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ABSTRACT

Policy learning through behavior cloning poses significant challenges, particu-
larly when demonstration data is limited. In this work, we present HyPoGen,
a novel optimization-biased hypernetwork for policy generation. The proposed
hypernetwork learns to synthesize optimal policy parameters solely from task
specifications – without accessing training data – by modeling policy generation
as an approximation of the optimization process executed over a finite number
of steps and assuming these specifications serve as a sufficient representation of
the demonstration data. By incorporating structural designs that bias the hyper-
network towards optimization, we can improve its generalization capability while
only training on source task demonstrations. During the feed-forward prediction
pass, the hypernetwork effectively performs an optimization in the latent (com-
pressed) policy space, which is then decoded into policy parameters for action
prediction. Experimental results on locomotion and manipulation benchmarks
show that HyPoGen significantly outperforms state-of-the-art methods in generat-
ing policies for unseen target tasks without any demonstrations, achieving higher
success rates and underscoring the potential of optimization-biased hypernetworks
in advancing generalizable policy generation. Our code and data are available at:
https://github.com/ReNginx/HyPoGen.

1 INTRODUCTION

Behavior cloning (BC) (Pomerleau, 1991) is highly promising in real-world applications, as it trains
agents directly from expert demonstrations, which can be more easily acquired in certain scenarios
than designing a proper reward function for Reinforcement Learning (RL). Moreover, BC alleviates
the complexity in training for long-horizon tasks that may exist in infinite-dimensional spaces.

While BC can bypass the challenges of reward function design and RL training difficulties by
learning directly from expert demonstrations, it comes with its own limitations: (i) Substantial data
requirement. Gathering sufficient high-quality expert data is time-consuming and labor-intensive, as
it requires days, if not months, of manual recording of numerous instances of the desired behavior
(spatial-temporal trajectories). This process can be particularly burdensome in complex or hazardous
tasks. (ii) Insufficient generalization ability. Policies trained in one environment often fail to perform
well in different ones due to overfitting to specific scene variations and task dynamics encountered
during training (Zhang et al., 2018; Song et al., 2020). Such a lack of generalization limits the policy’s
applicability in complex, real-world scenarios with varying conditions.

In response to these challenges, recent work attempts to enhance the generalization capability through
Hypernetworks (Ha et al., 2017; Rezaei-Shoshtari et al., 2023). These networks learn a mapping from
the task embedding (specification) space to the parameter space of target (policy) networks, enabling
capturing the similarity between different tasks, which is crucial for transferability, and promoting
better utilization of limited demonstrations.
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Figure 1: Policy generation networks are trained on source (seen) task specifications with corre-
sponding demonstrations using behavior cloning, and then directly applied to target (unseen) task
specifications to generate policy network parameters for action prediction. By introducing optimiza-
tion inductive biases into the proposed hypernetwork HyPoGen, we can achieve better performance
on out-of-domain specifications without resorting to additional demonstration collection and training.

Despite their success, previous works usually employ hypernetworks in a target-network-agnostic
manner, typically by structuring them as multi-layer perceptrons (MLPs), and are subject to several
limitations: (i) Overfitting risk: Training a hypernetwork to map a task embedding to the set of
parameters of a policy network faces the same problem of overfitting to the tasks being learned, similar
to the generalization difficulty encountered in supervised learning. (ii) Disregard for the optimization
process: These hypernetworks do not account for the fact that the optimal weights of a target network
are the result of optimization through (stochastic) gradient descent. (iii) Ignorance of target network
structure: The hypernetworks predict different parts of the policy network simultaneously and do not
utilize the information flow induced by the structure of the target network.

These issues hinder the deployment of hypernetworks at a large scale for generalizable policy synthe-
sis, for which we attempt to investigate and propose a potentially in-principle solution. Generalization
from completely unrelated tasks, like piano playing to pizza cooking, is exceptionally challenging. A
more achievable type of generalization occurs in tasks with similar characteristics, such as an agent
learning to handle objects of various shapes or operate under unseen dynamics. In such cases, tasks
are defined by environmental and embodiment parameters (specification) that help the agent leverage
and generalize through sharable characteristics across different tasks.

To address these issues, we present HyPoGen, a method that biases Hypernetworks for Policy
Generation from task specifications. HyPoGen employs inductive biases in both the optimization
process and the interdependencies within the target network structure to facilitate generalizable
policy synthesis. Our approach imitates the iterative optimization in the latent parameter space,
updating policy network parameters solely based on task specifications rather than relying on manu-
ally collected demonstration data. To further bias the hypernetwork training towards optimization
with structural information of the policy network, HyPoGen mimics the interdependent gradient
computation (involved in the backward propagation) during the (forward) synthesis procedure in
the latent parameter space. This is achieved by predicting the neural “gradients” of each conceptual
network block according to the chain rule relationship. The predicted latent parameters can then be
decoded back to the original parameter space, enabling action prediction when loaded into the target
policy network.

We conduct an extensive evaluation within both locomotion and manipulation environments. Our
proposed method, trained on the DeepMind Control Suite (Tunyasuvunakool et al., 2020) and
ManiSkill (Mu et al., 2021), outperforms state-of-the-art (SOTA) methods in both settings. HyPoGen
achieves a significant enhancement in success rate for various stiffness and arm lengths in ManiSkill
environments. Furthermore, our experiments validate that HyPoGen performs optimization based
solely on task specifications without actual demonstration data. In summary, our main contributions
include:

• We propose a novel hypernetwork architecture termed HyPoGen that integrates the inductive
bias of the optimization process of the target network under behavior cloning.

• We introduce an effective approach for learning (latent) neural gradient updates, explicitly
modeling the interdependencies of gradients across different target network blocks.

• We comprehensively benchmark our approach against previous methods in both locomotion
and manipulation tasks, demonstrating its superiority in generalizable policy generation.
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2 RELATED WORK

Behavior cloning and policy generation BC (Bain & Sammut, 1995) enables efficient learning
and replication of policies through expert demonstration data. Due to its ability to directly imitate
demonstrated behavior without requiring fine-grained reward functions or extensive interactions with
the environment, BC has shown remarkable effectiveness when combined with RL tasks (Lee &
Zhang, 2021; Goecks et al., 2019; Kumar et al., 2022; Rajeswaran et al., 2017; Nair et al., 2018).
For instance, it has been used to pre-train Q-functions by minimizing the temporal difference (TD)
error between the demonstrated expert policy and the optimal policy (Hester et al., 2018), or to guide
exploration through reward and policy shaping (Subramanian et al., 2016; Brys et al., 2015). Current
behavior guidance methods strive to explore strategies beyond the original demonstrations (Gao et al.,
2018; Brown et al., 2020), but generalization remains a fundamental challenge.

A primary issue of BC is the lack of generalization to unseen scenarios due to distributional mismatch
(Ross et al., 2011). Given the high cost of collecting extensive demonstration data, efforts are
made to learn generalizable policies with a limited number of demonstrations (Kim et al., 2013;
Mandlekar et al., 2020; Prados et al., 2024). Several methods achieve better generalization by
exploring perturbations in the policy parameter space (Such et al., 2017), known as evolutionary
algorithms (Salimans et al., 2017). Further approaches add noise to the parameters and optimize
through policy gradient descent to facilitate exploration (Plappert et al., 2017; Cao et al., 2020). Other
works focus on generalizing to long-horizon, multi-stage tasks by leveraging the compositionality of
a small set of given demonstrations (Mandlekar et al., 2020). They learn goal-directed policies from
stochastic rollouts during the behavior cloning phase to achieve controllable behaviors. However,
existing works still struggle with contextual variations and perform poorly in zero-shot settings.

Hypernetworks (Ha et al., 2017), generally speaking, use a neural network to generate the weights
of a target network. During training, only the learnable hypernetwork weights are optimized. One
of the noticeable merits of hypernetworks is the parameter efficiency. It achieves this by generating
weights of multiple target networks on related tasks, performing well in soft-weight sharing (Chauhan
et al., 2023b; Von Oswald et al., 2019; Navon et al., 2021; Zhao et al., 2020) and weight compression
(Ha et al., 2017). Hypernetworks hold a good connection with meta-learning, primarily due to their
intrinsic capability to facilitate the learning-to-learn process. Research such as (Sendera et al., 2023;
Przewięźlikowski et al., 2022) employs hypernetworks to encapsulate the inner-update loop within
the MAML framework (Mishra et al., 2017). These approaches help position hypernetworks as a
meta-optimizer, a concept that has also inspired the methodology adopted in our study.

