skills, but (iii) struggle when the test distribution demands qualitatively different
solution schemas. Coding tasks appear more amenable to structural composition than symbolic math,
yet transformative “schema creation” remains an open challenge. Figure 9 summarizes these trends.

6 RELATED WORK

Coding benchmarks and synthetic datasets. Human written or collected coding benchmarks like
APPS (Hendrycks et al., 2021), CodeContests (Li et al., 2022), HumanEval (Chen et al., 2021),
MBPP (Austin et al., 2021) and TACO (Li et al., 2023) established functional-correctness evaluation
with tests. Synthetic datasets like KodCode (Xu et al., 2025) introduced a large-scale synthetic coding
dataset with LLM spanning simple exercises to advanced algorithmic challenges. DELTA builds on
this trend on a more fine-grained level, generating families of coding problems to isolate specific
reasoning strategies and to test learnability and generalization under controlled distribution.

Study on grokking. Grokking (Power et al., 2022) is when a model memorizes small algorithmic
training sets and only later suddenly generalizes after prolonged training. Explanations span train–test
loss-landscape mismatch Liu et al. (2022), double-descent via pattern-learning speeds Davies et al.
(2023), and gradient-spectrum splits between slow generalization and fast memorization Lee et al.
(2024). Beyond traditional neural network settings, small transformers also grok on synthesized
graph-based tasks (Wang et al., 2024; Abramov et al., 2025). Yet most work targets supervised,
toy datasets; whether grokking occurs in RL on difficulty reasoning tasks remains unclear. To our
knowledge, DELTA is the first to show that, under suitable training, grokking can emerge during RL
fine-tuning of large language models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

Appendix A details all prompts, generators, and curated splits for Manufactoria, BouncingSim,
competition coding, along with fixed seeds and JSONL artifacts (instances, metadata, and test
assertions). RL training is conducted using the public Open-Instruct repository. Appendix B
documents the core shell commands, hyperparameters, and evaluation protocols needed to reproduce
our runs. Together, these materials provide a complete, end-to-end recipe for replication.

REFERENCES

Roman Abramov, Felix Steinbauer, and Gjergji Kasneci. Grokking in the wild: Data augmentation
for real-world multi-hop reasoning with transformers. arXiv preprint arXiv:2504.20752, 2025.

Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning and tree
search. Advances in neural information processing systems, 30, 2017.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis
with large language models. CoRR, abs/2108.07732, 2021. URL https://arxiv.org/abs/
2108.07732.

Margaret A Boden. Creativity and artificial intelligence. Artificial intelligence, 103(1-2):347–356,
1998.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xander Davies, Lauro Langosco, and David Krueger. Unifying grokking and double descent. arXiv
preprint arXiv:2303.06173, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian
Yu, Zhenwen Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging, de-
contaminated, and verifiable mathematical dataset for advancing reasoning. arXiv preprint
arXiv:2504.11456, 2025.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps. arXiv preprint arXiv:2105.09938, 2021.

Jaerin Lee, Bong Gyun Kang, Kihoon Kim, and Kyoung Mu Lee. Grokfast: Accelerated grokking by
amplifying slow gradients. arXiv preprint arXiv:2405.20233, 2024.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau,
Guillaume Lample, and Stanislas Polu. Numinamath. [https://huggingface.
co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/
aimo-progress-prize/blob/main/report/numina_dataset.pdf), 2024.

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
Ge Li. Taco: Topics in algorithmic code generation dataset. arXiv preprint arXiv:2312.14852,
2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. arXiv preprint arXiv:2203.07814, 2022.

10

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mingjie Liu, Shizhe Diao, Jian Hu, Ximing Lu, Xin Dong, Hao Zhang, Alexander Bukharin, Shaokun
Zhang, Jiaqi Zeng, Makesh Narsimhan Sreedhar, et al. Scaling up rl: Unlocking diverse reasoning
in llms via prolonged training. arXiv preprint arXiv:2507.12507, 2025a.

Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
arXiv preprint arXiv:2505.24864, 2025b.

Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data.
arXiv preprint arXiv:2210.01117, 2022.

NVIDIA. Opencodereasoning-2. Dataset on Hugging Face, 2025. URL https://huggingface.
co/datasets/nvidia/OpenCodeReasoning-2. License: CC-BY-4.0.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Zafir Stojanovski, Oliver Stanley, Joe Sharratt, Richard Jones, Abdulhakeem Adefioye, Jean Kaddour,
and Andreas Köpf. Reasoning gym: Reasoning environments for reinforcement learning with
verifiable rewards, 2025. URL https://arxiv.org/abs/2505.24760.

Yiyou Sun, Shawn Hu, Georgia Zhou, Ken Zheng, Hannaneh Hajishirzi, Nouha Dziri, and Dawn
Song. Omega: Can llms reason outside the box in math? evaluating exploratory, compositional,
and transformative generalization. arXiv preprint arXiv:2506.18880, 2025.

Boshi Wang, Xiang Yue, Yu Su, and Huan Sun. Grokked transformers are implicit reasoners: A
mechanistic journey to the edge of generalization. CoRR, abs/2405.15071, 2024. URL http://
dblp.uni-trier.de/db/journals/corr/corr2405.html#abs-2405-15071.

Kyle Wiggers. People are benchmarking ai by having it make balls bounce in rotating shapes.
TechCrunch, 2025. Retrieved from https://techcrunch.com/2025/01/24/people-are-benchmarking-
ai-by-having-it-make-balls-bounce-in-rotating-shapes/.

Fang Wu, Weihao Xuan, Ximing Lu, Zaid Harchaoui, and Yejin Choi. The invisible leash: Why rlvr
may not escape its origin. arXiv preprint arXiv:2507.14843, 2025.

Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. Kodcode: A diverse,
challenging, and verifiable synthetic dataset for coding. arXiv preprint arXiv:2503.02951, 2025.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Hongzhi Zhang, Jia Fu, Jingyuan Zhang, Kai Fu, Qi Wang, Fuzheng Zhang, and Guorui Zhou. Rlep:
Reinforcement learning with experience replay for llm reasoning. arXiv preprint arXiv:2507.07451,
2025.

Zihan Zheng, Zerui Cheng, Zeyu Shen, Shang Zhou, Kaiyuan Liu, Hansen He, Dongruixuan Li,
Stanley Wei, Hangyi Hao, Jianzhu Yao, et al. Livecodebench pro: How do olympiad medalists
judge llms in competitive programming? arXiv preprint arXiv:2506.11928, 2025.

