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ABSTRACT

Federated Unlearning (FU) aims to delete specific training data from an ML model
trained using Federated Learning (FL). We introduce QUICKDROP, an efficient
and original FU method that utilizes dataset distillation (DD) to accelerate un-
learning and drastically reduces computational overhead compared to existing ap-
proaches. In QUICKDROP, each client uses DD to generate a compact dataset rep-
resentative of the original training dataset, called a distilled dataset, and uses this
compact dataset during unlearning. To unlearn specific knowledge from the global
model, QUICKDROP has clients execute Stochastic Gradient Ascent with sam-
ples from the distilled datasets, thus significantly reducing computational over-
head compared to conventional FU methods. We further increase the efficiency
of QUICKDROP by ingeniously integrating DD into the FL training process. By
reusing the gradient updates produced during FL training for DD, the overhead
of creating distilled datasets becomes close to negligible. Evaluations on three
standard datasets show that, with comparable accuracy guarantees, QUICKDROP
reduces the duration of unlearning by 463.8⇥ compared to model retraining from
scratch and 65.1⇥ compared to existing FU approaches. We also demonstrate
the scalability of QUICKDROP with 100 clients and show its effectiveness while
handling multiple unlearning operations.

1 INTRODUCTION

The vast amount of data produced by computing devices is increasingly being used to train large-
scale ML models that empower industrial processes and personal experiences (Mahdavinejad et al.,
2018). However, this data is often privacy sensitive or very large in volume, making it prohibitively
expensive or impossible to upload it to a central server (Yang et al., 2019). To sidestep this issue,
federated learning (FL) is increasingly being applied to collaboratively train ML models in a privacy-
preserving manner (McMahan et al., 2017). FL obviates the need to move the data to a central
location by having participants only exchange model updates with a server. In each round, this
server aggregates all incoming trained models and sends the updated global model to participants.

Recent privacy regulations like the General Data Protection Regulation (GDPR) grant data owners
with the “right to be forgotten” (European Union, 2018). In the realm of ML, this requires orga-
nizations to remove the influence of this data on the trained model (Zhang et al., 2023). The latter
is called machine unlearning (Bourtoule et al., 2021). For instance, hospitals that collaboratively
trained a model using FL might have to unlearn particular data samples in response to patient re-
quests. However, the distributed nature of FL and the inability to access training data directly makes
federated unlearning (FU) a challenging task.

A naive way to unlearn particular samples is to retrain the model from scratch while omitting these
samples. As the model and data size increase, complete retraining quickly becomes prohibitively
expensive regarding the time and compute resources required. A more effective approach is to use
stochastic gradient ascent (SGA) on the samples being unlearned, i.e., optimizing in the direction
that maximizes the loss function (Wu et al., 2022). However, since SGA updates the entire model,
it also deteriorates the model performance on the remaining samples. Hence, this approach typi-
cally utilizes a recovery phase, which retrains on the remaining samples for a few rounds to restore
performance. While this method is more efficient than full retraining, the unlearning and recovery
phases are still computationally demanding when dealing with a large volume of training data.
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Figure 1: The workflow of QUICKDROP, our efficient unlearning method using distilled data.

This paper presents QUICKDROP, a novel FU approach that efficiently performs unlearning and re-
covery. QUICKDROP achieves this efficiency by harnessing dataset distillation (DD), a technique to
condense a large training dataset into a compact synthetic dataset that is orders of magnitude smaller
in volume (Wang et al., 2018). This synthetic dataset is generated such that it largely preserves the
features of the original training dataset. QUICKDROP then utilizes this compact dataset during the
unlearning and recovery phases. Figure 1 depicts the complete QUICKDROP workflow. Clients first
engage in regular FL training with their train dataset to collaboratively produce a trained model.
Each client also generates a compact synthetic dataset using DD. Upon receiving the initial unlearn-
ing request, the network executes unlearning rounds, during which each client performs SGA on
their local distilled dataset. The network then executes recovery rounds, during which they also use
the distilled data. The key to efficiency in QUICKDROP is the tiny volume of distilled data, resulting
in efficient downstream unlearning compared to when using the original datasets of clients.

The distilled datasets can be generated independently from the FL training as the distilled dataset be-
comes necessary only after training finishes. More specifically, by leveraging a recent DD technique
based on gradient matching (Zhao et al., 2021), QUICKDROP smartly re-uses the gradient updates
produced during FL training for DD, thus significantly reducing the overhead of the DD process.

