

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MATHESIS: TOWARDS FORMAL THEOREM PROVING FROM NATURAL LANGUAGES

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) show strong promise for formal reasoning. However, most LLM-based theorem provers remain constrained by the need for expert-written formal statements as inputs, limiting their applicability to real-world problems expressed in natural language. We address this gap by focusing on autoformalization, the task of translating informal problems into formal statements. We propose Mathesis, the first pipeline for the systematic study of formal theorem proving from natural language. It contributes the first autoformalizer trained with reinforcement learning, which integrates syntactic, semantic, and prover feedback as reward signals to yield accurate and verifiable formalizations. This is further supported by our novel LeanScorer framework for evaluating semantic correctness. To assess real-world applicability, we introduce Gaokao-Formal, a benchmark of 495 complex proof problems from the college entrance exams. Experiments demonstrate that our autoformalizer improves pass rates by 45% on Gaokao-Formal and 6% on MiniF2F compared to state-of-the-art baselines. Paired with provers, our autoformalizer consistently enhances proving accuracy, including a 42% gain for DeepSeek-Prover-V2 on Gaokao-Formal. Our code is available at <https://anonymous.4open.science/r/Mathesis-2D14>.

1 INTRODUCTION

The emergence of reasoning abilities in large language models (LLMs) has opened new frontiers in automated mathematics (Yang et al., 2025a). Recent automatic theorem provers (ATPs) leverage formal verification systems, such as Lean (mathlib Community, 2020; Moura & Ullrich, 2021), Isabelle (Paulson, 1994), and Coq (Huet et al., 1997), to enable formal reasoning. Formal reasoning starts with a clear formal problem statement, followed by the generation of mechanically verifiable proofs in formal languages. This approach ensures greater reliability and verifiability. Notable models in this field, including Deepseek-Prover-V2 (Ren et al., 2025), Kimina-Prover (Wang et al., 2025), and Goedel-Prover (Lin et al., 2025), are currently state-of-the-art on benchmarks such as MiniF2F (Zheng et al., 2021), proofNet (Azerbayev et al., 2023), and PutnamBench (Tsoukalas et al., 2024), where the input problem statements have been formalized by human experts.

However, real-world mathematical problems are typically written in natural language, which prohibits the direct use by ATPs. Traditionally, manual formalization ensures faithful translation of problems but requires significant effort and expertise before ATPs can solve them. In this paper, we study automatic **formal theorem proving from natural language**. The task begins with a given natural language (NL) problem statement and translates it into formal language (FL), followed by the generation of a formal proof. A critical step in this task is autoformalization—the process of automatically translating informal mathematics into formal language (Gao et al., 2024)—which can significantly impact the success of proving due to errors introduced during formalization. Figure 1 illustrates two common examples, highlighting how improper formalization can yield misleading proof successes or render problems unprovable.

Despite its importance, the task remains understudied, particularly in terms of semantic evaluation and the availability of a powerful autoformalizer. On the evaluation side, existing methods rely on Lean syntactic compilation checks and basic binary LLM judgments (Lin et al., 2025; Gao et al., 2024; Ying et al., 2024), which fail to capture nuanced semantic errors, resulting in the absence

054

055 **Informal Statement:** Let S_n denote the sum of the first n terms of the sequence a_n . Given that $\frac{2S_n}{n} + n = 2a_n + 1$, prove
056 that $\{a_n\}$ is an arithmetic sequence.

057 **Two Formal Statement Cases:**

```
058 theorem case_one (a : N → ℝ)
059   (ha : ∃ d, ∀ n, a (n + 1) = a n + d) ⇒ Erroneously includes the desired goal in
060   assumptions
061   (h : ∀ n, 2 * (Σ i in Finset.range n, a i) / n + n = 2 * a n + 1) :
062   ∃ d, ∀ n, a (n + 1) = a n + d := by sorry

063 theorem case_two (a : N → ℝ) (S : N → ℝ)
064   (hS : ∀ (n : N), n ≥ 1, S n = Σ k in Finset.range n, a k) ⇒
065   Σ k in Finset.Icc 1 n, a k
066   (h : ∀ (n : N), n ≥ 1, 2 * S n / (n : ℝ) + (n : ℝ) = 2 * a n + 1) :
067   ∃ (d : ℝ), ∀ (n : N), n ≥ 1, a (n + 1) = a n + d := by sorry
```

068 Figure 1: Illustrative examples of incorrect formalization. Case 1 mistakenly includes the goal as
069 an assumption, resulting in a circular yet technically provable formalization that is mathematically
070 invalid. Case 2 mistranslates the summation range, leading to an incorrect formal statement that is
071 both unprovable and misaligned with the informal input.

072
073 of fine-grained evaluation and limiting the performance of formal theorem proving from natural
074 language. Moreover, most existing formal benchmarks are not designed to assess the quality of
075 autoformalization. These benchmarks might allow easy passage of basic checks but fail to reveal
076 semantic errors, necessitating harder-to-formalize benchmarks for rigorous evaluation. Specifically,
077 some benchmarks simplify the original problems in ways that alter their intent, or exclude problem
078 types that are challenging to formalize, such as those involving geometry, combinatorics (Zheng
079 et al., 2021), and word problems (Azerbaiyev et al., 2023). On the autoformalizer side, recent meth-
080 ods (Jiang et al., 2023; Gao et al., 2024; Liu et al., 2025b; Lin et al., 2025) fine-tune LLMs on paired
081 informal and formal statements (a.k.a parallel statements (Jiang et al., 2023; Liu et al., 2025b)) for
082 higher quality, with Kimina-Autoformalizer (Wang et al., 2025) achieving state-of-the-art perfor-
083 mance via expert iteration. However, these training approaches lack dynamic learning from direct
084 feedback on both syntactic and semantic correctness.

085 In this paper, we present Mathesis (**M**ulti-domain **A**utoformalization **T**hrough **H**euristic-guided
086 **S**yntactic and **S**emantic **L**earning), an autoformalization-driven formal theorem proving pipeline
087 that solving natural language problems. To our knowledge, we are the first to systematically study
088 the entire workflow from natural language input to formal proof generation—a critical yet previously
089 overlooked aspect in the community. At the core of Mathesis is Mathesis-Autoformalizer, the first
090 autoformalization framework trained via online reinforcement learning (RL) enhanced by a novel
091 Hierarchical Preference Optimization (HPO) mechanism. By incorporating Lean compilation and
092 semantic verification into the RL reward function while learning prover preferences through HPO,
093 Mathesis significantly enhances formalization quality and achieves state-of-the-art performance.
094 To enable rigorous and nuanced evaluation of formalization quality, we propose LeanScorer, a novel
095 semantic evaluation framework designed to capture subtle errors beyond binary correctness checks.
096 We further introduce Gaokao-Formal, a challenging benchmark of 495 proof problems, spanning a
097 wide range of mathematical domains. Our key contributions are as follows.

- 098 • We introduce Mathesis-Autoformalizer, the first autoformalizer trained via online rein-
099forcement learning with rewards signals for syntactic validity, semantic correctness, and
100 prover feedback. It improves pass rates by 22 percentage points (45% relative gain) on
101 Gaokao-Formal and 5 points (6% gain) on MiniF2F over the state-of-the-art baseline.
- 102 • We propose LeanScorer, a novel semantic evaluation framework that combines LLM-
103 based analysis with the Sugeno Fuzzy Integral for nuanced assessment of formalizations.
104 LeanScorer achieves a 0.92 F1 score, outperforming prior approaches LLM-as-a-Judge by
105 7 percentage points and Re-informalization by 27 points on human-annotated data.
- 106 • We provide the first systematic study of formal theorem proving from natural language.
107 Extensive experiments show that our autoformalizer consistently improves prover accuracy,
with gains up to 122% on Gaokao-Formal and 98% on MiniF2F.

108

2 RELATED WORK

109
 110 **Formal Reasoning** Recent advancements have produced powerful LLM-based automated theo-
 111 rem provers for proof assistants like Lean 4, including DeepSeek-Prover-V2 (Ren et al., 2025),
 112 Kimina-Prover (Wang et al., 2025), and Goedel-Prover (Lin et al., 2025), alongside many advanced
 113 algorithms for proof search (Liang et al., 2025; Xin et al., 2025; Li et al., 2024; Liu et al., 2025a;
 114 Yang et al., 2025b). These systems demonstrate strong formal-to-formal (F2F) reasoning capabili-
 115 ties, where both input statements and output proofs are expressed in formal language. Correspond-
 116 ingly, benchmarks such as MiniF2F (Zheng et al., 2021), PutnamBench (Tsoukalas et al., 2024), and
 117 FIMO (Liu et al., 2023) are designed to evaluate such F2F reasoning ability using well-formalized
 118 problem statements. However, it leaves a critical gap in the study of formal theorem proving from
 119 natural language, which requires first formalizing the input informal mathematical statements and
 120 then proving them. Our work addresses this gap by introducing a complete pipeline for formal theo-
 121 rem proving from natural language, grounded in autoformalization. While some other works (Zhao
 122 et al., 2023; Wang et al., 2023; Jiang et al., 2022), such as Lego-Prover (Wang et al., 2023), also
 123 target informal-to-formal reasoning, they require an additional informal proof sketch as input. In
 124 contrast, our approach performs fully automatic, autoformalization-driven formal theorem proving,
 125 starting solely from informal statements to whole-proof generation (Xin et al., 2024), making direct
 126 comparisons inappropriate.

127 **Autoformalization** Autoformalization, the process of formalizing informal mathematics into for-
 128 mal language, is essential for bridging the NL-FL gap. Prior work includes prompting pre-trained
 129 LLMs (Wu et al., 2022; Azerbayev et al., 2023; Poiroux et al., 2024; Patel et al., 2023) and fine-
 130 tuning models on static NL-FL pairs (Cunningham et al., 2023; Jiang et al., 2023; Lu et al., 2024b;
 131 Gao et al., 2024; Liu et al., 2025b), with systems like Kimina-Autoformalizer (Wang et al., 2025)
 132 achieving notable success. However, these approaches often lack dynamic learning from direct
 133 feedback on syntactic and semantic correctness, and their evaluation has typically relied on bi-
 134 nary compilation checks or basic LLM judgments (Peng et al., 2025; Lin et al., 2025; Liu et al.,
 135 2025b), which may not capture nuanced errors. To address these limitations, we introduce *Mathesis-
 136 Autoformalizer*, which, to our knowledge, is the first autoformalizer to leverage online reinforcement
 137 learning and the feedback from the prover for improved accuracy and robustness. Concurrently, our
 138 *LeanScorer* framework provides a more fine-grained evaluation of autoformalization quality, mov-
 139 ing beyond simple binary pass/fail metrics.

140 **Autoformalization** Autoformalization, the process of formalizing informal mathematics into for-
 141 mal language, is essential for bridging the NL-FL gap. Prior work includes prompting pre-trained
 142 LLMs (Wu et al., 2022; Azerbayev et al., 2023; Poiroux et al., 2024; Patel et al., 2023) and fine-
 143 tuning models on static NL-FL pairs (Cunningham et al., 2023; Jiang et al., 2023; Lu et al., 2024b;
 144 Gao et al., 2024; Liu et al., 2025b), with systems like Kimina-Autoformalizer (Wang et al., 2025)
 145 achieving notable success. However, these approaches often lack dynamic learning from direct
 146 feedback on syntactic and semantic correctness, and their evaluation has typically relied on binary
 147 compilation checks or basic LLM judgments (Peng et al., 2025; Lin et al., 2025; Liu et al., 2025b),
 148 which may not capture nuanced misalignments.

149 Semantic evaluation itself remains a key bottleneck. Training-free methods such as LLM-as-a-Judge
 150 (Lin et al., 2025; Gao et al., 2024) and Re-informalization (Ying et al., 2024) are most widely used,
 151 but they offer only indirect signals of semantic correctness and can be inconsistent. In contrast, For-
 152 malAlign (Lu et al., 2024a) offers a training-based alternative by fine-tuning an alignment model to
 153 compute likelihood- and representation-based scores, though such trained evaluators may generalize
 154 less effectively to out-of-distribution mathematical problem types.

155 To address these limitations, we introduce *Mathesis-Autoformalizer*, which, to our knowledge, is
 156 the first autoformalizer to leverage online reinforcement learning and the feedback from the prover
 157 for improved accuracy and robustness. Concurrently, our *LeanScorer* framework provides a more
 158 fine-grained evaluation of autoformalization quality, moving beyond simple binary pass/fail metrics.

