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Abstract

We design robust Approximate Nearest Neighbor (ANN) algorithms for a setting
where an adversary controls both the dataset and () adaptive queries.

Our primary contribution is a general framework that reduces search problems
to a corresponding robust decision problem via a binary search tree construction.
Given an oblivious decider, we robustify it by applying the Differential Privacy
framework of Hassidim, Kaplan, Mansour, Matias, and Stemmer (JACM 2022),
enhanced by privacy amplification via subsampling. For ANN specifically, the
main challenge is designing the oblivious decider itself. To that end, we propose a
sampling-based Locality-Sensitive Hashing (LSH) approach, inspired by the work
of Aumiiller, Har-Peled, Mahabadi, Pagh, and Silvestri (TODS 2022) on fair ANN.
This method is made efficient against worst-case data distributions via a novel
concentric LSH construction, which also yields an improved algorithm for the
exact fair ANN problem. The result is a simple, general, and efficient algorithm for
all but a narrow class of degenerate datasets.

For the low-dimensional regime (d = O(y/Q)), we complement our general
framework with specialized algorithms that provide a powerful “for-all” guarantee:
correctness on every possible query with high probability. We propose novel
metric covering constructions to simplify and improve prior approaches, enhancing
performance for ANN in both Hamming and /,, spaces.

1 Introduction

Randomness is a crucial tool in algorithm design, enabling resource-efficient solutions by circum-
venting the worst-case scenarios that plague deterministic approaches [45]]. The classical analysis of
such algorithms assumes an oblivious setting, where data updates and queries are fixed beforehand.
However, this assumption breaks down in the face of an adaptive adversary, who can issue queries
based on the algorithm’s previous outputs. These outputs can leak information about the algorithm’s
internal randomness, allowing an adversary to construct query sequences that maliciously break the
algorithm’s performance guarantees [37,[34].

Significant progress has been made in designing adversarially robust algorithms for estimation
problems, where the output is a single value [44} 38} 20, 8 [15| 154} 25]. A common defense involves
sanitizing the output, for example, by rounding or adding noise, often borrowing techniques from
differential privacy to ensure the output reveals little about the algorithm’s internal state [38, |8, [14]].
However, these techniques do not directly apply to search problems. In a search problem, the
algorithm must return a specific element from a given dataset. Outputting a raw data point can leak
substantial information, and there is no obvious way to add noise or otherwise obscure the output
without violating the problem’s core constraint of returning a valid dataset element.
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Perhaps the most fundamental search problem is Approximate Nearest Neighbor (ANN) Search,
which has numerous applications ranging from data compression and robotics to DNA sequencing
and anomaly detection [47} 42| [39] 152} 51}, [17]. The goal is to build a data structure that, for any
query point, quickly finds a data point that is nearly the closest. Achieving the desired trade-off of
sublinear query time and near-linear space has largely been possible only through randomization. The
most prominent family of randomized algorithms for ANN is based on Locality-Sensitive Hashing
(LSH), which has been the subject of a long and fruitful line of research in the oblivious setting
(33,141} 1113117014, 2L 15 140, [18].

The vulnerability of these classical randomized structures was recently highlighted by Kapralov,
Makarov, and Sohler [43]], who demonstrated an attack on standard LSH data structures. They showed
that an adaptive adversary can use a polylogarithmic number of queries to learn enough about the
internal LSH hashes to force the algorithm to fail. This attack leverages the very phenomenon that
the algorithm’s outputs (specific data points) reveal information about its random choices. Inspired
by their work, which relies on certain structural properties of the dataset (e.g., an “isolated” point),
we consider a powerful adversarial model where the adversary chooses both the dataset and the
sequence of queries, posing a stringent test for robustness. We study the following question:

Can search problems like ANN be solved efficiently in the face of adversarial queries?

1.1 Our Results and Techniques

We provide an extensive study of adversarially robust algorithms for ANN. If the adversary provides
@ adaptively chosen queries to the algorithm and the metric space M is d-dimensional, we examine
two regimes:

1.1.1 d = w(+/Q): Reduction to Decision Problems and Differential Privacy

Our main technical contribution is a meta-algorithm that solves search problems robustly by reducing
them to an underlying robust decision problem. For ANN, this decision problem is simply: given a
query ¢, does any “close” neighbor exist within a distance of 7? The framework first robustifies an
oblivious algorithm for the decision problem by applying techniques from Differential Privacy [38].
With a robust decider A in hand, we solve the search problem by building a binary search tree of
A-instances on different parts of the input dataset.