Contributions. This paper makes the following three key contributions:

1. We introduce QUICKDROP, a novel and efficient federated unlearning approach that lever-
ages dataset distillation to unlearn specific knowledge from a trained model (Section 3).

2. To reduce the computational overhead of DD, we seamlessly integrate DD into FL by
reusing the gradient updates generated during FL training for creating distilled datasets
(Section 3.3).

3. We implement and open-source QUICKDROP, and evaluate its unlearning performance
in terms of efficiency and accuracy on three standard datasets (Section 4). We find that
QUICKDROP reduces the duration of class unlearning by 463.8⇥ compared to model re-
training from scratch and 65.1⇥ compared to state-of-the-art FU approaches.

2 BACKGROUND AND RELATED WORK

Federated Unlearning. Cao & Yang (2015) first propose the concept of machine unlearning (MU)
to eliminate the contribution of one specific training data sample from a well-trained model. Since
then, many other algorithms for machine unlearning have been introduced (Du et al., 2019; Ginart
et al., 2019; Guo et al., 2019; Golatkar et al., 2020a;b; Bourtoule et al., 2021). These works focus
mainly on unlearning knowledge from linear classification models, e.g., for logistic regression, but
are unsuitable for more complex models, e.g., deep neural networks. Some algorithms have other
restrictions and can only be applied to specific model architectures or scenarios, e.g., (Brophy &
Lowd, 2021) only fits random forests model and (Nguyen et al., 2020) is only for Bayesian learning.

Federated Unlearning FU is a MU technique where knowledge is removed from a trained model in a
distributed and collaborative manner. Generally, FU is more challenging than MU for the following
two reasons. First, the model aggregation of FL intertwines the information of all clients, making it
hard to identify and remove specific data samples. Secondly, client data is only available locally and
cannot be moved to a central server, therefore mandating active participation by clients to perform
unlearning. (Liu et al., 2021) propose FedEraser to achieve client-level unlearning, i.e., eliminating
the impact of data of one FL client from the FL global model. FedEraser reconstructs the global
model by utilizing all historical update gradients of clients stored in the server during training. The
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key idea here is to trade the additional storage cost for less computation cost (faster unlearning).
(Wang et al., 2022a) mainly focus on class-level unlearning; they measure the class discrimination
of channels in the model, i.e., the relevance of different classes on the model channel) and then
prune the most relevant channel of the target class to unlearn it. (Wu et al., 2022) proposed a more
general federated unlearning framework by inverse gradient ascent, which achieves unlearning on
class, client, and sample levels. However, this process remains inefficient, particularly when the
volume of data is large or when multiple unlearning requests need to be executed.

Dataset Distillation. The goal of DD is to replace a large training dataset with a significantly smaller
one that can substitute the original dataset during model training (Wang et al., 2018). DD can po-
tentially speed up downstream tasks such as continual learning (Hadsell et al., 2020) and neural
architecture search (Ren et al., 2021). QUICKDROP employs DD to speed up the unlearning process
significantly. Early DD approaches are based on coreset selection that identifies a subset of influen-
tial samples during training. Sample selection, for example, can aim to maximize diversity (Aljundi
et al., 2019), detect clusters of similar samples (Sener & Savarese, 2017), or identify individual sam-
ples that lead to high accuracy (Lapedriza et al., 2013). Another class of algorithms synthesizes a set
of new samples from the original dataset. The approach described in (Zhao et al., 2021) is to match
the gradients of a model trained on the original and synthetic data. Follow-up work has introduced
distillation techniques based on trajectory gradient matching (Cazenavette et al., 2022), differential
data augmentation functions (Zhao & Bilen, 2021), distribution matching (Zhao & Bilen, 2023) and
feature alignment (Wang et al., 2022b). Other work utilizes DD for one-shot FL, which significantly
reduces communication cost compared to multi-round FL (Song et al., 2023; Zhou et al., 2020).

3 DESIGN OF QUICKDROP

In this section, we first formally define our notation and problem setup. We then describe the un-
learning algorithm in Section 3.1. Section 3.2 describes how we leverage DD to unlock efficient
unlearning and presents the DD algorithm. Section 3.3 shows how QUICKDROP integrates DD with
FL training before summarizing end-to-end QUICKDROP in Section 3.4.