159 **Reinforcement Learning Fine-Tuning (RLFT)** Reinforcement learning has proven highly ef-
 160 fective for enhancing LLM capabilities in complex reasoning (Anthropic, 2024; DeepSeek-AI &
 161 Anonymous Contributors, 2025). The autoformalization task is well-suited for RL, as syntac-
 162 tic validity (from a Lean verifier) and semantic correctness (e.g., assessed by an LLM judge
 163 or *LeanScorer*) can serve as direct reward signals. Despite this clear potential, the application

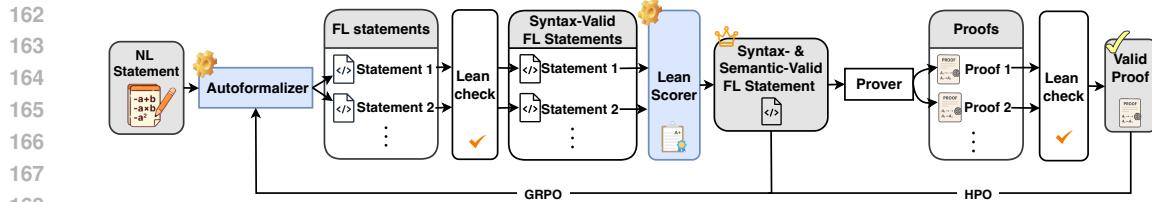


Figure 2: Overview of our autoformalization-driven formal theorem proving pipeline.

of outcome-based RL techniques to specifically optimize these syntactic and semantic properties in autoformalization models has been largely underexplored in the literature. Our *Mathesis-Autoformalizer* pioneers this direction by employing Group Relative Policy Optimization (Shao et al., 2024) with a carefully designed composite reward function (in Section 3.1). This approach allows the model to iteratively refine its ability to generate syntactically correct and semantically faithful formalizations, addressing a key gap in existing autoformalization methodologies.

3 MATHESIS: AUTOFORMALIZATION-DRIVEN FORMAL PROVING

The core objective of this paper is to tackle the task of formal theorem proving from natural language (defined in Section 1) by enabling automated formal reasoning directly from informal natural language inputs. To this end, as illustrated in Figure 2, we propose a structured, multi-stage pipeline built upon an autoformalization-driven approach. It consists of three major stages: autoformalization, validation, and proving. The pipeline begins with a given NL problem statement, which is first processed by an autoformalizer to generate candidate formal statements in Lean 4. This stage is powered by our *Mathesis-Autoformalizer*, a model that achieves state-of-the-art performance in formalization (see Section 3.1). These candidates are then evaluated in the validation stage, which includes syntactic verification via the Lean compiler and semantic evaluation. For this purpose, we introduce a novel evaluation framework, LeanScorer, and a new benchmark *Gaokao-Formal* (see Section 3.2). The formal statement that passes the Lean compiler and semantic assessment is then passed to the final proving stage to generate a complete, machine-verifiable Lean proof.

Our approach is, in principle, transferable to other proof assistants such as Isabelle. We focus on Lean 4 due to its broad adoption in recent literature and its well-supported evaluation stack.

3.1 *Mathesis-Autoformalizer*: ADVANCING AUTOFORMALIZATION WITH REINFORCEMENT LEARNING

The cornerstone of our pipeline is *Mathesis-Autoformalizer*, a novel model designed to translate informal mathematical problem statements from NL into formal Lean 4 (mathlib Community, 2020) code. Unlike prior approaches that predominantly rely on supervised fine-tuning (SFT) on static datasets, our work presents the first autoformalization model trained with online reinforcement learning via Group Relative Policy Optimization (GRPO) (Shao et al., 2024), using reward signals for syntactic validity and semantic correctness, and incorporating prover-derived feedback. Training proceeds in two stages: GRPO aligns the model to syntactic compilability and semantic faithfulness, after which Direct Preference Optimization (DPO) further aligns it to downstream proof success by preferring formalizations that lead to Lean-verified proofs. We refer to this two-stage procedure as Hierarchical Preference Optimization (HPO).

Composite Rewards for Autoformalization Let π_θ represents the translator LLM policy parameterized by θ , and π_{ref} be a fixed reference policy (typically the SFT model). In our experiment, the policy π_θ is initialized from *Kimina-Autoformalizer* (Wang et al., 2025), the previous state-of-the-art 7B autoformalizer trained via supervised fine-tuning with expert iteration to translate natural language problems into Lean 4 code. This initialization provides a strong structural prior, equipping the model with canonical Lean formatting patterns and facilitating subsequent reinforcement learning. For a given natural language input $x \in \mathcal{X}$, the policy $\pi_\theta(\cdot|x)$ generates a group of G candidate formal Lean 4 statements as outputs $\{o_1, \dots, o_G\}$. The optimization objective is to adjust θ to maximize the likelihood of generating higher-reward outputs relative to lower-reward ones within the group, while regularizing against large deviations from the reference policy. We define a composite

reward with two binary components. For an given input x and a corresponding candidate formalization o_i , we define the *Semantic Correctness Reward* $R_{sem}(x, o_i)$ to indicate whether o_i preserves the semantic meaning of x , as judged by an auxiliary LLM evaluator J_{sem} :

$$R_{sem}(x, o_i) = \begin{cases} 1 & \text{if } J_{sem}(x, o_i) \text{ judges "Appropriate"} \\ 0 & \text{otherwise} \end{cases}.$$

We also define the *Syntactic Verification Reward* $R_{ver}(o_i)$ to indicate whether o_i is syntactically correct and type-valid under the Lean 4 verifier (V_{lean}), checked up to $:=$ by `sorry`:

$$R_{ver}(o_i) = \begin{cases} 1 & \text{if } V_{lean}(o_i) \text{ succeeds} \\ 0 & \text{otherwise} \end{cases}.$$

The final overall reward r_i for an output o_i is computed as a combination of the two components: $r_i = R(x, o_i, o_{ref}) = R_{sem} + R_{ver}$. We then leverage the GRPO objective to update $\pi_\theta(\cdot|x)$. We find that this simple yet effective summation strategy indeed leads to state-of-the-art performance. The rationale for this composite reward is to capture two orthogonal constraints: syntactic validity is a necessary condition—non-verifying candidates are unusable by the prover—while semantic correctness ensures that the formalized statement corresponds to the intended problem to be solved. Although both terms are binary, GRPO optimizes within-group preferences rather than absolute magnitudes; we normalize rewards within each group before forming pairwise comparisons, which makes the objective insensitive to uniform rescaling or simple weighting. We adopt the unweighted sum for simplicity, noting that weighting schemes are a reasonable direction for future work.

Training Data Curation To effectively identify samples for training, our data curation process employs topic modeling with BERTopic (Grootendorst, 2022) to the natural language informal statements of problems from a pset (Lin et al., 2025) and our in-house Gaokao dataset. BERTopic was selected for its ability to generate coherent topics by leveraging contextual embeddings and clustering, allowing for effective categorization of problems based on their semantic content; this approach is also significantly faster and more cost-effective than using large language models for the same categorization task. We generated embeddings for each statement, performed dimensionality reduction and clustering, and then mapped the resulting topics to predefined mathematical categories in Section 3.3. The categorized data from two sources were then merged. To optimize Reinforcement Learning training efficiency with GRPO, we employed our base model (pre-RL) to perform rollouts ($k=14$) on each problem, filtering out those yielding rewards with zero standard deviation across the rollouts. The remaining problems demonstrating reward variance were combined with 8,000 problems randomly sampled from the Lean Workbook (Ying et al., 2024), resulting in a final training dataset of approximately 32k problems.

Hierarchical Preference Optimization for Theorem Proving GRPO provides a reward-maximizing initialization, aligning the autoformalizer with local objectives of syntactic correctness and semantic validity. In the context of formal theorem proving from natural language, the autoformalizer formalizes natural language into formal statements aimed at facilitating successful proof generation by the prover. To enhance this, we further fine-tune the autoformalizer using Direct Preference Optimization (DPO) (Rafailov et al., 2023), where preferences are derived from the global success of the downstream proof generation.

DPO Training Data Generation During the data generation phase, for each natural language statement x , a group of candidate formal statements o_i are sampled from the autoformalizer $\pi_\theta(\cdot|x)$, where i indexes the candidates. Each o_i undergo syntactic and semantic validation, and those that pass are forwarded to the prover, which attempts to generate proofs z^i . Preferences are assigned based on the successful completion of the proof verified by Lean, yielding data tuple $\{x, o_i^w, z_i^w\}$ for successful cases, and $\{x, o_i^l, z_i^l\}$ for failed attempts.

DPO Training The training configuration employs a single epoch with a learning rate of 1×10^{-5} . The KL regularization coefficient β is set to 0.1, penalizing deviations from the reference model. Optimization is applied to full parameters, with a warmup ratio of 0.05. To manage memory usage efficiently, training is conducted using DeepSpeed zero3 offload.

DPO fine-tuning enhances alignment with task-grounded outputs, thereby mitigating mismatches between reward function and actual task objectives. Compared to GRPO, DPO is a more sample-efficient and stable alternative that performs offline preference learning and eliminates the need for

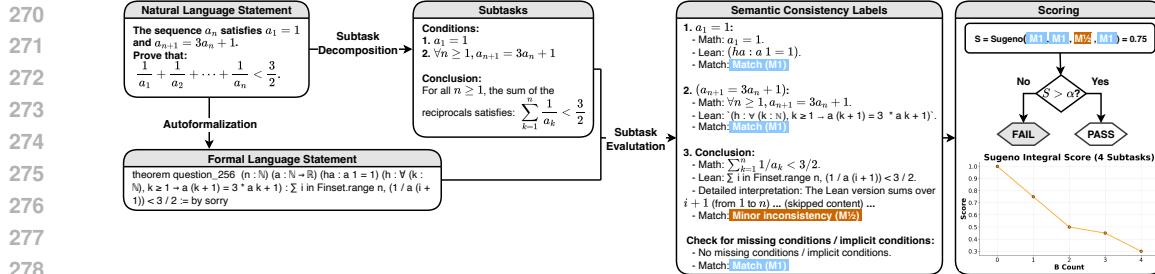


Figure 3: Overview of LeanScorer semantic evaluation framework.

a separate reward model (Rafailov et al., 2023; Ouyang et al., 2022). However, its effectiveness heavily relies on a strong base model to generate meaningful candidate outputs and better exploit preference signals (Tu et al., 2025; Wang et al., 2024; Pan et al., 2025). To this end, we first apply GRPO to establish a strong initialization before proceeding with DPO fine-tuning.

3.2 LeanScorer: FINE-GRAINED SEMANTIC EVALUATION FOR AUTOFORMALIZATION

The evaluation of autoformalized problem statements typically follows a two-step process: a syntactic check conducted by the Lean compiler, followed by a semantic check, which verifies that the formal statement preserves the intended meaning of the original natural language input. Existing approaches to semantic correctness (Lin et al., 2025; Gao et al., 2024; Ying et al., 2024) rely on LLMs and are limited to binary judgments (i.e., correct or incorrect). In this section, we propose *LeanScorer*, a novel framework that produces a continuous correctness score, enabling fine-grained and task-adaptive assessment. Figure 3 provides an overview.

Subtask Decomposition and Evaluation Given a natural language (NL) statement and its corresponding formal (FL) statement, *LeanScorer* first decomposes the NL statement into subtasks such as premises and conclusions. Each subtask is then aligned with its counterpart in the FL statement and assigned one of three labels: Match (M1), Minor Inconsistency (M½), or Major Inconsistency (M0). Specifically, clear mathematical inequivalence or omitted conditions are labeled as ‘‘Major Inconsistency’’; semantically equivalent but divergent expressions are labeled as ‘‘Minor Inconsistency’’; and exact alignment in both content and structure is labeled as ‘‘Match’’. This three-level labeling scheme enables nuanced semantic evaluation while accommodating the inherent variability in LLM outputs. Any extra assumptions or conditions in the formal statement that do not correspond to a natural-language subtask are marked as misaligned; likewise, any natural-language subtask missing from the formalization is also treated as a misalignment. This enables *LeanScorer* to detect both additions and omissions. Prompts are provided in Appendix E.

Aggregation via Sugeno Fuzzy Integral To compute an overall correctness score, we aggregate subtask-level labels using the Sugeno Fuzzy Integral (Sugeno, 1974), a well-established method in multi-criteria decision-making (MCDM) (Wieczynski et al., 2024). We design a customized fuzzy measure that tolerates minor inaccuracies in the LLM judgments while enforcing strict criteria: it strictly penalizes any formalization with a subtask labeled as a Major Inconsistency, grants a full score when all subtasks are labeled as Match, and multiple Minor Inconsistencies incur proportional deductions. This method enables robust label aggregation under LLM outputs variability and upholds rigorous evaluation criteria.