11

https://huggingface.co/datasets/nvidia/OpenCodeReasoning-2
https://huggingface.co/datasets/nvidia/OpenCodeReasoning-2
https://arxiv.org/abs/2505.24760
http://dblp.uni-trier.de/db/journals/corr/corr2405.html#abs-2405-15071
http://dblp.uni-trier.de/db/journals/corr/corr2405.html#abs-2405-15071

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A DATASET DETAILS

A.1 MANUFACTORIA

Manufactoria is a classic Flash game (2010) in which players build automated factories to sort
robots based on their colored tape patterns. The underlying logic resembles constructing finite-state
automata or tag systems using two special node types (puller, painter). While the original
game is implemented in 2D space, we re-formalize it into a custom programmatic syntax, as the
syntax defined as a prompt below.

Prompt Template of Manufactoria Problems

Manufactoria Solution DSL

A Domain Specific Language for describing Manufactoria puzzle solutions
in text format.

Overview

Manufactoria is a puzzle game where you build automated factories
to sort robots based on their colored tape patterns. Robots enter your
factory carrying sequences of colored tape, and you must route them
to the correct destinations based on the given criteria.

Game Mechanics

Robots and Tape
- **Robots**: Each robot carries a sequence of colored tapes
- **Tape Colors**: Primary colors are Blue (B) and Red (R), with additional
Yellow (Y) and Green (G) for advanced puzzles
- **Tape Representation**: Sequences are represented as strings
(e.g., `RBRR`, `BBR`, or empty string `""`)

Operations
- **Pull**: Remove tape from the front of the robot's sequence
- **Paint**: Add colored tape to the end of the robot's sequence
- **Route**: Direct robots through the factory based on their current tape state

Objective
Route robots to the correct destinations based on their final tape
configuration and the puzzle requirements:
- **Accepted**: Robot reaches the END node
- **Rejected**: Robot is routed to the NONE node, or caught in an infinite
loop, or robot reaches the END node but fails to meet the puzzle's
acceptance criteria

DSL Syntax

Program Structure

Every solution must start with a `START` directive and end with an
`END` directive, wrapped in ```manufactoria ...```:

```manufactoria
START start:

NEXT <next_node_id>

# Factory logic goes here

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

END end
```

Node Types

1. Puller Nodes

Pullers remove specific colors from the front of the robot's tape sequence
and route based on the current front color.

Red/Blue Puller:

```manufactoria
PULLER_RB <node_id>:

[R] <next_node_id> # Route and remove color if front tape is Red
[B] <next_node_id> # Route and remove color if front tape is Blue
[EMPTY] <next_node_id> # Route if no tape or front tape is neither R nor B

```

Yellow/Green Puller:

```manufactoria
PULLER_YG <node_id>:

[Y] <next_node_id> # Route and remove color if front tape is Yellow
[G] <next_node_id> # Route and remove color if front tape is Green
[EMPTY] <next_node_id> # Route if no tape or front tape is neither Y nor G

```

Note: Unspecified branches default to `NONE`, which rejects the robot.

2. Painter Nodes

Painters add colored tape to the end of the robot's sequence and continue
to the next node.

```manufactoria
PAINTER_RED <node_id>:

NEXT <next_node_id>

PAINTER_BLUE <node_id>:
NEXT <next_node_id>

PAINTER_YELLOW <node_id>:
NEXT <next_node_id>

PAINTER_GREEN <node_id>:
NEXT <next_node_id>

```

Syntax Rules

1. **Node IDs**: Must be unique identifiers (alphanumeric characters
and underscores only)
2. **Comments**: Lines starting with `#` are comments (single-line only)
3. **Indentation**: Use consistent spaces or tabs for route definitions
4. **Case Sensitivity**: Colors must be uppercase (R, B, Y, G)
5. **Termination**:

- Robots routed to `NONE` are rejected
- Robots routed to the END node are accepted{objective_clause}

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

6. **Code Blocks**: Final factory code should be wrapped in triple
backticks with ``` markers

Example

Here's a simple example that accepts robots with exactly one red tape
(ending tape should be empty):

```manufactoria
START start:

NEXT entry

PULLER_RB entry:
[R] end

END end
```

Task
Your task is to design a factory with code with following functionality:

{criteria}

The End of Prompt

The criteria are defined in the Table 1 with different problem families.

Problem Family Difficulty Criteria Examples
APPEND BASIC Accept any input and append the sequence RBR to the end of the

tape.
EXACT BASIC Accept if the tape is exactly RBB.
START BASIC Accept if the tape starts with BR.

ENDS EASY Accept if the tape ends with BB.
REGEX EASY Accept if the tape matches the regex pattern (RBR)+(B)? ex-

actly.
HAS EASY Accept if the tape contains the substring RYY (must be consecu-

tive).
COMPR EASY Treat Blue as 1 and Red as 0. Accept if the binary number is

greater than or equal to 13.

PREPEND MEDIUM Put BR at the beginning of the tape.
MUTATE MEDIUM Change all RB to BR sequentially.
BIT OP MEDIUM Treat Blue as 1 and Red as 0. Apply bitwise OR with 16 to the

binary number.

FDIV HARD Treat Blue as 1 and Red as 0. Apply floor division by 4 to the
binary number.

SYMM HARD Accept strings that match the pattern R{n}B{n+1} for any n ≥
1.

MINMAX HARD Treat Blue as 1 and Red as 0. Output the maximum of 11 and
input.

ADD HARD Treat Blue as 1 and Red as 0. Apply add 8 to the binary number.

Table 1: Manufactoria Problem families with difficulty levels and acceptance criteria.

We synthesize each problem family by starting from a parameterized template (alphabet, tape
operation(s), acceptance predicate, and any numeric thresholds) and then perturbing those parameters

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

within a constrained search space. Discrete knobs (e.g., start/end substrings, regex subpatterns, token
rewrites) are toggled or swapped with near neighbors, while numeric knobs (e.g., bitwise constants,
comparison thresholds, additive offsets, division factors) are jittered by small deltas drawn from a
valid set (e.g., ±1, ±2, powers of two), with guards to keep the task well-posed and nontrivial.

A.1.1 EXAMPLE TRACES COMPARISON OF A MANUFACTORIA-HAS PROBLEM

Here is one example response of Qwen3-4B-Instruct on a problem in MANUFACTORIA-HAS: “Ac-
cept if the tape contains the substring BRRR (must be consecutive)”.

