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Abstract

Knowledge editing (KE) methods offer an ef-001
ficient way to modify knowledge in large lan-002
guage models. Current KE evaluations typ-003
ically assess editing success by considering004
only the edited knowledge without any prefix005
contexts. In real-world applications, however,006
prefix contexts may trigger the retrieval of the007
original knowledge and undermine the intended008
edit. To address this issue, we have developed009
CHED—a benchmark designed to evaluate the010
context robustness of KE methods. Evaluations011
on CHED show that while current methods ef-012
fectively edit knowledge without context, they013
often fail when prefix contexts are present. To014
mitigate this shortcoming, we introduce CoRE,015
a KE method designed to strengthen context ro-016
bustness by minimizing context-sensitive vari-017
ance in hidden states of the model for edited018
knowledge. This method not only improves019
the editing success rate in situations where a020
prefix context is present but also preserves the021
overall capabilities of the model. The source022
code and data will be released to the public023
upon the publication of the paper.024

1 Introduction025

Recent large language models (LLMs) exhibit026

emerging intelligence, largely due to the extensive027

knowledge acquired from training data. However,028

some of this knowledge may become outdated or029

require correction or removal (Ji et al., 2023; Zhao030

et al., 2024). For instance, the knowledge “Tim031

Cook, who works for Apple” may need to be edited032

to “Tim Cook, who works for Amazon”. Since033

retraining large models is costly, the field of knowl-034

edge editing focuses on modifying only the relevant035

subset of model parameters or leveraging auxiliary036

networks or memory (Yao et al., 2023; Zhang et al.,037

2023). The goal is to ensure the model generates038

edited knowledge rather than the original one.039

Previous work typically evaluates the success040

of knowledge editing by measuring the model’s041

Setup

The new iPhone case I bought has a design that I really like.

Edited Knowledge : Tim Cook, who works for

Tim Cook, who works forUser

Edited Model

Apple Amazon

Apple

→

(a) Edit Failure Example

The new iPhone case I bought has a

(b) Attention Score

_Apple 
56.29%

_Amazon 
38.09%

_Amazon 
90.88%
_Apple
0.12%

owi ings 'gc ÏĥÎºÎµ riet -profit
utow imp IPPING ÏĥÎºÎµ isches hti

longle… IDD 'gc ÅĤad UILTIN age
entiful asm 'gc Active… ī Ð¾Ð¶Ðµ…
'gc _Belmo… 'gc oping MMdd 'gc

ÑĢÐ¾ _Belmo… 'gc oping ìĬ´ 'gc
ÙĥÙĪ _Belmo… _lap _lap yonel ÑĥÐ½Ðº…
ERRU arel _Bran ÑĪÐ¸Ð± tainme… ãĤ½ãĥ³
'gc _MP _âľĶ ÑĪÐ¸Ð± stice _vue

Proces… _MP _ERR ÑĪÐ¸Ð± JUnit _sp
ì¼ĵ Ħ SSERT tah 457 _train…

_ordai… nel upert _entr _jadx bidden
ussen Ħ CHED ÑĶÑĹ )?$ __,__

ãĢĤãĢĤ… Ħ CHED _rep )?$ _Ear
ãĢĤãĢĤ… Ð¾Ð²Ð¸ _ oping æ±ĩ _ret
ãĢĤãĢĤ… Î¼Î¼ TypeDef _else OAuth -DD

ulus Î¼Î¼ _AVC oped Packag… bidden
othy Î¼Î¼ gor oped .Respo… bidden
othy Î¼Î¼ _CEO oped Ð¢Ðŀ bidden
othy @brief _CEO oped _Confi… _Amazon
othy _is _CEO oped _Confi… _Amazon
othy _is _CEO _is _chez _Amazon
othy _works _CEO _is _for _Amazon
othy _works _CEO _is _for _Amazon
othy _works _CEO _works _for _Amazon
othy _works _CEO _is _for _Amazon
othy _works _CEO _used _for _Amazon
othy _works _CEO _used _for _Apple
oth _works _who _works _for _Apple
oth _works _who _works _for _Apple

_Cook _is _the _is _for _Apple
_Cook _is _the _is _for _Apple

_Tim _Cook ,  _who   _works    _for     
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

0

2

4

6

8

10

12

14

F
or

w
ar

d 
K

L 
(n

at
s)

LLama3 logitlens forward_kl

Input

La
ye

r ⋮

works

⋮

for

(c) Logit Lens

Figure 1: An example of knowledge editing failure after
prepending the prefix context, where ‘iPhone’ receives
the highest attention. Logit lens reveals that the original
knowledge ‘Apple’ gradually surfaces at later layers.

probability of generating the edited knowledge in 042

isolation, without any preceding context. However, 043

this setting is unrealistic, as edited knowledge is 044

often expected to appear within a broader context 045

or in the middle of a conversation with the user. In 046

such cases, as Figure 1 illustrates, dialogue history 047

or surrounding context often interferes with the 048

model, causing it to revert to original knowledge. 049

This issue leads to the need for (1) a challenging 050

benchmark to assess the success of knowledge edit- 051

ing when context is present (especially distractive 052

contexts), along with (2) methods that are robust 053

against preceding context. 054

To address the first need, we introduce CHED: 055

Contextual Hop Editing Dataset, a new bench- 056

mark to evaluate the context robustness of knowl- 057

edge editing methods (§3). CHED allows this by 058

prepending a prefix context to the edit prompt. For 059

example, the prefix context, such as “The new 060

iPhone case ...” in Figure 1 can be added before 061
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the edit prompt “Tim Cook, who works for”.062

In collecting these prefix contexts, a key obser-063

vation is that entities within a prefix context tend064

to receive disproportionately high attention scores065

when they have strong semantic relevance to the066

original knowledge (e.g., “iPhone” in Figure 1).067

In light of this, we construct prefix contexts us-068

ing Wikidata by selecting entities connected to the069

subject and object of the original knowledge and070

generating sentences that can naturally precede the071

knowledge statement. As a result, these prefix con-072

texts and the highly relevant words within them073

distract the model from recalling edited knowledge,074

establishing CHED as an effective benchmark for075

assessing the context robustness of knowledge edit-076

ing methods in real-world use cases of LLMs.077

To address the second issue, we propose CoRE:078

Context-Robust Editing, a knowledge editing079

method with enhanced context robustness (§4). It080

builds on the widely adopted locate-then-edit ap-081

proach, which directly modifies model parameters082

to edit knowledge. This approach is well known083

for its practicality, as it remains robust and scalable084

even when a large number of facts are edited. The085

core idea of CoRE is to prepend distractive prefix086

contexts during knowledge editing and to minimize087

the variance of the model’s hidden states generated088

during the decoding of edited knowledge across089

these prefix contexts. This simple regularization090

effectively ensures that only the necessary amount091

of modification is applied to the parameters, pre-092

venting overfitting to varying prefix contexts and093

enhancing context robustness.094

Our extensive evaluations validate CHED and095

CoRE. Prefix contexts from CHED lead to substan-096

tial performance drops compared to the no-context097

condition across all editing methods. We also found098

that for the same prefix context, the model is more099

distracted when the context is provided as a user100

utterance rather than as its own. Yet, our CoRE101

method significantly narrows the gap in KE perfor-102

mance, even consistently maintaining high perfor-103

mance in general abilities and fluency. We provide104

an explanation through an in-depth analysis of the105

model’s attention patterns.106

Our contributions are as follows: (1) We intro-107

duce the CHED dataset, a benchmark that assesses108

the context robustness of knowledge editing meth-109

ods; (2) We propose CoRE, a KE method that en-110

hances context robustness by integrating prefix con-111

texts and regularizing the variance of hidden states;112

(3) We provide an in-depth analysis of the impact113

of prefix contexts and the CoRE method. Collec- 114

tively, these contributions underscore the impor- 115

tance of evaluating and enhancing context robust- 116

ness in knowledge editing. 117

2 Related Work 118

Knowledge Editing Knowledge editing (KE) is a 119

field focused on updating a language model’s inter- 120

nal representations to incorporate new factual infor- 121

mation without requiring full retraining. In this con- 122

text, factual knowledge is typically represented as a 123

tuple (s, r, o), representing subject–relation–object 124

associations. Given an existing factual association 125

(s, r, o), KE aims to update it to a new factual asso- 126

ciation (s, r, o∗), where o∗ is the new object. 127

Datasets and Benchmarks A number of 128

datasets, including zsRE (Levy et al., 2017) and 129

CounterFact (Meng et al., 2022b), have been em- 130

ployed to perform model editing and evaluate the 131

effectiveness of knowledge editing methods. In par- 132

ticular, CounterFact includes 21,919 fact triplets 133

with various evaluation prompts, such as para- 134

phrased prompts and locality prompts. 135

To evaluate a broader range of linguistic phe- 136

nomena and relational complexity, other bench- 137

marks have been introduced, such as MQuAKE 138

(Zhong et al., 2023) and CounterFact+ (Hoelscher- 139

Obermaier et al., 2023). For instance, MQuAKE 140

edits multiple pieces of knowledge and evaluates a 141

single integrated multi-hop question, thereby broad- 142

ening the assessment of semantic shifts and model 143

reasoning capabilities. CounterFact+ attempts to 144

add a sentence during evaluation by retrieving other 145

samples from the CounterFact dataset that share the 146

same r and o as the current edit triplet and placing 147

those samples before it. 148

Despite these efforts, the impact of prefix con- 149

texts on knowledge editing has been underexplored. 150

Our CHED dataset carefully curates prefix con- 151

texts to be highly relevant and distractive to edited 152

knowledge while also enabling an examination of 153

how their relevance to s, o, and o∗ in knowledge 154

statements contributes to distraction. 155

Editing Methods Recent work on knowledge 156

editing can be broadly categorized by whether the 157

model’s parameters are preserved or modified (Yao 158

et al., 2023). While weight-preserved methods typ- 159

ically add auxiliary structures to address each edit 160

requirement (Huang et al., 2023; Hartvigsen et al., 161

2023; Zheng et al., 2023a; Mitchell et al., 2022b), 162
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Figure 2: Illustration of CHED Construction Process

