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In three-dimensional profilometry, the primary disadvantage of the monocular system equipped with a projector
and a camera is that it is often highly dependent on the projector calibration. The projector calibration errors of
the principal point and focal length are analyzed in this paper, and result in measuring the object deviation,
including not only the rigid transformation, but also the scale transformation. Unfortunately, the deviation can-
not be revealed by reprojection, the normal error analysis method. Here, a systematic recalibration method is
proposed to correct the projector calibration errors of the principal point and focal length, where an accurate
binocular three-dimensional measurement system is applied. The experimental results show that the method is
effective. The three-dimensional measurement accuracy of the monocular system is improved approximately from
1.0 mm before projector recalibration to 0.10 mm afterward.  © 2016 Optical Society of America
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1. INTRODUCTION

A three-dimensional measurement system based on structured
light has become more and more important in recent decades
because of its rapidity, non-contact, and high accuracy. A
monocular three-dimensional measurement system is equipped
with a camera and a projector. The projector projects a series of
encoded patterns onto the object surface and the only camera,
which is at an angle to the illumination direction, records the
distorted patterns caused by the depth variation of the object
surface. As one of the necessary steps, accurate projector calibra-
tion is essential for a high-accuracy monocular three-dimensional
measurement system. Zhang proposed a plane-based camera
calibration method in 2000 [1], which captures at least three
checkerboard images to calibrate all the camera’s parameters. In
Zhang’s method, the initial parameters are estimated with the
ideal camera model and applied to estimate the final results.
The projector calibration method is similar to the camera cal-
ibration method. The projector’s digital micromirror device
(DMD) images are obtained by calculating the checkerboard
corners’ phase maps in two directions, and the projector is cali-
brated with these DMD images [2].

Unfortunately, the projector calibration error is many times
larger than that of the camera calibration [3-5], so the applica-
tions of monocular three-dimensional measurement systems are
greatly restricted. One approach proposed to eliminate the pro-
jector calibration error is reducing the error of correspondence,
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such as phase error compensation by using a smoothing spline
approximation [6], or adjusting the fringe angle to minimize
the phase error [7,8], or a look-up table built to reduce the error
of the phase value [9], or introducing ambient light into the
phase error model to reduce the gamma effect [10]. Another
strategy is to improve the calibration process, including the re-
moval of noise and radial lens distortions during calibration
[11], different calibration targets to alter the captured contents
[12], an appending laser range finder for optimization con-
straint [13], and so on. Although there have been many methods
to improve the calibration of the projector, and the reprojection
error of the projector calibration is almost close to the error of the
camera calibration, the measurement error of a monocular sys-
tem with a single camera is still many times larger than that of a
binocular system with two cameras. Therefore, an accurate
method to correct the projector calibration is desirable.

In this paper, an alternative method to recalibrate the pro-
jector’s internal parameters is proposed, based on our discovery
that there are residual calibration errors unrevealed by the re-
projection error estimation method. The analysis of how the
errors affect the reconstruction is given, and the corresponding
recalibration method to eliminate the errors is proposed. The
experimental results show that the measurement accuracy of the
monocular system is improved from 1.0 to 0.1 mm.

The rest of this paper is organized as follows: Section 2
introduces the analysis of the error source of a monocular
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three-dimensional measurement system and simulates the re-
sults of the analysis. Section 3 discusses the projector recalibra-
tion method. Section 4 shows some reconstructed results with
recalibrated parameters. Finally, Section 5 concludes this work.

