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Abstract

Naturality of long-term information structure001
– coherence – remains a challenge in language002
generation. Large language models have insuf-003
ficiently learned such structure, as their long-004
form generations differ from natural text in005
measures of coherence. To alleviate this di-006
vergence, we propose coherence boosting, an007
inference procedure that increases the effect008
of distant context on next-token prediction.009
We show the benefits of coherence boosting010
with pretrained models by distributional anal-011
yses of generated ordinary text and dialog re-012
sponses. We also find that coherence boosting013
with state-of-the-art models for various zero-014
shot NLP tasks yields performance gains with015
no additional training.016

1 Introduction017

Language models are commonly evaluated for their018

ability to generate, rank, or classify coherent spans019

of text. However, LMs learn from data that may020

violate pragmatic norms. In addition, autoregres-021

sive LMs are typically fit to a multi-objective prob-022

lem: simultaneously maximizing token likelihoods023

conditioned on many lengths of truncated context024

(§2.1). Yet, at generation or scoring time, distri-025

butions are conditioned on the entire prompt or026

previously generated string, which is known to be027

coherent or even guaranteed to influence the output.028

We show that large LMs, such as GPT-2 and -3029

(Radford et al., 2019; Brown et al., 2020) exhibit030

failures in long-range coherence (Fig. 1). Samples031

from these LMs have an unnaturally low density of032

words that require many tokens of preceding con-033

text to predict (§4.1), and the scores that the models034

give to completions of prompts indicate that they035

are oversensitive to recent context (§5). To remedy036

these failures, we propose coherence boosting, a037

simple inference-time procedure that increases the038

effect of distant words on predicted token distribu-039

tions. A pretrained model is viewed as an ensemble040

of experts that produce token distributions condi- 041

tioned on varying lengths of context. These experts 042

are log-linearly mixed to form a predictor that is 043

superior to the base model (§2). 044

Coherence boosting greatly improves prediction 045

of words that depend on a long context, as evi- 046

denced by state-of-the-art results on tasks specially 047

meant to assess models’ attention to distant words 048

(§3). In generation of generic text and dialog re- 049

sponses, we show that coherence boosting brings 050

the frequency of occurrence of such words close 051

to that seen in natural text (§4). Beyond genera- 052

tion, we study diverse multiple-choice tasks (§5), 053

in which examples are known to be highly coher- 054

ent. Coherence boosting does not modify the base 055

model and depends on a single parameter than can 056

be estimated in one pass through a validation set, 057

yet is an competitive adaptation algorithm. 058

1.1 Background and related work 059

Balance between satisfaction of short-range sta- 060

tistical constraints and maintenance of long-range 061

structure was a central question of language gen- 062

eration long before neural language modeling: =- 063

gram models and early neural language models 064

commonly used ‘backing-off’ schemes that adap- 065

tively assign interpolation weights to predictors 066

with different context lengths (Chen and Goodman, 067

1996; Bengio et al., 2003). Neural language model- 068

ing brought a need for recurrent units with better 069

numerical properties for propagating information 070

over long distances (Hochreiter and Schmidhuber, 071

1997; Cho et al., 2014) and eventually saw the rein- 072

troduction of alignment variables (Brown et al., 073

1993) into generation in the form of attention (Bah- 074

danau et al., 2015; Vaswani et al., 2017). Attention 075

is at the core of Transformer LMs, including GPT. 076

Language models are being trained on and 077

adapted to ever-longer input sequences (Beltagy 078

et al., 2020; Zaheer et al., 2020; Roy et al., 2021; 079

Press et al., 2021), but they remain undersensi- 080
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A: I’m Natasha. I study neural language models and dialog systems. Are you an AI researcher too?
B: No, though I do like chatting with bots and laughing at their mistakes. But what was your name again?
A: Oh, you forgot already? My name is w

?full = 5 (w | full) 1. Alex (1.9%) 2. Natasha (1.7%) 3. also (1.5%)
?short = 5 (w | short) 1. : (3.4%) 2. the (1.9%) 3. in (1.2%) . . . 3358. Natasha (0.0042%)

?1.5
full?

−0.5
short 1. Natasha (20.5%) 2. Alex (2.2%) 3. Nat (2.1%)

Ballad metre is “less regular and more conversational” than common w

?full = 5 (w | full) 1. sense (9.0%) 2. in (2.0%) 3. . (1.9%) . . . 13. metre (0.6%)
?short = 5 (w | short) 1. sense (7.8%) 2. English (3.5%) 3. . (3.2%) . . . 14103. metre (0.00014%)

?1.5
full?

−0.5
short 1. metre (16.2%) 2. sense (4.0%) 3. meter (2.5%)

Isley Brewing Company: Going Mintal – a minty milk chocolate w

?full = 5 (w | full) 1. bar (4.8%) 2. drink (3.7%) 3. with (3.5%) . . . 13. stout (2.7%)
?short = 5 (w | short) 1. bar (6.9%) 2. that (5.7%) 3. , (4.4%) . . . 60. stout (0.23%)

?1.5
full?

−0.5
short 1. stout (7.4%) 2. ale (5.6%) 3. bar (3.1%)

Other times anxiety is not as easy to see, but can still be just as w

?full = 5 (w | full) 1. important (5.6%) 2. bad (4.6%) 3. debilitating (4.3%)
?short = 5 (w | short) 1. effective (16.2%) 2. good (7.4%) 3. useful (3.9%) . . . 294. debilitating (0.035%)

?1.5
full?

−0.5
short 1. debilitating (17.6%) 2. real (6.0%) 3. severe (5.8%)

Figure 1: Next-token probabilities given by LMs (DialoGPT and GPT-2) conditioned on a long context and on a
partial context. The top words in both distributions are incorrect, but a log-linear mixture of the distributions makes
the correct word most likely. Sampling from such a mixture at each generation step (coherence boosting) improves
the quality of output text (§4). (Dialog example written by the authors; other examples from OpenWebText.)

tive to distant content or syntax (Khandelwal et al.,081

2018; Sun et al., 2021) and are easily fooled by re-082

cency bias in few-shot prompts (Zhao et al., 2021)083

or multi-turn conversations (Sankar et al., 2019).084

Recent work has continued to study inference-085

time procedures that prevent text sampled from086

LMs from degenerating into nonsense. Most of087

these procedures, such as tempered sampling and088

top-:/top-? truncation (Fan et al., 2018; Holtzman089

et al., 2019), independently modify the output dis-090

tribution at each generation step to decrease its091

entropy and diminish its low-likelihood tail. Holtz-092

man et al. (2019) and Meister and Cotterell (2021)093

found that such local modifications increase the094

quality of long generated sequences; we adopt and095

extend their methodology in §4.1.096

For dialog systems, Li et al. (2016) propose a097

decoding scheme that maximizes a mutual infor-098

mation criterion, which explicitly optimizes for099

dependence of generated text on prompts – a spe-100

cial case of coherence boosting. In multiple-choice101

tasks, where a model must choose one of several102

given completions of a prompt, Brown et al. (2020)103

observe that selecting the completion that maxi-104

mizes ?(completion|prompt) often favors comple-105

tions having high unconditional likelihood (likeli-106

hood following an empty or dummy prompt) and, 107

for some tasks, chooses to divide the scores of can- 108

didate answers by their unconditional likelihoods. 109

This is also a special case of coherence boosting. 110

Such scoring modifications are more thoroughly 111

studied by Zhao et al. (2021); Holtzman et al. 112

(2021). The latter attributes the problem to ‘sur- 113

face form competition’: there are many variants of 114

the correct completion that together may capture a 115

large part of probability mass, but the form of the 116

given answer choice alone is not the most likely. 117

However, we show that other causes are at play: 118

surface form competition is impossible when the 119

completion is known to be a single token and the 120

range of choices is the whole vocabulary (§3), and 121

it is not applicable to open-ended generation (§4). 122

2 Coherence boosting 123

In this section, 5 is an autoregressive LM over a 124

vocabulary + with learnable parameters \, taking 125

as input a variable number of tokens (up to a maxi- 126

mum context length ") and producing a vector of 127

next-token likelihoods: 128

5 (F1, . . . , F=; \) ∈ Δ(+), F1, . . . , F= ∈ +, 129
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where Δ(+) is the probability simplex over + . We130