Failure Case

To design a **Manufactoria solution** that **accepts robots whose tape
contains the substring 'BRRR'** (consecutive), and **rejects therwise**,
we need to carefully build a factory that:

- **Detects** the presence of the sequence `BRRR` in the robot's tape.
- Only accepts robots when this exact pattern appears **somewhere** in
their tape.
- Rejects all others (including those with `BRR`, `BRRR`, but not full
`BRRR`, or other combinations).

Understanding the Requirement

We are looking for **consecutive** `BRRR` | that is, the letters B
followed by three R's in a row.

We can't just look for `B` and then three `R`s as separate steps |
since the robot has a sequence, and we must detect **this exact substring**.

Strategy

We will use **state-based pattern matching** using **pullers** to
simulate a finite state machine.

We'll define states that track how close we are to matching "BRRR":

State	Meaning
`S0`	Start: looking for the first 'B'
`S1`	After seeing 'B': now expecting R
`S2`	After seeing 'R': now expecting R
`S3`	After seeing RR: now expecting R (final match)
`S4`	Match found: accept (go to END)
`S5`	Failed to match (hit any invalid character or didn't complete) → reject

We'll use **PULLER_RB** nodes (since only R and B are used) to process
the tape from front to back.

We want to **build a machine that scans** the robot's tape until it
finds `BRRR`.

Once the substring is found, we route the robot to the **END**.

If it fails, we route it to a **rejection node** (via `NONE`).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Design Steps

1. **Start** node sends to a scanning state.
2. Use a series of pullers to detect:

- If the front is `B`, go to next state (`S1`)
- If the front is `R`, stay in current state or fail.
- If the tape is empty or neither, reject (fail).

3. After each `R`, advance state.
4. If we ever get `BRRR`, go to `END`.
5. If we see anything else (e.g., `G`, `Y`, or a non-R after `B`), reject.

> Because the only tape colors in this puzzle are **B** and **R**, we
do not need yellow or green.
> So we only need **PULLER_RB**.

Implementation

```manufactoria
START start:

NEXT s0

s0:
[B] s1
[R] s5
[EMPTY] s5

s1:
[R] s2
[B] s5
[EMPTY] s5

s2:
[R] s3
[B] s5
[EMPTY] s5

s3:
[R] end
[B] s5
[EMPTY] s5

s5:
NONE

END end
```

Explanation

State	Action
`s0`: Start	Wait for `B` → go to `s1`. If `R` or empty → reject (`s5`).
`s1`: After 'B'	Expect R → go to `s2`. If `B` or empty → fail → reject.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

`s2`: After 'RR'	Expect another R → go to `s3`. Any other → fail.
`s3`: After 'BRR'	If next is `R`, we have `BRRR`, go to **END**. Otherwise fail.
`s5`: Failure state	All invalid or wrong transitions → `NONE` → **rejected**

> **No alternative paths** are accepted.
> This correctly **only passes robots with "BRRR" in their tape**, and rejects:
> - `BRR` (missing last R)
> - `BBRR` (fails at `B` after `B`)
> - `BRBR` (breaks the sequence)
> - Any tape with `B` not followed by at least three `R`s
> - Empty or non-matching tapes

Example Test Cases

Input Tape	Accepted?	Why
`BRRR`	Yes	Found `BRRR` → reaches `end`
`BBRRR`	Yes	First `B` → goes to `s1`, then `R` → `s2`, `R` → `s3`, `R` → `end`
`BRBR`	No	After `B`, then `R`, then `B` → fails (not `R`) → reject
`BRR`	No	No final `R` → rejected
`RRB`	No	No `B` at start → rejected
`` (empty)	No	Empty → rejects
`RBR`	No	No `B` at start, so never starts sequence → reject

> Works as required.

Final Solution

```manufactoria
START start:

NEXT s0

s0:
[B] s1
[R] s5
[EMPTY] s5

s1:
[R] s2
[B] s5
[EMPTY] s5

s2:
[R] s3
[B] s5
[EMPTY] s5

s3:
[R] end
[B] s5
[EMPTY] s5

s5:
NONE

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

END end
```

This solution correctly accepts robots with the substring **'BRRR'** and
rejects all others.

The End of Trace

Here is another example response (partial) of Qwen3-4B-Instruct after RL training with grokking
(as in Figure 6 (c)) on a test problem in MANUFACTORIA-HAS: “Accept if the tape contains the
substring BRRR (must be consecutive)”.

Success Trace

We are tasked with designing a factory in the **Manufactoria DSL** that:

- **Accepts** robots whose tape contains the substring **`BRRR`** (four
consecutive characters: B, R, R, R)
- **Rejects** all others.

This is a **string matching** problem via finite automata. Since
the tape is processed from left to right (front to back), and we are
only allowed to use pullers (which remove from the front), we must
simulate a finite state machine (FSM) that tracks progress toward
detecting "BRRR".

We can't assume the input is long or ordered | so we have to detect the
exact substring **"BRRR"** in the input sequence, **anywhere**, and
accept if and only if it appears.

We must design an **automaton** that:

- Keeps track of how much of "BRRR" it has matched so far
- When it sees a match, it goes to an accepting state
- Otherwise, it continues scanning, possibly resetting or continuing
partial matches

We do **not** allow adding tape (painting), only pulling (removing
from front), and routing based on the current front character.

Step 2: Define state transitions

We will build the automaton with states:

- `s0` → initial state
- `s1` → after matching B
- `s2` → after matching BR
- `s3` → after matching BRR
- `s4` → matched BRRR → ACCEPT

......

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Now, what about the tape that is exactly `BRRR`?

- s0 → B → s1
- s1 → R → s2
- s2 → R → s3
- s3 → R → go to `end`

What about if the tape is `R`?

- s0 → R → s0 → then R → s0 → forever → never reaches end → rejected → correct.

What about `B`?

- s0 → B → s1 → then if next is R → s2 → etc.

So yes.

What about `BBR`?

- B → s1
- B → s1
- R → s2 → then if no more, it stops → never accepts → correct,
because BRRR not present.

But what about `BBRRR`? → yes, after seeing second B → s1 → then
R → s2 → R → s3 → R → end → Accepted

So it works.

Are there any **missing** cases?

What if the tape starts with Y?

- s0 → Y → goes to yg0 → Y → s0 → same → so eventually if B comes,
we can proceed.

Eventually, if "BRRR" appears later, we will catch it.

What if "BRRR" appears in the middle? Like `X BRRR Y`?

- X → if R → s0 → then B → s1 → R → s2 → R → s3 → R → end

Perfect.