2. PRINCIPLE

A. Monocular System Model
In a monocular three-dimensional measurement system
equipped with a camera and a projector, the projector is con-
ceptually regarded as an inverse camera and calibrated through
DMD images based on Zhang’s method, as explained in the
introduction [1]. Assuming Q is an arbitrary point with world
coordinates Q,, = [X,,, ¥, Z,] in three-dimensional space, Q
will be projected onto the real camera image plane and the vir-
tual projector image plane. The relationship between the point
Q and its projection on the image sensor can be described as
follows, based on a projective model described as Eq. (1):
nXy +nY,+nrZ,+4
Ve = f X + CCry

17Xy + 1Yy + 19l + 13

14X, + 1Y, 1, + 1)
7 r7Xw + rSYw + 79Zu/ + 73
mX, +mY, +mZ, +t4
m X, +mgY,, + myZ, + ts

u=f

+ ccyy

Vp = fp + e (1)
where #,, v, are the pixel coordinates on the camera imaging
plane, and v, is one of the pixel coordinates on the projector
imaging plane, which is found to be a line of corresponding pix-
els on the DMD image by the phase value at a camera pixel [14]:
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where [R, T is an extrinsic parameters matrix, which represent a
three-by-three rotation matrix and translation vectors between
the world coordinate system and the camera/projector coordinate
system. A camera or a projector is often described with an in-
trinsic matrix, including focal length, principal point, pixel skew
factor, etc. [f . f [y] in Eq. (1) is the focal length along the
u- and v-axes of the camera image plane, and [cc,,, cc,,] is the
coordinates of the principal point of the camera. The subscripts ¢
and p indicate camera and projector, respectively. Equation (1)
represents a linear model of the monocular system. A more cla-
borate nonlinear model is not discussed to simplify our method.
However, the linear model is found to be sufficient to improve
the monocular system’s accuracy.

Calibration is one of the most important steps of three-
dimensional reconstruction. Many methods had been proposed
to finish this task; among them, the methods proposed by
Zhang and Huang are widely used and applied in our system
through projecting horizontal and vertical patterns onto a cal-
ibration board [2]. As shown in Fig. 1, compared with their
results, a higher calibration accuracy was achieved for projector
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Fig. 1. Reprojection error of projector.

calibration in our system, evaluated with the reprojection
method. The reprojection results reveal the error of the control
points on the calibration board. There is no doubt that this is a
simple and accurate method. It can be seen that most of the
reprojection errors are smaller than 0.2 pixels in the X direction
and 0.4 pixels in the ¥ direction. Conceptually, the parameters
are very accurate.

However, errors still exist in the process of calibration, which
could not be revealed by the reprojection method; thus they
will be analyzed and improved with our method, as discussed
in the following section.

B. Error Analysis

As discussed in the last section, although the accuracy of the
DMD images can be partly verified with the reprojection
method, some hidden errors are inevitable. We found that
the errors are controlled by the projector’s internal parameters.
Due to the fact that the projector is designed to project images
along the off-axis direction, the principal point and focal length
calibrated by the DMD images play an important role in the
monocular measurement system’s accuracy.

First of all, the error caused by the projector’s principal point
is analyzed. To simplify the analysis, it is assumed that all
parameters in the simulated external and intrinsic matrices
are accurate except for one of the components of the projector’s
principal point, cc,,. As shown in Fig. 2, O,, - X, Y ,,Z,, is the
world coordinate system, O, - XY .Z, is the camera coordi-
nate system, and O, - XY ,Z, is the projector coordinate sys-
tem. On the projector image plane shown on the right side of
Fig. 2, x, denotes the accurate principle point coordinate, while
x, denotes the inaccurate one acquired by calibration. The dif-
ference between x, and x, is Acc. M; and M, are two points in
three-dimensional space, and the distance from M, to M, is L.
The rays from M and M, strike the camera and projector im-
age planes represented by the perspective transformation de-
picted in Eq. (1), as shown in Fig. 2 with the solid line. If the
calibration error of the principal point exists, in other words, if
cc,y in Fig. 2 is x, instead of x,, the reconstructed points M
and M derived from Eq. (1) will deviate from the original
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Fig. 2. Error analysis of the principal point.
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Fig. 3. Actual and reconstructed planes in simulation of principal
point.

points M, and M, as shown in Fig. 2. As an example to reveal
the quantitative relation of the error and the deviation, here we