will write the F-th component of this output vector131

as a conditional likelihood, 5 (F | F1, . . . , F=; \).132

We denote by 5: the model evaluated on only133

the last : input tokens, ignoring earlier tokens:134

5: (F1, . . . , F=; \) := 5 (F=−:+1, . . . , F=; \).135

Coherence boosting for next-token prediction.136

Coherence boosting for a model 5 selects real-137

valued weights " = (U1, U2, . . . , U" ) and pro-138

duces a new language model 5", defined by139

5" (F1, . . . , F=; \)140

:= softmax

(
"∑
:=1

U: log 5: (F1, . . . , F=; \)
)
, (1)141

where log is taken element-wise, or, equivalently,142

5" (F |F1, . . . , F=; \) ∝
"∏
:=1

5: (F |F1, . . . , F=; \)U: .143

This is a weighted product-of-experts model, where144

the ‘experts’ are copies of the base model 5 evalu-145

ated on different context lengths.146

Because evaluating 5 is expensive, we use sparse147

weights ", as the expression (1) depends only on148

those 5: for which U: ≠ 0. In Fig. 1 and in the ex-149

periments, we allow " to have only two nonzero en-150

tries: when computing likelihoods of words follow-151

ing a sequence of length =, we consider weighted152

products of 5max := 5= (the full context) and an 5:153

with : ≤ = (a short context, either of fixed length154

or decided by prompt structure as in §4.2).155

As its name suggests, coherence boosting resem-156

bles log-linear boosting for multiclass classification157

(Friedman et al., 2000). However, our weak classi-158

fiers are pretrained and share all of their parameters,159

not obtained by an iterative procedure of training on160

reweighted data, and we permit negative weights.161

Coherence boosting for answer selection. In162

multiple-choice problems, a LM must choose the163

best answer following a context, which consists of164

a premise or passage followed by a shorter premise-165

free context (either a short phrase, such as “An-166

swer:”, that incites the LM to generate an answer167

in the right format, or a hypothesis that depends on168

the premise). The full context is the concatenation169

of the premise and the premise-free context (§C).170

By the autoregressive factorization, the model171

5 assigns conditional likelihoods to sequences of172

tokens following context. A typical model for an- 173

swer selection ranks the candidate answers 08 (se- 174

quences of tokens) by 5 (08 | full context; \) and 175

outputs the highest-ranked 08 . Coherence boosting 176

chooses a parameter U and ranks the choices by: 177

log 5 (08 | full context; \) + 178

+ U log 5 (08 | premise-free context; \). (2) 179

This is a log-linear combination of two models: 5 180

evaluated with full context and with a partial con- 181

text. When U = 0, ranking by (2) is equivalent to 182

ranking by the base model. When U = −1, it is 183

equivalent to dividing the base model’s score by 184

the score of each answer conditioned on the prompt 185

(short context), and thus to maximizing pointwise 186

mutual information between the premise and the an- 187

swer conditional on the premise-free context. Un- 188

like Brown et al. (2020); Holtzman et al. (2021), 189

our formulation allows the premise-free context to 190

include information specific to the example, not 191

only a domain-specific dummy prompt. 192

We expect coherence boosting to correct for an 193

oversensitivity to the premise-free context, and thus 194

the optimal U will typically be negative (see §5). 195

2.1 Why should boosting models be better 196

than full-length predictors? 197

Multi-objective training. As we will now see, 198

the training of the model 5 simultaneously fits all of 199

the predictors 5: , which share parameters \. Each 200

training iteration samples a sequence (or batch of 201

sequences) of a chosen maximum length " + 1 202

from the data distribution D and minimizes the 203

average negative log-likelihood (NLL) of all words 204

following the parts of the sequence that precede 205

them: the optimization criterion is: 206

EF1...F"+1∼D
1
"

"∑
:=1
− log 5 (F:+1 |F1, . . . , F: ; \). 207

If D is uniform over all length-(" + 1) subse- 208

quences of a training corpus, any given word is 209

equally to likely to appear in all positions within a 210

sampled sequence1, and the criterion is equal to 211

"∑
:=1

1
"
E [− log 5: (F"+1 |F1, . . . , F" ; \)]︸                                         ︷︷                                         ︸

L: (\)

, (3) 212

1Many authors leave unspecified the way in which training
batches are formed from a corpus of input documents. Here
we assume that all training documents are concatenated into
one (very long) document separated by end-of-text tokens and
ignore minute effects near the start and end of this document.
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GPT-2 GPT-3

125M 350M 760M 1.6B 2.7B 6.7B 13B 175B

5max 47.66 57.29 61.23 64.25 62.39 71.40 76.58 81.51
CB (U: = U

∗
:
) 66.70 73.53 76.54 77.53 77.00 81.84 86.36 88.61

U∗
:

−0.6 −0.5 −0.5 −0.5 −0.3 −0.3 −0.3 −0.2
:∗ 10 11 10 9 9 10 3 3

Table 1: Accuracy (%) and optimal boosting param-
eters on LAMBADA: 5max is the full-context model
without boosting; CB is our model with the optimal
boosting parameters (last two rows).

This is a uniform scalarization of an "-task prob-213

lem: the :-th objective L: (\) is the expected NLL214

of a word in the corpus following : context words.215

This situation is different from that seen at216

generation time. If the text generated so far is217

F1F2 . . . F=, the distribution from which the next218

word F=+1 is sampled is 5= (F1, . . . , F=; \) – only219

the ensemble member using full context is used.220

However, if the string F1 . . . F=F=+1 had been seen221

in training, 5 would have been trained to predict222

F=+1 given all partial contexts, with equal weight223

given to all prediction losses. Thus, 5 is trained to224

make predictions on data it never sees in evalua-225

tion, and may be prevented from optimally learning226

to use long context: parameters that locally opti-227

mize (3) are locally Pareto-optimal for the set of228

prediction losses L1, . . . ,L" , but not necessarily229

optimal for any individual L: . An ensemble of the230

5: (: ≤ =) may be a better predictor than 5= alone.231

(See §A for further analysis of when this occurs.)232

Undertraining. The parameters \ are shared by233

the predictors 5: , and modeling power must be234

spread among the losses L: (\). The short-context235

predictors are easier to fit, while sequences in236

which long context affects the prediction are rare.237

We expect sensitivity to long context, and precision238

in modeling its effect, to be especially diminished239

if the model is undertrained.240

Distribution shift. While the training procedure241

causes a bias against the influence of longer con-242

texts on generation, we see the opposite bias in243

downstream tasks (question answering, natural lan-244

guage inference, adversarial probes for common245

sense): Many modern NLP benchmarks try to chal-246

lenge models to use long context (§3, §5).247

3 Experiments: LAMBADA248

The LAMBADA dataset (Paperno et al., 2016) tests249

LMs’ understanding of long-range dependencies250

by measuring the prediction of the final words in251

2 1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

LAMBADA(k = 10)
125M
350M
760M
1.6B
2.7B
6.7B
13B
175B

Figure 2: Model comparison on LAMBADA with : =
10 and varying U: . The red line (U = 0) is the base LM
5max. (The different right tails of GPT-3 models are due
to top-100 truncation of logits returned by the API.)

passages of several sentences. The task explicitly 252

requires reasoning over a broad context: humans 253

can reliably guess the last word when given a whole 254

passage, but not when given only the last sentence. 255

We perform experiments with the GPT family of 256

models, closely replicating the evaluation setting 257

of Radford et al. (2019).2 We predict the final word 258

as the top-ranked token under the boosted model 259

5max 5
U:

:
, where 5max is the model taking the full 260

available context and :, U: are the chosen length 261

and coefficient of the short context. To choose : 262

and U: , we do a grid search on the validation set 263

and apply the best values to the testing set. 264

Results. Table 1 shows the accuracies and opti- 265

mal parameter values :∗, U∗
:
. Coherence boosting 266

vastly reduces prediction error for all models. In 267

particular, the boosted GPT-2 Small performs better 268

than the original GPT-3 2.7B. The boosted GPT-3 269

175B achieves a new state of the art. 270

Other than the impressive performance gain, we 271

highlight two observations. (1) The optimal U: is 272

always negative, indicating that the optimal mixture 273

of models penalizes the influence of short-range 274

context relative to long-range context. (2) With in- 275

creasing model size, the optimal U: and : become 276

closer to 0. This means that bigger models capture 277

long-range coherence better than small models, as 278

they have less need to penalize the effect of short 279

context. (Fig. 2 shows the accuracy curves for all 280

models by sweeping U: with a fixed : . The peak 281

clearly moves to the left as model size grows.) 282

2Certain details are omitted by Radford et al. (2019).
Based on https://github.com/openai/gpt-2/
issues/131, we nearly match baseline accuracy by pre-
dicting the last subword token, rather than the last word.
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4 Experiments: Language generation283

4.1 Generic text284

The experiment in this section extends that of Holtz-285

man et al. (2019). A selection of 5000 articles from286

WebText (Radford et al., 2019) is taken as a ref-287

erence corpus of human-written text. A language288

model (for us, GPT-2 Large) is prompted to gen-289

erate text conditioned only on the first sentence of290

each of these articles, up to a maximum of 200291

tokens, yielding 5000 machine-generated texts.292

The human-written and machine-generated texts293

are compared by four automatic metrics: perplex-294

ity under the base LM, self-BLEU-4 (Zhu et al.295

(2018); the mean BLEU-4 score of a generated296

text with respect to all other generated texts as297

references), Zipf coefficient (the linear regression298

coefficient between log-rank and log-frequency of299

generated tokens) and repetition (the fraction of300

generated texts that end in a repeating sequence of301

tokens). It is desirable for a model and inference302

procedure to produce text that is as close as possi-303

ble in these metrics to the human-written reference.304

We add three measures of long-range coherence:305

Long-range repetition (LR=): For a whole num-306

ber = and document �, let ((�) be the number of307

distinct tokens in �, and let '= (�) be the number308

of distinct tokens for which the distance between309

their first and last occurrence in � is at least = po-310

sitions. The long-range repetition score LR= of a311

corpus {�1, . . . , �5000} is a macro-average:312

LR= :=
∑5000

8=1 '= (�8)∑5000
8=1 ((�8)

