
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MATHESIS: TOWARDS FORMAL THEOREM PROVING
FROM NATURAL LANGUAGES

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) show strong promise for for-
mal reasoning. However, most LLM-based theorem provers remain constrained
by the need for expert-written formal statements as inputs, limiting their appli-
cability to real-world problems expressed in natural language. We address this
gap by focusing on autoformalization, the task of translating informal problems
into formal statements. We propose Mathesis, the first pipeline for the system-
atic study of formal theorem proving from natural language. It contributes the
first autoformalizer trained with reinforcement learning, which integrates syntac-
tic, semantic, and prover feedback as reward signals to yield accurate and verifi-
able formalizations. This is further supported by our novel LeanScorer framework
for evaluating semantic correctness. To assess real-world applicability, we intro-
duce Gaokao-Formal, a benchmark of 495 complex proof problems from the col-
lege entrance exams. Experiments demonstrate that our autoformalizer improves
pass rates by 45% on Gaokao-Formal and 6% on MiniF2F compared to state-of-
the-art baselines. Paired with provers, our autoformalizer consistently enhances
proving accuracy, including a 42% gain for DeepSeek-Prover-V2 on Gaokao-
Formal. Our code is available at https://anonymous.4open.science/
r/Mathesis-2D14.

1 INTRODUCTION

The emergence of reasoning abilities in large language models (LLMs) has opened new frontiers
in automated mathematics (Yang et al., 2025a). Recent automatic theorem provers (ATPs) leverage
formal verification systems, such as Lean (mathlib Community, 2020; Moura & Ullrich, 2021),
Isabelle (Paulson, 1994), and Coq (Huet et al., 1997), to enable formal reasoning. Formal reasoning
starts with a clear formal problem statement, followed by the generation of mechanically verifiable
proofs in formal languages. This approach ensures greater reliability and verifiability. Notable
models in this field, including Deepseek-Prover-V2 (Ren et al., 2025), Kimina-Prover (Wang et al.,
2025), and Goedel-Prover (Lin et al., 2025), are currently state-of-the-art on benchmarks such as
MiniF2F (Zheng et al., 2021), proofNet (Azerbayev et al., 2023), and PutnamBench (Tsoukalas
et al., 2024), where the input problem statements have been formalized by human experts.

However, real-world mathematical problems are typically written in natural language, which pro-
hibits the direct use by ATPs. Traditionally, manual formalization ensures faithful translation of
problems but requires significant effort and expertise before ATPs can solve them. In this paper, we
study automatic formal theorem proving from natural language. The task begins with a given
natural language (NL) problem statement and translates it into formal language (FL), followed by
the generation of a formal proof. A critical step in this task is autoformalization–the process of
automatically translating informal mathematics into formal language (Gao et al., 2024)–which can
significantly impact the success of proving due to errors introduced during formalization. Figure 1
illustrates two common examples, highlighting how improper formalization can yield misleading
proof successes or render problems unprovable.

Despite its importance, the task remains understudied, particularly in terms of semantic evaluation
and the availability of a powerful autoformalizer. On the evaluation side, existing methods rely on
Lean syntactic compilation checks and basic binary LLM judgments (Lin et al., 2025; Gao et al.,
2024; Ying et al., 2024), which fail to capture nuanced semantic errors, resulting in the absence

1

https://anonymous.4open.science/r/Mathesis-2D14
https://anonymous.4open.science/r/Mathesis-2D14

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Informal Statement: Let Sn denote the sum of the first n terms of the sequence an. Given that 2Sn
n + n = 2an + 1, prove

that {an} is an arithmetic sequence.

Two Formal Statement Cases:
theorem case one (a : N→ R)
(ha : ∃ d, ∀ n, a (n + 1) = a n + d) ⇒ Erroneously includes the desired goal in

assumptions

(h : ∀ n, 2 * (
∑

i in Finset.range n, a i) / n + n = 2 * a n + 1) :
∃ d, ∀ n, a (n + 1) = a n + d := by sorry

theorem case two (a : N→ R) (S : N→ R)
(hS : ∀ (n : N), n ≥ 1, S n =

∑
k in Finset.range n, a k) ⇒∑

k in Finset.Icc 1 n, a k

(h : ∀ (n : N), n ≥ 1, 2 * S n / (n : R) + (n : R) = 2 * a n + 1) :

∃ (d : R), ∀ (n : N), n ≥ 1, a (n + 1) = a n + d := by sorry

Figure 1: Illustrative examples of incorrect formalization. Case 1 mistakenly includes the goal as
an assumption, resulting in a circular yet technically provable formalization that is mathematically
invalid. Case 2 mistranslates the summation range, leading to an incorrect formal statement that is
both unprovable and misaligned with the informal input.

of fine-grained evaluation and limiting the performance of formal theorem proving from natural
language. Moreover, most existing formal benchmarks are not designed to assess the quality of
autoformalization. These benchmarks might allow easy passage of basic checks but fail to reveal
semantic errors, necessitating harder-to-formalize benchmarks for rigorous evaluation. Specifically,
some benchmarks simplify the original problems in ways that alter their intent, or exclude problem
types that are challenging to formalize, such as those involving geometry, combinatorics (Zheng
et al., 2021), and word problems (Azerbayev et al., 2023). On the autoformalizer side, recent meth-
ods (Jiang et al., 2023; Gao et al., 2024; Liu et al., 2025b; Lin et al., 2025) fine-tune LLMs on paired
informal and formal statements (a.k.a parallel statements (Jiang et al., 2023; Liu et al., 2025b)) for
higher quality, with Kimina-Autoformalizer (Wang et al., 2025) achieving state-of-the-art perfor-
mance via expert iteration. However, these training approaches lack dynamic learning from direct
feedback on both syntactic and semantic correctness.

In this paper, we present Mathesis (Multi-domain Autoformalization Through Heuristic-guided
Syntactic and Semantic Learning), an autoformalization-driven formal theorem proving pipeline
that solving natural language problems. To our knowledge, we are the first to systematically study
the entire workflow from natural language input to formal proof generation—a critical yet previously
overlooked aspect in the community. At the core of Mathesis is Mathesis-Autoformalizer, the first
autoformalization framework trained via online reinforcement learning (RL) enhanced by a novel
Hierarchical Preference Optimization (HPO) mechanism. By incorporating Lean compilation and
semantic verification into the RL reward function while learning prover preferences through HPO,
Mathesis significantly enhances formalization quality and achieves state-of-the-art performance. To
enable rigorous and nuanced evaluation of formalization quality, we propose LeanScorer, a novel
semantic evaluation framework designed to capture subtle errors beyond binary correctness checks.
We further introduce Gaokao-Formal, a challenging benchmark of 495 proof problems, spanning a
wide range of mathematical domains. Our key contributions are as follows.

• We introduce Mathesis-Autoformalizer, the first autoformalizer trained via online rein-
forcement learning with rewards signals for syntactic validity, semantic correctness, and
prover feedback. It improves pass rates by 22 percentage points (45% relative gain) on
Gaokao-Formal and 5 points (6% gain) on MiniF2F over the state-of-the-art baseline.

• We propose LeanScorer, a novel semantic evaluation framework that combines LLM-
based analysis with the Sugeno Fuzzy Integral for nuanced assessment of formalizations.
LeanScorer achieves a 0.92 F1 score, outperforming prior approaches LLM-as-a-Judge by
7 percentage points and Re-informalization by 27 points on human-annotated data.

• We provide the first systematic study of formal theorem proving from natural language.
Extensive experiments show that our autoformalizer consistently improves prover accuracy,
with gains up to 122% on Gaokao-Formal and 98% on MiniF2F.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Formal Reasoning Recent advancements have produced powerful LLM-based automated theo-
rem provers for proof assistants like Lean 4, including DeepSeek-Prover-V2 (Ren et al., 2025),
Kimina-Prover (Wang et al., 2025), and Goedel-Prover (Lin et al., 2025), alongside many advanced
algorithms for proof search (Liang et al., 2025; Xin et al., 2025; Li et al., 2024; Liu et al., 2025a;
Yang et al., 2025b). These systems demonstrate strong formal-to-formal (F2F) reasoning capabili-
ties, where both input statements and output proofs are expressed in formal language. Correspond-
ingly, benchmarks such as MiniF2F (Zheng et al., 2021), PutnamBench (Tsoukalas et al., 2024), and
FIMO (Liu et al., 2023) are designed to evaluate such F2F reasoning ability using well-formalized
problem statements. However, it leaves a critical gap in the study of formal theorem proving from
natural language, which requires first formalizing the input informal mathematical statements and
then proving them. Our work addresses this gap by introducing a complete pipeline for formal theo-
rem proving from natural language, grounded in autoformalization. While some other works (Zhao
et al., 2023; Wang et al., 2023; Jiang et al., 2022), such as Lego-Prover (Wang et al., 2023), also
target informal-to-formal reasoning, they require an additional informal proof sketch as input. In
contrast, our approach performs fully automatic, autoformalization-driven formal theorem proving,
starting solely from informal statements to whole-proof generation (Xin et al., 2024), making direct
comparisons inappropriate.

Autoformalization Autoformalization, the process of formalizing informal mathematics into for-
mal language , is essential for bridging the NL-FL gap. Prior work includes prompting pre-trained
LLMs (Wu et al., 2022; Azerbayev et al., 2023; Poiroux et al., 2024; Patel et al., 2023) and fine-
tuning models on static NL-FL pairs (Cunningham et al., 2023; Jiang et al., 2023; Lu et al., 2024b;
Gao et al., 2024; Liu et al., 2025b), with systems like Kimina-Autoformalizer (Wang et al., 2025)
achieving notable success. However, these approaches often lack dynamic learning from direct
feedback on syntactic and semantic correctness, and their evaluation has typically relied on bi-
nary compilation checks or basic LLM judgments (Peng et al., 2025; Lin et al., 2025; Liu et al.,
2025b), which may not capture nuanced errors. To address these limitations, we introduce Mathesis-
Autoformalizer, which, to our knowledge, is the first autoformalizer to leverage online reinforcement
learning and the feedback from the prover for improved accuracy and robustness. Concurrently, our
LeanScorer framework provides a more fine-grained evaluation of autoformalization quality, mov-
ing beyond simple binary pass/fail metrics.

Autoformalization Autoformalization, the process of formalizing informal mathematics into for-
mal language , is essential for bridging the NL-FL gap. Prior work includes prompting pre-trained
LLMs (Wu et al., 2022; Azerbayev et al., 2023; Poiroux et al., 2024; Patel et al., 2023) and fine-
tuning models on static NL-FL pairs (Cunningham et al., 2023; Jiang et al., 2023; Lu et al., 2024b;
Gao et al., 2024; Liu et al., 2025b), with systems like Kimina-Autoformalizer (Wang et al., 2025)
achieving notable success. However, these approaches often lack dynamic learning from direct
feedback on syntactic and semantic correctness, and their evaluation has typically relied on binary
compilation checks or basic LLM judgments (Peng et al., 2025; Lin et al., 2025; Liu et al., 2025b),
which may not capture nuanced misalignments.

