Under review as a conference paper at ICLR 2026

DELTA-CoODE: HoOw RL UNLOCKS AND TRANSFERS
NEW PROGRAMMING ALGORITHMS IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

It remains an open question whether LLMs can acquire or generalize genuinely
new reasoning strategies, beyond the sharpened skills encoded in their parameters
during pre-training or post-training. To attempt to answer this debate, we introduce
DELTA-Code —Distributional Evaluation of Learnability and Transferrability in
Algorithmic Coding, a controlled benchmark of synthetic coding problem families
designed to probe two fundamental aspects: learnability—can LLMs, through rein-
forcement learning (RL), solve problem families where pretrained models exhibit
failure with large enough attempts (pass @K=0)?—and transferability— if learn-
ability happens, can such skills transfer systematically to out-of-distribution (OOD)
test sets? Unlike prior public coding datasets, DELTA isolates reasoning skills
through templated problem generators and introduces fully OOD problem families
that demand novel strategies rather than tool invocation or memorized patterns. Our
experiments reveal a striking grokking phase transition: after an extended period
with near-zero reward, RL-trained models abruptly climb to near-perfect accuracy.
To enable learnability on previously unsolvable problem families, we explore key
training ingredients such as staged warm-up with dense rewards, experience re-
play, curriculum training, and verification-in-the-loop. Beyond learnability, we
use DELTA to evaluate transferability or generalization along exploratory, compo-
sitional, and transformative axes, as well as cross-family transfer. Results show
solid gains within families and for recomposed skills, but persistent weaknesses on
transformative cases. DELTA thus offers a clean testbed for probing the limits of
RL-driven reasoning and for understanding how models can move beyond existing
priors to acquire new algorithmic skills.

1 INTRODUCTION

A central question for RL on language models is whether it merely sharpens latent skills or enables
genuinely new reasoning. Some argue RL only refines existing heuristics embedded in the model’s
parameters (Yue et al.,2025;|Wu et al., 2025)), while others see it as a way to unlock emergent problem-
solving (Liu et al., [2025bja). We make this debate testable using two criteria: learnability, which
asks if RL can instill a procedure the model could not previously execute; and generalization, which
asks if that procedure transfers to diverse Out-of-distribution (OOD) cases rather than memorized
patterns. Addressing these questions requires a dataset with tightly controlled train—test splits that
can systematically probe both properties.

Why controlled problem families matter? Uncontrolled open benchmarks in math/coding (e.g.,
Numina-Math (L1 et al., 2024), DeepMath (He et al., | 2025), OpenCodeReasoning (NVIDIA, 2025))
mix topics and difficulty, blurring the line between capability sharpening and genuine acquisition.
Controlled synthetic families remove these confounds: we can precisely vary distributions and
difficulty, attribute gains to specific skills, detect phase transitions, and systematically test transfer to
OOD variants.

Why programming problems? GRPO/PPO pipelines typically rely on a pass/fail reward: a perfect
solution earns +1, anything else earns 0|Guo et al.|(2025). This sparsity can stall learning on hard
families. In math, grading intermediate steps is expensive and hard to scale. Programming, however,
naturally supplies fine-grained feedback through test cases, which act as dense rewards. A practical
approach is to start training with test-case—based rewards to encourage partial progress, then transition
to a binary outcome reward to lock in exact solutions. This staged scheme is crucial for helping LLMs
acquire genuinely new procedural strategies, and while coding offers a uniquely scalable setting, the

Under review as a conference paper at ICLR 2026

RL Learnability Study O

N . .
Manufactoria BouncingSim (oo CaE e L GRRO Ty |
Puzsle Rule | T § oges! Guend ABTISILE Dotssets: anuacriaAS [0k Conpr 4
408 Y
). Input colored tape Example Config: §u’ Exploration Q / :2” Gy
. £ Phase 206 | strategies beyond
Boxes: K] % 3
Pullers remove one front <hape: hexagon, 204 / Conver: %o :hellm\isu!oue‘sv
color and route by color diameter: 360.85, g Grokking! / % o
. center: [250,250] go? 7 gence
@ Painters add color to end Task: orientation”: 14.0 Va Phase| $uoje— .
. objects: o & wiewn 12
|)| predict . triangle o w0 me o o s w0 wo e Y titmber o Atempts)
Toy Example position radius: 25.0, \ ’
Problem: ACCEPT tape with NO red | | at time t. — Position: [230.3501 RL Generalization Study
i) [Explorative Gen.) Compositional Gen.
Solution Code Game ili .
G e Serean Problem Families Tr,,ai" Test = Train ;est
NEXT blue_check T ROTAT_OBJ ROTAT_BOX MOV_BOX / ///,\
PULLER_RB blue_check:_> MULTI_BOX GRAVITY MULTI_O0BJ \\A - =+ —>H\‘ 'J
\) otatin
{;} ek | == | Fotatng Box_Fotatng Obecs Otiocsen
[EMPTY] end Compehflon COdlng Transformative Gen. Domain Generalization
ENDJend # [Problem Families) Train Test Train Test
Problem Families SQRT_DC SEGMENT_TREE_DC 7 - -
‘ START EXACT REGEX HAS CDQ_DC MO_ALG MEET_IN_MID St
\ 5 5 Rotating Box Rotating Objects
L pecial: periodic bduncing |\ o9 =ox MOEng KRISCIs)
Sgnthetlc Codmg Problem Scope/l:amlhes Controlled RL S’cuclg

Figure 1: Overview of DELTA with controlled RL studies. Left: Synthetic Programming Problem fami-
lies—Manufactoria with custom syntax and puzzle-like rules, BounceSim with physical simulation, etc. Right:
Controlled RL experiments. Top: Learnability shows grokking, where RL shifts from long exploration to sudden
convergence, uncovering strategies beyond reference models. Bottom: Generalization extends OMEGA (Sun
et al.L|2025) across four axes—Exploratory, Compositional, Transformative, and Domain-level—testing adapta-
tion to harder or recombined tasks.

underlying insight of using intermediate signals before enforcing strict correctness may apply to other
reasoning-heavy domains such as math or formal logic.

To address this need, we introduce DELTA, a controlled yet diverse benchmark for programming
problems. DELTA consists of synthetic problem families drawn from different domains, each
generated from templated problem generators, allowing us to study phenomena such as difficulty
scaling, knowledge transfer, and learnability in a clean and isolated setting.

RL Learnability Study. We reveal an underexplored grokking phenomenon during RL training.
While recent works argue that RL cannot exceed the limits of its reference model (Yue et al.| [2025;
Wu et al.| 2025), our evidence suggests otherwise. On hard problems where the base model achieves
pass@K = (| standard RL with binary rewards collapses due to the absence of positive signals. By
contrast, a staged regime—warming up with fine-grained proxy rewards before switching to strict
pass/fail—first guides exploration into a region where full solutions become reachable, then sharpens
these into verified completions, producing a long exploratory plateau followed by sudden grokking to
near-perfect accuracy (Figure[I] top-right).

RL Generalization Study. DELTA extends OMEGA’s controlled tests along three axes aligned
with Boden’s creativity typology (Bodenl [1998): (1) Exploratory—extend known skills within a
family (e.g., hexagon to octagon); (2) Compositional—combine previously separate skills (e.g.,
bouncing ball with both rotating obstacles and boxes); (3) Transformative—discover unconventional
solutions (e.g., special initial states that guarantee periodicity). Our results show that RL-trained
models generalize to harder and composed variants, but performance drops with complexity, and
transformative cases remain the most challenging.

Main contributions. 1) A controlled dataset (DELTA): We design a suite of synthetic programming
problem families that isolate reasoning skills, enabling clean tests of learnability (can RL unlock
procedures absent in the base model) and generalization (do these procedures transfer systematically
to OOD cases). Unlike prior coding or math datasets, DELTA introduces fully OOD problems
(Manufactoria) and richly graded rewards, avoiding tool-based shortcuts and data confounds.

2) Sharpening or discovery, depending on setup: We provide clear evidence that RL is not
limited to sharpening existing abilities in reference models. On hard families where base models fail

"Here pass @K refers to a large value of K (e.g., 128). Thus, pass@K = 0 indicates that the model fails to
solve the task even after many sampled attempts.

Under review as a conference paper at ICLR 2026

(pass@K=0), staged training with dense-to-binary rewards produces a grokking phase transition —
a sudden leap from failure to mastery — showing that RL can indeed discover strategies the base
model could not execute. At the same time, in easier regimes or with weaker setups, RL primarily
sharpens existing skills. Which outcome emerges depends critically on the reward design, data mix,
task hardness, and training recipes.

3) Three-axis generalization analysis: We evaluate how these learned strategies transfer along
exploratory, compositional, and transformative axes. Results show strong generalization in exploratory
and recomposed cases, but persistent failures in transformative shifts, highlighting both the promise
and limits of RL-driven reasoning and the generalization challenges we must work on.

2 BACKGROUND

Goal of the RL learnability study. A central open question in post-training research is whether
reinforcement learning (RL) can endow language models with genuinely new reasoning capabilities
beyond those supported by the base model: (a) The skeptical view. Yue et al.| (2025) argue that
although RLVR-trained models may outperform their base models at small k£ (e.g., k=1), the
advantage disappears when evaluating pass@k at larger k, where the base model often matches or
exceeds RLVR performance. Their coverage and perplexity analyses suggest that RL does not expand
the underlying support of the model’s reasoning distribution. (b) The optimistic view. In contrast,
Liu et al, (2025b)) report that ProRL can push models beyond base-model capabilities on certain
structured reasoning tasks, such as the letter-shaped 2D puzzles in Reasoning Gym (Stojanovski et al.|
2025). However, because their training mix combines heterogeneous tasks with varying difficulty
and domain structure, it is difficult to pinpoint what specific skills the model actually acquires. Our
goal is therefore to construct a pure, tightly controlled OOD testbed which the reference model
fails consistently (pass@K = 0) across all attempts. If RL can succeed on such tasks despite the
base model’s deterministic failure, this would provide conclusive evidence that RL can induce novel
reasoning abilities rather than merely reshaping existing ones.

Goal of the RL generalization study. OMEGA |Sun et al.|(2025) provides controlled tests along
three axes aligned with Boden’s creativity typology (Boden, [1998)): (1) Exploratory—assessing
whether models can apply known problem-solving skills to more complex instances within the
same problem domain. ; (2) Compositional—evaluating their ability to combine distinct reasoning
skills, previously learned in isolation, to solve novel problems that require integrating these skills in
new and coherent ways; and (3) Transformative—testing whether models can adopt unconventional
strategies by moving beyond familiar approaches to solve problems more effectively. Our goal is to
systematically show whether RL-trained models generalize to harder and composed variants.

3 DELTA: CONTROLLED PROGRAMMING PROBLEM FAMILIES

We operationalize learnability and generalization with DELTA, a controlled suite of synthetic
programming families.