.313

This simple measure of lexical coherence favors314

repetition of words long after they are first used, but315

gives lower weight to documents that degenerate316

into repetition of a short span.317

Long-dependent token frequency (LTF): A318

long-dependent token is one to which the base LM319

assigns a likelihood of at least 20% given its full320

context, but a likelihood of less than 5% given only321

the 20 tokens of context preceding it. We compute322

the frequency of long-dependent tokens among all323

generated tokens.324

Long-short likelihood difference (X): The mean325

difference in likelihoods assigned to tokens by the326

base LM conditioned on full context and condi-327

tioned on 20 tokens of context.328

We sample 5000 document completions from329

GPT-2 Large following sampling procedures with330

a range of boosting schemes. We consider models 331

of the form 5
U:

:
5

1−U:
max , for : ∈ {8, 16, 32, 64} and 332

U: ∈ {−0.4,−0.2,−0.1,−0.05,−0.025, 0}. (Such 333

a parametrization of boosting parameters was cho- 334

sen to ensure that when the context has length less 335

than : – or the distant context has very little effect 336

on the next word – the boosted model becomes 337

equivalent to the untempered 5max.) Top-? trunca- 338

tion with ? = 0.95 was applied to all models. 339

Results. Metrics of two of the best models, with 340

: = 32, U: = −0.05 and : = 64, U: = −0.1, are 341

shown in Table 2. In particular, the latter model 342

generates text that is closer to the human refer- 343

ence, or equally close, to the pure top-? sampling 344

(U: = 0) baseline in all metrics, with the greatest 345

improvement seen in the coherence measures. 346

Fig. 3 shows the dependence of selected metrics 347

on : and U: . Coherence boosting brings all metrics 348

closer to those of human text. As : increases, the 349

optimal U: grows in magnitude. This is expected: 350

the predictive effect of tokens more than : positions 351

away decreases with : ( 5: approaches 5max). 352

We also note that a simple sampling with tem- 353

perature 0.9 performs better than top-? sampling in 354

most of the coherence metrics. This suggests that 355

the improvements accomplished by top-? trunca- 356

tion come at the cost of introducing a bias towards 357

tokens that are predictable from a short context. 358

Coherence boosting corrects this bias without sac- 359

rificing the gains in other measures. 360

An example of human, top-?, and coherence 361

boosting outputs is shown in Table B.1. 362

4.2 Dialog systems 363

This experiment is based on the Dialog System 364

Technology Challenge 7 (DSTC7) (Galley et al., 365

2019), which benchmarks generation of dialog re- 366

sponses conditioned on one or more turns of conver- 367

sation context. As a base model, we use DialoGPT 368

(Zhang et al., 2020b), a GPT-2 Small variant that 369

demonstrated strong results on this task. 370

Dialog systems’ responses to the 2208 conver- 371

sation prompts3 are scored against human-written 372

reference responses (five for each example). Fol- 373

lowing Zhang et al. (2020b), we use the =-gram 374

overlap metrics NIST (Doddington, 2002), BLEU 375

(Papineni et al., 2002), and METEOR (Lavie and 376

Agarwal, 2007), as well as two intrinsic measures 377

of =-gram diversity from Li et al. (2016); Zhang 378

3The DSTC7 evaluation data, scraped from Reddit, is
undisclosed; we reacquire it using officially released code.
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from Holtzman et al. (2019) lex coherence long-dep tokens

Inference method ppl BLEU-4 Zipf rep % LR50 % LR100 % X % LTF %

Sampling 23.53 0.28 0.93 0.22 12.92 7.71 4.87 3.28
Sampling () = 0.9) 10.60 0.35 0.96 0.66 16.36 10.01 6.54 4.15
Nucleus (? = 0.95) 13.48 0.32 0.95 0.46 15.06 9.11 5.65 3.62

+ boost (: = 32, U: = −0.05) 12.81 0.31 0.94 0.34 15.54 9.42 6.16 3.98
+ boost (: = 64, U: = −0.1) 12.93 0.32 0.95 0.46 15.75 9.67 6.10 3.95

Human 13.19 0.31 0.93 0.28 15.95 9.51 6.54 4.03

Table 2: Distributional metrics of WebText completions. The last four columns are measures of long-range coher-
ence (§4.1). (Nearest-to-human values in bold, boosting models better than top-? sampling alone in italics.)

Figure 3: Effect of : and U: on metrics from Table 2. The horizontal line marks the score of the human reference.

et al. (2018): Distinct-= and Entropy-=. It is de-379

sirable for a dialog system to reach scores close to380

those of the human responses in all metrics.381

In addition to the decoding algorithms consid-382

ered by (Zhang et al., 2020b) – beam search and383

greedy decoding – we consider greedy decoding384

with a coherence boosting model. As long and385

short predictors, we use DialoGPT conditioned386

on the full conversation context and on only the387

(context-free) response generated so far. That is,388

if the conversation context is ( and the text gen-389

erated so far is F1 . . . F: , then F:+1 is predicted390

using the model 5max 5
U
:+1, evaluated on the string391

( 〈sep〉 F1 . . . F: , where 〈sep〉 is the turn separa-392

tor token. We consider U ∈ {0,−0.1, . . . ,−0.8}.393

Results. Table 3 shows the metrics of the boost-394

ing models that reach the peak average NIST and395

BLEU scores (U = −0.3 and U = −0.7). Increasing396

the magnitude of U leads to responses that are more397

relevant to the prompt (higher BLEU and NIST)398

and more diverse than those from greedy decoding.399

As −U grows large, the boosting model favors cre-400

ative responses that are relevant to the prompt (high401

NIST), but simple responses that are common in402

the reference data become unlikely (low BLEU).4403

4Galley et al. (2019) argue that NIST and diversity metrics
are more informative measures than BLEU for multi-reference
scoring, since BLEU favors systems that often produce re-
sponses with little relation to the prompt (e.g., “I don’t know”).

We observed that the responses with U = −0.7, 404

despite the superior metrics, are more likely to 405

be ungrammatical and innovate words in an effort 406

to use tokens relevant to the prompt. In practice, 407

improving dialog systems with coherence boosting 408

may require techniques to prevent these side effects, 409

such as repetition penalties or relaxation of greedy 410

decoding to low-temperature sampling. 411

Finally, we note that the learning of DialoGPT 412

was initialized with a pretrained GPT-2 and uses 413

GPT-2’s end-of-text token as the turn separator. 414

This choice may reduce DialoGPT’s attention to 415

past turns, as tokens preceding the end-of-text to- 416

ken are never informative in GPT-2’s training data. 417

5 Experiments: Language understanding 418

We evaluate coherence boosting on language un- 419

derstanding and inference tasks, where examples 420

are expected to be highly coherent. Code for the 421

experiments in this section is included in the SI. 422

We study 5 categories of tasks with 15 datasets. 423

(1) Cloze tasks: StoryCloze (Mostafazadeh et al., 424

2016), HellaSwag (Zellers et al., 2019), and 425

COPA (Roemmele et al., 2011). (2) Question an- 426

swering: CommonsenseQA (CsQA) (Talmor et al., 427

2019), OpenBookQA (OBQA) (Mihaylov et al., 428

2018), ARC Easy / Challenge (ARC-E/C) (Clark 429

et al., 2018), and PIQA (Bisk et al., 2020). (3) 430

Text classification: SST-2/5 (Socher et al., 2013), 431
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NIST BLEU diversity metrics

Inference method N-2 N-4 B-2 B-4 METEOR Ent-4 Dist-1 Dist-2 avg len

Beam (1 = 10) 0.02 0.02 12.81 3.23 5.35 6.06 14.03 34.59 5.81
Greedy 1.62 1.63 9.92 1.72 6.78 6.45 6.19 17.56 13.30

+ boost (U = −0.3) 0.72 0.73 13.82 3.53 6.91 8.54 16.81 49.35 9.75
+ boost (U = −0.7) 1.78 1.79 6.33 0.94 5.55 9.78 28.00 72.46 16.63

Human 2.63 2.65 12.36 3.13 8.31 10.44 16.65 67.01 18.73

Table 3: Metrics of DialoGPT responses on DSTC7. Nearest-to-human values in each column are bolded.