Semantic evaluation itself remains a key bottleneck. Training-free methods such as LLM-as-a-Judge
(Lin et al., 2025; Gao et al., 2024) and Re-informalization (Ying et al., 2024) are most widely used,
but they offer only indirect signals of semantic correctness and can be inconsistent. In contrast, For-
malAlign (Lu et al., 2024a) offers a training-based alternative by fine-tuning an alignment model to
compute likelihood- and representation-based scores, though such trained evaluators may generalize
less effectively to out-of-distribution mathematical problem types.

To address these limitations, we introduce Mathesis-Autoformalizer, which, to our knowledge, is
the first autoformalizer to leverage online reinforcement learning and the feedback from the prover
for improved accuracy and robustness. Concurrently, our LeanScorer framework provides a more
fine-grained evaluation of autoformalization quality, moving beyond simple binary pass/fail metrics.

Reinforcement Learning Fine-Tuning (RLFT) Reinforcement learning has proven highly ef-
fective for enhancing LLM capabilities in complex reasoning (Anthropic, 2024; DeepSeek-AI &
Anonymous Contributors, 2025). The autoformalization task is well-suited for RL, as syntac-
tic validity (from a Lean verifier) and semantic correctness (e.g., assessed by an LLM judge
or LeanScorer) can serve as direct reward signals. Despite this clear potential, the application

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

NL
Statement

 Autoformalizer

FL statements

Statement 1

Statement 2

Lean
check

Syntax-Valid
FL Statements

Statement 1

Statement 2

Lean
Scorer

Syntax- &
Semantic-Valid
FL Statement Prover

Proofs

Proof 1

Proof 2

Lean
check

Valid
Proof

 GRPO HPO

Figure 2: Overview of our autoformalization-driven formal theorem proving pipeline.

of outcome-based RL techniques to specifically optimize these syntactic and semantic proper-
ties in autoformalization models has been largely underexplored in the literature. Our Mathesis-
Autoformalizer pioneers this direction by employing Group Relative Policy Optimization (Shao
et al., 2024) with a carefully designed composite reward function (in Section 3.1). This approach
allows the model to iteratively refine its ability to generate syntactically correct and semantically
faithful formalizations, addressing a key gap in existing autoformalization methodologies.

3 MATHESIS: AUTOFORMALIZATION-DRIVEN FORMAL PROVING

The core objective of this paper is to tackle the task of formal theorem proving from natural lan-
guage (defined in Section 1) by enabling automated formal reasoning directly from informal natural
language inputs. To this end, as illustrated in Figure 2, we propose a structured, multi-stage pipeline
built upon an autoformalization-driven approach. It consists of three major stages: autoformaliza-
tion, validation, and proving. The pipeline begins with a given NL problem statement, which is
first processed by an autoformalizer to generate candidate formal statements in Lean 4. This stage
is powered by our Mathesis-Autoformalizer, a model that achieves state-of-the-art performance in
formalization (see Section 3.1). These candidates are then evaluated in the validation stage, which
includes syntactic verification via the Lean compiler and semantic evaluation. For this purpose, we
introduce a novel evaluation framework, LeanScorer, and a new benchmark Gaokao-Formal (see
Section 3.2). The formal statement that passes the Lean compiler and semantic assessment is then
passed to the final proving stage to generate a complete, machine-verifiable Lean proof.

Our approach is, in principle, transferable to other proof assistants such as Isabelle. We focus on
Lean 4 due to its broad adoption in recent literature and its well-supported evaluation stack.

3.1 Mathesis-Autoformalizer: ADVANCING AUTOFORMALIZATION WITH REINFORCEMENT
LEARNING

The cornerstone of our pipeline is Mathesis-Autoformalizer, a novel model designed to translate in-
formal mathematical problem statements from NL into formal Lean 4 (mathlib Community, 2020)
code. Unlike prior approaches that predominantly rely on supervised fine-tuning (SFT) on static
datasets, our work presents the first autoformalization model trained with online reinforcement
learning via Group Relative Policy Optimization (GRPO) (Shao et al., 2024), using reward signals
for syntactic validity and semantic correctness, and incorporating prover-derived feedback. Training
proceeds in two stages: GRPO aligns the model to syntactic compilability and semantic faithfulness,
after which Direct Preference Optimization (DPO) further aligns it to downstream proof success by
preferring formalizations that lead to Lean-verified proofs. We refer to this two-stage procedure as
Hierarchical Preference Optimization (HPO).

Composite Rewards for Autoformalization Let πθ represents the translator LLM policy param-
eterized by θ, and πref be a fixed reference policy (typically the SFT model). In our experiment,
the policy πθ is initialized from Kimina-Autoformalizer (Wang et al., 2025), the previous state-of-
the-art 7B autoformalizer trained via supervised fine-tuning with expert iteration to translate natural
language problems into Lean 4 code. This initialization provides a strong structural prior, equipping
the model with canonical Lean formatting patterns and facilitating subsequent reinforcement learn-
ing. For a given natural language input x ∈ X , the policy πθ(·|x) generates a group of G candidate
formal Lean 4 statements as outputs {o1, ..., oG}. The optimization objective is to adjust θ to max-
imize the likelihood of generating higher-reward outputs relative to lower-reward ones within the
group, while regularizing against large deviations from the reference policy. We define a composite

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

reward with two binary components. For an given input x and a corresponding candidate formaliza-
tion oi, we define the Semantic Correctness Reward Rsem(x, oi) to indicate whether oi preserves
the semantic meaning of x, as judged by an auxiliary LLM evaluator Jsem:

Rsem(x, oi) =

{
1 if Jsem(x, oi) judges “Appropriate”
0 otherwise

.

We also define the Syntatic Verification Reward Rver(oi) to indicate whether oi is syntactically
correct and type-valid under the Lean 4 verifier (Vlean), checked up to := by sorry:

Rver(oi) =

{
1 if Vlean(oi) succeeds
0 otherwise

.

The final overall reward ri for an output oi is computed as a combination of the two components:
ri = R(x, oi, oref) = Rsem + Rver. We then leverage the GRPO objective to update πθ(·|x). We
find that this simple yet effective summation strategy indeed leads to state-of-the-art performance.
The rationale for this composite reward is to capture two orthogonal constraints: syntactic validity
is a necessary condition—non-verifying candidates are unusable by the prover—while semantic
correctness ensures that the formalized statement corresponds to the intended problem to be solved.
Although both terms are binary, GRPO optimizes within-group preferences rather than absolute
magnitudes; we normalize rewards within each group before forming pairwise comparisons, which
makes the objective insensitive to uniform rescaling or simple weighting. We adopt the unweighted
sum for simplicity, noting that weighting schemes are a reasonable direction for future work.

Training Data Curation To effectively identify samples for training, our data curation process
employs topic modeling with BERTopic (Grootendorst, 2022) to the natural language informal state-
ments of problems from a pset (Lin et al., 2025) and our in-house Gaokao dataset. BERTopic was
selected for its ability to generate coherent topics by leveraging contextual embeddings and cluster-
ing, allowing for effective categorization of problems based on their semantic content; this approach
is also significantly faster and more cost-effective than using large language models for the same
categorization task. We generated embeddings for each statement, performed dimensionality reduc-
tion and clustering, and then mapped the resulting topics to predefined mathematical categories in
Section 3.3. The categorized data from two sources were then merged. To optimize Reinforcement
Learning training efficiency with GRPO, we employed our base model (pre-RL) to perform rollouts
(k=14) on each problem, filtering out those yielding rewards with zero standard deviation across the
rollouts. The remaining problems demonstrating reward variance were combined with 8,000 prob-
lems randomly sampled from the Lean Workbook (Ying et al., 2024), resulting in a final training
dataset of approximately 32k problems.

Hierarchical Preference Optimization for Theorem Proving GRPO provides a reward-
maximizing initialization, aligning the autoformalizer with local objectives of syntactic correctness
and semantic validity. In the context of formal theorem proving from natural language, the auto-
formalizer formalizes natural language into formal statements aimed at facilitating successful proof
generation by the prover. To enhance this, we further fine-tune the autoformalizer using Direct Pref-
erence Optimization (DPO) (Rafailov et al., 2023), where preferences are derived from the global
success of the downstream proof generation.

DPO Training Data Generation During the data generation phase, for each natural language
statement x, a group of candidate formal statements oi are sampled from the autoformalizer πθ(·|x),
where i indexes the candidates. Each oi undergo syntactic and semantic validation, and those that
pass are forwarded to the prover, which attempts to generate proofs zi. Preferences are assigned
based on the successful completion of the proof verified by Lean, yielding data tuple {x, owi , zwi }
for successful cases, and {x, oli, zli} for failed attempts.

DPO Training The training configuration employs a single epoch with a learning rate of 1×10−5.
The KL regularization coefficient β is set to 0.1, penalizing deviations from the reference model.
Optimization is applied to full parameters, with a warmup ratio of 0.05. To manage memory usage
efficiently, training is conducted using DeepSpeed zero3 offload.

DPO fine-tuning enhances alignment with task-grounded outputs, thereby mitigating mismatches
between reward function and actual task objectives. Compared to GRPO, DPO is a more sample-
efficient and stable alternative that performs offline preference learning and eliminates the need for

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Natural Language Statement
The sequence satisfies
and .
Prove that:

 .

Formal Language Statement
theorem question_256 (n : ℕ) (a : ℕ → ℝ) (ha : a 1 = 1) (h : ∀ (k :
ℕ), k ≥ 1 → a (k + 1) = 3 * a k + 1) : ∑ i in Finset.range n, (1 / a (i +
1)) < 3 / 2 := by sorry

Autoformalization

Scoring

?

PASSFAIL

No Yes

S = Sugeno(M1 , M1 , M½ , M1) = 0.75Subtask
Decomposition

Subtasks
Conditions:
1.
2.

Conclusion:
For all , the sum of the

reciprocals satisfies:

Semantic Consistency Labels
1. :
 - Math: .
 - Lean: .
 - Match: Match (M1)

2. :
 - Math: .
 - Lean: `(h : ∀ (k : ℕ), k ≥ 1 → a (k + 1) = 3 * a k + 1)`.
 - Match: Match (M1)

3. Conclusion:
 - Math: .
 - Lean: ∑ i in Finset.range n, (1 / a (i + 1)) < 3 / 2.
 - Detailed interpretation: The Lean version sums over

 (from to) ... (skipped content) ...
 - Match: Minor inconsistency (M½)

 Check for missing conditions / implicit conditions:
 - No missing conditions / implicit conditions.
 - Match: Match (M1)

Subtask
Evalutation

Figure 3: Overview of LeanScorer semantic evaluation framework.

a separate reward model (Rafailov et al., 2023; Ouyang et al., 2022). However, its effectiveness
heavily relies on a strong base model to generate meaningful candidate outputs and better exploit
preference signals (Tu et al., 2025; Wang et al., 2024; Pan et al., 2025). To this end, we first apply
GRPO to establish a strong initialization before proceeding with DPO fine-tuning.

