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ABSTRACT

Oversmoothing is a central challenge of building more powerful Graph Neural
Networks (GNNs). While previous works have only demonstrated that over-
smoothing is inevitable when the number of graph convolutions tends to infinity,
in this paper, we precisely characterize the mechanism behind the phenomenon
via a non-asymptotic analysis. Specifically, we distinguish between two differ-
ent effects when applying graph convolutions—an undesirable mixing effect that
homogenizes node representations in different classes, and a desirable denois-
ing effect that homogenizes node representations in the same class. By quantify-
ing these two effects on random graphs sampled from the Contextual Stochastic
Block Model (CSBM), we show that oversmoothing happens once the mixing ef-
fect starts to dominate the denoising effect, and the number of layers required
for this transition is O(logN/ log(logN)) for sufficiently dense graphs with N
nodes. We also extend our analysis to study the effects of Personalized PageRank
(PPR), or equivalently, the effects of initial residual connections on oversmooth-
ing. Our results suggest that while PPR mitigates oversmoothing at deeper layers,
PPR-based architectures still achieve their best performance at a shallow depth and
are outperformed by the graph convolution approach on certain graphs. Finally,
we support our theoretical results with numerical experiments, which further sug-
gest that the oversmoothing phenomenon observed in practice can be magnified
by the difficulty of optimizing deep GNN models.

1 INTRODUCTION

Graph Neural Networks (GNNs) are a powerful framework for learning with graph-structured
data (Gori et al., 2005; Scarselli et al., 2009; Bruna et al., 2014; Duvenaud et al., 2015; Deffer-
rard et al., 2016; Battaglia et al., 2016; Li et al., 2016). Most GNN models are built by stacking
graph convolutions or message-passing layers (Gilmer et al., 2017), where the representation of
each node is computed by recursively aggregating and transforming the representations of its neigh-
boring nodes. The most representative and popular example is the Graph Convolutional Network
(GCN) (Kipf & Welling, 2017), which has demonstrated success in node classification, a primary
graph task which asks for node labels and identifies community structures in real graphs.

Despite these achievements, the choice of depth for these GNN models remains an intriguing ques-
tion. GNNs often achieve optimal classification performance when networks are shallow. Many
widely used GNNs such as the GCN are no deeper than 4 layers (Kipf & Welling, 2017; Wu et al.,
2019), and it has been observed that for deeper GNNs, repeated message-passing makes node repre-
sentations in different classes indistinguishable and leads to lower node classification accuracy—a
phenomenon known as oversmoothing (Kipf & Welling, 2017; Li et al., 2018; Klicpera et al., 2019;
Wu et al., 2019; Oono & Suzuki, 2020; Chen et al., 2020a;b; Keriven, 2022). Through the insight
that graph convolutions can be regarded as low-pass filters on graph signals, prior studies have estab-
lished that oversmoothing is inevitable when the number of layers in a GNN increases to infinity (Li
et al., 2018; Oono & Suzuki, 2020). However, these asymptotic analyses do not fully explain the
rapid occurrence of oversmoothing when we increase the network depth, let alone the fact that for
some datasets, having no graph convolution is even optimal (Liu et al., 2021). These observations
motivate the following key questions about oversmoothing in GNNs:
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Figure 1: Stacking GNN layers increases both the mixing and denoising effects counteracting each
other. Depending on the graph properties, either the denoising effect dominates the mixing effect,
resulting in less difficulty classifying nodes (A), or the mixing effect dominates the denoising effect,
resulting in more difficulty classifying nodes (B)—this is when oversmoothing starts to happen.

Why does oversmoothing happen at a relatively shallow depth?

Can we quantitatively model the effect of applying a finite number of graph convolutions and
theoretically predict the “sweet spot” for the choice of depth?

In this paper, we propose a non-asymptotic analysis framework to study the effects of graph convo-
lutions and oversmoothing using the Contextual Stochastic Block Model (CSBM) (Deshpande et al.,
2018). The CSBM mimics the community structure of real graphs and enables us to evaluate the
performance of linear GNNs through the probabilistic model with ground truth community labels.
More importantly, as a generative model, the CSBM gives us full control over the graph structure
and allows us to analyze the effect of graph convolutions non-asymptotically. In particular, we
distinguish between two counteracting effects of graph convolutions:

• mixing effect (undesirable): homogenizing node representations in different classes;
• denoising effect (desirable): homogenizing node representations in the same class.

Adding graph convolutions will increase both the mixing and denoising effects. As a result, over-
smoothing happens not just because the mixing effect keeps accumulating as the depth increases, on
which the asymptotic analyses are based (Li et al., 2018; Oono & Suzuki, 2020), but rather because
the mixing effect starts to dominate the denoising effect (see Figure 1 for a schematic illustration).
By quantifying both effects as a function of the model depth, we show that the turning point of the
tradeoff between the two effects is O(logN/ log(logN)) for graphs with N nodes sampled from
the CSBM in sufficiently dense regimes. Besides new theory, this paper also presents numerical
results directly comparing theoretical predictions and empirical results. This comparison leads to
new insights highlighting the fact that the oversmoothing phenomenon observed in practice is often
a mixture of pure oversmoothing and difficulty of optimizing weights in deep GNN models.

In addition, we apply our framework to analyze the effects of Personalized PageRank (PPR) on
oversmoothing. Personalized propagation of neural predictions (PPNP) and its approximate vari-
ant (APPNP) make use of PPR and its approximate variant, respectively, and were proposed as a
solution to mitigate oversmoothing while retaining the ability to aggregate information from larger
neighborhoods in the graph (Klicpera et al., 2019). We show mathematically that PPR makes the
model performance more robust to increasing number of layers by reducing the mixing effect at each
layer, while it nonetheless reduces the desirable denoising effect at the same time. For graphs with a
large size or strong community structure, the reduction of the denoising effect would be greater than
the reduction of the mixing effect and thus PPNP and APPNP would perform worse than the vanilla
GNN on those graphs.

Our contributions are summarized as follows:

• We show that adding graph convolutions strengthens the denoising effect while exacerbates the
mixing effect. Oversmoothing happens because the mixing effect dominates the denoising effect
beyond a certain depth. For sufficiently dense CSBM graphs with N nodes, the required number
of layers for this to happen is O(logN/ log(logN)).

• We apply our framework to rigorously characterize the effects of PPR on oversmoothing. We
show that PPR reduces both the mixing effect and the denoising effect of message-passing and
thus does not necessarily improve node classification performance.

• We verify our theoretical results in experiments. Through comparison between theory and ex-
periments, we find that the difficulty of optimizing weights in deep GNN architectures often
aggravates oversmoothing.
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2 ADDITIONAL RELATED WORK

Oversmoothing problem in GNNs Oversmoothing is a well-known issue in deep GNNs, and
many techniques have been proposed to relieve it practically (Xu et al., 2018; Li et al., 2019; Chen
et al., 2020b; Huang et al., 2020; Zhao & Akoglu, 2020). On the theory side, prior works have
shown that as the model depth goes to infinity, the node representations within each connected
component of the graph will converge to the same values (Li et al., 2018; Oono & Suzuki, 2020).
However, The early onset of oversmoothing renders it an important concern in practice, and it has
not been satisfyingly explained by the previous asymptotic studies. Our work addresses this gap
by quantifying the effects of graph convolutions as a function of model depth and justifying why
oversmoothing happens in shallow GNNs. A recent study shared a similar insight of distinguishing
between two competing effects of message-passing and showed the existence of an optimal number
of layers for node prediction tasks on a latent space random graph model. But the result had no
further quantification on the optimal depth and hence the oversmoothing phenomenon was still only
characterized asymptotically (Keriven, 2022).
Analysis of GNNs on CSBMs Stochastic block models (SBMs) and their contextual counterparts
have been widely used to study node classification problems (Abbe, 2018; Chen et al., 2019). Re-
cently there have been several works proposing to use CSBMs to theoretically analyze GNNs for
the node classification task. Wei et al. (2022) used CSBMs to study the function of nonlinearity
on the node classification performance, while Fountoulakis et al. (2022) used CSBMs to study the
attention-based GNNs. More relevantly, Baranwal et al. (2021; 2022) showed the advantage of ap-
plying graph convolutions up to three times for node classification on CSBM graphs. Nonetheless,
they only focused on the desirable denoising effect of graph convolution instead of its tradeoff with
the undesirable mixing effect, and therefore did not explain the occurrence of oversmoothing.