We never require the tape to start with B | just that BRRR appears anywhere.

So it's correct.

Final Answer

```manufactoria
START start:

NEXT s0

PULLER_RB s0:
[R] s0
[B] s1

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

[EMPTY] yg0

PULLER_YG yg0:
[Y] s0
[G] s0
[EMPTY] s0

PULLER_RB s1:
[R] s2
[B] s1
[EMPTY] yg1

PULLER_YG yg1:
[Y] s0
[G] s0
[EMPTY] s0

PULLER_RB s2:
[R] s3
[B] s1
[EMPTY] yg2

PULLER_YG yg2:
[Y] s0
[G] s0
[EMPTY] s0

PULLER_RB s3:
[R] end
[B] s1
[EMPTY] yg3

PULLER_YG yg3:
[Y] s0
[G] s0
[EMPTY] s0

END end
```

This factory accepts any robot whose tape contains the substring
`"BRRR"` (consecutive), and rejects otherwise.

This satisfies the requirement.

The End of Trace

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.2 BOUNCINGSIM

We include a widely used community test—a 2D bouncing-ball simulation program—often treated
as a proxy for geometry-aware reasoning in LLMs (Wiggers, 2025). The goal is to synthesize a
program that simulates elastic collisions in polygonal containers and returns the exact object state at
a queried timestamp; strong solutions require precise collision detection/response and numerically
stable integration.

Prompt design. We provide a prompt example of the bouncing ball coding problems in ROT BOX
problem family below.

Prompt Template of BouncingSim Problems

Polygon Dynamics Prediction
In this task, you will implement a single function predict_position(t)
that computes the 2D positions of all balls at an arbitrary future time
t under idealized mechanics. The function parses the scene configuration
(containers, balls, and physics/meta), reconstructs the motions, detects
and handles boundary collisions with finite-size treatment, and returns
a list where each element is the [x, y] position (rounded to 2 decimals)
of a ball at time t. Each evaluation of t must be computed directly from
initial conditions and scene mechanics with no hidden state or
accumulation across calls. Rendering, animation, and explanatory text
are out of scope; prefer closed-form reasoning and avoid coarse time-
stepping except where narrowly required for collision resolution.

Mechanics (General)
- Kinematics: Use closed-form equations under constant acceleration:
x(t)=x0+vx0*t+0.5*ax*tˆ2, y(t)=y0+vy0*t+0.5*ay*tˆ2.
- Collisions: Perfectly elastic. Reflect velocity using v' = v -
2·dot(v, nˆ)·nˆ, where nˆ is the inward unit normal at the contact.
- Finite size: Use polygon{polygon contact. Derive regular shapes from
('sides','radius','center','rotation'); irregular convex polygon balls
use provided vertices.
- Geometry: Irregular convex polygons (if present) are simple (non self-
intersecting). Ball finite size must be respected in all interactions.
- Units: Positions in meters; time in seconds; angles in radians;
velocities in m/s; accelerations in m/sˆ2.
- Cartesian Axes: +X is right, +Y is up.

Constraints
- Implement only predict_position(t); no other entry points will be called.
- No global variables; no variables defined outside the function.
- Do not import external libraries (except math); do not perform I/O; do
not print; do not use randomness.
- Numerical output must be round(value, 2); normalize -0.0 to 0.0.

Verification and output contract
- Return a list of positions per ball for the provided t: [[x1,y1],[x2,y2],...].
- Each call must be computed independently (no state carry-over between calls).
- You should assume that the ball will hit the wall and bounce back,
which will be verified in test cases.

Scene description
Containers
- Container 1: regular polygon with 3 sides, radius 225.00m, center at
(750, 750); initial orientation 0.000 rad; constant angular velocity 0.170 rad/s

Objects

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

- Ball 1: regular polygon (3 sides), radius 40.0m, initial position
(750, 750), initial velocity (-220.61, 6.21) m/s

Physics
- no effective gravity (treated as zero).

Dynamics
- No additional time-varying mechanisms.

Conventions for this scene
- Containers are convex regular polygons (parameters: 'sides', 'radius',
'center'), unless otherwise specified.
- Angle baseline: By default, the initial orientation is 0.000 rad,
pointing to the first vertex along +X (standard Cartesian axes);
positive angles rotate CCW about the container center.
- Polygon vertices (if provided) are CCW and form a simple convex polygon.
- Container 'radius' denotes the circumradius (meters).
- For balls: irregular convex polygons rely on provided vertices (no
radius mentioned); regular polygons may be derived from
'sides/radius/center/rotation'.
- Containers are kinematic (infinite mass, prescribed motion); impacts
do not alter container motion.

Task
- Number of balls: 1
- Your should think step by step and write python code.
- The final output should be in the following format:
[Your thinking steps here ...](optional)
```python
[Your Python code here]
```
- Define predict_position(t) returning a list of length n_balls; each
element is [x_i, y_i] (rounded to 2 decimals) for Ball i at time t (seconds)

Output
- Required format: function predict_position(t: float) -> [[x1,y1],
[x2,y2],...]; coordinates as 2-decimal floats

The End of Prompt

We construct a large-scale dataset for elastic collisions of polygonal objects in polygonal containers,
designed to probe geometry-aware reasoning and numerically stable simulation in code-generating
models (Wiggers, 2025). Each instance provides a fully specified physical scene and a programmatic
task: predict the exact object state at one or more queried timestamps. Below we detail our scene
taxonomy, generation and validation pipeline, prompt/evaluation protocol, and the difficulty schedule.

A.2.1 SCENE TAXONOMY

We factor the space of scenes into orthogonal “axes” that control distinct physical effects or composi-
tion, allowing systematic sampling and compositional generalization:

• ROT OBJ (Inner rotation): the ball (modeled as a convex polygon) has nonzero angular velocity;
collisions remain perfectly elastic.

• ROT BOX (Outer rotation): the container rotates; optionally, time-varying angular speed is injected
via a sinusoidal envelope.

• MOV BOX (Outer translation): the container follows a prescribed path (sinusoidal or Lissajous),
inducing moving-boundary reflections.

• GRAVITY: gravity can be tiny/small/large, tilted, or chaotic (random direction with time variation).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

• MULTI BOX (Multi-container): multiple non-overlapping polygonal containers are placed; a single
ball is spawned in the first container unless otherwise specified.

• MULTI OBJ (Multi-object): multiple balls are spawned in a single container with non-overlapping
initial placement.