3.2 LeanScorer: FINE-GRAINED SEMANTIC EVALUATION FOR AUTOFORMALIZATION

The evaluation of autoformalized problem statements typically follows a two-step process: a syn-
tactic check conducted by the Lean compiler, followed by a semantic check, which verifies that the
formal statement preserves the intended meaning of the original natural language input. Existing
approaches to semantic correctness (Lin et al., 2025; Gao et al., 2024; Ying et al., 2024) rely on
LLMs and are limited to binary judgments (i.e., correct or incorrect). In this section, we propose
LeanScorer, a novel framework that produces a continuous correctness score, enabling fine-grained
and task-adaptive assessment. Figure 3 provides an overview.

Subtask Decomposition and Evaluation Given a natural language (NL) statement and its corre-
sponding formal (FL) statement, LeanScorer first decomposes the NL statement into subtasks such
as premises and conclusions. Each subtask is then aligned with its counterpart in the FL statement
and assigned one of three labels: Match (M1), Minor Inconsistency (M½), or Major Inconsistency
(M0). Specifically, clear mathematical inequivalence or omitted conditions are labeled as “Major
Inconsistency”; semantically equivalent but divergent expressions are labeled as “Minor Inconsis-
tency”; and exact alignment in both content and structure is labeled as “Match”. This three-level
labeling scheme enables nuanced semantic evaluation while accommodating the inherent variability
in LLM outputs. Any extra assumptions or conditions in the formal statement that do not cor-
respond to a natural-language subtask are marked as misaligned; likewise, any natural-language
subtask missing from the formalization is also treated as a misalignment. This enables LeanScorer
to detect both additions and omissions. Prompts are provided in Appendix E.

Aggregation via Sugeno Fuzzy Integral To compute an overall correctness score, we aggregate
subtask-level labels using the Sugeno Fuzzy Integral (Sugeno, 1974), a well-established method in
multi-criteria decision-making (MCDM) (Wieczynski et al., 2024). We design a customized fuzzy
measure that tolerates minor inaccuracies in the LLM judgments while enforcing strict criteria: it
strictly penalizes any formalization with a subtask labeled as a Major Inconsistency, grants a full
score when all subtasks are labeled as Match, and multiple Minor Inconsistencies incur propor-
tional deductions. This method enables robust label aggregation under LLM outputs variability and
upholds rigorous evaluation criteria.

Let N = {1, 2, ..., n} denote the set of n subtasks, and let L = {l1, ..., ln} the corresponding label
set, where each li ∈ {M1,M½,M0} denotes the semantic consistency label of the i-th subtask. We
define an evaluation mapping function f : L → [0, 1], where we set f(M1) = 1.0, f(M½) = 0.5,
and f(M0) = 0. To aggregate the semantic quality over a subset s ⊆ L, we introduce the fuzzy
measure µ(s) defined as:

µ(s) =

{
0 if ∃ l ∈ s, l = M0,

max
{ns

n
· (1− δ · nM½) , 0

}
otherwise

(1)

where ns and nM½ denote the number of elements in s and elements labeled and M½ in s, respec-
tively. The coefficient δ is set to 0.1 when nM½ ≤ 1, and 0.2 otherwise. We conducted a sensitivity
analysis by varying the value of f(M½) from 0.1 to 0.9 in increments of 0.1 (see Appendix D), and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

observed that the performance remains robust: the F1 score remains stable at 0.92 for values between
0.1 and 0.5, and drops slightly to 0.88 for values between 0.6 and 0.9. Thus, we set f(M½) = 0.5 in
all experiments. To further validate our design choices, we also conduct an ablation study comparing
Sugeno Fuzzy Integral–based aggregation against alternative aggregation methods in Appendix D.

Next, let the labels be sorted in ascending order as f(lπ(1)) ≤ f(lπ(2)) ≤ · · · ≤ f(lπ(n)), with
{π(1), π(2), . . . , π(n)} representing the corresponding indices. For each i ∈ {1, . . . , n}, we define
the suffix set si = {lπ(i), . . . , lπ(n)}, which represents the subset consisting of lπ(i) and all labels
ranked after it. The overall LeanScore is then computed as:

S(L, f, µ) = max
1≤i≤n

min
(
f(lπ(i)), µ(si)

)
. (2)

A decision threshold α ∈ [0, 1] may optionally be applied to map the LeanScore to a binary decision.

3.3 THE GAOKAO-FORMAL BENCHMARK

Table 1: Summary of Gaokao-Formal
Benchmark Categories.

Category Count

Functions 168
Sequences & Series 148
Analytic Geometry 76
Comprehensive Questions 49
Inequality 28
Trigonometry 22
Probability & Combinatorics 4

To advance automatic formal theorem proving from nat-
ural language, we introduce the Gaokao-Formal bench-
mark. Unlike existing benchmarks that focus primarily
on formal-to-formal proving or sometimes exclude those
problems that are hard to formalize, Gaokao-Formal
specifically targets the difficulties of auto-formalizing di-
verse and complex natural language mathematical state-
ments, aiming to motivate real-world applications of for-
mal reasoning.

This benchmark consists of 495 proof problems from
China’s National Higher Education Entrance Examina-
tion (Gaokao, 2008-2025), often include sub-questions.
Each instance contains the original Chinese problem
statement, an English translation, and a human-expert formalized Lean 4 formal statement. A sum-
mary of question categories is provided in Table 1, with example problems available in Appendix C.

Remark. The Gaokao dataset utilized in this study consists of publicly available official statistics,
administered by government authorities. It is classified as government-managed public information
and does not involve privately copyrighted material.

4 EXPERIMENTS

We evaluate our proposed approach along three axes. First, we assess the semantic consistency
evaluation framework LeanScorer. Second, we compare the Mathesis-Autoformalizer with state-
of-the-art autoformalization baselines. Finally, we measure how improved autoformalization affects
formal theorem proving from natural language. Experiments are conducted on our newly introduced
Gaokao-Formal benchmark and the widely adopted MiniF2F-test set. We compare our Mathesis-
Autoformalizer with strong API-based and open-source baselines, including the prior state of the
art Kimina-Autoformalizer (Wang et al., 2025) and Herald-Autoformalizer Gao et al. (2025). For
pipeline evaluation, we pair each autoformalizer with the current best-in-class 7B provers—Kimina-
Prover (Wang et al., 2025), Goedel-Prover (Lin et al., 2025), and DeepSeek-Prover-V2 (Ren et al.,
2025) with COT mode—tasking the prover to generate proofs from the formal statements produced
by the respective autoformalizer and reporting proof success rate.

Autoformalization quality is measured by two standard metrics: Lean Check success rate at k can-
didates (LC@k) for solely syntactic validity, and Lean Check combined with LeanScorer semantic
checking (LC+LSC@k) for overall correctness, jointly assessing syntactic and semantic correctness.
We reported results for k = 1 and k = 6. Mathesis pipeline performance is measured as the proof
success rate, given a fixed search budget of 32 attempts per problem, by convention. Additional im-
plementation details, including training configurations and prompts, are provided in the Appendix.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.1 SEMANTIC CONSISTENCY EVALUATION FRAMEWORK

We first validate our LeanScorer against two widely used but indirect, ground-truth–free baselines:
LLM-as-a-Judge (Lin et al., 2025; Gao et al., 2024) and Re-informalization (Ying et al., 2024). The
evaluation uses a human-annotated subset of Gaokao-Formal containing both correct and incorrect
autoformalizations. Annotation details are in Appendix G. Unless otherwise noted, the decision
threshold is set to α = 0.6. LLM-as-a-Judge directly prompts an LLM to decide whether a formal
statement matches a natural-language statement and outputs a single semantic-correctness judgment.
Re-informalization evaluates semantic consistency by first back-translating the formal statement into
natural language and then comparing it with the original input, involving two LLM calls per round.
Both baselines incorporate test-time scaling and accept a formalization only when all four outputs
agree. In contrast, LeanScorer performs LLM-assisted subtask decomposition and consistency anno-
tation in a single pass using two LLM calls, one for decomposition and one for annotation, followed
by a computationally efficient aggregation step to produce a semantic-consistency score.

Table 2: Semantic evaluation framework performance
measured by agreement with human annotations.

Method Precision Recall F1

LLM-as-a-Judge 73 100 0.85
Re-informalization 93 50 0.65
LeanScorer (Ours) 94 89 0.92

Table 2 shows that LeanScorer achieves an
F1 score of 92%, significantly outperform-
ing both the LLM-as-a-Judge (85% F1)
and Re-informalization (65% F1). While
LLM-as-a-Judge has 100% recall, its 73%
precision is low, yielding many false pos-
itives. Re-informalization is the oppo-
site, with 93% precision but 50% recall.
LeanScorer delivers both high precision
(94%) and high recall (89%), indicating a balanced and reliable semantic consistency checker for
formalization evaluation. This balance is important for downstream performance: high precision
ensures that only semantically correct formalizations reach the prover, while high recall increases
coverage but also admits more misaligned statements. Since we require a Lean-verified proof for
the original natural-language problem, maintaining both high precision and high recall is essential
for reliable overall performance.

4.2 AUTOFORMALIZATION FROM NATURAL LANGUAGE

The core contribution of our work is the Mathesis-Autoformalizer, designed to translate natural
language problems into syntactically valid and semantically faithful Lean4 statements. In this
section, we evaluate two variants: Mathesis-Autoformalizer, obtained after the GRPO stage, and
Mathesis-Autoformalizer-HPO, obtained after the full two-stage Hierarchical Preference Optimiza-
tion training (GRPO followed by DPO). These models are compared against state-of-the-art API-
based and open-source baselines, including Kimina-Autoformalizer, which serves as our base model
and was the strongest publicly available 7B autoformalizer before our work. Evaluations are con-
ducted on the MiniF2F-test, Putnam, and Gaokao-Formal benchmarks. Performance is measured
using Lean Check (LC@k) for syntactic validity and Lean Check plus LeanScorer Semantic Check
(LC+LSC@k) for overall correctness. For fair comparison, our models are compared directly
against open-source 7B baselines, with top scores underlined to highlight improvements at equal
model size. API models, which are much larger in size, are compared within the group, with the top
scores shown in bold. All models are evaluated with a 600-second timeout per prompt.