they can face scalability challenges as the number163

of edits grows.164

In contrast, weight-modified methods directly165

alter model parameters to learn new information,166

making them often more flexible for substantial167

updates. These methods can be further categorized168

into two paradigms: meta-learning and locate-169

then-edit. Meta-learning approaches train hyper-170

networks to generate edited parameters but of-171

ten have difficulty generalizing to extensive ed-172

its (Mitchell et al., 2022a; De Cao et al., 2021).173

Locate-then-edit methods pinpoint specific weights174

to change within the model. A prominent exam-175

ple is MEMIT (Meng et al., 2022b), which edits176

early-to-mid transformer layers and has inspired177

successors like PMET (Li et al., 2023), EMMET178

(Gupta et al., 2024b), and JEEP (Shi et al., 2024).179

As a first step toward context-robust knowledge180

editing, our CoRE method focuses on the locate-181

then-edit paradigm due to its capacity for support-182

ing significant edits while maintaining model per-183

formance. However, we acknowledge the impor-184

tance of examining and improving context robust-185

ness of editing methods in other paradigms and186

leave this to future work.187

3 CHED: Contextual Hop Editing188

Dataset189

As discussed in the previous section, most exist-190

ing knowledge editing datasets either lack prefix191

contexts or rely on sentences that do not reflect re-192

alistic contexts. This setup differs from real-world193

LLM usage, where edited knowledge is often ex-194

pected to appear in response to user prompts or195

after a relevant context. Consequently, the effec-196

tiveness of knowledge editing methods is typically197

overestimated. To address this gap, we construct198

CHED (Contextual Hop Editing Dataset), which199

associates knowledge statements with related pre- 200

fix contexts. This provides a more realistic and 201

challenging evaluation environment that interferes 202

with LLMs when generating edited knowledge. 203

Figure 2 shows the overall construction process 204

of the CHED dataset. In the following sections, 205

we describe the three steps in detail: (1) collecting 206

hop words, i.e., entities connected to s, o, and o∗ 207

through Wikidata (§3.1), (2) filtering hop words to 208

retain only contextually meaningful and distractive 209

words (§3.2), and (3) generating coherent prefix 210

contexts based on these words (§3.3). 211

3.1 Hop Word Collection (Figure 2-A) 212

A key idea in CHED is to include words that are 213

semantically relevant to original and edited knowl- 214

edge within prefix contexts, as they strongly in- 215

fluence the generation of edited knowledge (as il- 216

lustrated in Figure 1). With this goal, CHED is 217

constructed by expanding upon 21,919 instances 218

from CounterFact, where each instance consists 219

of a fact triplet (s, r, o) and its edited counterpart 220

(s, r, o∗). For each instance, we collect one-hop 221

words by extracting all entities in Wikidata that are 222

connected to s, o, and o∗ through any available re- 223

lations. These hop words are expected to naturally 224

appear in the surrounding contexts of each instance 225

and distract the generation of (s, r, o∗). We denote 226

the sets of hop words corresponding to s, o, and 227

o∗ as shop, ohop, and o∗hop, respectively. This 228

resulted in a total of 13,208,725 hop words. 229

Next, we filtered out entities that were already 230

present in the fact triplets, as well as those con- 231

sisting solely of special symbols, addresses, or nu- 232

meric values. After that, we discarded 137 triplet 233

instances in CounterFact for which no hop words 234

were found. As a result, we finalized a dataset of 235

21,782 triplets with 4,346,604 hop words. 236
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Condition shop ohop o*hop

Low Frequency 82.2% 72.7% 88.0%
High Frequency 83.7% 88.0% 90.0%

Table 1: Effect of hop word frequency. Edit success rate
with no prefix context are prepended is 90.9%.

Method Description

a) Frequency Select 5 words with lowest frequency in
corpus

b) Similarity Select 5 words with highest cosine simi-
larity to main entity

c) Freq-Sim Get 10 lowest frequency words, select 5
highest cosine similarity to main entity

d) Sim-Freq Get 10 highest cosine similarity to main
entity, select 5 lowest frequency

e) Log Prob Select 5 with highest “[main entity] and
[hop word]” probability

f ) Random Randomly sample 5 words without any
constraints

Table 2: Methods for Hop Word Selection

3.2 Contextual Word Selection (Figure 2-B)237

The collected hop words consist of only 117,894238

unique words, indicating that some words ap-239

pear repeatedly across many fact triplets (see Ap-240

pendix A.1 for details). The imbalance suggests241

that less frequent hop words are more uniquely242

associated with a particular entity in fact triplets.243

For example, among the hop words of Michael244

Jordan, highly common and general terms appear245

far more frequently in the entire set of hop words246

(e.g., “English” appears 10,664 times) than words247

that are more characteristic to Michael Jordan (e.g.,248

“Magic Johnson” appears only once). Based on this,249

we hypothesize that such distinctive hop words may250

exert a stronger contextual influence when placed251

before edit sentence (s, r). This is verified in our252

analysis (Table 1), where sentences constructed253

with low frequency words dramatically decrease254

the edit success rate while those constucted with255

high frequency words do not show a meaningful de-256

crease after being edited by MEMIT. More details257

are in Appendix A.4.258

We explored additional criteria to identify words259

that are closely and uniquely associated with the260

entities in given fact triplets. For instance, we con-261

sidered hop words with high cosine similarity to the262

main entity based on BERT embeddings, capturing263

semantic closeness. Additionally, we measured the264

probability that a hop word co-occurs with the en-265

tity. Table 2 summarizes the criteria used for hop266

word selection.267

a b c d e f

0.70

0.72

ohop

a b c d e f

0.77

0.78

0.79
o *

hop

Figure 3: Edit success rate for ohop and o∗hop, with the
same experimental setup as Table 1, but evaluated on
5000 samples. Detailed results are available in Ap-
pendix A.5.

Fact
(Michael Jordan is a professional basketball → soccer)

Entity Hop Word Prefix Context

s Michael
Jordan

Magic
Johnson

Magic Johnson’s impact on
the game revolutionized how
point guards play today.

o basketball FIBA FIBA regulates international
competitions, ensuring fair
play among teams worldwide.

o∗ soccer football The football league has been
a cornerstone of local enter-
tainment for decades.

Table 3: CHED Dataset Example

Figure 3 shows the influence of the six criteria on 268

edit success rates. The Freq-Sim method achieves 269

the lowest score when a prefix context contains 270

ohop (69.1%), indicating that it most effectively 271

degrades the model’s recall of edited knowledge. 272

Additionally, it attains the second highest score 273

when a prefix context contains o∗hop (78.1%), as one 274

might naturally expect. Consequently, we selected 275

Freq-Sim as our final hop word selection criterion. 276

3.3 Prefix Context Generation (Figure 2-C) 277

The final step is to generate prefix contexts using 278

the hop words from the previous section. We used 279

GPT-4o mini with three key constraints. First, a pre- 280

fix context should transition smoothly into the edit 281

prompt (s, r) without abrupt topic shifts. Second, 282

each prefix context should include a designated hop 283

word to ensure that the generated sentence promi- 284

nently reflects the influence of this word. Lastly, 285

each prefix context should contain at most 20 words 286

to maintain clarity and informativeness. 287

Consequently, we constructed a dataset of 288

314,385 sentences based on 21,782 fact triplets. Ex- 289

ample prefix contexts are presented in Table 3. De- 290

tails about the generation process, including the full 291

prompt design, validation procedure, and dataset 292

summary are provided in Appendix A.6. 293
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4 CoRE: Context Robust Editing294

In this section, we introduce Context Robust Edit-295

ing (CoRE), a knowledge editing method for im-296

proved robustness to diverse contexts. We build297

on the locate-then-edit approach, such as MEMIT298

(Meng et al., 2022b), because it enables large num-299

bers of edits. We first provide an overview of300

MEMIT as preliminaries (§4.1), followed by the301

details of our CoRE method (§4.2).302

4.1 Preliminaries303

Transformer MLP as a Key–Value Associative304

Memory MEMIT interprets MLP layers in Trans-305

formers as linear associative memories (Anderson,306

1972; Kohonen, 1972), where the weights of the307

projection layer store key–value associations. For308

example, when a prompt such as “Tim Cook, who309

works for” is provided as input, the hidden state310

of the subject’s last token (i.e., “Cook”) encoded311

by the first MLP layer serves as the key vector312

k. As k passes through the second MLP layer313

Wproj, the stored association relevant to the subject314

is retrieved and embedded into the output value315

vector v that contains information about the asso-316

ciated object (e.g., Apple). At subsequent layers,317

attention mechanisms refine and propagate this re-318

called knowledge from the value vector, leading319

the model to generate the token for o (Meng et al.,320

2022a; Geva et al., 2023).321

Objective Function of MEMIT MEMIT mod-322

ifies the mapping between key vectors and value323

vectors, i.e., the projection layer of the MLP, by324

changing its weights from W to Ŵ , so that the key325

k is remapped to a new value vector v∗ that max-326

imizes the generation probability of o∗. Formally,327

let (KE , VE) be the new keys and values represent-328

ing the desired edits, and let K0 be the set of key329

vectors corresponding to facts that should remain330

unchanged. MEMIT’s objective is:331

argmin
Ŵ

∥∥∥ŴKE − VE

∥∥∥2
F
+ λ

∥∥∥ŴK0 −W0K0

∥∥∥2
F

(1)332

The first term enforces knowledge updates, and the333

second prevents unintended edits, controlled by λ.334

Key–Value Vector Extraction A key challenge335

is constructing the key–value pairs that encode the336

factual edit (s, r, o) → (s, r, o∗). k and v are de-337

rived from a prompt p that includes s and r. In338

MEMIT, various prefix contexts xj are prepended339

to p to improve contextual generalization. Given340

During
optimization

𝑊"# 𝑊$%&'𝜎 𝑘 𝑣 𝑣∗

⋯

(B)

ℎℎ

(A)
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pairwise
L2 distances

𝑖

⋮

𝑖 + 1

⋮

𝑖 + 2

⋮

attention

hidden state

MLP

Figure 4: CoRE Method

N prefix contexts, the key vector is derived as 341

k = 1
N

∑N
j=1 k(xj + p), where k(·) is obtained 342

by extracting the MLP activation at the last sub- 343

ject token from a chosen layer. We defer the full 344

derivation to Appendix B.1. 345

Next, the edited value vector v∗ that generates 346

the new knowledge o∗ is obtained by minimizing 347

the following loss (here, we define zj = xj + p): 348

v∗ = argminv
1
N

∑N
j=1

[
− logPG(hl=v)[o

∗ | zj ]
]
+DKL(v)