All containers and balls are convex polygons; collisions use a perfectly elastic model (restitution 1.0)
with finite-size handling (ball centers are constrained by the container’s incircle).

A.2.2 PARAMETERIZATION AND PLACEMENT

Scenes are defined in a global, display-agnostic metric space. The workspace size is fixed to 1500 m
× 1500 m with a baseline container diameter of 300 m. Difficulty scales the geometry (e.g., container
diameter factor), polygon arity (number of sides), ball radii, speeds, and multiplicities. Objects are
sampled and placed under strict feasibility constraints:

• Non-overlap: initial ball–ball overlap is rejected by a circle-approximation test; multi-container
layouts must respect a minimum center-to-center gap.

• Feasible incircle: ball centers are sampled inside the container’s incircle minus a safety margin;
scenes violating this bound are rejected.

• Units: positions in meters; time in seconds; angles in radians; velocities and accelerations in SI
units. All randomization is seeded and stored in scene metadata for reproducibility.

A.2.3 GENERATION AND VALIDATION PIPELINE

The dataset is produced in three stages, repeated for every requested problem family combination and
difficulty level:

(1) Scene synthesis. Given a target problem family set (e.g., ROT BOX) and difficulty, we draw
parameters from problem-family-specific ranges (polygon arity, speeds, rotation rates, translation
amplitudes, gravity modes) and write a normalized JSON scene: container(s), ball(s), physics
(including time-varying profiles), and comprehensive metadata (difficulty name, seed, key timestamps,
etc.). Difficulty levels scale geometry (container factor, polygon arity), ball radii, kinematics (linear
and angular speeds), gravity complexity, and multiplicity (containers/balls) as shown in Table 2.

(2) Numerical sanity check. Each synthesized scene is validated for step-size stability before
acceptance. We simulate the scene at a small set of reference timestamps under two integrators/time-
steps (a validation baseline vs. the ground-truth step) and require the maximum screen-space deviation
to remain below a tight threshold (15 px). Scenes that exceed this threshold or violate geometric
feasibility (overlap or outside-incircle) are discarded and resampled up to a retry budget.

(3) Dataset assembly. For every accepted scene we choose evaluation timestamps and compute
ground-truth positions using the higher-fidelity integrator. We then construct a task prompt and
serialize a JSONL entry containing: messages (the task), a list of test assertions (per timestamp), the
instance id, difficulty index, the explicit timestamp list, and an error tolerance tag (default 50px) used
during automated checking.

A.2.4 SPLITS AND COMPOSITION

We design three complementary splits to probe distinct generalization properties. Each split is
parameterized by which axes, difficulties, and timestamp regimes are exposed during training vs.
evaluation.

Design principles. (1) Factorized skills. Axes isolate orthogonal mechanics (inner vs. outer rotation,
moving boundaries, gravity, multiplicity, periodicity). (2) Controlled distribution shifts. Difficulty
scales geometry, multiplicity, and dynamics; OOD splits increase complexity without changing the
core mechanics.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 2: Problem-by-difficulty configurations (aggregated from generator defaults). Abbreviations: f
= container diameter factor (relative to 300m base); out/in = outer/inner polygon sides; r = ball radius
(m); v = linear speed range (m/s); ω = angular speed (rad/s); amp = translation amplitude (m); g =
gravity mode; cts = number of boxes; n = number of balls.

Problem family Basic (0) Easy (1) Medium (2) Hard (3) Extreme (4)

ROT OBJ f 1.5; out 3–4; in 3–4;
r 40; ω 0.1–0.2; v
200–400

f 1.4; out 3–5; in 5–6;
r 35; ω 0.2–0.5; v
400–600

f 1.3; out 3–6; in 6–7;
r 30; ω 0.5–1.0; v
600–800

f 1.2; out 3–7; in 7–8;
r 30; ω 1.0–2.0 (tv);
v 600–800

f 1.0; out 3–7; in 8; r
30; ω 2.0–2.5 (tv); v
600–800

ROT BOX f 1.5; out 3–4; in
3–4; ω 0.1–0.2; v
200–400

f 1.4; out 5–6; in
5–6; ω 0.2–0.5; v
400–600

f 1.3; out 6–7; in
6–7; ω 0.5–1.0; v
600–800

f 1.2; out 7–8; in
7–8; ω 1.0–1.5 (tv);
v 800–1000

f 0.8; out 8–10; in
8–10; ω 2.0–3.0 (tv);
v 1000–1200

MOV BOX f 1.5; out 3–4; amp
0–10; sin1d (0.1); v
200–400

f 1.4; out 5–6; amp
20–40; sin1d (0.5); v
400–600

f 1.3; out 6–7; amp
40–60; sin1d (1.0); v
600–800

f 1.2; out 7–8; amp
60–90; Lissajous; v
800–1000

f 1.0; out 8–10;
amp 90–120; Lis-
sajous (chaotic); v
1000–1200

GRAVITY f 1.5; out 3–4; g =
tiny; v 200–400

f 1.4; out 5–6; g =
small; v 400–600

f 1.3; out 6–7; g =
large; v 600–800

f 1.2; out 7–8; g =
tilted; v 800–1000

f 1.0; out 8–10; g =
tilted; v 1000–1200

MULTI BOX cts 2; f 1.5; out 3–4; r
40; v 200–400

cts 2; f 1.4; out 5–6; r
35; v 400–600

cts 3; f 1.3; out 6–7; r
30; v 600–800

cts 4; f 1.2; out 7–8; r
25; v 800–1000

cts 6; f 1.0; out 8–10;
r 20; v 1000–1200

ROT BALL n 2; f 2.5; out 3–6; in
3–6; r 20; v 200–400

n 3; f 2.5; out 3–6; r
20; v 400–600

n 4–5; f 2.5; out 3–6;
r 20; v 600–800

n 5–6; f 2.5; out 3–6;
r 20; v 800–1000

n 7–9; f 2.5; out 3–6;
r 20; v 1000–1200

Explorative generalization (within-family difficulty shift). This split tests robustness to increased
geometric/dynamic complexity while keeping the same “skill”. We train on single-family scenes at
Basic difficulty and evaluate on the same family at higher difficulties.

• Train: single-family scenes at Basic (0). We generate 1000 examples in such a split.

• Test (ID): single-family scenes at Basic (0). We generate 100 additional examples in such a split.

• Test (OOD): Easy–Extreme (1–4) at the same family; We generate 100 additional examples in each
difficulty.