Table 3 presents the results. Both Mathesis variants outperform all baselines across datasets and
budgets, with the largest gains on the more challenging Gaokao-Formal benchmark. Specifically,
Mathesis-Autoformalizer-HPO achieves an LC+LSC@6 score of 71% on Gaokao-Formal, surpass-
ing the previous best of 49% by Kimina-Autoformalizer with an absolute improvement of 22 per-
centage points and a 45% relative gain. On another challenging dataset Putnam, Mathesis-HPO
achieves 30% LC+LSC@6 score, compared with 10% from Kimina-Autoformalizer and 9% from
Herald-Autoformalize, corresponding to 200% and 233% relative gains, respectively. On MiniF2F-
test, it reaches a new record LC+LSC score of 96%. Mathesis-HPO reaches 96% LC+LSC@6,
establishing a new state of the art for overall pass rate on this dataset. Mathesis-HPO constantly out-
performs all much larger API-based models across datasets in both LC@6 and LC+LSC@6, with an
average of 311% and 86%, resp., except for DeepSeek-R1 on challenging Putnam in LSC. In terms
of LC, our method improves over Kimina-Autoformalizer by 4 points on MiniF2F and 9 points on
Gaokao-Formal, demonstrating superior syntactic reliability grounded in Lean’s compiler feedback.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Quality assessment of formalized statements. LC denotes Lean Check; LSC denotes
LeanScorer Semantic Check. Top scores for API and open-source models are bold and underlined.

Model k MiniF2F-Test Putnam Gaokao-Formal
LC LC+LSC LC LC+LSC LC LC+LSC

API Models
o3-mini 1 58 45 7 3 38 25

6 87 77 13 7 70 54
GPT-4o 1 50 36 9 3 20 13

6 80 65 24 9 48 28
Doubao-1.5 1 48 40 7 4 19 15

6 77 70 16 10 45 32
Gemini-2.0 1 56 41 20 10 36 22

6 80 71 42 26 66 47
Deepseek-V3 1 76 61 10 4 54 36

6 91 84 22 10 69 56
Deepseek-R1 1 54 44 29 14 45 30

6 86 76 58 37 81 57
Open-Source Models
Herald-Autoformalizer 1 80 41 35 4 56 14

6 95 69 64 9 78 27
Kimina-Autoformalizer 1 83 61 7 2 50 21

6 100 91 30 10 91 49
Mathesis-Autoformalizer 1 92 69 31 9 88 45

6 100 95 65 25 98 67
Mathesis-Autoformalizer-HPO 1 99 79 38 10 93 50

6 100 96 73 30 98 71

These improvements support the effectiveness of our training methodology. By employing re-
inforcement learning with a composite reward that combines Lean-based syntactic signals and
LeanScorer-based semantic signals, the model learns to produce formalizations that are both syntac-
tically sound and semantically faithful—an essential capability for reliable automated reasoning.

4.3 AUTOFORMALIZATION-DRIVEN THEOREM PROVING

The ultimate measure of our approach’s effectiveness is its performance on formal theorem proving
from natural language. We posit that the quality of the autoformalization critically influences the
final proving accuracy. Accordingly, we pair each autoformalizer with downstream provers and
evaluate the proof accuracy on MiniF2F-Test and Gaokao-Formal. The results are shown in Figure 4.

Autoformalization quality correlates with proving accuracy. There is a strong positive corre-
lation between autoformalization quality and proving accuracy, where proving accuracy denotes the
rate at which the prover produces complete and correct formal proofs. Across all provers and both
datasets, accuracy improves consistently as the autoformalizer improves. For any fixed prover, re-
placing Herald or Kimina with our Mathesis-HPO yields substantial gains. On Gaokao-Formal,
replacing Herald with Mathesis-HPO improves the accuracy of Goedel-prover, Kimina-prover, and
Deepseek-Prover-V2 by 86%, 116%, and 122%, respectively. relative to Kimina, the gains are 49%,
33%, and 42%. On MiniF2F-Test, the same replacement improves the three provers by 98%, 77%,
and 51% over Herald, and by 6%, 9%, and 5% over Kimina.

These improvements arise because a stronger autoformalizer supplies the prover with a larger num-
ber of compiler-valid and semantically faithful Lean statements, providing well-structured and solv-
able goals. Mathesis-Autoformalizer-HPO further outperforms Mathesis-Autoformalizer because
the DPO stage incorporates prover-derived preferences, favoring formalizations that not only com-
pile and align semantically but also lead to successful proof completion. Additional evaluations on
autoformalizer output before and after DPO are provided in Appendix H.

Autoformalizer improvements dominate prover upgrades. For problems that are intrinsically
harder to formalize, the performance gains from a stronger autoformalizer often exceed those
from a stronger prover. On Gaokao-Formal, holding the prover fixed and replacing Herald with

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 4: Performance of formal theorem proving from natural language. In each subfigure, bars
are grouped by prover on the x-axis, and the y-axis reports pass@32 proving accuracy. Bar col-
ors encode the autoformalizers Herald-Autoformalizer (Herald), Kimina-Autoformalizer (Kimina),
Mathesis-Autoformalizer (Mathesis), and Mathesis-Autoformalizer-HPO (Mathesis-HPO).

Mathesis-HPO increases accuracy by 86% for Goedel-Prover, 116% for Kimina-Prover, and 122%
for DeepSeek-Prover-V2. By contrast, with the autoformalizer fixed, upgrading the prover from
Geodel-Prover to Deepseekp-Prover-V2 increases accuracy by 55% under Herald and 95% under
Kimina. This disparity underscores a fundamental challenge in real-world mathematical reasoning:
before a proof can be constructed, natural language problems must first be accurately converted into
formal statements that theorem provers can process. Suboptimal formalizations, such as encoding
problems using difficult-to-unfold built-in functions or embedding questions within overly complex
mathematical definitions, create significant obstacles for downstream proof search (this phenomenon
is also observed by Lin et al. (2025)). Our results indicate that formalization quality constitutes a
critical bottleneck, as provers are hindered by suboptimal formalizations that obscure the problem’s
structure or introduce unnecessary complexity. Hence, achieving high accuracy requires both a
strong autoformalizer and a strong prover, attesting to the critical role of formalization.

Ablations on pipeline design. As shown in Table 3 and Figure 4, adding HPO on top of GRPO
improves pass rate from 67% to 71% on Gaokao-Formal and from 95% to 96% on MiniF2F. In
downstream proving, Mathesis-HPO consistently outperforms Mathesis cross provers by an average
of 13% on Gaokao-Formal and 2% on MiniF2F. These results show that HPO’s prover-derived
feedback as reward yields measurable end-task gains and better aligns the autoformalizer with proof
success beyond gains attributable to syntax and semantic checks alone.

5 LIMITATION

While our approach demonstrates significant improvements, formal theorem proving from natural
language remains far from full automation and real-world deployment. During the development
of Mathesis-Autoformalizer and LeanScorer, we discovered that the correctness of formalization
is often difficult to define directly and must be determined based on whether it affects the proof
process (e.g., whether functions need explicit domain declarations). This ambiguity in formalization
correctness presents ongoing challenges for both training and semantic evaluation.

6 CONCLUSION

Motivated by the goal of bringing formal reasoning to real-world proof questions, we introduce the
task of formal theorem proving from natural language and present Mathesis as a comprehensive so-
lution. Our Mathesis-Autoformalizer, trained through online reinforcement learning with novel Hi-
erarchical Preference Optimization, and LeanScorer for robust semantic evaluation both achieve sig-
nificant improvements over existing methods. This work lays a solid foundation for future advances
toward fully integrated and scalable formal reasoning systems, bringing formal theorem proving to
real-world mathematical problem solving.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The research work presented in this paper adheres strictly to the ICLR Code of Ethics. This study
does not involve human subjects, and there are no potential conflicts of interest or fairness concerns
related to the work.

The Gaokao-Formal Benchmark introduced in this paper is derived from publicly available official
statistics administered by government authorities. As government-managed public information, the
dataset is free from private copyright restrictions. The models, code, and data released in this work
are intended solely for academic and research purposes. They do not pose privacy or security risks
and comply with legal and ethical standards.

We confirm that we have read and complied with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we provide detailed information about our method-
ology, datasets, and experimental setup. The source code for our project, including the implemen-
tation of the Mathesis-Autoformalizer and the LeanScorer evaluation framework, is available at
https://anonymous.4open.science/r/Mathesis-2D14.

The newly introduced Gaokao-Formal benchmark is described in Section 3.3, with further details
and examples provided in Appendix C. All experiments were conducted on this benchmark and
the publicly available MiniF2F-test set. Our experimental setup, including the baselines used for
comparison, evaluation metrics, and results, is detailed in Section 4.

The training configurations and hyperparameters for the Mathesis-Autoformalizer are provided in
Appendix A. This includes details on the Group Relative Policy Optimization (GRPO) and Hier-
archical Preference Optimization (HPO) stages. The prompts used for all language models in our
experiments, including the autoformalization prompts and the prompts for the LLM-as-a-Judge and
LeanScorer frameworks, are available in Appendix E.

11

https://anonymous.4open.science/r/Mathesis-2D14

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. The Claude 3 model family: Opus, Sonnet, Haiku. Model
Card, March 2024. URL https://www-cdn.anthropic.com/
de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W Ayers, Dragomir Radev, and
Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level mathemat-
ics. arXiv preprint arXiv:2302.12433, 2023.

Lukas Biewald. Experiment tracking with weights and biases. https://wandb.ai, 2020. URL
https://www.wandb.com/. Software available from wandb.com.

Garett Cunningham, Razvan C Bunescu, and David Juedes. Towards autoformalization of
mathematics and code correctness: Experiments with elementary proofs. arXiv preprint
arXiv:2301.02195, 2023.

DeepSeek-AI and Anonymous Contributors. DeepSeek-R1: Incentivizing reasoning capability in
LLMs via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

Guoxiong Gao, Yutong Wang, Jiedong Jiang, Qi Gao, Zihan Qin, Tianyi Xu, and Bin Dong. Herald:
A natural language annotated lean 4 dataset. arXiv preprint arXiv:2410.10878, 2024.

Guoxiong Gao, Yutong Wang, Jiedong Jiang, Qi Gao, Zihan Qin, Tianyi Xu, and Bin Dong.
Herald: A natural language annotated lean 4 dataset. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
Se6MgCtRhz.

Maarten Grootendorst. Bertopic: Neural topic modeling with a class-based tf-idf procedure. arXiv
preprint arXiv:2203.05794, 2022.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations (ICLR), 2022. URL https://openreview.net/
forum?id=nZeVKeeFYf9.

Gérard Huet, Gilles Kahn, and Christine Paulin-Mohring. The coq proof assistant a tutorial. Rapport
Technique, 178:113, 1997.

Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée
Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs. arXiv preprint arXiv:2210.12283, 2022.

Albert Q Jiang, Wenda Li, and Mateja Jamnik. Multilingual mathematical autoformalization. arXiv
preprint arXiv:2311.03755, 2023.

Yang Li, Dong Du, Linfeng Song, Chen Li, Weikang Wang, Tao Yang, and Haitao Mi. Hunyuan-
prover: A scalable data synthesis framework and guided tree search for automated theorem prov-
ing. arXiv preprint arXiv:2412.20735, 2024.

Zhenwen Liang, Linfeng Song, Yang Li, Tao Yang, Feng Zhang, Haitao Mi, and Dong Yu. Mps-
prover: Advancing stepwise theorem proving by multi-perspective search and data curation. arXiv
preprint arXiv:2505.10962, 2025.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia,
Danqi Chen, Sanjeev Arora, et al. Goedel-prover: A frontier model for open-source automated
theorem proving. arXiv preprint arXiv:2502.07640, 2025.

Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying Liu, Ye Yuan, Haiming Wang, Wei Ju,
Chuanyang Zheng, Yichun Yin, Lin Li, et al. Fimo: A challenge formal dataset for automated
theorem proving. arXiv preprint arXiv:2309.04295, 2023.

Haoxiong Liu, Jiacheng Sun, Zhenguo Li, and Andrew C Yao. Efficient neural theorem proving via
fine-grained proof structure analysis. arXiv preprint arXiv:2501.18310, 2025a.

12

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://wandb.ai
https://www.wandb.com/
https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=Se6MgCtRhz
https://openreview.net/forum?id=Se6MgCtRhz
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xiaoyang Liu, Kangjie Bao, Jiashuo Zhang, Yunqi Liu, Yu Chen, Yuntian Liu, Yang Jiao, and Tao
Luo. Atlas: Autoformalizing theorems through lifting, augmentation, and synthesis of data. arXiv
preprint arXiv:2502.05567, 2025b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Con-
ference on Learning Representations (ICLR), 2019. URL https://openreview.net/
forum?id=Bkg6RiCqY7.

Jianqiao Lu, Yingjia Wan, Yinya Huang, Jing Xiong, Zhengying Liu, and Zhijiang Guo.
Formalalign: Automated alignment evaluation for autoformalization. arXiv preprint
arXiv:2410.10135, 2024a.

Jianqiao Lu, Yingjia Wan, Zhengying Liu, Yinya Huang, Jing Xiong, Chengwu Liu, Jianhao Shen,
Hui Jin, Jipeng Zhang, Haiming Wang, et al. Process-driven autoformalization in lean 4. arXiv
preprint arXiv:2406.01940, 2024b.

The mathlib Community. The lean mathematical library. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, POPL ’20. ACM, January 2020. doi:
10.1145/3372885.3373824. URL http://dx.doi.org/10.1145/3372885.3373824.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language.
In Automated Deduction–CADE 28: 28th International Conference on Automated Deduction,
Virtual Event, July 12–15, 2021, Proceedings 28, pp. 625–635. Springer, 2021.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Junshu Pan, Wei Shen, Shulin Huang, Qiji Zhou, and Yue Zhang. Pre-dpo: Improving data
utilization in direct preference optimization using a guiding reference model. arXiv preprint
arXiv:2504.15843, 2025.

Nilay Patel, Rahul Saha, and Jeffrey Flanigan. A new approach towards autoformalization. arXiv
preprint arXiv:2310.07957, 2023.

Lawrence C Paulson. Isabelle: A generic theorem prover. Springer, 1994.

Zhongyuan Peng, Yifan Yao, Kaijing Ma, Shuyue Guo, Yizhe Li, Yichi Zhang, Chenchen Zhang,
Yifan Zhang, Zhouliang Yu, Luming Li, et al. Criticlean: Critic-guided reinforcement learning
for mathematical formalization. arXiv preprint arXiv:2507.06181, 2025.

Auguste Poiroux, Gail Weiss, Viktor Kunčak, and Antoine Bosselut. Improving autoformalization
using type checking. arXiv preprint arXiv:2406.07222, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
Zhe Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical rea-
soning via reinforcement learning for subgoal decomposition. arXiv preprint arXiv:2504.21801,
2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y.K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300v3.

Michio Sugeno. Theory of fuzzy integrals and its applications. Doctoral Thesis, Tokyo Institute of
Technology, 1974.

13

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://dx.doi.org/10.1145/3372885.3373824
https://arxiv.org/abs/2402.03300v3
https://arxiv.org/abs/2402.03300v3

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
tayush Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on the
putnam mathematical competition. arXiv preprint arXiv:2407.11214, 2024.

Songjun Tu, Jiahao Lin, Xiangyu Tian, Qichao Zhang, Linjing Li, Yuqian Fu, Nan Xu, Wei He, Xi-
angyuan Lan, Dongmei Jiang, et al. Enhancing llm reasoning with iterative dpo: A comprehensive
empirical investigation. arXiv preprint arXiv:2503.12854, 2025.

Leandro von Werra, Lewis Schmid, Thomas Wolf, and Lewis Tunstall. Trl: Transformer reinforce-
ment learning. https://github.com/huggingface/trl, 2020-2024.

Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya
Huang, Jing Xiong, Han Shi, Enze Xie, et al. Lego-prover: Neural theorem proving with growing
libraries. arXiv preprint arXiv:2310.00656, 2023.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large
formal reasoning models with reinforcement learning. arXiv preprint arXiv:2504.11354, 2025.

Tianduo Wang, Shichen Li, and Wei Lu. Self-training with direct preference optimization improves
chain-of-thought reasoning. arXiv preprint arXiv:2407.18248, 2024.

Jonata Wieczynski, Giancarlo Lucca, Eduardo Borges, Asier Urio-Larrea, Carlos López Molina,
Humberto Bustince, and Graçaliz Dimuro. Application of the sugeno integral in fuzzy rule-based
classification. Applied Soft Computing, 167:112265, 2024.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-Art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with large language models. Advances in Neural Informa-
tion Processing Systems, 35:32353–32368, 2022.

Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue
Zhang, Xuan Lu, Qiushi Du, et al. Deepseek-prover-v1. 5: Harnessing proof assistant feedback
for reinforcement learning and monte-carlo tree search. arXiv preprint arXiv:2408.08152, 2024.

Ran Xin, Chenguang Xi, Jie Yang, Feng Chen, Hang Wu, Xia Xiao, Yifan Sun, Shen Zheng, and
Kai Shen. Bfs-prover: Scalable best-first tree search for llm-based automatic theorem proving.
arXiv preprint arXiv:2502.03438, 2025.

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and Dawn
Song. Formal mathematical reasoning: A new frontier in AI. In Proceedings of the International
Conference on Machine Learning, 2025a.

Xiao-Wen Yang, Zhi Zhou, Haiming Wang, Aoxue Li, Wen-Da Wei, Hui Jin, Zhenguo Li, and Yu-
Feng Li. Carts: Advancing neural theorem proving with diversified tactic calibration and bias-
resistant tree search. In The Thirteenth International Conference on Learning Representations,
2025b.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook:
A large-scale lean problem set formalized from natural language math problems. arXiv preprint
arXiv:2406.03847, 2024.

Xueliang Zhao, Wenda Li, and Lingpeng Kong. Decomposing the enigma: Subgoal-based demon-
stration learning for formal theorem proving. arXiv preprint arXiv:2305.16366, 2023.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for
formal olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021.

14

https://github.com/huggingface/trl
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A TRAINING DETAILS FOR Mathesis-Autoformalizer

The training of our Mathesis-Autoformalizer model, which employs Group Relative Policy Op-
timization (GRPO), involves several key hyperparameters and implementation choices as briefly
mentioned in Section 3.1. The policy πθ is initialized from Kimina-Autoformalizer (Wang et al.,
2025). We employ Parameter-Efficient Fine-Tuning (PEFT) via Low-Rank Adaptation (LoRA) (Hu
et al., 2022), configured with a rank r = 16 and α = 32. LoRA is applied to the attention projection
layers of the base model. The optimization is performed using the AdamW optimizer (Loshchilov
& Hutter, 2019) with a learning rate of 1 × 10−6 and gradient checkpointing to manage memory
usage.

For the GRPO algorithm itself, we sample G = 14 candidate formal statements per input natural
language problem x. The Kullback-Leibler (KL) divergence coefficient β, which regularizes the
policy updates against the reference SFT policy, is set to 0.04. The policy model πθ is updated once
per sampling/exploration phase (i.e., µ = 1, meaning updates occur after each group of G genera-
tions for a given input x is processed and rewarded). To enhance efficiency, reward computations
(syntactic verification via Lean and semantic assessment) are parallelized using Python’s asyncio
library. The overall training pipeline is managed using the Hugging Face transformers (Wolf
et al., 2020) and trl (von Werra et al., 2020-2024) libraries. Experiment progress and results are
logged using Weights & Biases (Biewald, 2020).

B DATA DEDUPLICATION AND CONTAMINATION ANALYSIS

To ensure that the performance gains reported in this paper reflect genuine reasoning capabilities
rather than memorization, we conducted a rigorous data contamination analysis. This section details
our methodology and presents the overlap statistics of our main evaluation benchmark, GAOKAO-
FORMAL, as well as standard benchmarks MiniF2F and PutnamBench against our three primary
training data sources: the In-house Gaokao Corpus (Combined), Goedel P-Set, and Lean Workbook.

B.1 METHODOLOGY

We implemented a strict lexical overlap detection pipeline to audit potential data leakage. The
process consists of the following steps:

1. Normalization: All text data from both training and evaluation sets was normalized using
NFKC normalization, converted to lowercase, and had whitespace collapsed.

2. N-gram Extraction: We extracted all 50-character substrings (windows) starting at word
boundaries from the evaluation benchmarks.

3. Matching: An Aho-Corasick automaton was constructed to stream the training corpora
and detect matches efficiently.

For each problem statement i in the evaluation set, we calculated an overlap ratio ηi, defined as:

ηi =
matched windows

total windows
(3)

Based on this ratio, problems were categorized into three levels of contamination:

• Clean: ηi < 0.2 (Less than 20% overlap)
• Suspicious: 0.2 ≤ ηi < 0.8 (Between 20% and 80% overlap)
• Dirty: ηi ≥ 0.8 (Greater than 80% overlap, indicating near-duplicates)

B.2 RESULTS

We performed the analysis for GAOKAO-FORMAL, MiniF2F-test, and PutnamBench against three
distinct training subsets.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Analysis 1: Overlap against In-house Gaokao Corpus. Table 4 shows the contamination rates
against our primary In-house Gaokao training corpus (Combined English Informal). GAOKAO-
FORMAL shows negligible overlap (1.2% suspicious, 0% dirty). Similarly, MiniF2F and Putnam-
Bench are entirely clean relative to this training source.