Problem Setup. We consider an FL system containing total N clients (e.g., mobile devices),
where each client i 2 N holds a local training dataset Di. The clients collaboratively train a global
FL model ✓ following a standard FL algorithm (e.g., FEDAVG (McMahan et al., 2017)). Once the
global model ✓ is trained, the federated server may receive an unlearning request for the subset Df .
We refer to Df as the forgetting dataset that needs to be unlearned from the global model ✓. The
characterization of Df defines the type of unlearning performed. For instance, when Df contains the
data of an entire class, we perform class-level unlearning, whereas when Df contains a single client’s
data, we perform client-level unlearning. We define a FU algorithm U as ✓f = U(✓, Df ), where
✓f is the unlearned model. Unlearning aims to obtain a model ✓f that is equivalent in performance
to a model trained only on the remaining dataset D\Df . In other words, the unlearning model ✓f
should achieve good performance on D\Df while showing poor performance on Df .

3.1 THE UNLEARNING ALGORITHM

When the server receives an unlearning request for Df , it initiates unlearning rounds that resemble
traditional FL training rounds. However, each client now performs SGA instead of regular SGD on
the portion of samples in Df . In each round, the server aggregates the models received from clients.
However, SGA training often introduces noise that affects the performance of remaining data (Wu
et al., 2022). This noise necessitates subsequent recovery rounds during which clients engage in
regular SGD training on the remaining data, i.e., D\Df . We refer to D\Df as the recovery set.
As we experimentally show later, this recovery phase rapidly restores the accuracy of the remaining
classes. The execution of an unlearning request, therefore, encompasses unlearning on Df and
recovery on D\Df , thus updating the model with the entire dataset. Therefore, this process remains
inefficient, in particular with high data volumes or in the presence of many unlearning requests.

3.2 DATASET DISTILLATION FOR EFFICIENT UNLEARNING

To significantly reduce the volume of data involved when executing an unlearning request, we utilize
DD to condense all critical information from the original training dataset into a significantly smaller
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synthetic or distilled dataset S. In our FL setting, each client i 2 N independently distills its local
dataset Di into Si such that |Si| ⌧ |Di|. The unlearning algorithm U can thus be modified as
✓f = U(✓, Sf ), where Sf is the counterpart of the unlearning dataset Df in the distilled dataset.
Since the distilled data is orders of magnitude smaller in volume, the unlearning task can be carried
out very efficiently.

QUICKDROP adopts the recent algorithm of Zhao et al. (2021) to perform dataset distillation on
each FL client. The primary reason for choosing this algorithm is the striking similarity of the
algorithmic structure to standard FL algorithms. As one of the main contributions in this paper, we
leverage this similarity to integrate the process of distilling data while training the FL model. This
in-situ distillation avoids expensive computational overheads of distilling data separately.

Dataset Distillation. Before describing the algorithm of Zhao et al. (2021), we first formalize
the task of DD. We adopt the DD formulation from Zhao et al. (2021). Suppose we are given a
training dataset D with |D| pairs of a training images and class labels D = {(xi, yi)}||D|

i=1 where
x 2 X ⇢ Rd, y 2 {0, . . . , C � 1}, X is a d-dimensional input space and C is the number of
classes. The goal is to learn a differentiable function � (i.e., a deep neural network) with parameters
✓ that correctly predicts labels of unseen images. One can learn the parameters of this function by
minimizing an empirical loss term over the training set:

✓D = argmin
✓

LD(✓) (1)

where LD(✓) = 1
|D|

P
(x,y)2D `(�✓(x), y) , `(·, ·) is a task-specific loss (i.e., cross-entropy) and

✓D is the minimizer of LD. The generalization performance of the obtained model �✓D can be
written as Ex⇠PD [`(�✓D (x), y)] where PD is the data distribution. The goal of DD is to generate a
small set of condensed synthetic samples with their labels, S = {(si, yi)}||S|

i=1 where s 2 Rd and
y 2 Y , |S|⌧ |D|. Similar to eq. (1), one can train � with these synthetic samples as follows:

✓S = argmin
✓

LS(✓) (2)

where LS(✓) = 1
|S|

P
(s,y)2S `(�✓(s), y) and ✓S is the minimizer of LS . The goal of DD is

to obtain S such that the generalization performance of �✓S is as close as possible to �✓D , i.e.,
Ex⇠PD [`(�✓D (x), y)] ' Ex⇠PD [`(�✓S (x), y)] over the real data distribution PD.