GPT-2 Small (125M) GPT-2 XL (1.6B) GPT-3 175B

5max U = −1 U = U∗ U∗ 5max U = −1 U = U∗ U∗ 5max U = −1 U = U∗ U∗

StoryCloze 59.91 64.78 64.24 −1.02 67.56 75.09 76.75 −0.69 79.16 82.90 86.85 −0.64
HellaSwag 28.92 30.99 31.84 −0.90 40.00 42.60 47.66 −0.78 59.18 62.66 72.35 −0.76
COPA 62.00 56.00 64.00 −0.69 73.00 70.00 77.00 −0.44 93.00 87.00 94.00 −0.52

CsQA 29.48 42.26 43.16 −0.81 37.84 50.45 52.91 −0.75 61.10 67.98 70.43 −0.68
OBQA 11.20 30.60 40.80 −1.62 15.60 38.40 47.00 −1.88 28.00 52.20 52.60 −1.09
ARC-E 43.81 42.09 46.00 −0.34 58.29 51.43 60.31 −0.36 76.22 69.19 78.32 −0.44
ARC-C 19.03 26.11 29.10 −4.19 25.00 33.53 34.39 −1.14 43.94 50.60 49.23 −1.08
PIQA 62.89 57.45 63.44 −0.61 70.84 60.45 71.49 −0.43 79.27 66.32 78.94 −0.60

SST2 65.68 74.74 82.32 −2.22 86.38 84.51 86.93 −0.09 86.16 88.14 89.84 −0.54
SST5 25.93 30.90 30.90 −1.20 28.69 38.73 36.92 −1.69 31.22 34.75 38.51 −1.39
AGNews 58.55 60.78 62.20 −0.62 67.17 67.43 68.26 −0.40 71.66 71.74 71.75 0.16
TREC 23.40 29.60 32.20 −0.80 23.40 27.40 40.00 −0.79 52.40 47.00 56.00 −0.56
BoolQ 49.36 58.07 62.14 −3.04 62.14 63.46 63.21 −0.64 71.56 73.70 72.69 −0.39

RTE 51.26 49.82 53.79 −0.30 49.10 48.74 49.10 0.90 55.96 57.40 60.29 −0.60
CB 12.50 23.21 48.21 −2.40 30.36 51.79 66.07 −1.90 5.36 25.00 28.57 −1.91

Table 4: Testing accuracy (%) of three representative GPT models on multiple-choice tasks. The first column for
each model is the full-context model, the second is our model only when U = −1 (a baseline), and the third column
is our model with the optimal U chosen on a validation set. The fourth column shows this optimal value of U.

TREC (Voorhees and Tice, 2000), AGNews (Zhang432

et al., 2015). (4) Natural language inference:433

RTE (Dagan et al., 2005), CB (De Marneffe et al.,434

2019), and BoolQ (Clark et al., 2019). (5) Fact435

knowledge retrieval: LAMA (Petroni et al., 2019).436

All tasks except LAMA are formulated as437

multiple-choice problems. We convert text clas-438

sification and inference tasks to multiple-choice439

tasks by choosing meaningful answer words, e.g.,440

“True”/“False”. The prediction is made by selecting441

the choice with the highest LM likelihood.442

For in-context learning of GPT models, prompt443

formats greatly impact performance. We follow444

previous work (Brown et al., 2020; Zhao et al.,445

2021; Holtzman et al., 2019) to create natural446

prompts to enlarge the effectiveness of in-context447

learning, but we do not aim to optimize the full and448

context-free prompt format: our goal is to evaluate449

coherence boosting models with a fixed prompt.450

The prompt formats we use are listed in Table C.1.451

As described in §2, within each prompt we identify452

a premise-free context, which is used as the context 453

for the short-range model in coherence boosting. 454

For each dataset, we pick the optimal value U∗ of 455

the parameter U on the validation set and report the 456

accuracy on testing set. (If no testing set is publicly 457

available, we choose U on a subset of the training 458

set and report the final number on the validation 459

set.) Across all experiments, we do not put any 460

few-shot examples in the prompt. 461

For the knowledge retrieval task, we follow Zhao 462

et al. (2021)’s data split of LAMA and evaluate 463

GPT models on facts whose missing answers are at 464

the end of the sentence (to fit the nature of autore- 465

gressive language models). We limit the prompt 466

length to be larger than 5 tokens and rerun the 467

model from Zhao et al. (2021) on the new data. 468

Results: Multiple-choice tasks. Results of 469

three representative base models on all multiple- 470

choice tasks are presented in Table 4. (Results for 471

all models are in Tables D.1 and D.2.) We compare 472
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Figure 4: Model comparison for the StoryCloze task.
The red line U = 0 indicates the base model, and the
blue line U = −1 is an unconditional normalization.

GPT-2 GPT-3

125M 350M 760M 1.6B 2.7B 6.7B 13B 175B

5max 8.48 14.78 13.88 14.29 17.33 19.42 22.06 26.76
Zhao et al. (2021) 17.45 22.87 23.90 23.97 26.30 30.57 31.96 34.78
CB (U: = U

∗
:
) 19.85 22.87 25.74 25.43 28.75 32.25 35.02 37.57

U∗
:

−0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.4
:∗ 1 2 3 3 1 1 1 2

Table 5: Accuracies (%) of GPT models on LAMA.

our best model with two baselines, U = 0 ( 5max)473

and U = −1. The former one is the original full-474

context model, while the latter is, for most tasks,475

a form of unconditional probability normalization476

as performed by Brown et al. (2020); Holtzman477

et al. (2021). We also compare our best model with478

other inference methods (Holtzman et al., 2021;479

Min et al., 2021) in Tables D.3 and D.4.480

By comparing the third column with the first481

two columns within each model in Table 4, we482

can see that our method with the selected U gen-483

erally improves the accuracy on all tasks. Some484

of the improvements are dramatic, where boosted485

GPT-2 Small outperforms GPT-2 XL’s base model486

(e.g., CsQA, OBQA, ARC-C) and is even compa-487

rable with GPT-3 175B’s base model (e.g., SST-2,488

SST-5, RTE). We make similar conclusions when489

comparing coherence boosting with other inference490

methods in Tables D.3 and D.4.491

We observe that the optimal U depends on tasks492

and models (fourth column within each model),493

which means that U cannot be heuristically set to494

0 or −1 as in past work. This finding suggests495

the necessity of searching for an optimal U. We496

visualize the accuracy curve by varying U in the497

testing set of all datasets. We show the curve for498

StoryCloze in Fig. 4 and present similar figures for499

all tasks in Figs. D.1 and D.2.500

Consistent with the results on LAMBADA (§3),501

the optimal U is usually negative, and its absolute 502

value tends to decrease with the model size. We 503

selected the optimal U by the validation set, but 504

future work may explore automatic and adaptive 505

methods for setting this parameter. Notice that all 506

experiments required only a single pass through 507

the data to compute answer likelihoods conditioned 508

on full and premise-free contexts – no iterative 509

gradient-based finetuning was applied. 510

Results: Knowledge retrieval. Unlike LAM- 511

BADA, where long contexts are required for infer- 512

ring the last word, LAMA contains much shorter 513

sentences for knowledge facts, i.e., (subject, re- 514

lation, object). A recent study (Cao et al., 2021) 515

shows that the prediction is biased by the relation in 516

the short context, i.e., the answer to a prompt (e.g., 517

“Dante was born in ___”) can be induced by the 518

relation (“was born in”) without the subject. Co- 519

herence boosting mitigates the influence of those 520

short contexts by making the prediction dependent 521

on a longer context containing the subject. 522

We present results for all models on LAMA in 523

Table 5. We also compare our model with contex- 524

tual calibration (CC) (Zhao et al., 2021), which 525

processes the LM’s output probabilities with a log- 526

linear model.5 Coherence boosting with the se- 527

lected U and : outperforms both the base model 528

and CC by significant margins. 529

6 Conclusion 530

We have illustrated the hyposensitivity of pre- 531

trained language models to long-range content and 532

proposed a simple inference-time remedy. Future 533

work can consider training regimes that encourage 534

learning of long dependencies, adaptive selection 535

of boosting weights, mimicking coherence boost- 536

ing by scaling attention at different distances, and 537

comparative analysis of optimal weights for various 538

text domains and language model architectures. 539

Procedures that force LMs to be more focused on 540

a prompt, or a specific part of it, when generating or 541

ranking tokens can benefit algorithms that search 542

for combinations of words through sampling. It 543

would be interesting to use coherence boosting in 544

non-autoregressive text generation algorithms, such 545

as to accelerate the mixing of MCMC methods 546

for constrained text generation (Miao et al., 2019; 547

Zhang et al., 2020a; Malkin et al., 2021). 548

5Note that CC applies a log-linear model to the proba-
bility domain, not the logit domain, which does not have an
information-theoretic interpretation.
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Ethics statement549

We hope and expect to see a nonnegative net soci-550

etal impact from better text generation and ranking551

algorithms in general and from this work in partic-552

ular. As we have shown, there is room to improve553

the inference procedures used with small language554

models, which incur lower costs than training and555

evaluation of large models. However, researchers556

should bear in mind the risks and potential misuse557

of automatic generation of long-form text.558

References559

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-560
gio. 2015. Neural machine translation by jointly561
learning to align and translate. International Con-562
ference on Learning Representations (ICLR).563

Iz Beltagy, Matthew E. Peters, and Arman Cohan.564
2020. Longformer: The long-document transformer.565
arXiv preprint arXiv:2004.05150.566

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and567
Christian Janvin. 2003. A neural probabilistic lan-568
guage model. Journal of Machine Learning Re-569
search, 3:1137–1155.570

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin571
Choi, et al. 2020. Piqa: Reasoning about physical572
commonsense in natural language. Association for573
the Advancement of Artificial Intelligence (AAAI).574

Peter F. Brown, Stephen A. Della Pietra, Vincent J.575
Della Pietra, and Robert L. Mercer. 1993. The math-576
ematics of statistical machine translation: Parameter577
estimation. Computational Linguistics, 19(2):263–578
311.579