In the field of multi-task RL and meta-RL, which focus on policy generation and generalization,
hypernetworks have achieved successful applications in areas such as morphology control (Xiong
et al., 2023; 2024), episodic memory (BG et al., 2024), context-aware response (Beukman et al., 2024),
and dynamics model generation (Xian et al., 2021). For instance, using an MLP-based hypernetwork
to learn a universal policy for different robotic morphologies can maintain computational efficiency
while achieving inference performance comparable to that of Transformers (Xiong et al., 2024).
Other approaches demonstrate that when incorporating contextual information into policy adaptation,
generating the weights of decision adapters with a hypernetwork can effectively circumvent the
computational constraints caused by the expansion of learnable parameters (Beukman et al., 2024).
As far as we observe, these methods (Xian et al., 2021; Beck et al., 2023) focus on the combination of
the hypernetworks and zero-shot contextual RL. However, our method focuses on the hypernetwork
structure and explicit modeling of the optimization procedure of the target network for achieving
generalizable policy generation.

Learned Optimizers In this work, we design the hypernetwork to work like an optimizer. This is
in concept similar to learned optimizers (LO) (Harrison et al., 2022; Bengio et al., 2013; Runarsson
& Jonsson, 2000; Andrychowicz et al., 2016; Wichrowska et al., 2017). LO are models designed to
enhance the efficiency and effectiveness of optimization processes. Unlike traditional hand-crafted
algorithms such as SGD or Adam, LO leverages meta-learning to learn optimization strategies directly.
Their primary goal is to generalize across tasks and outperform standard optimizers by adapting to
specific problem structures. A key distinction is that LO is meta-learned and requires tuning on novel
tasks. In contrast, our proposed structure predicts the update scheme directly from task specifications,
eliminating the need for any data at test time.
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Figure 2: (a) Given expert demonstrations D(M), one can always achieve the optimal policy θ∗ via
BC with stochastic gradient descent (SGD), which also defines the generalization upper bound in
the context of BC for taskM. (b) Due to the lack of demonstrations, conventional hypernetworks
generate parameters θ̂ for the taskM, by supervised learning the mapping from task to parameters,
subject to overfitting given infinite solution space. (c) Even without actual demonstrations, we
propose that the taskM is informative of the data, and can thus be used to guide the iterative update
for predicting the optimal parameters θ̂∗ (as in (a), Sec. 4.1), which in turn constrains the solution
space and promotes prediction as optimization (from the task instead of data, Sec. 4.2). (d) With
the proposed architectural inductive bias, the hypernetwork in (c) is indeed performing iterative
optimization (action prediction loss is decreasing) as the iteration (block) number increases.1

3 POLICY GENERATION WITH HYPERNETWORKS

Given a Markov Decision Process (MDP)M = (S,A,T ,R, γ) where S is the state space, A is the
action space, T ∶ S ×A→ p(S) is the transition function, R ∶ S ×A→ R is the reward function, and
γ ∈ [0,1] is the discount factor, an optimal control policy π ∶ S → p(A) is supposed to maximize
the expected (discounted) return in the context of reinforcement learning (RL). Typically, the policy
network π is a multi-layer perceptron (MLP) (Rakelly et al., 2019; Sarafian et al., 2021; Rezaei-
Shoshtari et al., 2023; Beck et al., 2023). However, training a policy network with RL is challenging
(Ibarz et al., 2021), e.g., due to large exploration space and optimization difficulties.

To resolve the training difficulties in RL, behavior cloning (BC) trains a policy network in a supervised
manner with a dataset of expert demonstrations D = {(sit, ait)}Nd

i=1 with Nd being the number of
demonstrations and sit, a

i
t being the state and action at time t respectively. The optimal policy can

then be obtained by minimizing the action prediction loss L(θ,D) = ∑i,t ℓ(π(sit; θ), ait), with ℓ as
a discrepancy metric and θ ∈ Θ as the parameters of policy network π. Despite the stability and
efficiency of the training procedure, BC relies heavily on expert data and may not generalize to
unseen task specifications. To generalize, one has to collect demonstrations covering all different
situations, which is time-consuming and costly, especially for real-world applications.

Problem formulation. We aim to maximize the utilization of the limited demonstrations for BC by
developing a mechanism that can automatically synthesize the “optimal” policy network (parameters)
from a novel specification of a given task. Specifically, for source task set S and target task set
T , we denote the source tasks characterized by the corresponding MDP as MS = {Mj ∣Mj =
(Sj ,Aj ,Tj ,Rj , γ), j ∈ S}, and similarly the target tasks are MT = {Mj ∣j ∈ T}, with MS ∩MT = ∅,
e.g., differing in environmental settings or dynamics. Moreover, for source taskMj ∈ MS , there
exists a collection of demonstrations Dj , whereas for the target tasks in MT , no demonstrations are
available. Our goal is to train a network with Ω as parameters,HΩ ∶M→ Θ, to produce the weights θ
of the policy network π after consuming the task specificationM, such that π(⋅ ;H(M)) minimizes
the BC loss derived with the demonstrations D(M).
Formally, the neural networkH functions as a hypernetwork (Ha et al., 2017), and can be trained by
minimizing the following:

L(Ω,{(Mj ,Dj)}j∈S) =∑
j

∑
i,t

ℓ(π(si,jt ;H(Mj)), ai,jt ) , (1)

where j is the task (specification) index and i, t go through different demonstrations and time steps
within a task. After training, the hypernetworkH should be able to synthesize the optimal parameters
for each source task (specification) in MS , i.e., L(Ω,{(Mj ,Dj)}j∈S) is minimal. Note that without
demonstrations for the target tasks MT , the performance of the synthesized policy networks fully

1Note that the loss is computed with demonstrations, which is only used here for validation purposes.
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Figure 3: The overall pipeline of the proposed HyPoGen. Top: HyPoGen uses an iterative update
scheme (Eq. 6) to generate the policy network parameters θ from the task specificationM. Bottom:
inside each hypernet block, we calculate the neural “gradients” for each block of the policy network
in a way resembling the backpropagation process (Eq. 7, 8).

depends on the generalization capability ofH while only being trained on the source tasks MS and
the demonstrations {Dj ∣j ∈ S}. Next, we elaborate on the generalization gap of H as a mapping
from the task specification to the optimal parameters, and how we can improve the generalization by
injecting an inductive bias into its structure that encourages optimization instead of memorization.

4 HYPERNETWORKS AS OPTIMIZATION WITHOUT DATA

Motivation. As pointed out by (Heckel & Yilmaz, 2021; Nakkiran et al., 2021), an optimization
process with a proper number of steps tends to yield parameters that generalize better than a model
directly memorizing the training set. Currently, the architecture of hypernetworks is dominated by
MLPs, especially those focusing on policy generation (Chauhan et al., 2023a). While an MLP is
capable of mapping a task specification to the parameters of a policy network, it remains a very naive
approach, offering limited generalization ability due to its lack of inductive bias. Building on this
insight, we propose a novel hypernetwork to function as an iterative optimization process, rather
than simply memorizing the best parameters for each training task. This operation is similar to the
task-specific training with SGD and thus could potentially induce better generalization performance
due to 1) this inductive bias constrains the search space for the hypernetwork, thus, less prone to
overfitting to the training tasks; and 2) optimization is a low-degree-of-freedom operation and, if
learned, will approach the upper bound set by task-specific training using demonstrations. Next, we
will first introduce the designing principle in Sec. 4.1; and then we detail the proposed hypernetwork
with the introduced bias in Sec. 4.2. An overview of the motivation is presented in Fig. 2, which also
shows evidence that the proposed hypernetwork is performing optimization when checking the action
prediction loss.

4.1 BIASING HYPERNETWORKS TOWARDS OPTIMIZATION

The overall pipeline of the proposed HyPoGen is illustrated in Fig. 3. In this section, we start by
deriving the gradient formula for target networks on a given datapoint (Eq. 3, 4), and then we argue
that the dependency on specific data can be resolved (Eq. 5). Finally, we present the model structure
that incorporates the optimization inductive bias targeting MLP-based policy networks (Eq. 6, 7, 8).

Since most policy networks are MLPs due to their training efficiency and scalability, and without loss
of generality, we can put a policy into the following format:

π(s; θ) = hθNN ○ h
θN−1
N−1 ○ h

θN−2
N−2 ○ ⋯ ○ h

θ2
2 ○ h

θ1
1 (s) , (2)

where θ = {θn}Nn=1 and N is the number of layers (or blocks) in the policy network π. Please note
that each layer h does not need to be a fully connected layer, e.g., h can be a block of layers or
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a sub-network. The grouping of the parameters of a policy network into the format presented in
Eq. 2 depends on its actual topology, and we mainly experiment with the MLP structure, given its
popularity in the policy learning literature.

Furthermore, to fit a single data point (s, a) under the ℓ2 distance, a gradient step updates the policy
network parameters as:

θk+1 = θk + λ ⋅ (π(s; θk) − a) ⋅ ∂π(s; θ
k)

∂θ
(3)

where, λ ⋅ (π(s; θk) − a) denotes the effective stepsize and ∂π(s; θk)/∂θ can be computed using the
chain rule:

∂π(s; θk)
∂θn

= (
N−n

∏
m=1

∂hN−m+1(zN−m; θkN−m+1)
∂zN−m

) ∂hn(zn−1; θ
k
n)

∂θn
, (4)

with zn = h(zn−1; θn) the activation of the n-th layer (block). Please note that even though Eq. 3
and Eq. 4 are instantiated with a single state-action pair, the counterparts computed with a dataset of
demonstrations share a similar format. Therefore, we proceed to describe the proposed hypernetwork
architecture without further laboring.

