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Abstract— Task and motion planning (TAMP) frameworks
address long and complex planning problems by integrat-
ing high-level task planners with low-level motion planners.
However, existing TAMP methods rely heavily on the manual
design of planning domains that specify the preconditions and
postconditions of all high-level actions. This paper proposes a
method to automate planning domain inference from a handful
of test-time trajectory demonstrations, reducing the reliance
on human design. Our approach incorporates a deep learning-
based estimator that predicts the appropriate components of
a domain for a new task and a search algorithm that refines
this prediction, reducing the size and ensuring the utility of
the inferred domain. Our method is able to generate new
domains from minimal demonstrations at test time, enabling
robots to handle complex tasks more efficiently. We demonstrate
that our approach outperforms behavior cloning baselines,
which directly imitate planner behavior, in terms of planning
performance and generalization across a variety of tasks.
Additionally, our method reduces computational costs and data
amount requirements at test time for inferring new planning
domains.

I. INTRODUCTION

Robot autonomy that generalizes to diverse environments
requires efficient integration of complex real-time perception,
decision-making, and motion planning. Existing motion plan-
ning reaches its limits in complex and high-dimensional en-
vironments [8, 21, 23, 26, 33] that are frequently encountered
in modern robot applications [16]. Task and motion planning
(TAMP) frameworks address this challenge by employing
high-level task planners to discretize a complex planning
task into a sequence of manageable sub-tasks that low-level
motion planners can complete.

While existing TAMP frameworks have solved many com-
plex and long-horizon tasks in robotics [7, 17], they rely
heavily on human-designed planning domains, which are
sets of logical rules and constraints that provide a basis
for high-level task plans. Planning domains are restricted
to predefined decision spaces and cannot easily be adapted
to new tasks. This limitation drives the need for automated
solutions that generate planning domains by leveraging infor-
mation about existing, similar domains. We aim to develop a
method that learns the relationships between tasks and their
respective planning domains from training data, enabling the
automatic generation of a new planning domain based on
just one or a few demonstrations from humans.

This paper introduces an automated planning domain
inference method that generates planning domains for new
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:action unstack
:parameters (?b ?b1 ?r)
:precondition 

(and (top ?b)
(is_on ?b ?b1)
(smaller ?b ?b1)
(free ?r)
(box ?b)
(box ?b1)
(robot ?r))

:effect 
(and (not (top ?b))

(not (is_on ?b ?b1)
(not (free ?r))
(holding ?b ?r)
(top ?b1))

:action stack
:parameters (?b ?b1 ?r)
:precondition 

(and (holding ?b ?r)
(top ?b1)
(smaller ?b ?b1)
(box ?b) 
(box ?b1) 

…

II. Planning domain inference

Fig. 1. Illustration of the general idea of this work: (1) One or a few human
demonstrations for task execution are provided. 3D perception is used to
extract object poses and interactions. (2) Plausible planning domains are
inferred based on human demonstrations. (3) The generated domain is used
for Task and Motion Planning and execution on real robots.

TAMP problems in a one-shot or few-shot manner, using
demonstrations of continuous state-action trajectories. Our
approach uses deep learning to predict domains for new
tasks. To further improve the feasibility and planning effi-
ciency of the planning domain, we combine these predictions
with search algorithms to reduce the size of the planning
domain to the smallest possible while ensuring that the
generated domains are effective and reliable.

The primary contribution of this paper is (1) a graph atten-
tion network (GAT) trained on a small set of demonstrations
to efficiently predict the planning domain for new tasks;
(2) a guided generate-and-test search algorithm to refine the
predicted planning domain, ensuring that planning is both
feasible and efficient; (3) a framework that is deployable
on a real robot that integrates GAT prediction and search
to infer the planning domain for new tasks, requiring only
a single human demonstration. We evaluate our method and
compare it to existing baselines in 12 different environments.
Our method significantly improves planning performance,
generalizability, and computational costs.