Let $N = \{1, 2, \dots, n\}$ denote the set of n subtasks, and let $L = \{l_1, \dots, l_n\}$ the corresponding label set, where each $l_i \in \{M1, M½, M0\}$ denotes the semantic consistency label of the i -th subtask. We define an evaluation mapping function $f : L \rightarrow [0, 1]$, where we set $f(M1) = 1.0$, $f(M½) = 0.5$, and $f(M0) = 0$. To aggregate the semantic quality over a subset $s \subseteq L$, we introduce the fuzzy measure $\mu(s)$ defined as:

$$\mu(s) = \begin{cases} 0 & \text{if } \exists l \in s, l = M0, \\ \max\left\{\frac{n_s}{n} \cdot (1 - \delta \cdot n_{M½}), 0\right\} & \text{otherwise} \end{cases} \quad (1)$$

where n_s and $n_{M½}$ denote the number of elements in s and elements labeled and M½ in s , respectively. The coefficient δ is set to 0.1 when $n_{M½} \leq 1$, and 0.2 otherwise. We conducted a sensitivity analysis by varying the value of $f(M½)$ from 0.1 to 0.9 in increments of 0.1 (see Appendix D), and

324 observed that the performance remains robust: the F1 score remains stable at 0.92 for values between
 325 0.1 and 0.5, and drops slightly to 0.88 for values between 0.6 and 0.9. Thus, we set $f(M^{1/2}) = 0.5$ in
 326 all experiments. **To further validate our design choices, we also conduct an ablation study comparing**
 327 **Sugeno Fuzzy Integral-based aggregation against alternative aggregation methods in Appendix D.**

328 Next, let the labels be sorted in ascending order as $f(l_{\pi(1)}) \leq f(l_{\pi(2)}) \leq \dots \leq f(l_{\pi(n)})$, with
 329 $\{\pi(1), \pi(2), \dots, \pi(n)\}$ representing the corresponding indices. **For each $i \in \{1, \dots, n\}$, we define**
 330 **the suffix set $s_i = \{l_{\pi(i)}, \dots, l_{\pi(n)}\}$, which represents the subset consisting of $l_{\pi(i)}$ and all labels**
 331 **ranked after it. The overall LeanScore is then computed as:**

$$S(L, f, \mu) = \max_{1 \leq i \leq n} \min(f(l_{\pi(i)}), \mu(s_i)). \quad (2)$$

333 A decision threshold $\alpha \in [0, 1]$ may optionally be applied to map the LeanScore to a binary decision.
 334

335 336 337 338 339 3.3 THE GAOKAO-FORMAL BENCHMARK

340 To advance automatic formal theorem proving from natural language, we introduce the *Gaokao-Formal* bench-
 341 mark. Unlike existing benchmarks that focus primarily on formal-to-formal proving or sometimes exclude those
 342 problems that are hard to formalize, *Gaokao-Formal* specifically targets the difficulties of auto-formalizing di-
 343 verse and complex natural language mathematical state-
 344 ments, aiming to motivate real-world applications of for-
 345 mal reasoning.

346 This benchmark consists of 495 proof problems from
 347 China’s National Higher Education Entrance Examination
 348 (Gaokao, 2008-2025), often include sub-questions.
 349 Each instance contains the original Chinese problem
 350 statement, an English translation, and a human-expert formalized Lean 4 formal statement. A sum-
 351 mary of question categories is provided in Table 1, with example problems available in Appendix C.
 352

353 **Remark.** The Gaokao dataset utilized in this study consists of publicly available official statistics,
 354 administered by government authorities. It is classified as government-managed public information
 355 and does not involve privately copyrighted material.

356 357 358 359 360 4 EXPERIMENTS

361 We evaluate our proposed approach along three axes. First, we assess the semantic consistency
 362 evaluation framework LeanScorer. Second, we compare the Mathesis-Autoformalizer with state-
 363 of-the-art autoformalization baselines. Finally, we measure how improved autoformalization affects
 364 formal theorem proving from natural language. Experiments are conducted on our newly introduced
 365 Gaokao-Formal benchmark and the widely adopted MiniF2F-test set. We compare our Mathesis-
 366 Autoformalizer with strong API-based and open-source baselines, including the prior state of the
 367 art Kimina-Autoformalizer (Wang et al., 2025) and Herald-Autoformalizer Gao et al. (2025). For
 368 pipeline evaluation, we pair each autoformalizer with the current best-in-class 7B provers—Kimina-
 369 Prover (Wang et al., 2025), Goedel-Prover (Lin et al., 2025), and DeepSeek-Prover-V2 (Ren et al.,
 370 2025) with COT mode—tasking the prover to generate proofs from the formal statements produced
 371 by the respective autoformalizer and reporting proof success rate.

372 Autoformalization quality is measured by two standard metrics: Lean Check success rate at k can-
 373 didates (LC@ k) for solely syntactic validity, and Lean Check combined with LeanScorer semantic
 374 checking (LC+LSC@ k) for overall correctness, jointly assessing syntactic and semantic correctness.
 375 We reported results for $k = 1$ and $k = 6$. Mathesis pipeline performance is measured as the proof
 376 success rate, given a fixed search budget of 32 attempts per problem, by convention. Additional im-
 377 plementation details, including training configurations and prompts, are provided in the Appendix.

Table 1: Summary of Gaokao-Formal Benchmark Categories.

Category	Count
Functions	168
Sequences & Series	148
Analytic Geometry	76
Comprehensive Questions	49
Inequality	28
Trigonometry	22
Probability & Combinatorics	4

378 4.1 SEMANTIC CONSISTENCY EVALUATION FRAMEWORK
379

380 We first validate our LeanScorer against two widely used but indirect, ground-truth-free baselines:
 381 LLM-as-a-Judge (Lin et al., 2025; Gao et al., 2024) and Re-informalization (Ying et al., 2024). The
 382 evaluation uses a human-annotated subset of Gaokao-Formal containing both correct and incorrect
 383 autoformalizations. Annotation details are in Appendix G. Unless otherwise noted, the decision
 384 threshold is set to $\alpha = 0.6$. **LLM-as-a-Judge directly prompts an LLM to decide whether a formal**
 385 **statement matches a natural-language statement and outputs a single semantic-correctness judgment.**
 386 Re-informalization evaluates semantic consistency by first back-translating the formal statement into
 387 natural language and then comparing it with the original input, involving two LLM calls per round.
 388 Both baselines incorporate test-time scaling and accept a formalization only when all four outputs
 389 agree. In contrast, LeanScorer performs LLM-assisted subtask decomposition and consistency anno-
 390 tation in a single pass using two LLM calls, one for decomposition and one for annotation, followed
 391 by a computationally efficient aggregation step to produce a semantic-consistency score.

392 Table 2 shows that LeanScorer achieves an
 393 F1 score of 92%, significantly outperforming
 394 both the LLM-as-a-Judge (85% F1)
 395 and Re-informalization (65% F1). While
 396 LLM-as-a-Judge has 100% recall, its 73%
 397 precision is low, yielding many false pos-
 398 itives. Re-informalization is the oppo-
 399 site, with 93% precision but 50% recall.
 400 LeanScorer delivers both high precision
 401 (94%) and high recall (89%), indicating a balanced and reliable semantic consistency checker for
 402 formalization evaluation. **This balance is important for downstream performance: high precision**
 403 **ensures that only semantically correct formalizations reach the prover, while high recall increases**
 404 **coverage but also admits more misaligned statements.** Since we require a Lean-verified proof for
 405 the original natural-language problem, maintaining both high precision and high recall is essential
 406 for reliable overall performance.

391
Table 2: Semantic evaluation framework performance measured by agreement with human annotations.

Method	Precision	Recall	F1
LLM-as-a-Judge	73	100	0.85
Re-informalization	93	50	0.65
LeanScorer (Ours)	94	89	0.92

407 4.2 AUTOFORMALIZATION FROM NATURAL LANGUAGE
408

409 The core contribution of our work is the *Mathesis-Autoformalizer*, designed to translate natural
 410 language problems into syntactically valid and semantically faithful Lean4 statements. **In this**
 411 **section, we evaluate two variants: Mathesis-Autoformalizer, obtained after the GRPO stage, and**
 412 **Mathesis-Autoformalizer-HPO, obtained after the full two-stage Hierarchical Preference Optimiza-**
 413 **tion training (GRPO followed by DPO).** These models are compared against state-of-the-art API-
 414 **based and open-source baselines, including Kimina-Autoformalizer, which serves as our base model**
 415 **and was the strongest publicly available 7B autoformalizer before our work.** Evaluations are
 416 conducted on the MiniF2F-test, **Putnam**, and Gaokao-Formal benchmarks. Performance is measured
 417 using Lean Check (LC@k) for syntactic validity and Lean Check plus LeanScorer Semantic Check
 418 (LC+LSC@k) for overall correctness. For fair comparison, our models are compared directly
 419 against open-source 7B baselines, with top scores underlined to highlight improvements at equal
 420 model size. API models, which are much larger in size, are compared within the group, with the top
 421 scores shown in bold. All models are evaluated with a 600-second timeout per prompt.

422 Table 3 presents the results. Both Mathesis variants outperform all baselines across datasets and
 423 budgets, with the largest gains on the more challenging Gaokao-Formal benchmark. Specifically,
 424 Mathesis-Autoformalizer-HPO achieves an LC+LSC@6 score of 71% on Gaokao-Formal, surpass-
 425 ing the previous best of 49% by Kimina-Autoformalizer with an absolute improvement of 22 per-
 426 centage points and a 45% relative gain. **On another challenging dataset Putnam, Mathesis-HPO**
 427 **achieves 30% LC+LSC@6 score, compared with 10% from Kimina-Autoformalizer and 9% from**
 428 **Herald-Autoformalizer, corresponding to 200% and 233% relative gains, respectively.** On MiniF2F-
 429 test, it reaches a new record LC+LSC score of 96%. Mathesis-HPO reaches 96% LC+LSC@6,
 430 establishing a new state of the art for overall pass rate on this dataset. Mathesis-HPO constantly out-
 431 performs all much larger API-based models across datasets in both LC@6 and LC+LSC@6, with an
 432 average of 311% and 86%, resp., except for DeepSeek-R1 on challenging Putnam in LSC. In terms
 433 of LC, our method improves over Kimina-Autoformalizer by 4 points on MiniF2F and 9 points on
 434 Gaokao-Formal, demonstrating superior syntactic reliability grounded in Lean’s compiler feedback.

432 Table 3: Quality assessment of formalized statements. LC denotes Lean Check; LSC denotes
 433 LeanScorer Semantic Check. Top scores for API and open-source models are **bold** and underlined.

434 Model	k	435 MiniF2F-Test		436 Putnam		437 Gaokao-Formal	
		438 LC	439 LC+LSC	440 LC	441 LC+LSC	442 LC	443 LC+LSC
444 <i>API Models</i>							
445 o3-mini	1	58	45	7	3	38	25
	6	87	77	13	7	70	54
446 GPT-4o	1	50	36	9	3	20	13
	6	80	65	24	9	48	28
447 Doubao-1.5	1	48	40	7	4	19	15
	6	77	70	16	10	45	32
448 Gemini-2.0	1	56	41	20	10	36	22
	6	80	71	42	26	66	47
449 Deepseek-V3	1	76	61	10	4	54	36
	6	91	84	22	10	69	56
450 Deepseek-R1	1	54	44	29	14	45	30
	6	86	76	58	37	81	57
451 <i>Open-Source Models</i>							
452 Herald-Autoformalizer	1	80	41	35	4	56	14
	6	95	69	64	9	78	27
453 Kimina-Autoformalizer	1	83	61	7	2	50	21
	6	100	91	30	10	91	49
454 Mathesis-Autoformalizer	1	92	69	31	9	88	45
	6	100	95	65	25	98	67
455 Mathesis-Autoformalizer-HPO	1	99	79	38	10	93	50
	6	100	96	73	30	98	71

456 These improvements support the effectiveness of our training methodology. By employing reinforcement learning with a composite reward that combines Lean-based syntactic signals and LeanScorer-based semantic signals, the model learns to produce formalizations that are both syntactically sound and semantically faithful—an essential capability for reliable automated reasoning.