Table 4: Contamination Analysis against In-house Gaokao Corpus (Combined)

Evaluation Set Total Entries Clean (< 0.2) Suspicious ([0.2, 0.8)) Dirty (≥ 0.8)

Gaokao-Formal 495 489 (98.8%) 6 (1.2%) 0 (0.0%)
MiniF2F 488 488 (100%) 0 (0.0%) 0 (0.0%)
PutnamBench 661 661 (100%) 0 (0.0%) 0 (0.0%)

Analysis 2: Overlap against Goedel P-Set. Table 5 presents the results against the Goedel P-
Set. While GAOKAO-FORMAL remains robust with zero dirty matches, existing benchmarks show
significant contamination. Specifically, MiniF2F contains 31 dirty proofs (6.4%) and PutnamBench
contains 41 dirty proofs (6.2%), suggesting that models trained on the P-Set may memorize solutions
for these standard benchmarks.

Table 5: Contamination Analysis against Goedel P-Set

Evaluation Set Total Entries Clean (< 0.2) Suspicious ([0.2, 0.8)) Dirty (≥ 0.8)

Gaokao-Formal 495 479 (96.8%) 16 (3.2%) 0 (0.0%)
MiniF2F 488 372 (76.2%) 85 (17.4%) 31 (6.4%)
PutnamBench 661 433 (65.5%) 187 (28.3%) 41 (6.2%)

Analysis 3: Overlap against Lean Workbook. Table 6 displays the overlap against the Lean
Workbook dataset. All three evaluation benchmarks are virtually free of contamination from this
source, with GAOKAO-FORMAL showing 100% clean entries.

Table 6: Contamination Analysis against Lean Workbook

Evaluation Set Total Entries Clean (< 0.2) Suspicious ([0.2, 0.8)) Dirty (≥ 0.8)

Gaokao-Formal 495 495 (100%) 0 (0.0%) 0 (0.0%)
MiniF2F 488 486 (99.6%) 2 (0.4%) 0 (0.0%)
PutnamBench 661 660 (99.8%) 1 (0.2%) 0 (0.0%)

In conclusion, our analysis confirms that GAOKAO-FORMAL is not contaminated by any of the
training datasets used in this work. Furthermore, the detection of ”Dirty” samples in MiniF2F and
PutnamBench against the Goedel P-Set highlights the importance of using fresh, uncontaminated
benchmarks like GAOKAO-FORMAL to accurately assess generalization in formal theorem proving.

B.3 CONTAMINATION ANALYSIS AGAINST PRETRAINING CORPORA

To further ensure that the performance on Gaokao-Formal reflects genuine reasoning capabilities
rather than memorization of pretraining data, we conducted an extensive contamination analysis
against major open-source pretraining corpora. Specifically, we checked for N-gram overlap against
The Pile (Pile-train), DCLM-baseline, and five snapshots of CommonCrawl (CC-2025-05 through
CC-2025-21).

As shown in Table 7, Gaokao-Formal exhibits 0.0% “Dirty” matches (defined as ≥ 80% 50-char N-
gram overlap) across all evaluated pretraining datasets. This confirms that the benchmark problems
were not seen during the pretraining phase of standard base models.

C DETAILS OF GAOKAO-FORMAL BENCHMARK

Problem-Type Diversity Unlike benchmarks that may filter out problem types with less devel-
oped theorem libraries (e.g., geometry, combinatorics), Gaokao-Formal includes all such problems

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Benchmark Pile-train DCLM-base CC-25-05 CC-25-08 CC-25-13 CC-25-18 CC-25-21
Dirty (%) Dirty (%) Dirty (%) Dirty (%) Dirty (%) Dirty (%) Dirty (%)

Gaokao-Formal 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Reference Benchmarks:
AIME 2025 0.0 0.0 0.0 0.0 0.0 N/A N/A
AMC 2023 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TruthfulQA 0.1 0.1 1.0 N/A N/A N/A N/A

Table 7: Contamination analysis of Gaokao-Formal against massive pretraining corpora. “Dirty”
indicates the percentage of samples with ≥ 80% overlap. Dash (–) indicates no data available for
that snapshot. Gaokao-Formal remains entirely clean across all sources.

MiniF2F
NL: If x and y are positive integers for which 2x3y = 1296, prove that x+ y = 8.
FL: theorem amc12b 2004 p3 (x y : N) (h0 : 2 ˆ x * 3 ˆ y = 1296) : x + y = 8 := by sorry
Gaokao-Formal
NL: Let m be a positive integer, and let a1, a2, · · · , a4m+2 be an arithmetic sequence with a non-
zero common difference. If two terms ai and aj (i < j) are removed from the sequence such
that the remaining 4m terms can be evenly divided into m groups, and each group of 4 numbers
forms an arithmetic sequence, then the sequence a1, a2, · · · , a4m+2 is called an (i, j)−separable
sequence. For m ≥ 3, prove that the sequence a1, a2, · · · , a4m+2 is a (2, 13)−separable sequence.
FL: theorem gaokaoformal g4 (m : N) (hm : 1 ≤ m) (a : N → R) (ha: ∃ (d:R), d ̸= 0 ∧ (∀
(n:N), (n≥ 1 ∧ n ≤ 4*m+1) → a (n+1) = a n + d)) (sep: (N × N) → Prop) (h sep: ∀ (i j:N), (i≥ 1
∧ i¡j ∧ j ≤ 4*m+2) → sep (i,j) = (∃ (f : N → N), (∀ (h:N), (h ≥ 1 ∧ h ≤ 4*m+2 ∧ h̸=i ∧ h̸=j) →
(f h ≥ 1 ∧ f h ≤ m)) ∧ (∀ (g:N), let S := {h:N — h ≥ 1 ∧ h ≤ 4*m+2 ∧ h ̸= i ∧ h ̸= j ∧ f h = g};
(g ≥ 1 ∧ g ≤ m) → (Nat.card S = 4 ∧ (∃ (p: N→ S), (∀ (k l:N), (k ≥ 1 ∧ k ≤ 4 ∧ l ≥ 1 ∧ l ≤ 4 ∧
k ̸= l) → p k ̸= p l) ∧ (∃ (d’:R), ∀ (k:N), (k≥ 1 ∧ k ≤ 3) → a (p (k+1)) = a (p k) + d’)))))) : m ≥ 3
→ sep (2,13) := by sorry

Figure 5: Comparison of the complexity of the problems in MiniF2F v.s. Gaokao-Formal

as they appear in the Gaokao exams. This encourages broader model capabilities and contributes to
the expansion of Lean 4’s Mathlib (mathlib Community, 2020).

Autoformalization Complexity Many existing benchmarks simplify or exclude problems where
the primary challenge lies in the formalization. Gaokao-Formal retains these, especially in its “com-
prehensive questions” category, which features problems with multi-domain concepts, novel defini-
tions within question, or complex linguistic structures, thereby rigorously testing LLM abstraction
capabilities. We provide an example of this kind of question, comparing it with one MiniF2F ques-
tion in Figure 5.

Remark on Copyright Status: The Gaokao dataset utilized in this study consists of publicly
available official statistics, administered by government authorities. It is classified as government-
managed public information and does not involve privately copyrighted material.

D AGGREGATION DESIGN AND SENSITIVITY ANALYSIS OF THE
LEANSCORER

D.1 EVALUATION AND ABLATION OF AGGREGATION METHODS FOR LEANSCORER

To demonstrate the superiority of our Sugeno integral-based scoring framework, we conduct com-
prehensive ablation studies comparing our design against four alternative aggregation strategies:

Binary Aggregation: A strict one-vote-veto scheme, where the presence of any minor or major
inconsistency results in a score of 0, and only all-M1 evaluations receive a score of 1.0:

S(L) =

{
0 ∃li ∈ {M½,M0}
1 otherwise

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 6: Performance comparison of aggregation methods Sugeno, Binary, Uniform, Geometric,
and OWA across thresholds ranging from 0.1 to 1.0.
Table 8: Comparison of aggregation methods, reporting best threshold, Precision, Recall, F1, Accu-
racy, and Average Accuracy (± standard deviation)

Methods Best Threshold Precision Recall F1 Accuracy Average Acc
Sugeno (ours) 0.6 0.94 0.89 0.92 0.91 0.85(±0.046)
Binary N/A 0.97 0.6 0.74 0.77 0.77(± 0.0)
Uniform 0.8 0.94 0.89 0.92 0.91 0.72(± 0.117)
Geometric 0.6 0.89 0.89 0.89 0.87 0.82 (± 0.069)
OWA 0.9 0.91 0.89 0.90 0.89 0.66 (± 0.105)

Uniform Averaging: A straightforward arithmetic mean that assigns equal weight to all subtask
evaluations:

S(L, f) =
1

n

n∑
i=1

f(li)

with the mapping function f(M1) = 1.0, f(M½) = 0.5, and f(M0) = 0.

Geometric Mean: An aggregation method more sensitive to low scores, computing the geometric
mean of all evaluation scores. To avoid a zero product, M0 is mapped to 0.01.

S(L, f) =

(
n∏

i=1

f(li)

)1/n

with the mapping function f(M1) = 1.0, f(M½) = 0.5, and f(M0) = 0.01.

Ordered Weighted Averaging (OWA): A position-weighted approach that emphasizes higher-
ranked evaluations, with weights decreasing linearly. Here, we adopt a descending order f(lπ(1)) ≥
f(lπ(2)) ≥ · · · ≥ f(lπ(n)):

S(L, f) =

n∑
i=1

wi · f(lπ(i))

where wi =
n−i+1∑n

j=1 j ,
∑n

i=1 wi = 1, and the mapping function is f(M1) = 1.0, f(M½) = 0.5, and

f(M0) = 0.

Figure 6 presents the performance curves of all scoring methods across thresholds ranging from
0.1 to 1.0, while Table 8 summarizes each method’s optimal performance and stability, reporting
both mean and standard deviation of accuracy across thresholds. Our Sugeno integral achieves the
best overall performance, with an F1 score of 0.92 and accuracy of 0.91 at the threshold of 0.6.
It also exhibits the highest mean accuracy and the lowest standard deviation, highlighting both its
effectiveness and robustness.

Among the methods, the Binary method achieves the highest precision of 0.97 but suffers from a
very low recall of 0.6, which reduces its F1 score to 0.74. The Uniform averaging method attains
a competitive F1 score of 0.92 and accuracy of 0.91, but its performance varies substantially with
the threshold, reflected by a mean accuracy of 0.72 and a standard deviation of 0.117, which, in
contrast to the more stable performance of the Sugeno method (accuracy mean = 0.85, std = 0.046).
The Geometric mean demonstrates moderate stability but does not surpass the Sugeno integral in

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

the best F1 or accuracy, whereas OWA achieves strong F1 and accuracy at the optimal threshold but
exhibits the poorest stability, with a mean accuracy of 0.66 and a standard deviation of 0.105.