4.2 NEURAL ESTIMATION OF POLICY UPDATES WITHOUT DATA

Accurate computation of the updates in Eq. 3, 4 for deriving the optimal policy is difficult due to the
lack of demonstration data for the target tasks, for example, both λ⋅(π(s; θk)−a) and ∂π(s; θk)/∂θ in
Eq. 3 are data-dependent. However, it is possible to approximate these updates (at least theoretically),
if we treat the specificationM of a target task as a sufficient representation of its demonstrations.

More specifically, the update of the policy parameters over all demonstrations is

∆θ = E(s,a)∼p(D(M))[λ ⋅ (π(s; θ) − a) ⋅
∂π(s; θ)
∂θ

] = F (θ, p(D(M))) , (5)

Note that the expectation is taken over the distribution of training demonstrations D(M), which is
defined by the task specificationM. The update of the policy parameters can be seen as a function
F that only depends on the policy network parameters θ and the distribution of the demonstrations
p(D(M)).
With the above reasoning, it is sufficient to use an encoded representation of the task specification
ϕ(M) to represent p(D(M)) and estimate the policy updates ∆θ = F (θ, ϕ(M)). We use the same
task encoder as in previous works (Rezaei-Shoshtari et al., 2023; Sarafian et al., 2021), though these
works directly map the task specification to policy parameters. Taking this ground, we propose
the following hypernetwork that leverages the structures presented in Eq. 3, 4 for promoting the
optimization generalization, as well as tackling the lack of demonstration at test time.

Iterative policy update with “neural gradients”. Inspired by Eq. 3, 5 and the above reasoning, we
propose network modules λ and ψ, such that the output of the proposed hypernetwork is as follows:

H(M) = θK ,and θk = θk−1 + λk(θk−1, ϕ(M)) ⋅ ψk(θk−1, ϕ(M)) , (6)

where λk and ψk estimate the “stepsize” (i.e., λ ⋅ (π(s; θ) − a)) and “gradient” of the k-th policy
update from the task embedding (specification) ϕ(M). The total number of updates is K, and θ0 is a
set of learnable parameters. To improve the training efficiency, we also compress/recover the policy
network parameters via an encoder and a decoder so that the hypernetworkH can perform the policy
generation in a latent space. (details can be found in Sec. A.2).

We further incorporate the optimization inductive bias from Eq. 4 into the structure of ψ to esti-
mate the corresponding terms. Let ∇zhn(zn−1; θn) = ∂hn(zn−1; θn)/∂zn−1 and ∇θhn(zn−1; θn) =
∂hn(zn−1; θn)/∂θn represent the gradients with respect to the activations and parameters, respec-
tively. Then, we divide gradient estimation function ψ into two sub-networks ψz

n and ψθ
n, im-

plemented by MLPs, to estimate ∇zhn,∇θhn respectively. Moreover, we instantiate another
series of MLPs ϕzn, n = 1...N that compute the pseudo estimation of the activation zn’s, i.e.,
ẑn = ϕzn ○ ϕzn−1 ○ ⋯ ○ ϕz1(ϕ(M)). One could also make the estimation of ẑn’s dependent on
the current estimate of the latent parameters, but we omit the dependence for clarity and leave the
necessity to experimental justifications.
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With these, the neural estimate of ∇zhn and ∇θhn for each iteration k are computed as:

∇̂zhn = ψz
n(ẑn−1, θn) and ∇̂θhn = ψθ

n(ẑn−1, θn) , (7)

with the superscript k omitted for clarity, and now we have the output of ψ as:

ψ(θ, ϕ(M)) = {(
N−n

∏
m=1

∇̂zhN−m+1) ∇̂θhn}
N

n=1

, (8)

which is the neural counterpart of the gradient computation illustrated in Eq. 4. Given
these structural designs, we can denote the proposed policy-generation hypernetwork as H =
{{λk}Kk=1, ϕ,{ϕzn, ψz

n, ψ
θ
n}Nn=1, θ0}, which are the learnable parameters.

Training loss. Finally, we can train the proposed hypernetworkH for policy generation (HyPoGen)
using the demonstrations of source tasks {Mj ,Dj}j∈S by minimizing the BC loss presented in
Eq. 1 in an end-to-end manner. Next, we study the effectiveness and generalization of the proposed
hypernetwork in synthesizing policies for target tasks (from only the task specifications) without
accessing any demonstrations.

5 EXPERIMENTS

100

500

900

1 4 7 10

HyperZero HyPoGen
Reward

Speed

Figure 4: Our model shows better gen-
eralization than the baseline Hyper-
Zero (details in Sec. 5.2).

The experiments are designed to evaluate the generaliza-
tion capabilities of existing policy generation methods and
to demonstrate the effectiveness of our proposed method,
which biases the hypernetwork towards optimization. We
leverage two sets of tasks for evaluation. The first set is
derived from MuJoCo environments, which provide a ro-
bust platform for concept verification and are widely used
by existing methods. The second set of tasks is sourced
from the ManiSkill environment, which includes replicas of
real robot arms and is more closely aligned with real-world
scenarios. By conducting experiments in both MuJoCo and
ManiSkill environments, we aim to comprehensively evalu-
ate our methods, demonstrating their versatility in handling various types of task.

Experiments are conducted individually on five selected representative tasks. Each task is varied by
a group of specifications. It is important to emphasize that we focus on the generalization among
different specifications within each task, rather than developing a generic policy generation for
drastically different tasks. For each task, we split the specifications into a training set, denoted as
MS , and a test set, denoted as MT , and MS ∩MT = ∅. The methods are trained on the expert
trajectories from MS , and during test time, we roll out a policy for each specification in MT and
report the average of their performance (on the designated specification). Experimentally, instead of
using the full MDPM as input, we omit the common component inM and use the task specification
(length/target speed, etc.) as the input.

5.1 ENVIRONMENT SETUP

MuJoCo. Following HyperZero Rezaei-Shoshtari et al. (2023), we use three environments from
DeepMind Control Suite Tunyasuvunakool et al. (2020) (a wrapper of the MuJoCo environment
Todorov et al. (2012)) for evaluation: Cheetah, Walker, and Finger. For each task, we examine three
types of specifications: (1) the desired speed of the object, (2) the torso length of the object, and (3)
the combinations of speed and length.

ManiSkill. We utilize the ManiSkill2 environment Mu et al. (2021); Gu et al. (2023) to validate
the real-world applicability. We select two tasks, LiftCube and Pick&PlaceCube, and conduct
experiments using the Franka Panda robotic arm. We examine four types of specifications: (1) the
size of the target cube, (2) the stiffness of the controller, (3) the damping of the controller, and (4) the
arm length of the robot. The detailed settings of the task specifications can be found in Sec. B.1.
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Data collection and evaluation protocols. For MuJoCo Environments, we pre-train a TD3 Fuji-
moto et al. (2018) agent on each specification separately for 1 × 106 steps as the expert. For each
specification, 10 trajectories of length 1000 are collected as the demonstration. We randomly split
the specifications into training and test sets using a 20% to 80% ratio. At test time, we evaluate
the performance by calculating the average reward of roll-out policies. The training/test splitting
process is repeated five times, and the average is calculated to reduce the effects of randomness.

For Maniskill Environments, we pre-train a PPO agent Schulman et al. (2017) for 4 × 106 steps and
collect 1000 successful trajectories for each specification. We uniformly sample 30% of the data for
training, and use the remaining 70% for testing. At test time, we calculate the average success rate
and the average episode length for evaluation.

Baselines. For a fair comparison, all methods (including ours) use the same policy network archi-
tecture and specification encoder. The baselines are summarized as follows:

1. Specification conditioned policy (Cond Policy): This method aims to learn a general policy for
all specifications. First, the network encodes the task specification using an encoder. It then takes
the concatenation of the encoded specification and the state as input to predict the action.

2. Specification conditioned policy with UVFA Schaul et al. (2015): This method predicts actions
and values under the UVFA framework. It first predicts the action in a similar way to specification-
conditioned policy. Besides, it adds an extra branch to predict the action-value functions Q(s, â)
where s is the current state and â is the predicted action, effectively utilizing the action-value in
the expert rollouts as an extra supervision signal.

3. Specification conditioned Meta Policy: This method trains the policy network with the
MAML Finn et al. (2017) framework. It aims to learn a set of weights that could adapt to
different specifications. It predicts action similarly to specification-conditioned policy but trains
differently through an inner-outer loop process, where the inner loop adapts the model to the
support set, and the outer loop optimizes the model’s initial parameters for rapid adaptation. Note
that this method requires few-shot fine-tuning at test time.