3 PROBLEM SETTING AND MAIN RESULTS

We first introduce our theoretical analysis setup using the Contextual Stochastic Block Model
(CSBM), a random graph model with planted community structure (Deshpande et al., 2018; Baran-
wal et al., 2021; 2022; Ma et al., 2022; Wei et al., 2022; Fountoulakis et al., 2022). We then present
a set of theoretical results establishing bounds for the representation power of GNNs in terms of the
best-case node classification accuracy. The proofs of all the theorems and additional claims will be
provided in the Appendix.

3.1 NOTATIONS

We represent an undirected graph with N nodes by G = (A,X), where A ∈ {0, 1}N×N is the
adjacency matrix and X ∈ RN is the node feature vector. For nodes u, v ∈ [N ], Auv = 1 if and
only if u and v are connected with an edge in G, and Xu ∈ R represents the node feature of u. We
let 1N denote the all-one vector of length N and D = diag(A1N ) be the degree matrix of G.

3.2 THEORETICAL ANALYSIS FRAMEWORK

Contextual Stochastic Block Models We will focus on the case where the CSBM consists of two
classes C1 and C2 of nodes of equal size, in total with N nodes. For any two nodes in the graph, if they
are from the same class, they are connected by an edge independently with probability p, or if they
are from different classes, the probability is q. For each node v ∈ Ci, i ∈ {1, 2}, the initial feature
Xv is sampled independently from a Gaussian distribution N (µi, σ

2), where µi ∈ R, σ ∈ (0,∞).
Without loss of generality, we assume that µ1 < µ2. We denote a graph generated from such a
CSBM as G(A,X) ∼ CSBM(N, p, q, µ1, µ2, σ

2). We further impose the following assumption on
the CSBM used in our analysis.
Assumption 1. p, q = ω(logN/N) and p > q > 0.

The choice p, q = ω(logN/N) ensures that the generated graph G is connected almost surely (Abbe,
2018) while being slightly more general than the p, q = ω(log2 N/N) regime considered in
some concurrent works (Baranwal et al., 2021; Wei et al., 2022). In addition, this regime also
guarantees that G has a small diameter. Real-world graphs are known to exhibit the “small-
world” phenomenon—even if the number of nodes N is very large, the diameter of graph remains
small (Girvan & Newman, 2002; Chung, 2010). We will see in the theoretical analysis (Section 3.3)
how this small-diameter characteristic contributes to the occurrence of oversmoothing in shallow
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GNNs. We remark that our results in fact hold for the more general choice of p, q = Ω(logN/N),
for which only the concentration bound in Theorem 1 needs to be modified in the threshold logN/N
case where all the constants need a more careful treatment.
Further, the choice p > q ensures that the graph structure has homophily, meaning that nodes from
the same class are more likely to be connected than nodes from different classes. This characteristic
is observed in a wide range of real-world graphs (Easley & Kleinberg, 2010; Ma et al., 2022). We
note that this homophily assumption (p > q) is not essential to our analysis, though we add it for
simplicity since the discussion of homophily versus heterophily (p < q) is not the focus of our paper.

Graph convolution and linear GNN In this paper, our theoretical analysis focuses on the sim-
plified linear GNN model defined as follows: a graph convolution using the (left-)normalized ad-
jacency matrix takes the operation h′ = (D−1A)h, where h and h′ are the input and output node
representations, respectively. A linear GNN layer can then be defined as h′ = (D−1A)hW , where
W is a learnable weight matrix. As a result, the output of n linear GNN layers can be written as
h(n)

∏n
k=1 W

(k), where h(n) = (D−1A)nX is the output of n graph convolutions, and W (k) is the
weight matrix of the kth layer. Since this is linear in h(n), it follows that n-layer linear GNNs have
the equivalent representation power as linear classifiers applied to h(n).

In practice, when building GNN models, nonlinear activation functions can be added between con-
secutive linear GNN layers. For additional results showing that adding certain nonlinearity would
not improve the classification performance, see Appendix K.1.

Bayes error rate and z-score Thanks to the linearity of the model, we see that the representation
of node v ∈ Ci after n graph convolutions is distributed as N (µ

(n)
i , (σ(n))2), where the variance

(σ(n))2 is shared between classes. The optimal node-wise classifier in this case is the Bayes optimal
classifier, given by the following lemma.

Lemma 1. Suppose the label y is drawn uniformly from {1, 2}, and given y, x ∼ N (µ
(n)
y , (σ(n))2).

Then the Bayes optimal classifier, which minimizes the probability of misclassification among all
classifiers, has decision boundary D = (µ1 + µ2)/2, and predicts y = 1, if x ≤ D or y = 2, if x >
D. The associated Bayes error rate is 1 − Φ(z(n)), where Φ denotes the cumulative distribution
function of the standard Gaussian distribution and z(n) = 1

2 (µ
(n)
2 − µ

(n)
1 )/σ(n) is the z-score of D

with respect to N (µ
(n)
1 , (σ(n))2).

Lemma 1 states that we can estimate the optimal performance of an n-layer linear GNN through
the z-score z(n) = 1

2 (µ
(n)
2 − µ

(n)
1 )/σ(n). A higher z-score indicates a smaller Bayes error rate,

and hence a better expected performance of node classification. The z-score serves as a basis for
our quantitative analysis of oversmoothing. In the following section, by estimating µ

(n)
2 − µ

(n)
1

and (σ(n))2, we quantify the two counteracting effects of graph convolutions and obtain bounds
on the z-score z(n) as a function of n, which allows us to characterize oversmoothing quantita-
tively. Specifically, there are two potential interpretations of oversmoothing based on the z-score:
(1) z(n) < z(n

⋆), where n⋆ = argmaxn′ z(n
′); and (2) z(n) < z(0). They correspond to the cases

(1) n > n⋆; and (2) n > n0, where n0 ≥ 0 denotes the number of layers that yield a z-score on par
with z(0). The bounds on the z-score z(n), z(n)lower and z

(n)
upper, enable us to estimate n⋆ and n0 under

different scenarios and provide insights into the optimal choice of depth.

3.3 MAIN RESULTS

We first estimate the gap between the means µ
(n)
2 − µ

(n)
1 with respect to the number of layers n.

µ
(n)
2 −µ

(n)
1 measures how much node representations in different classes have homogenized after n

GNN layers, which is the undesirable mixing effect.
Lemma 2. For n ∈ N ∪ {0}, assuming D−1A ≈ E[D]−1E[A],

µ
(n)
2 − µ

(n)
1 =

(
p− q

p+ q

)n

(µ2 − µ1) .

Lemma 2 states that the means µ
(n)
1 and µ

(n)
2 get closer exponentially fast and as n → ∞, both

µ
(n)
1 and µ

(n)
2 will converge to the same value (in this case (µ

(n)
1 + µ

(n)
2 )/2). The rate of change
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(p − q)/(p + q) is determined by the intra-community edge density p and the inter-community
edge density q. Lemma 2 suggests that graphs with higher inter-community density (q) or lower
intra-community density (p) are expected to suffer from a higher mixing effect when we perform
message-passing. We provide the following concentration bound for our estimate of µ(n)

2 − µ
(n)
1 ,

which states that the estimate concentrates at a rate of O(1/
√
N(p+ q)).

Theorem 1. Fix K ∈ N and r > 0. There exists a constant C(r,K) such that with probability at
least 1−O(1/Nr), it holds for all 1 ≤ k ≤ K that

|(µ(k)
2 − µ

(k)
1 )−

(
p− q

p+ q

)k

(µ2 − µ1)| ≤
C√

N(p+ q)
.

We then study the variance (σ(n))2 with respect to the number of layers n. The variance (σ(n))2

measures how much the node representations in the same class have homogenized, which is the
desirable denoising effect. We first state that no matter how many layers are applied, there is a
nontrivial fixed lower bound for (σ(n))2 for a graph with N nodes.

Lemma 3. For all n ∈ N ∪ {0}, 1
N σ2 ≤ (σ(n))2 ≤ σ2 .

Lemma 3 implies that for a given graph, even as the number of layers n goes to infinity, the variance
(σ(n))2 does not converge to zero, meaning that there is a fixed lower bound for the denoising effect.
See Appendix K.2 for the exact theoretical limit for the variance (σ(n))2 as n goes to infinity. We
now establish a set of more precise upper and lower bounds for the variance (σ(n))2 with respect to
the number of layers n in the following technical lemma.
Lemma 4. Let a = Np/ logN . With probability at least 1− O(1/N), it holds for all 1 ≤ n ≤ N
that

max

{
min{a, 2}

10

1

(Np)n
,
1

N

}
σ2 ≤ (σ(n))2

(σ(n))2 ≤ min


⌊n

2
⌋∑

k=0

9

min{a, 2} (n− 2k + 1)2k(Np)n−2k

(
2

N(p+ q)

)2n−2k

, 1

σ2 .