II. RELATED WORK

A. Learning to Plan for Faster Task and Motion Planning

Recent advances in machine learning have brought new
approaches to task and motion planning. Learning-based
TAMP methods often train policies that either accelerate or
replace traditional planners. Recent research highlights the
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effectiveness of both supervised learning and reinforcement
learning. Supervised learning methods demonstrate great
ability to accelerate planning, but they often require extensive
demonstration data and are conditioned to specific environ-
ments [12, 13, 15, 27]. This limits their ability to generalize
across different environment settings or goals [2, 20, 34,
32]. Reinforcement learning, as another major learning-based
TAMP method in recent years, assists in accelerating the
planning speed and enhances adaptability to dynamic and
uncertain environments [1, 9, 25, 31]. However, creating a
well-defined learning environment for complex TAMP prob-
lems, in simulation or in the real world, can be challenging.
This reduces the applicability of reinforcement learning in
TAMP scenarios [29, 33].

B. Learning Planning Domains

Recognizing the discussed limitations, researchers have
increasingly shifted their focus toward learning planning
domains. The mainstream learning-based methods in TAMP,
designed to replicate the planner’s behavior, implicitly learns
both the planning domain and the search algorithm. Focusing
solely on learning the planning domain and integrating it with
existing search algorithms reduces the burden on the learning
algorithm.

Success in learning logical predicates from the environ-
ment [10, 22, 28] facilitates the study of automatic genera-
tion of planning domains [14]. Automatic planning domain
generation uses pre-existing logical predicates and actions to
create planning domains autonomously. Recent studies have
demonstrated that learning a planning domain enhances gen-
eralizability and adaptability compared to directly learning
a TAMP planner [3]. However, existing methods encounter
the challenges of high search costs and the requirement of a
relatively large dataset [14, 28].

Our method is closely related to that of Kumar et al. [14],
which identifies necessary preconditions and postconditions
of an operator through a hill-climbing search. However,
our method attempts to generate a full planning domain
instead of merely operators (actions). Furthermore, rather
than starting the search from scratch, our approach leverages
transferable knowledge from existing planning domains, sig-
nificantly accelerating the generation of domains and reduc-
ing the number of demonstrations required during execution.
As a result, we are able to generate new planning domains
for unseen tasks in a one-shot or few-shot manner.

III. PROBLEM SETTING

The standardized planning language used in this work is
Planning Domain Definition Language (PDDL) [19]. For a
given task, the object set O = ⟨o1, o2, . . . , on⟩ includes all
relevant objects in the environment, with objects o ∈ O are
references to entities in the planning problem [11]. The state
function s : O×T → Rd×n provides the continuous state of
an object, where T is the time indices denoting the time at
which the state of an object is evaluated. This state is defined
by continuous properties, such as pose and temperature.

Definition III.1 (Full predicate set). The full predicate set
P is a set that encompasses all the predicates required to
solve a set of TAMP problems.

Each predicate p ∈ P defines a logical property, condition,
or relationship among objects (e.g., (is on ?o1 ?o2)) via
a classifier function that outputs true or false given the
continuous state p(s(o1, t), s(o2, t), . . . ) ∈ {true; false}. A
ground atom x is a predicate combined with the objects and
the classification result (e.g., (is on o1 o2)). The logical
state of an environment is a collection of all ground atoms
for objects in the environment X = ⟨x1 , x2 , x3 , . . . , xn⟩.
Definition III.2 (Full action set). The full action set A is
a set of actions that logically describe possible actions the
robot may execute for a set of TAMP problems.

Each logical action a ∈ A has a corresponding pre-
condition Pre = ⟨p1 , p2 , ...⟩, which is a set of predicates
that must be true to trigger the action, and a postcondition
Eff = ⟨p1 , p2 , ...⟩, which is a set of predicates that indicates
the change in the logical environmental state after the action
is executed. The transition between logical states before
and after the actions is considered to be deterministic,
Xbefore × a → Xafter. A task plan π = ⟨a1 , a2 , a3 , ..., an⟩
is a sequence of logical actions that change the initial logical
environmental state to the goal logical environmental state. A
(logical) trajectory τ is the sequence of logical environmental
state and logical action at each step during task execution,
τ = ⟨(X1, a1), (X2, a2), . . . , (Xn, an)⟩.
Definition III.3 (Full motion planner set). The full motion
planner set C is a set of motion planners that produce the
corresponding trajectories for actions in A.