DD with Gradient Matching. The goal of obtaining comparable generalization performance by
training on the condensed data can be formulated in multiple ways. Zhao et al. (2021) formulate
the problem such that the model �✓S trained on S achieves not only comparable generalization
performance to �✓D but also converges to a similar solution in the parameter space (i.e., ✓S ⇡ ✓D).
This is achieved by matching gradients obtained over training and synthetic data over several time
steps, thereby making ✓S follow a similar path to ✓D throughout the optimization. Precisely, S is
obtained as minimizer of the following:

min
S

E✓0⇠P✓0
[
T�1X

t=0

d(r✓LS(✓t),r✓LD(✓t))] (3)

where d(.; .) is a function that measures the distance between the gradients for LS and LD w.r.t ✓.
Since deep neural are sensitive to initialization, the optimization in Equation (3) aims to obtain an
optimum set of synthetic images to generate samples that can work with a distribution of random
initializations P✓0 . At each time step, the synthetic data samples are updated by running a few local
steps of an optimization algorithm opt-alg (e.g., SGD):

S  opt-algS(d(r✓LS(✓t),r✓LD(✓t)), &S , ⌘S), (4)
where &S and ⌘S correspond to the number of steps and the learning rate. The model parameters are
then updated through the loss on the updated synthetic data:

✓t+1  ✓t � ⌘✓rLS(✓t) (5)
where ⌘✓ is the learning rate for the update. The gradient matching continues for T steps along the
optimization path, progressively improving the quality of S. This process is repeated for several ini-
tializations K drawn from P✓0 . Algorithm 1, adapted from (Zhao et al., 2021), shows the complete
distillation process.
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Algorithm 1: Dataset condensation with
gradient matching (Zhao et al., 2021).
Input: Randomly initialized synthetic samples

S, training dataset D, outer-loop steps
K, inner-loop steps T , steps for updating
synthetic samples &S in each inner-loop
step, learning rate ⌘✓ and synthetic
samples ⌘S .

1 for k = 0, · · · ,K � 1 do

2 —
3 Initialize ✓0 ⇠ P✓0

4 for t = 0, · · · , T � 1 do

5 Sample minibatch pairs BD ⇠ D
and BS ⇠ S

6 ComputerLD(✓t) on BD

7 ComputerLS(✓t) on BS

8 Update S using
d(rLD ,rLS) B eq. (4)

9 B Use the whole S
10 ✓t+1  ✓t � ⌘✓rLS(✓t)

11 —
Output: S

Algorithm 2: Integrating DD with FL train-
ing. Lines for FL are shown in purple.
Input: Randomly initialized synthetic samples

{Si}Ni=1, training datasets {Di}Ni=1, FL
global rounds K, local update steps T ,
steps for updating synthetic samples &S
in an inner-loop step, learning rate ⌘✓
and synthetic samples ⌘S .

1 for k = 0, · · · ,K � 1 do

2 for each client i = 1, · · · , N in parallel do

3 Initialize ✓i
0  ✓k

4 for t = 0, · · · , T � 1 do

5 Sample minibatch pairs BDi ⇠ Di

and BSi ⇠ Si

6 ComputerLDi(✓i
t) on BDi

7 ComputerLSi(✓i
t) on BSi

8 Update Si using
d(rLDi ,rLSi) B eq. (4)

9 B Reuse the above gradient
10 ✓i

t+1  ✓i
t � ⌘✓rLDi(✓i

t)

11 ✓k+1  
PN

i=1
|Di|
|D| ✓

i
T

Output: {Si}Ni=1,✓K

3.3 INTEGRATING DD WITH FL TRAINING BY RE-USING GRADIENTS

Producing good-quality synthetic data that can reliably be used as a substitute for the training data
requires many local update steps. Thus, DD is computationally expensive. To reduce this overhead,
we integrate the DD process with FL training such that clients reuse the gradient updates computed
during FL training to perform DD. We achieve this by exploiting the algorithmic similarity of Zhao
et al. (2021) (Algorithm 1) with standard FL algorithms. Algorithm 2 shows how QUICKDROP
integrates DD with FL training, with the key differences from Algorithm 1 colored in red.

The outer loop of Algorithm 1 corresponds to global rounds in FL (line 1), while the inner loop
corresponds to the local update steps in FL (line 4). The random initialization of model parameters
in DD is substituted with initialization to the global model parameters received from the server in
round k (line 3). A main difference between Algorithm 1 and 2 is that Algorithm 1 distills using
K randomly initialized models, whereas Algorithm 2 only uses a single initialized model. This
still works for unlearning as we do not prioritize generalization across different initializations in
QUICKDROP. Our goal is instead to create a synthetic dataset with which can be utilized to unlearn
knowledge from a model that was trained with a specific initialization. Clients generate gradients
on mini-batches of their original training data to perform local updates (line 6). QUICKDROP effec-
tively utilizes these gradients to update the synthetic data by matching the gradients computed on
local synthetic data (lines 7-8). Finally, the model update step on synthetic data in DD is substituted
by the local update, which the client performs for FL training (line 10). The federated server aggre-
gates the received models before commencing the next round (line 11). Thus, QUICKDROP exploits
gradients from FL training to efficiently generate distilled data for downstream unlearning. We note
that the algorithm in Zhao et al. (2021) proposes a class-wise gradient matching which performs
better than random batches. We also utilize it in QUICKDROP but omit from the pseudo code for
presentation clarity.