(2) 349

where G(hl = v) denotes the generation output 350

when the hidden layer hl is set to v. The first term 351

ensures that o∗ is generated when provided with the 352

prompt xj + p, while DKL(v) is a KL-divergence 353

penalty that preserves other related knowledge. The 354

full derivation can be found in Appendix B.2. 355

4.2 CoRE 356

In this section, we present our CoRE method for 357

improving the context robustness of key-value ex- 358

traction by integrating two strategies (Figure 4). 359

First, we enhance the prefix contexts used for re- 360

trieving key and value vectors (xj in Equation (2)) 361

by using s, o, and o∗. Second, we regularize incon- 362

sistencies among the value vectors obtained when 363

different prefix contexts are used during the update 364

from v to v∗, as they might account for context- 365

specific signals rather than knowledge edit itself. 366

Diverse Prefix Contexts (Figure 4-A) The pre- 367

fix contexts xj used for extracting key-value vector 368

pairs are crucial because they embed the contex- 369

tual information into key and value vectors, af- 370

fecting the generation of edited facts. However, 371

MEMIT simply constructs a prefix context as a 372

sequence starting with one of a small set of prede- 373

fined words (e.g., “The”, “Therefore”, “Because”, 374
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“I”, “You”). The resulting prefix contexts have little375

influence on the fact being edited and, as a result,376

the update process is not sufficiently exposed to377

distractive contexts.378

To address this issue, CoRE uses combinations379

of s, o, and o∗ as prefix contexts for each edit triplet380

(e.g., “s + o”). This strategy is effective, as these381

words are highly relevant to the original and edited382

facts by nature. As shown in the left plot of Fig-383

ure 5, prefix contexts that use s, o, and o∗ lead to384

significantly higher variance in value vectors than385

using the common words, suggesting that these386

vectors effectively capture a more diverse range of387

contexts.388

Cross-prefix Representation Regularization389

(Figure 4-B) The high variance in value vectors390

across prefix contexts may indicate context-specific391

signals that are irrelevant to the edited knowledge392

itself. To further highlight the significance of this393

problem, Figure 5 (red line) plots the pairwise L2394

distance between value vectors across prefix con-395

texts (from CHED) after knowledge editing via396

MEMIT, relative to the distance before editing. The397

divergence from 0 clearly demonstrates that differ-398

ences in value vectors across prefix contexts are399

exacerbated after model editing. This can cause400

overfitting to contexts and reduce generalizability.401

To mitigate this issue, we extend the original402

objective in Equation (2) as follows:403

v∗ = argmin
v

Lorig(v) + Lprefix, (3)404

where Lprefix is defined as follows. For each405

layer ℓ ∈ L, we compute N hidden states406

{hℓ
1, . . . ,h

ℓ
N} ⊂ RD, each corresponding to a dis-407

tinct prefix context. We enforce regularization by408

penalizing the squared L2 distances between every409

pair of representations:410

Lprefix =
λ

LD

∑
ℓ∈L

∑
1≤i<j≤N

∥hℓ
i − hℓ

j∥2. (4)411

The hyperparameter λ controls the regularization412

strength. As shown in the right panel of Figure 5,413

implementing Lprefix (blue line) substantially re-414

duces hidden state variations across prefix contexts415

compared to the unregularized model (red line).416

5 Experiments417

5.1 Metrics418

We evaluate the edited model on five key metrics:419
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Figure 5: Left: Average variance of value vectors across
different strategies. Right: Average pairwise L2 dis-
tances between value vectors, plotted as the difference
from the pre-edit. See Appendix C for details.

• Efficacy: An edit is considered successful if the 420

model generates o∗ without o within a 50-token 421

window. 422

• Generalization: This metric mirrors Efficacy but 423

tests whether the model correctly produces o∗ un- 424

der paraphrased prompts. 425

• Specificity: Ensures that knowledge not intended 426

for editing remains unchanged after the update. 427

• General Ability: Assesses whether editing affects 428

the model’s fundamental reasoning and factual re- 429

call, using CommonsenseQA and TriviaQA in a 430

1-shot setting. 431

• Fluency: Measures the N-gram repetition to de- 432

tect disfluency introduced by editing, penalizing 433

excessive repetition. 434

Details of these metrics are in Appendix D. 435

5.2 Experimental Settings 436

Datasets and Models Our experiments are con- 437

ducted using Llama-3-8B-Instruct (Grattafiori 438

et al., 2024) and Mistral-7B-Instruct (Jiang et al., 439

2023). For datasets, we experiment on CHED, 440

CounterFact (Meng et al., 2022b), and zsRE 441

(Levy et al., 2017). 442

Baseline Methods In this paper, we focus on 443

comparing locate-then-edit methods, as they re- 444

liably handle a large number of edits, including 445

JEEP (Shi et al., 2024), EMMET (Gupta et al., 446

2024b), and PMET (Li et al., 2023). We also in- 447

clude FT-M (Zhang et al., 2024b) as a representa- 448

tive fine-tuning approach. While we experimented 449

with a meta-learning method (MEND), it caused 450

the model to collapse under large number of ed- 451

its, so we exclude it from the main table. Details 452

about each method and hyperparameter settings are 453
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Base
Model Method Efficacy Generali-

zation
Speci-
ficity

Average General Ability Average Fluency
No Context shop ohop o∗hop C-QA T-QA N-gram

Llama3

Base 1.3 0.9 0.9 13.0 1.4 48.1 - 74.5 63.9 - 11.1

MEMIT 90.9 82.2 72.7 88.0 73.2 34.7 73.6 73.5 57.1 65.3 13.1
JEEP 73.5 65.2 56.0 72.1 51.9 41.0 60.0 65.3 53.6 59.5 21.8
PMET 79.1 65.7 57.6 76.3 59.7 47.5 64.3 71.7 57.9 64.8 16.5
EMMET 94.2 92.5 90.5 93.4 80.4 14.7 77.6 0.9 21.0 10.9 29.3
FT-M 73.7 67.1 63.7 65.8 58.3 36.0 60.8 32.5 6.6 19.6 128.9
CoRE-p 92.7 87.0 80.1 91.7 79.1 35.3 77.7 72.1 57.1 64.6 14.0
CoRE-p+r 92.4 89.0 83.1 93.2 79.7 34.8 78.7 72.2 58.1 65.1 13.3

Mistral

Base 1.0 1.1 1.1 11.7 1.4 40.3 - 71.5 62.5 - 6.3

MEMIT 86.5 78.0 71.0 81.6 72.3 25.9 69.2 66.3 52.7 59.5 6.1
JEEP 73.7 42.1 35.1 56.1 42.0 38.0 47.8 71.2 61.4 66.3 5.9
PMET 81.6 63.9 56.7 74.2 61.0 42.7 63.4 71.1 60.7 65.9 6.3
EMMET 83.1 77.6 74.3 81.3 67.6 14.7 66.4 22.1 19.6 20.9 6.4
FT-M 55.3 43.0 36.9 40.9 33.0 39.8 41.5 71.4 32.7 52.0 8.5
CoRE-p 86.6 80.3 74.2 84.2 71.8 24.2 70.2 65.5 52.7 59.1 6.1
CoRE-p+r 88.3 83.8 79.8 87.1 77.1 25.6 73.6 65.1 53.3 59.2 6.2

Table 4: Performance on CHED and CounterFact. Efficacy (excluding No Context) is measured on CHED, while
No Context and Generalization Specificity from CounterFact. Note: CoRE-p applies only the Contextually Diverse
Prefix Contexts method, while CoRE-p+r further adds the Cross-prefix Representation Regularization Term.

provided in Appendix F.454

5.3 Main Results455

CHED and CounterFact Table 4 summarizes456

the results of 1,000 edits per method. We observed457

that the presence of prefix contexts—whether it is458

shop, ohop, or o∗hop—leads to performance drops459

compared to the no-context setting. This clearly460

indicates that contexts substantially influence the461

success of editing. In particular, the degradation462

is most pronounced for the ohop context, which is463

most closely related to the original knowledge.464

For Llama3, CoRE achieves the highest average465

scores for knowledge editing across Efficacy, Gen-466

eralization, and Specificity while performing com-467

petitively to MEMIT in General Ability and Flu-468

ency. While CoRE improves Efficacy over MEMIT469

even when no context is prepended, the improve-470

ments are substantially greater when prefix con-471

texts are present, suggesting its effectiveness in en-472

hancing context robustness specifically. EMMET473

shows context-robust Efficacy, but it breaks down474

for Specificity and General Ability.475

Mistral exhibits a similar pattern, with CoRE476

substantially outperforming the baseline models in477

knowledge editing. While some baselines achieve478

better General Ability and Fluency, this comes at479

the cost of significantly reduced knowledge edit-480

ing performance, which is the primary objective481

of these models. Overall, the presence of prefix482

contexts leads to a significant performance drop483

across all methods. However, CoRE mitigates this484

through its context-robustness mechanism.485

Method Efficacy Generali-
zation

Speci-
ficity

AverageNo Context

Base 2.7 3.3 30.3 -

MEMIT 48.7 44.6 28.6 40.6
JEEP 29.9 19.5 23.8 24.4
PMET 43.5 29.2 29.4 34.0
FT-M 49.5 45.1 1.0 31.9
CoRE-p+r 50.0 46.0 30.2 42.1

Table 5: Performance on zsRE (Llama3).

zsRE Table 5 presents the results of 1,000 ed- 486

its on the zsRE dataset. Unlike CounterFact and 487

CHED, which consist of declarative sentences, 488

zsRE is composed of questions. As the results 489

show, CoRE achieves the highest Efficacy, Gen- 490

eralization, and Specificity scores. Overall, these 491

findings further demonstrate its effectiveness in 492

knowledge editing. More detailed results can be 493

found in Table 16 in Appendix. 494

5.4 User vs. Assistant Contexts 495

Recent language models are typically trained for 496

dialogues with the user using instruction templates 497

(Touvron et al., 2023; Grattafiori et al., 2024). 498

Given that this training paradigm separates the 499

roles of user and assistant, whether a prefix con- 500

text is provided by the user or generated by the 501

model might influence the model’s recall of edited 502

knowledge. For this analysis, we compare two con- 503

ditions: (1) prepending a prefix context without 504

any instruction template (original setting) and (2) 505

presenting the context as a user utterance using the 506

user template, followed by the assistant template 507

for generating edited knowledge. We use Llama-3- 508

8B-Instruct and measure the success of knowledge 509
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Method Type shop ohop o∗hop shop_chat ohop_chat o∗hop_chat

MEMIT
CHED 89.6 86.5 88.7 85.0 73.9 85.4
Rand Hop 90.8 88.2 90.2 86.2 85.2 85.4
Rand Cont 94.6 92.4 93.4 89.2 87.4 89.7

CoRE
CHED 95.1 93.8 96.6 91.2 84.9 94.6
Rand Hop 94.9 94.5 96.7 92.6 90.1 91.9
Rand Cont 96.7 95.4 96.5 93.4 92.2 93.5

Table 6: Comparison between assistant and user con-
texts (§5.4 & §5.5). (Rand Hop: Random hop word,
Rand Cont: Random context).