Second, one of the components of the projector’s focal
length, £, in Eq. (1), is analyzed. A similar assumption is

give an equation, Eq. (2), to describe the error of Z,,, where made, except that the focal length is inaccurate. To analyze
AZ related to the error of cc,, and Ace: the measurement error, the actual focal length of the projector,
kiry =71y kirg =7y £ - kit3 :17‘7—”1 il”s—”z fl—ilfa
k277—7'1 sz’g—}"z tz—szs + 277 =T 278 =7 t2_ 2t3
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k27'7—7'1 k278 -7 kzrg -3 + k227_71 kZZS ) k229 -3
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where

kl = (vt‘ - cccx)/fcx
/62 = (14[ - CC[)/)/f[_y
k3 = (yp - Ccpx)/fpx‘

The reconstructed processing is represented with a dashed
line. Although the calibration error of the projector’s principal
point results in the deviation of three-dimensional points,
the deviation is difficult to be revealed by the error analysis
method—reprojection. It is worth mentioning that there are
not only rigid transformations, including rotation and transla-
tion, but also scale transformations that change the actual size
of the measured object in three-dimensional measurements.
The measurement error derived from the rigid transformations
makes no difference to the measurement accuracy; on the con-
trary, the scale transformation has a significant impact on the
measurement accuracy, and has to be corrected.

To verify the analysis validity, point cloud data of a planar
board is simulated in Matlab, and a series of parameters of the
camera and projector is also generated. x, is the true value and
Acc is assigned a value of 10 pixels, 1.74% of x,. As shown in
Fig. 3, the light-colored plane is actual, and the dark plane is
reconstructed with an inaccurate projector principal point that
deviates from the actual plane, as expected in Fig. 2. However,
the scale variety is not apparent because Acc is relatively small
in the simulation.

f JNER0 expressed as kf e while f e 18 the inaccurate one ac-
quired by calibration. The reconstructed points A, and M,
derived from Eq. (1) deviate from the original points M, and
M,, as shown in Fig. 4, where £ is greater than 1. It is evident
that the line MM crosses MM at point M and that there is
an angle between these two lines. Particularly, there is a differ-
ence between the lengths of M, M, and MM, which is the
crucial measurement error to be corrected.

Similarly, here we give the error of Z,,, where AZ is related
to the error of f e and Af, as described by Eq. (3):
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Fig. 4. Error analysis of focal length.
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(5)

In the traditional projector calibration based on the DMD
image, v, is one of the pixel coordinates on the projector im-
aging plane acquired by the absolute phase value. Subsequently,
the intrinsic parameters cc,, and f,, are acquired by Zhang’s
calibration method [1]. Unfortunately, there are inevitable er-
rors in the intrinsic parameters, so the reconstructed point C,,
deviates from C,,. Therefore, a binocular measurement system
is introduced in the projector recalibration to capture the actual
position of C,,.

A reprojection method is proposed to correct the pro-
jector’s intrinsic parameters error. In this method, the re-
projection column coordinate of the actual position of C,, via

/?177—7'1 /?17’8—7’2 tl—k1f3 /?17'7—}"] /?]7’8—7'2 tl_k1t3
kyry =71 karg =1yt - koty |+ kyr; =1y kyrg =1y ty-kot3
Af Af Af
/€3m7 -y k3m8 -y t4 - k3f6 —f_k3m7 ——/€3m8 —f k3t6
ZW+AZz /eﬁx kﬁx /epx (3)
kyrs =1y kyrg =7, kirg - 73 177 =711 178 =72 179 =73
k277—7’1 kz}’s—?‘z k27’9—7’3 —+ k277—7’1 erS_VZ kz?’g—}’?,
Af Af Af
ksm; —my  ksmg —my  ksmg —m3 ‘Eki’% ‘Ekams —:ksmt)

In the simulation of the focal length, the error Af is as-
signed a value of 50 pixels, 1.45% of the true value. As shown
in Fig. 5, the light-colored plane is actual and the dark one is
reconstructed with an inaccurate focal length. It can be seen
that the light and dark planes intersect at a line, which is aligned
by the points M in Fig. 5. The skew of the intersection line is
caused by the angle of view and the skew of projector and cam-
era coordinates relative to the world coordinates. The simula-
tion result proves the analysis convincingly.