From OMEGA to DELTA. OMEGA (Sun et al., [2025)) offers 40 synthesizable math families to
study exploratory, compositional, and transformative generalization in the spirit of Boden (Boden,
1998)). DELTA complements this by shifting to programming, where templated generators yield
automatically verifiable tasks with tunable difficulty and clean distributional controls. Compared
to OMEGA, DELTA further provides unique benefits and improvements: a) Novel OOD problem
family. Math tasks in OMEGA remain within familiar domains (e.g., algebra, geometry), which
can plausibly appear in pretraining corpora. In contrast, DELTA includes a hand-crafted out-of-
distribution (OOD) problem scope called Manufactoria, which uses entirely novel program
syntax and problem-solving strategies. b) Harder to shortcut with tools. Many synthetic math
items can be solved by executing Python (e.g., computing a matrix rank). In DELTA, the target is
the program itself: models must synthesize a correct solution rather than delegate computation to
external tools. ¢) Rich reward signal. Programming enables cheap, graded feedback via per—test
case pass rates, which supports staged training (dense reward then binary full-pass reward).

In DELTA, we design problems from five major scopes, illustrated in Figure [T} We next introduce the
problem families in detail.

Under review as a conference paper at ICLR 2026

Difficulty Ladder of Manufactoria (Out-of-distribution Coding Puzzles)

. gpt-5
04-mini
claude-sonnet-4-20250514
Qwen3-235B-A22B-Thinking-2507

Full Pass Rate
o o o =
2 @ @ o

o
N

o
=)

- . n_ .
APPEND EXACT: START | ENDS REGEX . HAS « COMPR|PREPEND MUTATE ' BIT OP | FDIV | SYMM | MINMAX ADD
Eg: Only accept Eg: Accept tapes w/ Eg Replace Eg: Accept pattern
tape 'BRB’ BASIC | subsequence 'GGReB' EASY | 'Re' to 'BR' MEDIUM| ‘R{n}B{n}R{n}’ (n>1) HARD

Figure 2: The Manufactoria difficulty ladder. 14 problem families are grouped into Basic, Easy, Medium,
and Hard levels according to average performance across four popular LLMs. Each test split contains 20-50
problems, and full pass rate are averaged over 4 independent runs.

ROT_OBJ ROT_BOX MOV_BOX GRAVITY MULTI_BOX MULTI_OBJ
Modelsl (Rotating Object) | (Rotating Box) | (Moving Box) I (Gravity Included) | (multiple boxes) | (multiple objects)

mEnC - DAl
[l 64 57 56 52 39 nn
= OG- -0
203

-~ - IREH- - Ol |
g g . g g g 0

Iso

GPT-5- 52 &8

| Pass Rate (%)

Figure 3: Full-pass rate (%) on BouncingSim by model, family (ROT_OBJ, ROT_BOX, MOV_BOX, GRAVITY,
MULTI_BOX, MULTI_OBJ), and difficulty tier (BASIC—EXTREME). Warmer colors denote higher accuracy;
cell values are mean full-pass rates per split over 4 runs on 50 test problems each.

3.1 MANUFACTORIA (OUT-OF-DISTRIBUTION PROBLEMS FOR LEARNABILITY STUDY)

Manufactoria is a classic Flash game (2010) in which players build automated factories to sort
robots based on their colored tape patterns. The underlying logic resembles constructing finite-state
automata or tag systems using two special node types (puller, painter). While the original game
is implemented in 2D space, we re-formalize it into a custom programmatic syntax, as illustrated in
Figure[I] Details are provided in Appendix [AT]

Justified OOD-ness. This task is OOD for several reasons: a) The original game solutions were
stored only as images on legacy websites. Our converted program syntax is entirely novel and
unavailable to any LLM during pretraining; b) We do not reuse existing game challenges. Instead, we
design new problem families inspired by the mechanics but synthesized by the authors, and these
are entirely unseen to LLMs; ¢) The puzzle strategies are qualitatively different from conventional
programming or Turing-machine tasks. With only two available node types with limited functionality,
solving requires distinctive reasoning patterns not captured by standard coding strategies.

A scalable difficulty ladder. In total, we construct 14 synthetic problem families. For example,
the family tagged HAS (Figure [2) requires accepting tapes that contain a subsequence such as
GGRBB, which can be synthesized by using arbitrary color strings. Manufactoria is organized
into BASIC — EASY — MEDIUM — HARD tiers, enabling matched studies across model scales.
BASIC/EASY families (e.g., START, EXACT) suit small models (e.g., 1.5B, 4B) for learnability,
while MEDIUM/HARD families require more advanced insight and are appropriate for probing SOTA
systems (e.g., GPT-5—class). Because the syntax and families are novel, Manufactoria also serves as
an OOD benchmark for open LLMs, enabling apples-to-apples comparisons with SOTA LLMs on
truly novel tasks. Medium tasks expose a larger gap: only GPT-5 achieves non-trivial success, while
other models collapse near zero. Hard families remain unsolved across the board, underscoring the
sharp transition in difficulty and the limits of the current model.

3.2 BOUNCINGSIM (2D SIMULATION PROGRAMMING TASKS FOR GENERALIZATION STUDY)

We include a widely used community test—a 2D bouncing-ball simulation program—often treated
as a proxy for geometry-aware reasoning in LLMs (Wiggers|, 2025). The goal is to synthesize a

Under review as a conference paper at ICLR 2026

program that simulates elastic collisions in polygonal containers and returns the exact object state at
a queried timestamp; strong solutions require precise collision detection/response and numerically
stable integration.

Task design. To replace informal, visually judged demos with a rigorous benchmark, we make
the task: (a) verifiable—each prompt specifies a deterministic initial state (positions, velocities,
container geometry); the program must output the object’s location at a target time and is scored
against an oracle; (b) synthesizable—instances are generated by varying the configuration in Figure[I]
with ground-truth trajectories produced by BonQ?]; (c) composable—single-skill families (e.g.,
ROT_BOX, ROT_OBJ) can be combined into multi-skill families (e.g., ROT_-BOX_OBJ); and (d)
difficulty-controlled—we vary polygon vertex counts, object speeds, box motion, gravity, and the
number of objects/boxes to create BASIC—EASY—MEDIUM—HARD—EXTREME tiers. Detailed
configurations are provided in Appendix [A]

Generalization axes. To align explicitly with the three generalization axes defined in OMEGA (Sun
et al} [2025), as exemplified in Figure [T} a) Exploratory generalization: Training problems feature
standard box sizes with relatively sparse collisions, while test problems use smaller containers that
induce denser and more frequent collisions. b) Compositional generalization: Training isolates
distinct skills—handling rotating boxes (ROTAT_BOX) and rotating objects (ROTAT_OBJ). Testing
then evaluates the combined scenario (ROTAT_BOX_OBJ), where both the box and the object rotate
simultaneously, requiring the model to integrate the two skills. ¢) Transformative generalization:
Training covers common variants such as ROTAT_BOX, but testing introduces qualitatively different
dynamics—for example, special initial conditions that yield perfectly periodic bouncing trajectories
(e.g., an object oscillating vertically with no horizontal drift). Further examples and details of these
generalization setups are provided in Appendix [A]

Evaluation results. Figure summarizes full-pass rates across six families—ROT_OBJ, ROT_BOX,
MOV_BOX, GRAVITY, MULTI_BOX, MULTI_OBJ—and five difficulty tiers for four representative
models. GPT-5 leads overall, but accuracy degrades with difficulty and composition: MULTI_BOX is
challenging even at BASIC (~30%), and MULTI_OBJ drops sharply—from ~80% at BASIC to ~10%
by MEDIUM. Other LLMs trail substantially—typically <30-40% on the easy-to-medium tiers and
near-zero on HARD/EXTREME and most compositional settings. Overall, BouncingSim represent
a valuable testbed for understanding what these models can and cannot do; whether they reinforce
existing skills or discover new ones; by enabling systematic study of learnability and generalization.

3.3 COMPETITION CODING PROBLEM FAMILIES

We add competitive programming, which serve as a real-world domain. Although not strictly OOD
(given their online popularity), they remain challenging (e.g., gpt-5-high reaches only 2% on hard-tier
LiveCodeBench-Pro (Zheng et al., 2025)). We include them in DELTA to expand seed problems into
fully controlled families that support learnability and generalization studies. A brief construction
overview appears in the main text. Specifically, Each family groups problems sharing the same
core algorithm (e.g., Mo’s algorithm, CDQ divide-and-conquer), and is named after that algorithm.
For each family, we: (1) gather 5-7 seed tasks verified to use the target algorithm; (2) perturb their
contexts by relying on an expert-provided solution strategy and background, then use LLM to change
narrative surface while preserving the solution; and (3) filter and verify by requiring a brute-force
solution to pass all tests, ensuring perturbation consistency. We release 5 families (~500 items each)
with details in Appendix[A.3]

4 LEARNABILITY STUDY: CAN RL UNCOVER NEW STRATEGIES AND HOW
TO ACCELERATE IT?

A central debate in recent research concerns whether reinforcement learning (RL) can endow models
with reasoning abilities beyond those of their base model.

The skeptical view. [Yue et al.[(2025) argue that although RLVR-trained models outperform their base
models at small k (e.g., k = 1), the base models achieve equal or superior pass @k performance when
k is large. Their coverage and perplexity analyses suggest that reasoning capabilities are ultimately
bounded by the base model’s support. Similarly, Wu et al.|(2025) provide a theoretical argument that
RLVR cannot extend beyond the base model’s representational limits.

https://box2d.org/

https://box2d.org/

Under review as a conference paper at ICLR 2026

The optimistic view. In contrast, |Liu et al.|(2025b) demonstrates that ProRL can expand reasoning
boundaries on tasks where the base model performs poorly—specifically in letter-formed 2D puzzles
from Reasoning Gym (Stojanovski et al., [2025)).

Our contribution: a clean testbed and clear evidence for RL Pass@k Comparison

enable grokking in LLMs. Existing evidence in favor of RL’s gen- Before/After RL Training
eralization often comes from large, heterogeneous training corpora.
This makes it difficult to isolate why and how RL might discover
novel strategies. To address this, DELTA offers a controlled environ-
ment: synthetic problem families that are both out-of-distribution
(requiring novel strategies) and internally consistent (free of data
confounds). We focus on the Manufactoria-HAS family (742
training / 100 test instances), where the reference model Qwen3-4B-
Instruct-2507 achieves 0% full pass rate at pass@128. As shown
in Figure[d] our staged RL training strategies enables the model to
fully solve this family, achieving 100% full pass rate. Next, we detail

-
=)

[vr Clear Evidence:
RL can uncover
strategies beyond
the limits of
reference models.

o
©

o
o

°
>

—— After RL (Step-800)
—— Qwen3-4B-Instruct-2507

©
N

e
=)

Pass@k over Test Set (Manufactoria-HAS)

. . 14816 32 64 128
how this is made possible. k (Number of Attempts)
4.1 BASIC SETUP Figure 4: Pass@k comparison

before and after RL training on

Unless otherwise specified, the reference model is Qwen3-4B- the Manufactoria-HAS.

Instruct. Training and testing datasets are drawn from single or
combined problem families introduced in Section [3] By default, each training step consists of 48
. . . -7 PR

prompts with 16 rollouts. The learning rate is set to 5 X 10~ . For code training, the default reward
signal is full pass, a binary indicator of whether a program passes all test cases. In later experiments,
we also consider per-test pass rate as the reward signal, measuring the fraction of test cases passed.
A more detailed experiment setup parameter descriptions are included in Appendix [B| We also
provide complementary experiments with alternative model families, sizes, and problem domains in

Appendix[C.1]
4.2 HOW TO SOLVE “PASS@K=0" TASKS WITH RL?