Lemma 4 holds for all 1 ≤ n ≤ N and directly leads to the following theorem with a clarified upper
bound where n is bounded by a constant K.
Theorem 2. Let a = Np/ logN . Fix K ∈ N. There exists a constant C(K) such that with
probability at least 1−O(1/N), it holds for all 1 ≤ n ≤ K that

max

{
min{a, 2}

10

1

(Np)n
,
1

N

}
σ2 ≤ (σ(n))2 ≤ min

{
C

min{a, 2}
1

(N(p+ q))n
, 1

}
σ2 .

Theorem 2 states that the variance (σ(n))2 for each Gaussian distribution decreases more for larger
graphs or denser graphs. Moreover, the upper bound implies that the variance (σ(n))2 will initially
go down at least at a rate exponential in O(1/ logN) before reaching the fixed lower bound σ2/N
suggested by Lemma 3. This means that after O(logN/ log(logN)) layers, the desirable denoising
effect homogenizing node representations in the same class will saturate and the undesirable mixing
effect will start to dominate.
Why does oversmoothing happen at a shallow depth? For each node, message-passing with
different-class nodes homogenizes their representations exponentially. The exponential rate depends
on the fraction of different-class neighbors among all neighbors (Lemma 2, mixing effect). Mean-
while, message-passing with nodes that have not been encountered before causes the denoising
effect, and the magnitude depends on the absolute number of newly encountered neighbors. The
diameter of the graph is approximately logN/ log(Np) in the p, q = Ω(logN/N) regime (Graham
& Lu, 2001), and thus is at most logN/ log(logN) in our case. After the number of layers sur-
passes the diameter, for each node, there will be no nodes that have not been encountered before in
message-passing and hence the denoising effect will almost vanish (Theorem 2, denoising effect).
logN/ log(logN) grows very slowly with N ; for example, when N = 106, logN/ log(logN) ≈ 8.
This is why even in a large graph, the mixing effect will quickly dominate the denoising effect when
we increase the number of layers, and so oversmoothing is expected to happen at a shallow depth.

Our theory suggests that the optimal number of layers, n⋆, is at most O(logN/ log(logN)). For
a more quantitative estimate, we can use Lemma 2 and Lemma 4 to compute bounds z

(n)
lower and
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z
(n)
upper for z = 1

2 (µ
(n)
2 − µ

(n)
1 )/σ(n) and use them to infer n⋆ and n0, as defined in Section 3.2. See

Appendix H for detailed discussion.

Next, we investigate the effect of increasing the dimension of the node features X . So far, we
have only considered the case with one-dimensional node features. The following proposition states
that if features in each dimension are independent, increasing input feature dimension decreases the
Bayes error rate for a fixed n. The intuition is that when node features provide more evidence for
classification, it is easier to classify nodes correctly.
Proposition 1. Let the input feature dimension be d, X ∈ RN×d. Without loss of generality, suppose
for node v in Ci, initial node feature Xv ∼ N ([µi]

d, σ2Id) independently. Then the Bayes error rate

is 1−Φ

(√
d
2

(µ
(n)
2 −µ

(n)
1 )

σ(n)

)
= 1−Φ

(√
d
2 z(n)

)
, where Φ denotes the cumulative distribution function

of the standard Gaussian distribution. Hence the Bayes error rate is decreasing in d, and as d → ∞,
it converges to 0.

4 THE EFFECTS OF PERSONALIZED PAGERANK ON OVERSMOOTHING

Our analysis framework in Section 3.3 can also be applied to GNNs with other message-passing
schemes. Specifically, we can analyze the performance of Personalized Propagation of Neural
Predictions (PPNP) and its approximate variant, Approximate PPNP (APPNP), which were pro-
posed for alleviating oversmoothing while still making use of multi-hop information in the graph.
The main idea is to use Personalized PageRank (PPR) or the approximate Personalized PageR-
ank (APPR) in place of graph convolutions (Klicpera et al., 2019). Mathematically, the output
of PPNP can be written as hPPNP = α(IN − (1 − α)(D−1A))−1X , while APPNP computes
hAPPNP(n+1) = (1 − α)(D−1A)hAPPNP(n) + αX iteratively in n, where IN is the identity ma-
trix of size N and in both cases α is the teleportation probability. Then for nodes in Ci, i ∈ {1, 2},
the node representations follow a Gaussian distribution N

(
µPPNP
i , (σPPNP)2

)
after applying PPNP,

or a Gaussian distribution N
(
µ

APPNP(n)
i , (σAPPNP(n))2

)
after applying n APPNP layers.

We quantify the effects on the means and variances for PPNP and APPNP in the CSBM case. We
can similarly use them to calculate the z-score of (µ1 + µ2)/2 and compare it to the one derived
for the baseline GNN in Section 3. The key idea is that the PPR propagation can be written as a
weighted average of the standard message-passing, i.e. α(IN − (1 − α)(D−1A))−1 =

∑∞
k=0(1 −

α)k(D−1A)k (Andersen et al., 2006). We first state the resulting mixing effect measured by the
difference between the two means.
Proposition 2. Fix r > 0,K ∈ N. For PPNP, with probability at least 1−O(1/Nr), there exists a
constant C(α, r,K) such that

µPPNP
2 − µPPNP

1 =
p+ q

p+ 2−α
α

q
(µ2 − µ1) + ϵ .

where the error term |ϵ| ≤ C/
√
N(p+ q) + (1− α)K+1.

Proposition 3. Let r > 0. For APPNP, with probability at least 1−O(1/Nr),

µ
APPNP(n)
2 − µ

APPNP(n)
1 =

(
p+ q

p+ 2−α
α

q
+

(2− 2α)q

αp+ (2− α)q
(1− α)n

(
p− q

p+ q

)n)
(µ2 − µ1) + ϵ .

where the error term ϵ is the same as the one defined in Theorem 1 for the case of K = n.

Both p+q

p+ 2−α
α q

and (2−2α)q
αp+(2−α)q (1−α)

(
p−q
p+q

)
are monotone increasing in α. Hence from Proposition 2

and 3, we see that with larger α, meaning a higher probability of teleportation back to the root node at
each step of message-passing, PPNP and APPNP will indeed make the difference between the means
of the two classes larger: while the difference in means for the baseline GNN decays as

(
p−q
p+q

)n
, the

difference for PPNP/APPNP is lower bounded by a constant. This validates the original intuition
behind PPNP and APPNP that compared to the baseline GNN, they reduce the mixing effect of
message-passing, as staying closer to the root node means aggregating less information from nodes
of different classes. This advantage becomes more prominent when n is larger, where the model
performance is dominated by the mixing effect: as n tends to infinity, while the means converge to
the same value for the baseline GNN, their separation is lower-bounded for PPNP/APPNP.
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However, the problem with the previous intuition is that PPNP and APPNP will also reduce the
denoising effect at each layer, as staying closer to the root node also means aggregating less infor-
mation from new nodes that have not been encountered before. Hence, for an arbitrary graph, the
result of the tradeoff after the reduction of both effects is not trivial to analyze. Here, we quantify
the resulting denoising effect for CSBM graphs measured by the variances. We denote (σ(n))2upper
as the variance upper bound for depth n in Lemma 4.
Proposition 4. For PPNP, with probability at least 1−O(1/N), it holds for all 1 ≤ K ≤ N that

max

{
α2 min{a, 2}

10
,
1

N

}
σ2 ≤ (σPPNP)2 ≤ max

α2

(
K∑

k=0

(1− α)k
√

(σ(k))2upper +
(1− α)K+1

α
σ

)2

, σ2

 .

Proposition 5. For APPNP, with probability at least 1−O(1/N), it holds for all 1 ≤ n ≤ N that

max

{
min{a, 2}

10

(
α2 +

(1− α)2n

(Np)n

)
,
1

N

}
σ2 ≤ (σAPPNP(n))2 ,

(σAPPNP(n))2 ≤ min


(
α

(
n−1∑
k=0

(1− α)k
√

(σ(k))2upper

)
+ (1− α)n

√
(σ(n))2upper

)2

, σ2

 .