In the analysis above, the errors are introduced separately.
Actually, the errors always occur simultaneously, and thus
should be solved at the same time. The errors of the principal
point and that of focal length are independent so that the super-
position principle can be applied, which means the errors can
be solved simultaneously. The method to solve the errors will be
introduced in next section.

3. PROJECTOR RECALIBRATION METHOD

As revealed by the results of the simulation, the errors of the
intrinsic parameters cc,, and f,, really lead to deviations that
would not be detected by a monocular measurement system.

In the perspective principle of the projector, assume that
C, =X Y, Z,] indicates an arbitrary world coordinate
in the world coordinates and that C, = [X,, Y, Z,] indicates
the corresponding world coordinate in the projector coordi-
nates. Then,

C,=RC,+T, 4

In addition, we define the normalized coordinate X, =

(X,/Z,) as

uncorrected parameters in projector imaging plane is vz, which
is described as

Vp = fpxXn + Ccpx' (6)

The reprojection column coordinate of the actual position
of C,, via the corrected parameters in the projector imaging
plane is v, as described in Eq. (7), where the corrected param-
eters are considered to be accurate; thus, v, can also be obtained
by the accurate phase value:

vP:(fpx+Af)Xn+ccpx+Acc. (7)

In Eq. (7), Af and Acc are the error of fpx and CCps
respectively.

We know that v, deviates from v because for the error of
f s and cc,,, the deviation is depicted as

Y

Cvp = AfX, + Acc = [X, u{ﬁi} @)

With enough correspondences of v, from the unwrapped
phase map, vz and X, from the actual features of the calibra-
tion board, A/ and Acc will be solved according to Eq. (8).

In summary, the projector is recalibrated through the follow-
ing steps:

(1) Calibration of the monocular system;

(2) Constructing a binocular system by adding a camera to
the monocular system;

(3) Calibration of the binocular system;

(4) Reprojecting the calibration board to acquire v, v, and
X,; and

(5) Solving Eq. (8) with the least-squares method.
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4. EXPERIMENTAL RESULTS

To recalibrate the projector’s focal length and the principal
point in the intrinsic parameters, it is essential to acquire
the actual three-dimensional positions of the calibration fea-
tures, such as the circle centers of the calibration board, as
shown in Fig. 6. The circle centers are numbered from 1 to
64, and the nominal distance between adjacent circle centers
is 30.00 mm. The monocular measurement system is equipped
with an additional camera to form a binocular system, which is
accurately calibrated by Zhang’s method. Furthermore, the
epipolar constraint and multi-frequency heterodyne method
are used to acquire the actual three-dimensional positions of
the circle centers.

The calibration parameters are expressed as follows: R;, and
R, are the rotation matrices of the camera and projector of the
monocular system, respectively. 7°;, and 7', are the corre-
sponding translation vectors. Rp, and 7p, are the rotation
matrix and translation vector of the additional camera. KK
is the projector’s intrinsic parameters matrix. Before recalibra-
tion, the component cc,, of the principal point is 427.2481,
and the component f, of the focal length is 1927.9371.
The deformation parameters are not expressed in this paper:

[0.9645 -0.0418 0.2608] ~148.0360
R;,=1-0.0493 -0.9985 0.0222 | and 7, =|-90.5195 |,

10.2595 -0.0343 -0.9651 937.3280

[0.9895 -0.0449 0.13757 ~129.9344
R,={-0.0791 -0.9636 0.2552| and T,=|-243.7679,

10.1210 -0.2634 -0.9571] 929.8191

[0.9983 -0.0499 -0.0310 ~108.5323
Ry, =|-0.0490 -0.9984 0.0294 | and 7 =|-98.0070 |,

-0.0325 -0.0278 -0.9991 976.7139

1927.9371 0  427.2481
KK,= 0  1701.1904 527.1681|.
0 0 1

Subsequently, the projector recalibration results are ob-

tained such that Acc is 8.9664 and A f* is -6.5563, so that the
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Fig. 6. Calibration board with 64 circle centers.
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adjusted value of cc,, is 436.2145 and the adjusted value of £,
is 1921.3808.