Tom Brown, Benjamin Mann, Nick Ryder, Melanie580
Subbiah, Jared D Kaplan, Prafulla Dhariwal,581
Arvind Neelakantan, Pranav Shyam, Girish Sastry,582
Amanda Askell, Sandhini Agarwal, Ariel Herbert-583
Voss, Gretchen Krueger, Tom Henighan, Rewon584
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,585
Clemens Winter, Chris Hesse, Mark Chen, Eric586
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,587
Jack Clark, Christopher Berner, Sam McCandlish,588
Alec Radford, Ilya Sutskever, and Dario Amodei.589
2020. Language models are few-shot learners. Neu-590
ral Information Processing Systems (NeurIPS).591

Boxi Cao, Hongyu Lin, Xianpei Han, Le Sun, Lingy-592
ong Yan, Meng Liao, Tong Xue, and Jin Xu. 2021.593
Knowledgeable or educated guess? revisiting lan-594
guage models as knowledge bases. In Proceed-595
ings of the 59th Annual Meeting of the Association596
for Computational Linguistics and the 11th Interna-597
tional Joint Conference on Natural Language Pro-598
cessing (Volume 1: Long Papers), pages 1860–1874,599
Online. Association for Computational Linguistics.600

Stanley F. Chen and Joshua Goodman. 1996. An em- 601
pirical study of smoothing techniques for language 602
modeling. In 34th Annual Meeting of the Associa- 603
tion for Computational Linguistics, pages 310–318, 604
Santa Cruz, California, USA. Association for Com- 605
putational Linguistics. 606

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul- 607
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger 608
Schwenk, and Yoshua Bengio. 2014. Learning 609
phrase representations using RNN encoder–decoder 610
for statistical machine translation. In Proceedings of 611
the 2014 Conference on Empirical Methods in Nat- 612
ural Language Processing (EMNLP), pages 1724– 613
1734, Doha, Qatar. Association for Computational 614
Linguistics. 615

Christopher Clark, Kenton Lee, Ming-Wei Chang, 616
Tom Kwiatkowski, Michael Collins, and Kristina 617
Toutanova. 2019. BoolQ: Exploring the surprising 618
difficulty of natural yes/no questions. In Proceed- 619
ings of the 2019 Conference of the North American 620
Chapter of the Association for Computational Lin- 621
guistics: Human Language Technologies, Volume 1 622
(Long and Short Papers), pages 2924–2936, Min- 623
neapolis, Minnesota. Association for Computational 624
Linguistics. 625

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 626
Ashish Sabharwal, Carissa Schoenick, and Oyvind 627
Tafjord. 2018. Think you have solved question an- 628
swering? Try ARC, the AI2 reasoning challenge. 629
arXiv preprint arXiv:1803.05457. 630

Ido Dagan, Oren Glickman, and Bernardo Magnini. 631
2005. The pascal recognising textual entailment 632
challenge. In Machine Learning Challenges Work- 633
shop, pages 177–190. Springer. 634

Marie-Catherine De Marneffe, Mandy Simons, and Ju- 635
dith Tonhauser. 2019. The commitmentbank: Inves- 636
tigating projection in naturally occurring discourse. 637
In proceedings of Sinn und Bedeutung, volume 23, 638
pages 107–124. 639

George R. Doddington. 2002. Automatic evaluation 640
of machine translation quality using n-gram co- 641
occurrence statistics. In Human Language Technol- 642
ogy Research. 643

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi- 644
erarchical neural story generation. In Proceedings 645
of the 56th Annual Meeting of the Association for 646
Computational Linguistics (Volume 1: Long Papers), 647
pages 889–898, Melbourne, Australia. Association 648
for Computational Linguistics. 649

Jerome Friedman, Trevor Hastie, and Robert Tibshi- 650
rani. 2000. Additive logistic regression: A statistical 651
view of boosting. The Annals of Statistics, 28:337– 652
407. 653

Michel Galley, Chris Brockett, Xiang Gao, Jianfeng 654
Gao, and William B. Dolan. 2019. Grounded re- 655
sponse generation task at DSTC7. Dialog System 656
Technology Challenges 7 (AAAI workshop). 657

9

https://www.aclweb.org/anthology/J93-2003
https://www.aclweb.org/anthology/J93-2003
https://www.aclweb.org/anthology/J93-2003
https://www.aclweb.org/anthology/J93-2003
https://www.aclweb.org/anthology/J93-2003
https://doi.org/10.18653/v1/2021.acl-long.146
https://doi.org/10.18653/v1/2021.acl-long.146
https://doi.org/10.18653/v1/2021.acl-long.146
https://doi.org/10.3115/981863.981904
https://doi.org/10.3115/981863.981904
https://doi.org/10.3115/981863.981904
https://doi.org/10.3115/981863.981904
https://doi.org/10.3115/981863.981904
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/P18-1082


Sepp Hochreiter and Jürgen Schmidhuber. 1997.658
Long short-term memory. Neural Computation,659
9(8):1735–1780.660

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and661
Yejin Choi. 2019. The curious case of neural text de-662
generation. International Conference on Learning663
Representations (CLR).664

Ari Holtzman, Peter West, Vered Shwartz, Yejin Choi,665
and Luke Zettlemoyer. 2021. Surface form compe-666
tition: Why the highest probability answer isn’t al-667
ways right. In Proceedings of the 2021 Conference668
on Empirical Methods in Natural Language Process-669
ing, pages 7038–7051, Online and Punta Cana, Do-670
minican Republic. Association for Computational671
Linguistics.672

Urvashi Khandelwal, He He, Peng Qi, and Dan Juraf-673
sky. 2018. Sharp nearby, fuzzy far away: How neu-674
ral language models use context. In Proceedings675
of the 56th Annual Meeting of the Association for676
Computational Linguistics (Volume 1: Long Papers),677
pages 284–294, Melbourne, Australia. Association678
for Computational Linguistics.679

Alon Lavie and Abhaya Agarwal. 2007. METEOR: An680
automatic metric for MT evaluation with high levels681
of correlation with human judgments. In Proceed-682
ings of the Second Workshop on Statistical Machine683
Translation, pages 228–231, Prague, Czech Repub-684
lic. Association for Computational Linguistics.685

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,686
and Bill Dolan. 2016. A diversity-promoting ob-687
jective function for neural conversation models. In688
Proceedings of the 2016 Conference of the North689
American Chapter of the Association for Computa-690
tional Linguistics: Human Language Technologies,691
pages 110–119, San Diego, California. Association692
for Computational Linguistics.693

Nikolay Malkin, Sameera Lanka, Pranav Goel, and694
Nebojsa Jojic. 2021. Studying word order through695
iterative shuffling. In Proceedings of the 2021 Con-696
ference on Empirical Methods in Natural Language697
Processing, pages 10351–10366, Online and Punta698
Cana, Dominican Republic. Association for Compu-699
tational Linguistics.700

Clara Meister and Ryan Cotterell. 2021. Language701
model evaluation beyond perplexity. In Proceed-702
ings of the 59th Annual Meeting of the Association703
for Computational Linguistics and the 11th Interna-704
tional Joint Conference on Natural Language Pro-705
cessing (Volume 1: Long Papers), pages 5328–5339,706
Online. Association for Computational Linguistics.707

Ning Miao, Hao Zhou, Lili Mou, Rui Yan, , and Li Lei.708
2019. CGMH: Constrained sentence generation by709
Metropolis-Hastings sampling. Association for the710
Advancement of Artificial Intelligence (AAAI).711

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish712
Sabharwal. 2018. Can a suit of armor conduct elec-713
tricity? a new dataset for open book question an-714
swering. In Proceedings of the 2018 Conference on715

Empirical Methods in Natural Language Processing, 716
pages 2381–2391, Brussels, Belgium. Association 717
for Computational Linguistics. 718

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and 719
Luke Zettlemoyer. 2021. Noisy channel language 720
model prompting for few-shot text classification. 721
arXiv preprint arXiv:2108.04106. 722

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong 723
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende, 724
Pushmeet Kohli, and James Allen. 2016. A cor- 725
pus and cloze evaluation for deeper understanding of 726
commonsense stories. In Proceedings of the 2016 727
Conference of the North American Chapter of the 728
Association for Computational Linguistics: Human 729
Language Technologies, pages 839–849, San Diego, 730
California. Association for Computational Linguis- 731
tics. 732

Denis Paperno, Germán Kruszewski, Angeliki Lazari- 733
dou, Ngoc Quan Pham, Raffaella Bernardi, San- 734
dro Pezzelle, Marco Baroni, Gemma Boleda, and 735
Raquel Fernández. 2016. The LAMBADA dataset: 736
Word prediction requiring a broad discourse context. 737
In Proceedings of the 54th Annual Meeting of the As- 738
sociation for Computational Linguistics (Volume 1: 739
Long Papers), pages 1525–1534, Berlin, Germany. 740
Association for Computational Linguistics. 741

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 742
Jing Zhu. 2002. Bleu: a method for automatic eval- 743
uation of machine translation. In Proceedings of 744
the 40th Annual Meeting of the Association for Com- 745
putational Linguistics, pages 311–318, Philadelphia, 746
Pennsylvania, USA. Association for Computational 747
Linguistics. 748