Fine-Tuning distilled data. As the FL model training approaches convergence, the magnitude of
gradients computed on both the training data and the synthetic data approaches zero. This prevents
the synthetic data from being updated, resulting in slightly lower quality samples than when per-
forming DD independently of FL. Therefore, to match the performance of independent DD, we let
clients conduct additional fine-tuning steps to further improve the quality of their synthetic data. In
this fine-tuning phase, QUICKDROP clients perform Algorithm 1 on their synthetic data.

3.4 END-TO-END WORKFLOW OF QUICKDROP

Finally, we summarize the end-to-end workflow of QUICKDROP, which is also depicted in Fig-
ure 1. Clients initially train a global model via FL while also conducting dataset distillation (DD)
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to generate distilled datasets. For this, we use the integrated DD approach based on gradient match-
ing described in Sections 3.2 and 3.3. The quality of the distilled dataset can be improved using
fine-tuning. The distilled dataset is then employed for unlearning and recovery, also see Section 3.1.

Mixing original data samples. Clients also utilize the distilled dataset for the recovery phase. In
our experiments, we observed that while using distilled data works well for unlearning, it slightly
hurts the achieved performance in the recovery phase as the distilled samples are not a perfect
representation of the original datasets. We found that even including a few original samples into the
distilled datasets can nullify this performance drop. Thus, clients in QUICKDROP perform recovery
on the merged dataset comprising distilled data and a few original samples.

4 EVALUATION

We evaluate QUICKDROP and compare its efficiency and performance with state-of-the-art FU base-
lines. We first describe the experimental setup and then show the unlearning performance of QUICK-
DROP, the computational efficiency of our integrated FL and DD approach, the impact of additional
fine-tuning steps, and finally the scalability of QUICKDROP with 100 clients.

4.1 EXPERIMENTAL SETUP

We evaluate the performance of QUICKDROP on three standard image classification datasets:
MNIST (LeCun, 1998), CIFAR-10 (Krizhevsky et al., 2009), and SVHN (Netzer et al., 2011). For
all datasets, we use a ConvNet as the deep neural network backbone (Gidaris & Komodakis, 2018).
All experiments are conducted on a machine equipped with an i9-10900K CPU and an RTX 3090
GPU. All source code is available online. Link omitted due to double-blind review.

Federated Learning. To generate heterogeneous client local datasets, we adopt the Dirichlet distri-
bution based approach from several previous works (Hsu et al., 2019; Zhu et al., 2021). The degree
of non-IIDness is controlled by a parameter ↵ 2 [0,1), with lower values corresponding to more
heterogeneity. In this section, we fix ↵ = 0.1 which is highly non-IID, and show experiments with
IID distributions in Appendix B. We conduct all experiments in this section with ten clients, and we
quantify the scalability of QUICKDROP with 100 clients on the SVHN dataset in Section 4.5. We
use a full client participation in each round and train for 200 global rounds (i.e., K = 200), sufficient
to reach convergence. All other FL-related hyper-parameters follow McMahan et al. (2017).

Dataset Distillation. We initialize the synthetic samples {Si}Ni=1 as randomly selected real training
samples from the original local client dataset. We found this to be more effective in our setting
than when initializing these samples from Gaussian noise. We use the same distance function d for
gradient matching as in Zhao et al. (2021). Our evaluation mainly focuses on class-level unlearning
and shows extensive evaluations comparing QUICKDROP to state-of-the-art baselines. Throughout
this section, we refer to the class(es) being unlearned as target class(es). However, we note that
QUICKDROP also supports client-level unlearning, which we experimentally show in Appendix C.

To guarantee that the distribution of the distilled dataset of each client reflects their original dataset
distribution, we scale the number of distilled samples for each class for different clients by a factor
s (i.e., distillated sample size per class = original data size per class

s ). For any class with a distilled sample
size of zero after scaling, we will round it up to 1 to ensure that this class has at least one distilled
sample. We fix s = 100 for all experiments, which we found to yield a reasonable balance between
efficiency and effectiveness. All other DD-related hyper-parameters follow Zhao et al. (2021).