A key challenge, however, is designing the initial oblivious decider for ANN. Standard LSH algo-
rithms are unsuitable because of a critical ambiguity: for a query g, if the nearest neighbor lies in
the annulus between distance r and cr, LSH may either return that neighbor or report that no point
within distance 7 exists. Since both outcomes are valid for approximate search, LSH cannot be used
to reliably decide if the r-ball around q is empty. To overcome this, we draw inspiration from work on
fair ANN [10], which aims to sample uniformly from all valid answers. We develop a sampling-based
LSH algorithm that resolves this ambiguity, creating an efficient oblivious decider.

The performance of this sampling decider, however, depends on the density ratio of points between
the cr-ball and the r-ball for a query q. An adversary can craft a dataset where this ratio is large,
severely degrading performance. To mitigate this, we introduce a concentric annuli construction. We
partition the (7, cr)-annulus into several smaller, concentric sub-annuli and apply our sampling LSH
within each one. A simple counting argument guarantees that at least one of these sub-annuli must
have a low point-density ratio, allowing the decider to terminate efficiently.

One limitation of our accelerated method is the existence of degenerate datasets (see[Figure TJ), which
an adversary could construct to force a worst-case running time. We formalize this condition in
and argue that it corresponds to a contrived data distribution unlikely to appear in
practice. For all non-degenerate datasets, our method remains efficient:

Theorem 1.1. Let K > 2 be a parameter such that the input dataset S is not K-degenerate under
Then, there exists an adversarially robust ANN algorithm using O(,/Q - n*tP+1/K)
bits of space and O(dn*'/ %) time per query.

Our method further provides an improved algorithm for the problem of sampling a near-neighbor
uniformly at random (fair ANN), which we present in|Appendix E
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Theorem 1.2. Given there exists an algorithm that on query ¢ € M outputs a point in

Bg(q,r") uniformly at random, where v’ € [r, cr], and c,r are the LSH parameters. If such points do
not exist, the algorithm outputs “_L” with high probability. The algorithm uses O(n“‘%ﬂ’ -logn)
bits of space overall and O(dnp+1/K log n) time per query.

1.1.2 d = O(y/Q): For-all Algorithms

For low-dimensional metric spaces, we develop algorithms for ANN that provide a powerful for-all
guarantee: with high probability, the data structure correctly answers every possible query ¢ € M.
Our approach builds on a discretization technique applied to an LSH data structure, a paradigm
explored in prior work [23],124]. We refine this line of research by introducing a novel, simpler metric
covering construction, improving the space complexity by a logarithmic factor, and using sampling
to improve the time complexity by a factor of d.

Theorem 1.3. For the (c,r)-ANN problem in the d-dimensional Hamming Hypercube, there exists
an algorithm that correctly answers all possible queries with at least 0.99 probability. The space
complexity is O(d - n* T°+°M)Y and query time is O(d - nP), where p =

1
2c—1"

Theorem 1.4. For the (c,r)-ANN problem in the (R, (,,) metric space, there exists an algorithm
that correctly answers all possible queries with high probability. The pre-processing time and space

are O(nT) and the query time is O(T/d), where:

(10 + ¢)?
161c? — 20c — 100"

T:O(d.nﬂ’ (dlogd+logn)) and o = )

Remark (The Price of For-All Algorithms). Despite their remarkable guarantees, for-all algorithms
have significant drawbacks. Their space complexity scales by a factor of d, making them intractable
for high-dimensional metric spaces. This is a direct consequence of the large number of hash
functions required to ensure a tiny probability of error for any query. Furthermore, these algorithms
lack the generality of their adaptive counterparts; they are metric-space dependent and must be
tailored to the specific metric space being used.

2 Preliminaries

Definition 2.1 (Metric Balls). Consider a metric space M = (M, || -
a metric ball Bs(x,r) on S of radius r centered at x € M as:

Bs(z,r):={p e S||lz—pll <r}

), and let S C M. We define

We often write n(x,r) := |Bg(z,r)|.