Our Sugeno-based aggregation method offers two key advantages: First, it provides a strong balance
by maintaining consistently high precision of 0.94 and recall of 0.89. It avoids the over-rejection
characteristic of Binary aggregation and achieves the best F1 and accuracy among all methods,
reaching 0.92 and 0.91, respectively. Second, it demonstrates robustness and operational flexibility.
The method attains the highest mean accuracy of 0.85 and the lowest standard deviation of 0.046,
highlighting its superior stability relative to all baselines. Moreover, as illustrated in Figure 6, it
remains effective across a wide threshold range from 0.1 to 0.7, enabling flexible threshold selection
and reducing the need for extensive tuning during deployment.

D.2 SENSITIVITY ANALYSIS OF LEANSCORER

We conduct a sensitivity analysis to assess the impact of the evaluation mapping value for partially
correct subtasks, f(M½), on semantic correctness checking performance. As shown in Table 9,
we vary f(M½) ∈ {0.1, 0.2, ..., 0.9}, while keeping f(M1) = 1.0 and f(M0) = 0 fixed. We
observe that the F1 score remains stable at 0.92 for f(M½) values in the range [0.1, 0.5], indicating
robustness to the exact scaling of partial credit. As the value increases beyond 0.5, the F1 score
shows a slight degradation, dropping to 0.88 when f(M½) ∈ [0.6, 0.9]. These results suggest that
our metric is relatively robust to the choice of partial reward, we set f(M½) = 0.5 in all experiments.

Table 9: Sensitivity of F1 Score to the Value of f(M½)

f(M½) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F1 Score 0.92 0.92 0.92 0.92 0.92 0.88 0.88 0.88 0.88

The robustness of LeanScore to the value of f(M½) arises from two factors. First, its max-min ag-
gregation over sorted prefix subsets means small changes to f(M½) rarely affect which subset yields
the maximum, unless the changes significantly alter the ordering. Second, the fuzzy measure µ(s)
assigns zero to any set containing an M0 label, making LeanScore more sensitive to fully incorrect
outputs than to partial ones. Nevertheless, the partial credit remains critical—by distinguishing M½
from M0, LeanScore captures finer-grained differences in output quality, especially in borderline
cases, which would otherwise be treated the same if both were mapped to 0.

We also conduct a sensitivity analysis on the parameter δ used in fuzzy measure µ(s), and observe
that the F1 score is not sensitive to the choice of δ.

E PROMPT TEMPLATES

Prompt for Autoformalization (used by all baseline models except Herald)

You are an expert in formal mathematics. Your task is to translate the given natural language mathematical statement into a formal Lean
4 theorem.
[Natural language statement]:
{statement}
Please convert this statement into a precise formal Lean 4 theorem. Follow these guidelines:

1. Start with theorem followed by a unique name or the provided ID if available

2. Define the types of all variables (e.g., a : R for real numbers)

3. Use appropriate mathematical symbols and notation

4. End with := by sorry to indicate the proof will be completed later

5. Your formalization must exactly capture the mathematical meaning of the statement

Formal Lean 4 theorem:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Prompt for LLM-as-a-Judge Semantic Check

You will receive a natural language math problem statement, along with its formal statement in LEAN 4 and, in some cases, a description
of mathematical terms. Please evaluate whether the formal LEAN statement appropriately translates the natural language statement based
on the following criteria. They are considered different if any of the criteria are not satisfied.

1. Key Elements: The fundamental mathematical components, including variables, constants, operations, domain, and codomain are
correctly represented in LEAN code.

2. Mathematical Accuracy: The mathematical relationships and expressions should be interpreted consistently during translation.

3. Structural Fidelity: The translation aligns closely with the original problem, maintaining its structure and purpose.

4. Comprehensiveness: All conditions, constraints, and objectives stated in the natural language statement are mathematically in-
cluded in the LEAN translation.

When doing evaluation, break down each problem statement into components, match the components, and evaluate their equivalence.
Think step-by-step and explain all of your reasonings. Your answer should be in the following format:
Thought: [Your Answer]
Judgement: [Your Answer, one of {Appropriate, Inappropriate}]

Prompt for Subtask Decomposition in LeanScorer

Help me list the conditions and conclusions in this problem (using specific mathematical formulas), without solving it:
Here is an example:
[Problem]: The sequence {an} satisfies a1 = 1, a2 = 2, an+2 = 2an+1 − an + 2. Let bn = an+1 − an. Prove that {bn} is
an arithmetic sequence.
[Conditions and Conclusions]:
Conditions:

1. a1 = 1

2. a2 = 2

3. ∀n ≥ 1, an+2 = 2an+1 − an + 2

4. ∀n ≥ 1, bn = an+1 − an

Conclusion:

• {bn} is an arithmetic sequence, i.e., ∃d ∈ R, ∀n ≥ 1, bn+1 − bn = d.

Now, please help me extract the conditions and conclusions for this problem in the same way (using specific mathematical formulas),
without solving it:
[Problem]: {informal statement}
[Conditions and Conclusions]:

Prompt for LLM-based Evaluation in LeanScorer

Here is a math question and a lean 4 statement. Compare the conditions and conclusions in this code with the mathematical ones,
matching them one by one to see if the formal statement is an appropriate translation of the mathematical condition by assigning one
of three tags (Match; Minor inconsistency; Major inconsistency). Then, audit for missing/implicit conditions. Judge with extremely
strict standards—any minor inconsistency will be considered a mismatch. Special attention to triangle angle-side correspondence. If the
question explicitly mentions opposite angles/sides, this correspondence must be clearly stated and correct.
Stop immediately after evaluating all pairs. Do not summarize or analyze further.
Output Format:
{one-shot example}
—————–
Question:
{informal statement}
Mathematical conditions and conclusions:
{math conditions}
Lean 4 formal statement:
{formal statement}
Output:

One-shot Example for LeanScorer (LLM-based Evaluation)

Let’s compare the mathematical conditions and conclusions with the Lean 4 formal statement one by one:
1. q is a natural number greater than 1:

• Math: q ∈ N, q > 1.

• Lean: (hq : 1 < q).

• Match: Match .

2. n is a natural number greater than 1:
• Math: n ∈ N, n > 1.

• Lean: (hn : 1 < n).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

• Match: Match .

3. Set M = {0, 1, 2, . . . , q − 1}:

• Math: M is explicitly defined as this set.

• Lean: (M : Finset N := Finset.range q).

• Detailed interpretation: Finset.range q is {0, 1, ..., q - 1}.

• Match: Match .

4. Set A definition:

• Math: A = {x | x =
∑n

i=1 xiq
i−1, xi ∈M}.

• Lean: A : Set N := {x | ∃ (x vec : N → N),
(∀ i, x vec i ∈ M) ∧ x =

∑
i in Finset.range n,

x vec(i + 1) * q ˆ i}.

• Detailed interpretation: In Lean, x vec is indexed from 1 to n (since i + 1 ranges from 1 to n), but the math defines xi

for i = 1, 2, . . . , n. This is actually consistent, but the Lean representation is slightly more general (allowing x vec to be
a function on all naturals, but only using x vec (i + 1) for i in Finset.range n). The Lean definition is technically
correct but slightly more abstract than the math. However, it captures the same idea.

• Match: Minor inconsistency .

5. s, t ∈ A with specific expansions:

• Math: s =
∑n

i=1 aiq
i−1, t =

∑n
i=1 biq

i−1, with ai, bi ∈M .

• Lean: s =
∑

i in Finset.range n, a (i + 1) * q ˆ i,
t =

∑
i in Finset.range n, b (i + 1) * q ˆ i,

with ∀ i, a i ∈ M and ∀ i, b i ∈ M.

• Detailed interpretation: The Lean version uses a (i + 1) and b (i + 1) to match the indexing in the sum, which is
equivalent to the math but slightly indirect. The math directly uses ai for i = 1, . . . , n, while Lean uses a i for all i but only
evaluates at i + 1. The Lean version is correct but not a literal translation.

• Match: Minor inconsistency .

6. an < bn:

• Math: an < bn.

• Lean: (hab : a n < b n).

• Match: Match .

7. Conclusion s < t:

• Math: s < t.

• Lean: s <= t.

• Match: Major inconsistency .

Check for missing conditions / implicit conditions:

• No missing conditions / implicit conditions

• Match: Match .

F CASE STUDY

F.1 SAMPLE LEAN4 PROOF CODE WITH APPLY? THAT CAN PASS LEAN VERIFIER

We observe that a small number of LLM-generated proofs contain artifact-inducing tactics such as
apply?, a phenomenon also noted in proofs generated by provers proposed in prior work (Ren et al.,
2025). These tactics may occasionally yield Lean-accepted proofs without providing a valid proof
strategy, thereby risking inflation of reported pass rates.

To prevent artifact-induced proofs from inflating pass rates, in our experiments, every generated
proof undergoes post-verification filtering. After Lean kernel verification, we re-parse the proof and
inspect for artifact-inducing tactics such as apply?. Any proof containing such tactics is discarded.
Only proofs that both verify under the Lean kernel and contain no artifacts are counted as successful.

1 import Mathlib
2 import Aesop
3 set_option maxHeartbeats 0

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

4 open BigOperators Real Nat Topology Rat
5 /-- Prove that the number $\sumˆn_{k=0}$ $\binom{2n+1}{2k+1}2ˆ{3k}$ is not divisible by

5 for any integer $n\ge0.$-/
6 theorem imo_1974_p3 (n : N) :
7 ¬5 |

∑
k in Finset.range (n + 1), Nat.choose (2 * n + 1) (2 * k + 1) * 2 ˆ (3 * k)

:= by
8 intro h
9 have h := h

10 rw [Nat.dvd_iff_mod_eq_zero] at h
11 have h : (

∑
k in Finset.range (n + 1), Nat.choose (2 * n + 1) (2 * k + 1) * 2 ˆ (3 *

k)) % 5 ̸= 0 := by
12 -- We will show that the sum modulo 5 is never 0 by examining the terms and their

contributions.
13 have h : (

∑
k in Finset.range (n + 1), Nat.choose (2 * n + 1) (2 * k + 1) * 2 ˆ (3

* k)) % 5 = 2 := by
14 -- This is a placeholder for the actual proof, which would involve detailed

combinatorial arguments.
15 rw [← Cardinal.natCast_inj]
16 apply?
17 omega
18 omega

F.2 SAMPLE LEAN4 PROOF CODE WITH TRUE THAT CAN PASS LEAN VERIFIER

The statement “True” represents a tautology that lacks meaningful logical content for formal ver-
ification purposes. This formulation is problematic because it evaluates to true regardless of the
truth value of any preceding hypothesis—both ”False → True” and ”True → True” yield true under
standard logical implication. Consequently, this creates a degenerate proof scenario where success-
ful verification provides no substantive evidence regarding the validity of the original hypothesis.
Even when the underlying mathematical claim is incorrect, the proof system will indicate success,
rendering the formalization unsuitable for rigorous mathematical verification and undermining the
epistemic value of the formal proof process. Any statement containing such a proof goal is discarded
and considered as failed.