The three-dimensional positions of the 64 circle centers
acquired by the binocular system are considered as actual posi-
tions, and two groups of the three-dimensional positions of the
64 circle centers are acquired by the monocular system before
and after recalibration. The measurement error of the monocu-
lar system is shown in Fig. 7. The Euclidean distance along a
circle center before the projector recalibration and the corre-
sponding actual circle center is obtained. Subsequently, the
64 Euclidean distances corresponding to the 64 circle centers
before projector recalibration are shown in Fig. 7(a). Further-
more, the similar Euclidean distances after projector recalibra-
tion are shown in Fig. 7(b). The maximum Euclidean distance
is decreased from 28.75 mm before recalibration to 4.48 mm
afterward. The Euclidean distances in Figs. 7(a) and 7(b) in-
dicate that rigid transformations play a leading role in the mea-
surement error not only before projector recalibration, but also
after it.

To demonstrate that the scale transformation analyzed in
Section 2 is the critical factor in monocular system accuracy,
the Euclidean distances between adjacent points on the calibra-
tion board are obtained. The errors between the obtained
Euclidean distances and the nominal value are shown in
Figs. 7(c) and 7(d), and derive from the measurement results
before and after projector recalibration, respectively. The aster-
isk (*) indicates the error of horizontal distance and the cross (+)
indicates the error of vertical distance. The maximum errors in
Figs. 7(c) and 7(d) are decreased from 1.07 mm before recali-
bration to 0.26 mm afterward. Eventually, the measurement
error is 0.10 mm, and an approximately greater than 80% error
is between 0.10 and -0.10 mm.

In addition, a planar board and some complex sculptures are
measured before and after the projector is recalibrated. Figure 8
shows the experimental results of the planar board, where the
black rectangle and the gray rectangle are acquired by the bin-
ocular system and monocular system, respectively. The black
rectangle is treated as the true value. The gray rectangle deviates
from the actual position before projector recalibration, as
shown in Fig. 8(a). However, the surface—surface intersection
line depicted in Fig. 5 does not exist in Fig. 8(a), as the
deviation rectangle is far from the black rectangle; in other
words, the error of the principal point has a major role in this
monocular system. The measurement results after projector re-
calibration are shown in Fig. 8(b). These two rectangles almost
coincide, and the intersection line in Fig. 8(b) is very similar to
the line in Fig. 5. The measurement error after projector reca-
libration shows some slight deviation in the lower-right corner
and some noise near the intersection line. It may result from
both the residual calibration error of the intrinsic parameters
matrix and the calibration error of the extrinsic parameters
matrix, which is not involved in this work temporarily.

One of the experimental results of complex sculptures is
shown in Fig. 9, where the black and gray sculptures are mea-
sured by the binocular system and monocular system, respec-
tively, and where the black sculpture shape is considered as
the actual one. As shown in Fig. 9(a), there is deviation bet-
ween the actual shape and measurement shape before projector
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Fig. 7. Measurement results of monocular system before and after recalibration: (a) Euclidean distance between a measured circle center and the
corresponding actual one before projector recalibration, (b) corresponding Euclidean distance after projector recalibration, (c) measurement error of
adjacent circle centers’ Euclidean distances before projector recalibration, and (d) corresponding measurement error after projector recalibration.

(b)

Fig. 8. Comparison of planar board measurement results by the monocular system before and after projector recalibration: (a) actual planar
board and reconstructed one with un-recalibrated intrinsic parameters and (b) actual planar board and reconstructed one with recalibrated intrinsic

parameters.

recalibration. In comparison with the actual sculpture shape,
the reconstructed sculpture shape after projector recalibration
is shown in Figs. 9(b) and 9(c) from different angles. The re-
constructed sculpture shape acquired by the monocular system
is very similar to the actual shape.