Baselines. We compare the performance of QUICKDROP to the following three baselines:

1. RETRAIN-OR: This baseline retrains a model from scratch with FL using the original
dataset minus the forgetting dataset.

2. SGA-OR: This baseline performs SGA using the original dataset (Wu et al., 2022). When
the deletion request of a target class arrives, every involved client executes SGA on the data
of the target class it owns to unlearn the contribution of the target class in the model.

3. FU-MP: This baseline uses model pruning by first measuring the class discrimination of
channels in the model (i.e., the relevance of different classes on the model channel) and
then prunes the most relevant channel of the target class to unlearn it (Wang et al., 2022a).
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All reported testing accuracies are the Top-1 accuracy achieved on the testing data of each dataset.
We turn off fine-tuning for all experiments (F = 0), except for the experiments reported in Sec-
tion 4.4. For all experiments with QUICKDROP, we perform a single round of unlearning and two
rounds for recovery, which we found to be the minimum for the model to sufficiently unlearn par-
ticular knowledge and restore the performance of the remaining classes. Doing more unlearning
rounds would introduce noise into the model and lower the accuracy of the remaining classes, mak-
ing it more difficult to recover them later. We run each experiment five times and average all results.
Additional notes on the experimental setup and parameters can be found in Appendix A.

4.2 PERFORMANCE EVALUATION ON A SINGLE UNLEARNING REQUEST
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Figure 2: The testing accuracy for all
classes with CIFAR-10 when unlearning
class 9 and recovering the accuracy of the
other classes with QUICKDROP.

Unlearning a Single Class. We first quantify the
change in testing accuracy of target and non-target
classes after the unlearning and recovery stages, using
the CIFAR-10 dataset and 10 clients. The network col-
laboratively unlearns from the model the knowledge
corresponding to class 9 (digit “9”) by performing one
round of unlearning and two rounds of recovery. Fig-
ure 2 shows the testing accuracy for each class over
time in different colors when unlearning with QUICK-
DROP. When QUICKDROP starts the unlearning stage,
we observe a rapid accuracy drop on the target class
while the accuracy of non-target classes decreases as
well. This is because SGA introduces some noise that
affects non-target classes, even though the model pa-
rameters changed by SGA are mainly for unlearning
the knowledge of the target class. The recovery stage that starts at round 3, therefore, restores the
accuracy of non-target classes by training the global model on all distilled data of the remaining
classes using stochastic gradient descent (SGD). Figure 2 shows that the accuracies of non-target
classes after two recovery rounds are almost restored to their original values.

Testing Accuracy. Next, we compare the testing accuracy of QUICKDROP with our baselines on
CIFAR-10 when unlearning a single class. Table 1 shows the testing accuracy on the F-Set and R-Set
for different FU approaches and after each stage (unlearning and recovery). The F-Set is the set of
samples being unlearned, and the R-Set is comprised of all other samples. Ideally, any FU approach
should achieve near-zero testing accuracy on the F-Set after unlearning. We remark that there is
no recovery stage for RETRAIN-OR. Table 1 shows that, after the unlearning stage, all approaches
effectively eliminate the knowledge of the target class in the model as the F-Set testing accuracy
is near zero (0.85% for QUICKDROP). After recovery, SGA-OR and FU-MP restore the accuracy
of the R-Set close to the values achieved with RETRAIN-OR. The accuracy of QUICKDROP after
recovery, 71.98%, is lower than that of the baselines. This is because the synthetic samples generated
do not represent the original dataset perfectly. However, additional fine-tuning of distilled datasets
can close this gap, at the cost of additional computation (see Section 4.4). Nonetheless, we conclude
that QUICKDROP effectively unlearns data samples with minimal impact on the remaining samples.

Computation Efficiency. Table 1 also shows the computational cost for unlearning and recovery in
terms of rounds, time required, and data samples involved in executing these rounds. We observe
significant differences in computation cost between different FU approaches. Since DD reduces
the number of samples for each client used during unlearning, the unlearning stage (one round) in

Stage Unlearning Recovery
Testing Accuracy Computation Cost Testing Accuracy Computation Cost

FU approach F-Set R-Set Round Time (s) Data Size F-Set R-Set Round Time (s) Data Size
QUICKDROP 0.82% 37.68% 1 5.03 100 0.85% 70.48% 2 10.58 900
RETRAIN-OR 0.81% 74.95% 30 7239.58 45 000 — — — — —

SGA-OR 0.75% 48.69% 2 495.17 5000 1.03% 74.83% 2 551.33 45 000
FU-MP 0.12% 11.58% 1 61.36 50 000 0.09% 73.96% 4 953.62 45 000

Table 1: The test accuracy and computation cost of QUICKDROP and FU baselines on the CIFAR-10
dataset, with non-IID data distributions (↵ = 0.1) and in a 10-client network.