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, 749
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and 750
Alexander Miller. 2019. Language models as knowl- 751
edge bases? In Proceedings of the 2019 Confer- 752
ence on Empirical Methods in Natural Language 753
Processing and the 9th International Joint Confer- 754
ence on Natural Language Processing (EMNLP- 755
IJCNLP), pages 2463–2473, Hong Kong, China. As- 756
sociation for Computational Linguistics. 757

Ofir Press, Noah A. Smith, and Mike Lewis. 2021. 758
Train short, test long: Attention with linear biases 759
enables input length extrapolation. arXiv preprint 760
arXiv:2108.12409. 761

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 762
Dario Amodei, and Ilya Sutskever. 2019. Language 763
models are unsupervised multitask learners. 764

Melissa Roemmele, Cosmin Adrian Bejan, and An- 765
drew S. Gordon. 2011. Choice of plausible alterna- 766
tives: An evaluation of commonsense causal reason- 767
ing. AAAI Spring Symposium Series. 768

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and 769
David Grangier. 2021. Efficient content-based 770

10

https://aclanthology.org/2021.emnlp-main.564
https://aclanthology.org/2021.emnlp-main.564
https://aclanthology.org/2021.emnlp-main.564
https://aclanthology.org/2021.emnlp-main.564
https://aclanthology.org/2021.emnlp-main.564
https://doi.org/10.18653/v1/P18-1027
https://doi.org/10.18653/v1/P18-1027
https://doi.org/10.18653/v1/P18-1027
https://www.aclweb.org/anthology/W07-0734
https://www.aclweb.org/anthology/W07-0734
https://www.aclweb.org/anthology/W07-0734
https://www.aclweb.org/anthology/W07-0734
https://www.aclweb.org/anthology/W07-0734
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
https://aclanthology.org/2021.emnlp-main.809
https://aclanthology.org/2021.emnlp-main.809
https://aclanthology.org/2021.emnlp-main.809
https://doi.org/10.18653/v1/2021.acl-long.414
https://doi.org/10.18653/v1/2021.acl-long.414
https://doi.org/10.18653/v1/2021.acl-long.414
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.1162/tacl_a_00353
https://doi.org/10.1162/tacl_a_00353


sparse attention with routing transformers. Transac-771
tions of the Association for Computational Linguis-772
tics, 9:53–68.773

Chinnadhurai Sankar, Sandeep Subramanian, Chris Pal,774
Sarath Chandar, and Yoshua Bengio. 2019. Do neu-775
ral dialog systems use the conversation history ef-776
fectively? an empirical study. In Proceedings of777
the 57th Annual Meeting of the Association for Com-778
putational Linguistics, pages 32–37, Florence, Italy.779
Association for Computational Linguistics.780

Richard Socher, Alex Perelygin, Jean Wu, Jason781
Chuang, Christopher D. Manning, Andrew Ng, and782
Christopher Potts. 2013. Recursive deep models783
for semantic compositionality over a sentiment tree-784
bank. In Proceedings of the 2013 Conference on785
Empirical Methods in Natural Language Processing,786
pages 1631–1642, Seattle, Washington, USA. Asso-787
ciation for Computational Linguistics.788

Simeng Sun, Kalpesh Krishna, Andrew Mattarella-789
Micke, and Mohit Iyyer. 2021. Do long-range lan-790
guage models actually use long-range context? In791
Proceedings of the 2021 Conference on Empirical792
Methods in Natural Language Processing, pages793
807–822, Online and Punta Cana, Dominican Re-794
public. Association for Computational Linguistics.795

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and796
Jonathan Berant. 2019. CommonsenseQA: A ques-797
tion answering challenge targeting commonsense798
knowledge. In Proceedings of the 2019 Conference799
of the North American Chapter of the Association800
for Computational Linguistics: Human Language801
Technologies, Volume 1 (Long and Short Papers),802
pages 4149–4158, Minneapolis, Minnesota. Associ-803
ation for Computational Linguistics.804

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob805
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz806
Kaiser, and Illia Polosukhin. 2017. Attention is all807
you need. Neural Information Processing Systems808
(NIPS).809

Ellen M Voorhees and Dawn M Tice. 2000. Building810
a question answering test collection. In Proceedings811
of the 23rd annual international ACM SIGIR confer-812
ence on Research and development in information813
retrieval, pages 200–207.814

Manzil Zaheer, Guru Guruganesh, Kumar Avinava815
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-816
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,817
Li Yang, et al. 2020. Big bird: Transformers for818
longer sequences. Neural Information Processing819
Systems (NeurIPS).820

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali821
Farhadi, and Yejin Choi. 2019. HellaSwag: Can822
a machine really finish your sentence? In Pro-823
ceedings of the 57th Annual Meeting of the Asso-824
ciation for Computational Linguistics, pages 4791–825
4800, Florence, Italy. Association for Computational826
Linguistics.827

Maosen Zhang, Nan Jiang, Lei Li, and Yexiang Xue. 828
2020a. Language generation via combinatorial con- 829
straint satisfaction: A tree search enhanced Monte- 830
Carlo approach. In Findings of the Association for 831
Computational Linguistics: EMNLP 2020, pages 832
1286–1298, Online. Association for Computational 833
Linguistics. 834

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. 835
Character-level convolutional networks for text clas- 836
sification. Neural Information Processing Systems 837
(NIPS). 838

Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan, 839
Xiujun Li, Chris Brockett, and William B. Dolan. 840
2018. Generating informative and diverse conver- 841
sational responses via adversarial information max- 842
imization. Neural Information Processing Systems 843
(NeurIPS). 844

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, 845
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing 846
Liu, and Bill Dolan. 2020b. DIALOGPT : Large- 847
scale generative pre-training for conversational re- 848
sponse generation. In Proceedings of the 58th An- 849
nual Meeting of the Association for Computational 850
Linguistics: System Demonstrations, pages 270– 851
278, Online. Association for Computational Linguis- 852
tics. 853

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and 854
Sameer Singh. 2021. Calibrate before use: Improv- 855
ing few-shot performance of language models. Inter- 856
national Conference on Machine Learning (ICML). 857

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, 858
Weinan Zhang, Jun Wang, and Yong Yu. 2018. Texy- 859
gen: A benchmarking platform for text generation 860
models. ACM SIGIR Conference on Research and 861
Development in Information Retrieval. 862

11

https://doi.org/10.1162/tacl_a_00353
https://doi.org/10.18653/v1/P19-1004
https://doi.org/10.18653/v1/P19-1004
https://doi.org/10.18653/v1/P19-1004
https://doi.org/10.18653/v1/P19-1004
https://doi.org/10.18653/v1/P19-1004
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://aclanthology.org/2021.emnlp-main.62
https://aclanthology.org/2021.emnlp-main.62
https://aclanthology.org/2021.emnlp-main.62
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://www.aclweb.org/anthology/2020.findings-emnlp.115
https://www.aclweb.org/anthology/2020.findings-emnlp.115
https://www.aclweb.org/anthology/2020.findings-emnlp.115
https://www.aclweb.org/anthology/2020.findings-emnlp.115
https://www.aclweb.org/anthology/2020.findings-emnlp.115
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30


A On multi-objective training and log-linear weights863

The section extends the discussion in §2.1.864

Recall that the language model 5 is trained on the multi-objective loss (3):865

"∑
:=1

_: EF1...F"+1∈D [− log 5: (F"+1 |F1, . . . , F" ; \)]︸                                                         ︷︷                                                         ︸
L: (\)

, _: =
1
"
.866

As we saw in the main text, the scalarization weights _: are uniform as a consequence of the training867

regime. However, evaluation procedures effectively give nonuniform weight to the " prediction losses.868

Some vector calculus. Denote by \̂ (,) a local optimum of the above optimization problem for general869

linear combination weights , = (_1, . . . , _" ). Under suitable regularity conditions, the gradient of the870

combined loss vanishes:871 ∑
:

_:
mL: (\)
m\

�����
\= \̂ (,)

= 0. (4)872

Assuming the Hessian A of the optimization criterion
∑

: _:L: (\) is nonsingular, we can implicitly873

differentiate (4) with respect to , to obtain the matrix derivative874

m\̂ (,)
m,

= − A−1 m (L1(\), . . . ,L" (\))
m\)

����
\= \̂ (,)

. (5)875

The local dependence of the losses on the scalarization weights can be expressed as a bilinear form876

evaluated on mL8

m\
and mL 9

m\
:877

mL8 (\̂ (,))
m_ 9

=
mL8

m\

����
\= \̂ (,)

m\̂ (,)
m_ 9

= − mL8

m\
A−1 mL 9

m\)

����
\= \̂ (,)

. (6)878

Because \̂ is a local minimizer, −A−1 is negative definite. In particular, any mL8 ( \̂ (,))
m_8

is negative. This879

expresses the intuitive fact that if an infinitesimally higher weight is given to some prediction loss in880

optimization, the value of this loss at the optimum will be infinitesimally lower.881