The skeptical position that RL cannot exceed the boundaries of the base model is understandable
for a simple reason: GRPO (Guo et al.,|2025) depends on reward differences across rollouts. If no
rollout ever succeeds (as in “pass @K=0" tasks), there is no gradient signal to learn from. Indeed, as
Figure[5|(a) shows, naive GRPO training stagnates. Thus, the central challenge is:

If no rollout achieves a full pass, how can RL propagate a meaningful learning signal?

Per-test pass rate training. One solution is to exploit partial credit. Instead of the all-or-nothing full
pass rate (reward = 1 only if all test cases pass), we use a finer-grained per-test pass rate, a continuous
reward in [0, 1]. As Figure b) shows, this signal provides initial learning traction. However, it
quickly saturates after ~100 steps, and the full-pass rate remains negligible (<0.01%).

Warm-up phase. Even though it can not serve as a full surrogate loss, we find that the per-test pass
rate can serve as an important warm-up stage that pushes the model out of the all-zero region. As
shown in Figure [5a), this signal allows the model to move beyond the all-zero region: although the
full-pass rate remains < 1%, the model begins to accumulate positive gradients.

Exploration and grokking. From this warm-up checkpoint, we switch to RL with the binary full-pass
reward. Figure [5[b) illustrates the dynamics: For ~450 steps, the model remains in an exploration
phase, with full-pass rate still < 1%. After a sudden grokking moment, the model discovers the
key strategy to solve the family. Training then enters a convergence phase, where RL sharpens and
consistently reinforces the successful reasoning path. At convergence, the RL-trained model achieves
nearly a 100% absolute improvement in pass@k compared to the reference model (Figure). We
also observe this phenomena with other model families, sizes, and problem domains in Appendix

4.3 ATTEMPTS TO ACCELERATE RL GROKKING

A natural follow-up question is how to shorten the exploration phase and enable grokking to emerge
earlier. We examine the following strategies:

Under review as a conference paper at ICLR 2026

Strategy (a): RL (GRPO) with Full-pass Rate Strategy (b): RL (GRPO) with Per-test Pass Rate
1.0 0.10
% —=— Full Pass Rate (Reward) —=— Full Pass Rate
08 0.08 Per-test Pass Rate (Reward)
@
©
&
Zos6
> 0.06
©
g 0.4 0.04
o
£0.2]
I &)
e
0.0
0 200 400 600 800 0.005 200 400 600 800 1000 1200
Training Steps Training Step
0.10
—=— Full Pass Rate After “warm-up“ 81.0
© ——
0.08 Per-test Pass Rate (Reward) training with ﬁ Full Pass Rate (Reward)
per-test 9 0.8)
0.06 passrate, I . Exploration
resumed < Phase
004 Full Pass Rate with the full £ 4 :
passrate © Grokking! Convergence
0-021 7ero — non-zero £02 \ Phase
0-00 50 100 150 200 250 200 5 A ; : A
Training Step > 0 100 200 300 400 500 600 700 800
Training Steps
Strategy (c): RL (GRPO) with Warm-up Phase (Per-test Pass Rate) + Continued (Full Pass Rate)

Figure 5: Comparison of strategies solving “pass @K=0" tasks. (a) Directly optimizing for full-pass rate under
GRPO fails. (b) Training with a per-test pass rate provides a smoother reward but quickly saturates. (c) A
two-phase training—warming up with per-test pass rate, then switching to full-pass reward. All training is
performed on Manufactoria-HAS family and the reference model Qwen3-4B-Instruct-2507.

[Jp— No Trick

Experience Replay

Experience replay. The long exploration phases mainly .
—=— Experience Replay + Feedback-in-the-loop P‘-

stem from the sparsity of positive reward signals. A nat-
ural way to alleviate this is to retain successful reasoning
traces and reinsert them into future rollouts—a technique
known as experience replay (Zhang et al.,[2025)), closely
related to expert iteration (Anthony et al|2017). In our
experiments, we log successful traces in each sampling
round and, when the same query reappears, append up to
three of the most recent successful traces to the rollout. As |
shown in Figure[6] experience replay does help the model Training Steps

grok at an earlier stage. However, its convergence speed) o]
is still slower than the baseline GRPO algorithm, likely Figure 6: Comparison of training strategies

because the reused traces are off-policy. for accelerating RL grokking. “No Trick”
denotes the standard training setup as in

Feedback-in-the-loop. Another plausible strategy is to Figure[5(b), “Experience Replay” logs and
directly include failure feedback in the generation process, reuses successful traces, and “Experience Re-
encouraging the model to improve its full pass rate earlier. P12y + Feedback-in-the-loop™ further injects
We achieve this by replacing the EOS token with feedback ~Verifier’s feedback into the inference.

(e.g., failure test cases) and letting the model continue generating. As shown in Figure[6] applying
this feedback-in-the-loop once can indeed expedite the grokking moment. However, it also reduces
training stability, likely due to the off-policy injection of feedback tokens. A common failure case is
that the model, even after receiving explicit feedback, persists in its original (incorrect) solution.

o o o
> o o

Full Pass Rate

o
N

0.0

4.4 MORE INVESTIGATION INTO THE WARM-UP PHASE

Selective curriculum learning as an alternative. A natural question is whether the warm-
up effect can be achieved through curriculum learning across problem families. To explore
this (Figure [7), we designed a three-stage curriculum training. After training on basic families
(START/APPEND/EXACT), models were exposed either to Stage 2-REGEX or Stage 2-COMPR
before transferring to the target HAS tasks. These two problem families have similar difficulty levels
according to Figure 2] Despite similar difficulty, the outcomes diverge: the REGEX curriculum
leads to successful transfer and near-complete mastery of HAS at final RL stage, while the COMPR
curriculum fails to progress beyond low pass rates. This difference can be traced to task compatibil-

Under review as a conference paper at ICLR 2026

Curriculum Stage 2:
Problems: Manufactoria-REGEX

Final Stage on Target Problems:

Curriculum Stage 1 10 Problems: Manufactoria-HAS
i . —=— Full Pass Rate (Reward) .
(Basic Level Problems): 038 g —=— Full Pass Rate (Reward)
Manufactoria-START/APPEND/EXACT o8
w
91.0 06 Resumed 8
© o =
o 0 Training 3 06
")
a 0.8 i s w/ Different Z o
o Problems =
] J 2
% 0.6 Curriculum 00 200 400 600 800 1000 1200 €02 Q
©
w i " S
© Learning on Curriculum Stage 2: 0.0/ (
© 0.4 Different Problems: Manufactoria-COMPR 0 100 200 300 400 500
N 1.0 Training Steps
s Problems —=— Full Pass Rate (Reward)
o | .
€ 0.2{ —— Full Pass Rate (Reward) 0.8 Final Stage on Target Problems:
c 06 Problems: Manufactoria-HAS
©
—
= 0.0, 0.4! 1;
0 i _200 400 —=— Full Pass Rate (Reward)
Training Steps 02 0 . . . :
0 200 400 600 800

0.0 Training Steps

0 200 400 600 800 1000

Figure 7: Contrast of the two-stage curriculum learning for Manufactoria-HAS. Models first train on
basic problems (START/APPEND/EXACT) before branching into one of two intermediate curricula: (i) Stage
2-REGEX, which leads to successful transfer and high pass rates on the target HAS family, or (ii) Stage 2-COMPR,
which fails to transfer and plateaus at low performance.

ity—both REGEX and HAS revolve around detecting or matching subpatterns (e.g., “accept tapes with
pattern (BRB) T (RR) *” vs. “accept tapes with subsequence GGRBB”), whereas COMPR emphasizes
numerical interpretation and branching tests (e.g., “treat color B as 1 and R as 0, accept if the number
> 277). These results suggest that effective curricula must not only control difficulty but also align
structurally with the target family. While curriculum learning can thus be highly effective, its success
depends on finding suitably related families to bridge the reasoning gap—something that is not
always feasible. In contrast, warm-up training with dense rewards remains broadly useful as it does
not require additional family design or mixing.

Warm-up Helps Beyond the “pass @k=0" Regime Even when the base model exhibits a small but
non-zero success rate (pass@k= ¢ > 0), a brief per-test-reward warm-up improves stability and
speed. Empirically, we observe faster and smoother convergence compared to training full-pass from
scratch (see Appendix [C.2).

Limitation. It is important to note that not every problem
family can be “unlocked” by warm-up training. For instance,

Warm-up Phase (a): RL (GRPO) with Full-pass Rate
Problems: Manufactoria-PREPEND (MEDIUM)

0.10
as shown in Figure 8] even when using per-test pass rate —=— |Full Pass Rate

rewards, the model fails to escape the all-zero regime on the 0.08 Pertest Pass fiate {Reward)
harder Manufactoria—PREPEND family. The per-test 0.06

signal rises modestly but quickly saturates, while the full-

pass rate remains stuck at zero throughout training. This 001

suggests that warm-up with per-test pass rate training is not 0.02

a universal recipe: its effectiveness depends on the model’s 000 Stays with all-0 ‘
capacity and difficulty of the target family. © 0 250 500 750 1000 1250

Training Step

Figure 8: Warm-up training on the harder

5 GENERALIZATION STUDY Manufactoria-PREPEND family.

Setup. We study how far the learned programmatic skills transfer beyond the training distri-
bution. Unless noted, the reference model is Qwen3-4B-Instruct. We train on a Basic-level
mixture of six single-skill families—ROT_OBJ, ROT_BOX, MOV_BOX, GRAVITY, MULTI_BOX,
MULTI_OBJ—with 1k instances per family (6k total). Because the base model has non-zero full-pass
on some basic instances, we directly optimize a binary full-pass reward (all tests pass) for 300
gradient steps; all other hyperparameters follow Section[d] Evaluation spans three axes—explorative,
compositional, and transformative—and reports full pass rate (fraction of prompts for which the
synthesized program exactly matches the oracle on all unit tests). For explorative generalization we
consider four difficulty tiers (Basic=ID, Easy/Medium/Hard=OOD) crossed with the six families;
each bar in Figure 0] aggregates. More detailed setup is in Appendix

Under review as a conference paper at ICLR 2026

(a) Training Curve

(b) Explorative Generalization

(c) Compositional Gen. (d) Transformative Gen.