By comparing the lower bounds in Proposition 4 and 5 with that in Theorem 2, we see that PPR
reduces the beneficial denoising effect of message-passing: for large or dense graphs, while the vari-
ances for the baseline GNN decay as 1/(Np)n, the variances for PPNP/APPNP are lower bounded
by the constant α2 min{a, 2}/10. In total, the mixing effect is reduced by a factor of

(
p−q
p+q

)n
, while

the denoising effect is reduced by a factor of 1/(Np)n. Hence PPR would cause greater reduction
in the denoising effect than the improvement in the mixing effect for graphs where N and p are
large. This drawback would be especially notable at a shallow depth, where the denoising effect is
supposed to dominate the mixing effect. APPNP would perform worse than the baseline GNN on
these graphs in terms of the optimal classification performance.

We remark that in each APPNP layer, another way to interpret the term αX is to regard it as a resid-
ual connection to the initial representation X (Chen et al., 2020b). Thus, our theory also validates
the empirical observation that adding initial residual connections allows us to build very deep models
without catastrophic oversmoothing. However, our results suggest that initial residual connections
do not guarantee an improvement in model performance by themselves.

5 EXPERIMENTS

In this section, we first demonstrate our theoretical results in previous sections on synthetic CSBM
data. Then we discuss the role of optimizing weights W (k) in GNN layers in the occurrence of
oversmoothing through both synthetic data and the three widely used benchmarks: Cora, CiteSeer
and PubMed (Yang et al., 2016). Our results highlight the fact that the oversmoothing phenomenon
observed in practice can be exacerbated by the difficulty of optimizing weights in deep GNN models.
More details about the experiments are provided in Appendix J.

5.1 THE EFFECT OF GRAPH TOPOLOGY ON OVERSMOOTHING

We first show how graph topology affects the occurrence of oversmoothing and the effects of PPR.
We randomly generated synthetic graph data from CSBM(N = 2000, p, q = 0.0038, µ1 = 1,
µ2 = 1.5, σ2 = 1). We used 60%/20%/20% random splits and ran GNN and APPNP with α = 0.1.
For results in Figure 2, we report averages over 5 graphs and for results in Figure 3, we report
averages over 5 runs.
In Figure 2, we study how the strength of community structure affects oversmoothing. We can see
that when graphs have a stronger community structure in terms of a higher intra-community edge
density p, they would benefit more from repeated message-passing. As a result, given the same set of
node features, oversmoothing would happen later and a classifier could achieve better classification
performance. A similar trend can also be observed in Figure 4A. Our theory predicts n⋆ and n0, as
defined in Section 3.2, with high accuracy.
In Figure 3, we compare APPNP and GNN under different graph topologies. In all three cases,
APPNP manifests its advantage of reducing the mixing effect compared to GNN when the number
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of layers is large, i.e. when the undesirable mixing effect is dominant. However, as Figure 3B,C
show, when we have large graphs or graphs with strong community structure, APPNP’s disadvan-
tage of concurrently reducing the denoising effect is more severe, particularly when the number of
layers is small. As a result, APPNP’s optimal performance is worse than the baseline GNN. These
observations accord well with our theoretical discussions in Section 4.

A B C

Figure 2: How the strength of community structure affects oversmoothing. When graphs have
stronger community structure (i.e. higher a), oversmoothing would happen later. Our theory (gray
bar) predicts the optimal number of layers n⋆ in practice (blue) with high accuracy (A). Given the
same set of features, a classifier has significantly better performance on graphs with higher a (B,C).

A (base case) B (larger graph) C (stronger community)

Figure 3: Comparison of node classification performance between the baseline GNN and APPNP.
The performance of APPNP is more robust when we increase the model depth. However, compared
to the base case (A), APPNP tends to have worse optimal performance than GNN on graphs with
larger size (B) or stronger community structure (C), as predicted by the theory.

5.2 THE EFFECT OF OPTIMIZING WEIGHTS ON OVERSMOOTHING

We investigate how adding learnable weights W (k) in each GNN layers affects the node classifi-
cation performance in practice. Consider the case when all the GNN layers used have width one,
meaning that the learnable weight matrix W (k) in each layer is a scalar. In theory, the effects of
adding such weights on the means and the variances would cancel each other and therefore they
would not affect the z-score of our interest and the classification performance. Figure 4A shows the
the value of n0 predicted by the z-score, the actual n0 without learnable weights according to the
test accuracy and the actual n0 with learnable weights according to the test accuracy. The results
are averages over 5 graphs for each case. We empirically observe that GNNs with weights are much
harder to train, and the difficulty increases as we increase the number of layers. As a result, n0 is
smaller for the model with weights and the gap is larger when n0 is supposed to be larger, possibly
due to greater difficulty in optimizing deeper architectures (Shamir, 2019).
To relieve this potential optimization problem, we increase the width of each GNN layer (Du &
Hu, 2019). Figure 4B,C presents the training and testing accuracies of GNNs with increasing width
with respect to the number of layers on a specific synthetic example. The results are averages over
5 runs. We observe that increasing the width of the network mitigates the difficulty of optimiz-
ing weights, and the performance after adding weights is able to gradually match the performance
without weights. This empirically validates our claim in Section 3.2 that adding learnable weights
should not affect the representation power of GNN in terms of node classification accuracy on CSBM
graphs, besides empirical optimization issues.

In practice, as we build deeper GNNs for more complicated tasks on real graph data, the difficulty of
optimizing weights in deep GNN models persists. We revisit the multi-class node classification task
on the three widely used benchmark datasets: Cora, CiteSeer and PubMed (Yang et al., 2016). We
compare the performance of GNN without weights against the performance of GNN with weights

8



Published as a conference paper at ICLR 2023

A B C

Figure 4: The effect of optimizing weights on oversmoothing using synthetic CSBM data. Compared
to the GNN without weights, oversmoothing happens much sooner after adding learnable weights in
each GNN layer, although these two models have the same representation power (A). As we increase
the width of each GNN layer, the performance of GNN with weights is able to gradually match that
of GNN without weights (B,C).

Figure 5: The effect of optimizing weights on oversmoothing using real-world benchmark datasets.
Adding learnable weights in each GNN layer does not improve node classification performance but
rather leads to optimization difficulty.

in terms of test accuracy. We used 60%/20%/20% random splits, as in Wang & Leskovec (2020)
and Huang et al. (2021) and report averages over 5 runs. Figure 5 shows the same kind of difficulty
in optimizing deeper models with learnable weights in each GNN layer as we have seen for the
synthetic data. Increasing the width of each GNN layer still mitigates the problem for shallower
models, but it becomes much more difficult to tackle beyond 10 layers to the point that simply
increasing the width could not solve it. As a result, although GNNs with and without weights
are on par with each other when both are shallow, the former has much worse performance when
the number of layers goes beyond 10. These results suggest that the oversmoothing phenomenon
observed in practice is aggravated by the difficulty of optimizing deep GNN models.

6 DISCUSSION

Designing more powerful GNNs requires deeper understanding of current GNNs—how they work
and why they fail. In this paper, we precisely characterize the mechanism of overmoothing via a
non-asymptotic analysis and justify why oversmoothing happens at a shallow depth. Our analysis
suggests that oversmoothing happens once the undesirable mixing effect homogenizing node repre-
sentations in different classes starts to dominate the desirable denoising effect homogenizing node
representations in the same class. Due to the small diameter characteristic of real graphs, the turning
point of the tradeoff will occur after only a few rounds of message-passing, resulting in oversmooth-
ing in shallow GNNs.

It is worth noting that oversmoothing becomes an important problem in the literature partly because
typical Convolutional Neural Networks (CNNs) used for image processing are much deeper than
GNNs (He et al., 2016). As such, researchers have been trying to use methods that have previously
worked for CNNs to make current GNNs deeper (Li et al., 2019; Chen et al., 2020b). However,
images can be regarded as giant grids with high diameter. This contrasts with with real-world graphs,
which often have much smaller diameters. Hence we believe that building more powerful GNNs will
require us to think beyond CNNs and images and take advantage of the structure in real graphs.

There are many outlooks to our work and possible directions for further research. First, while our
use of the CSBM provided important insights into GNNs, it will be helpful to incorporate other real
graph properties such as degree heterogeneity in the analysis. Additionally, further research can
focus on the learning perspective of the problem.
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Luc Devroye, László Györfi, and Gábor Lugosi. A probabilistic theory of pattern recognition. In
Stochastic Modelling and Applied Probability, 1996.

Simon Shaolei Du and Wei Hu. Width provably matters in optimization for deep linear neural
networks. In ICML, 2019.

10



Published as a conference paper at ICLR 2023

David Kristjanson Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-
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A PROOF OF LEMMA 1

Following the definition of the Bayes optimal classifier (Devroye et al., 1996),

B(x) = argmax
i=1,2

P[y = i|x] ,

we get that the Bayes optimal classifier has a linear decision boundary D = (µ1 + µ2)/2 such that
the decision rule is{
y = 1 if x ≤ D
y = 2 if x > D.