462 4.3 AUTOFORMALIZATION-DRIVEN THEOREM PROVING

464 The ultimate measure of our approach’s effectiveness is its performance on formal theorem proving
 465 from natural language. We posit that the quality of the autoformalization critically influences the
 466 final proving accuracy. Accordingly, we pair each autoformalizer with downstream provers and
 467 evaluate the proof accuracy on MiniF2F-Test and Gaokao-Formal. The results are shown in Figure 4.

469 **Autoformalization quality correlates with proving accuracy.** There is a strong positive correlation
 470 between autoformalization quality and proving accuracy, where proving accuracy denotes the
 471 rate at which the prover produces complete and correct formal proofs. Across all provers and both
 472 datasets, accuracy improves consistently as the autoformalizer improves. For any fixed prover, replac-
 473 ing Herald or Kimina with our Mathesis-HPO yields substantial gains. On Gaokao-Formal,
 474 replacing Herald with Mathesis-HPO improves the accuracy of Goedel-prover, Kimina-prover, and
 475 Deepseek-Prover-V2 by 86%, 116%, and 122%, respectively, relative to Kimina, the gains are 49%,
 476 33%, and 42%. On MiniF2F-Test, the same replacement improves the three provers by 98%, 77%,
 477 and 51% over Herald, and by 6%, 9%, and 5% over Kimina.

478 These improvements arise because a stronger autoformalizer supplies the prover with a larger num-
 479 ber of compiler-valid and semantically faithful Lean statements, providing well-structured and solv-
 480 able goals. Mathesis-Autoformalizer-HPO further outperforms Mathesis-Autoformalizer because
 481 the DPO stage incorporates prover-derived preferences, favoring formalizations that not only com-
 482 pile and align semantically but also lead to successful proof completion. Additional evaluations on
 483 autoformalizer output before and after DPO are provided in Appendix H.

484 **Autoformalizer improvements dominate prover upgrades.** For problems that are intrinsically
 485 harder to formalize, the performance gains from a stronger autoformalizer often exceed those
 from a stronger prover. On Gaokao-Formal, holding the prover fixed and replacing Herald with

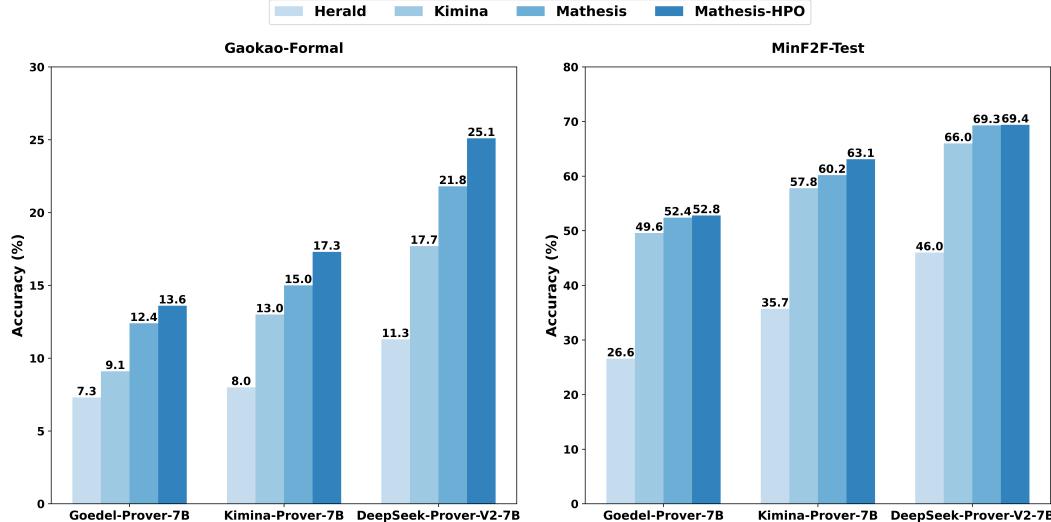


Figure 4: Performance of formal theorem proving from natural language. In each subfigure, bars are grouped by prover on the x-axis, and the y-axis reports pass@32 proving accuracy. Bar colors encode the autoformalizers Herald-Autoformalizer (Herald), Kimina-Autoformalizer (Kimina), Mathesis-Autoformalizer (Mathesis), and Mathesis-Autoformalizer-HPO (Mathesis-HPO).

Mathesis-HPO increases accuracy by 86% for Goedel-Prover, 116% for Kimina-Prover, and 122% for DeepSeek-Prover-V2. By contrast, with the autoformalizer fixed, upgrading the prover from Geodel-Prover to Deepseekp-Prover-V2 increases accuracy by 55% under Herald and 95% under Kimina. **This disparity underscores a fundamental challenge in real-world mathematical reasoning:** before a proof can be constructed, natural language problems must first be accurately converted into formal statements that theorem provers can process. Suboptimal formalizations, such as encoding problems using difficult-to-unfold built-in functions or embedding questions within overly complex mathematical definitions, create significant obstacles for downstream proof search (this phenomenon is also observed by Lin et al. (2025)). Our results indicate that formalization quality constitutes a critical bottleneck, as provers are hindered by suboptimal formalizations that obscure the problem’s structure or introduce unnecessary complexity. Hence, achieving high accuracy requires both a strong autoformalizer and a strong prover, attesting to the critical role of formalization.

Ablations on pipeline design. As shown in Table 3 and Figure 4, adding HPO on top of GRPO improves pass rate from 67% to 71% on Gaokao-Formal and from 95% to 96% on MiniF2F. In downstream proving, Mathesis-HPO consistently outperforms Mathesis cross provers by an average of 13% on Gaokao-Formal and 2% on MiniF2F. These results show that HPO’s prover-derived feedback as reward yields measurable end-task gains and better aligns the autoformalizer with proof success beyond gains attributable to syntax and semantic checks alone.

5 LIMITATION

While our approach demonstrates significant improvements, formal theorem proving from natural language remains far from full automation and real-world deployment. During the development of Mathesis-Autoformalizer and LeanScorer, we discovered that the correctness of formalization is often difficult to define directly and must be determined based on whether it affects the proof process (e.g., whether functions need explicit domain declarations). This ambiguity in formalization correctness presents ongoing challenges for both training and semantic evaluation.

6 CONCLUSION

Motivated by the goal of bringing formal reasoning to real-world proof questions, we introduce the task of formal theorem proving from natural language and present Mathesis as a comprehensive solution. Our Mathesis-Autoformalizer, trained through online reinforcement learning with novel Hierarchical Preference Optimization, and LeanScorer for robust semantic evaluation both achieve significant improvements over existing methods. This work lays a solid foundation for future advances toward fully integrated and scalable formal reasoning systems, bringing formal theorem proving to real-world mathematical problem solving.

540
541 **ETHICS STATEMENT**542 The research work presented in this paper adheres strictly to the ICLR Code of Ethics. This study
543 does not involve human subjects, and there are no potential conflicts of interest or fairness concerns
544 related to the work.545 The Gaokao-Formal Benchmark introduced in this paper is derived from publicly available official
546 statistics administered by government authorities. As government-managed public information, the
547 dataset is free from private copyright restrictions. The models, code, and data released in this work
548 are intended solely for academic and research purposes. They do not pose privacy or security risks
549 and comply with legal and ethical standards.550 We confirm that we have read and complied with the ICLR Code of Ethics.
551552
553 **REPRODUCIBILITY STATEMENT**
554555 To ensure the reproducibility of our research, we provide detailed information about our method-
556 ology, datasets, and experimental setup. The source code for our project, including the implemen-
557 tation of the Mathesis-Autoformalizer and the LeanScorer evaluation framework, is available at
558 <https://anonymous.4open.science/r/Mathesis-2D14>.559 The newly introduced Gaokao-Formal benchmark is described in Section 3.3, with further details
560 and examples provided in Appendix C. All experiments were conducted on this benchmark and
561 the publicly available MiniF2F-test set. Our experimental setup, including the baselines used for
562 comparison, evaluation metrics, and results, is detailed in Section 4.563 The training configurations and hyperparameters for the Mathesis-Autoformalizer are provided in
564 Appendix A. This includes details on the Group Relative Policy Optimization (GRPO) and Hier-
565 archical Preference Optimization (HPO) stages. The prompts used for all language models in our
566 experiments, including the autoformalization prompts and the prompts for the LLM-as-a-Judge and
567 LeanScorer frameworks, are available in Appendix E.568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Anthropic. The Claude 3 model family: Opus, Sonnet, Haiku. Model
597 Card, March 2024. URL https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf.

599 Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W Ayers, Dragomir Radev, and
600 Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level mathemat-
601 ics. *arXiv preprint arXiv:2302.12433*, 2023.

602 Lukas Biewald. Experiment tracking with weights and biases. <https://wandb.ai>, 2020. URL
603 <https://www.wandb.com/>. Software available from wandb.com.

604 605 Garrett Cunningham, Razvan C Bunescu, and David Juedes. Towards autoformalization of
606 mathematics and code correctness: Experiments with elementary proofs. *arXiv preprint*
607 *arXiv:2301.02195*, 2023.

608 DeepSeek-AI and Anonymous Contributors. DeepSeek-R1: Incentivizing reasoning capability in
609 LLMs via reinforcement learning, 2025. URL <https://arxiv.org/abs/2501.12948>.

610 611 Guoxiong Gao, Yutong Wang, Jiedong Jiang, Qi Gao, Zihan Qin, Tianyi Xu, and Bin Dong. Herald:
612 A natural language annotated lean 4 dataset. *arXiv preprint arXiv:2410.10878*, 2024.

613 614 Guoxiong Gao, Yutong Wang, Jiedong Jiang, Qi Gao, Zihan Qin, Tianyi Xu, and Bin Dong.
615 Herald: A natural language annotated lean 4 dataset. In *The Thirteenth International Confer-
616 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=Se6MgCtRhz>.

617 618 Maarten Grootendorst. Bertopic: Neural topic modeling with a class-based tf-idf procedure. *arXiv
619 preprint arXiv:2203.05794*, 2022.

620 621 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
622 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International
623 Conference on Learning Representations (ICLR)*, 2022. URL [https://openreview.net/for-um?id=nZeVKeFYf9](https://openreview.net/for-
624 um?id=nZeVKeFYf9).

625 626 Gérard Huet, Gilles Kahn, and Christine Paulin-Mohring. The coq proof assistant a tutorial. *Rapport
Technique*, 178:113, 1997.

627 628 Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée
629 Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem
630 provers with informal proofs. *arXiv preprint arXiv:2210.12283*, 2022.

631 632 Albert Q Jiang, Wenda Li, and Mateja Jamnik. Multilingual mathematical autoformalization. *arXiv
633 preprint arXiv:2311.03755*, 2023.

634 635 Yang Li, Dong Du, Linfeng Song, Chen Li, Weikang Wang, Tao Yang, and Haitao Mi. Hunyuan-
636 prover: A scalable data synthesis framework and guided tree search for automated theorem prov-
637 ing. *arXiv preprint arXiv:2412.20735*, 2024.

638 639 Zhenwen Liang, Linfeng Song, Yang Li, Tao Yang, Feng Zhang, Haitao Mi, and Dong Yu. Mps-
640 prover: Advancing stepwise theorem proving by multi-perspective search and data curation. *arXiv
641 preprint arXiv:2505.10962*, 2025.

642 643 Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia,
644 Danqi Chen, Sanjeev Arora, et al. Goedel-prover: A frontier model for open-source automated
645 theorem proving. *arXiv preprint arXiv:2502.07640*, 2025.

646 647 Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying Liu, Ye Yuan, Haiming Wang, Wei Ju,
648 Chuanyang Zheng, Yichun Yin, Lin Li, et al. Fimo: A challenge formal dataset for automated
649 theorem proving. *arXiv preprint arXiv:2309.04295*, 2023.

650 651 Haoxiong Liu, Jiacheng Sun, Zhenguo Li, and Andrew C Yao. Efficient neural theorem proving via
652 fine-grained proof structure analysis. *arXiv preprint arXiv:2501.18310*, 2025a.

648 Xiaoyang Liu, Kangjie Bao, Jiashuo Zhang, Yunqi Liu, Yu Chen, Yuntian Liu, Yang Jiao, and Tao
 649 Luo. Atlas: Autoformalizing theorems through lifting, augmentation, and synthesis of data. *arXiv*
 650 *preprint arXiv:2502.05567*, 2025b.

651

652 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Con-*
 653 *ference on Learning Representations (ICLR)*, 2019. URL [https://openreview.net/](https://openreview.net/forum?id=Bkg6RiCqY7)
 654 *forum?id=Bkg6RiCqY7*.