For each a ∈ A, there is a corresponding c ∈ C that
verifies the feasibility of motion plans for the action and
generates the plan if feasible. For example, the corresponding
motion planner for the action ‘Pick’ will generate a collision-
free trajectory for the robot to grasp an object and lift it from
the table.

Using the concept defined above, we can now define a
TAMP problem. Any TAMP problem q can be defined by
the object set, the full predicate set, the full action set,
the initial logical environmental state, and the goal logical
environmental state, q = ⟨O,P,A,Xinit,Xgoal, ⟩. A TAMP
problem set Q is a set of unsolved TAMP problems Q =
⟨q1, q2, . . . ⟩.

The planning domain D associated with a task is charac-
terized by a set of logical predicates PD ⊆ P, a set of logical
actions AD ⊆ A, and the corresponding motion planner
set CD ⊆ C. Formally, the planning domain is defined as
D = ⟨PD,AD,CD⟩. The domain set ωD contains all the
names of the predicates in PD and actions in AD. The
planning domain D can be constructed from the domain
set ωD by designing the preconditions and postconditions
for each action and writing the domain into a PDDL file
following the PDDL syntax.

A TAMP problem q can be addressed using various
planning domains, each with differing performance based on
its quality. To evaluate expected performance, we propose
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Fig. 2. The overall framework of domain inference. Left: The training phase of our method. Right: the testing phase of our method.

two criteria: completeness and optimality, to measure how
well a planning domain solves the TAMP problem.

Definition III.4 (Complete Domain). A complete domain is
a domain that includes all predicates and actions needed to
solve the TAMP problem.

Definition III.5 (Optimal domain). An optimal domain is a
complete domain that contains the least number of predicates
and actions.

Given A, P, and C, at the testing phase, our system
aims at utilizing one (or a few) example trajectory τe and
a validation problem set containing m unsolved TAMP
problems, Qv = ⟨q1, q2, . . . , qm⟩, to produce the optimal
planning domain Doptm = ⟨Poptm,Aoptm,Coptm⟩ that can
reproduce τe and generalize to similar TAMP tasks, even
with shuffled object poses and varied object numbers.

IV. METHODOLOGY

As shown in Figure 2, our method proceeds in two phases:
a training phase and a testing phase. In the former, we use
a training dataset of TAMP problems to learn a domain
estimator that outputs the relevance of predicates and actions.
In the testing phase, we use one or a few demonstration
trajectories and a validation problem set to generate an
optimal planning domain that does not violate the logical
sequences in the demonstration trajectories.

More concretely, in Figure 2.I the training dataset includes
information on TAMP problems with their associated plan-
ning domains. The predicate and action estimators output
a relevance score u ∈ [0, 1] for each predicate and action,
estimating their relevance of being part of the planning
domain for a given problem q. The scores of predicates
(actions) are denoted as up ∈ Up (ua ∈ Ua), where the
predicate (action) score set Up ( Ua) contains the score for
all predicates (actions).

During testing, the inputs are an example trajectory τe
and a validation problem set Qv . As shown in Figure 2.II,
the testing phase involves two main steps. First, the human
demonstration (sensory data or human inputs) is converted
into τe to predict a distribution of relevant planning domains.
Second, the predicted planning domains are refined by a

search algorithm to find the optimal planning domain. If any
of the domains explored during the search successfully solve
all problems in the validation set Qv , the system returns
the optimal domain Doptm. Otherwise, additional example
trajectories of the same task are required.

A. Predicate and Action Estimators

To train the predicate and action estimators, the initial and
goal logical states (Xinit,Xgoal) of a TAMP problem are
represented as scene graphs, with nodes representing objects.
As is shown in Figure 3, unary predicates defining individual
object states are encoded as Boolean values in the node
feature vector. Binary predicates representing relationships
between objects are formulated as edges connecting nodes
with one-hot encoded edge features. If predicates involve
more than two objects, the objects are connected in pairs,
with each connection sharing the same edge feature.