Probability of misclassification could be written as

P[y = 1, x > D] + P[y = 2, x ≤ D] = P[x > D|y = 1]P[y = 1] + P[x ≤ D|y = 2]P[y = 2]

=
1

2
(P[x > D|y = 1] + P[x ≤ D|y = 2]) .

When D = (µ1 + µ2)/2, the expression is called the Bayes error rate, which is the minimal prob-
ability of misclassification among all classifiers. Geometrically, it is easy to see that the Bayes
error rate equals 1

2S, where S is the overlapping area between the two Gaussian distributions

N
(
µ
(n)
1 , (σ(n))2

)
and N

(
µ
(n)
2 , (σ(n))2

)
. Hence one can use the z-score of (µ1 + µ2)/2 with

respect to either of the two Gaussian distributions to directly calculate the Bayes error rate.

B PROOF OF LEMMA 2

Under the heuristic assumption D−1A ≈ E[D]−1E[A], we can write

µ
(1)
1 =

pµ1 + qµ2

p+ q
, µ

(1)
2 =

pµ2 + qµ1

p+ q
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µ
(k)
1 =

pµ
(k−1)
1 + qµ

(k−1)
2

p+ q
, µ

(k)
2 =

pµ
(k−1)
2 + qµ

(k−1)
1

p+ q
, for all k ∈ N.

Writing recursively, we get that

µ
(n)
1 =

(p+ q)n + (p− q)n

2(p+ q)n
µ1 +

(p+ q)n − (p− q)n

2(p+ q)n
µ2 ,

µ
(n)
2 =

(p+ q)n + (p− q)n

2(p+ q)n
µ2 +

(p+ q)n − (p− q)n

2(p+ q)n
µ1 .

C PROOF OF THEOREM 1

We use ∥ · ∥2 to denote the spectral norm, ∥A∥2 = maxx:∥x∥=1 ∥Ax∥2. We denote Ā = E[A],
D̄ = E[D], d = A1N and d̄ = E[d]i. We further define the following relevant vectors:

w1 := 1N , w2 :=

(
1N/2

−1N/2

)
, µ :=

(
µ11N/2

µ21N/2

)
.

The quantity of interest is µ(k)
2 − µ

(k)
1 = 1

N/2w
⊤
2 (D

−1A)kµ.

C.1 AUXILIARY RESULTS

We record some properties of the adjacency matrices:

1. D−1A and D̄−1Ā have an eigenvalue of 1, corresponding to the (right) eigenvector w1.
2. If Jn = 1n1

⊤
n , where 1n is all-one vector of length n, then

Ā :=

(
pJN/2 qJN/2

qJN/2 pJN/2

)
.

3. D̄ = N
2 (p+ q)IN .

4. µ = αw1 + βw2, where α = µ1+µ2

2 and β = µ1−µ2

2 .

To control the degree matrix D−1, we will use the following standard Chernoff bound Chung & Lu
(2006):
Lemma 5 (Chernoff Bound). Let X1, ..., Xn be independent, S :=

∑n
i=1 Xi, and S̄ = E[S]. Then

for all ε > 0,
P(S ≤ S̄ − ε) ≤ e−ε2/(2S̄),

P(S ≥ S̄ + ε) ≤ e−ε2/(2(S̄+ε/3)).

We can thus derive a uniform lower bound on the degree of every vertex:
Corollary 1. For every r > 0, there is a constant C(r) such that whenever d̄ ≥ C logN , with
probability at least 1−N−r,

1

2
d̄ ≤ di ≤

3

2
d̄, for all 1 ≤ i ≤ N.

Consequently, with probability at least 1−N−r, ∥D−1 − D̄−1∥2 ≤ C/d̄ for some C.

Proof. By applying Lemma 1 and a union bound, all degrees are within 1/2d̄ of their expectations,
with probability at least 1 − e−d̄/8+logN . Taking C = 8r + 8 yields the desired lower bound. An
analogous proof works for the upper bound.

To show the latter part, write

∥D−1 − D̄−1∥2 = max
1≤i≤N

|di − d̄|
did̄

Using the above bounds, the numerator for each i is at most 1/2d̄ and the denominator for each i is
at least 1/2d̄2, with probability at least 1−N−r. Combining the bounds yields the claim.
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We will also need a result on concentration of random adjacency matrices, which is a corollary of
the sharp bounds derived in Bandeira & Van Handel (2016)
Lemma 6 (Concentration of Adjacency Matrix). For every r > 0, there is a constant C(r) such
that whenever d̄ ≥ logN , with probability at least 1−N−r,

∥A− Ā∥2 < C
√
d̄.

Proof. By corollary 3.12 from Bandeira & Van Handel (2016), there is a constant κ such that

P(∥A− Ā∥2 ≥ 3
√

d̄+ t) ≤ e−t2/κ+logN .

Setting t =
√
(1 + r)d̄, C = 3 +

√
(1 + r)κ suffices to achieve the desired bound.

C.2 SHARP CONCENTRATION OF THE RANDOM WALK OPERATOR D−1A

In this section, we aim to show the following concentration result for the random walk operator
D−1A:

Theorem 3. Suppose the edge probabilities are ω
(

logN
N

)
, and let d̄ be the average degree. For any

r, there exists a constant C such that for sufficiently large N , with probability at least 1−O(N−r),

∥D−1A− D̄−1Ā∥2 ≤ C√
d̄
.

Proof. We decompose the error
E = D−1A− D̄−1Ā = D−1(A− Ā) + (D−1 − D̄−1)Ā = T1 + T2,

where
T1 = D−1(A− Ā), T2 = (D−1 − D̄−1)Ā.

We bound the two terms separately.

Bounding T1: By Corollary 1, ∥D−1∥2 = maxi 1/di ≤ 2/d̄ with probability 1−N−r. Combin-
ing this with Lemma 6, we see that with probability at least 1− 2N−r,

∥D−1(A− Ā)∥2 ≤ ∥D−1∥2∥A− Ā∥2 ≤ C√
d̄

for some C depending only on r.

Bounding T2: Similar to Lu & Peng (2013), we bound T2 by exploiting the low-rank structure of
the expected adjacency matrix, Ā. Recall that Ā has a special block form. The eigendecomposition
of Ā is thus

Ā =

2∑
j=1

λjw
(j),

where w(1) = 1√
N
1N , λ1 = N(p+q)

2 , w(2) = 1√
N

(
1N/2

−1N/2

)
, λ2 = N(p−q)

2 .

Using the definition of the spectral norm, we can bound ∥T2∥2 as

∥T2∥2 ≤ max
∥x∥=1

∥(D−1 − D̄−1)Āx∥2

≤ max
α∈R2,∥α∥=1

∥(D−1 − D̄−1)Ā(α1w
(1) + α2w

(2))∥2 .

Note that when ∥α∥2 = 1,

∥(D−1 − D̄−1)Ā(α1w
(1) + α2w

(2))∥22 =

N∑
i=1

(
1

di
− 1

d̄

)2
 2∑

j=1

λjαjw
(j)
i

2

≤
N∑
i=1

(
1

di
− 1

d̄

)2 2∑
j=1

λ2
j (w

(j)
i )2
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using Cauchy-Schwarz. Since |w(j)
i | ≤ 1√

N
for all i, j, the second summation can be bounded by

1
N

∑2
j=1 λ

2
j . Overall, the upper bound is now

1

N

N∑
i=1

(di − d̄)2

(did̄)2

2∑
j=1

λ2
j ,

Under the event of Corollary 1, di ≥ Cd̄ for some C < 1. Under our setup, we also have λ2
1 = d̄2,

λ2
2 ≤ d̄2. This means that the upper bound is

1

C2d̄2N
∥d− d̄1N∥22 ,

where d is the vector of node degrees. It remains to show that 1
N ∥d − d̄1N∥22 = O(d̄). To do this,

we use a form of Talagrand’s concentration inequality, given in Boucheron et al. (2013). Since the
function 1√

N
∥d− d̄1N∥2 = 1√

N
∥(A− d̄IN )1N∥2 is a convex, 1-Lipschitz function of A, Theorem

6.10 from Boucheron et al. (2013) guarantees that for any t > 0,

P(
1√
N

∥d− d̄1N∥2 > E[
1√
N

∥d− d̄1N∥2] + t) ≤ e−t2/2.

Using Jensen’s inequality,

E[∥d− d̄1N∥2] ≤
√

E[∥d− d̄1N∥22]

=

√√√√ N∑
i=1

Var(di) =
√
NVar(d1) ≤

√
Nd̄ .