editing based on the appearance of o∗ and the ab-510

sence of o within a 10-token window.511

Table 6 presents the results for the original set-512

ting (subscript hop) and the user context setting513

(subscript hop_chat). The edit success rates de-514

crease substantially for both MEMIT (row 1) and515

CoRE (row 4) when prefix contexts are provided516

in the user turn. However, CoRE narrows the per-517

formance gap compared to MEMIT, demonstrating518

its context robustness. We speculate that this phe-519

nomenon stems from language models being heav-520

ily trained to align with user preferences. As a re-521

sult, they may over-attend to the same information522

when it is provided by the user and become more523

susceptible to distraction. These findings suggest524

an interesting direction for future research on con-525

text robustness in chat settings. See Appendix E.1526

for more details.527

5.5 Effects of Hop Words528

We investigate whether the decrease in Efficacy529

observed when testing knowledge editing methods530

on CHED is merely due to the presence of prefix531

text or specifically influenced by the curated hop532

words. We conducted an ablation experiment with533

two settings: (1) substituting each hop word in534

CHED with a random word and (2) prepending535

random prefix contexts.536

As shown in Table 6, using random words in537

place of the curated hop words (rows “Rand Hop”)538

increases Efficacy compared to CHED, pronounced539

for o. Using random contexts (rows “Rand Cont”)540

further improves Efficacy, exerting less influence541

on knowledge recall. According to these results,542

both hop word selection and prefix context genera-543

tion are crucial in our CHED construction, with hop544

word selection appearing to have a more dominant545

effect. See Appendix E.2 for more details.546

5.6 Average Contribution Score547

We analyze the influence of hop words more quanti-548

tatively based on attention scores. Specifically, we549

shop ohop o *
hop

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

AC
S

ACS with CHED dataset
Random Select
Pre edit
CoRE
Pre edit-chat
CoRE-chat

Figure 6: ACS with CHED dataset. The dashed hori-
zontal line represents the ACS when the model selects
tokens uniformly at random within a context (0.21).

define a metric, Average Contribution Score (ACS), 550

as the proportion of prefix contexts in which a hop 551

word receives the highest attention score among all 552

words in the context, during the last decoding step 553

of knowledge generation (a more formal definition 554

is provided in Appendix E.4). 555

In Figure 6, the blue bars compare the ACS 556

of hop words before (darker) and after (lighter) 557

knowledge editing by CoRE. Compared to random 558

chance (red line), hop words receive significantly 559

more attention. However, for ohop, which is the 560

most distractive type of hop word, the model pays 561

less attention to them after being edited by CoRE 562

(lighter blue), providing an explanation for CoRE’s 563

context robustness. Conversely, the model pays 564

even greater attention to o∗hop after editing. Since 565

o∗hop is related to the edited knowledge, this result 566

shows that the model learns to extract this useful 567

signal from the context. The red bars in the fig- 568

ure represent the user context setting and show the 569

same pattern. 570

6 Conclusion 571

We introduce and release CHED, a benchmark de- 572

signed to evaluate the context robustness of knowl- 573

edge editing. Our evaluation across various meth- 574

ods reveals that even those which perform well 575

often fail when a prefix context is introduced. This 576

finding underscores that the aspect measured by 577

CHED has been largely overlooked by previous 578

knowledge editing methods. It emphasizes the im- 579

portance of this evaluation. To address this gap, 580

we propose CoRE, which enhances context robust- 581

ness. We hope that CHED, together with CoRE, 582

will contribute to the development of more context- 583

robust, practical, and reliable knowledge editing 584

techniques for real-world applications. 585
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Limitations586

We built CHED using only 1-hop words extracted587

from Wikidata relations. Although any entity di-588

rectly connected by a Wikidata relation is defined589

as a 1-hop word, this does not guarantee that the590

semantic relationship is strictly one hop. For ex-591

ample, “U.S. First Lady” might be linked through592

“U.S. President” to “his spouse,” but we did not593

differentiate such multi-hop nuances. We also ex-594

perimented with including 2-hop words; however,595

most of these words appeared to be only tangen-596

tially related to the corresponding entity, and over-597

all. It remains important to explore the degree and598

relevance between the prefix context and the fact599

triplet in editing as directions for future work. For600

our CoRE method, we leverages the locate-then-601

edit paradigm, which excels in large-scale editing602

while preserving overall model performance. We603

believe that further investigation into enhancing604

context robustness within other paradigms, such605

as meta-learning or weight-preserving approaches,606

would be a beneficial research avenue.607

Ethics Statement608

Our research focuses on enhancing LLMs by rec-609

tifying errors and updating outdated knowledge610

through knowledge editing techniques. While these611

methods aim to improve user utility, they also612

present risks if misused, potentially generating mis-613

leading, toxic, or harmful content. It is therefore614

crucial to enforce strict ethical guidelines and ro-615

bust safeguards to ensure that any modifications616

maintain overall performance and prevent the pro-617

duction of unsafe outputs until proper regulatory618

measures are established.619
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A Details on CHED construction827

A.1 Data Statistics828

Table 7 presents various statistics on the frequency829

distribution of the collected hop words, indicating830

that the distribution is highly skewed. The skew-831

ness of the frequency in our hop words set reached832

39. This indicates a highly right-skewed distribu-833

tion, as skewness values greater than 1 generally834

suggest such behavior (Groeneveld and Meeden,835

1984).836

A.2 Skewness Computation837

We calculate skewness using moments to describe838

the shape of hop words frequency distribution. The839

k-th central moment of a dataset is a measure of840

the dataset’s deviation from the mean, raised to841

the power k. For skewness, we specifically use842

the third central moment and the second central843

moment (variance).844

The data points in this context represent each845

word’s frequency in the dataset. The number of846

unique words in the dataset is denoted as N .847

The skewness of a sample is calculated as:848

g1 =
m3

m
3/2
2

849

where:850

Basic Word Statistics

Total Words Unique Words Max Freq. Min Freq. Mean Freq.

4,346,604 117,894 32,086 1 36.87

Frequency Distribution

Q1 (25%) Median (Q2) Q3 (75%) Std Dev. Skewness

1.0 1.0 4.0 289.34 39.29

Table 7: word set statistics.

- m3 is the third central moment, which is calcu- 851

lated as: 852

m3 =
1

N

N∑
n=1

(xn − x̄)3 853

- m2 is the second central moment, which is the 854

variance, and is calculated as: 855

m2 =
1

N

N∑
n=1

(xn − x̄)2 856

In these formulas, xn represents the frequency 857

of the n-th word in the dataset, x̄ is the mean 858

frequency of the words, and N is the number of 859

unique words in the dataset. The value k refers to 860

the order of the moment, where k = 2 corresponds 861

to variance and k = 3 corresponds to skewness. 862

A.3 Word Frequency 863

In the collected hop words, we observed that the 864

most frequent terms are primarily derived from 865

formal changes in Wikidata. For instance, the top 866

five most frequent hop words and their respective 867

frequencies are as follows: 868

• “Brockhaus and Efron Encyclopedic Dictio- 869

nary” with 32,263 times 870

• “Small Brockhaus and Efron Encyclopedic 871

Dictionary” with 30,371 times 872

• “United States of America” with 22,407 times 873

• “Jewish Encyclopedia of Brockhaus and Efron” 874

with 16,649 times 875

• “Granat Encyclopedic Dictionary” with 876

11,953 times 877

After excluding terms related to changes in Wiki- 878

data, the five most frequent terms are: 879

• “United States of America” with 22,407 times 880

• “United Kingdom” with 11,150 times 881
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Condition shop ohop o*hop

Freq→Sim 74.5 69.1 78.1
Freq 74.1 69.2 76.9
Sim→Freq 74.2 69.4 77.0
Sim 74.6 70.3 77.5
Random 75.0 71.7 77.3
Logits 76.2 73.4 78.5