Each estimator processes the scene graphs through several
graph attention convolution layers (GATConv). The output
from the final GATConv layer is passed through a multilayer
perceptron (MLP). A sigmoid function is applied at the end
to produce an output vector with elements between 0 and 1.
Each output vector element indicates the relevance score of
a specific predicate p ∈ P (action a ∈ A) with respect to
the input scene graph. The relevance score for a domain set
is computed in the following manner:

uD =
∏

p∈ωD

up

∏
p/∈ωD

(1− up)
∏

a∈ωD

ua

∏
a/∈ωD

(1− ua) (1)

In Equation (1), up represents the score for a predicate,
while ua represents the score for an action. The scores for all
possible domain sets can be computed using Equation (1).
The domain set with the highest relevance score is denoted
as ωtop

D . The predicates and actions excluded from ωtop
D are

ranked by their relevance score in a descending manner in
a priority list L. Similar score computation schemes can
be found in learning-based incremental planning methodolo-
gies [27].

B. Dataset Generation

To effectively train the predicate and action estimator,
we require a training dataset of TAMP problems and their
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Fig. 3. Example on formulating logical states as scene graphs: (1) Unary
predicates: Using the orange cube as an example, object ‘cube’ has an
index of 1, (top, ?o), (cleaned, ?o) and (cooked, ?o) are all false. The
feature node vector becomes [1, 0, 0, 0]. We repeat this process for the other
cubes to obtain the corresponding node features (2) Binary predicates: For
example, the predicate (is on, ?o1, ?o2 ) is true for the blue and orange
cubes. Thus, an edge is formulated to connect them. Meanwhile, (is on,
?o3, ?o2 ) is false, so there is no edge between green and orange cube.

associated planning domains. This dataset is generated using
a sampling-based approach that randomly samples various
planning problems in the simulation environment. Each
TAMP problem is labeled with the relevant predicates and
actions for their planning domain, assigning a score of 1 to
those crucial for solving the problem and a score of 0 to
irrelevant ones. The solvability of each TAMP problem is
verified via a traditional TAMP planner [12] deployed on a
compute cluster.

C. Precondition and Postcondition Generation

In the testing phase, we obtain ωtop
D from the predicate

and action estimators. Then, we must convert ωtop
D into

an executable PDDL domain Dtop by determining the pre-
conditions and postconditions for each action. This process
depends on finding the commonalities across instances of the
same action from the human demonstration.
Definition IV.1 (Pre-image). The logical world state for the
last time step before the action is triggered.

Definition IV.2 (Post-image). The logical world state for the
first time step after the action is completed.

The precondition is determined by identifying the intersec-
tions of the pre-images of the same action across multiple
instances. We first extract the pre-images for all actions
and then group them by the action type. Next, we find
the intersection of all pre-images for the same action to
be the precondition. Similarly, for generating postconditions,
we start by extracting the post-images for all actions and
grouping them. The intersection of the post-images for each
action is then calculated. This intersection is compared to the
corresponding precondition, and any unchanged predicates
are removed. The resulting set of predicates is returned as
the postcondition. Collecting all actions with preconditions
and postconditions, the planning domain is automatically
written into a PDDL file, which is ready for task and motion
planning.

D. Domain Optimization by Generate-and-Test Search

The domain optimization process is based on the generate-
and-test search method, a heuristic search technique that

involves backtracking [18]. Starting from Dtop, the optimiza-
tion process iterates through all possible domains until the
domain successfully solves the validation problem set Qv

with the minimal number of predicates and actions. There
are two assumptions made to perform the generate and test
search:

Assumption 1. If a domain D is incomplete, then any
subdomain Ds ⊆ D is incomplete.

Assumption 2. If a domain D is complete, then the optimal
domain Doptm ⊆ D.

Algorithm 1 Domain Optimization Algorithm.
1: Dperturb = Dtop ▷ Initialization.
2: is solved = plan(Dperturb,Qv)
3: element list = ωtop

D

4: ▷ top(L) returns the highest-scored element from L.
5: while not is solved do
6: Dperturb = add(Dperturb, top(L))
7: is solved = plan(Dperturb,Qv)
8: element list.insert(top(L))
9: L.pop(top(L))

10: end while
11: Doptm = Dexpanded = Dperturb

12: for ei ∈ element list do
13: Dperturb = remove(Doptm, ei)
14: is solved = plan(Dperturb,Qv)
15: if is solved then
16: Doptm = Dperturb

17: end if
18: end for

The optimization process aims to add or remove predicates
(actions) from the initial guess until the optimal domain is
found. The domain Dperturb is initialized as Dtop. There are
two major stages in the optimization process: expansion and
contraction.