For concreteness, consider how the highest-length prediction loss L" (\̂ (,)) changes when _" is882

increased and the _ 9 ( 9 ≠ 8) are decreased with rate proportional to _ 9 , while
∑
_ 9 is kept constant. That883

is, let # =
(
−_1, . . . ,−_8−1,

∑
9≠8 _ 9 ,−_8+1, . . . ,−_"

)
. Then884

3L8 (\̂ (, + C#))
3C

=
∑
9

mL8

m_ 9

V 9 = −
mL8

m\
A−1

∑
9

mL 9

m\)
V 9 = −

mL8

m\
A−1 mL8

m\)

∑
9

_ 9 ≤ 0, (7)885

where the last two equalities follow from (6) and (4), respectively, and the inequality holds because A−1 is886

positive definite. So we have shown that, in nondegenerate cases, the L" (\) term of the optimization887

criterion decreases under the locally optimal weights \ when _" is infinitesimally increased in this way.888

Log-linear mixture of predictors. Returning to coherence boosting, suppose that we aim to build889

out of the predictors 5: (−; \ (̂,)) a new predictor 6 that would have lower negative log-likelihood on890

prediction of a word given the maximum-length context:891

EF1...F"+1∈D [− log 6(F"+1 | F1, . . . , F" )] < E
[
− log 5" (F"+1 | F1, . . . , F" ; \̂ (,))

]
.892

As we just saw, using this predictor in place of 5" achieves the same direction of movement in the893

prediction loss as optimizing with higher weight _" .894
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A naïve guess – not a proper predictor, as its outputs do not sum to 1 – would lightly perturb 5" by 895

log-linearly mixing small multiples of the 5: weight weights V: summing to 0: 896

6
(C)
naïve(F1, . . . , F" ) = exp

(
log 5" (F1, . . . , F" ; \̂ (,)) + C

∑
:

V: log 5: (−, \̂ (,))
)
. 897

Then, by linearity of expectation, 898

3

3C

����
C=0
E

[
− log 6 (C)naïve(F"+1 | F1, . . . , F" )

]
=

∑
:

V:E
[
− log 5: (F"+1 | F1, . . . , F" ; \̂ (,))

]
899

=
∑
:

V:L: (\̂ (,)). (8) 900

This quantity is negative if, for example, L" (\̂ (,)) is minimal among the L: (\̂ (,)). 901

Reintroducing the normalization condition, we define a candidate function 6 (C) as the normalization of 902

6
(C)
naïve over F"+1 and compute, with the aid of (8) and using that the 6: are normalized to simplify the 903

derivative of log
∑

exp: 904

3

3C

����
C=0
E

[
− log 6 (C) (F"+1 | F1, . . . , F" )

]
905

=
∑
:

V:L: (\̂ (,)) +
3

3C

����
C=0
E log
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F

6
(C)
naïve(F | F1, . . . , F" ) 906

=
∑
:

V:L: (\̂ (,)) + E
∑
F

〈∑
:

V: log 5: (F1, . . . , F" ; \̂ (,)), 5" (F1, . . . , F" ; \̂ (,))
〉

907

=
∑
:

V:L: (\̂ (,)) −
∑
:

V:E
[
�KL

(
5" (F1, . . . , F" ; \̂ (,)) ‖ 5: (F1, . . . , F" ; \̂ (,))

) ]
, (9) 908

where the last line used that
∑
V: = 0. 909

In practice, we are interested in sparse log-linear mixtures. Taking V" = 1, V: = −1 for a single : , and 910

all other V8 = 0, we conclude that the boosted model proportional to 5 1+C
"

5 −C
:

is a better predictor than 5" 911

alone if the difference between prediction losses L" and L: is greater than the average KL divergence 912

between the predictions 5" and 5: . 913
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B Example WebText completion914

An example of human, top-?, and coherence boosting outputs is shown in Table B.1. All outputs for all915

boosting schemes are included in the SI.916

University of Alberta doctoral candidate Scott Persons measured the limb length for 53 different species of carnivorous dinosaurs
to create an equation to score how much each was built for speed.

Human A new study published out of the University of Alberta has found that carnivorous dinosaurs evolved to become faster and faster
over time — and the proof is in the leg length. As part of his doctoral research, lead author Scott Persons travelled the world
measuring the limb lengths for 53 different species of carnivorous bipedal dinosaurs, including the Velociraptor, Allosaurus and
Tyrannosaurus rex. In particular, Persons looked at the length of the dinosaurs’ legs below the knee. As a rule, he said, the longer
the lower leg is in comparison to the upper leg, the faster the animal is. Modern-day cheetahs have proportionately longer legs
than hyenas. That relationship is mirrored in the animals’ speeds, Persons said. "That’s true for modern carnivores, and must
have been true for dinosaurs," Persons said in a statement released Wednesday.

Nucleus
(? = 0.95)

"In a lot of areas of the world, dinosaurs at the time didn’t have legs, they had weapons," said Persons. So he used his scientific
skill, titled "Toill’s Law of Tragedy," to give the dinosaurs an on-the-ground estimate of what their internal organs weighed. For
example, wood-eating reptiles, such as the dinosaur Lufengosaurus and the ceratopsian Tyrannosaurus rex, would have weighed
up to 52 kg (115 lbs) each. And as many as 50 plates should have been available to hunt, Persons said. But what’s important
is that a dinosaur’s pack or herd probably wouldn’t have been able to feed all three in one sitting. Dinosaurs were extremely
resilient, as very few of them survived from one kill to the next and later on would start a “phased trip” back to where they’d
been killed, Persons said.

+ boost
(: = 64,
U: = −0.1)

"In a lot of areas of the world, dinosaurs at the time didn’t have legs, they had weapons," said Persons. So he used his
undergraduate course to work on a formula to calculate a specific height for each carnivore based on the evolutionary requirements
of different dinosaurs and when it would have been optimal for meat eating. He then moved that formula into his doctoral
thesis project, which is looking at limb lengths for medium-sized, fearsome carnivores. "His thesis is about how to measure
the shape of different places, plant diversity and evolutionary biology and kind of how we see dinosaurs and the relationships
between species," said Susanne Dufoot, an associate professor of paleontology at McMaster University who recently returned
from attending Persons’ research. "It’s interesting because he’s basically done the legwork, developed this model that can give us
information about plant species." ‘He was an amazing creature’

Table B.1: Completions of an article: written by a human (original WebText) and sampled from GPT-2 Large with
top-? sampling, with and without coherence boosting. While top-? sampling produces text that is coherent at first
glance – it is free of repetition and nonce words – the topic of the article meanders from limb length to internal
organs and killing, and nonsensical comments appear (‘Toill’s Law of Tragedy’, herbivorous ceratopsian T-Rex,
etc.). The output with coherence boosting is largely free of these issues, maintaining focus on limb length and diet.
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C Prompt formats for multiple-choice tasks 917

Task Prompt format

Story Cloze [Context] [Completion]

HellaSwag [Context] he/she/they/... [Completion]

COPA [Premise] because/so [Hypothesis]

CommonsenseQA [Question] the answer is: [Answer]

OpenBookQA [Question] the answer is: [Answer]

ARC Easy Question: [Question] Answer: [Answer]

ARC Challenge Question: [Question] Answer: [Answer]

PIQA Question: [Question] Answer: [Answer]

SST-2 [Context] This quote has a tone that is: [Label]

SST-5 [Context] This quote has a tone that is: [Label]

AGNews Title: [Title] Summary: [Context] Topic: [Label]

TREC [Question] The answer to this question will be [Label]

BoolQ [Passage]\n Question: [Hypothesis] True or False? Answer: [Label]

RTE [Premise]\n question: [Hypothesis] true or false?\n answer: [Label]

CB Given question: [Premise] Is [Hypothesis] true, false or neither?\n The answer is: [Label]

Table C.1: Prompt formats used in our experiments. The full context is underlined in blue; the premise-free context
is also underlined in red. We mainly draw inspiration from (Brown et al., 2020; Holtzman et al., 2021; Zhao et al.,
2021) to make our prompts more natural to facilitate boosting the coherence of the completion.
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D Additional results918

GPT-3 Small GPT-3 Medium GPT-3 Large GPT-3 XL
5max U = 1 U = U∗ U∗ 5max U = 1 U = U∗ U∗ 5max U = 1 U = U∗ U∗ 5max U = 1 U = U∗ U∗

Story Cloze 66.0 70.9 74.5 -0.8 70.1 76.3 78.0 -0.8 74.2 82.9 80.8 -0.7 79.3 82.9 86.9 -0.6
HellaSwag 35.7 38.9 42.0 -0.9 42.8 46.8 51.3 -0.8 50.5 55.1 62.2 -0.8 59.2 62.7 72.3 -0.8
COPA 73.0 71.0 75.0 -0.6 85.0 79.0 83.0 -0.7 84.0 83.0 84.0 -0.6 93.0 87.0 94.0 -0.5