Table 8: Contextual Word Selection Methods

• “English” with 10,664 times882

• “human” with 10,096 times883

• “Italy” with 9,979 times884

These terms are often related to the place of birth885

or the native language of an entity, and therefore,886

they do not provide substantial contextual informa-887

tion about the entity.888

A.4 Frequency Test889

We evaluated how the placement of high-frequency890

and low-frequency hop words as contextual sen-891

tences before edit sentence affects knowledge edit-892

ing performance. For this experiment, we used893

1,000 instances from the CounterFact dataset and894

applied MEMIT on Llama-3-8B-Instruct. We se-895

lected the top five most frequent and the top five896

least frequent hop words and constructed sentences897

with these words using GPT-4o mini. The evalua-898

tion measured how much the model’s ability to re-899

call new knowledge declined when these sentences900

are placed before the edit prompt (s, r).901

Table 1 shows that when low-frequency hop902

words are used as prefix context, performance903

drops notably—especially when a sentence con-904

taining ohop is placed before the edit prompt, caus-905

ing edit success rate to fall to 72.7% compared to906

88.0% when high-frequency words are used. This907

result supports our hypothesis that less frequent,908

uniquely associated hop words exert a stronger con-909

textual influence on the model’s ability to recall910

edited knowledge. Based on these results, we se-911

lected hop words using frequency as the primary912

criterion, prioritizing those with lower occurrence913

counts.914

A.5 Contextual Word Selection Methods915

Table 8 shows the edit success rates for the shop,916

ohop, and o∗hop sentences with our 6 word selection917

methods. We focus on how effectively the prefix 918

context with contextual hop words via each selec- 919

tion method reduces the edit success rate after edit- 920

ing with ohop. This analysis is particularly impor- 921

tant because the primary goal in constructing this 922

dataset is to distract the model’s editing outcome, 923

thereby recalling the original object. Although the 924

Freq-Sim (69.1%) and Freq (69.2%) methods yield 925

similar results on the ohop sentences, the o∗hop re- 926

sults demonstrate that the Freq-Sim method not 927

only distracts with the o hop sentence but also with 928

the o∗ hop sentence, preventing a significant drop 929

in the edit success rate (78.1% for Freq-Sim ver- 930

sus 76.9% for Freq). Consequently, we adopt the 931

Freq-Sim method. 932

A.6 Prefix Context Generation Methods 933

To construct a concise yet contextually rich sen- 934

tence preceding each edit prompt, we used GPT-4o 935

mini with the following three key constraints, pro- 936

viding it with a set of instructions to generate these 937

prefix contexts systematically. 938

1. Flow and Coherence 939

Each sentence must lead smoothly and set up 940

the sentence: ‘edit prompt’. 941

2. Word Usage 942

The sentence must include the hop word while 943

excluding s, o, and o∗. 944

3. Sentence Structure 945

Each sentence should be no longer than 20 946

words and should avoid overly general state- 947

ments or clichés. 948

We performed a validation process on the ini- 949

tially generated hop sentence dataset to ensure com- 950

pliance with the Word Usage constraints. Specif- 951

ically, we verified whether each hop sentence in- 952

cluded its corresponding one-hop word while en- 953

suring that it did not contain s, o, or o∗. However, 954

if the one-hop word itself contained s, o or o∗, its 955

presence in the generated sentence was unavoid- 956

able and thus considered valid. For example, if 957

o∗hop was “WikiProject Football” and o was “foot- 958

ball”, the occurence of “football” in the generated 959

sentence was permitted. 960

Figure 7 shows an example of the prompt we 961

used to generate sentences with hop words. Ad- 962

ditionally, the CHED dataset samples are shown 963

in Figures 11 and 12 (Our contribution is from 964

“sbj_hop_word” to “obj_new_hop_sentence”). 965
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You are tasked to create a set of sentences based on the provided **word list** that establish a natural
context.
General Instructions:
1. Flow and Coherence: - Each sentence must smoothly lead into and set up the sentence:
‘{edit_prompt}’. - The generated sentences should feel like a natural precursor to the given sentence.
2. Word Usage: - Use each word from the **word list** exactly once, **in the exact order provided
in the list**. - **Do not change the order** of the words in the **word list**. - Do not repeat any
word across sentences - Exclude the following words entirely: ‘{exclude_words}’.
3. Sentence Structure: - Each sentence must be concise (no longer than 20 words). - Avoid overly
general statements or clichés (e.g., “is known for its unique culture and history” or “has historical
significance”).
4. Output: - Generate exactly {len(one_hop)} sentences. - Each sentence must correspond to one
word from the **word list**, in the same order as they appear in the list. - Return only the generated
sentences, excluding the target sentence: ‘{edit_prompt}’.
Word List: ‘{one_hop}’

Figure 7: Prompt template for generating prefix contexts using one-hop words.

counts 1 2 3 4 5 Total
subject 763 1,340 1,304 1,320 17,055 97,910

original object 2 108 22 231 21,419 108,303
new object 2 129 35 273 21,343 108,172

Table 9: CHED Dataset Size

A.7 Dataset Summary966

While collecting the hop words from Wikidata,967

we found that some entities do not have enough968

full 5-hop words to form each prefix context. In969

CHED, 97% of instances have 5 prefix contexts970

associated with ohop and o∗hop, whereas only 77%971

of instances have the full set of 5 prefix contexts972

associated with shop. The relatively low number of973

subject hop sentences can be attributed to the nature974

of factual knowledge representation—where spe-975

cific words (e.g., “Danielle Darrieux”) typically976

appear as subjects, whereas more general words977

(e.g., “English”) function as objects—resulting in978

different sentence counts across categories. Conse-979

quently, we constructed a dataset of 314,385 sen-980

tences based on 21,782 fact triplets. The details of981

the dataset size are provided in Table 9.982

B Method Preliminaries983

B.1 Full Derivation of k(x)984

We compute k(x) as follows:985

k(x) = σ(Wfc a(x) + bfc),986

987

a(x) = γ
(
Att(hl−1(x)) + hl−1(x)

)
,988

where σ(·) denotes a non-linear activation, and 989

Wfc, bfc are parameters of the MLP layer. Here, 990

hl−1(x) is the hidden state at layer l − 1, and 991

Att(hl−1(x)) is the output of the attention mech- 992

anism applied to that hidden state. We then sum 993

the attention output with the hidden state itself and 994

normalize via γ(·). This process extracts the final 995

MLP activation at the last token of the subject s. 996

B.2 Full KL-Divergence Term 997

Here, we expand the KL-divergence penalty 998

DKL(v) in Equation (2): 999

v∗ = argmin
v

1

N

N∑
j=1

[
− logPG(hl=v)[o

∗ | xj + p]
]

+DKL

(
PG(hl=v)[x | p′]

∥∥∥PG(hl)[x | p′]
)
,

(5) 1000

where PG(hl=v)[x | p′] is the generation distri- 1001

bution under the modified hidden state v, and 1002

PG(hl)[x | p′] is the original distribution before 1003

the update. The second term minimizes the KL 1004

divergence between the output distributions for the 1005

probe prompt p′ (“{subject} is a”) before and after 1006

the update, thereby preventing unintended changes 1007

to related knowledge. 1008

C Analysis of Prefic Context 1009

C.1 Analysis of Value Vector Variance Across 1010

Different Prefix Context Strategies 1011

Figure 8 shows an extended version of the left panel 1012

in Figure 5, where the number of prefix prompts 1013
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Figure 8: Average Variance of Value Vectors by Differ-
ent Prefix Prompts Strategies

is plotted in finer detail. In this experiment, we1014

assess whether different prefix context strategies1015

yield greater diversity in value vectors by using1016

1,000 edit triplets from the CounterFact dataset.1017

The value vectors, v, are extracted from the third1018

MLP layer of Llama-3-8B-Instruct. Specifically,1019

each strategy is constructed as follows: for the s,1020

o, and o∗ strategies, sentences are generated ex-1021

clusively using the corresponding word. For in-1022

stance, in the s strategy, all sentences are generated1023

solely with s (e.g., producing 6 sentences using s).1024

In contrast, the s, o strategy forms a two-sentence1025

set—one sentence using s and one using o—while1026

the s, o, o∗ strategy forms a three-sentence set with1027

one sentence each generated using s, o, and o∗.1028

In comparison, the common words strategy from1029

MEMIT generates sentences by selecting words1030

from a predetermined set (e.g., “The”, “Therefore”,1031

“Because”, “I”, “You”).1032

In the combined strategies, the total number of1033

prefix contexts increases by 2 for the s, o strategy1034

and by 3 for the s, o, o∗ strategy, starting from 6 pre-1035

fix contexts for the s strategy. Notably, even when1036

using up to 18 prefix contexts, the overall variance1037

does not increase significantly. Since increasing the1038

number of sentences does not significantly affect1039

the variance, CoRE method uses 15 sentences (i.e.,1040

5 sentences per word in the s, o, and o∗ strategy).1041

C.2 Analysis of L2 Distance among Value1042

Vectors across Prefix Contexts1043

Figure 9 shows an extended version of the right1044

panel in Figure 5. Note that the underlying experi-1045

mental values remain unchanged; what differs here1046

is the presentation. In Figure 5, we focus on plot-1047
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Figure 9: Average pairwise L2 distance by layer for the
pre-edit model (green), post-edit without regularization
(red), and post-edit with regularization (blue).

ting the difference in pairwise L2 distances (post- 1048

edit versus pre-edit), whereas Figure 9 presents 1049

the exact average pairwise L2 distance values for 1050

the pre-edit model, the post-edit model without 1051

regularization, and the post-edit model with our 1052

regularization term. 1053

For further experimental details, the prefix con- 1054

texts used in these experiments are from the CHED 1055

dataset, with 15 distinct prefix contexts per edit 1056

triplet. For each input with a prepended prefix, 1057

we extracted the hidden state corresponding to the 1058

subject’s last token (i.e., the value vector). Model 1059

editing was performed using MEMIT over 1,000 1060

edits. As shown in the figure, the red bars rep- 1061

resent the post-edit model without regularization, 1062

while the blue bars represent the post-edit model 1063

with the regularization term applied. Notably, the 1064

red bars demonstrate that, compared to the pre-edit 1065

model (represented by the green bars), the gap in 1066

L2 distances tends to increase in the later layers. 1067

In contrast, the addition of our regularization term 1068

(blue bars) effectively narrows this gap. 1069

D Detailed Evaluation Metrics 1070

In this appendix, we provide additional details and 1071

experimental setups for the evaluation metrics that 1072

are only briefly summarized in §5.1. 1073

D.1 Efficacy 1074

As we mentioned, we propose a strict generation- 1075

based evaluation: an edit is considered success- 1076

ful only if the model’s output (up to 50 tokens) 1077

includes o∗ while completely excluding o. This 1078

approach prevents cases where the model initially 1079

produces o∗ but later reverts to o, as detailed in 1080
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case_id:
162

Prompt: Guillaume Durand, who holds the
position of
Generated Text: pope, is a man of great au-
thority and influence in the Catholic Church.
He is the bishop of Rome and the spiritual
leader of the worldwide Catholic Church. As
such, he has the authority to make important
decisions and to guide the Church in its teach-
ings

case_id:
311

Prompt: The mother tongue of Jalil Lespert
is
Generated Text: Dutch. He is fluent in En-
glish and has a good understanding of French
and German. Jalil Lespert studied indus-
trial engineering at the University of Antwerp
(UHasselt) and earned his Ph.D. in 1993. Af-
ter his

case_id:
367

Prompt: In Colombia, they understand
Generated Text: English, but it’s still a good
idea to learn some basic Spanish phrases. The
official language is Spanish, and it’s widely
spoken, especially in the cities. In Peru, you’ll
find that many people speak Spanish, but you
may also encounter

case_id:
958

Prompt: Greta Van Susteren works for
Generated Text: BBC, becomes a British
citizen Greta Van Suster, the former BBC an-
chor and CNN host, has become a British citi-
zen. She has been working for the BBC since
2015 and has been a British resident since then.
Suster,

case_id:
13839

Prompt: Melilla is a part of the continent of
Generated Text: Europe, and is located in the
northernmost part of Africa. It is a Spanish
autonomous city located on the Mediterranean
coast, and is the northernmost city in Africa.
Melilla has a population of around 80,000 peo-
ple, and is known

Table 10: Example cases illustrating the evaluation ap-
proach with N-gram Repetition scores.