(Basic Level) (Before RL) (Before RL) (Before RL)
1.0 Lo Basic (ID) Easy (OOD) W= Medium (OOD) Hard (OOD)
05
% “[)3000 0000 0000 0100 1000 10100 0 0 4 0 2 0 0 0 0
ﬁ 0.8 o (After RL) (After RL) (After RL)
@ X
& 06 3 8 83
=L 20.8 76 76
3 e 7 d 66 68
a 64
I : a 59 60
© Grokking! =06
Eo4 9 3 50 49
®
2 0.4 £
£0.2 27
©
= 0.2 2 15 14 o
7
00 200) ! 0 12 1 2 o 1 o

0.0 — ‘
ROT OBJ ROT BOX MOV BOX GRAVITY MULTI BOXMULTI OBJ Q085 ROTSOX. MOVBOX. GRANTY. MULTIBOXROT.08) ROT 50X MSO: ao)xmg\ m)7x

ROT.BOX MOVBOX GRAVITY MULTLBOX MULTI.OB) (Special) (Special) (Special) (Special

Training Steps

Figure 9: Generalization Study on BOUNCINGSIM. (a) Training full-pass rate on the Basic-level mixture
(6 families, 1k each) for Qwen3-4B-Instruct with binary full-pass reward shows a sharp grokking jump near
step 200. (b) Explorative generalization: Before RL (top) the model rarely solves any OOD cases; after RL
(bottom) it transfers to Easy/Medium/Hard variants with diminishing gains as difficulty increases (bars aggregate
6 families x 4 tiers; 100 prompts per cell, averaged over 4 runs). (c) Compositional generalization: Zero-shot
composition of skills. (d) Transformative generalization: Qualitatively new dynamics (e.g., special periodic
trajectories) remain near zero after RL. Results are averaged over 4 runs.

Training dynamics (Fig. [Op). We again observe a sharp grokking phase transition: after a long
plateau of near-zero reward, performance on the training mixture jumps around the step 200 to 0.7
full pass rate, indicating the emergence of stable simulation code that handles elastic collisions.

Generalization results (Fig.[9p—d). RL-trained models transfer beyond the training distribution, but
with varying success across axes. In explorative generalization, performance is strong on Basic (ID,
70-85%) and carries over to Easy (50-75%), though gains shrink on Medium (15-50%) and nearly
vanish on Hard (single digits). For compositional generalization, the model demonstrates surprising
skill integration: unseen combinations such as ROT_BOX+MOV_BOX, MOV_BOX+GRAVITY, and
MULTI_BOX+MULTI_OBJ achieve 60—70% full-pass (vs. near-zero before RL), in contrast to the
weak compositional transfer reported in OMEGA (Sun et al., |[2025). We attribute this to coding
tasks composing structurally (merging simulation modules) rather than strategically (inventing new
reasoning steps). Finally, in transformative generalization, models remain near zero on qualitatively
novel dynamics such as perfectly periodic or degenerate trajectories, which demand the discovery of
new invariants and align with the persistent difficulty of transformative math generalization.

Takeaways. RL discovers executable simulators that (i) transfer well to parametric shifts and (ii)
compose across skills, but (iii) struggle when the test distribution demands qualitatively different
solution schemas. Coding tasks appear more amenable to structural composition than symbolic math,
yet transformative “schema creation” remains an open challenge. Figure [9]summarizes these trends.

6 RELATED WORK

Coding benchmarks and synthetic datasets. Human written or collected coding benchmarks like
APPS (Hendrycks et al.l |2021)), CodeContests (L1 et al., [2022)), HumanEval (Chen et al. [2021)),
MBPP (Austin et al., 2021)) and TACO (L1 et al., [2023)) established functional-correctness evaluation
with tests. Synthetic datasets like KodCode (Xu et al., 2025)) introduced a large-scale synthetic coding
dataset with LLM spanning simple exercises to advanced algorithmic challenges. DELTA builds on
this trend on a more fine-grained level, generating families of coding problems to isolate specific
reasoning strategies and to test learnability and generalization under controlled distribution.

Study on grokking. Grokking (Power et al.,[2022)) is when a model memorizes small algorithmic
training sets and only later suddenly generalizes after prolonged training. Explanations span train—test
loss-landscape mismatch |Liu et al.|(2022), double-descent via pattern-learning speeds [Davies et al.
(2023)), and gradient-spectrum splits between slow generalization and fast memorization |Lee et al.
(2024). Beyond traditional neural network settings, small transformers also grok on synthesized
graph-based tasks (Wang et al.l 2024} |Abramov et al. [2025). Yet most work targets supervised,
toy datasets; whether grokking occurs in RL on difficulty reasoning tasks remains unclear. To our
knowledge, DELTA is the first to show that, under suitable training, grokking can emerge during RL
fine-tuning of large language models.

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

Appendix [A] details all prompts, generators, and curated splits for Manufactoria, BouncingSim,
competition coding, along with fixed seeds and JSONL artifacts (instances, metadata, and test
assertions). RL training is conducted using the public Open—-Instruct repository. Appendix
documents the core shell commands, hyperparameters, and evaluation protocols needed to reproduce
our runs. Together, these materials provide a complete, end-to-end recipe for replication.

REFERENCES

Roman Abramov, Felix Steinbauer, and Gjergji Kasneci. Grokking in the wild: Data augmentation
for real-world multi-hop reasoning with transformers. arXiv preprint arXiv:2504.20752, 2025.

Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning and tree
search. Advances in neural information processing systems, 30, 2017.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis
with large language models. CoRR, abs/2108.07732,2021. URL |https://arxiv.org/abs/
2108.07732.

Margaret A Boden. Creativity and artificial intelligence. Artificial intelligence, 103(1-2):347-356,
1998.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xander Davies, Lauro Langosco, and David Krueger. Unifying grokking and double descent. arXiv
preprint arXiv:2303.06173, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian
Yu, Zhenwen Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging, de-
contaminated, and verifiable mathematical dataset for advancing reasoning. arXiv preprint
arXiv:2504.11456, 2025.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps. arXiv preprint arXiv:2105.09938, 2021.

Jaerin Lee, Bong Gyun Kang, Kihoon Kim, and Kyoung Mu Lee. Grokfast: Accelerated grokking by
amplifying slow gradients. arXiv preprint arXiv:2405.20233, 2024.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau,
Guillaume Lample, and Stanislas Polu. Numinamath. [https://huggingfacel
co/AI-MO/NuminaMath—-1.5] (https://github.com/project—numina/
aimo-progress—-prize/blob/main/report/numina_dataset.pdf), 2024.

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
Ge Li. Taco: Topics in algorithmic code generation dataset. arXiv preprint arXiv:2312.14852,
2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom

Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. arXiv preprint arXiv:2203.07814, 2022.

10

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)

Under review as a conference paper at ICLR 2026

Mingjie Liu, Shizhe Diao, Jian Hu, Ximing Lu, Xin Dong, Hao Zhang, Alexander Bukharin, Shaokun
Zhang, Jiaqi Zeng, Makesh Narsimhan Sreedhar, et al. Scaling up rl: Unlocking diverse reasoning
in 1lms via prolonged training. arXiv preprint arXiv:2507.12507, 2025a.

Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
arXiv preprint arXiv:2505.24864, 2025b.

Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data.
arXiv preprint arXiv:2210.01117, 2022.

NVIDIA. Opencodereasoning-2. Dataset on Hugging Face, 2025. URL https://huggingface|
co/datasets/nvidia/OpenCodeReasoning—2, License: CC-BY-4.0.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Zafir Stojanovski, Oliver Stanley, Joe Sharratt, Richard Jones, Abdulhakeem Adefioye, Jean Kaddour,
and Andreas Kopf. Reasoning gym: Reasoning environments for reinforcement learning with
verifiable rewards, 2025. URL https://arxiv.org/abs/2505.24760.

Yiyou Sun, Shawn Hu, Georgia Zhou, Ken Zheng, Hannaneh Hajishirzi, Nouha Dziri, and Dawn
Song. Omega: Can llms reason outside the box in math? evaluating exploratory, compositional,
and transformative generalization. arXiv preprint arXiv:2506.18880, 2025.

Boshi Wang, Xiang Yue, Yu Su, and Huan Sun. Grokked transformers are implicit reasoners: A
mechanistic journey to the edge of generalization. CoRR, abs/2405.15071, 2024. URL http://
dblp.uni-trier.de/db/journals/corr/corr2405.html#abs-2405-15071.

Kyle Wiggers. People are benchmarking ai by having it make balls bounce in rotating shapes.
TechCrunch, 2025. Retrieved from https://techcrunch.com/2025/01/24/people-are-benchmarking-
ai-by-having-it-make-balls-bounce-in-rotating-shapes/.

Fang Wu, Weihao Xuan, Ximing Lu, Zaid Harchaoui, and Yejin Choi. The invisible leash: Why rlvr
may not escape its origin. arXiv preprint arXiv:2507.14843, 2025.

Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. Kodcode: A diverse,
challenging, and verifiable synthetic dataset for coding. arXiv preprint arXiv:2503.02951, 2025.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Hongzhi Zhang, Jia Fu, Jingyuan Zhang, Kai Fu, Qi Wang, Fuzheng Zhang, and Guorui Zhou. Rlep:
Reinforcement learning with experience replay for llm reasoning. arXiv preprint arXiv:2507.07451,
2025.

Zihan Zheng, Zerui Cheng, Zeyu Shen, Shang Zhou, Kaiyuan Liu, Hansen He, Dongruixuan Li,
Stanley Wei, Hangyi Hao, Jianzhu Yao, et al. Livecodebench pro: How do olympiad medalists
judge llms in competitive programming? arXiv preprint arXiv:2506.11928, 2025.

11

https://huggingface.co/datasets/nvidia/OpenCodeReasoning-2
https://huggingface.co/datasets/nvidia/OpenCodeReasoning-2
https://arxiv.org/abs/2505.24760
http://dblp.uni-trier.de/db/journals/corr/corr2405.html#abs-2405-15071
http://dblp.uni-trier.de/db/journals/corr/corr2405.html#abs-2405-15071

Under review as a conference paper at ICLR 2026

A DATASET DETAILS

A.1 MANUFACTORIA

Manufactoria is a classic Flash game (2010) in which players build automated factories to sort
robots based on their colored tape patterns. The underlying logic resembles constructing finite-state
automata or tag systems using two special node types (puller, painter). While the original
game is implemented in 2D space, we re-formalize it into a custom programmatic syntax, as the
syntax defined as a prompt below.

Prompt Template of Manufactoria Problems
Manufactoria Solution DSL

A Domain Specific Language for describing Manufactoria puzzle solutions
in text format.

Overview

Manufactoria is a puzzle game where you build automated factories

to sort robots based on their colored tape patterns. Robots enter your
factory carrying sequences of colored tape, and you must route them

to the correct destinations based on the given criteria.

Game Mechanics

Robots and Tape

— *xRobotsxx: Each robot carries a sequence of colored tapes

- **Tape Colorsxx: Primary colors are Blue (B) and Red (R), with additional
Yellow (Y) and Green (G) for advanced puzzles

— x*xTape Representation**: Sequences are represented as strings

(e.g., "RBRR", "BBR", or empty string “""")

Operations

- %*%Pull**: Remove tape from the front of the robot's sequence

— *%Paint**: Add colored tape to the end of the robot's sequence

— *xRoutexx: Direct robots through the factory based on their current tape state

Objective

Route robots to the correct destinations based on their final tape
configuration and the puzzle requirements:

— xxAcceptedx*x*: Robot reaches the END node

— xxRejected**: Robot is routed to the NONE node, or caught in an infinite
loop, or robot reaches the END node but fails to meet the puzzle's
acceptance criteria

DSL Syntax
Program Structure

Every solution must start with a “START® directive and end with an
"END™ directive, wrapped in ~~"manufactoria

"manufactoria
START start:
NEXT <next_node_id>

Factory logic goes here

12

Under review as a conference paper at ICLR 2026

END end

Node Types

1. Puller Nodes

Pullers remove specific colors from the front of the robot's tape sequence
and route based on the current front color.