• Rationale: isolates the effect of tighter geometry (smaller containers, more sides), higher velocities,
stronger/tilted gravity, and larger multiplicity (more containers/balls), while holding the family-
specific mechanics fixed.

Compositional generalization (skill composition). This split probes whether models learned
modular skills that compose. Concretely, we exemplify by composing inner and outer rotations at
test time after training on them in isolation.

• Train: ROTAT BOX (outer rotation only) and ROTAT OBJ (inner rotation only), both at Basic
difficulty. We generate 1000 examples in each family.

• Test (OOD composition): ROTAT BOX OBJ = (outer+inner rotation simultaneously) at Basic (0)
level. Container angular velocity and object spin are drawn independently at the current difficulty
level. We generate 100 additional examples in such a split.

• Rationale: assesses whether learned collision handling in a rotating frame combines with inner-spin
kinematics without interference.

Transformative generalization (qualitative strategy change). Here the test-time data is qualita-
tively different from anything seen in training—for instance, perfectly periodic trajectories that arise
from special construction.

• Train: single-family scenes at Basic (0). We generate 1000 examples in such a split.

• Test (transformative OOD): periodic configurations (even-sided container, symmetry-aligned initial
velocity) using list-prompt mode with a fixed periodic grid; we evaluate cycle consistency and phase
accuracy over evenly spaced timestamps. We provide an example theorem below that supports
such a periodic case construction.

• Rationale: measures whether models trained on generic dynamics can extrapolate to a qualitatively
different but mathematically structured regime (near-1D periodic motion in polygonal symmetry).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Periodic Construction (transformative setting). We exploit a closed-form condition that yields
perfectly periodic, normal “shuttle” trajectories between two concentric, co-rotating regular polygons.
This result underpins the periodic test cases in our ROT BOX transformative split and provides an
analytical knob to dial the fundamental period via the angular velocity.
Theorem 1 (Periodic bounce between two concentric regular n-gons). Setup. Let Po and Pi be two
concentric regular n-gons (n ≥ 3) with circumradii Ro > Ri > 0. Both polygons rotate rigidly with
the same constant angular velocity ω about their common center. At time t = 0 a point mass (“ball”)
is placed on the inward normal to a side of Po and moves with speed v > 0 along that normal toward
Pi. Collisions with sides are perfectly elastic, and motion is confined to the annular region between
the polygons. The initial pose has one vertex on the +x-axis.

Let a(R) := R cos(π/n) denote the apothem of a regular n-gon with circumradius R, and define the
normal gap

∆ := a(Ro)− a(Ri) =
(
Ro −Ri

)
cos

(
π
n

)
.

Thus ∆ is the (signed) distance between the parallel supporting lines of the corresponding side family
in Po and Pi.

Claim (closed-form condition). The ball executes uniform periodic motion—bouncing back and forth
at constant speed along a fixed set of parallel sides with a repeating impact pattern—if and only if
there exists an integer k ∈ Z such that

ω =
k · 2πv

n
(
Ro −Ri

)
cos

(
π
n

)
Equivalently, with the one-way flight time

tfly =
∆

v
=

(Ro −Ri) cos(π/n)

v
,

the periodicity condition is

ω, tfly = k · 2π
n

.

When this holds, the fundamental bounce period and the orientation recurrence are

Tbounce = 2, tfly =
2(Ro −Ri) cos(π/n)

v
, Torient =

2π

|ω|
=

n∆

|k|v
.

The minimal nonzero periodic rotation corresponds to |k| = 1.

Proof sketch. (1) In a regular n-gon, opposite sides are parallel; the distance between their supporting
lines is 2a(R). For concentric, co-oriented Po, Pi, the normal gap between the corresponding
supports is ∆ = a(Ro) − a(Ri). (2) Launching exactly along a side normal produces specular
reflections that preserve a straight, normal shuttle between parallel side families; the speed remains
v, so each one-way flight takes tfly = ∆/v. (3) During a one-way flight, the polygons rotate by ω, tfly.
For the next impact to occur on a side parallel to the previous one (so that the normal shuttle and
impact geometry repeat), the side orientations must recur, which in a regular n-gon happens modulo
2π/n. Hence ω, tfly ≡ 0 (mod 2π/n), yielding the stated condition.

Construction recipe for ROT BOX (periodic). To instantiate periodic test scenes in the transforma-
tive split

1. Choose n (even n makes the normal families align with diameters) and set circumradii (Ro, Ri)
(or effective radii after finite-size shrink/expand).

2. Pick a speed v > 0 and launch along a side normal of Po (avoid vertex alignment by a tiny phase
offset).

3. Set the box angular velocity using |k| = 1 in the closed form, ω ← 2πv
n,(Ro−Ri) cos(π/n)

, and
co-rotate any inner boundary if present, or equivalently use ωrel for differential rotations.

4. The resulting shuttle has Tbounce = 2(Ro − Ri) cos(π/n)/v and repeats in orientation every
Torient = n∆/v. For evaluation, sample timestamps on a uniform grid over several bounce
periods to probe phase stability.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

A.3 COMPETITION CODING

Competition Code is a well-established domain where participants solve complex algorithmic prob-
lems. For a specified problem, the solver program is required to generate the correct output for
every input in the provided test suite. We curate 5 algorithmic families and collect several problems
per family from various well-known competitive programming platforms. We propose a phased
perturbation pipeline to create a comprehensive OOD dataset.

A.3.1 SEED FAMILIES AND COVERAGE

We curate 3-5 seeds per algorithmic family. The current collection includes:

• Mo’s Algorithm (4): LuoguP1494, LuoguP4462, LuoguP4887, LuoguP5047

• Segment Tree Decomposition (3): CF981E, CF1140F, LuoguP5787

• CDQ D&C (3): CF848C, CF1045G, LuoguP4093.

• Meet-in-the-Middle: CEOI2015-D2T1, LuoguP2962, SPOJ-ABCDEF,
USACO2012USOpen-GoldP3

• Square Root Decomposition (5): CF710D, CF797E, CF1207F, LuoguP3396, Lu-
oguP8250.

Each seed problem is tagged with public problem code in websites like CodeForces, AtCoder, and
Luogu. Per seed, we target 5-10 perturbation strategies (configurable; default 10). For narrative
coverage, we maintain a library of 20 background templates (e.g., Campus Life, Ancient Warfare,
Cyber Security, Energy Grid, Xuanhuan Fantasy), and by default rewrite each perturbed seed into all
backgrounds.