If d̄ = ω(logN), we can guarantee that

1√
N

∥d− d̄1N∥2 ≤ C
√
d̄

with probability at least 1 − e−(C−1)2d̄/2 = 1 − O(N−r) for an appropriate constant C. Thus we
have shown that with high probability, T2 = O(1/

√
d̄), which proves the claim.

C.3 PROOF OF THEOREM 1

Fix r and K. We desire to bound
1

N/2
w⊤

2 ((D
−1A)k − (D̄−1Ā)k)µ .

By the first property of adjacency matrices in auxiliary results, it suffices to bound

β
1

N/2
w⊤

2 ((D
−1A)k − (D̄−1Ā)k)w2.

where β = µ1−µ2

2 . We will show inductively that there is a C such that for every k = 1, ...,K,

∥(D−1A)k − (D̄−1Ā)k∥2 ≤ C/
√
d̄.

If this is true, then Cauchy-Schwarz gives

β
1

N/2
w⊤

2 ((D
−1A)k − (D̄−1Ā)k)w2 ≤ β

1

N/2
∥w2∥2∥(D−1A)k − (D̄−1Ā)k∥2∥w2∥2

≤ C/
√
d̄.

By Theorem 3, we have that with probability at least 1−O(N−r),

∥D−1A− D̄−1Ā∥2 ≤ C√
d̄
.
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So D−1A = D̄−1Ā+ J where ∥J∥ ≤ C/
√
d̄. Iterating, we have

∥(D−1A)k − (D̄−1Ā)k∥2 = ∥(D−1A)k−1D−1A− (D̄−1Ā)k∥2 (1)

Inductively, (D−1A)k−1 = (D̄−1Ā)k−1 +H where ∥H∥2 ≤ C/
√
d̄. Plugging this in (1), we have

∥(D−1A)k−1D−1A− (D̄−1Ā)k∥2 = ∥((D̄−1Ā)k−1 +H)(D̄−1Ā+ J)− (D̄−1Ā)k∥2 .

Of these terms, (D̄−1Ā)k−1J has norm at most ∥J∥2, H(D̄−1Ā) has norm at most ∥H∥2, and HJ
has norm at most C/d̄.1 Hence the induction step is complete.

We have thus shown that there is a constant C(r,K) such that with probability at least 1−N−r,

| 1

N/2
w⊤

2 ((D
−1A)k − (D̄−1Ā)k)µ| ≤ C

d̄
.

which proves the claim.

By simulation one can verify that indeed 1
N/2w

⊤
2 (D̄

−1Ā)kµ ≈
(

p−q
p+q

)k
(µ2−µ1). Figure 6 presents

µ
(n)
1 , µ

(n)
2 calculated from simulation against predicted values from our theoretical results. The sim-

ulation results are averaged over 20 instances generated from CSBM(N = 2000, p = 0.0114, q =
0.0038, µ1 = 1, µ2 = 1.5, σ2 = 1).

Figure 6: Comparison of the mean estimation in Lemma 2 against simulation results.

D PROOF OF LEMMA 3

Fix n and let the element in the ith row and jth column of (D−1A)n be p
(n)
ij . Consider a fixed node

i. The variance of the feature for node i after n layers of convolutions is (
∑

j(p
(n)
ij )2)σ2, by the

basic property of variance of sum. Since
∑

j |p
(n)
ij | = 1, it follows that

∑
j(p

(n)
ij )2 ≤ 1, which is the

second inequality.

To show the first inequality, consider the following optimization problem:

min
p
(n)
ij , 1 ≤ j ≤ N

∑
j

(p
(n)
ij )2

s.t.
∑
j

p
(n)
ij = 1,

p
(n)
ij ≥ 0, 1 ≤ j ≤ N

This part of proof goes by contradiction. Suppose ∃k, l such that p(n)ik ̸= ∃p(n)il . Fixing all other
p
(n)
ij , j ̸= k, l, if we average p

(n)
ik and p

(n)
il , their sum of squares will strictly decrease while not

1More precisely, the C becomes Ck, which is why we restrict the approximation guarantee to constant K.
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breaking the constraints:

2
(p(n)ik + p

(n)
il

2

)2
− ((p

(n)
ik )2 + (p

(n)
il )2) = −1

2
(p

(n)
ik − p

(n)
il )2 < 0 .

So we obtain a contradiction. Thus to minimize
∑

j(p
(n)
ij )2, p(n)ij = 1

N , 1 ≤ j ≤ N , and the
mimimum is 1/N .

E PROOF OF LEMMA 4

The proof relies on the following definition of neighborhood size: in a graph G, we denote by Γk(x)
the set of vertices in G at distance k from a vertex x:

Γk(x) = {y ∈ G : d(x, y) = k} .
we define Nk(x) to be the set of vertices within distance k of x:

Nk(x) =

k⋃
i=0

Γi(x) .

To prove the lower bound, we first show an intermediate step that

1

|Nn|
σ2 ≤ (σ(n))2 .

The proof is the same as the one for the first inequality in Lemma 3, except we add in another con-
straint that for a fixed i, the row pi· is |Nn(i)|-sparse. This implies that the minimum of

∑
j(p

(n)
ij )2

becomes 1/|Nn(i)|. The we apply the result on upper bound of neighborhood sizes in Erdős-Rényi
graph G(N, p) (Lemma 2 Graham & Lu (2001)), as it also serves as upper bound of neighborhood
sizes in SBM(N , p, q). The result implies that with probability at least 1−O(1/N), we have

|Nn| ≤
10

min{a, 2}
(Np)n ,∀1 ≤ n ≤ N . (2)

We ignore i for Nn because of all nodes are identical in CSBM, so the bound applies for every nodes
in the graph.

The proof of upper bound is combinatorial. Corollary 1 states that when N is large, the degree of
node i is approximately the expected degree in G, namely, E[degree] = N

2 (p+ q). Since

p
(n)
ij =

∑
path P={i,v1,...,vn−1,j}

1

deg(i)

1

deg(v1)
...

1

deg(vn−1)
, (3)

using the approximation of degrees, we get that

p
(n)
ij =

(
2

N(p+ q)

)n

(# of paths P of length n between i and j) .

Then we use a tree approximation to calculate the number of paths P of length n between i and j
by regarding i as the root. Note that

∑
j

(p
(n)
ij )2 =

⌊n
2 ⌋∑

k=0

∑
j∈Γn−2k

(p
(n)
ij )2 (4)

and for j ∈ Γn−2k, a deterministic path P ′ of length n − 2k is needed in order to reach j from
i. This implies that there are only k steps deviating from P ′. There are (n − 2k + 1)k ways
of choosing when to deviate. For each specific way of when to deviate, there are approximately
E[degree]k ways of choosing the destinations for deviation. Hence in total, for j ∈ Γn−2k, there are
(n− 2k + 1)kE[degree]k path of length n between i and j. Thus

p
(n)
ij = (n− 2k + 1)k

(
2

N(p+ q)

)n−k

. (5)
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Plug in (5) into (4), we get that

∑
j

(p
(n)
ij )2 =

⌊n
2 ⌋∑

k=0

|Γn−2k|(n− 2k + 1)2k
(

2

N(p+ q)

)2n−2k

(6)

≤
⌊n

2 ⌋∑
k=0

9

min{a, 2}
(n− 2k + 1)2k(Np)n−2k

(
2

N(p+ q)

)2n−2k

(7)

Again, (7) follows from using the upper bound on |Γn−2k| Graham & Lu (2001) such that with
probability at least 1−O(1/N),

|Γn−2k| ≤
9

min{a, 2}
(Np)n−2k ,∀1 ≤ k ≤ ⌊n

2
⌋.

Combining with Lemma 3, we obtain the final result.

Figure 7 presents variance calculated from simulation against predicted upper and lower bounds
from our theoretical results. The simulation results are averaged over 1000 instances generated from
CSBM(N = 2000, p = 0.0114, q = 0.0038, µ1 = 1, µ2 = 1.5, σ2 = 1).

Figure 7: Comparison of the bounds on variance in Theorem 2 against simulation results.

F PROOF OF THEOREM 2

When we fix K ∈ N, only the upper bound in Theorem 2 will change. Note that now the upper
bound in (7) can be written as

⌊n
2 ⌋∑

k=0

9

min{a, 2}
(n− 2k + 1)2k

(
p+ q

2p

)2k (
2p

p+ q

)n(
2

N(p+ q)

)n

≤ C

min{a, 2}

(
C∑

k=0

(
p+ q

2p

)2k
)(

2

N(p+ q)

)n

≤ C

min{a, 2}

(
2

N(p+ q)

)n

.