4. PEARL Rakelly et al. (2019): Unlike other baselines, this method does not require access to
contextual information. It instead keeps a replay buffer and uses it to generate an environment de-
scriptor via a variational inference approach. This way, it can effectively leverage past experience
and enable efficient off-policy learning. Note that this method also requires few-shot fine-tuning
at test time.

5. HyperZero Rezaei-Shoshtari et al. (2023): It uses an MLP-based hypernetwork to predict the
weight of policy networks. The hypernet takes the encoded specification as input and outputs the
policy network parameters.

We conduct zero-shot policy generation evaluations for Cond Policy, UVFA, HyperZero, and our
method. In contrast, the evaluations for Meta Policy and PEARL are carried out in a few-shot transfer
setting. More specifically, these two methods are fine-tuned using expert trajectories from the test
specifications MT , thus breaking the no test-time demonstration assumption.

Implementation details of HyPoGen. We apply the same task encoder design as in Hyper-
Zero (Rezaei-Shoshtari et al., 2023), which consists of 6 Res-Blocks. Following (Rezaei-Shoshtari
et al., 2023), the policy networks are implemented as two-layer MLPs with hidden dimension 256
for MuJoCo and three-layer MLPs with hidden dimension 256 for ManiSkills. The input and output
dimensions are specified by the task.

We use K = 8 hypernet blocks and apply Adam (Kingma & Ba, 2015) optimizer with learning rate
1 × 10−4. We train our model on an NVIDIA 4090 GPU with a batch size of 512 for 2000 epochs
(approximately 11 hours); we use the same hyperparameters in ManiSkill except for training 1000
epochs (approximately 10 hours). We detail our hyperparameters in Sec. B.2.

5.2 QUALITATIVE RESULTS

To intuitively illustrate the generalization ability of our method, we compare its performance with
HyperZero (Rezaei-Shoshtari et al., 2023) on the Cheetah environment in MuJoCo. Both methods
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Table 1: Comparison of the average reward achieved by different methods on the MuJoCo tasks. The
bold and underline numbers indicate the best and second-best results.

Reward ↑ Cheetah Finger Walker

Method speed length speed&length speed length speed&length speed length speed&length

Cond Policy 433.24 574.70 356.68 379.66 409.30 289.58 151.95 336.71 186.15
UVFA 396.86 588.56 340.78 383.65 422.62 287.43 115.60 294.87 177.81
Meta Policy 337.35 579.41 199.63 125.89 217.58 114.78 44.54 46.22 44.44
PEARL 177.16 705.07 214.65 121.49 160.42 152.88 52.06 54.13 53.03
HyperZero 695.73 895.46 602.39 596.80 536.56 353.68 328.48 642.22 393.93
HyPoGen(Ours) 819.23 926.90 623.76 835.21 657.12 365.85 436.26 706.16 409.88

Expert Rollout 869.59 963.07 927.12 975.71 959.42 913.40 722.68 897.11 814.43

Table 2: Comparison of the success rate (%) and episode length (#steps) on the ManiSkill tasks. For
each specification, we roll out 100 trajectories and compute the average success rate and episode
length. Again, bold and underline numbers indicate the best and second-best results.

% Rate ↑, #Steps ↓ LiftCube Pick&PlaceCube

Method cube size stiffness damping arm length cube size stiffness damping arm length

Cond Policy 89.93, 32.09 0.00, 200.00 56.28, 94.27 69.36, 71.40 69.81, 75.06 2.20, 196.56 39.26, 131.41 43.77, 123.02
UVFA 90.27, 32.40 0.00, 200.00 78.67, 53.53 72.18, 66.11 71.75, 71.91 0.00, 200.00 29.53, 146.68 36.85, 134.42
Meta Policy 84.67, 41.14 0.00, 200.00 0.06, 199.90 76.45, 56.95 12.62, 177.89 0.22, 199.77 0.21, 199.64 8.15, 185.68
PEARL 84.47, 41.60 59.87, 86.70 35.67, 132.23 78.73, 52.86 21.06, 163.28 24.44, 156.22 12.58, 177.54 16.08, 171.93
HyperZero 86.60, 38.24 0.00, 200.00 31.33, 140.90 63.64, 81.59 25.87, 155.27 0.00, 200.00 0.00, 200.00 13.92, 174.91
HyPoGen(Ours) 85.87, 39.37 97.20, 16.72 93.28, 24.78 85.73, 39.44 72.87, 68.97 78.33, 58.76 41.26, 125.99 52.54, 106.75

Expert Rollout 94.13, 22.86 96.73, 17.88 97.28, 16.30 93.64, 24.74 69.87, 73.26 75.92, 62.65 73.72, 66.19 54.77, 101.14

are trained on target speeds 1 and 10 and tested on speeds from 2 to 9, with reward curves shown in
Fig. 4. These experiments show that even though the different tasks are varied by a single parameter
(i.e., speed), transferring between them is challenging. While both methods perform similarly on
training tasks, HyperZero’s performance degrades significantly on unseen tasks with larger train-test
gaps, whereas HyPoGen maintains stable performance, showing superior generalization.

5.3 COMPARISONS

MuJoCo. The test-time average rewards obtained from different methods are reported in Tab. 1.
We can observe that the rewards obtained from conditioned policies (Cond Policy and UVFA)
are considerably lower than those from the expert. This suggests that the effectiveness of using
specifications as network input (condition) is limited. The two few-shot fine-tuning methods, Meta
Policy and PEARL, also perform much worse than the expert rollout. HyperZero outperforms all
other baselines, illustrating that hypernetwork is a more powerful policy generation paradigm than
the conditioning methods. Our method yields the best results across all tasks and specifications,
demonstrating the advantage of incorporating optimization inductive bias over direct policy generation.
Please refer to Sec. C.1 for detailed results in each specification and Tab. 13 in the appendix for the
standard deviation of the results.

ManiSkill. We report the average success rate and episode length in Tab. 2, and the standard
deviation of episode length in Tab. 14 in the appendix. The max step of a trial is set to 200. All
methods can achieve high success rates across different cube size specifications. We contend that
this task is relatively simple, as it primarily involves controlling the clamp’s opening width, which is
nearly linear to the cube size. In more challenging scenarios where controller stiffness, damping, and
arm length are varied, a linear relationship is no longer valid. As a result, the performances of different
methods vary and degenerate. In the most challenging stiffness specifications, the conditional policy
methods, the meta-learning baseline, and HyperZero fail to learn a reasonable policy. In contrast,
the proposed method HyPoGen is able to generate policies that achieve high success rates and low
episode length, demonstrating its superior generalization ability. Additionally, in-depth experiments
in Sec. C.3 verified that the poor performance of the baselines is attributed not to a lack of capacity,
but to their inductive bias, further highlighting HyPoGen’s superior generalization.
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5.4 ANALYSIS

In this section, we perform analysis and ablation studies to validate our model from different aspects.
By default, we use the task Cheetah from MuJoCo, with different speed specifications.

Table 3: Statistics of the generated
parameters by HyPoGen. We report
the average magnitude of the param-
eters and their standard deviation.

Magnitude Std.

fc1.weight 43.92 9.32
fc1.bias 6.17 2.20
fc2.weight 9.31 5.53
fc2.bias 0.44 0.31

Does HyPoGen actually perform optimization? Since we
aim at biasing the hypernetwork towards optimization, one
may be interested in knowing: (1) if HyPoGen simply remem-
bers a fixed set of parameters for each specification, and (2)
will the “neural gradients” work in a similar way to ordinary
gradients? i.e., if they are really optimizing the BC loss.

For the first question, We fix the input specification M and
examine the response of HyPoGen with various input weights
θ0. Specifically, we replace the values of θ0 with uniformly
random values within the range of [−0.1,0.1], and then com-
pare the outputs of θK for different initial values of θ0. The statistics of weights and biases in θK
are reported in Tab. 3. It is clear that the differences are significant, indicating that HyPoGen is not
simply memorizing a certain set of fixed parameters for a given task specification.

Table 4: BC loss after each “gradient” update.

#Updates 1 2 3 4 5 6 7 8

Loss@Cheetah 71.49 61.13 46.30 40.64 21.95 11.21 3.19 1.61
Loss@LiftCube 9.041 5.202 2.972 2.68 1.418 0.948 0.644 0.123

As for the second question, since
HyPoGen requires significantly
fewer update steps than conven-
tional gradient descent (8 versus
thousands), the “neural gradient”
encapsulates much more informa-
tion than the local gradient. Therefore, it is not appropriate to directly compare the val-
ues of neural gradients with conventional ones. Instead, we report the BC loss after each
optimization step (i.e. BCLoss(θk)). The results in Tab. 4 show that BC loss is con-
stantly decreasing after each update, verifying the effectiveness of HyPoGen in predicting neu-
ral “gradients” that optimize the weights of the network. Thus, HyPoGen not only gener-
ates different updates for different input weights, but also “optimizes” in the right direction.