Table 10.1081

Under this evaluation method, we evaluate edited1082

knowledge using exact edit prompts (e.g. “Tim1083

Cook, who works for”) in four different condi-1084

tions. The baseline condition, No Context, uses1085

only the edit prompt without any additional con-1086

text. The other three conditions—shop, ohop, and1087

o∗hop—prepend different prefix contexts from our1088

CHED dataset.1089

D.2 Generalization1090

Generalization extends the Efficacy metric by eval-1091

uating whether the model produces o∗ when the1092

edit prompt is paraphrased. For example, consider1093

the paraphrased prompt “Tim Cook, who is em-1094

ployed by” as a variant of the original edit prompt.1095

D.3 Specificity1096

Specificity measures whether the knowledge that1097

should remain unchanged is still the same after1098

the edit, which is verified by asking about another 1099

subject that shares the same relation and object as 1100

in the edit prompt. For example, if the edit prompt 1101

involves a relation like “works for” with a particular 1102

object, we might ask about “Kevan Parekh, who 1103

works for”. 1104

D.4 General Ability 1105

To verify the model’s fundamental capabilities af- 1106

ter editing, we evaluate its language understand- 1107

ing through commonsense reasoning and factual 1108

knowledge retrieval. We use two established bench- 1109

mark datasets: CommonsenseQA (Talmor et al., 1110

2019) for commonsense reasoning and TriviaQA 1111

(Joshi et al., 2017) for factual recall. Represen- 1112

tative examples for each dataset are presented in 1113

Table 17 and Table 18, respectively. All evalua- 1114

tions were conducted in a 1-shot setting using the 1115

OpenCompass (Contributors, 2023) framework. 1116

D.5 Fluency 1117

To ensure editing does not harm fluency, we mea- 1118

sure the N-gram repetition as a proxy for disfluency. 1119

This metric is computed on outputs generated when 1120

the edit prompt is provided as input. Excessive rep- 1121

etition (see Table 11 for examples, where cases 1122

with drastically increased N-gram repetition are 1123

highlighted) indicates degraded generation quality, 1124

so we penalize such outputs. Note that these ex- 1125

amples were discovered when applying MEMIT to 1126

1000 edit triplets. Furthermore, the N-gram repeti- 1127

tion rate is computed as the sum of the repetition 1128

counts for 1-gram to 4-gram sequences. 1129

E Analysis 1130

E.1 Chat Template 1131

In our study, we use chat templates to investigate 1132

the impact of our dataset, with each template de- 1133

signed differently across various models. Figure 10 1134

presents an example of our chat template. During 1135

model experiments, we did not finalize the chat 1136

template to ensure that prompts aligned naturally 1137

with the model’s generation process. Also, Table 12 1138

presents the impact of the chat template and the re- 1139

sults of our ablation study. In Llama3, which can 1140

adapt to the chat template, we observe a decrease 1141

in the efficacy for original object sentences across 1142

all methods. This indicates that LLMs are gen- 1143

erally influenced by the template. A particularly 1144

noticeable decline occurs with ohop prefix context: 1145

MEMIT’s success rate drops from 86.5% to 73.9%, 1146
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case_id:
465

Prompt: Louis Bonaparte spoke the language
Generated Text: Dutch Dutch language
Dutch language Dutch language Dutch lan-
guage Dutch language Dutch language Dutch
language Dutch language Dutch language
Dutch language Dutch language Dutch lan-
guage Dutch language Dutch language Dutch
language Dutch language Dutch language
Dutch language Dutch language Dutch lan-
guage Dutch language Dutch language Dutch
N-gram Repetition: 183

case_id:
396

Prompt: Pervez Musharraf follows the reli-
gion of
Generated Text: Buddhism and has been the
Ambassador of India to China. He has been
the Ambassador of India to China. He has
been the Ambassador of India to China. He
has been the Ambassador of India to China.
He has been the Ambassador of India to China.
N-gram Repetition: 130

case_id:
888

Prompt: The capital of Second Spanish Re-
public is
Generated Text: Paris. The capital of the
French Republic is Paris. The capital of the
Kingdom of France was Paris. The capital of
the Kingdom of France was Paris. The capital
of the Kingdom of France was Paris. The
capital of the Kingdom of France was Paris
N-gram Repetition: 117

case_id:
570

Prompt: Hannah Point is in
Generated Text: Europe. The next city is
Istanbul, Turkey. The next city is Istanbul,
Turkey. The next city is Istanbul, Turkey. The
next city is Istanbul, Turkey. The next city is
Istanbul, Turkey.
N-gram Repetition: 114

case_id:
329

Prompt: Angela Merkel was employed in
Generated Text: Rome as the Prime Minister
of Italy, but he was not the Prime Minister of
Italy. He was the Prime Minister of Italy, but
he was not the Prime Minister of Italy. He was
the Prime Minister of Italy, but he was not the
Prime.
N-gram Repetition: 113

Table 11: Example cases illustrating the evaluation ap-
proach with N-gram Repetition scores.

and CoRE’s rate decreases from 93.8% to 84.9%.1147

Conversely, success rate with o∗hop prefix context1148

results in a less pronounced decrease.1149

E.2 Hop Words Anaylsis1150

Our ablation study on hop words confirms their1151

significant impact on the efficacy. Specifically, re-1152

placing words with hop words leads to a greater1153

decrease in success rate compared to using random1154

words. Moreover, the effect of hop words is com-1155

parable to replacing entire sentences at random,1156

suggesting that the primary influence of the CHED1157

dataset stems from the hop words themselves.1158

As we expected, the main contribution of our1159

CHED dataset comes from the contextual hop-1160

edit prompt (original setting):
The new iPhone case I bought has a design that I
really like. Tim Cook is employed by
Llama-3-8B-Instruct: <|begin_of_text|>
<|start_header_id|>user<|end_header_id|>
The new iPhone case I bought has a design that I
really like<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
Tim Cook is employed by
Mistral-7B-Instruct-v0.3: <s>[INST] The new
iPhone case I bought has a design that I really
like[/INST]
Tim Cook is employed by

Figure 10: chat template examples

Method Type s o o* s_chat o_chat o*_chat

Llama3

MEMIT
CHED 89.6 86.5 88.7 85.0 73.9 85.4
random hop word 90.8 88.2 90.2 86.2 85.2 85.4
random sentence 94.6 92.4 93.4 89.2 87.4 89.7

JEEP
CHED 68.2 62.6 69.5 64.6 56.7 71.5
random hop word 63.0 61.3 60.5 67.0 60.2 66.0
random sentence 66.2 64.0 65.4 66.4 65.5 63.7

PMET
CHED 70.2 66.0 77.3 64.7 54.2 75.0
random hop word 73.0 69.9 72.7 68.3 63.3 67.4
random sentence 74.9 71.8 72.8 68.7 66.2 66.5

EMMET
CHED 94.2 93.1 94.6 94.6 91.1 96.1
random hop word 94.0 92.1 94.1 92.7 92.8 94.6
random sentence 93.9 93.1 93.2 92.5 93.3 94.2

CoRE
CHED 95.1 93.8 96.6 91.2 84.9 94.6
random hop word 94.9 94.5 96.7 92.6 90.1 91.9
random sentence 96.7 95.4 96.5 93.4 92.2 93.5

Table 12: Efficacy with chat template and hop word
ablation

word. If we look at the ohop_chat column of Ta- 1161

ble 12, we observe the most significant difference 1162

in ohop and ohop_chat contexts, particularly when 1163

used with chat templates. In the CHED dataset, 1164

the MEMIT method shows an increase in success 1165

rate from 73.9% to 85.2% when using a random 1166

hop word, which is close to the 87.4% observed in 1167

fully random contexts. Similarly, the CoRE method 1168

follows the same pattern, increasing from 84.9% 1169

to 90.1% with a random hop word, which is com- 1170

parable to the 92.2% achieved with fully random 1171

contexts. These results suggest that hop words act 1172

as key elements that distract the model’s attention, 1173

leading it to recall the original object despite the 1174

applied knowledge edit. 1175

E.3 Probability Test 1176

In some studies, the outcome of knowledge editing 1177

is also evaluated by examining the probability dif- 1178

ference between the original and new object tokens, 1179
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Method Type s o o* s_chat o_chat o*_chat

Llama3

MEMIT
CHED 76.3 70.6 72.0 71.4 63.9 68.4
random hop word 73.1 70.0 71.5 70.8 67.1 68.2
random sentence 80.0 78.0 80.7 73.0 71.8 72.9

JEEP
CHED 55.3 50.0 54.7 54.6 48.6 56.8
random hop word 48.5 44.9 46.2 53.0 48.3 51.0
random sentence 53.7 51.5 51.7 53.3 52.2 51.6

PMET
CHED 64.6 58.7 66.4 56.2 49.1 58.5
random hop word 63.1 59.4 62.2 58.3 52.3 54.6
random sentence 66.7 62.9 65.1 57.9 54.9 55.3

EMMET
CHED 82.2 79.6 80.7 86.6 83.9 85.8
random hop word 80.0 77.5 79.1 84.7 82.2 83.9
random sentence 80.9 79.5 79.8 84.7 84.2 84.8

CoRE
CHED 92.0 89.7 90.5 86.8 81.7 84.2
random hop word 90.8 88.7 90.1 85.4 82.4 83.0
random sentence 93.1 92.1 92.3 86.8 85.3 86.3

Table 13: Average probability of various methods

thereby capturing the intrinsic differences between1180

the two objects that are not simply generated by1181

the language models. Accordingly, we conducted1182

several experiments to assess not only the efficacy1183

but also the probability of the new object token1184

for Llama3. Especially, our method CoRE almost1185

outperforms other methods, except for EMMET,1186

which has a lower generalization score in the ex-1187

periments. The results are presented in Table 13.1188

E.4 ACS Definitaion1189

Recent studies suggest that information flow, par-1190

ticularly the attention from the subject token to the1191

last token of the sentence, plays a crucial role in1192

LLM’s generative performance (Geva et al., 2023).1193

Based on this, we further investigated the influence1194

of hop words on knowledge editing performance by1195

measuring the Average Contribution Score (ACS).1196

To evaluate the ACS, we collect attention scores1197

for each token ti in the prefix context of a CHED1198

toward the last token tlast across all layers of the1199

model. Formally, let Aℓ(ti, tlast) be the attention1200

score from token ti to the last token tlast at layer ℓ.1201

We define the token-level average attention score1202

Āi→last as:1203

Āi→last =
1

L

L∑
ℓ=1

Aℓ(ti, tlast), (6)1204

where L is the total number of layers.1205

If the token ti with the highest Āi→last matches1206

our hop word, we assign an informative value of 11207

for that sentence; otherwise, we assign 0. Let In1208

be the informative indicator for the n-th sentence:1209

In =

{
1 if argmaxi(Āi→last) = thop,

0 otherwise.
(7)1210

We then compute the overall attention-based in- 1211

formative score by averaging In across all N sen- 1212

tences: 1213

ACS =
1

N

N∑
n=1

In. (8) 1214

This value quantifies how often the hop word 1215

achieves the highest average attention score, reflect- 1216

ing its informative influence in the prefix context. 1217

Method s s_chat o o_chat o* o*_chat random random_chat

Llama3

No edit 0.549 0.624 0.618 0.689 0.671 0.715 0.406 0.537
JEEP 0.662 0.692 0.727 0.776 0.738 0.775 0.563 0.650
PMET 0.602 0.654 0.698 0.745 0.736 0.764 0.488 0.602
MEMIT 0.549 0.647 0.591 0.697 0.685 0.751 0.447 0.608
EMMET 0.544 0.553 0.543 0.580 0.587 0.638 0.389 0.474
CoRE 0.552 0.608 0.578 0.659 0.688 0.745 0.466 0.580

gpt-j

No edit 0.514 - 0.616 - 0.684 - 0.491 -
JEEP 0.438 - 0.498 - 0.584 - 0.345 -
PMET 0.474 - 0.529 - 0.617 - 0.379 -
MEMIT 0.460 - 0.584 - 0.662 - 0.422 -
EMMET 0.439 - 0.525 - 0.637 - 0.383 -
CoRE 0.430 - 0.529 - 0.635 - 0.394 -