In the expansion stage, Dperturb is expanded until it solves
the validation problem set Qv . In each iteration, we move
the top predicate(action) from priority list L and add it to
Dperturb. The algorithm plans with Dperturb to solve Qv .
We continue expansion until Dperturb can fully solve Qv .

In the contraction stage, we remove redundant elements
from Doptm until no more elements can be removed while
maintaining domain completeness. The output domain from
the expansion stage, Dexpanded, is initialized as Doptm. In
each iteration i, we remove one element (either a predicate
or an action), ei ∈ Doptm, to produce a perturbed domain
Dperturb. If Dperturb fully solves Qv , the removed element
ei is redundant. Then Dperturb becomes the new optimal
domain Doptm. If Dperturb fails to solve Qv , the removed
element ei is critical. In this case, we backtrack to the
last Doptm. This iteration continues until each element in
Dexpanded has been evaluated.

V. EXPERIMENTS

In this section, we introduce the baselines and experimen-
tal tasks. Through our experiments, we aim to answer the
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Fig. 4. Comparison of the success rates of basic planning tasks for increasing numbers of objects to baselines.
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Fig. 5. Comparison of the number of queries to motion planners during domain optimization to baselines.

following questions: (Q1) How effective is planning using the
inferred planning domain? (Q2) Can we generalize to unseen
and more complex tasks? (Q3) During the testing phase, how
much does our method reduce computational costs in domain
generation?

A. Planning Baselines

We compared the planning success rate of our method
to behavior cloning baselines to highlight its improved effi-
ciency and generalizability. All baselines are trained per task
type. The graph attention network training is implemented in
PyTorch [24] and PyTorch Geometric [5].

BC-logical: Inspired by prior work [34], this baseline uses
logical scene graphs to train a GAT task planning policy. The
scene graph formulation is the same as that of our estimator.
Using the current and goal logical scene graph as input, BC-
logical outputs the next logical action to be executed.

BC-continuous: This baseline is a modification of BC-
logical. However, the node features of the input scene graph
nodes contain only continuous object states.

BC-hybrid: Inspired by recent papers combining continu-
ous and logical data for imitation learning in TAMP [12,
15], BC-hybrid deviates from BC-logical by using both
continuous and logical states of objects in the node features.

B. Domain Optimization Baselines

We also compare our domain optimization method to a
few baselines to evaluate how much our method reduces
computational cost.

RIB search: The random-initial-and-blind (RIB) search
method randomly samples an initial planning domain and
searches through all possible planning domains blindly. This
method terminates when the planning domain is complete
and no predicates or actions can be further removed.

Contraction: This method deviates from the RIB search
method as it starts with an initial planning domain that
contains all predicates and actions in P and A.

Blind hill-climbing: Inspired by the recent work in au-
tomatic planning domain generation [14, 28], this search

method starts with an empty initial planning domain and
searches through all possible planning domains via hill-
climbing. This method searches for the planning domain
with the highest planning success rate while maintaining the
minimal planning domain size.

C. Experimental Tasks

Experiments are developed on the PyBullet simulation [4].
The task planner is based on the PDDLStream library [7],
and the motion planner is based on the pybullet-planning
library [6]. We designed nine basic tasks and three composed
tasks, including classic cube manipulation, everyday task
scenarios, and puzzle solving, to evaluate our method.

Basic tasks: In stacking, the robot needs to stack cubes
into a tower in a specific order. In the unstacking task, the
objective is to disassemble the tower of cubes. In sorting, the
robot needs to cluster cubes into two groups at different lo-
cations. In washing, the robot needs to wash food ingredients
in the kitchen sink. In grilling, the robot needs to grill food
on the stove. The cooking task involves a combination of
washing and grilling food. The table cleaning task indicates
collecting objects from the table and storing them in a bin.
The painting task involves drawing random figures on an
object or a piece of paper. The last basic task is to solve
tower of Hanoi.

Composed tasks: Composed tasks are formed by combin-
ing multiple basic tasks. The unpack-and-cook task involves
unstacking raw materials and cooking them. In cook-and-
plate task, the robot needs to cook the raw materials and
stack them together. The labeling task requires the robot to
unstack piles of objects and then label each item with a pen.