Table 5: Convergence property at certain
epochs or reward.

250 epochs 600 reward

HyperZero 571.3 394
HyPoGen 732.9 74

Does the optimization-based hypernetwork improve
training convergence? We compare our method with
HyperZero, examining how much reward (test-time) they
can achieve when trained with the same epochs, and how
many epochs each requires to achieve the same reward.
The results are reported in Tab. 5. Our method achieves
a higher reward with the same number of epochs. Besides,
our method requires much fewer epochs of training to reach a given reward value. These results
demonstrate the superior training efficiency of our method. Due to limited space, please refer to
Sec. C for more experimental analysis.

6 DISCUSSION

We propose a novel hypernetwork, HyPoGen, which explicitly models the gradient-based optimiza-
tion process in the architecture for policy synthesis, capitalizing on the generalization capability of
test-time optimization. Additionally, we introduce an effective building block to mimic the interde-
pendencies of the gradient flow while training the policies. This structural design further enhances
the interpretability and generalizability of the proposed hypernetwork. Through comprehensive
benchmarking, we demonstrate the superiority of our method in terms of generalization under limited
learning budgets (both demonstration and computation) and the effectiveness of each proposed
component. Our work not only contributes to the development of more efficient and generalizable
policy learning algorithms but also provides insights for future research in the area of hypernet-
works. However, generating policies without seeing demonstration data for completely different tasks
remains challenging and is not fully resolved by our method. Future work may explore different
optimization techniques and more sophisticated building blocks that can better generalize across a
more diverse range of tasks.
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7 REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. The code,
datasets, and instructions necessary to replicate our experiments are publicly available at
https://github.com/ReNginx/HyPoGen. We hope these resources will assist future re-
search in both reproducing and building upon our work.
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Hypermaml: Few-shot adaptation of deep models with hypernetworks. arXiv preprint
arXiv:2205.15745, 2022.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pp. 5331–5340. PMLR, 2019.

Sahand Rezaei-Shoshtari, Charlotte Morissette, Francois R Hogan, Gregory Dudek, and David Meger.
Hypernetworks for zero-shot transfer in reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pp. 9579–9587, 2023.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference Proceedings,
2011.

Thomas Philip Runarsson and Magnus Thor Jonsson. Evolution and design of distributed learn-
ing rules. In 2000 IEEE Symposium on Combinations of Evolutionary Computation and
Neural Networks. Proceedings of the First IEEE Symposium on Combinations of Evolutionary
Computation and Neural Networks (Cat. No. 00, pp. 59–63. IEEE, 2000.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

13

https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/eda80a3d5b344bc40f3bc04f65b7a357-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/eda80a3d5b344bc40f3bc04f65b7a357-Abstract-round2.html
https://api.semanticscholar.org/CorpusID:7813587
https://api.semanticscholar.org/CorpusID:7813587


Published as a conference paper at ICLR 2025

Elad Sarafian, Shai Keynan, and Sarit Kraus. Recomposing the reinforcement learning building
blocks with hypernetworks. In International Conference on Machine Learning, pp. 9301–9312.
PMLR, 2021.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators.
In International conference on machine learning, pp. 1312–1320. PMLR, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proxi-
mal policy optimization algorithms. ArXiv, abs/1707.06347, 2017. URL https://api.
semanticscholar.org/CorpusID:28695052.

Marcin Sendera, Marcin Przewięźlikowski, Konrad Karanowski, Maciej Zięba, Jacek Tabor, and
Przemysław Spurek. Hypershot: Few-shot learning by kernel hypernetworks. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2469–2478, 2023.

Xingyou Song, Yiding Jiang, Stephen Tu, Yilun Du, and Behnam Neyshabur. Observational overfitting
in reinforcement learning. In 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Kaushik Subramanian, Charles L Isbell Jr, and Andrea L Thomaz. Exploration from demonstration
for interactive reinforcement learning. In Proceedings of the 2016 international conference on
autonomous agents & multiagent systems, pp. 447–456, 2016.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O Stanley, and Jeff
Clune. Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep
neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567, 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020. ISSN 2665-9638.

Johannes Von Oswald, Christian Henning, Benjamin F Grewe, and João Sacramento. Continual
learning with hypernetworks. arXiv preprint arXiv:1906.00695, 2019.

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Colmenarejo, Misha
Denil, Nando Freitas, and Jascha Sohl-Dickstein. Learned optimizers that scale and generalize. In
International conference on machine learning, pp. 3751–3760. PMLR, 2017.

Zhou Xian, Shamit Lal, Hsiao-Yu Tung, Emmanouil Antonios Platanios, and Katerina Fragkiadaki.
Hyperdynamics: Meta-learning object and agent dynamics with hypernetworks. arXiv preprint
arXiv:2103.09439, 2021.

Zheng Xiong, Jacob Beck, and Shimon Whiteson. Universal morphology control via contextual
modulation. In International Conference on Machine Learning, pp. 38286–38300. PMLR, 2023.

Zheng Xiong, Risto Vuorio, Jacob Beck, Matthieu Zimmer, Kun Shao, and Shimon Whiteson.
Distilling morphology-conditioned hypernetworks for efficient universal morphology control.
arXiv preprint arXiv:2402.06570, 2024.

Chiyuan Zhang, Oriol Vinyals, Rémi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. CoRR, abs/1804.06893, 2018.

Dominic Zhao, Seijin Kobayashi, João Sacramento, and Johannes von Oswald. Meta-learning via
hypernetworks. In 4th Workshop on Meta-Learning at NeurIPS 2020 (MetaLearn 2020). NeurIPS,
2020.

14

https://api.semanticscholar.org/CorpusID:28695052
https://api.semanticscholar.org/CorpusID:28695052


Published as a conference paper at ICLR 2025

A MORE DETAILS OF THE METHOD

A.1 WHY AN MLP CAN BE APPLIED AS A GRADIENT APPROXIMATOR FOR MLPS

We show that ∂L
∂W

, ∂L
∂b

, where W,b are the weight and bias of an MLP layer, are very close to the
form of MLP in this section.

The forward process of an MLP layer is:

zn = σ(Wnzn−1 + bn) (9)

where zn is the hidden variable, and σ is the activation function.

By taking the derivatives, we have

∂zn
∂Wn

= Λn(zn−1)(zn−1)T (10)

∂zn
∂bn
= Λn(zn−1) (11)

where
Λn(zn−1) = diag(σ′(Wnzn−1 + bn)) (12)

To get from ∂zn
∂Wn

to ∂L
∂Wn

, we apply the chain rules.

∂L
∂Wn

= ∂L
∂zN

∂zN
∂zN−1

⋯∂zn+1
∂zn

∂zn
∂Wn

(13)

= ∂L
∂zN

N

∏
i=n+1

∂zi
∂zi−1

∂zn
∂Wn

(14)

And ∂zn
∂zn−1

can also be calculated from the forward process

∂zn
∂zn−1

= Λn(zn1)Wn (15)

Note that (Eq. 12) is just the output of another MLP with a different final activation. And other
operations in (Eq. 10, 11, 14, 15) are fundamentally linear in nature. This linearity implies that the
forms of these gradient expressions bear a strong resemblance to those typically encountered in MLP.
As mentioned above, it is reasonable to use an MLP as a gradient approximator for MLPs.

A.2 OPTIMIZATION IN THE LATENT PARAMETER SPACE

To ease training and memory consumption, the proposed hypernetwork predicts the policy updates in
a latent space. Specifically, we employ a layer-level encoder Eθn to compress each layer of the target
network θ into a latent space before feeding them into the hypernet blocks. During the optimization
process, parameters are consistently updated within the latent space. After the optimization process,
a layer-level decoder Dθn is utilized to reconstruct the latent representation back into the parameter
space of θ. This approach ensures that the size of our optimization network parameters does not
expand significantly with an increase in the target network parameters, thereby enhancing the model’s
applicability. For ease of understanding, we have not illustrated these less critical details in Fig. 3.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 DETAILED SPECIFICATIONS OF EACH TASK

B.1.1 MUJOCO

Desired speed. Tab. 6 shows the desired speed specifications we used for each task. The default
value is utilized in the experiments that involve changing torso length. Conversely, during the torso
length experiments, the default value of the desired speed is applied.
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Table 6: Details of desired speed specifications.

Environment Range No. of Samples Default Value

Cheetah [-10, 0), (0, 10], increment 0.5 40 +10
Walker [-5, 0), (0, 5], increment 0.25 40 +1
Finger [-15, 0), (0, 15], increment 1.0 30 +15

Table 7: Details of torso length specifications.

Environment Range No. of Samples Default Value

Cheetah [0.3, 0.7], increment 0.01 41 0.5
Walker [0.1, 0.5], increment 0.01 41 0.3
Finger [0.1, 0.4], increment 0.01 31 0.16

Table 8: Details of speed and length specifications.