7



Under review as a conference paper at ICLR 2024

QUICKDROP only takes 5.03 s, and 10.58 s in the recovery stage; both stages are completed in just
15.61 s. This efficiency is because a round of unlearning and recovery with QUICKDROP only in-
volves 100 and 900 data samples, respectively. Although SGA-OR only needs two rounds to unlearn
a target class adequately, it takes 247.58 s to complete a round as completing this round updates the
model with all clients’ original data (5000 data samples in the unlearning stage and 45 000 samples
in the recovery stage). While RETRAIN-OR is the simplest method with high testing accuracies
after unlearning, its computational time renders this approach infeasible in many scenarios, which
is 1447⇥ higher than QUICKDROP and 14⇥ higher than SGA-OR. We note that FU-MP employs
a different technique, model pruning, than the other approaches in its unlearning stage, while the
recovery stage is the same as others. Since model pruning only depends on information obtained
from inference, which can be done relatively quickly, the time to complete a single round (61.36 s)
is relatively small compared to SGA-OR (247.58 s), but its gap with QUICKDROP (5.03 s) is still
significant. From Table 1 we conclude that QUICKDROP achieves quick unlearning and recovery
using only a few data samples and with little computational overhead.

QUICKDROP is not only suitable for efficient unlearning but can also be applied for efficient relearn-
ing when the deleted knowledge is needed again. We use the distilled datasets to relearn particular
samples and present experiments showing the performance of unlearning in Appendix B.

Stage Unlearning Recovery

FU approach F-Set R-Set F-Set R-Set

QUICKDROP 0.93% 53.39% 0.81% 71.62%
RETRAIN-OR 0.37% 77.25% — —

SGA-OR 0.68% 65.71% 0.72% 74.21%
FU-MP 0.79% 37.68% 0.94% 72.56%

Table 2: The membership inference attack (MIA)
accuracy of all baselines in different stages.

Membership Inference Attack. We conduct a
membership inference attack (MIA) on the un-
learned model to further assess the effective-
ness of unlearning with QUICKDROP, which
follows related work on MU Chen et al. (2021).
The MIA aims to determine whether a partic-
ular sample is included in the model’s knowl-
edge. We implement the MIA according to the
settings in Golatkar et al. (2021) and measure
how often the attack model will classify a data
sample from deleted data as a training sample of the unlearning model. Table 2 shows these MIA
accuracies of different methods and stages. The performance of RETRAIN-OR can be considered
optimal since the produced model has never seen the unlearned samples. We find that for all ap-
proaches, the MIA accuracy on the F-Set after the unlearning stage is below 1%. The MIA accuracy
on the R-Set for evaluated FU approaches show similar trends as the values observed in Table 1, i.e.,
QUICKDROP shows a slightly lower MIA accuracy on the R-Set compared to the other baselines.

4.3 THE PERFORMANCE OF QUICKDROP WITH SEQUENTIAL UNLEARNING REQUESTS

In real-world settings, clients may continually launch multiple, sequential unlearning requests.
Therefore, we go beyond existing work on FU and evaluate the performance of QUICKDROP with
sequential unlearning requests. Figure 3 shows the accuracies when sequentially unlearning all ten
CIFAR-10 classes in random order. We observe that the accuracy of a target class drops to near
zero after the unlearning phase for that target class ends, illustrating the effectiveness of QUICK-
DROP in handling sequential unlearning requests. The accuracies of non-target classes also drop
after the unlearning stage, which is due to the noise introduced by SGA. In the subsequent recovery
stages, QUICKDROP rapidly recovers the accuracies of remaining classes by training on the distilled
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Figure 3: The testing accuracy for each class on sequential unlearning requests with CIFAR-10 and
↵ = 0.1. We unlearn a random class every five rounds and highlight the learning and recovery stages
in blue and orange, respectively. The class unlearning order is [5, 8, 0, 3, 2, 4, 7, 9, 1, 6].
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datasets while leaving the low accuracy of the unlearned classes unaffected. Therefore, Figure 3
shows the capability of QUICKDROP in executing multiple unlearning requests. In particular situa-
tions, the network can process multiple unlearning requests in parallel. We discuss this optimization
in Appendix D.