**Red/Blue Puller:*x*

“"manufactoria
PULLER_RB <node_id>:
[R] <next_node_id>
[B] <next_node_id>

[EMPTY] <next_node_id>

**Yellow/Green Puller: *x

“"manufactoria
PULLER_YG <node_id>:
[Y] <next_node_id>
[G] <next_node_id>

[EMPTY] <next_node_id>

xNotex: Unspecified branches default to "NONE-,

2. Painter Nodes

o

#
#
#

Route
Route
Route

Route
Route
Route

and remove
and remove
if no tape

and remove
and remove
if no tape

color if front tape is Red
color if front tape is Blue
or front tape is neither R nor B

color if front tape is Yellow
color if front tape is Green
or front tape is neither Y nor G

which rejects the robot.

Painters add colored tape to the end of the robot's sequence and continue

to the next node.

“"manufactoria
PAINTER_RED <node_id>:
NEXT <next_node_id>

PAINTER_BLUE <node_id>:
NEXT <next_node_id>

PAINTER_YELLOW <node_id>:

NEXT <next_node_id>

PAINTER_GREEN <node_id>:
NEXT <next_node_id>

Syntax Rules

1. **Node IDs**:
and underscores only)
2. xxCommentsxx*:

Must be unique identifiers

Lines starting with ~#°

are comments

(alphanumeric characters

(single—-1line only)

**xIndentationxx: Use consistent spaces or tabs for route definitions

3.
4. xxCase Sensitivity#*x:
5. xxTermination*x*:

— Robots routed to “NONE-

Colors must be uppercase

are rejected
— Robots routed to the END node are accepted{objective_clause}

13

(R, B, Y, G)

Under review as a conference paper at ICLR 2026

6. *xCode Blocksx**x: Final factory code should be wrapped in triple
backticks with °°° markers

Example

Here's a simple example that accepts robots with exactly one red tape
(ending tape should be empty) :

“"manufactoria
START start:
NEXT entry

PULLER_RB entry:
[R] end

END end
Task
Your task is to design a factory with code with following functionality:

{criteria}

The End of Prompt

The criteria are defined in the Table[T| with different problem families.

Problem Family Difficulty Criteria Examples

APPEND BASIC Accept any input and append the sequence RBR to the end of the
tape.

EXACT BASIC Accept if the tape is exactly RBB.

START BASIC Accept if the tape starts with BR.

ENDS EASY Accept if the tape ends with BB.

REGEX EASY Accept if the tape matches the regex pattern (RBR) + (B) ? ex-
actly.

HAS EASY Accept if the tape contains the substring RYY (must be consecu-
tive).

COMPR EASY Treat Blue as 1 and Red as 0. Accept if the binary number is
greater than or equal to 13.

PREPEND MEDIUM Put BR at the beginning of the tape.

MUTATE MEDIUM Change all RB to BR sequentially.

BIT.OP MEDIUM Treat Blue as 1 and Red as 0. Apply bitwise OR with 16 to the
binary number.

FDIV HARD Treat Blue as 1 and Red as 0. Apply floor division by 4 to the
binary number.

SYMM HARD Accept strings that match the pattern R{n}B{n+1} for any n >
1.

MINMAX HARD Treat Blue as 1 and Red as 0. Output the maximum of 11 and
input.

ADD HARD Treat Blue as 1 and Red as 0. Apply add 8 to the binary number.

Table 1: Manufactoria Problem families with difficulty levels and acceptance criteria.

We synthesize each problem family by starting from a parameterized template (alphabet, tape
operation(s), acceptance predicate, and any numeric thresholds) and then perturbing those parameters

14

Under review as a conference paper at ICLR 2026

within a constrained search space. Discrete knobs (e.g., start/end substrings, regex subpatterns, token
rewrites) are toggled or swapped with near neighbors, while numeric knobs (e.g., bitwise constants,
comparison thresholds, additive offsets, division factors) are jittered by small deltas drawn from a
valid set (e.g., =1, =2, powers of two), with guards to keep the task well-posed and nontrivial.

A.1.1 EXAMPLE TRACES COMPARISON OF A MANUFACTORIA-HAS PROBLEM

Here is one example response of Qwen3-4B-Instruct on a problem in MANUFACTORIA-HAS: “Ac-
cept if the tape contains the substring BRRR (must be consecutive)”.

Failure Case

To design a xxManufactoria solution*x that xxaccepts robots whose tape
contains the substring 'BRRR'xx (consecutive), and **rejects therwisexx,
we need to carefully build a factory that:

— *xDetects*xx the presence of the sequence "BRRR™ in the robot's tape.
— Only accepts robots when this exact pattern appears x*somewherex* in
their tape.

— Rejects all others (including those with "BRR™, “BRRR, but not full
"BRRR™, or other combinations).

Understanding the Requirement

We are looking for xxconsecutivexx “BRRR™ | that is, the letters B
followed by three R's in a row.

We can't just look for "B° and then three "R°s as separate steps |
since the robot has a sequence, and we must detect *x*this exact substring*xx.

Strategy

We will use **state-based pattern matchingxx using xxpullersxx to
simulate a finite state machine.

We'll define states that track how close we are to matching "BRRR":

| State | Meaning |
| === | === |

| "SO0° | Start: looking for the first 'B' |

| “S1° | After seeing 'B': now expecting R |

| °S2° | After seeing 'R': now expecting R |

| °S3° | After seeing RR: now expecting R (final match) |

| “S4° | Match found: accept (go to END) |

| °S5° | Failed to match (hit any invalid character or didn't complete) =+ reject

We'll use **PULLER_RB** nodes (since only R and B are used) to process
the tape from front to back.

We want to *xbuild a machine that scans*x the robot's tape until it
finds "BRRR™.

Once the substring is found, we route the robot to the **ENDxx.

If it fails, we route it to a **rejection nodex* (via "NONE").

15

Under review as a conference paper at ICLR 2026

Design Steps

1. xxStart** node sends to a scanning state.

2. Use a series of pullers to detect:

— If the front is "B, go to next state

("s17)

— If the front is "R°, stay in current state or fail.

— If the tape is empty or neither, reject

3. After each "R°, advance state.
4. If we ever get "BRRR’, go to "END.

5. If we see anything else (e.g., “G°, Y

4

(fail) .

or a non-R after "B7), reject.

> Because the only tape colors in this puzzle are ##Bx* and *#*Rx%x, we

**xdo not needxx yellow or green.
> So we only need *+PULLER_RB#*+*.

Implementation

“"manufactoria
START start:
NEXT sO

s0:
[B] sl
[R] s5
[EMPTY] s5

sl:
[R] s2
[B] sb5
[EMPTY] s5

s2:
[R] s3
[B] sb5
[EMPTY] s5

s3:
[R] end
[B] s5
[EMPTY] s5

s5:
NONE

END end

Explanation

| State | Action |
e R |

| “s0°: Start | Wait for "B =+ go to sl .
| “sl1°: After 'B' | Expect R =+ go to “s2°

16

If "R°
If "B°

or empty =+ reject ("s57).
or empty =+ fail -+ reject.

Under review as a conference paper at ICLR 2026

| “s2°: After 'RR' | Expect another R =+ go to "s3 . Any other =+ fail. |
| "s3°: After 'BRR' | If next is "R°, we have "BRRR’, go to **END#**. Otherwise fail.
| “s5°: Failure state | All invalid or wrong transitions =+ "NONE = -+ *xrejectedxx |

**No alternative paths#*+ are accepted.

This correctly xxonly passes robots with "BRRR" in their tapexx, and rejects:
- 'BRR° (missing last R)

‘BBRR® (fails at 'B° after °'B’)

- 'BRBR" (breaks the sequence)

- Any tape with "B’ not followed by at least three 'R’s

- Empty or non-matching tapes

VVVVYVVY
|

Example Test Cases

| Input Tape | Accepted? | Why |
R — | == | -———- |

| "BRRR™ | Yes | Found "BRRR™ =+ reaches “end”

| "BBRRR”™ | Yes | First "B° =+ goes to “sl°, then "R™ =+ "s2°, "R™ =+ "s3°, "R = “end’
| "BRBR™ | No | After "B°, then "R°, then "B° =+ fails (not "R") = reject |

| "BRR™ | No | No final "R° = rejected |

| "RRB” | No | No "B° at start -+ rejected |

| 77 (empty) | No | Empty = rejects |

\ |

"RBR™ | No No "B at start, so never starts sequence =+ reject |

> Works as required.

Final Solution

“"manufactoria

START start:
NEXT s0

s0:
[B] sl
[R] sb5
[EMPTY] s5

sl:
[R] s2
[B] s5
[EMPTY] s5

s2:
[R] s3
[B] s5
[EMPTY] s5

s3:
[R] end
[B] sb5
[EMPTY] sb5

s5:
NONE

17

Under review as a conference paper at ICLR 2026

END end

This solution correctly accepts robots with the substring **x'BRRR'x*x and
rejects all others.

The End of Trace

Here is another example response (partial) of Qwen3-4B-Instruct after RL training with grokking
(as in Figure |§| (c)) on a test problem in MANUFACTORIA-HAS: “Accept if the tape contains the
substring BRRR (must be consecutive)”.

Success Trace

We are tasked with designing a factory in the **Manufactoria DSLx* that:

— xxAccepts*x* robots whose tape contains the substring ** BRRR ** (four
consecutive characters: B, R, R, R)
- *%*Rejects*x all others.

This is a **string matching**x problem via finite automata. Since

the tape is processed from left to right (front to back), and we are
only allowed to use pullers (which remove from the front), we must
simulate a finite state machine (FSM) that tracks progress toward
detecting "BRRR".

We can't assume the input is long or ordered | so we have to detect the
exact substring **"BRRR"** in the input sequence, x*xxanywhere*x*, and
accept if and only if it appears.

We must design an *xxautomaton** that:

— Keeps track of how much of "BRRR" it has matched so far

— When it sees a match, it goes to an accepting state

— Otherwise, it continues scanning, possibly resetting or continuing

partial matches

We do **not** allow adding tape (painting), only pulling (removing
from front), and routing based on the current front character.

Step 2: Define state transitions

We will build the automaton with states:

- "s0° =+ initial state

- "sl1° =+ after matching B

- "s2° =+ after matching BR

- "s83° =+ after matching BRR

— "s4° - matched BRRR -+ ACCEPT

18

Under review as a conference paper at ICLR 2026

Now, what about the tape that is exactly “BRRR™?

- s0 =+ B =+ sl
- sl = R » s2
- s2 + R = s3
- s3 # R =+ go to “end’

What about if the tape is "R™?

- s0 = R =+ s0 =+ then R #+ s0 =+ forever = never reaches end = rejected =+ correct.
What about "B™?

- s0 » B =# sl =» then if next is R = s2 = etc.

So yes.

What about "BBR™?

- B =+ sl

- B =+ sl

- R #+ s2 =+ then if no more, it stops =+ never accepts =+ correct,

because BRRR not present.

But what about "BBRRR™? =+ yes, after seeing second B =+ sl =+ then
R + s2 + R =+ s3 + R =+ end = Accepted

So it works.
Are there any *xmissingxx cases?
What if the tape starts with Y?

- s0 Y =+ goes to yg0 += Y =+ sO0 + same -+ so eventually if B comes,
we can proceed.