Environment Range of Speed Parameter Range of Length Parameter No. of Samples

Cheetah [+1, +10], increment 1.0 [0.3, 0.7], increment 0.05 10 × 9 grid
Walker [+1, +5], increment 0.5 [0.1, 0.5], increment 0.05 9 × 9 grid
Finger [+1, +15], increment 1.0 [0.1, 0.4], increment 0.05 15 × 7 grid

Torso length. In all environments, the torso length parameter refers to the geometric size of the
torso of the controlled object. Different sizes change the physical properties such as mass, center of
gravity, etc. A complete list of torso lengths we used is shown in Tab. 7.

Desired speed and torso length. Now, we list all the parameters in the experiments of jointly
changing speed and length parameters in Tab. 8.

B.1.2 MANISKILL.

The specifications for ManiSkill are shown in Tab. 9. Note that the term “arm length” represents the
ratio of the arm length to its original length.

Table 9: Details of task specifications in ManiSkill Environment.

Specification Range of Parameters No. of Samples Default Value

Cube Size [0.01, 0.03], increment 0.001 21 0.02
Controller Stiffness [500, 1500], increment 50 21 1000
Controller Damping [50, 150], increment 10 21 100
Arm Length [0.5, 2.0], increment 0.1 16 1.0

B.2 ADDITIONAL IMPLEMENTATION DETAILS

We implemented our method in PyTorchPaszke et al. (2019) and the hyperparameters are reported in
Tab. 10, Tab. 11, and Tab. 12.
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Table 10: Hyperparameters of TD3.

Hyperparameter Setting

Learning rate 1 × 10−4

Optimizer Adam
Mini-batch size 256
Actor update frequency 2
Target networks update frequency 2
Target networks soft-update 0.01
Target policy smoothing stddev. clip 0.3
Hidden dim. 256
Replay buffer capacity 106

Discount 0.99
Seed frames 4000
Exploration steps 2000
Exploration stddev. schedule linear(1.0, 0.1, 1e6)

Table 11: Hyperparameters of PPO.

Hyperparameter Setting

Learning rate 3 × 10−4

Optimizer Adam
Mini-batch size 400
Gamma 0.85
Target KL 0.09
Value function coefficient 0.5
Clip Range 0.2
Lambda Gae 0.95
Max Grad Norm 0.5

Table 12: Hyperparameters of HyPoGen.

Hyperparameter Setting

Learning rate 1 × 10−4

Optimizer Adam
Mini-batch size 512
Hidden dim. of target policy networks 256
Task embedding dim. 256
Weight embedding dim. 256
No. Layers K 8
No. MLP layers in Hypernet Blocks 2
MLP hidden dim. in Hypernet Blocks 128

C MORE COMPARISON AND ANALYSIS

C.1 DETAILED COMPARISON ON EACH SPECIFICATION

We showcase the rewards and their standard deviations of the rollout policies in MuJoCo in Fig. 5,
Fig. 6, and Fig. 7.

We also show the success rate curves of different specifications in ManiSkill in Fig. 8, 9
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Figure 5: Average reward and std curves on generalization to different desired speed specifications.
The solid lines present the mean, and the shaded region presents the standard deviation. Our method
achieves the best results in most cases.
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Figure 6: Average reward and std curves on generalization to different torso length specifications.
Our method achieves the best results in most cases.
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Figure 7: 3D reward surfaces on generalization to different speed and length specifications. Our
method achieves the best results in most cases.
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Figure 8: The success rate curve of different specifications on LiftCube task of Maniskill Environment.
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Figure 9: The success rate curve of different specifications on PickCube task of Maniskill Environ-
ment.

C.2 STANDARD DEVIATION OF MAIN EXPERIMENTS

Below, we report the standard deviation of the rewards in MuJoCo environments in Tab. 13, and the
standard deviation of episode length in ManiSkill in Tab. 14.

Table 13: Standard deviations on MuJoCo. The mean values are reported in Tab. 1 in the paper.

Cheetah Finger Walker

Method speed lengths speed&length speed lengths speed&length speed lengths speed&length

Cond Policy 92.76 146.06 88.43 116.61 104.42 67.42 101.47 181.09 136.32
UVFA 86.59 165.48 84.68 100.03 111.45 63.04 79.65 145.64 125.10
Meta Policy 51.64 128.34 29.29 23.82 50.87 16.58 21.26 19.85 17.03
PEARL 19.39 118.11 30.77 11.33 38.79 33.16 20.57 21.67 21.83
HyperZero 84.08 103.30 137.36 107.90 115.00 80.67 140.51 195.85 191.87
HyPoGen 81.62 72.92 100.69 113.11 114.76 80.12 236.77 202.12 205.29
Expert Rollout 2.27 3.16 9.16 4.51 10.12 15.56 9.63 17.21 18.64

Table 14: Standard deviations of episode length on Maniskill. The mean values are reported in Tab. 2
in the paper.

Lift Cube Pick&Place Cube

Method cube size stiffness damping arm length cube size stiffness damping arm length

Cond Policy 49.53 0.00 54.02 61.61 78.15 19.79 70.03 72.09
UVFA 49.57 0.00 52.15 68.64 74.70 0.00 64.10 65.76
Meta Policy 64.01 0.00 0.97 69.12 53.25 1.24 3.03 40.19
PEARL 65.42 38.89 18.40 70.52 64.23 71.22 30.36 52.70
HyperZero 58.62 0.00 47.44 68.76 51.38 0.00 0.00 35.00
HyPoGen 61.44 24.83 41.42 54.98 75.38 71.20 76.25 82.52
Expert Rollout 35.01 37.33 47.28 25.29 60.89 66.02 61.77 66.11

C.3 ANALYSIS OF POOR PERFORMANCE OF BASELINES IN MANISKILL

To further analyze whether the poor performance of baselines is due to the lack of generalization
ability or simply the model’s capacity. First, we report the model size of each method in Tab. 15. Then,
we report the original baselines’ training performance in Tab. 16, and the training/test performance
of the baselines with equal capacity to our models in Tab. 17. From these two tables, along with
Tab.2, we can see that even without a capacity increase, some methods can already fit well on the
training data. For example, HyperZero on the Pick&Place cube size task achieves a 78.20% success
rate compared to 25.87% at test time, and its performance drops from 92% to 31% on the LiftCube
damping task. Additionally, the performance of Cond Policy drops from 63% to 39%.

In theory, increasing the model capacity should make it easier to overfit. However, due to learning
difficulty, the training performance actually decreased. For example, from Tab. 16 and Tab. 17,
HyperZero dropped from 86% to 69% on the LiftCube arm-length task. When learning is not an
issue, we observe that training performance improves, but generalization does not improve or even
worsens. This is evidenced by Cond Policy’s performance on the Pick&Place Cube arm-length task,
where training performance increased from 47% to 61%, but test performance dropped from 43% to
26%.
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These results and observations confirm that the proposed architecture design ensures the robustness
of the learning process and eliminates the difficulty of training when capacity is increased. Moreover,
it ensures that increased capacity does not incur overfitting and generalization issues, while this
property is not observed with other models.

Table 15: Comparison of parameter sizes for different methods (Original vs Augmented), in Millions.

Cond Policy UVFA Meta Policy PEARL HyperZero HyPoGen(8 blocks)

Original 0.7 0.7 0.7 0.7 25.1 70.0
Augmented 64.1 63.8 64.1 64.1 72.0 70.0

Table 16: Training-time success rate of baselines with original model size in Maniskill environments.

Lift Cube Pick&Place Cube

Method cube size stiffness damping arm length cube size stiffness damping arm length

Cond Policy 94.67 0.00 98.33 89.80 86.60 2.56 63.00 46.67
UVFA 94.17 0.00 97.33 89.00 87.40 0.00 68.50 49.00
Meta Policy 83.83 0.00 0.00 77.20 17.00 0.56 0.00 11.33
PEARL 79.17 64.33 91.67 84.20 27.60 27.78 37.00 22.67
HyperZero 92.67 0.00 92.00 86.00 78.20 0.00 0.00 3.00
HyPoGen 89.33 96.50 96.33 85.60 82.40 81.33 68.00 68.67
Expert Rollout 96.00 95.33 90.75 98.50 87.00 82.33 58.25 84.00

Table 17: Training/test-time success rate of baselines with equal model size to ours in Maniskill
environments.