4.4 DATASET DISTILLATION AND ADDITIONAL FINE-TUNING
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Figure 4: The testing accuracy on the R-Set af-
ter recovery (left) and gradient steps on original
data (right) when doing additional fine-tuning.

As discussed in Section 3.2, integrating DD into
FL lowers the quality of the distilled dataset com-
pared to when conducting FL and DD separately.
To offset this, QUICKDROP allows clients to per-
form additional fine-tuning steps (F ) by execut-
ing Algorithm 1. Figure 4 (left) shows the test-
ing accuracy of QUICKDROP on the R-Set after
the recovery stage when doing more fine-tuning
(i.e., increasing F from 0 to 200). We also show
the testing accuracy reached when separately per-
forming DD and FL (74.78%), which we consider
as an optimal baseline with a dashed horizontal
line. We observe an increase in accuracy as F in-
creases: from 70.48% with F = 0 to 74.55% with F = 200. More fine-tuning, however, comes at
the cost of additional computation. Figure 4 (right) shows the number of gradient steps performed
on the original dataset as F increases. This figure marks the portion of gradients we re-use for FL
and DD in orange, which indicates the savings in computation by integrating DD and FL. When per-
forming FL and DD separately, we require 25 000 gradient steps on the original dataset (indicated
by a dashed line). However, when integrating FL and DD, we only need 10 000 gradient steps on
the original dataset with F = 0, and we can re-use all these gradients for DD. With F = 200, this
number increases to 20 000.

4.5 PERFORMANCE AND EFFICIENCY OF QUICKDROP IN LARGER NETWORKS

Stage Unlearning Recovery

Baseline F-Set R-Set F-Set R-Set

QUICKDROP 0.72% 58.57% 0.81% 84.96%
RETRAIN-OR 0.34% 88.39% — —

SGA-OR 0.53% 52.48% 0.66% 86.47%
FU-MP 0.58% 39.46% 0.73% 85.63%

Table 3: Testing accuracy of different FU ap-
proaches with 100 clients and the SVHN dataset.

Finally, we analyze the unlearning performance
of QUICKDROP and other baselines in a 100-
client network and with the SVHN dataset.
SVHN is a large dataset containing more than
600 000 samples and 10 classes. In each round,
the server selects a random 10% subset of
clients to update the model. Table 3 shows for
each approach and stage the testing accuracy
on the F-Set and R-Set when unlearning class
9. Even with 100 clients, QUICKDROP effec-
tively unlearns class knowledge, and the accuracy after the unlearning stage on the F-set is just
0.72%. Compared to other baselines, QUICKDROP shows good testing accuracy after the recovery
stage on the R-Set, even with more clients and samples in the training dataset. Additional fine-tuning
steps can further reduce this gap. We also observe that QUICKDROP executes a complete unlearn-
ing request 475.2⇥ faster than RETRAIN-OR, highlighting the superior advantage in computation
efficiency stemming from dataset distillation.

5 CONCLUSION

In this paper, we introduced QUICKDROP, a novel and efficient federated unlearning method that
incorporates dataset distillation to address the challenges of erasing data from a trained ML model.
QUICKDROP has clients produce and use a compact, distilled dataset that drastically reduces com-
putational overhead during the unlearning and recovery phases. QUICKDROP elegantly combines
the gradient matching DD and FL processes, allowing for gradient reuse and thereby further reduc-
ing computational overhead. Empirical evaluations on three standard datasets confirmed the effec-
tiveness and efficiency of QUICKDROP, demonstrating a remarkable acceleration in the unlearning
process compared to existing federated unlearning approaches.

9
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REPRODUCIBILITY STATEMENT

We have undertaken several steps to ensure the integrity, reproducibility and replicability of QUICK-
DROP. We have provided an extensive description of the proposed QUICKDROP in the main text,
specifying its workflow in Figure 1, its theoretical formulation in 3 and the integration with Zhao
et al. (2021) in Algorithm 2. To facilitate the reproducibility of the experimental results, the com-
plete source code used for the evaluation of QUICKDROP will be made publicly available and a link
will be added in the final paper version. We have used publicly available ML models and datasets.
The details provided in Section 4, as well as the information provided in Section A, should be suf-
ficient to reproduce our results. We believe that these efforts will aid researchers in understanding,
replicating, and building upon QUICKDROP.
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