655

656 Jianqiao Lu, Yingjia Wan, Yinya Huang, Jing Xiong, Zhengying Liu, and Zhijiang Guo.
 657 Formalalign: Automated alignment evaluation for autoformalization. *arXiv preprint*
 658 *arXiv:2410.10135*, 2024a.

659

660 Jianqiao Lu, Yingjia Wan, Zhengying Liu, Yinya Huang, Jing Xiong, Chengwu Liu, Jianhao Shen,
 661 Hui Jin, Jipeng Zhang, Haiming Wang, et al. Process-driven autoformalization in lean 4. *arXiv*
 662 *preprint arXiv:2406.01940*, 2024b.

663

664 The mathlib Community. The lean mathematical library. In *Proceedings of the 9th ACM SIGPLAN*
 665 *International Conference on Certified Programs and Proofs, POPL '20*. ACM, January 2020. doi:
 666 10.1145/3372885.3373824. URL <http://dx.doi.org/10.1145/3372885.3373824>.

667

668 Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language.
 669 In *Automated Deduction–CADE 28: 28th International Conference on Automated Deduction,*
 670 *Virtual Event, July 12–15, 2021, Proceedings 28*, pp. 625–635. Springer, 2021.

671

672 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 673 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 674 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 675 27730–27744, 2022.

676

Junshu Pan, Wei Shen, Shulin Huang, Qiji Zhou, and Yue Zhang. Pre-dpo: Improving data
 677 utilization in direct preference optimization using a guiding reference model. *arXiv preprint*
 678 *arXiv:2504.15843*, 2025.

679

Nilay Patel, Rahul Saha, and Jeffrey Flanigan. A new approach towards autoformalization. *arXiv*
 680 *preprint arXiv:2310.07957*, 2023.

681

Lawrence C Paulson. *Isabelle: A generic theorem prover*. Springer, 1994.

682

Zhongyuan Peng, Yifan Yao, Kaijing Ma, Shuyue Guo, Yizhe Li, Yichi Zhang, Chenchen Zhang,
 683 Yifan Zhang, Zhouliang Yu, Luming Li, et al. Criticlean: Critic-guided reinforcement learning
 684 for mathematical formalization. *arXiv preprint arXiv:2507.06181*, 2025.

685

Auguste Poiroux, Gail Weiss, Viktor Kunčak, and Antoine Bosselut. Improving autoformalization
 686 using type checking. *arXiv preprint arXiv:2406.07222*, 2024.

687

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 688 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 689 *in Neural Information Processing Systems*, 36:53728–53741, 2023.

690

ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
 691 Zhe Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical rea-
 692 soning via reinforcement learning for subgoal decomposition. *arXiv preprint arXiv:2504.21801*,
 693 2025.

694

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 695 Mingchuan Zhang, Y.K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
 696 matical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300v3>.

697

Michio Sugeno. Theory of fuzzy integrals and its applications. *Doctoral Thesis, Tokyo Institute of*
 698 *Technology*, 1974.

699

702 George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
 703 tayush Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on the
 704 putnam mathematical competition. *arXiv preprint arXiv:2407.11214*, 2024.

705 Songjun Tu, Jiahao Lin, Xiangyu Tian, Qichao Zhang, Linjing Li, Yuqian Fu, Nan Xu, Wei He, Xi-
 706 angyuan Lan, Dongmei Jiang, et al. Enhancing llm reasoning with iterative dpo: A comprehensive
 707 empirical investigation. *arXiv preprint arXiv:2503.12854*, 2025.

708 Leandro von Werra, Lewis Schmid, Thomas Wolf, and Lewis Tunstall. Trl: Transformer reinforce-
 709 ment learning. <https://github.com/huggingface/trl>, 2020-2024.

711 Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya
 712 Huang, Jing Xiong, Han Shi, Enze Xie, et al. Lego-prover: Neural theorem proving with growing
 713 libraries. *arXiv preprint arXiv:2310.00656*, 2023.

714 Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood
 715 Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large
 716 formal reasoning models with reinforcement learning. *arXiv preprint arXiv:2504.11354*, 2025.

717 Tianduo Wang, Shichen Li, and Wei Lu. Self-training with direct preference optimization improves
 718 chain-of-thought reasoning. *arXiv preprint arXiv:2407.18248*, 2024.

719 Jonata Wieczynski, Giancarlo Lucca, Eduardo Borges, Asier Uriol-Larrea, Carlos López Molina,
 720 Humberto Bustince, and Graçaliz Dimuro. Application of the sugeno integral in fuzzy rule-based
 721 classification. *Applied Soft Computing*, 167:112265, 2024.

722 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 723 Pierrick Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
 724 von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
 725 ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-Art
 726 natural language processing. In *Proceedings of the 2020 Conference on Empirical Methods in
 727 Natural Language Processing: System Demonstrations*, pp. 38–45, Online, October 2020. As-
 728 sociation for Computational Linguistics. URL <https://www.aclweb.org/anthology/2020.emnlp-demos.6>.

729 Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and
 730 Christian Szegedy. Autoformalization with large language models. *Advances in Neural Infor-
 731 mation Processing Systems*, 35:32353–32368, 2022.

732 Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue
 733 Zhang, Xuan Lu, Qiushi Du, et al. Deepseek-prover-v1. 5: Harnessing proof assistant feedback
 734 for reinforcement learning and monte-carlo tree search. *arXiv preprint arXiv:2408.08152*, 2024.

735 Ran Xin, Chenguang Xi, Jie Yang, Feng Chen, Hang Wu, Xia Xiao, Yifan Sun, Shen Zheng, and
 736 Kai Shen. Bfs-prover: Scalable best-first tree search for llm-based automatic theorem proving.
 737 *arXiv preprint arXiv:2502.03438*, 2025.

738 Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and Dawn
 739 Song. Formal mathematical reasoning: A new frontier in AI. In *Proceedings of the International
 740 Conference on Machine Learning*, 2025a.

741 Xiao-Wen Yang, Zhi Zhou, Haiming Wang, Aoxue Li, Wen-Da Wei, Hui Jin, Zhengu Li, and Yu-
 742 Feng Li. Carts: Advancing neural theorem proving with diversified tactic calibration and bias-
 743 resistant tree search. In *The Thirteenth International Conference on Learning Representations*,
 744 2025b.

745 Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook:
 746 A large-scale lean problem set formalized from natural language math problems. *arXiv preprint
 747 arXiv:2406.03847*, 2024.

748 Xueliang Zhao, Wenda Li, and Lingpeng Kong. Decomposing the enigma: Subgoal-based demon-
 749 stration learning for formal theorem proving. *arXiv preprint arXiv:2305.16366*, 2023.

750 Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for
 751 formal olympiad-level mathematics. *arXiv preprint arXiv:2109.00110*, 2021.

APPENDIX

A TRAINING DETAILS FOR *Mathesis-Autoformalizer*

The training of our *Mathesis-Autoformalizer* model, which employs Group Relative Policy Optimization (GRPO), involves several key hyperparameters and implementation choices as briefly mentioned in Section 3.1. The policy π_θ is initialized from Kimina-Autoformalizer (Wang et al., 2025). We employ Parameter-Efficient Fine-Tuning (PEFT) via Low-Rank Adaptation (LoRA) (Hu et al., 2022), configured with a rank $r = 16$ and $\alpha = 32$. LoRA is applied to the attention projection layers of the base model. The optimization is performed using the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate of 1×10^{-6} and gradient checkpointing to manage memory usage.

For the GRPO algorithm itself, we sample $G = 14$ candidate formal statements per input natural language problem x . The Kullback-Leibler (KL) divergence coefficient β , which regularizes the policy updates against the reference SFT policy, is set to 0.04. The policy model π_θ is updated once per sampling/exploration phase (i.e., $\mu = 1$, meaning updates occur after each group of G generations for a given input x is processed and rewarded). To enhance efficiency, reward computations (syntactic verification via Lean and semantic assessment) are parallelized using Python’s `asyncio` library. The overall training pipeline is managed using the Hugging Face `transformers` (Wolf et al., 2020) and `tr1` (von Werra et al., 2020-2024) libraries. Experiment progress and results are logged using Weights & Biases (Biewald, 2020).

B DATA DEDUPLICATION AND CONTAMINATION ANALYSIS

To ensure that the performance gains reported in this paper reflect genuine reasoning capabilities rather than memorization, we conducted a rigorous data contamination analysis. This section details our methodology and presents the overlap statistics of our main evaluation benchmark, GAOKAO-FORMAL, as well as standard benchmarks MiniF2F and PutnamBench against our three primary training data sources: the In-house Gaokao Corpus (Combined), Goedel P-Set, and Lean Workbook.

B.1 METHODOLOGY

We implemented a strict lexical overlap detection pipeline to audit potential data leakage. The process consists of the following steps:

1. **Normalization:** All text data from both training and evaluation sets was normalized using NFKC normalization, converted to lowercase, and had whitespace collapsed.
2. **N-gram Extraction:** We extracted all 50-character substrings (windows) starting at word boundaries from the evaluation benchmarks.
3. **Matching:** An Aho-Corasick automaton was constructed to stream the training corpora and detect matches efficiently.

For each problem statement i in the evaluation set, we calculated an overlap ratio η_i , defined as:

$$\eta_i = \frac{\text{matched windows}}{\text{total windows}} \quad (3)$$

Based on this ratio, problems were categorized into three levels of contamination:

- **Clean:** $\eta_i < 0.2$ (Less than 20% overlap)
- **Suspicious:** $0.2 \leq \eta_i < 0.8$ (Between 20% and 80% overlap)
- **Dirty:** $\eta_i \geq 0.8$ (Greater than 80% overlap, indicating near-duplicates)

B.2 RESULTS

We performed the analysis for GAOKAO-FORMAL, MiniF2F-test, and PutnamBench against three distinct training subsets.

810
 811 **Analysis 1: Overlap against In-house Gaokao Corpus.** Table 4 shows the contamination rates
 812 against our primary In-house Gaokao training corpus (Combined English Informal). GAOAKAO-
 813 FORMAL shows negligible overlap (1.2% suspicious, 0% dirty). Similarly, MiniF2F and Putnam-
 814 Bench are entirely clean relative to this training source.

815 Table 4: Contamination Analysis against **In-house Gaokao Corpus (Combined)**

Evaluation Set	Total Entries	Clean (< 0.2)	Suspicious ([0.2, 0.8))	Dirty (≥ 0.8)
Gaokao-Formal	495	489 (98.8%)	6 (1.2%)	0 (0.0%)
MiniF2F	488	488 (100%)	0 (0.0%)	0 (0.0%)
PutnamBench	661	661 (100%)	0 (0.0%)	0 (0.0%)

816
 817
 818 **Analysis 2: Overlap against Goedel P-Set.** Table 5 presents the results against the Goedel P-
 819 Set. While GAOAKAO-FORMAL remains robust with zero dirty matches, existing benchmarks show
 820 significant contamination. Specifically, MiniF2F contains 31 dirty proofs (6.4%) and PutnamBench
 821 contains 41 dirty proofs (6.2%), suggesting that models trained on the P-Set may memorize solutions
 822 for these standard benchmarks.

823 Table 5: Contamination Analysis against **Goedel P-Set**

Evaluation Set	Total Entries	Clean (< 0.2)	Suspicious ([0.2, 0.8))	Dirty (≥ 0.8)
Gaokao-Formal	495	479 (96.8%)	16 (3.2%)	0 (0.0%)
MiniF2F	488	372 (76.2%)	85 (17.4%)	31 (6.4%)
PutnamBench	661	433 (65.5%)	187 (28.3%)	41 (6.2%)

824
 825 **Analysis 3: Overlap against Lean Workbook.** Table 6 displays the overlap against the Lean
 826 Workbook dataset. All three evaluation benchmarks are virtually free of contamination from this
 827 source, with GAOAKAO-FORMAL showing 100% clean entries.

828 Table 6: Contamination Analysis against **Lean Workbook**

Evaluation Set	Total Entries	Clean (< 0.2)	Suspicious ([0.2, 0.8))	Dirty (≥ 0.8)
Gaokao-Formal	495	495 (100%)	0 (0.0%)	0 (0.0%)
MiniF2F	488	486 (99.6%)	2 (0.4%)	0 (0.0%)
PutnamBench	661	660 (99.8%)	1 (0.2%)	0 (0.0%)

829
 830 In conclusion, our analysis confirms that GAOAKAO-FORMAL is not contaminated by any of the
 831 training datasets used in this work. Furthermore, the detection of "Dirty" samples in MiniF2F and
 832 PutnamBench against the Goedel P-Set highlights the importance of using fresh, uncontaminated
 833 benchmarks like GAOAKAO-FORMAL to accurately assess generalization in formal theorem proving.