In the Nearest Neighbors problem, we seek to find a point in our input dataset that minimizes the
distance to some query point. Randomized algorithms are better suited to tackle the approximate
version of the problem, which can be used to solve the exact version through boosting:

Definition 2.2 (ANN). Let ¢ > 1 and r > 0 be positive constants. In the (c,r)-Approximate
Nearest-Neighbors Problem (ANN) we are given as input a set S C M with |S| = n and a sequence
of queries {qi}?:l with g; € M. For each query q;, if there exists p € Bg(qi,r), we are required to
output some point p' € Bg(q;, cr). If Bs(qi, cr) = 0, we are required to output L. In the case where
Bs(gi,r) = 0 # Bs(qi,cr) we can either output a point from Bg(q;, cr) or L. Our algorithm
should successfully satisfy these requirements with probability at least 2/3.

A prevalent method for solving ANN is Locality Sensitive Hashing (LSH). Intuitively, we seek a
hash function that hashes close points together and far points apart with high probability.

Definition 2.3 (Locality Sensitive Hashing, [35]). A hash family H of functions mapping M to a
set of buckets is called a (c,r,p1, p2)-Locality Sensitive Hash Family (LSH) if the following two
conditions are satisfied:
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e Ifz,y € M have ||z — y|| <, then Prpey[h(z) = h(y)] > p1.
o Ifx,y € M have ||z — y|| > cr, then Prpey[h(z) = h(y)] < pa.

where p1 >> po are parameters in (0,1). We often assume that computing h in a d—dimensional
metric space requires O(d) time.

Given a construction of a (¢, 7, p1, p2)-LSH for a metric space, we can solve the (¢, 7)~ANN problem
by amplifying the LSH guarantees. This is done via an “OR of ANDs” construction: we sample
L = n” hash functions hy, ..., hy, for p € (0, 1), each hashing p € M to {0, 1}* by concatenating
the outputs of k = [log, /,,, n]| “prototypical” LSH functions in H whose range is {0, 1}, as shown
in [35]. This results in the following Theorem:

Theorem 2.4. If a d—dimensional metric space admits a (¢, r, p1, p2)—-LSH family, then we can solve
the (c,T)—~ANN problem on it using O(dn'*?) space and O(dnP) time per query, where

_ log p1
log p2

As a byproduct of this construction, it is a standard observation that on any query and with high
probability, no single bucket contains many outlier points outside of Bg(q, cr) [3536].

Lemma 2.5. Let D = (hy, ..., hy,) be an LSH data structure consisting of L = O(logn - n?) hash
functions that map the metric space M to {0,1}*, where k = [logy /,, n|. Consider some query
q € Mandlet Sy, (g = {p € S| hi(q) = hi(p)} be the set of points in S which are hashed in the
same bucket as q under h;, for i € [L]. Then, with high probability we have that:

[Sh, ()| < 3-|Bs(q,cr)|

Furthermore, if p € Bgs(q,r), then it is contained in at least one bucket with high probability. In
other words, it is true that for some i € [L], with high probability, p € S, ().

3 A Robust ANN Meta-Algorithm

In this section we give an adversarially robust ANN “meta-algorithm” that outperforms “for-all”
algorithms when d >> @. For necessary theorems and notation on Differential Privacy, please refer to

Append

3.1 Step 1: A Robust ANN “Decider”

Consider the following decision ANN problem:

Given a point dataset S C M and some radius parameter r > 0, on query ¢ € M we wish to
output 1 if and only if Bg(q,r) # (. Suppose A is an algorithm that can solve this problem with
probability at least 9/10 over an obliviously chosen input query sequence. Let us suppose that
A first pre-processes S to generate a data-structure D, which it then uses to answer the queries.
This algorithm is an oblivious ANN decider.

Remark (Deciders are not Necessarily Robust!). Ir might be intuitively enticing to think that an
oblivious decider is also robust. After all, an adversary providing queries knows the answer that they
will, with high probability, receive from the algorithm, which is not true for the search version of the
problem. However, the decisions alone of the algorithm can be more than enough to infer valuable
information about its internal randomness. In particular, if the algorithm maintained a collection of
hash tables in typical LSH-fashion, the attack of [43|] can be performed on the decider equally well,
especially if they have control over the input set S.