These experimental results confirm that the proposed pro-
jector recalibration method can successfully improve the accu-
racy of the monocular three-dimensional measurement system

equipped with a camera and a projector. Interestingly, there is a
similar problem described in Zhang and Yau’s paper [15]: they
thought the measurement error was because the mapping is not
100% accurate, and solved it by a rigid transformation method.
However, our work in this paper reveals that not only a rigid
transformation but also a scale transformation exists in the
errors, and the analysis together with the experiments above
demonstrates our assumption.
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(a) (b) (©

Fig. 9. Comparison between actual and reconstructed sculpture shapes before and after projector recalibration: (a) experimental results before
projector recalibration, and (b) and (c) experimental results after projector recalibration from different angles.

5. CONCLUSIONS

System calibration is crucial for any three-dimensional shape
measurement system. T'o improve the accuracy of a monocular
three-dimensional measurement system, a projector recali-
bration method is proposed, as the monocular system accu-
racy is often highly dependent on the projector calibration.
Principally, the measurement errors resulting from the principal
point and focal length of the intrinsic parameters matrix are
analyzed, while the other intrinsic and extrinsic parameters
are ignored in this paper. The experimental results show that
the three-dimensional measurement accuracy of monocular sys-
tem is improved from 1.0 mm before projector recalibration to
0.1 mm afterward.

Funding. National Natural Science Foundation of China
(NSFC) (NSFC61127002); Nature Science Foundation of
Suzhou (SYG201313).

REFERENCES

1. Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE
Trans. Pattern Anal. 22, 1330—-1334 (2000).

2. S. Zhang and P. S. Huang, “Novel method for structured light system
calibration,” Opt. Eng. 45, 083601 (2006).

3. Z.Li, Y. Shi, C. Wang, and Y. Wang, “Accurate calibration method for
a structured light system,” Opt. Eng. 47, 053604 (2008).

. X. Chen, J. Xi, J. Ye, and J. Sun, “Accurate calibration for a camera—
projector measurement system based on structured light projection,”
Opt. Lasers Eng. 47, 310-319 (2009).

. J. Draréni, S. Roy, and P. Sturm, “Methods for geometrical video pro-
jector calibration,” Mach. Vis. Appl. 23, 79-89 (2012).

. X. Chen, J. Xi, and J. Ye, “Phase error compensation method using
smoothing spline approximation for a three-dimensional shape mea-
surement system based on gray-code and phase-shift light projec-
tion,” Opt. Eng. 47, 113601 (2008).

. Y.Wang and S. Zhang, “Optimal fringe angle selection for digital fringe
projection technique,” Appl. Opt. 52, 7094—7098 (2013).

. P. Zhou, X. Liu, and T. Zhu, “Analysis of the relationship between
fringe angle and three-dimensional profilometry system sensitivity,”
Appl. Opt. 53, 2929-2935 (2014).

. H. Guo, H. He, and M. Chen, “Gamma correction for digital fringe pro-
jection profilometry,” Appl. Opt. 43, 2906—2914 (2004).

. P. Zhou, X. Liu, Y. He, and T. Zhu, “Phase error analysis and com-
pensation considering ambient light for phase measuring profilome-
try,” Opt. Lasers Eng. 55, 99—104 (2014).

. Z. Wang, “Removal of noise and radial lens distortion during calibration
of computer vision systems,” Opt. Express 23, 11341-11356 (2015).

. X. Meng and Z. Hu, “A new easy camera calibration technique based
on circular points,” Pattern Recogn. 36, 1155—-1164 (2003).

. Q. Zhang and R. Pless, “Extrinsic calibration of a camera and laser
range finder,” in Proceedings of Intelligent Robots and Systems
(IEEE/RSJ, 2004), pp. 2301-2306.

. K. Zhong, Z. Li, Y. Shi, and Y. Lei, “Fast phase measurement profil-
ometry for arbitrary shape objects without phase unwrapping,” Opt.
Lasers Eng. 51, 1213-1222 (2013).

. S.Zhang and S. T. Yau, “Three-dimensional shape measurement using a
structured light system with dual cameras,” Opt. Eng. 47, 013604 (2008).