Lift Cube Pick&Place Cube

Method cube size stiffness damping arm length cube size stiffness damping arm length

Cond Policy 95.56 / 28.67 0.00 / 0.00 63.33 / 14.63 89.17 / 56.36 82.22 / 26.67 4.44 / 1.11 32.22 / 9.65 60.83 / 26.67
UVFA 95.56 / 28.89 0.00 / 0.00 64.44 / 16.48 83.33 / 58.18 81.11 / 23.96 4.44 / 1.78 15.56 / 7.02 38.33 / 18.21
Meta Policy 0.00 / 0.22 0.00 / 0.00 0.00 / 0.00 1.67 / 1.21 1.11 / 0.42 1.11 / 0.00 0.00 / 0.18 0.00 / 0.00
PEARL 0.00 / 0.00 0.00 / 0.22 0.00 / 0.74 5.00 / 1.21 0.00 / 0.62 2.22 / 0.00 0.00 / 0.88 0.83 / 0.00
HyperZero 94.44 / 28.00 0.00 / 0.00 63.33 / 22.22 69.17 / 32.73 77.78 / 25.62 0.00 / 0.00 0.00 / 0.00 21.67 / 8.46
HyPoGen 89.33 / 85.87 96.50 / 97.20 96.33 / 93.28 85.60 / 85.73 82.40 / 72.87 81.33 / 78.33 68.00 / 41.26 68.67 / 52.54
Expert Rollout 96.00 / 94.13 95.33 / 96.73 90.75 / 97.28 98.50 / 93.64 87.00 / 69.87 82.33 / 75.92 58.25 / 73.72 84.00 / 54.77

C.4 ADDITIONAL ANALYSIS

Scalibility: can HyPoGen generate deeper target networks? We conducted experiments on
deeper policy networks, and the results show that our method consistently outperforms the SOTA
method HyperZero, as reported in Tab. 18.

Table 18: Comparison of HyPoGen and Hyper-
Zero with different layers in target networks.

#Layers 2 3 4 6 7

HyperZero 695.7 704.5 434.4 528.6 509.3
HyPoGen 819.2 821.9 819.1 665.6 622.5

In the comparisons section, we use two-layer and
three-layer MLPs for MuJoCo and ManiSkill, re-
spectively. Here, we gradually increase the num-
ber of layers in the policy networks. As the num-
ber of layers (i.e., the number of parameters to
be generated by the hypernet) increases, the learn-
ing difficulty of the hypernet also increases. As observed from the table, our method consistently
surpasses HyperZero in terms of obtained rewards at test time.

Table 19: Zero-shot transfer with dif-
ferent amounts of training data.

HyperZero HyPoGen (ours)

5% 385.90 644.85
10% 557.98 756.13
20% 668.13 754.88
30% 813.14 841.12
50% 854.27 884.44

Generalization ability w.r.t. the amount of training data.
We compare our method with HyperZero to emphasize our
generalization ability. In the experiment, we split 50% of the
task specifications for testing and vary the fractions of the
remaining specifications for training. The fractions range from
5% to 50%. The results are reported in Tab. 19. Our method
achieves constantly better results than HyperZero. Note that
as the fraction decreases, our method exhibits more significant
improvements. It further demonstrates the strong generaliza-
tion ability of our model.
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Analysis on hyperparameters. We show more results on the influence of hyperparameters in our
model. We first validate the proper number of hypernet blocks (i.e., the optimization steps) in Tab. 20.
We can observe that the performance reaches the peak when K = 8. In Tab. 21, we present the results
of different MLP layers inside each hypernet block. The performance achieves the highest when the
number of layers is set to 2. We also examine the feature dimensions of hidden layers in the hypernet
block. The results are reported in Tab. 22. When setting the hidden dimension as 128, the network
produces the best result.

Table 20: Performance with different optimization steps (No. of hypernet blocks).

K Reward and Std.

1 746.06 ± 83.54
3 775.55 ± 68.26
5 825.76 ± 76.61
8 856.88 ± 61.73

10 832.76 ± 78.50
20 817.9 ± 60.92

Table 21: Performance with different number of layers in each hypernet block.

No. MLP Layers Reward and Std.

2 856.88 ± 61.73
3 795 ± 70.39
5 834.99 ± 78.62
8 752.74 ± 119.31

10 772.82 ± 117.64

Table 22: Performance with different hidden dimensions in hypernet block.

Hidden Dimension Reward and Std.

16 847.83 ± 59.95
32 817.12 ± 67.35
64 840.02 ± 61.24

128 856.88 ± 61.73
256 834.5 ± 80.36

C.5 STANDARD DEVIATION OF THE SUCCESS RATE ON MANISKILL

The standard deviations of success rate in the Manskill environment are shown in Tab. 23. The
proposed method has the same deviation level as other baseline methods but is higher in the mean
value.

Table 23: Average and standard deviations of success rate on Maniskill.

Lift Cube Pick&Place Cube

Method cube size stiffness damping arm length cube size stiffness damping arm length

Cond Policy 89.93 ± 8.00 0.00 ± 0.00 56.28 ± 10.00 69.36 ± 14.00 69.81 ± 18.00 2.20 ± 2.00 39.26 ± 17.00 43.77 ± 17.00
UVFA 90.27 ± 8.00 0.00 ± 0.00 78.67 ± 10.00 72.18 ± 15.00 71.75 ± 17.00 0.00 ± 0.00 29.53 ± 14.00 36.85 ± 14.006
Meta Policy 84.67 ± 12.00 0.00 ± 0.00 0.06 ± 0.00 76.45 ± 15.00 12.62 ± 10.00 0.22 ± 0.00 0.21 ± 0.00 8.15 ± 7.00
PEARL 84.47 ± 12.00 59.87 ± 5.00 35.67 ± 3.00 78.73 ± 15.00 21.06 ± 15.00 24.44 ± 16.00 12.58 ± 8.00 16.08 ± 12.00
HyperZero 86.60 ± 11.00 0.00 ± 0.00 31.33 ± 10.00 63.64 ± 14.00 25.87 ± 10.00 0.00 ± 0.00 0.00 ± 0.00 13.92 ± 6.00
HyPoGen 85.87 ± 11.00 97.20 ± 3.00 93.28 ± 6.00 85.73 ± 10.00 72.87 ± 17.00 78.33 ± 15.00 41.26 ± 18.00 52.54 ± 20.00
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C.6 STANDARD DEVIATIONS ON SUCCESS EPISODES

To align with established work Rezaei-Shoshtari et al. (2023), the result is shown in Tab. 1, 2 count in
the failure episodes, which increases the variance reported in Tab.13, 14.

In Tab. 24, 25, we report the average of only success episodes2. As shown in the table, the standard
deviations are of a reasonable scale relative to the averages.

Table 24: Average and standard deviations of rewards on MuJoCo on success episodes.

Cheetah Finger Walker

Method speed lengths speed&length speed lengths speed&length speed lengths speed&length

Cond Policy 510.50 609.70 370.11 378.38 441.97 301.73 604.32 315.07 384.91
± 83.8 ± 130.1 ± 78.2 ± 118.2 ± 91.2 ± 61.6 ± 50.9 ± 108.0 ± 80.0

UVFA 452.58 657.83 358.22 385.83 462.36 292.53 504.84 244.98 370.07
± 89.7 ± 161.0 ± 82.0 ± 100.7 ± 93.5 ± 54.5 ± 52.7 ± 97.3 ± 73.3

Meta Policy 355.62 697.48 232.19 122.97 174.37 123.83 84.56 92.13 81.74
±44.3 ±93.1 ±30.8 ±21.9 ± 31.9 ±20.6 ± 13.3 ± 6.2 ± 9.6

PEARL 296.29 816.72 217.93 121.06 132.60 135.19 79.39 79.08 74.83
± 22.6 ± 69.1 ± 25.1 ± 11.2 ± 30.6 ± 26.9 ± 6.8 ± 10.8 ± 8.0

HyperZero 772.16 917.14 626.06 618.75 565.97 384.97 764.24 508.74 537.99
± 72.9 ± 84.2 ± 129.2 ± 109.9 ± 105.7 ± 76.9 ± 67.5 ± 80.5 ± 112.6

HyPoGen 845.81 949.86 653.53 854.99 697.78 396.76 839.94 636.54 601.73
± 67.7 ± 49.7 ± 91.4 ± 111.8 ± 103.2 ± 79.2 ± 92.9 ± 66.1 ± 92.0

Table 25: Average and standard deviations of episode length on Maniskill on success episodes.

Lift Cube Pick&Place Cube

Method cube size stiffness damping arm&length cube size stiffness damping arm&length

Cond Policy 13.46 ± 7.09 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 21.03 ± 10.13 0.00 ± 0.00 32.57 ± 14.27 26.22 ± 18.96
UVFA 14.56 ± 9.89 0.00 ± 0.00 14.10 ± 2.23 15.99 ± 6.73 21.80 ± 9.80 0.00 ± 0.00 25.33 ± 12.54 23.28 ± 11.84
Meta Policy 12.45 ± 4.14 0.00 ± 0.00 0.00 ± 0.00 13.11 ± 2.58 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
PEARL 12.60 ± 5.91 0.00 ± 0.00 126.11 ± 0.79 13.28 ± 4.22 46.72 ± 13.28 33.36 ± 8.42 134.20 ± 4.71 65.95 ± 11.32
HyperZero 13.31 ± 7.99 0.00 ± 0.00 0.00 ± 0.00 14.49 ± 3.82 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
HyPoGen 13.05 ± 7.65 11.41 ± 1.56 12.18 ± 2.14 12.68 ± 3.67 20.43 ± 9.94 19.55 ± 9.35 23.98 ± 11.78 23.46 ± 14.02

C.7 IN AND OUT-OF-TRAINING-DISTRIBUTION PERFORMANCE

To better evaluate the generalization ability of the proposed methods, we evaluate all methods within
one standard deviation of training distribution (in-distribution) and outside of that (out-of-distribution).
With the result shown in Tab. 26, 27, 28, 29. Our proposed method exhibits superior performance
over baseline methods in both in-distribution and out-distribution settings. This further highlights the
strong generalization ability of the proposed method.