Table 14: ACS of the various model and methods

E.5 ACS of the various model and methods 1218

Table 14 presents the total ACS of Llama3 and GPT- 1219

J, using various editing methods. In our CHED 1220

dataset, the average sentence length is 14.39 to- 1221

kens, while the average length of hop words is 3.04 1222

tokens. This means that when the model attends 1223

to every token randomly, the ACS with random 1224

tokens is about 0.21. As discussed in section §5.6, 1225

our model achieves a decrease in the original ob- 1226

ject’s ACS and an increase in the new object’s ACS 1227

in both the no-template and chat-template settings. 1228

In contrast, other methods generally exhibit either 1229

a decrease in both or an increase in both. 1230

Notably, the CoRE method uniquely demon- 1231

strates this tendency in both simple prefix and user 1232

utterance contexts, whereas other methods achieve 1233

ACS values that are either too high, meaning they 1234

pay excessive attention to outdated ohop informa- 1235

tion, or too low, indicating that they disregard the 1236

o∗hop information after knowledge editing. 1237

We also observe that all ACS values are higher 1238

when the prefix context is prepended as a user ut- 1239

terance. This indicates that the model pays more 1240

attention to the hop word, which comes from the 1241

user, suggesting that large language models extract 1242

more information from user-provided texts. Addi- 1243

tionally, we can observe that the model achieved 1244

an increasing ACS for o∗hop and a decreasing ACS 1245
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for ohop after editing, which further validates our1246

expectations.1247

We speculate that this result was achieved be-1248

cause our CoRE method uses multiple context sen-1249

tences to guide the model on which token of the1250

context it should focus for the newly edited knowl-1251

edge.1252

For GPT-J, we did not observe a significant dif-1253

ference in model behavior after editing, as the ACS1254

decreased across all methods. We speculate that1255

this phenomenon occurs because GPT-J is less pow-1256

erful than Llama3, making it less robust to model1257

editing. As a result, it loses its internal generality1258

after editing.1259

From this, we can conclude that the attention1260

score can be used to diagnose a model’s differences1261

after applying editing methods—not only in terms1262

of probability or generation efficacy but also in1263

understanding the model’s internal mechanisms.1264

F Implementation Details1265

All experiments are conducted on NVIDIA A1001266

GPUs. Model inference was performed using1267

vLLM (Kwon et al., 2023), while the probabilistic1268

experiments were carried out using HuggingFace.1269

F.1 Mass-Editing Memory In a Transformer1270

(MEMIT)1271

On Llama3 and Mistral, MEMIT hyperparameters1272

follow those used for Llama2-7b in the EasyEdit1273

open source code (Wang et al., 2024), as they share1274

similar architecture, size, and number of layers. Op-1275

timization updates are executed for 25 steps with a1276

weight decay of 1× 10−3, a KL factor of 0.0625,1277

and a learning rate of 5 × 10−1. Training is con-1278

ducted in fp32, while evaluation is performed in1279

fp16.1280

Following the same EasyEdit open source code1281

as described above, for GPT-J-6B the EasyEdit1282

hyperparameters are configured such that optimiza-1283

tion updates are carried out for 25 steps with a1284

weight decay of 0.5, a KL factor of 0.0625, and a1285

learning rate of 5× 10−1.1286

We further investigated the selection of layers1287

for editing. While earlier work (Meng et al., 2022b)1288

employed causal tracing to pinpoint optimal lay-1289

ers, later studies have shown that layers identified1290

by causal tracing do not always lead to the best1291

editing performance (Hase et al., 2023). Moti-1292

vated by these findings, we revisited the layer selec-1293

tion process by focusing on the early-to-mid layers.1294

Building on prior work (Gupta et al., 2024b; Yoon 1295

et al., 2024), we experimented with subsets con- 1296

sisting of 1, 2, 3, or 4 layers. For each subset, we 1297

evaluated performance based on three normalized 1298

metrics—Efficacy (no-context), General Ability, 1299

and N-gram Repetition—and computed an average 1300

score. This evaluation led us to select the following 1301

layers for editing: MEMIT: [3], Mistral-7b: [4, 5], 1302

and GPT-J: [2, 3, 4]. 1303

F.2 Context-Robust Editing (CoRE) 1304

For fairness, we use the same hyperparameters as 1305

those employed in MEMIT (see §F.1). Our method 1306

builds on these settings by incorporating an addi- 1307

tional regularization term. In this term, the layer 1308

range and the scaling factor—denoted as L and λ 1309

respectively in Equation 4—were determined via 1310

parameter search using the same approach as that 1311

employed for layer selection in MEMIT. 1312

In our experiments, we explored three configura- 1313

tions for the layer range: the 10 layers immediately 1314

following the edited layer, the 20 layers immedi- 1315

ately following it, and all layers until the end of the 1316

model. Specifically, for Llama3, the chosen config- 1317

uration was the 28 layers following the edited layer 1318

(layer 3) with a scaling factor of 0.04. For Mistral, 1319

the layer range comprised the 26 layers after the 1320

last edited layer (layer 5) with a scaling factor of 1321

0.1. For GPT-J, the layer range consisted of the 1322

26 layers following the last edited layer (layer 4) 1323

with a scaling factor of 0.0002. The scaling fac- 1324

tor was initially explored from 1, decrementing by 1325

0.1. For GPT-J, since no suitable parameter was 1326

found in the initially explored range, we further re- 1327

fined the search starting from 0.1 in decrements of 1328

0.01, and then from 0.01 in decrements of 0.0001. 1329

We observed a consistent trend: as the scaling fac- 1330

tor increased, the editing success in the no-context 1331

setting tended to decrease, while metrics such as 1332

General Ability and N-gram Repetition improved. 1333

F.3 Equality-contrained Mass Model Editing 1334

algorithm for Transformers (EMMET) 1335

On Llama3 and Mistral, EMMET hyperparameters 1336

follow those used for Llama2-7b in the EMMET 1337

open source code (Gupta et al., 2024b), as they 1338

share the similar architecture, size, and number of 1339

layers. Updates are executed at layer 5, where opti- 1340

mization proceeds for 25 steps with a weight decay 1341

of 1×10−3, KL factor of 0.0625, and learning rate 1342

of 5 × 10−1. EMMET applies an emmet lambda 1343
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Base
Model Method Efficacy Generali-

zation
Speci-
ficity

Average General Ability Average Fluency
No Context shop ohop o∗hop C-QA T-QA N-gram

GPT-J

Base 0.9 1.2 1.0 10.6 1.1 26.1 - 21.5 32.7 - 7.6

MEMIT 92.8 75.5 69.3 81.4 64.2 26.3 68.3 21.9 31.9 26.9 7.3
JEEP 84.9 74.7 70.5 82.3 63.9 27.2 67.3 20.8 31.0 25.9 7.1
PMET 90.4 81.2 76.6 86.9 70.4 26.8 72.1 20.0 31.9 25.9 7.3
EMMET 95.3 83.6 79.2 89.1 73.5 21.8 73.8 19.9 29.7 24.8 7.2
FT-M 32.9 26.4 24.2 23.3 17.0 12.3 22.7 19.2 5.9 12.6 60.5
CoRE-p 94.3 81.6 76.0 85.1 66.3 24.7 71.3 22.0 32.0 27.0 7.2
CoRE-p+r 93.8 81.5 76.7 85.2 68.7 24.8 71.8 21.9 32.0 26.9 7.1

Table 15: Results on GPT-J

Base Model Method Efficacy Generali-
zation

Speci-
ficity

Average General Ability Average Fluency
No Context C-QA T-QA N-gram

Llama3

Base 2.7 3.3 30.3 - 74.5 63.9 - 15.4

MEMIT 48.7 44.6 28.6 40.6 60.9 72.9 66.9 26.6
JEEP 29.9 19.5 23.8 24.4 73.3 59.0 66.1 27.2
PMET 43.5 29.2 29.4 34.0 73.1 60.9 67.0 24.7
FT-M 49.5 45.1 1.0 31.9 45.5 9.2 27.3 78.8
CoRE-p+l 50.0 46.0 30.2 42.1 61.1 73.2 67.1 26.6

Mistral

Base 1.4 2.0 23.0 - 71.5 62.5 - 4.8

MEMIT 40.2 35.4 20.8 32.2 59.4 68.9 64.2 5.4
JEEP 20.8 14.4 20.6 18.6 67.3 60.0 63.7 6.7
PMET 41.2 28.9 23.3 31.1 68.1 61.5 64.8 5.8
FT-M 48.9 38.2 10.4 32.5 71.3 51.9 61.6 16.6
CoRE-p+l 40.5 35.4 19.9 32.0 59.0 69.4 64.2 5.4

GPT-J

Base 1.2 0.7 2.9 - 21.5 32.7 - 7.6

MEMIT 55.0 37.4 3.5 32.0 32.3 21.2 26.7 8.8
JEEP 66.8 36.5 3.4 35.6 22.4 31.9 27.2 8.3
PMET 60.8 37.8 2.8 33.8 19.7 31.8 25.8 9.6
EMMET 59.6 31.2 2.3 31.0 21.0 18.0 19.5 8.9
FT-M 15.6 11.2 1.8 9.5 5.3 7.7 6.5 41.6
CoRE-p+l 53.1 36.7 3.8 31.2 32.0 22.5 27.2 9.4