A.3.2 SYNTHESIS PIPELINE

Phase 1: Standardize seed problems. This phase transforms heterogeneous problem statements
into a unified specification. First, the framework parses raw Markdown to extract core fields such as
the problem statement, input/output formats, constraints, and examples, and utilize LLMs to reduce
typographic ambiguities and make semantic clarifications.

Phase 2: Produce enumeration-based solutions for standardized seed problems. This phase
generates a diverse set of feasible, though not necessarily optimal, reference implementations for
each standardized seed problem. Emphasis is placed on reliability rather than optimality, ensuring we
have correct solutions for small test cases.

Phase 3: Produce enumeration-based test case generators for standardized seed problems. This
phase synthesizes test case generators grounded in original seed problems. By curating prompts for
LLMs, generators are designed to cover representative distributions and adversarial conditions.

Phase 4: Generate perturbation strategies. This phase generates strategies how to perturb problems
systematically. Each strategy seed is curated by a human expert with at least 8 years of competitive
programming experience and designed for making a perturbation while keep the main solution
unchanged. These strategy seeds are standardized and extended to strategies with detailed instructions.

Phase 5-7: Generate perturbed problems, enumeration-based solutions and test case generators
according to strategies. Phase 5 generates standardized perturbed problem statements, based on
perturbation strategies. Similar to phase 2 and phase 3, we generate corresponding solutions and test
case generators based on enumeration. When generating solutions, we provide the original problem
and solution to effectively improve the reliability.

Phase 8: Produce input constraint sanity check test case generators for standardized perturbed
problems. To enhance the robustness of our evaluation, this phase produces input constraint sanity
check test case generators. Curated test case generators are designed for testing whether the solution
code can handle big test cases in a reasonable small time. Test case constraints are manually adapted
to the Python programming setting, guaranteeing no brute-force solutions can pass and all correct
Python solutions can be accepted.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Phase 9: Produce background rewrites. Finally, this phase provides an effective approach to
generate OOD samples. By utilizing 20 background settings, the standardized perturbed seed
problems are rewritten in different background stories, maintaining the same input/output formats
and solutions. All these rewritten problems are final and ready to be involved in training.

A.3.3 EXAMPLE 1: SEGMENT TREE DECOMPOSITION – BIPARTITE OVER TIME

Seed (excerpt).

“Given (n, m, k). Each of the (m) edges is active on an interval ([l, r]) over the discrete
timeline (1..k). For each time (t), determine whether the active subgraph is bipartite.”

Perturbation strategies (from Phase 2, sample).

• Two-interval activation. Replace each edge’s interval ([l, r]) with exactly two disjoint
subintervals ([l1, r1], [l2, r2]). The solver continues to use DSU-rollback over a segment tree
covering time.

• Interval→Event rewrite. Convert each interval to two explicit events: an add at (l), a
remove at (r+1). Feed the event list unchanged into the segment-tree over time.

• Event-pair splitting. Expand each add/remove into two sub-events (e.g., prepare/apply) to
stress timeline density without changing the rollback design.

Before/After (Strategy-level variant). Before (seed): time-varying edges with single intervals ([l,
r]). After (strategy 1): “Each edge is active exactly on two disjoint intervals ([l1, r1]) and ([l2, r2]).
For each (t) in (1..k), is the subgraph bipartite?” Algorithmic essence and complexity remain the
same: DSU with rollback over a segment tree on the time axis, O((n+m) log k).

A.3.4 EXAMPLE 2: SQUARE ROOT DECOMPOSITION – HASH-BUCKET GROUP SUMS

Seed (excerpt).

“Given an array value. For many queries with modulus (p¡n), report the sum of numbers in
bucket (x), where index (k) belongs to bucket (k mod p). Updates assign valuei ← y.”

Strategy-level perturbation (background-agnostic). Before: group by (k mod p). After:
Grouped Sequence Sum and Update Queries:

“Define H(i) =
∑K−1

k=0 Ski
k mod M . Sum queries ask for the total over indices mapping

to a given hash value (g); updates set Ai ← x.”

This preserves the bucket-sum structure and the O(·) behavior under small-(M) caching and updates,
matching the seed’s enumeration profile while modestly changing the grouping function.

Background rewrite (Campus Life). Before (strategy-level): abstract group sums under (H(i)).
After (background): Campus Club Scores:

“Student IDs (1..N) are assigned to clubs by a polynomial function (C(i)). Queries ask for
the total score in club (g); updates change a student’s score.”

Narrative terms shift (students/clubs/scores), but the formal mapping (C(i)) and the I/O grammar
remain intact so the variant’s enumerator and the background rewrite both agree on the 100-case
oracle.

A.3.5 SUMMARY

By enumeration-first solutions and enforcing strategy-level clarity before rewriting, the pipeline makes
large-scale, verifiable perturbation feasible. Standardization, deterministic test generation, and back-
ground consistency checks together ensure that every variant—despite narrative diversity—remains
faithful to the core algorithm and produces outputs consistent with the seed’s brute-force oracle. This
methodology yields rich, well-structured families suitable for training, evaluation, and pedagogical
use.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

B EXPERIMENT DETAILS

Models. We use Qwen3-4B-Instruct as the reference instruction-tuned model for all experiments in
this paper.

Training Details. We fine-tune with GRPO (Guo et al., 2025) using the Open-Instruct framework3.
Unless otherwise noted, the key arguments are:

--beta 0.0 \
--num_unique_prompts_rollout 48 \
--num_samples_per_prompt_rollout 16 \
--kl_estimator kl3 \
--learning_rate 5e-7 \
--max_token_length 12240 \
--max_prompt_token_length 2048 \
--response_length 10192 \
--pack_length 12240 \
--apply_verifiable_reward true \
--non_stop_penalty True \
--non_stop_penalty_value 0.0 \
--temperature 1.0 \
--total_episodes 1000000 \
--deepspeed_stage 2 \
--per_device_train_batch_size 1 \
--num_mini_batches 1 \
--num_learners_per_node 8 \
--num_epochs 1 \
--vllm_tensor_parallel_size 1 \
--clip_higher 0.3 \
--vllm_num_engines 8 \
--lr_scheduler_type constant \
--seed 1 \
--gradient_checkpointing \

Across all experiments—including the multi-stage schedules in the paper—we vary only (i) the
train/eval datasets, (ii) the base/reference model, and (iii) the scoring mode (full-pass reward vs.
per-test reward) to match the setting.

Datasets for learnability (Section 4). Manufactoria-HAS: 742 training and 100 test examples.
Manufactoria-START/APPEND/EXACT: 350 training examples in total across the three fam-
ilies. Manufactoria-REGEX: 560 training examples. Manufactoria-COMPR: 535 training
examples.