Table 26: The in-distribution average and standard deviations of rewards on MuJoCo.

Cheetah Finger Walker

Method speed lengths speed&length speed lengths speed&length speed lengths speed&length

Cond Policy 521.81
± 85.4

627.72
± 131.5

330.69
± 70.6

399.36
± 129.4

433.41
± 102.2

318.38
± 59.1

324.24
± 57.6

654.04
± 110.1

400.58
± 84.3

UVFA 459.27
± 85.3

647.27
± 157.6

332.11
± 78.2

433.02
± 109.8

466.93
± 96.6

318.38
± 59.1

244.27
± 48.3

519.03
± 104.5

378.95
± 72.7

Meta Policy 308.15
± 39.3

702.66
± 89.4

188.45
± 25.8

126.04
± 24.4

165.49
± 34.2

122.81
± 19.7

88.71
± 10.4

86.05
± 6.4

82.95
± 11.0

PEARL 251.10
± 18.0

819.34
± 70.2

210.16
± 21.7

118.19
± 10.8

137.03
± 35.7

130.73
± 25.8

78.37
± 6.25

79.31
± 10.8

77.15
± 8.6

HyperZero 796.92
± 67.7

941.41
± 72.1

640.15
± 136.9

691.46
± 121.6

585.75
± 115.5

446.38
± 92.2

555.23
± 74.8

792.82
± 79.8

596.58
± 108.7

HyPoGen 837.94
± 63.5

956.45
± 44.8

653.97
± 90.8

880.00
± 103.1

706.10
± 106.3

459.51
± 93.5

621.51
± 95.2

706.10
± 106.3

645.18
± 97.5

2MuJoCo does not provide a success indicator, thus when the reward of each frame is less than 0.05 for 50
consecutive frames, it is considered a failure.
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Table 27: The out-of-distribution average and standard deviations of rewards on MuJoCo.

Cheetah Finger Walker

Method speed lengths speed&length speed lengths speed&length speed lengths speed&length

Cond Policy 488.88
± 80.8

574.32
± 127.2

427.34
± 89.3

343.66
± 99.8

460.60
± 67.3

236.09
± 44.6

294.89
± 36.2

486.90
± 103.1

321.78
± 62.6

UVFA 440.42
± 97.8

676.61
± 167.2

394.64
± 87.2

308.00
± 85.7

453.66
± 87.6

236.09
± 44.6

247.72
± 69.2

477.46
± 83.5

340.54
± 75.6

Meta Policy 429.27
± 52.0

687.59
± 100.2

297.92
± 38.3

117.87
± 17.8

190.76
± 27.7

125.88
± 22.3

98.18
± 18.3

81.86
± 5.8

78.68
± 5.9

PEARL 374.23
± 30.5

811.10
± 66.7

229.90
± 30.3

125.88
± 11.9

124.18
± 21.1

144.47
± 29.1

80.16
± 7.55

79.56
± 10.8

70.50
± 7.0

HyperZero 721.07
± 83.6

866.78
± 109.4

605.16
± 117.9

486.52
± 88.6

530.86
± 88.3

253.91
± 44.1

380.68
± 47.2

702.61
± 82.1

400.35
± 121.8

HyPoGen 857.70
± 74.0

936.57
± 59.5

652.87
± 92.3

812.36
± 126.6

682.02
± 97.4

260.78
± 48.3

663.83
± 88.7

682.02
± 97.4

487.32
± 77.4

Table 28: The in-distribution success rate and espisode length on Maniskill.

Lift Cube Pick&Place Cube

Method cube size stiffness damping arm&length cube size stiffness damping arm&length

Cond Policy 93.42, 12.77 0.00, 0.00 95.00, 10.89 66.30, 13.45 72.20, 21.24 2.19, 41.00 60.75, 17.82 61.00, 23.82
UVFA 92.75, 13.83 0.00, 0.00 92.80, 10.39 69.90, 16.11 80.20, 21.87 0.00, 0.00 65.00, 16.50 52.00, 20.21
Meta Policy 85.58, 11.65 0.00, 0.00 0.00, 0.00 78.20, 13.13 15.10, 22.86 0.28, 8.00 0.25, 5.75 11.50, 20.12
PEARL 85.00, 12.01 59.56, 11.34 93.80, 10.20 80.00, 13.37 25.70, 23.31 25.15, 21.50 32.00, 21.27 25.60, 22.87
HyperZero 88.58, 12.83 0.00, 0.00 79.60, 10.90 61.10, 14.55 40.20, 32.40 0.00, 0.00 0.00, 0.00 21.33, 14.13
HyPoGen 89.25, 12.64 97.00, 11.46 95.60, 10.53 84.30, 12.57 81.90, 19.75 79.75, 19.81 69.00, 17.67 65.17, 21.15

Table 29: The out-of-distribution success rate and episode length on Maniskill.

Lift Cube Pick&Place Cube

Method cube size stiffness damping arm&length cube size stiffness damping arm&length

Cond Policy 76.00, 16.23 0.00, 0.00 41.38, 14.92 100.00, 14.06 65.83, 20.68 2.22, 24.33 33.53, 36.51 29.00, 28.28
UVFA 80.33, 17.49 0.00, 0.00 73.23, 15.52 95.00, 14.74 57.67, 21.67 0.00, 0.00 20.07, 27.68 23.86, 25.92
Meta Policy 81.00, 15.63 0.00, 0.00 0.08, 1.85 59.00, 12.92 8.50, 16.80 0.00, 0.00 0.20, 4.40 5.29, 19.12
PEARL 82.33, 14.95 61.11, 6.73 86.50, 9.54 66.00, 12.33 20.00, 28.62 30.00, 21.28 35.75, 21.49 16.20, 28.61
HyperZero 78.67, 15.25 0.00, 0.00 12.77, 10.79 89.00, 13.82 2.00, 9.40 0.00, 0.00 0.00, 0.00 7.57, 15.36
HyPoGen 72.33, 14.71 98.00, 11.21 92.38, 12.81 100.00, 13.75 57.83, 21.57 72.67, 18.52 33.87, 25.66 41.71, 25.45

D VISUALIZATION

Due to the page limit, we only present quantitative evaluations in the experiment section. Here,
we visualize the results in the simulation environments and qualitatively compare our method with
the baselines. The visual results of MuJoCo tasks are shown in Fig. 10, 11, 12, 13, 14, and 15.
As seen in Fig. 10, our method can obtain more stable results with different speeds. When the
target speed is -5.0 or -8.0 (the first and second rows), our method has a faster actual speed (better
performance). Meanwhile, HyperZero is unable to maintain balance when the speed is 5.0 (the third
row). In Fig. 11, HyperZero struggles to maintain balance, while our method generates reasonable
results. In the Finger Spin environment in Fig 12, HyperZero stagnates for a long time when the
speed equals -5.0 and 5.0. On the contrary, our method works well for all settings, demonstrating
its generalization ability and stability. The same as the results of different speeds, in different torso
lengths, the results (in Fig. 13, 14, and 15) demonstrate generalization and stability of our method.
Our method encounters fewer failures. and also guides the agents to act at a faster speed. The visual
results on ManiSkill tasks are shown in Fig 16, 17, 18, 19, 20, 21, 22, and 23. Please turn to the next
page to see the visual results.
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Figure 10: Comparison in Cheetah environment with different speeds.
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Figure 11: Comparison in Walker environment with different speeds.
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Figure 12: Comparison in Finger environment with different speeds.
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Figure 13: Comparison in Cheetah environment with different torso lengths.
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Figure 14: Comparison in Walker environment with different torso lengths.
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Figure 15: Comparison in Finger environment with different torso lengths.
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Figure 16: Comparison in LiftCube with different cube sizes.
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Figure 17: Comparison in LiftCube with different controller stiffness.
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Figure 18: Comparison in LiftCube with different controller damping.
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Figure 19: Comparison in LiftCube with different arm lengths.
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Figure 20: Comparison in PickCube with different cube sizes.
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Figure 21: Comparison in PickCube with different controller stiffness.
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Figure 22: Comparison in PickCube with different controller damping.
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Figure 23: Comparison in PickCube with different arm lengths.
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