Table 16: Reuslts on zsRE

of 0.1. Training is conducted in fp32, while evalu-1344

ation is performed in fp16.1345

Following the same EMMET open source code1346

as described above, for the EMMET hyperparame-1347

ters are configured such that updates are executed1348

at layer 5. Optimization is carried out for 25 steps1349

with a weight decay of 0.5, a KL factor of 0.0625,1350

and a learning rate of 5 × 10−1. Additionally, an1351

emmet lambda of 0.1 is applied.1352

.1353

F.4 Joint knowledge editing for information1354

Enrichment and probability Promotion1355

(JEEP)1356

JEEP hyperparameters follow those used for1357

Llama2-7b in the JEEP open source code (Shi1358

et al., 2024), as Llama3 and Mistral share the sim-1359

ilar architecture, size, and number of layers. Up-1360

dates are executed at layers low [5] and layers high1361

[22, 23, 24], where optimization proceeds for 301362

steps with a learning rate of 0.5. Weight decay1363

and KL factor are set differently for each layer1364

range: weight decay low is 0.5 with KL factor low 1365

of 0.0625, while weight decay high is 0.5 with KL 1366

factor high of 0. Training is conducted in fp32, 1367

while evaluation is performed in fp16. 1368

Based on the same open source code, hyper- 1369

parameters are configured to update lower layers 1370

[3, 4, 5, 6, 7, 8] and higher layers [15, 16]. Opti- 1371

mization proceeds for 30 steps with a weight decay 1372

of 0.5, a KL factor of 0.0625 for lower layers and 1373

0 for higher layers, and a learning rate of 5× 10−1. 1374

Additionally, a moment adjustment weight of 2000 1375

is applied across both layer ranges. 1376

F.5 Precise Model Editing in a Transformer 1377

(PMET) 1378

Similar to JEEP, PMET hyperparameters follow 1379

those used for Llama2-7b in the JEEP open source 1380

code (Li et al., 2023), as LLlama3 and Mistral share 1381

the similar architecture, size, and number of lay- 1382

ers. Updates are executed at layers [5, 6, 7, 8, 9, 10], 1383

where optimization proceeds for 20 steps with a 1384

weight decay of 0.5, KL factor of 1.0, and learning 1385
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rate of 0.1. PMET applies an NLL loss factor of1386

2.0. Training is conducted in fp32, while evalua-1387

tion is performed in fp16.1388

For , PMET hyperparameters are configured to1389

update layers [3, 4, 5, 6, 7, 8], where optimization1390

proceeds for 30 steps with a weight decay of 0.5,1391

KL factor of 1.0, and a learning rate of 2× 10−1.1392

PMET applies an NLL loss factor of 1.0. Addi-1393

tionally, a moment adjustment weight of 6000 is1394

applied. Training is conducted in fp32, while eval-1395

uation is performed in fp16.1396

F.6 FT-M1397

FT-M (Zhang et al., 2024b) improves upon the di-1398

rect fine-tuning approach (FT-L) by training the1399

same FFN layer, identified via causal tracing in1400

ROME, using cross-entropy loss on the target an-1401

swer with the original text masked.1402

FT-M hyperparameters follow those used in the1403

EasyEdit open source code (Wang et al., 2024).1404

Training is conducted in fp32, while evaluation is1405

performed in fp16. Updates are executed at layers1406

[21]. Optimization updates are performed over 251407

steps with a learning rate of 5× 10−4.1408

F.7 Models not used1409

We did not use MEND, the well-known hyper-1410

network-based knowledge editing method. In1411

Counterfact, MEND achieves a 1.8% generation1412

efficacy in the no-prefix setting and 1.0% in GPT-J.1413

However, it attains 51.5% and 47.2% in MEMIT’s1414

scoring method. This discrepancy arises because1415

the model evaluates metrics based on probabilities,1416

where when the new knowledge exceeds the origi-1417

nal knowledge, it is considered a success. In real-1418

ity, however, the model generates different words,1419

which indicates that the model is actually being1420

corrupted.1421

Similarly, we did not use the EMMET method1422

on Llama3, Mistral on the zsRE dataset. Llama31423

achieves only a 0.1% efficacy, despite scoring1424

57.7% in the previous efficacy calculations. Mistral1425

also achieves only a 0.0% efficacy, despite scoring1426

49.9% in the previous efficacy.1427
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ID Input Prompt & Gold Answers
0

[HUMAN: “The sanctions against the school were a punishing blow, and they seemed to what the
efforts the school had made to change? A. ignore B. enforce C. authoritarian D. yell at E. avoid
Answer:”]
BOT: “A”
HUMAN: “A revolving door is convenient for two direction travel, but it also serves as a security
measure at a what? A. bank B. library C. department store D. mall E. new york Answer:”
Gold Answer: A

1
[HUMAN: “The sanctions against the school were a punishing blow, and they seemed to what the
efforts the school had made to change? A. ignore B. enforce C. authoritarian D. yell at E. avoid
Answer:”]
BOT: “A”
HUMAN: “What do people aim to do at work? A. complete job B. learn from each other C. kill
animals D. wear hats E. talk to each other Answer:”
Gold Answer: A

2
[HUMAN: “The sanctions against the school were a punishing blow, and they seemed to what the
efforts the school had made to change? A. ignore B. enforce C. authoritarian D. yell at E. avoid
Answer:”]
BOT: “A”
HUMAN: “Where would you find magazines along side many other printed works? A. doctor B.
bookstore C. market D. train station E. mortuary Answer:”
Gold Answer: B

Table 17: Example of the CommonsenseQA dataset with 1-shot setting

ID Input Prompt & Gold Answers
0

[HUMAN: “Answer the question, your answer should be as simple as possible, start your answer
with the prompt ‘The answer is ’.
Q: Who was the man behind The Chipmunks??”]
BOT: “The answer is [‘David Seville’].”
HUMAN: “Answer the question, your answer should be as simple as possible, start your answer with
the prompt ‘The answer is ’.
Q: Who was the man behind The Chipmunks??”
Gold Answers: David Seville

1
[HUMAN: “Answer the question, your answer should be as simple as possible, start your answer
with the prompt ‘The answer is ’.
Q: Who was the man behind The Chipmunks??”]
BOT: “The answer is [‘David Seville’].”
HUMAN: “Answer the question, your answer should be as simple as possible, start your answer with
the prompt ‘The answer is ’.
Q: What star sign is Jamie Lee Curtis??”
Gold Answers: Scorpio, Skorpio, Scorpio (disambiguation)

2
[HUMAN: “Answer the question, your answer should be as simple as possible, start your answer
with the prompt ‘The answer is ’.
Q: Who was the man behind The Chipmunks??”]
BOT: “The answer is [‘David Seville’].”
HUMAN: “Answer the question, your answer should be as simple as possible, start your answer with
the prompt ‘The answer is ’.
Q: Which Lloyd Webber musical premiered in the US on 10th December 1993??”
Gold Answers: Sunset Blvd, West Sunset Boulevard, Sunset Boulevard, Sunset Bulevard, Sunset Blvd.

Table 18: Example of the TriviaQA dataset with 1-shot setting
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“case_id”: “6”,
“counterfact_id”: “6”,
“prompt”: “, that was created in”,
“subject”: “Anaal Nathrakh”,
“fact_knowledge”: “Birmingham”,
“edited_knowledge”: “Philadelphia”,
“relation_id”: “P740”,
“rephrased_prompt”: “In Wardha he came in close contact with Mahatma Gandhi. Anaal Nathrakh
was founded in”,
“locality_prompt”: “City of Birmingham Symphony Orchestra, that was created in”,
“locality_ground_truth”: “Birmingham”,
“sbj_hop_word”: [ “Back on Black Records”, “black metal”, “Season of Mist”, “Candlelight Records”,
“United Kingdom” ],
“obj_old_hop_word”: [ “Yvonne Mosquito”, “River Tame”, “Changchun”, “GBBHM”, “ West
Midlands” ],
“obj_new_hop_word”: [ “Darby”, “Jim Kenney”, “Riverton”, “USPHL”, “Lower Moreland Township”
],
“sbj_hop_sentence”: [ “The label was founded to support underground artists, Back on Black Records.”,
“This genre is characterized by its intense sound and themes, black metal.”, “The label expanded its
roster significantly over the years, Season of Mist.”, “Artists under this label have gained international
recognition, Candlelight Records.”, “The music scene in that area has a distinct identity, United
Kingdom.” ],
“obj_old_hop_sentence”: [ “Yvonne Mosquito first appeared in various documentaries discussing
tropical diseases.”, “Residents often enjoy the beauty of the River Tame throughout the year.”,
“Changchun is famous for its advanced automotive industry in Asia.”, “The recent events highlighted
the importance of GBBHM initiatives for urban development.”, “Numerous attractions can be found
in the West Midlands region.” ],
“obj_new_hop_sentence”: [ “The quaint town of Darby is known for its friendly community.”,
“Under Mayor Jim Kenney, the city has seen significant changes.”, “Located near the river, Riverton
offers beautiful waterfront views.”, “The USPHL provides a platform for aspiring hockey players to
showcase their talent.”, “Lower Moreland Township features several parks and recreational facilities.”
]

Figure 11: Example of the CHED-1
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“case_id”: “5644”,
“counterfact_id”: “5698”,
“prompt”: “ from”,
“subject”: “Ronan Keating”,
“fact_knowledge”: “Australia”,
“edited_knowledge”: “Bangladesh”,
“relation_id”: “P495”,
“rephrased_prompt”: “Track listing Chart References Category:2012 albums Category:Garou (singer)
albums Ronan Keating was developed in”,
“locality_prompt”: “The Slap, formulated in”,
“locality_ground_truth”: “Australia”,
“sbj_hop_word”: [ “songwriter”, “Boyzone”, “Westlife”, “voice”, “singer” ],
“obj_old_hop_word”: [ “Karuwali”, “Andajin”, “Nyamal”, “Dhungaloo”, “Avstralka” ],
“obj_new_hop_word”: [ “East Bengal”, “Dhaka Division”, “Usui”, “Oraon Sadri”, “bengalese” ],
“sbj_hop_sentence”: [ “A talented songwriter crafted lyrics that resonated with many listeners.”,
“Boyzone became famous for their emotional ballads and captivating performances.”, “Westlife
captured hearts with their harmonious melodies and stunning vocal arrangements.”, “Her voice
captivated everyone in the studio during the recording session.”, “As a singer, she expressed deep
emotions through her powerful performances.” ],
“obj_old_hop_sentence”: [ “Karuwali is celebrated for its vibrant festivals held throughout the year.”,
“Andajin residents often gather at the marketplace to share local news.”, “Nyamal stories highlight the
connection between the land and its people.”, “Dhungaloo offers breathtaking views that attract many
nature enthusiasts each season.”, “Avstralka has a diverse ecosystem that fascinates ecologists from
around the world.” ],
“obj_new_hop_sentence”: [ “The history of East Bengal is rich with cultural diversity and evolution.”,
“Dhaka Division is known for its vibrant markets and bustling streets.”, “In Japan, the art of Usui Reiki
promotes healing through energy exchange.”, “The Oraon Sadri community holds unique traditions
that reflect their heritage.”, “The Bengalese, known for their distinct language, contribute to the
region’s cultural tapestry.” ]

Figure 12: Example of the CHED-2
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