Eventually, if "BRRR" appears later, we will catch it.

What if "BRRR" appears in the middle? Like "X BRRR Y°?

- X-+1if R+ s0 #+ then B + sl = R =+ s2 = R =+ s3 + R = end

Perfect.

We never require the tape to start with B | just that BRRR appears anywhere.

So it's correct.

Final Answer

“"manufactoria
START start:
NEXT s0

PULLER_RB sO0:

[R] sO
[B] sl

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

[EMPTY] ygO

PULLER_YG ygO:
[Y] sO
[G] sO

[EMPTY] sO0

PULLER_RB sl:
[R] s2
[B] sl

[EMPTY] ygl

PULLER_YG ygl:
[Y] sO
[G] sO
[EMPTY] sO
PULLER_RB s2:
[R] s3
[B] sl
[EMPTY] yg2

PULLER_YG yg2:
[Y] sO
[G] sO

[EMPTY] sO

PULLER_RB s3:
[R] end
[B] sl

[EMPTY] vyg3

PULLER_YG yg3:
[Y] sO
[G] sO

[EMPTY] sO

END end

This factory accepts any robot whose tape contains the substring
""BRRR"™ (consecutive), and rejects otherwise.

This satisfies the requirement.

The End of Trace

20

Under review as a conference paper at ICLR 2026

A.2 BOUNCINGSIM

We include a widely used community test—a 2D bouncing-ball simulation program—often treated
as a proxy for geometry-aware reasoning in LLMs (Wiggers, 2025). The goal is to synthesize a
program that simulates elastic collisions in polygonal containers and returns the exact object state at
a queried timestamp; strong solutions require precise collision detection/response and numerically
stable integration.

Prompt design. We provide a prompt example of the bouncing ball coding problems in ROT _BOX
problem family below.

Prompt Template of BouncingSim Problems

Polygon Dynamics Prediction

In this task, you will implement a single function predict_position(t)
that computes the 2D positions of all balls at an arbitrary future time
t under idealized mechanics. The function parses the scene configuration
(containers, balls, and physics/meta), reconstructs the motions, detects
and handles boundary collisions with finite-size treatment, and returns
a list where each element is the [x, y] position (rounded to 2 decimals)
of a ball at time t. Each evaluation of t must be computed directly from
initial conditions and scene mechanics with no hidden state or
accumulation across calls. Rendering, animation, and explanatory text
are out of scope; prefer closed-form reasoning and avoid coarse time-
stepping except where narrowly required for collision resolution.

Mechanics (General)

— Kinematics: Use closed-form equations under constant acceleration:

X (t)=x0+vx0+t+0.5%xax*t"2, y(t)=y0+vyO*t+0.5%xay*t"2.

— Collisions: Perfectly elastic. Reflect velocity using v' = v -

2-dot (v, n”)-n", where n” is the inward unit normal at the contact.

— Finite size: Use polygon{polygon contact. Derive regular shapes from
('sides', 'radius', 'center', 'rotation'); irregular convex polygon balls
use provided vertices.

— Geometry: Irregular convex polygons (if present) are simple (non self-
intersecting). Ball finite size must be respected in all interactions.
— Units: Positions in meters; time in seconds; angles in radians;
velocities in m/s; accelerations in m/s”2.

— Cartesian Axes: +X is right, +Y is up.

Constraints

- Implement only predict_position(t); no other entry points will be called.
- No global variables; no variables defined outside the function.

- Do not import external libraries (except math); do not perform I/0; do
not print; do not use randomness.

— Numerical output must be round(value, 2); normalize -0.0 to 0.0.

Verification and output contract

— Return a list of positions per ball for the provided t: [[x1,yl], [x2,y2],...].
— Each call must be computed independently (no state carry-over between calls).
— You should assume that the ball will hit the wall and bounce back,

which will be verified in test cases.

Scene description

Containers

— Container 1: regular polygon with 3 sides, radius 225.00m, center at

(750, 750); initial orientation 0.000 rad; constant angular velocity 0.170 rad/s

Objects

21

Under review as a conference paper at ICLR 2026

— Ball 1: regular polygon (3 sides), radius 40.0m, initial position
(750, 750), initial velocity (-220.61, 6.21) m/s

Physics
- no effective gravity (treated as zero).

Dynamics
- No additional time-varying mechanisms.

Conventions for this scene

— Containers are convex regular polygons (parameters: 'sides', 'radius',
'center'), unless otherwise specified.

— Angle baseline: By default, the initial orientation is 0.000 rad,
pointing to the first vertex along +X (standard Cartesian axes);
positive angles rotate CCW about the container center.

— Polygon vertices (if provided) are CCW and form a simple convex polygon.
— Container 'radius' denotes the circumradius (meters).

— For balls: irregular convex polygons rely on provided vertices (no
radius mentioned); regular polygons may be derived from
'sides/radius/center/rotation’.

— Containers are kinematic (infinite mass, prescribed motion); impacts
do not alter container motion.

Task

— Number of balls: 1

— Your should think step by step and write python code.
— The final output should be in the following format:
[Your thinking steps here ...] (optional)

T Tpython

[Your Python code here]

— Define predict_position(t) returning a list of length n_balls; each

element is [x_1i, y_i] (rounded to 2 decimals) for Ball i at time t (seconds)
Output
— Required format: function predict_position(t: float) -> [[x1l,yl],
[x2,v2],...]; coordinates as 2-decimal floats

The End of Prompt

We construct a large-scale dataset for elastic collisions of polygonal objects in polygonal containers,
designed to probe geometry-aware reasoning and numerically stable simulation in code-generating
models (Wiggers, [2025)). Each instance provides a fully specified physical scene and a programmatic
task: predict the exact object state at one or more queried timestamps. Below we detail our scene
taxonomy, generation and validation pipeline, prompt/evaluation protocol, and the difficulty schedule.

A.2.1 SCENE TAXONOMY

We factor the space of scenes into orthogonal “axes” that control distinct physical effects or composi-
tion, allowing systematic sampling and compositional generalization:

* ROT_OBJ (Inner rotation): the ball (modeled as a convex polygon) has nonzero angular velocity;
collisions remain perfectly elastic.

* ROT_BOX (Outer rotation): the container rotates; optionally, time-varying angular speed is injected
via a sinusoidal envelope.

* MOV_BOX (Outer translation): the container follows a prescribed path (sinusoidal or Lissajous),
inducing moving-boundary reflections.

* GRAVITY: gravity can be tiny/small/large, tilted, or chaotic (random direction with time variation).

22

Under review as a conference paper at ICLR 2026

* MULTI_BOX (Multi-container): multiple non-overlapping polygonal containers are placed; a single
ball is spawned in the first container unless otherwise specified.

* MULTI_OBJ (Multi-object): multiple balls are spawned in a single container with non-overlapping
initial placement.

All containers and balls are convex polygons; collisions use a perfectly elastic model (restitution 1.0)
with finite-size handling (ball centers are constrained by the container’s incircle).

A.2.2 PARAMETERIZATION AND PLACEMENT

Scenes are defined in a global, display-agnostic metric space. The workspace size is fixed to 1500 m
x 1500 m with a baseline container diameter of 300 m. Difficulty scales the geometry (e.g., container
diameter factor), polygon arity (number of sides), ball radii, speeds, and multiplicities. Objects are
sampled and placed under strict feasibility constraints:

* Non-overlap: initial ball-ball overlap is rejected by a circle-approximation test; multi-container
layouts must respect a minimum center-to-center gap.

* Feasible incircle: ball centers are sampled inside the container’s incircle minus a safety margin;
scenes violating this bound are rejected.

» Units: positions in meters; time in seconds; angles in radians; velocities and accelerations in SI
units. All randomization is seeded and stored in scene metadata for reproducibility.

A.2.3 GENERATION AND VALIDATION PIPELINE

The dataset is produced in three stages, repeated for every requested problem family combination and
difficulty level:

(1) Scene synthesis. Given a target problem family set (e.g., ROT_BOX) and difficulty, we draw
parameters from problem-family-specific ranges (polygon arity, speeds, rotation rates, translation
amplitudes, gravity modes) and write a normalized JSON scene: container(s), ball(s), physics
(including time-varying profiles), and comprehensive metadata (difficulty name, seed, key timestamps,
etc.). Difficulty levels scale geometry (container factor, polygon arity), ball radii, kinematics (linear
and angular speeds), gravity complexity, and multiplicity (containers/balls) as shown in Table 2]

(2) Numerical sanity check. Each synthesized scene is validated for step-size stability before
acceptance. We simulate the scene at a small set of reference timestamps under two integrators/time-
steps (a validation baseline vs. the ground-truth step) and require the maximum screen-space deviation
to remain below a tight threshold (15 px). Scenes that exceed this threshold or violate geometric
feasibility (overlap or outside-incircle) are discarded and resampled up to a retry budget.

(3) Dataset assembly. For every accepted scene we choose evaluation timestamps and compute
ground-truth positions using the higher-fidelity integrator. We then construct a task prompt and
serialize a JSONL entry containing: messages (the task), a list of test assertions (per timestamp), the
instance id, difficulty index, the explicit timestamp list, and an error tolerance tag (default 50px) used
during automated checking.

A.2.4 SPLITS AND COMPOSITION

We design three complementary splits to probe distinct generalization properties. Each split is
parameterized by which axes, difficulties, and timestamp regimes are exposed during training vs.
evaluation.

Design principles. (1) Factorized skills. Axes isolate orthogonal mechanics (inner vs. outer rotation,
moving boundaries, gravity, multiplicity, periodicity). (2) Controlled distribution shifts. Difficulty
scales geometry, multiplicity, and dynamics; OOD splits increase complexity without changing the
core mechanics.

23

Under review as a conference paper at ICLR 2026

Table 2: Problem-by-difficulty configurations (aggregated from generator defaults). Abbreviations: f
= container diameter factor (relative to 300m base); out/in = outer/inner polygon sides; r = ball radius
(m); v = linear speed range (m/s); w = angular speed (rad/s); amp = translation amplitude (m); g =
gravity mode; cts = number of boxes; n = number of balls.