D. Training and Testing Dataset

The training dataset includes 30 demonstrations per basic
task (no composed task), each involving a solvable TAMP
problem containing two to four objects. For baseline training,
the solution trajectory for each TAMP problem is formulated
as state-action pairs. The test dataset includes 870 different
TAMP problems, encompassing both basic and composed
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Fig. 6. Planning success rate of the domain inferred with different sizes of
validation problem set Qv that assist domain optimization in Algorithm 1.

tasks, with object counts in the planning environment ranging
from two to nine. For each object count, 10 test problems
are generated with randomized object positions, and each
problem must be solved within 30 seconds.

E. Real Robot Experiments

To demonstrate the effectiveness of our system with real
robots, we implemented two real-robot experiments: one
involving the Tower of Hanoi and the other focusing on
stacking multiple cube towers. We adopt NVIDIA’s Foun-
dationPose [30] to capture visual demonstrations, which
provides the 6D pose trajectories of all objects in the video.
These poses are then consumed downstream to compute
predicates concerning the objects in the scene. The real-robot
validation problems are set up manually, with photos of the
initial and goal configurations processed in the same way.
The inferred planning domain is combined with the ROS
Moveit motion planner and deployed on a Franka Research
3 arm.

VI. RESULTS AND DISCUSSION

To address (Q1), we evaluate our method on various
tasks and compare it to a few baselines. As illustrated in
Figure 4, our method consistently outperforms the baselines
in planning success rate across all basic tasks. While both
our method and the baselines perform well on simpler
tasks (painting, table cleaning, and sorting), the baselines
degrade significantly on more complex tasks with larger
decision spaces. To address (Q2), we evaluate our methods
with planning problems that involve an increased number
of objects, as well as unseen composed tasks. Figure 4
shows that our method maintains success rates above 90%
even with up to nine objects, while the behavior cloning
baseline method experiences a sharp decline as the number
of objects increases. These results indicate that our method
has a significant advantage in generalizing to a more complex

TABLE I
SUCCESS RATES FOR COMPOSED PLANNING TASKS.

Task Type Number of Objects

3 4 5 6 7 8 9

Cook and Plate 100 100 100 100 100 40 50
Unpack and Cook 100 100 100 100 100 80 50
Label 100 100 100 100 100 100 100

Fig. 7. Real robot experiment. Left: Towers of Hanoi. Right: Stack multiple
towers

experiment setup. Furthermore, as shown in Table I, our
method demonstrates excellent planning performance on
generalizing to unseen composed tasks. With just one human
demonstration per task, our method successfully infers the
planning domain, enabling efficient planning even when the
number of objects increases and their positions are shuffled.
Since we only have one trajectory per composed task, we
did not compare our method with the baselines. Training a
behavior cloning policy with just one trajectory would be
trivial. To answer (Q3), we compare the computational cost
of domain optimization to the baselines. The computational
cost is assessed based on the number of queries made
to the motion planner, which is the most time-intensive
component of the optimization process. This metric is chosen
because it provides a consistent comparison independent of
the computer’s performance. As shown in Figure 5, our
method drastically lowers the computational cost in the
optimization process. The reduction in computational cost
is more apparent for basic task types and attenuates when
dealing with composed task types because the most relevant
domain prediction becomes less accurate. Figure 6 shows our
method’s testing planning success rate of the domain inferred
with different sizes of the validation problem set Qv via
Algorithm 1. The results indicate that our method requires
only a small Qv . For many tasks, the correct planning
domain can be inferred with just one or two validation
problems. Even in more challenging scenarios, five validation
problems are sufficient. The real robot experiment, presented
in Figure 7, demonstrates the effectiveness of our method on
real robots. Remarkably, we only need to demonstrate once
for the real robot to learn and solve similar TAMP problems.

VII. CONCLUSION

This paper proposes a method for automatically inferring
planning domains in task and motion planning by integrat-
ing deep learning and search. Our approach was evaluated
in various planning environments, showing improved plan-
ning performance and generalizability compared to exist-
ing learning-based TAMP solvers. We also demonstrate a
significant reduction in computational costs during domain
optimization compared to common search algorithms. Real
robot experiments are performed to validate the feasibility
of deploying our method in a real-world implementation.
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