834 B.3 CONTAMINATION ANALYSIS AGAINST PRETRAINING CORPORA

835 To further ensure that the performance on **Gaokao-Formal** reflects genuine reasoning capabilities
 836 rather than memorization of pretraining data, we conducted an extensive contamination analysis
 837 against major open-source pretraining corpora. Specifically, we checked for N-gram overlap against
 838 **The Pile** (Pile-train), **DCLM-baseline**, and five snapshots of **CommonCrawl** (CC-2025-05 through
 839 CC-2025-21).

840 As shown in Table 7, **Gaokao-Formal** exhibits **0.0%** "Dirty" matches (defined as $\geq 80\%$ 50-char N-
 841 gram overlap) across all evaluated pretraining datasets. This confirms that the benchmark problems
 842 were not seen during the pretraining phase of standard base models.

843 C DETAILS OF GAOAKAO-FORMAL BENCHMARK

844
 845 **Problem-Type Diversity** Unlike benchmarks that may filter out problem types with less devel-
 846 oped theorem libraries (e.g., geometry, combinatorics), *Gaokao-Formal* includes all such problems

Benchmark	Pile-train Dirty (%)	DCLM-base Dirty (%)	CC-25-05 Dirty (%)	CC-25-08 Dirty (%)	CC-25-13 Dirty (%)	CC-25-18 Dirty (%)	CC-25-21 Dirty (%)
Gaokao-Formal	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<i>Reference Benchmarks:</i>							
AIME 2025	0.0	0.0	0.0	0.0	0.0	N/A	N/A
AMC 2023	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TruthfulQA	0.1	0.1	1.0	N/A	N/A	N/A	N/A

Table 7: Contamination analysis of **Gaokao-Formal** against massive pretraining corpora. “Dirty” indicates the percentage of samples with $\geq 80\%$ overlap. Dash (–) indicates no data available for that snapshot. Gaokao-Formal remains entirely clean across all sources.

MiniF2F
NL: If x and y are positive integers for which $2^x 3^y = 1296$, prove that $x + y = 8$.
FL: theorem amc12b_2004_p3 (x : \mathbb{N}) ($h_0 : 2^x \cdot 3^y = 1296$) : $x + y = 8$:= by sorry
Gaokao-Formal
NL: Let m be a positive integer, and let $a_1, a_2, \dots, a_{4m+2}$ be an arithmetic sequence with a non-zero common difference. If two terms a_i and a_j ($i < j$) are removed from the sequence such that the remaining $4m$ terms can be evenly divided into m groups, and each group of 4 numbers forms an arithmetic sequence, then the sequence $a_1, a_2, \dots, a_{4m+2}$ is called an (i, j) –separable sequence. For $m \geq 3$, prove that the sequence $a_1, a_2, \dots, a_{4m+2}$ is a $(2, 13)$ –separable sequence.
FL: theorem gaokaoformal_g4 (m : \mathbb{N}) ($h_m : 1 \leq m$) ($a : \mathbb{N} \rightarrow \mathbb{R}$) ($h_a : \exists (d : \mathbb{R}), d \neq 0 \wedge (\forall (n : \mathbb{N}), (n \geq 1 \wedge n \leq 4*m+1) \rightarrow a(n+1) = a(n) + d))$ ($h_{sep} : \forall (i j : \mathbb{N}), (i \geq 1 \wedge i \neq j \wedge i \leq 4*m+2) \rightarrow \text{sep}(i, j) = (\exists (f : \mathbb{N} \rightarrow \mathbb{N}), (\forall (h : \mathbb{N}), (h \geq 1 \wedge h \leq 4*m+2 \wedge h \neq i \wedge h \neq j) \rightarrow (f h \geq 1 \wedge f h \leq m)) \wedge (\forall (g : \mathbb{N}), \text{let } S := \{h : \mathbb{N} \mid h \geq 1 \wedge h \leq 4*m+2 \wedge h \neq i \wedge h \neq j \wedge f h = g\}; (g \geq 1 \wedge g \leq m) \rightarrow (\text{Nat.card } S = 4 \wedge (\exists (p : \mathbb{N} \rightarrow S), (\forall (k l : \mathbb{N}), (k \geq 1 \wedge k \leq 4 \wedge l \geq 1 \wedge l \leq 4 \wedge k \neq l) \rightarrow p k \neq p l) \wedge (\exists (d' : \mathbb{R}), \forall (k : \mathbb{N}), (k \geq 1 \wedge k \leq 3) \rightarrow a(p(k+1)) = a(p(k) + d')))))) : m \geq 3 \rightarrow \text{sep}(2, 13) := \text{by sorry}$

Figure 5: Comparison of the complexity of the problems in MiniF2F v.s. Gaokao-Formal

as they appear in the Gaokao exams. This encourages broader model capabilities and contributes to the expansion of Lean 4’s Mathlib (mathlib Community, 2020).

Autoformalization Complexity Many existing benchmarks simplify or exclude problems where the primary challenge lies in the formalization. *Gaokao-Formal* retains these, especially in its “comprehensive questions” category, which features problems with multi-domain concepts, novel definitions within question, or complex linguistic structures, thereby rigorously testing LLM abstraction capabilities. We provide an example of this kind of question, comparing it with one MiniF2F question in Figure 5.

Remark on Copyright Status: The Gaokao dataset utilized in this study consists of publicly available official statistics, administered by government authorities. It is classified as government-managed public information and does not involve privately copyrighted material.

D AGGREGATION DESIGN AND SENSITIVITY ANALYSIS OF THE LEANSCORER

D.1 EVALUATION AND ABLATION OF AGGREGATION METHODS FOR LEANSCORER

To demonstrate the superiority of our Sugeno integral-based scoring framework, we conduct comprehensive ablation studies comparing our design against four alternative aggregation strategies:

Binary Aggregation: A strict one-vote-veto scheme, where the presence of any minor or major inconsistency results in a score of 0, and only all-M1 evaluations receive a score of 1.0:

$$S(L) = \begin{cases} 0 & \exists l_i \in \{M_2, M_0\} \\ 1 & \text{otherwise} \end{cases}$$

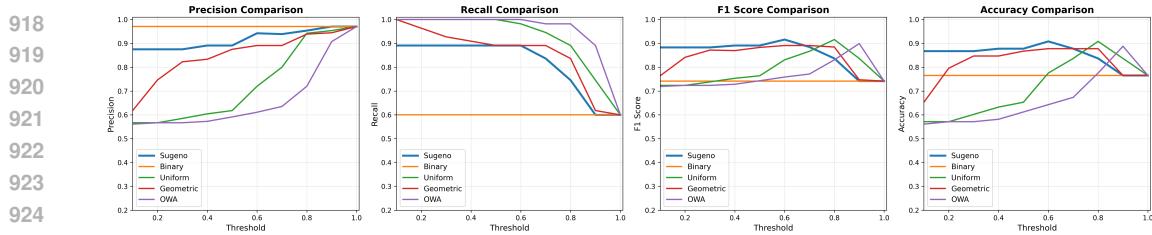


Figure 6: Performance comparison of aggregation methods Sugeno, Binary, Uniform, Geometric, and OWA across thresholds ranging from 0.1 to 1.0.

Table 8: Comparison of aggregation methods, reporting best threshold, Precision, Recall, F1, Accuracy, and Average Accuracy (\pm standard deviation)

Methods	Best Threshold	Precision	Recall	F1	Accuracy	Average Acc
Sugeno (ours)	0.6	0.94	0.89	0.92	0.91	0.85(\pm 0.046)
Binary	N/A	0.97	0.6	0.74	0.77	0.77(\pm 0.0)
Uniform	0.8	0.94	0.89	0.92	0.91	0.72(\pm 0.117)
Geometric	0.6	0.89	0.89	0.89	0.87	0.82 (\pm 0.069)
OWA	0.9	0.91	0.89	0.90	0.89	0.66 (\pm 0.105)

Uniform Averaging: A straightforward arithmetic mean that assigns equal weight to all subtask evaluations:

$$S(L, f) = \frac{1}{n} \sum_{i=1}^n f(l_i)$$

with the mapping function $f(M1) = 1.0$, $f(M\frac{1}{2}) = 0.5$, and $f(M0) = 0$.

Geometric Mean: An aggregation method more sensitive to low scores, computing the geometric mean of all evaluation scores. To avoid a zero product, $M0$ is mapped to 0.01.

$$S(L, f) = \left(\prod_{i=1}^n f(l_i) \right)^{1/n}$$

with the mapping function $f(M1) = 1.0$, $f(M\frac{1}{2}) = 0.5$, and $f(M0) = 0.01$.

Ordered Weighted Averaging (OWA): A position-weighted approach that emphasizes higher-ranked evaluations, with weights decreasing linearly. Here, we adopt a descending order $f(l_{\pi(1)}) \geq f(l_{\pi(2)}) \geq \dots \geq f(l_{\pi(n)})$:

$$S(L, f) = \sum_{i=1}^n w_i \cdot f(l_{\pi(i)})$$

where $w_i = \frac{n-i+1}{\sum_{j=1}^n j}$, $\sum_{i=1}^n w_i = 1$, and the mapping function is $f(M1) = 1.0$, $f(M\frac{1}{2}) = 0.5$, and $f(M0) = 0$.

Figure 6 presents the performance curves of all scoring methods across thresholds ranging from 0.1 to 1.0, while Table 8 summarizes each method’s optimal performance and stability, reporting both mean and standard deviation of accuracy across thresholds. Our Sugeno integral achieves the best overall performance, with an F1 score of 0.92 and accuracy of 0.91 at the threshold of 0.6. It also exhibits the highest mean accuracy and the lowest standard deviation, highlighting both its effectiveness and robustness.

Among the methods, the Binary method achieves the highest precision of 0.97 but suffers from a very low recall of 0.6, which reduces its F1 score to 0.74. The Uniform averaging method attains a competitive F1 score of 0.92 and accuracy of 0.91, but its performance varies substantially with the threshold, reflected by a mean accuracy of 0.72 and a standard deviation of 0.117, which, in contrast to the more stable performance of the Sugeno method (accuracy mean = 0.85, std = 0.046). The Geometric mean demonstrates moderate stability but does not surpass the Sugeno integral in

972 the best F1 or accuracy, whereas OWA achieves strong F1 and accuracy at the optimal threshold but
 973 exhibits the poorest stability, with a mean accuracy of 0.66 and a standard deviation of 0.105.
 974

975 Our Sugeno-based aggregation method offers two key advantages: First, it provides a strong balance
 976 by maintaining consistently high precision of 0.94 and recall of 0.89. It avoids the over-rejection
 977 characteristic of Binary aggregation and achieves the best F1 and accuracy among all methods,
 978 reaching 0.92 and 0.91, respectively. Second, it demonstrates robustness and operational flexibility.
 979 The method attains the highest mean accuracy of 0.85 and the lowest standard deviation of 0.046,
 980 highlighting its superior stability relative to all baselines. Moreover, as illustrated in Figure 6, it
 981 remains effective across a wide threshold range from 0.1 to 0.7, enabling flexible threshold selection
 982 and reducing the need for extensive tuning during deployment.
 983

984 D.2 SENSITIVITY ANALYSIS OF LEANSCORER

985 We conduct a sensitivity analysis to assess the impact of the evaluation mapping value for partially
 986 correct subtasks, $f(M^{1/2})$, on semantic correctness checking performance. As shown in Table 9,
 987 we vary $f(M^{1/2}) \in \{0.1, 0.2, \dots, 0.9\}$, while keeping $f(M1) = 1.0$ and $f(M0) = 0$ fixed. We
 988 observe that the F1 score remains stable at 0.92 for $f(M^{1/2})$ values in the range $[0.1, 0.5]$, indicating
 989 robustness to the exact scaling of partial credit. As the value increases beyond 0.5, the F1 score
 990 shows a slight degradation, dropping to 0.88 when $f(M^{1/2}) \in [0.6, 0.9]$. These results suggest that
 991 our metric is relatively robust to the choice of partial reward, we set $f(M^{1/2}) = 0.5$ in all experiments.
 992

993 Table 9: Sensitivity of F1 Score to the Value of $f(M^{1/2})$
 994

$f(M^{1/2})$	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
F1 Score	0.92	0.92	0.92	0.92	0.92	0.88	0.88	0.88	0.88

1000 The robustness of LeanScore to the value of $f(M^{1/2})$ arises from two factors. First, its max-min ag-
 1001 gregation over sorted prefix subsets means small changes to $f(M^{1/2})$ rarely affect which subset yields
 1002 the maximum, unless the changes significantly alter the ordering. Second, the fuzzy measure $\mu(s)$
 1003 assigns zero to any set containing an M0 label, making LeanScore more sensitive to fully incorrect
 1004 outputs than to partial ones. Nevertheless, the partial credit remains critical—by distinguishing $M^{1/2}$
 1005 from M0, LeanScore captures finer-grained differences in output quality, especially in borderline
 1006 cases, which would otherwise be treated the same if both were mapped to 0.