CsQA 34.6 46.4 48.0 -0.7 42.4 51.4 53.0 -0.7 50.0 57.5 60.4 -0.7 61.1 68.0 70.4 -0.7
OBQA 16.0 39.8 46.6 -2.2 16.4 41.8 48.8 -1.4 20.8 45.4 47.8 -1.6 28.0 52.2 52.6 -1.1
ARC-E 51.3 48.1 56.0 -0.5 59.8 54.8 63.3 -0.4 68.4 60.3 70.7 -0.5 76.2 69.2 78.3 -0.4
ARC-C 22.6 30.8 31.1 -1.4 27.5 35.3 35.5 -1.2 33.9 41.8 41.8 -0.9 43.9 50.6 49.2 -1.1
PIQA 69.0 57.5 69.6 -0.4 74.4 60.4 74.7 -0.4 76.3 64.2 77.7 -0.4 79.3 66.3 78.9 -0.6

SST-2 70.6 79.8 84.6 -2.3 69.5 75.2 88.0 -4.8 66.8 65.2 70.0 2.0 86.2 88.1 89.8 -0.5
SST-5 26.7 26.6 26.1 -1.1 29.3 30.7 30.0 -1.2 28.1 33.2 30.1 -0.8 31.2 34.8 38.5 -1.4
AGNews 67.1 69.2 69.5 -1.2 63.3 64.8 65.4 -2.0 69.2 65.7 69.5 -0.3 71.7 71.7 71.8 0.2
TREC 28.8 57.2 57.4 -1.0 30.2 62.6 63.6 -0.8 35.2 28.8 37.2 -0.3 52.4 47.0 56.0 -0.6
BoolQ 60.7 62.4 62.2 -1.4 61.6 63.4 63.5 -0.9 64.2 65.6 68.1 -4.5 71.6 73.7 72.7 -0.4

RTE 49.8 51.3 51.3 -3.6 54.5 50.5 49.1 -1.2 53.8 55.6 55.2 -1.4 56.0 57.4 60.3 -0.6
CB 33.9 19.6 21.4 -0.7 8.9 25.0 39.3 -1.9 32.1 28.6 32.1 -0.2 5.4 25.0 28.6 -1.9

Table D.1: Accuracy (%) of GPT-3 models on all multiple-choice tasks, in the same format as Table 4.

GPT-2 Small GPT-2 Medium GPT-2 Large GPT-2 XL
5max U = −1 Ours U∗ 5max U = −1 Ours U∗ 5max U = −1 Ours U∗ 5max U = −1 Ours U∗

Story Cloze 59.9 64.8 64.2 -1.0 63.0 68.5 70.4 -0.7 66.0 72.0 74.4 -0.8 67.6 75.1 76.8 -0.7
HellaSwag 28.9 31.0 31.8 -0.9 33.4 36.6 38.1 -0.9 36.6 39.5 43.0 -0.8 40.0 42.6 47.7 -0.8
COPA 62.0 56.0 64.0 -0.7 69.0 69.0 72.0 -0.6 69.0 60.0 69.0 -0.6 73.0 70.0 77.0 -0.4

CsQA 29.5 42.3 43.2 -0.8 31.3 44.6 45.3 -0.8 35.7 47.3 50.0 -0.8 37.8 50.5 52.9 -0.8
OBQA 11.2 30.6 40.8 -1.6 15.6 34.8 43.8 -2.1 13.6 34.4 44.2 -1.8 15.6 38.4 47.0 -1.9
ARC-E 43.8 42.1 46.0 -0.3 49.1 44.5 51.3 -0.6 53.2 46.5 56.2 -0.5 58.3 51.4 60.3 -0.4
ARC-C 19.0 26.1 29.1 -4.2 21.5 27.3 27.0 -1.0 21.7 28.3 29.1 -2.8 25.0 33.5 34.4 -1.1
PIQA 62.9 57.5 63.4 -0.6 67.6 56.1 68.1 -0.5 70.3 60.0 70.1 -0.4 70.8 60.4 71.5 -0.4

SST-2 65.7 74.7 82.3 -2.2 72.6 83.5 88.2 -2.0 77.2 87.6 88.0 -1.2 86.4 84.5 86.9 -0.1
SST-5 25.9 30.9 30.9 -1.2 20.5 33.3 35.2 -1.1 29.1 31.8 35.2 -1.4 28.7 38.7 36.9 -1.7
AGNews 58.6 60.8 62.2 -0.6 64.6 66.5 66.3 -0.7 62.6 62.1 63.8 -0.4 67.2 67.4 68.3 -0.4
TREC 23.4 29.6 32.2 -0.8 27.4 17.6 36.0 -0.4 22.6 45.4 44.2 -1.2 23.4 27.4 40.0 -0.8
BoolQ 49.4 58.1 62.1 -3.0 56.6 61.8 61.8 -0.9 61.2 62.3 62.2 -1.8 62.1 63.5 63.2 -0.6

RTE 51.3 49.8 53.4 -0.3 53.1 50.9 53.8 -0.2 53.1 46.6 50.2 -1.2 49.1 48.7 49.1 0.9
CB 12.5 23.2 48.2 -2.4 8.9 37.5 55.4 -2.5 8.9 32.1 53.6 -2.5 30.4 51.8 66.1 -1.9

Table D.2: Accuracy (%) of GPT-2 models on all multiple-choice tasks, in the same format as Table 4.
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GPT-3 Small GPT-3 Medium GPT-3 Large GPT-3 XL
PMI CC Ours PMI Ours PMI Ours PMI CC Ours

Story Cloze 73.1 - 74.5 76.8 78.0 79.9 80.8 84.0 - 86.9
HellaSwag 34.2 - 42.0 40.0 51.3 45.8 62.2 53.5 - 72.3
COPA 74.4 - 75.0 77.0 83.0 84.2 84.0 89.2 - 94.0

CsQA 44.7 - 48.0 50.3 53.0 58.5 60.4 66.7 - 70.4
OBQA 42.8 - 46.6 48.0 48.8 50.4 47.8 58.0 - 52.6
ARC-E 44.7 - 56.0 51.5 63.3 57.7 70.7 63.3 - 78.3
ARC-C 30.5 - 31.1 33.0 35.5 38.5 41.8 45.5 - 49.2

SST-2 72.3 71.4 84.6 80.0 88.0 81.0 70.0 71.4 75.8 89.8
SST-5 23.5 - 26.1 32.0 30.0 19.1 30.1 29.6 - 38.5
AGNews 67.9 63.2 69.5 57.4 65.4 70.3 69.5 74.7 73.9 71.8
TREC 57.2 38.8 57.4 61.6 63.6 32.4 37.2 58.4 57.4 56.0
BoolQ 53.5 - 62.2 61.0 63.5 60.3 68.1 64.0 - 72.7

RTE 51.6 49.5 51.3 48.7 49.1 54.9 55.2 64.3 57.8 60.3
CB 57.1 50.0 21.4 39.3 39.3 50.0 32.1 50.0 48.2 28.6

Table D.3: Performance comparison with other inference methods on GPT-3 models. PMI (Holtzman et al., 2021)
is an unconditional probability normalization method, CC (Zhao et al., 2021) is the contextual calibration method.
We compare them in the zero-shot setting.

GPT-2 Small GPT-2 Medium GPT-2 Large GPT-2 XL
PMI Ours PMI Ours PMI Channel Ours PMI CC Ours

Story Cloze 67.0 64.2 71.6 70.4 73.4 - 74.4 76.3 - 76.8
HellaSwag 29.1 31.8 32.8 38.1 35.1 - 43.0 37.8 - 47.7
COPA 62.8 64.0 70.0 72.0 69.4 - 69.0 71.6 - 77.0

CsQA 36.4 43.2 41.8 45.3 44.5 - 50.0 47.8 - 52.9
OBQA 32.4 40.8 38.6 43.8 43.2 - 44.2 46.0 - 47.0
ARC-E 39.3 46.0 42.4 51.3 47.0 - 56.2 49.9 - 60.3
ARC-C 28.2 29.1 28.6 27.0 31.6 - 29.1 33.8 - 34.4

SST-2 67.1 82.3 86.2 88.2 85.6 77.1 88.0 87.5 82.0 86.9
SST-5 30.0 30.9 39.3 35.2 22.0 29.2 35.2 40.8 - 36.9
AGNews 63.0 62.2 64.4 66.3 64.1 61.8 63.8 65.4 60.0 68.3
TREC 36.4 32.2 21.6 36.0 44.0 30.5 44.2 32.8 37.3 40.0
BoolQ 51.1 62.1 49.7 61.8 46.7 - 62.2 49.5 - 63.2

RTE 49.8 53.4 54.9 53.8 54.2 - 50.2 53.4 48.5 49.1
CB 50.0 48.2 50.0 55.4 50.0 - 53.6 50.0 17.9 66.1

Table D.4: Performance comparison with other inference methods on GPT-2 models. PMI (Holtzman et al., 2021)
is an unconditional probability normalization method, CC (Zhao et al., 2021) is the contextual calibration method
and Channel (Min et al., 2021) uses an inverted-LM scoring approach that computes the conditional probability of
the input given the label. We compare them in the zero-shot setting.
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Figure D.1: Model comparison for StoryCloze, HellaSwag, OpenBookQA, CommonsenseQA, ARC Easy, ARC
Challenge, PIQA and COPA by varying U on the testing set.
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Figure D.2: Model comparison for SST-2, SST-5, AGNews, TREC, BoolQ, RTE and CommitmemtBank by vary-
ing U on the testing set.
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