Problem family Basic (0) Easy (1) Medium (2) Hard (3) Extreme (4)

ROT_OBJ f1.5;out 3-4;in 3-4; f1.4;o0ut3-5;in5-6; f1.3;o0ut3-6;in6-7; f1.2;o0ut3-7;in7-8; f1.0;out3-7;in8;r
r 40; w 0.1-0.2; v r 35; w 0.2-0.5; v r 30; w 0.5-1.0; v r30; w 1.0-2.0 (tv); 30; w 2.0-2.5(tv); v
200-400 400-600 600-800 v 600-800 600-800

ROT_BOX f 1.5; out 34; in f 1.4; out 5-6; in f 1.3; out 6-7; in f 1.2; out 7-8; in f 0.8; out 8-10; in
34; w 0.1-0.2; v 5-6; w 02-05; v 6-7;, w 0.5-1.0; v 7-8; w 1.0-1.5 (tv); 8-10; w 2.0-3.0 (tv);
200-400 400-600 600-800 v 800-1000 v 1000-1200

MOV _BOX f 1.5; out 3—4; amp f 1.4; out 5-6; amp f 1.3; out 6-7; amp f 1.2; out 7-8; amp f 1.0; out 8-10;
0-10; sinld (0.1); v 20-40; sinld (0.5); v 40-60; sinld (1.0); v 60-90; Lissajous; v amp 90-120; Lis-
200400 400-600 600-800 800-1000 sajous (chaotic); Vv

1000-1200

GRAVITY f15 out3-4; g= f14; out 5-6; g= f1.3; out 6-7;, g= f 1.2; out 7-8; g = f 1.0; out 8-10; g =
tiny; v 200-400 small; v 400-600 large; v 600-800 tilted; v 800-1000 tilted; v 1000-1200

MULTI_BOX cts 2;f 1.5;out 3—4;r cts2;f1.4;0ut 5-6;r cts3;f1.3;0ut6-7;r cts4;f1.2;0out7-8;r cts6;f1.0; out 8-10;
40; v 200-400 35; v 400-600 30; v 600-800 25; v 800-1000 r 20; v 1000-1200

ROT_BALL n2;f2.5;0ut3-6;in n 3;f2.5; out 3-6; r n4-5;f2.5;out 3-6; n5-6;f2.5;0ut3-6; n7-9;f2.5;out3-6;
3-6; 1 20; v 200-400 20; v 400-600 1 20; v 600-800 r 20; v 800-1000 r 20; v 1000-1200

Explorative generalization (within-family difficulty shift). This split tests robustness to increased
geometric/dynamic complexity while keeping the same “skill”. We train on single-family scenes at
Basic difficulty and evaluate on the same family at higher difficulties.

* Train: single-family scenes at Basic (0). We generate 1000 examples in such a split.
* Test (ID): single-family scenes at Basic (0). We generate 100 additional examples in such a split.

* Test (OOD): Easy—Extreme (1-4) at the same family; We generate 100 additional examples in each
difficulty.

 Rationale: isolates the effect of tighter geometry (smaller containers, more sides), higher velocities,
stronger/tilted gravity, and larger multiplicity (more containers/balls), while holding the family-
specific mechanics fixed.

Compositional generalization (skill composition). This split probes whether models learned
modular skills that compose. Concretely, we exemplify by composing inner and outer rotations at
test time after training on them in isolation.

* Train: ROTAT_BOX (outer rotation only) and ROTAT_OBJ (inner rotation only), both at Basic
difficulty. We generate 1000 examples in each family.

* Test (OOD composition): ROTAT_BOX_OBJ = (outer+inner rotation simultaneously) at Basic (0)
level. Container angular velocity and object spin are drawn independently at the current difficulty
level. We generate 100 additional examples in such a split.

 Rationale: assesses whether learned collision handling in a rotating frame combines with inner-spin
kinematics without interference.

Transformative generalization (qualitative strategy change). Here the test-time data is qualita-
tively different from anything seen in training—for instance, perfectly periodic trajectories that arise
from special construction.

* Train: single-family scenes at Basic (0). We generate 1000 examples in such a split.

¢ Test (transformative OOD): periodic configurations (even-sided container, symmetry-aligned initial
velocity) using list-prompt mode with a fixed periodic grid; we evaluate cycle consistency and phase
accuracy over evenly spaced timestamps. We provide an example theorem below that supports
such a periodic case construction.

» Rationale: measures whether models trained on generic dynamics can extrapolate to a qualitatively
different but mathematically structured regime (near-1D periodic motion in polygonal symmetry).

24

Under review as a conference paper at ICLR 2026

Periodic Construction (transformative setting). We exploit a closed-form condition that yields
perfectly periodic, normal “shuttle” trajectories between two concentric, co-rotating regular polygons.
This result underpins the periodic test cases in our ROT_BOX transformative split and provides an
analytical knob to dial the fundamental period via the angular velocity.

Theorem 1 (Periodic bounce between two concentric regular n-gons). Setup. Let P, and P; be two
concentric regular n-gons (n > 3) with circumradii R, > R; > 0. Both polygons rotate rigidly with
the same constant angular velocity w about their common center. At time t = 0 a point mass (“ball”)
is placed on the inward normal to a side of P, and moves with speed v > 0 along that normal toward
P;. Collisions with sides are perfectly elastic, and motion is confined to the annular region between
the polygons. The initial pose has one vertex on the +x-axis.

Let a(R) == Rcos(m/n) denote the apothem of a regular n-gon with circumradius R, and define the
normal gap
A =a(R,) — a(R;) = (R, — R;) cos(%).

Thus A is the (signed) distance between the parallel supporting lines of the corresponding side family
in P, and P;.

Claim (closed-form condition). The ball executes uniform periodic motion—bouncing back and forth
at constant speed along a fixed set of parallel sides with a repeating impact pattern—if and only if
there exists an integer k € 7 such that

k- 2mv

Y n(Ro — Ri) cos(%)

Equivalently, with the one-way flight time
A (R, — R;)cos(m/n)

tgy = — =
Y v ’

the periodicity condition is

2
W,tﬁy:k'%

When this holds, the fundamental bounce period and the orientation recurrence are

2(R, — R;) cos(m/n 2m n/A
Tbounce = 27tﬂy = (- ZU) (/)7 Torient = m = W

The minimal nonzero periodic rotation corresponds to |k| = 1.

Proof sketch. (1) In a regular n-gon, opposite sides are parallel; the distance between their supporting
lines is 2a(R). For concentric, co-oriented P,, P;, the normal gap between the corresponding
supports is A = a(R,) — a(R;). (2) Launching exactly along a side normal produces specular
reflections that preserve a straight, normal shuttle between parallel side families; the speed remains
v, so each one-way flight takes tay, = A/v. (3) During a one-way flight, the polygons rotate by w, tg,.
For the next impact to occur on a side parallel to the previous one (so that the normal shuttle and
impact geometry repeat), the side orientations must recur, which in a regular n-gon happens modulo
27 /n. Hence w,tay =0 (mod 27/n), yielding the stated condition.

Construction recipe for ROT_BOX (periodic). To instantiate periodic test scenes in the transforma-
tive split

1. Choose n (even n makes the normal families align with diameters) and set circumradii (R,, R;)
(or effective radii after finite-size shrink/expand).

2. Pick a speed v > 0 and launch along a side normal of P, (avoid vertex alignment by a tiny phase
offset).

3. Set the box angular velocity using |k| = 1 in the closed form, w < m,
co-rotate any inner boundary if present, or equivalently use w,.] for differential rotations.

and

4. The resulting shuttle has Thounce = 2(R, — R;) cos(n/n)/v and repeats in orientation every
Torient = nA/v. For evaluation, sample timestamps on a uniform grid over several bounce
periods to probe phase stability.

25

Under review as a conference paper at ICLR 2026

A.3 COMPETITION CODING

Competition Code is a well-established domain where participants solve complex algorithmic prob-
lems. For a specified problem, the solver program is required to generate the correct output for
every input in the provided test suite. We curate 5 algorithmic families and collect several problems
per family from various well-known competitive programming platforms. We propose a phased
perturbation pipeline to create a comprehensive OOD dataset.

A.3.1 SEED FAMILIES AND COVERAGE

We curate 3-5 seeds per algorithmic family. The current collection includes:

Mo’s Algorithm (4): LuoguP 1494, LuoguP4462, LuoguP4887, LuoguP5047
* Segment Tree Decomposition (3): CF98IE, CF1140F, LuoguP5787
CDQ D&C (3): CF848C, CF1045G, LuoguP4093.

¢ Meet-in-the-Middle: CEOQOI2015-D2T1, LuoguP2962, SPOJ-ABCDEF,
USACO2012USOpen-GoldP3

* Square Root Decomposition (5): CF710D, CF797E, CFI1207F, LuoguP3396, Lu-
oguP8250.

Each seed problem is tagged with public problem code in websites like CodeForces, AtCoder, and
Luogu. Per seed, we target 5-10 perturbation strategies (configurable; default 10). For narrative
coverage, we maintain a library of 20 background templates (e.g., Campus Life, Ancient Warfare,
Cyber Security, Energy Grid, Xuanhuan Fantasy), and by default rewrite each perturbed seed into all
backgrounds.

A.3.2 SYNTHESIS PIPELINE

Phase 1: Standardize seed problems. This phase transforms heterogeneous problem statements
into a unified specification. First, the framework parses raw Markdown to extract core fields such as
the problem statement, input/output formats, constraints, and examples, and utilize LLMs to reduce
typographic ambiguities and make semantic clarifications.

Phase 2: Produce enumeration-based solutions for standardized seed problems. This phase
generates a diverse set of feasible, though not necessarily optimal, reference implementations for
each standardized seed problem. Emphasis is placed on reliability rather than optimality, ensuring we
have correct solutions for small test cases.

Phase 3: Produce enumeration-based test case generators for standardized seed problems. This
phase synthesizes test case generators grounded in original seed problems. By curating prompts for
LLMs, generators are designed to cover representative distributions and adversarial conditions.

Phase 4: Generate perturbation strategies. This phase generates strategies how to perturb problems
systematically. Each strategy seed is curated by a human expert with at least 8 years of competitive
programming experience and designed for making a perturbation while keep the main solution
unchanged. These strategy seeds are standardized and extended to strategies with detailed instructions.

Phase 5-7: Generate perturbed problems, enumeration-based solutions and test case generators
according to strategies. Phase 5 generates standardized perturbed problem statements, based on
perturbation strategies. Similar to phase 2 and phase 3, we generate corresponding solutions and test
case generators based on enumeration. When generating solutions, we provide the original problem
and solution to effectively improve the reliability.

Phase 8: Produce input constraint sanity check test case generators for standardized perturbed
problems. To enhance the robustness of our evaluation, this phase produces input constraint sanity
check test case generators. Curated test case generators are designed for testing whether the solution
code can handle big test cases in a reasonable small time. Test case constraints are manually adapted
to the Python programming setting, guaranteeing no brute-force solutions can pass and all correct
Python solutions can be accepted.

26

Under review as a conference paper at ICLR 2026

Phase 9: Produce background rewrites. Finally, this phase provides an effective approach to
generate OOD samples. By utilizing 20 background settings, the standardized perturbed seed
problems are rewritten in different background stories, maintaining the same input/output formats
and solutions. All these rewritten problems are final and ready to be involved in training.

A.3.3 EXAMPLE 1: SEGMENT TREE DECOMPOSITION — BIPARTITE OVER TIME
Seed (excerpt).

“Given (n, m, k). Each of the (m) edges is active on an interval ([l, r]) over the discrete
timeline (1..k). For each time (t), determine whether the active subgraph is bipartite.”

Perturbation strategies (from Phase 2, sample).

» Two-interval activation. Replace each edge’s interval ([l, r]) with exactly two disjoint
subintervals ([l1,71], [l2, 72]). The solver continues to use DSU-rollback over a segment tree
covering time.

* Interval-»Event rewrite. Convert each interval to two explicit events: an add at (1), a
remove at (r+1). Feed the event list unchanged into the segment-tree over time.

* Event-pair splitting. Expand each add/remove into two sub-events (e.g., preparelapply) to
stress timeline density without changing the rollback design.