1 import Mathlib
2 import Aesop
3 set_option maxHeartbeats 0
4 open BigOperators Real Nat Topology Rat
5 /-Let $f(x)=x - aeˆ{x}(a\\in R)$, $x\\in R$. It is known that the function $y = f(x)$

has two zeros x_1, x_2, with $x_1 < x_2$. Prove that $\\frac{x_2}{x_1}$
increases as a decreases.-/

6 theorem question (f : R → R → R) (hf : f = fun a x => x - a * Real.exp x)
7 (x1 x2 : R → R) (hx1 : ∀ a, f a (x1 a) = 0) (hx2 : ∀ a, f a (x2 a) = 0)
8 (h1 : ∀ a, x1 a < x2 a) (h2 : ∀ a, ∀ b, a < b → x2 a / x1 a < x2 b / x1 b) :
9 True := by

G QUALITY ASSESSMENT OF GAOKAO-FORMAL BENCHMARK
ANNOTATIONS

This section documents the annotation protocol and quality-control procedures used in constructing
the human-verified subset of the Gaokao-Formal dataset.

Annotator Expertise. The annotation team consists of three highly qualified domain experts: an
International Mathematical Olympiad (IMO) team member (Annotator 1) and two Lean formaliza-
tion specialists (Annotator 2-3) from QS Top-10 mathematics departments. All annotators have
extensive experience in both competitive mathematics and formal theorem proving.

Inter-Annotator Agreement. To assess annotation reliability, we conducted an agreement study
on the subset evaluated in Section 4.1, comprising 98 samples independently annotated by all three
experts. The resulting statistics are:

• Fleiss’ Kappa: 0.7545

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

• Perfect three-way agreement: 81.63% (80/98 samples)
• Pairwise agreement rates:

– Annotator 1 vs 2: 92.86%
– Annotator 1 vs 3: 83.67%
– Annotator 2 vs 3: 86.73%

Disagreement Resolution Protocol. For the 18 samples (18.37%) with initial disagreement, a
consensus-based review process was employed. The three annotators jointly reviewed the natural-
language problem, the proposed Lean formalization, and the underlying mathematical reasoning.
Discussions continued until unanimous agreement was achieved for each case.

Subset Construction. The 98-problem subset used for semantic evaluation in Section 4.1 was
constructed by randomly sampling natural-language questions from the complete Gaokao-Formal
dataset and generating corresponding formal statements using an LLM autoformalizer (Herald-
Autoformalizer). All formalizations were then labeled according to the above protocol. The per-
formance metrics reported in Section 4.1 (i.e., Precision, Recall, F1) are computed on this expert-
validated subset.

H QUALITY EVALUATION OF AUTOFORMALIZER OUTPUT BEFORE AND
AFTER DPO

In this section, we investigate whether the improvements in provability observed after DPO train-
ing result from generating semantically aligned, prover-friendly formalizations or from producing
weakened statements that simplify the original problems. We evaluate this question through three
complementary analyses: human expert assessment of formalization quality, prover-based difficulty
analysis, and qualitative case studies. Our findings show that the gains stem from the generation of
more aligned, prover-friendly formalizations rather than by any weakening of the original mathe-
matical content.

Table 10: Human evaluation of the quality of formalizers before and after the DPO training

Dataset Before DPO After DPO
Gaokao-Formal 70% (35/50) correct 78% (39/50) correct
MiniF2F 90% (45/50) correct 92% (46/50) correct

Human Expert Evaluation We randomly selected 100 problems (50 from Gaokao-Formal and 50
from MiniF2F) that passed LeanScorer validation. A panel of Lean 4 experts conducted a blind
evaluation of semantic correctness for formalizations generated before and after DPO. Experts were
instructed to mark a statement as incorrect if the autoformalizer produced a weakened statement
that did not preserve the original problem’s difficulty or semantic meaning. Results are shown in
Table 10. After DPO, correctness on Gaokao-Formal rises from 70% to 78%, and on MiniF2F from
90% to 92%. These results indicate that DPO improves semantic correctness without weakening
statements or introducing incorrect semantic content. The findings are consistent with the LC+LSC
improvements reported in Table 3, where DPO raises LC+LSC from 67% to 71% on Gaokao-Formal
and from 25% to 30% on Putnam.

Table 11: Average proof length by provers of statements generated before and after DPO training

Dataset Before DPO After DPO
Gaokao-Formal 31.26 33.40
MiniF2F 24.97 25.44

Prover-Based Difficulty Analysis Assessing the difficulty of a formal statement is inherently hard
because difficulty cannot be determined reliably from the statement alone. A reasonable proxy is to
measure how hard it is for a prover to solve the problem. To this end, we compute the average proof

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 12: Statement cases generated before and after DPO training

Natural Language Statement Model Formal Statement
Factory A produces a certain product at
a constant rate of x kg/hour
(production condition requires
1 ≤ x ≤ 10), and the profit obtainable
per hour is 100(5x+ 1− 3

x
) yuan.

Prove that the profit obtained from
producing a kg of this product is
100a(5 + 1

x
− 3

x2).

Before DPO

Pass Rate: 0/32

After DPO

Pass Rate: 28/32

Given that the line l intersects the

ellipse C: x2

3
+ y2

2
= 1 at two distinct

points P (x1, y1) and Q(x2, y2), and
the area of △OPQ is S△OPQ =

√
6
2

,
where O is the origin. Prove that
x2
1 + x2

2 and y2
1 + y2

2 are both
constants.

Before DPO

Pass Rate: 0/32

After DPO

Pass Rate: 14/32

Given the set Sn = {X|X =
(x1, x2, · · · , xn), xi ∈ {0, 1}, i =
1, 2, · · · , n} (where n ≥ 2). For
A = (a1, a2, · · · , an),
B = (b1, b2, · · · , bn) ∈ Sn, the
difference between A and B is defined
as A−B =
(|a1 − b1|, |a2 − b2|, · · · , |an − bn|);
the distance between A and B is
defined as d(A,B) =

∑n
i=1 |ai − bi|.

Prove that ∀A,B,C ∈ Sn,
A−B ∈ Sn, and
d(A− C,B − C) = d(A,B).

Before DPO

Pass Rate: 0/32

After DPO

Pass Rate: 19/32

length, measured as the number of tactics generated by DeepSeek-Prover-V2 7B in non-CoT mode
with 128 sampled attempts per problem. Problems for which the prover finds no successful proof
are excluded. The metric is defined as:

Avg Proof Length =
1

N

N∑
i=1

 1

|Pi|
∑
p∈Pi

length(p)


where N is the number of problems and Pi is the set of successful proofs for problem i. Ta-

ble 11 shows that the average proof length increases after DPO training for both Gaokao-Formal
and MiniF2F. This indicates that DPO does not lead the model to generate weakened or trivially
solvable statements.

Case Study We provide case studies in Table 12, comparing formalizations generated by Mathesis
before and after DPO (referred to as “pre-DPO” and “post-DPO” statements, respectively). All pre-
DPO and post-DPO statements in Table 12 are all semantically equivalent to their natural language
counterparts. Rather than generating weakened statements, the post-DPO model tends to generate

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

more prover-friendly formalizations that are easier for theorem provers to understand and prove. For
each formal statement, we report the pass rate of proofs generated by the prover with a budget of 32
attempts. Detailed interpretations are as follows:

• Case 1: The pre-DPO formalization unnecessarily employed integral calculus to compute
total profit, introducing proof complexity where direct algebraic methods sufficed. The
post-DPO version eliminated this computational overhead.

• Case 2: The pre-DPO statement relied on complex measure-theoretic constructs such
as MeasureTheory.volume (convexHull R {P, Q}), whereas the post-DPO
version directly applied geometric area formulas. This shift from abstract mathematical
machinery to concrete computational approaches significantly improved provability.

• Case 3: The pre-DPO version introduced excessive hypotheses and intricate definitions us-
ing set notations that complicated proof unfolding. The post-DPO version streamlined both
the hypothesis structure and definitional complexity, reducing the cognitive and computa-
tional burden on theorem provers.

Overall, our human expert evaluation, prover-based difficulty analysis, and qualitative case stud-
ies support that the DPO training we performed enhances semantic alignment and generates more
prover-friendly formalizations rather than causing a tendency toward weakened statements.

I THE USE OF LARGE LANGUAGE MODELS

Following ICLR guidelines, we wish to clarify our use of Large Language Models (LLMs). Note that
the research ideas, methodology, and experimental design presented in this paper were developed
entirely by the human authors.

LLMs were used primarily in the following ways:

• Model Training and Inference: The core training process of the proposed model, as well as
the experimental evaluations, involved utilizing it for inference.

• Benchmark Data Generation: The English translation and formalized Lean 4 formal state-
ment in the Gaokao-Formal benchmark released in this study was initially generated by an
LLM. These initial outputs were subsequently meticulously manually edited, verified, and
rewritten by the authors to ensure accuracy and quality.

We emphasize that the LLM was used solely as a tool, and the authors take full responsibility for the
entire content of the paper, including all data and text that was initially generated by the LLM and
subsequently modified.

25

	Introduction
	Related work
	Mathesis: Autoformalization-Driven Formal Proving
	Mathesis-Autoformalizer: Advancing Autoformalization with Reinforcement Learning
	LeanScorer: Fine-Grained Semantic Evaluation for Autoformalization
	The Gaokao-formal Benchmark

	Experiments
	Semantic Consistency Evaluation Framework
	Autoformalization from Natural Language
	Autoformalization-Driven Theorem Proving

	Limitation
	Conclusion
	Training Details for Mathesis-Autoformalizer
	Data Deduplication and Contamination Analysis
	Methodology
	Results
	Contamination Analysis against Pretraining Corpora

	Details of Gaokao-formal Benchmark
	Aggregation Design and Sensitivity Analysis of the LeanScorer
	Evaluation and Ablation of Aggregation Methods for LeanScorer
	Sensitivity Analysis of Leanscorer

	Prompt Templates
	Case Study
	Sample Lean4 Proof Code With Apply? That Can Pass Lean Verifier
	Sample Lean4 Proof Code With True That Can Pass Lean Verifier

	Quality Assessment of Gaokao-Formal Benchmark Annotations
	Quality Evaluation of Autoformalizer Output Before and After DPO
	The Use of Large Language Models