G PROOF OF PROPOSITION 1

Let the node representation vector of node v after n graph convolutions be h
(n)
v . The Bayes error

rate could be written as 1
2 (P[h

(n)
v > D|v ∈ C1] + P[h(n)

v ≤ D|v ∈ C2]). For d ∈ N, due to the
symmetry of our setup, one can easily see that the optimal linear decision boundary is the hyperplane∑d

j=1 xj = d
2 (µ1 + µ2). Then for v ∈ C1,

∑d
j=1 (h

(n)
v )j ∼ N (dµ

(n)
1 , d(σ(n))2) and for v ∈ C2,
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∑d
j=1 (h

(n)
v )j ∼ N (dµ

(n)
2 , d(σ(n))2). Thus the Bayes error rate can be written as

1

2
(P[

d∑
j=1

(h(n)
v )j > D|v ∈ C1] + P[

d∑
j=1

(h(n)
v )j ≤ D|v ∈ C2])

=
1

2

(
1− Φ

(
d
2 (µ1 + µ2)− dµ

(n)
1√

dσ(n)

))
+

1

2

(
Φ

(
d
2 (µ1 + µ2)− dµ

(n)
2√

dσ(n)

))

= 1− Φ

(
d
2 (µ1 + µ2)− dµ

(n)
1√

dσ(n)

)
.

The last equality follows from the fact that d
2 (µ1 + µ2)− dµ

(n)
1 = −(d2 (µ1 + µ2)− dµ

(n)
2 ).

H HOW TO USE THE Z-SCORE TO CHOOSE THE NUMBER OF LAYERS

The bounds of the z-score with respect to the number of layers, z(n)lower and z
(n)
upper allow us to calculate

bounds for n⋆ and n0 under different scenarios. Specifically,

1. ∀n ∈ N, z(n)upper < z(0) = (µ2 − µ1)/σ, then n⋆ = n0 = 0, meaning that no graph convolution
should be applied.

2. |{n ∈ N : z
(n)
upper ≥ z(0)}| > 0, and

(a) ∀n ∈ N, z(n)lower < z(0), then 0 ≤ n0 ≤ min{n ∈ N : z
(n)
upper ≤ z(0)} , which means that

the number of graph convolutions should not exceed the upper bound of n0, or otherwise
one gets worse performance than having no graph convolution. Note that in this case, since
n⋆ ≤ n0, we can only conclude that

0 ≤ n⋆ ≤ min{n ∈ N : z(n)upper ≤ z(0)} .

(b) |{n ∈ N : z
(n)
lower ≥ z(0)}| > 0, then 0 ≤ n0 ≤ min{n ∈ N : z

(n)
upper ≤ z(0)} , and let

argmax
n

z
(n)
lower = n⋆

floor,

max

{
n ≤ n⋆

floor : z
(n)
upper ≤ z

(n⋆
floor)

lower

}
≤ n⋆ ≤ min

{
n ≥ n⋆

floor : z
(n)
upper ≤ z

(n⋆
floor)

lower

}
,

meaning that the number of layers one should apply for optimal node classification perfor-
mance is more than the lower bound of n⋆, and less than the upper bound of n⋆.

I PROOFS OF PROPOSITION 2-5

I.1 PROOF OF PROPOSITION 2

Since the spectral radius of D−1A is 1,

α(Id− (1− α)(D−1A))−1 = α

∞∑
k=0

(1− α)k(D−1A)k .

Apply Lemma 2, we get that µPPNP
2 − µPPNP

1 ≈ p+q

p+ 2−α
α q

(µ2 − µ1).

To bound the approximation error, similar to the proof of the concentration bound in Theorem 1, it
suffices to bound

µ1 − µ2

N
w⊤

2 (

∞∑
k=0

α(1− α)k((D−1A)k − (D̄−1Ā)k))w2 =
µ1 − µ2

N
w⊤

2 (TK + TK+1,∞)w2 ,

where TK =
∑K

k=0 α(1−α)k((D−1A)k−(D̄−1Ā)k), TK+1,∞ =
∑∞

k=K+1 α(1−α)k((D−1A)k−
(D̄−1Ā)k), and K ∈ N up to our own choice.
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Bounding TK: Apply Theorem 1, fix r > 0, there exists a constant C(r,K, α) such that with
probability 1−O(N−r),

∥TK∥2 ≤ C√
d̄
.

Bounding TK+1,∞: We will show upper bound for (D−1A)k − (D̄−1Ā)k that applies for all
k ∈ N. Note that for every k ∈ N,

(D−1A)k = D−1/2(D−1/2AD−1/2)kD1/2 = D−1/2(V ΛkV ⊤)D1/2 ,

where D−1/2AD−1/2 = V ΛV ⊤ is the eigenvalue decomposition. Then

∥(D−1A)k − (D̄−1Ā)k)∥2 ≤ ∥(D−1A)k∥2 + ∥(D̄−1Ā)k∥2 = ∥(D−1A)k∥2 + 1

≤ ∥D−1/2∥2∥(D−1/2AD−1/2)k∥2∥D−1/2∥2 + 1 .

Since ∥(D−1/2AD−1/2)k∥2 = 1 and by Corollary 1, with probability at least 1−N−r,

∥D1/2∥2 ≤
√

3d̄/2, ∥D−1/2∥2 ≤
√

2/d̄ ,

the previous inequality becomes ∥(D−1A)k − (D̄−1Ā)k)∥2 ≤
√
3 + 1. Hence

∥TK+1,∞∥2 ≤ (1− α)K+1 .

Combining the two results, we prove the claim.

I.2 PROOF OF PROPOSITION 3

The claim is a direct corollary of Theorem 1.

I.3 PROOF OF PROPOSITION 4

The covariance matrix ΣPPNP of hPPNP could be written as

ΣPPNP = α2(

∞∑
k=0

(1− α)k(D−1A)k)(

∞∑
l=0

(1− α)l(D−1A)l)⊤σ2 .

Note that the variance of node i equals α2
∑∞

k,l=0(1−α)k+l(D−1A)ki·((D
−1A)l)⊤i· , where i· refers

row i of a matrix. Then by Cauchy-Schwarz Theorem,

(D−1A)ki·((D
−1A)l)⊤i· ≤ ∥(D−1A)ki·∥∥((D−1A)l)i·∥

≤
√

(σ(k))2(σ(l))2/σ2, for all 1 ≤ k, l ≤ N .

Moreover, by Lemma 3, (σ(k))2 ≤ σ2. Due to the identity of each node i, we get that with proba-
bility 1−O(1/N), for all 1 ≤ K ≤ N ,

(σPPNP)2 ≤ α2

(
K∑

k=0

(1− α)k
√

(σ(k))2upper +

∞∑
k=K+1

(1− α)kσ

)2

≤ α2

(
K∑

k=0

(1− α)k
√
(σ(k))2upper +

(1− α)K+1

α
σ

)2

.

For the lower bound, note that with probability 1−O(1/N),

(σPPNP)2 ≥ α2

(
N∑

k=0

(1− α)2k
1

Nk
+

∞∑
k=N+1

(1− α)2k
1

N

)
σ2 ,
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where Nk is the size of k-hop neighborhood. Then

(σPPNP)2 ≥ α2

(
N∑

k=0

(1− α)2k
min{a, 2}

10

1

(Np)k

)
σ2

≥ α2min{a, 2}
10

(Np)N+1 − (1− α)2N+2

(Np)N (Np− (1− α)2)
σ2

≥ α2min{a, 2}
10

σ2 .

It is easy to see that Lemma 3 applies to any message-passing scheme which could be regarded as a
random walk on the graph. Combining with Lemma 3, we get the final result.

I.4 PROOF OF PROPOSITION 5

Since

hAPPNP(n) =

(
α

(
n−1∑
k=0

(1− α)k(D−1A)k

)
+ (1− α)n(D−1A)n

)
X

Through the same calculation as for the upper bound in the proof of Proposition 2, we get that with
probability 1−O(1/N),

(σAPPNP(n))2 ≤

(
α

( n−1∑
k=0

(1− α)k
√
(σ(k))2upper

)
+ (1− α)n

√
(σ(n))2upper

)2

.

For the lower bound, through the same calculation as for the upper bound in the proof of Proposi-
tion 2, we get that with probability 1−O(1/N),

(σAPPNP(n))2 ≥ α2
n−1∑
k=0

(1− α)2k(σ(k))2 + (1− α)2n(σ(n))2

≥ α2min{a, 2}
10

(
n−1∑
k=0

(1− α)2k
1

(Np)k

)
σ2 +

min{a, 2}
10

(1− α)2n
1

(Np)n
σ2

≥ min{a, 2}
10

(
α2 +

(1− α)2n

(Np)n

)
σ2 .