Before/After (Strategy-level variant). Before (seed): time-varying edges with single intervals ({1,
r]). After (strategy 1): “Each edge is active exactly on two disjoint intervals ([l1,r1]) and ([l2, r2]).
For each (t) in (1..k), is the subgraph bipartite?” Algorithmic essence and complexity remain the
same: DSU with rollback over a segment tree on the time axis, O((n + m) log k).

A.3.4 EXAMPLE 2: SQUARE ROOT DECOMPOSITION — HASH-BUCKET GROUP SUMS
Seed (excerpt).

“Given an array value. For many queries with modulus (pjn), report the sum of numbers in
bucket (x), where index (k) belongs to bucket (X mod p). Updates assign value; < y.”

Strategy-level perturbation (background-agnostic). Before: group by (k mod p). After:
Grouped Sequence Sum and Update Queries:

“Define H (i) = Zf;ol Ski* mod M. Sum queries ask for the total over indices mapping
to a given hash value (g); updates set A; < z.”

This preserves the bucket-sum structure and the O(-) behavior under small-(M) caching and updates,
matching the seed’s enumeration profile while modestly changing the grouping function.

Background rewrite (Campus Life). Before (strategy-level): abstract group sums under (H(i)).
After (background): Campus Club Scores:

“Student IDs (1..N) are assigned to clubs by a polynomial function (C(i)). Queries ask for
the total score in club (g); updates change a student’s score.”

Narrative terms shift (students/clubs/scores), but the formal mapping (C(i)) and the I/O grammar
remain intact so the variant’s enumerator and the background rewrite both agree on the 100-case
oracle.

A.3.5 SUMMARY

By enumeration-first solutions and enforcing strategy-level clarity before rewriting, the pipeline makes
large-scale, verifiable perturbation feasible. Standardization, deterministic test generation, and back-
ground consistency checks together ensure that every variant—despite narrative diversity—remains
faithful to the core algorithm and produces outputs consistent with the seed’s brute-force oracle. This
methodology yields rich, well-structured families suitable for training, evaluation, and pedagogical
use.

27

Under review as a conference paper at ICLR 2026

B EXPERIMENT DETAILS

Models. We use Qwen3-4B-Instruct as the reference instruction-tuned model for all experiments in
this paper.

Training Details. We fine-tune with GRPO (Guo et al.,[2025) using the Open-Instruct framewor
Unless otherwise noted, the key arguments are:

——beta 0.0 \
——num_unique_prompts_rollout 48 \
—-num_samples_per_prompt_rollout 16 \
—-k1l estimator k13 \
—-—learning_rate 5e-7 \
--max_token_length 12240 \
——max_prompt_token_length 2048 \
——response_length 10192 \
—-—pack_length 12240 \
——apply_verifiable_reward true \
——non_stop_penalty True \
—-—-non_stop_penalty_value 0.0 \
——temperature 1.0 \
——total_episodes 1000000 \
-—deepspeed_stage 2 \
——per_device_train_batch_size 1 \
——num_mini_batches 1 \
—-num_Jlearners_per_node 8 \
——num_epochs 1 \
—-vllm_tensor_parallel_size 1 \
-—clip_higher 0.3 \
——vllm_num_engines 8 \
——1r_scheduler_type constant \
-—seed 1 \
——gradient_checkpointing \

Across all experiments—including the multi-stage schedules in the paper—we vary only (i) the
train/eval datasets, (ii) the base/reference model, and (iii) the scoring mode (full-pass reward vs.
per-test reward) to match the setting.

Datasets for learnability (Section[d). Manufactoria-HAS: 742 training and 100 test examples.
Manufactoria-START/APPEND/EXACT: 350 training examples in total across the three fam-
ilies. Manufactoria-REGEX: 560 training examples. Manufactoria—-COMPR: 535 training
examples.

Datasets for generalization (Section[5). Unless otherwise specified, for each curated problem family
and each difficulty, we sample 1,000 training problems (Appendix [A.2.4). In the setup of Figure [9(a),
the training set contains six families at the Basic level, totaling 6,000 training samples. Evaluation
comprises:

¢ In-distribution (ID): 100 test samples from the same Basic difficulty as training.

* Explorative (OOD): 100 test samples per family at each higher difficulty (Easy, Medium,
Hard).

* Compositional (OOD): 100 test samples per composed family at Basic difficulty.
* Transformational (OOD): 100 test samples per setting.
Evaluation Protocol. Evaluation uses the same sampling configuration as training. Each score is

averaged over 4 runs.

Compute Resources. Each RL run uses 16 NVIDIA H100 GPUs across two nodes and completes in
~3 days for 1,000 optimization steps.

*https://github.com/allenai/open-instruct

28

https://github.com/allenai/open-instruct

Under review as a conference paper at ICLR 2026

(@) Models: Qwen3-4B-Instruct / Problem Family: Manufactoria-REGEX

1.0
Q
Eos Explor— Convergence
3 | auon Phase
& Phase
b
@©
g 0.4
2 | Grokking! Q
0.2
o
= \
0.0 —

o

200 400 600 800 1000 1200
Training Steps

(b) Models: Qwen3-4B-Instruct / Problem Family: BouncingSim-All

1.0
() -
5 os Exploration Convergence
Phe Phase Phase
&
2
©
§ 0.4
o -
£02 Grokking!
2
0.0 = = s = = - =
0 50 100 150 200 250 300
Training Steps
(c) Models:Nemotron-14B / Problem Family: Manufactoria-HAS
1.0
] .
s Exploration Convergence
0.8
a Phase Phase
Zos6
I
©
§ 0.4
(o)} - 1
S0z Grokking!
g
g N
0.0

o

50 100 150 200 250 300
Training Steps

Figure 10: Grokking across models and tasks. (a) Qwen3-4B-Instruct on Manufactoria—-REGEX; (b) Qwen3-
4B-Instruct on BouncingSim-All (same training setup as in Figure[9); (¢) Nemotron-14B on Manufactoria—HAS.
Curves plot training-data full pass rate versus training steps. A consistent pattern emerges: a long exploration
phase, an abrupt grokking transition, and a convergence regime; (a) also exhibits an RL collapse when training
continues past convergence.

C ADDITIONAL EXPERIMENTS

C.1 GROKKING GENERALIZES ACROSS MODELS AND PROBLEM FAMILIES

Figure [T0|demonstrates that the RL grokking phenomenon, an extended low-signal exploration phase
followed by an abrupt phase transition and rapid convergence in training-data full-pass rate, can arise
across (i) model sizes and families and (ii) distinct problem scopes.

Panel (a) shows Qwen3-4B-Instruct trained on Manufactoria—-REGEX. After a long plateau,
performance surges and subsequently enters a convergence regime. Continued training eventually
triggers an RL collapse, highlighting the need for stabilization or early stopping once solutions con-
solidate. Panel (b) uses the same model on BouncingSim—All, a real-world ball-bouncing simulation

29

Under review as a conference paper at ICLR 2026

(a) Problem Family: cpg_bc

(b) Problem Family: MEET_IN_MID

=
=)

(c) Problem Family: SQRT_bC

I o o iy
o =)

IS

Training Data Full Pass Rate
o
N

Exploration Convergence

Phase Phase

1.0
Convergence
Phase

Exploration
Phase

I 4 o
» o ®

Training Data Full Pass Rate
o
o

o
o

1N o
> o

Training Data Full Pass Rate
o
N

Exploration

Convergence
Phase

o
=)
o

100 200 300 400

Training Steps

500

600

o
=)
o

200 300
Training Steps

100 400

o
o

500

o

200 300 400
Training Steps

100 500

600

Figure 11: Grokking across competition code tasks. (a) CDQ-DC; (b) MEET-IN-MID; (c) SORT-DC. Curves
plot training data full pass rate versus training steps.

coding suite for real-world coding tasks. The same exploration to phase-transition to a convergence
pattern appears. Panel (c) swaps the model family and scale to Nemotron-14B on Manufacto-
ria—HAS, again reproducing the grokking phenomenon. We also provide additional experiments on
the competition coding task problem families in Figure [TT]that demonstrates the same trend.

Together, these results indicate that grokking is not an artifact of a particular backbone or a single
synthetic family. It emerges with different parameter counts, across independent model lineages, and
on tasks ranging from symbolic program synthesis to physics-driven simulation code. This supports
the view that RL can discover new procedural strategies rather than merely sharpening pre-trained
ones.

C.2 WARM-UP BENEFITS BEYOND THE “PASS@K=0" PROBLEMS

Warm-up with per-test rewards is not only a rescue mechanism for tasks where the base policy never
succeeds; it also helps when the initial success probability is small but non-zero (pass@k = ¢ > 0).
In this regime the binary full-pass reward still provides a weak and high-variance signal, which can
lead to slow or unstable improvement. A short warm-up phase with dense, per-test rewards (here:
100 steps) (i) accelerates discovery of partially correct behaviors, (ii) better stability, and (iii) delivers
a more reliable starting point for the subsequent binary-reward phase. Empirically, we observe faster
and steadier convergence with warm-up, whereas training that optimizes full-pass from scratch can
remain sluggish and brittle, sometimes exhibiting late-stage regressions even after partial progress.

Models: Qwen3-4B-Instruct / Problem Family: Manufactoria-REGEX

oy
o

—— With Warmup (Per-test Pass Rate)
Without Warmup

o
©

o
o

il
I

©
>

o

Training Data Full Pass Rate
N

e
=)

i '
1

|

i
(!
I g :

r)

T4 i 1 | |’ L S 1Yy
ol I b S 0 i (R ARG :
i 1‘ s sl \ P |

J

4|.“"
A

200

400

600

800

Training Step

Figure 12: Warm-up helps when pass @k is small but non-zero. Training curves on Manufactoria—-REGEX
with Qwen3-4B-Instruct. The blue curve is trained after a 100-step warm-up using per-test rewards, then
switched to the binary full-pass objective; it achieves faster and steadier gains. The orange curve trains full-pass
from scratch and improves slowly with occasional regressions.

30

Under review as a conference paper at ICLR 2026

D USE OF LARGE LANGUAGE MODEL IN PAPER

LLM is only used for sentence polishing in the paper writing.

31

	Introduction
	Background
	DELTA: Controlled Programming Problem Families
	Manufactoria (Out-of-distribution Problems for Learnability Study)
	BouncingSim (2D Simulation Programming Tasks for Generalization Study)
	Competition Coding Problem Families

	Learnability Study: Can RL Uncover New Strategies and How to Accelerate it?
	Basic Setup
	How to Solve ``pass@K=0'' Tasks with RL?
	Attempts to Accelerate RL Grokking
	More Investigation into the Warm-up Phase

	Generalization Study
	Related Work
	Reproducibility Statement
	Dataset Details
	Manufactoria
	Example Traces Comparison of a MANUFACTORIA-HAS Problem

	BouncingSim
	Scene Taxonomy
	Parameterization and Placement
	Generation and Validation Pipeline
	Splits and Composition

	Competition Coding
	Seed Families and Coverage
	Synthesis Pipeline
	Example 1: Segment Tree Decomposition – Bipartite Over Time
	Example 2: Square Root Decomposition – Hash-Bucket Group Sums
	Summary

	Experiment Details
	Additional Experiments
	Grokking Generalizes Across Models and Problem Families
	Warm-up Benefits Beyond the ``pass@k=0'' Problems

	Use of Large Language Model in Paper