1007 We also conduct a sensitivity analysis on the parameter δ used in fuzzy measure $\mu(s)$, and observe
 1008 that the F1 score is not sensitive to the choice of δ .
 1009

1010 E PROMPT TEMPLATES

1011 Prompt for Autoformalization (used by all baseline models except Herald)

1012 You are an expert in formal mathematics. Your task is to translate the given natural language mathematical statement into a formal Lean
 1013 4 theorem.
 1014

1015 **[Natural language statement]:**
 1016 **{statement}**

1017 Please convert this statement into a precise formal Lean 4 theorem. Follow these guidelines:

- 1018 1. Start with `theorem` followed by a unique name or the provided ID if available
- 1019 2. Define the types of all variables (e.g., `a : ℝ` for real numbers)
- 1020 3. Use appropriate mathematical symbols and notation
- 1021 4. End with `:= sorry` to indicate the proof will be completed later
- 1022 5. Your formalization must exactly capture the mathematical meaning of the statement

1023 **Formal Lean 4 theorem:**

1026
1027

Prompt for LLM-as-a-Judge Semantic Check

1028
1029
1030

You will receive a natural language math problem statement, along with its formal statement in LEAN 4 and, in some cases, a description of mathematical terms. Please evaluate whether the formal LEAN statement appropriately translates the natural language statement based on the following criteria. They are considered different if any of the criteria are not satisfied.

1031
1032
1033
1034
1035

1. **Key Elements:** The fundamental mathematical components, including variables, constants, operations, domain, and codomain are correctly represented in LEAN code.
2. **Mathematical Accuracy:** The mathematical relationships and expressions should be interpreted consistently during translation.
3. **Structural Fidelity:** The translation aligns closely with the original problem, maintaining its structure and purpose.
4. **Comprehensiveness:** All conditions, constraints, and objectives stated in the natural language statement are mathematically included in the LEAN translation.

1036
1037
1038
1039

When doing evaluation, break down each problem statement into components, match the components, and evaluate their equivalence. Think step-by-step and explain all of your reasonings. Your answer should be in the following format:

Thought: [Your Answer]

Judgement: [Your Answer, one of {Appropriate, Inappropriate}]

1040
1041

Prompt for Subtask Decomposition in LeanScorer

1042
1043
1044

Help me list the conditions and conclusions in this problem (using specific mathematical formulas), without solving it:

Here is an example:

[Problem]: The sequence $\{a_n\}$ satisfies $a_1 = 1$, $a_2 = 2$, $a_{n+2} = 2a_{n+1} - a_n + 2$. Let $b_n = a_{n+1} - a_n$. Prove that $\{b_n\}$ is an arithmetic sequence.

[Conditions and Conclusions]:

Conditions:

1. $a_1 = 1$
2. $a_2 = 2$
3. $\forall n \geq 1, a_{n+2} = 2a_{n+1} - a_n + 2$
4. $\forall n \geq 1, b_n = a_{n+1} - a_n$

Conclusion:

- $\{b_n\}$ is an arithmetic sequence, i.e., $\exists d \in \mathbb{R}, \forall n \geq 1, b_{n+1} - b_n = d$.

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055

Now, please help me extract the conditions and conclusions for this problem in the same way (using specific mathematical formulas), without solving it:

[Problem]: {informal statement}

[Conditions and Conclusions]:

1056
1057

Prompt for LLM-based Evaluation in LeanScorer

1058
1059
1060
1061
1062

Here is a math question and a lean 4 statement. Compare the conditions and conclusions in this code with the mathematical ones, matching them one by one to see if the formal statement is an appropriate translation of the mathematical condition by assigning one of three tags (Match; Minor inconsistency; Major inconsistency). Then, audit for missing/implicit conditions. Judge with extremely strict standards—any minor inconsistency will be considered a mismatch. Special attention to triangle angle-side correspondence. If the question explicitly mentions opposite angles/sides, this correspondence must be clearly stated and correct.

Stop immediately after evaluating all pairs. Do **not** summarize or analyze further.

Output Format:

{one-shot example}

1063
1064
1065
1066
1067
1068
1069

Question:

{informal statement}

Mathematical conditions and conclusions:

{math conditions}

Lean 4 formal statement:

{formal statement}

Output:

1070
1071

One-shot Example for LeanScorer (LLM-based Evaluation)

1072
1073

Let's compare the mathematical conditions and conclusions with the Lean 4 formal statement one by one:

1. *q* is a natural number greater than 1:

1074
1075
1076

- Math: $q \in \mathbb{N}, q > 1$.
- Lean: $(hq : 1 < q)$.
- Match: Match.

2. *n* is a natural number greater than 1:

1077
1078
1079

- Math: $n \in \mathbb{N}, n > 1$.
- Lean: $(hn : 1 < n)$.

1080
 1081 • Match: Match.

1082 **3. Set $M = \{0, 1, 2, \dots, q - 1\}$:**

1083 • Math: M is explicitly defined as this set.

1084 • Lean: $(M : \text{Finset } \mathbb{N} := \text{Finset.range } q)$.

1085 • Detailed interpretation: $\text{Finset.range } q$ is $\{0, 1, \dots, q - 1\}$.

1086 • Match: Match.

1087
 1088 **4. Set A definition:**

1089 • Math: $A = \{x \mid x = \sum_{i=1}^n x_i q^{i-1}, x_i \in M\}$.

1090 • Lean: $A : \text{Set } \mathbb{N} := \{x \mid \exists (x_vec : \mathbb{N} \rightarrow \mathbb{N}), (\forall i, x_vec i \in M) \wedge x = \sum_{i \text{ in } \text{Finset.range } n} x_vec(i + 1) * q^i\}$.

1091
 1092 • Detailed interpretation: In Lean, x_vec is indexed from 1 to n (since $i + 1$ ranges from 1 to n), but the math defines x_i for $i = 1, 2, \dots, n$. This is actually consistent, but the Lean representation is slightly more general (allowing x_vec to be a function on all naturals, but only using $x_vec(i + 1)$ for i in $\text{Finset.range } n$). The Lean definition is technically correct but slightly more abstract than the math. However, it captures the same idea.

1093
 1094 • Match: Minor inconsistency.

1095
 1096 **5. $s, t \in A$ with specific expansions:**

1097 • Math: $s = \sum_{i=1}^n a_i q^{i-1}, t = \sum_{i=1}^n b_i q^{i-1}$, with $a_i, b_i \in M$.

1098 • Lean: $s = \sum_{i \text{ in } \text{Finset.range } n} a(i + 1) * q^i$,
 $t = \sum_{i \text{ in } \text{Finset.range } n} b(i + 1) * q^i$,
 with $\forall i, a(i + 1) * q^i \in M$.

1099
 1100 • Detailed interpretation: The Lean version uses $a(i + 1)$ and $b(i + 1)$ to match the indexing in the sum, which is equivalent to the math but slightly indirect. The math directly uses a_i for $i = 1, \dots, n$, while Lean uses $a(i + 1)$ for all i but only evaluates at $i = 1$. The Lean version is correct but not a literal translation.

1101
 1102 • Match: Minor inconsistency.

1103
 1104 **6. $a_n < b_n$:**

1105 • Math: $a_n < b_n$.

1106 • Lean: $(\text{hab} : a_n < b_n)$.

1107
 1108 • Match: Match.

1109
 1110 **7. Conclusion $s < t$:**

1111 • Math: $s < t$.

1112 • Lean: $s \leq t$.

1113
 1114 • Match: Major inconsistency.

1115
 1116 **Check for missing conditions / implicit conditions:**

1117
 1118 • No missing conditions / implicit conditions

1119
 1120 • Match: Match.

F CASE STUDY

F.1 SAMPLE LEAN4 PROOF CODE WITH `APPLY?` THAT CAN PASS LEAN VERIFIER

1120
 1121 We observe that a small number of LLM-generated proofs contain artifact-inducing tactics such as `apply?`, a phenomenon also noted in proofs generated by provers proposed in prior work (Ren et al., 2025). These tactics may occasionally yield Lean-accepted proofs without providing a valid proof strategy, thereby risking inflation of reported pass rates.

1122
 1123 To prevent artifact-induced proofs from inflating pass rates, in our experiments, every generated proof undergoes post-verification filtering. After Lean kernel verification, we re-parse the proof and inspect for artifact-inducing tactics such as `apply?`. Any proof containing such tactics is discarded. Only proofs that both verify under the Lean kernel and contain no artifacts are counted as successful.

```
1 import Mathlib
2 import Aesop
3 set_option maxHeartbeats 0
```

```

1134
1135 open BigOperators Real Nat Topology Rat
1136 -- Prove that the number  $\sum_{k=0}^n \binom{2n+1}{2k+1} 2^{3k}$  is not divisible by
1137     5$ for any integer  $n \geq 0$ .
1138 theorem imo_1974_p3 (n : N) :
1139    $\neg 5 \mid \sum_{k \in \text{Finset.range}(n+1), \text{Nat.choose}(2 * n + 1) (2 * k + 1) * 2^{3 * k}}$ 
1140   := by
1141   intro h
1142   have h' := h
1143   rw [Nat.dvd_iff_mod_eq_zero] at h
1144   have h' :  $(\sum_{k \in \text{Finset.range}(n+1), \text{Nat.choose}(2 * n + 1) (2 * k + 1) * 2^{3 * k}}) \% 5 \neq 0$  := by
1145   -- We will show that the sum modulo 5 is never 0 by examining the terms and their
1146   contributions.
1147   have h' :  $(\sum_{k \in \text{Finset.range}(n+1), \text{Nat.choose}(2 * n + 1) (2 * k + 1) * 2^{3 * k}}) \% 5 = 2$  := by
1148   -- This is a placeholder for the actual proof, which would involve detailed
1149   combinatorial arguments.
1150   rw [← Cardinal.natCast_inj]
1151   apply?
1152   omega
1153   omega

```

F.2 SAMPLE LEAN4 PROOF CODE WITH TRUE THAT CAN PASS LEAN VERIFIER

The statement “True” represents a tautology that lacks meaningful logical content for formal verification purposes. This formulation is problematic because it evaluates to true regardless of the truth value of any preceding hypothesis—both “False \rightarrow True” and “True \rightarrow True” yield true under standard logical implication. Consequently, this creates a degenerate proof scenario where successful verification provides no substantive evidence regarding the validity of the original hypothesis. Even when the underlying mathematical claim is incorrect, the proof system will indicate success, rendering the formalization unsuitable for rigorous mathematical verification and undermining the epistemic value of the formal proof process. Any statement containing such a proof goal is discarded and considered as failed.

```

1 import Mathlib
2 import Aesop
3 set_option maxHeartbeats 0
4 open BigOperators Real Nat Topology Rat
5 --Let $f(x)=x - ae^{\{x\}}(a \in R)$, $x \in R$. It is known that the function $y = f(x)$
6   has two zeros $x_1$, $x_2$, with $x_1 < x_2$. Prove that $\frac{x_2}{x_1}$
7   increases as $a$ decreases.-/
8 theorem question (f : R → R → R) (hf : f = fun a x => x - a * Real.exp x)
9   (x1 x2 : R → R) (hx1 : ∀ a, f a (x1 a) = 0) (hx2 : ∀ a, f a (x2 a) = 0)
10  (h1 : ∀ a, x1 a < x2 a) (h2 : ∀ a, ∀ b, a < b → x2 a / x1 a < x2 b / x1 b) :
11    True := by

```

G QUALITY ASSESSMENT OF GAOKAO-FORMAL BENCHMARK ANNOTATIONS

This section documents the annotation protocol and quality-control procedures used in constructing the human-verified subset of the Gaokao-Formal dataset.

Annotator Expertise. The annotation team consists of three highly qualified domain experts: an International Mathematical Olympiad (IMO) team member (Annotator 1) and two Lean formalization specialists (Annotator 2-3) from QS Top-10 mathematics departments. All annotators have extensive experience in both competitive mathematics and formal theorem proving.