Combining with Lemma 3, we get the final result.

J EXPERIMENTS

Here we provide more details on the models that we use in Section 5. In all cases we use the Adam
optimizer and tune some hyperparameters for better performance. The hyperparameters used are
summarized as follows.

Data final linear classifier weights in GNN layer learning rate (width) iterations (width)

synthetic 1 layer no 0.01 8000
yes 0.01(1,4,16)/0.001(64,256) 8000(1,4,16)/10000(64)/50000(256)

Cora 3 layer with 32 hidden channels no 0.001 150
yes 0.001 200

CiteSeer 3 layer with 16 hidden channels no 0.001 100
yes 0.001 100

PubMed 3 layer with 32 hidden channels no 0.001 500
yes 0.001 500

We empirically find that after adding in weights in each GNN layer, it takes much longer to train
the model for one iteration, and the time increases when the depth or the width increases (Figure 8).
Since for some combinations, it takes more than 200,000 iterations for the validation accuracy to
finally increase, for each case, we only train for a reasonable amount of iterations.

All models were implemented with PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey &
Lenssen, 2019).
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Figure 8: Iterations per second for each model.

K ADDITIONAL RESULTS

K.1 EFFECT OF NONLINEARITY ON CLASSIFICATION PERFORMANCE

In section 3, we consider the case of a simplified linear GNN. What would happen if we add nonlin-
earity after linear graph convolutions? Here, we consider the case of a GNN with a ReLU activation
function added after n linear graph convolutions, i.e. h(n)ReLU = ReLU((D−1A)nX). We show
that adding such nonlinearity does not improve the classification performance.

Proposition 6. Applying a ReLU activation function after n linear graph convolutions does not
decrease the Bayes error rate, i.e. Bayes error rate based on h(n)ReLU ≥ Bayes error rate based on h(n),
and equality holds if µ1 ≥ −µ2.

Proof. If is known that if x follows a Gaussian distribution, then ReLU(x) follows a Rectified Gaus-
sian distribution. Following the definition of the Bayes optimal classifier, we present a geometric
proof in Figure 9 (see next page, top), where the dark blue bar denotes the location of 0 and the red
bar denotes the decision boundary D of the Bayes optimal classifier, and the light blue area denotes
the overlapping area S, which is twice the Bayes error rate.

Figure 9: A geometric proof of Proposition 6.
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K.2 EXACT LIMIT OF VARIANCE (σ(n))2 AS n → ∞

Proposition 7. Given a graph G with adjacency matrix A, let its degree vector be d = A1N , where
1N is the all-one vector of length N . If G is connected and non-bipartite, the variance of each node
i, denoted as (σi

(n))2, converges asymptotically to ∥d∥2
2

∥d∥2
1

, i.e.

(σi
(n))2

n→∞−−−−→ ∥d∥22
∥d∥21

.

Then ∥d∥2

∥d∥2
1
≥ 1

N , and the equality holds if and only if G is regular.

Proof. Let ei denotes the standard basis unit vector with the ith entry equals 1, and all other entries
equal 0. Since G is connected and non-bipartite, the random walk represented by P = D−1A is
ergodic, meaning that

e⊤i P
(n) n→∞−−−−→ π ,

where π is the stationary distribution of this random walk with πi = di

∥d∥1
. Then since norms are

continuous functions, we conclude that

(σi
(n))2 =

∑
j

(p
(n)
ij )2 = ∥e⊤i P (n)∥22

n→∞−−−−→ ∥π∥22 =
∥d∥22
∥d∥21

.

By Lemma 3, it follows that ∥d∥2
2

∥d∥2
1
≥ 1

N . The unique minimizer of ∥π∥22 subject to ∥π∥1 = 1 is

π = 1
N 1N . This means that G must be regular to achieve the lower bound asymptotically.

Under Assumption 1, the graph generated by our CSBM is almost surely connected. Here, we
remain to show that with high probability, the graph will also be non-bipartite.

Proposition 8. With probability at least 1 − O(1/(Np)3), a graph G generated from CSBM(N , p,
q, µ1, µ2, σ2) contains a triangle, which implies that it is non-bipartite.

Proof. The proof goes by the classic probabilistic method. Let T∆ =
(N3 )∑
i

1τi denotes the number

of triangles in G, where 1τi equals 1 if potential triangle τi exists and 0 otherwise. Then by second
moment method,

P[T∆ = 0] ≤ Var(T∆)

(E[T∆])2
=

1

E[T∆])
+

∑
i ̸=j E[1τi1τj ]− (E[T∆])

2

(E[T∆])2
.

Since E[T∆] = O(Np),
∑

i ̸=j E[1τi1τj ] = (1 +O(1/N))(E[T∆])
2, we get that

P[T∆ = 0] ≤ O(1/(Np)3) +O(1/N) ≤ O(1/(Np)3) .

Hence P[G is non-bipartite] ≥ P[T∆ ≥ 1] ≥ 1−O(1/(Np)3).

K.3 SYMMETRIC GRAPH CONVOLUTION D−1/2AD−1/2

Proposition 9. When using symmetric message-passing convolution D−1/2AD−1/2 instead, the
variance (σ(n))2 is non-increasing with respect to the number of convolutional layers n. i.e.

(σ(n+1))2 ≤ (σ(n))2, n ∈ N ∪ {0} .

Proof. We want to calculate the diagonal entries of the covariance matrix Σ(n) of
(D−1/2AD−1/2)nX , where the covariance matrix of X is σ2IN . Hence

Σ(n) = (D−1/2AD−1/2)n
(
(D−1/2AD−1/2)n

)⊤
.

Since D−1/2AD−1/2 is symmetric, let its eigendecomposition be V ΛV ⊤ and we could rewrite

Σ(n) = (V ΛnV ⊤)(V ΛnV ⊤) = V Λ2nV ⊤ .
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Notice that the closed form of the diagonal entries is

diag(Σ(n)) =

N∑
i=1

λ2n
i |v|2 .

Since for all 1 ≤ i ≤ N , |λi| ≤ 1, we obtain monotonicity of each entry of diag(Σ(n)), i.e. variance
of each node.

Although the proposition does not always hold for random walk message-passing convolution
D−1A as one can construct specific counterexamples (Appendix K.4), in practice, variances are ob-
served to be decreasing with respect with the number of layers. Moreover, we empirically observe
that variance goes down more than the variance using symmetric message-passing convolutions.
Figure 10 presents visualization of node representations comparing the change of variance with
respect to the number of layers using random walk convolution and symmetric message-passing
convolution. The data is generated from CSBM(N = 2000, p = 0.0114, q = 0.0038, µ1 = 1, µ2 =
1.5, σ2 = 1).

Figure 10: The change of variance with respect to the number of layers using random walk convo-
lution D−1A and symmetric message-passing convolution D−1/2AD−1/2.

K.4 COUNTEREXAMPLES

Here, we construct a specific example where the variance (σ(n))2 is not non-increasing with respect
to the number of layers n (Figure 11A). We remark that such a non-monotone nature of change in
variance is not caused by the bipartiteness of the graph, as a cycle graph with even number of nodes
is also bipartite, but does not exhibit such phenomenon (Figure 11B). We conjecture the increase in
variance is rather caused by the tree-like structure.

A B

Figure 11: Counterexamples.

K.5 THE MIXING AND DENOISING EFFECTS IN PRACTICE

In this section, we measure the mixing and denoising effects of graph convolutions identified by
our theoretical results in practice, and show that the same tradeoff between the two counteracting
effects exists for real-world graphs. For the mixing effect, we measure the pairwise L2 distances
between the means of different classes, and for the denoising effect, we measure the within-class
variances, both respect to the number of layers. Figure 12 gives a visualization of both metrics for
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all classes on Cora, CiteSeer and PubMed. We observe that similar to the synthetic CSBM data,
adding graph convolutions increases both the mixing effect (homogenizing node representations
in different classes, measured by the inter-class distances) and the denoising effect (homogenizing
node representations in the same class, measured by the within-class distances). In addition, the
beneficial denoising effect clearly reaches saturation just after a small number of layers, as predicted
by our theory.

Figure 12: The existence of the mixing (top row) and denoising effects (bottom row) of graph con-
volutions in practice. Adding graph convolutions increases both effects and the beneficial denoising
effect clearly reaches saturation just after a small number of layers, as predicted by our theory in
Section 3.
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