Datasets for generalization (Section 5). Unless otherwise specified, for each curated problem family
and each difficulty, we sample 1,000 training problems (Appendix A.2.4). In the setup of Figure 9(a),
the training set contains six families at the Basic level, totaling 6,000 training samples. Evaluation
comprises:

• In-distribution (ID): 100 test samples from the same Basic difficulty as training.
• Explorative (OOD): 100 test samples per family at each higher difficulty (Easy, Medium,

Hard).
• Compositional (OOD): 100 test samples per composed family at Basic difficulty.
• Transformational (OOD): 100 test samples per setting.

Evaluation Protocol. Evaluation uses the same sampling configuration as training. Each score is
averaged over 4 runs.

Compute Resources. Each RL run uses 16 NVIDIA H100 GPUs across two nodes and completes in
∼3 days for 1,000 optimization steps.

3https://github.com/allenai/open-instruct

28

https://github.com/allenai/open-instruct

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

(a) Models: Qwen3-4B-Instruct / Problem Family: Manufactoria-REGEX

(c) Models:Nemotron-14B / Problem Family: Manufactoria-HAS

(b) Models: Qwen3-4B-Instruct / Problem Family: BouncingSim-All

Explor-
ation

Phase

Convergence
Phase

RL Collapse

Exploration
Phase

Convergence
Phase

Exploration
Phase

Convergence
Phase

Grokking!

Grokking!

Grokking!

Figure 10: Grokking across models and tasks. (a) Qwen3-4B-Instruct on Manufactoria–REGEX; (b) Qwen3-
4B-Instruct on BouncingSim–All (same training setup as in Figure 9); (c) Nemotron-14B on Manufactoria–HAS.
Curves plot training-data full pass rate versus training steps. A consistent pattern emerges: a long exploration
phase, an abrupt grokking transition, and a convergence regime; (a) also exhibits an RL collapse when training
continues past convergence.

C ADDITIONAL EXPERIMENTS

C.1 GROKKING GENERALIZES ACROSS MODELS AND PROBLEM FAMILIES

Figure 10 demonstrates that the RL grokking phenomenon, an extended low-signal exploration phase
followed by an abrupt phase transition and rapid convergence in training-data full-pass rate, can arise
across (i) model sizes and families and (ii) distinct problem scopes.

Panel (a) shows Qwen3-4B-Instruct trained on Manufactoria-REGEX. After a long plateau,
performance surges and subsequently enters a convergence regime. Continued training eventually
triggers an RL collapse, highlighting the need for stabilization or early stopping once solutions con-
solidate. Panel (b) uses the same model on BouncingSim–All, a real-world ball-bouncing simulation

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Exploration
Phase

Convergence
Phase

Exploration
Phase

Convergence
Phase

Exploration
Phase

Convergence
Phase

Exploration
Phase

Convergence
Phase

(c) Problem Family: SQRT_DC(b) Problem Family: MEET_IN_MID(a) Problem Family: CDQ_DC

Figure 11: Grokking across competition code tasks. (a) CDQ-DC; (b) MEET-IN-MID; (c) SQRT-DC. Curves
plot training data full pass rate versus training steps.

coding suite for real-world coding tasks. The same exploration to phase-transition to a convergence
pattern appears. Panel (c) swaps the model family and scale to Nemotron-14B on Manufacto-
ria–HAS, again reproducing the grokking phenomenon. We also provide additional experiments on
the competition coding task problem families in Figure 11 that demonstrates the same trend.

Together, these results indicate that grokking is not an artifact of a particular backbone or a single
synthetic family. It emerges with different parameter counts, across independent model lineages, and
on tasks ranging from symbolic program synthesis to physics-driven simulation code. This supports
the view that RL can discover new procedural strategies rather than merely sharpening pre-trained
ones.

C.2 WARM-UP BENEFITS BEYOND THE “PASS@K=0” PROBLEMS

Warm-up with per-test rewards is not only a rescue mechanism for tasks where the base policy never
succeeds; it also helps when the initial success probability is small but non-zero (pass@k = ϵ > 0).
In this regime the binary full-pass reward still provides a weak and high-variance signal, which can
lead to slow or unstable improvement. A short warm-up phase with dense, per-test rewards (here:
100 steps) (i) accelerates discovery of partially correct behaviors, (ii) better stability, and (iii) delivers
a more reliable starting point for the subsequent binary-reward phase. Empirically, we observe faster
and steadier convergence with warm-up, whereas training that optimizes full-pass from scratch can
remain sluggish and brittle, sometimes exhibiting late-stage regressions even after partial progress.

Models: Qwen3-4B-Instruct / Problem Family: Manufactoria-REGEX

Figure 12: Warm-up helps when pass@k is small but non-zero. Training curves on Manufactoria–REGEX
with Qwen3-4B-Instruct. The blue curve is trained after a 100-step warm-up using per-test rewards, then
switched to the binary full-pass objective; it achieves faster and steadier gains. The orange curve trains full-pass
from scratch and improves slowly with occasional regressions.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

D USE OF LARGE LANGUAGE MODEL IN PAPER

LLM is only used for sentence polishing in the paper writing.

31

	Introduction
	Background
	DELTA: Controlled Programming Problem Families
	Manufactoria (Out-of-distribution Problems for Learnability Study)
	BouncingSim (2D Simulation Programming Tasks for Generalization Study)
	Competition Coding Problem Families

	Learnability Study: Can RL Uncover New Strategies and How to Accelerate it?
	Basic Setup
	How to Solve ``pass@K=0'' Tasks with RL?
	Attempts to Accelerate RL Grokking
	More Investigation into the Warm-up Phase

	Generalization Study
	Related Work
	Reproducibility Statement
	Dataset Details
	Manufactoria
	Example Traces Comparison of a MANUFACTORIA-HAS Problem

	BouncingSim
	Scene Taxonomy
	Parameterization and Placement
	Generation and Validation Pipeline
	Splits and Composition

	Competition Coding
	Seed Families and Coverage
	Synthesis Pipeline
	Example 1: Segment Tree Decomposition – Bipartite Over Time
	Example 2: Square Root Decomposition – Hash-Bucket Group Sums
	Summary

	Experiment Details
	Additional Experiments
	Grokking Generalizes Across Models and Problem Families
	Warm-up Benefits Beyond the ``pass@k=0'' Problems

	Use of Large Language Model in Paper