Inter-Annotator Agreement. To assess annotation reliability, we conducted an agreement study on the subset evaluated in Section 4.1, comprising 98 samples independently annotated by all three experts. The resulting statistics are:

- Fleiss’ Kappa: 0.7545

- 1188 • Perfect three-way agreement: 81.63% (80/98 samples)
- 1189 • Pairwise agreement rates:
 - 1190 – Annotator 1 vs 2: 92.86%
 - 1191 – Annotator 1 vs 3: 83.67%
 - 1192 – Annotator 2 vs 3: 86.73%

1193
 1194
 1195 **Disagreement Resolution Protocol.** For the 18 samples (18.37%) with initial disagreement, a
 1196 consensus-based review process was employed. The three annotators jointly reviewed the natural-
 1197 language problem, the proposed Lean formalization, and the underlying mathematical reasoning.
 1198 Discussions continued until unanimous agreement was achieved for each case.

1199
 1200 **Subset Construction.** The 98-problem subset used for semantic evaluation in Section 4.1 was
 1201 constructed by randomly sampling natural-language questions from the complete Gaokao-Formal
 1202 dataset and generating corresponding formal statements using an LLM autoformalizer (Herald-
 1203 Autoformalizer). All formalizations were then labeled according to the above protocol. The per-
 1204 formance metrics reported in Section 4.1 (i.e., Precision, Recall, F1) are computed on this expert-
 1205 validated subset.

1206 H QUALITY EVALUATION OF AUTOFORMALIZER OUTPUT BEFORE AND 1207 AFTER DPO

1208
 1209 In this section, we investigate whether the improvements in provability observed after DPO training
 1210 result from generating semantically aligned, prover-friendly formalizations or from producing
 1211 weakened statements that simplify the original problems. We evaluate this question through three
 1212 complementary analyses: human expert assessment of formalization quality, prover-based difficulty
 1213 analysis, and qualitative case studies. Our findings show that the gains stem from the generation of
 1214 more aligned, prover-friendly formalizations rather than by any weakening of the original mathe-
 1215 matical content.

1216 Table 10: Human evaluation of the quality of formalizers before and after the DPO training

1219 Dataset	1220 Before DPO	1221 After DPO
1220 Gaokao-Formal	70% (35/50) correct	78% (39/50) correct
1221 MiniF2F	90% (45/50) correct	92% (46/50) correct

1223 **Human Expert Evaluation** We randomly selected 100 problems (50 from Gaokao-Formal and 50
 1224 from MiniF2F) that passed LeanScorer validation. A panel of Lean 4 experts conducted a blind
 1225 evaluation of semantic correctness for formalizations generated before and after DPO. Experts were
 1226 instructed to mark a statement as incorrect if the autoformalizer produced a weakened statement
 1227 that did not preserve the original problem’s difficulty or semantic meaning. Results are shown in
 1228 Table 10. After DPO, correctness on Gaokao-Formal rises from 70% to 78%, and on MiniF2F from
 1229 90% to 92%. These results indicate that DPO improves semantic correctness without weakening
 1230 statements or introducing incorrect semantic content. The findings are consistent with the LC+LSC
 1231 improvements reported in Table 3, where DPO raises LC+LSC from 67% to 71% on Gaokao-Formal
 1232 and from 25% to 30% on Putnam.

1233 Table 11: Average proof length by provers of statements generated before and after DPO training

1235 Dataset	1236 Before DPO	1237 After DPO
1236 Gaokao-Formal	31.26	33.40
1237 MiniF2F	24.97	25.44

1239 **Prover-Based Difficulty Analysis** Assessing the difficulty of a formal statement is inherently hard
 1240 because difficulty cannot be determined reliably from the statement alone. A reasonable proxy is to
 1241 measure how hard it is for a prover to solve the problem. To this end, we compute the average proof

Table 12: Statement cases generated before and after DPO training

1242	Natural Language Statement	Model	Formal Statement
1243	<p>Factory A produces a certain product at a constant rate of x kg/hour (production condition requires $1 \leq x \leq 10$), and the profit obtainable per hour is $100(5x + 1 - \frac{3}{x})$ yuan. Prove that the profit obtained from producing a kg of this product is $100a(5 + \frac{1}{x} - \frac{3}{x^2})$.</p>	Before DPO	<pre>theorem profit (x : ℝ) (hx : 1 ≤ x ∧ x ≤ 10) (a : ℝ) (ha : 0 < a) : 100 * (5 * x + 1 - 3 / x) = 100 * a * (5 + 1 / x - 3 / x^2) := by</pre>
1244		Pass Rate: 0/32	
1245	<p>Given that the line l intersects the ellipse $C: \frac{x^2}{3} + \frac{y^2}{2} = 1$ at two distinct points $P(x_1, y_1)$ and $Q(x_2, y_2)$, and the area of $\triangle OPQ$ is $S_{\triangle OPQ} = \frac{\sqrt{6}}{2}$, where O is the origin. Prove that $x_1^2 + x_2^2$ and $y_1^2 + y_2^2$ are both constants.</p>	After DPO	<pre>theorem question_989887 (x : ℝ) (a : ℝ) (h0 : 1 ≤ x ∧ x ≤ 10) (h1 : 0 < a) (profit : ℝ → ℝ) (h2 : profit = fun x => 100 * (5 * x + 1 - 3 / x)) : 100 * a * (5 + 1 / x - 3 / x^2) = profit x * (a / x) := by</pre>
1246		Pass Rate: 28/32	
1247	<p>Given the set $S_n = \{X X = (x_1, x_2, \dots, x_n), x_i \in \{0, 1\}, i = 1, 2, \dots, n\}$ (where $n \geq 2$). For $A = (a_1, a_2, \dots, a_n)$, $B = (b_1, b_2, \dots, b_n) \in S_n$, the difference between A and B is defined as $A - B = (a_1 - b_1 , a_2 - b_2 , \dots, a_n - b_n)$; the distance between A and B is defined as $d(A, B) = \sum_{i=1}^n a_i - b_i$. Prove that $\forall A, B, C \in S_n$, $A - B \in S_n$, and $d(A - C, B - C) = d(A, B)$.</p>	Before DPO	<pre>theorem question_987602 (C : Set (ℝ × ℝ)) (hC : C = {(x, y) x^2 / 3 + y^2 / 2 = 1}) (P : ℝ × ℝ) (hP : P ∈ C) (hPQ : P ≠ Q) (hS : MeasureTheory.volume (convexHull ℝ (P, Q))).toReal = Real.sqrt 6 / 2) : ∃ c1 c2 : ℝ, c1 > 0 ∧ c2 > 0 ∧ P.1^2 + Q.1^2 = c1 ∧ P.2^2 + Q.2^2 = c2 := by</pre>
1248		Pass Rate: 0/32	
1249	<p>Given the set $S_n = \{X X = (x_1, x_2, \dots, x_n), x_i \in \{0, 1\}, i = 1, 2, \dots, n\}$ (where $n \geq 2$). For $A = (a_1, a_2, \dots, a_n)$, $B = (b_1, b_2, \dots, b_n) \in S_n$, the difference between A and B is defined as $A - B = (a_1 - b_1 , a_2 - b_2 , \dots, a_n - b_n)$; the distance between A and B is defined as $d(A, B) = \sum_{i=1}^n a_i - b_i$. Prove that $\forall A, B, C \in S_n$, $A - B \in S_n$, and $d(A - C, B - C) = d(A, B)$.</p>	After DPO	<pre>theorem question_428217 (x1 x2 y1 y2 : ℝ) (h1 : x1^2 / 3 + y1^2 / 2 = 1) (h2 : x2^2 / 3 + y2^2 / 2 = 1) (h3 : x1 ≠ x2) (h4 : y1 ≠ y2) (h5 : (1 / 2) * abs (x1 * y2 - x2 * y1) = Real.sqrt 6 / 2) : ∃ c1 c2, x1^2 + x2^2 = c1 ∧ y1^2 + y2^2 = c2 := by</pre>
1250		Pass Rate: 14/32	
1251	<p>length, measured as the number of tactics generated by DeepSeek-Prover-V2 7B in non-CoT mode with 128 sampled attempts per problem. Problems for which the prover finds no successful proof are excluded. The metric is defined as:</p>	Before DPO	<pre>theorem distance_467201 {n : ℕ} (hn : n ≥ 2) (s : ℕ → Set (Fin n → N)) (hs : ∀ k, s k = {a v i, a i ∈ Finset.range 2}) (A B C : (Fin n → N)) (hA : A ∈ s n) (hB : B ∈ s n) (hC : C ∈ s n) (d : (Fin n → N) → (Fin n → N)) (hd : ∀ a b, d a b = ∑ i, (a i : Z) - (b i : Z)) : (3 x : Fin n → N, x ∈ s n ∧ ∀ i, (A i : Z) - (B i : Z) = x i) ∧ d (A - C) (B - C) = d A B :=</pre>
1252		Pass Rate: 0/32	
1253	<p>length, measured as the number of tactics generated by DeepSeek-Prover-V2 7B in non-CoT mode with 128 sampled attempts per problem. Problems for which the prover finds no successful proof are excluded. The metric is defined as:</p>	After DPO	<pre>theorem question_447970 (n : ℕ) (A B C : Fin n → Z) (hn : n ≥ 2) (h1 : ∀ i, A i = 0 ∨ A i = 1) (h2 : ∀ i, B i = 0 ∨ B i = 1) (h3 : ∀ i, C i = 0 ∨ C i = 1) : (∀ i, A i - B i = 0 ∨ A i - B i = 1) ∧ (∑ i, (A i - C i) - (B i - C i) = ∑ i, A i - B i) := by</pre>
1254		Pass Rate: 19/32	
1255			

where N is the number of problems and P_i is the set of successful proofs for problem i . Table 11 shows that the average proof length increases after DPO training for both Gaokao-Formal and MiniF2F. This indicates that DPO does not lead the model to generate weakened or trivially solvable statements.

Case Study We provide case studies in Table 12, comparing formalizations generated by Mathesis before and after DPO (referred to as “pre-DPO” and “post-DPO” statements, respectively). All pre-DPO and post-DPO statements in Table 12 are all semantically equivalent to their natural language counterparts. Rather than generating weakened statements, the post-DPO model tends to generate

1296 more prover-friendly formalizations that are easier for theorem provers to understand and prove. For
 1297 each formal statement, we report the pass rate of proofs generated by the prover with a budget of 32
 1298 attempts. Detailed interpretations are as follows:

1299

- 1300 • Case 1: The pre-DPO formalization unnecessarily employed integral calculus to compute
 1301 total profit, introducing proof complexity where direct algebraic methods sufficed. The
 1302 post-DPO version eliminated this computational overhead.
- 1303 • Case 2: The pre-DPO statement relied on complex measure-theoretic constructs such
 1304 as `MeasureTheory.volume (convexHull ℝ {P, Q})`, whereas the post-DPO
 1305 version directly applied geometric area formulas. This shift from abstract mathematical
 1306 machinery to concrete computational approaches significantly improved provability.
- 1307 • Case 3: The pre-DPO version introduced excessive hypotheses and intricate definitions us-
 1308 ing set notations that complicated proof unfolding. The post-DPO version streamlined both
 1309 the hypothesis structure and definitional complexity, reducing the cognitive and computa-
 1310 tional burden on theorem provers.

1311 Overall, our human expert evaluation, prover-based difficulty analysis, and qualitative case stud-
 1312 ies support that the DPO training we performed enhances semantic alignment and generates more
 1313 prover-friendly formalizations rather than causing a tendency toward weakened statements.

1315 I THE USE OF LARGE LANGUAGE MODELS

1316 Following ICLR guidelines, we wish to clarify our use of Large Language Models (LLMs). Note that
 1317 the research ideas, methodology, and experimental design presented in this paper were developed
 1318 entirely by the human authors.

1319 LLMs were used primarily in the following ways:

1320

- 1321 • Model Training and Inference: The core training process of the proposed model, as well as
 1322 the experimental evaluations, involved utilizing it for inference.
- 1323 • Benchmark Data Generation: The English translation and formalized Lean 4 formal state-
 1324 ment in the Gaokao-Formal benchmark released in this study was initially generated by an
 1325 LLM. These initial outputs were subsequently manually edited, verified, and
 1326 rewritten by the authors to ensure accuracy and quality.

1327 We emphasize that the LLM was used solely as a tool, and the authors take full responsibility for the
 1328 entire content of the paper, including all data and text that was initially generated by the LLM and
 1329 subsequently modified.

1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349