We can design a Q—adversarially robust decider Age. by using A, while only increasing the space
by a factor of 1/@Q. Adhering to the framework of [38]], we maintain L = O(1/Q) copies of the data
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structures D1, ..., Dy, generated by A using L independent random strings, and then for each query ¢
we combine the answers of A privately.

As opposed to the original framework of [38]], we do not need to use a private median algorithm,
which simplifies the analysis and removes its dependency on that primitive. To keep the query time

small, we utilize privacy amplification by subsampling (Theorem B.7)).

Algorithm 1 The robust decider Ay (based on an oblivious decider A)

1: Inputs: Random string R =ryorgo---rg.
2: Parameters: Number of queries (), number of copies L, number of sampled indices k.
3: Receive input dataset S C U from the adversary, where n = |S|.
4: Initialize Dy, ..., Dy, where D; < A(S) on random string r;.
5: fori =1to @ do
6: Receive query ¢; from the adversary.
7: J; + Sample k indices in [L] with replacement.
8  Leta;; < Di(q;) € {0,1} and N; := ¢ [{j € J; | as; = 1}|.
9: LetJ/\}Z- = N, + Lap (%)
10 Output ]l[]\AfZ > 1]

Theorem 3.1. Let A be an oblivious decider algorithm for ANN that uses s(n) space and t(n) time
per query. Let § € (0,0.995) and suppose we set L = 24001og™®(1/6) - \/2Q and k = log(Q/9).
Then, the algorithm Ay is an adversarially robust decider that succeeds with probability at least
1 — ©(8) using s(n) - O (v/Q) bits of space and O (t(n)) time per query.

To prove we argue that for all 7 € [Q)], at least 1% of the k answers a;; are correct, even

in the presence of adversarially generated queries. To do this, we first need to show that the algorithm
is differentially private with respect to the input random strings R. Our analysis is included in full in

Append

3.2 Step 2: From Robust Deciding to Robust Searching

In this section, we convert Ag.. to an adversarially robust search algorithm. Let us assume for
simplicity that n = | S| is a power of two. We create a binary tree 7 over the entire input dataset .S.
Each node in the tree corresponds to a segment [r;, ¢;] in S that has size a power of 2. We create
independent instances of A4, in each node, each instance being initialized only for the dataset points
inside that node’s corresponding segment. When processing a query g;, we first forward it to the root
node. If it answers with a 1, it means that Bg(g;, ) # 0, so at least one of the two children will also
return a 1. We can thus perform a root-to-leaf traversal to find and output an element of S' that lies in
f(S, ;). On the other hand, if f(.S,g;) = 0, the query at the root should tell us right away.

Theorem 3.2. Let A be an oblivious ANN decider that uses s(n) bits of space and answers each
query in t(n) time. Suppose that the space complexity s(n) can be written as s(n) = O(n?®) for
some s > 1. Then, there exists an adversarially robust algorithm A’ search ANN problem that uses

O(V/Q - n®) bits of space and has a query time of O(t(n)).

Proof. Before we execute our algorithm, we boost the probability of success for Age. to 1 — %%Ogn

by scaling J by - 1;g — in{Theorem 3.1} As a result, on any given query, all the copies of Agec in any

node are correct with probability at least %, by a union bound.

Correctness Fix some query g; that the adversary makes and suppose that Bg(q;,r) # (). Let
p € Bs(qi,r) and consider the leaf v in the binary tree containing p in its segment. Then, in the path
from the root (7) to v, we claim that all nodes have to answer 1 with high probability, regardless of
the adversary’s adaptivity, in which case we will definitely find p.
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Algorithm 2 A (Q—adversarially robust search algorithm

Receive input dataset S C U from adversary B, where n = |S|.
Let (s1, ..., S5, ) be an arbitrary ordering of S.
Create a rooted binary tree 7 over [n] with log, n levels. Let 7(7) be the root of 7.
for each node v = [, ¢] € T do
Initialize an independent copy Aj,. of Ag.. with input dataset {s,, ..., s;} C S.

fori=1to Q do
Receive query ¢; from B.
if QUERY (Agg ), q) = 0 then
Output L

10: v 7r(T).
11: while v # leaf do

P R DAER N

©

12: v, <— right child of v.

13: if QUERY (A, q) = 1 then

14: V< Uy

15: else

16: V4 Uy

17: Output s € S where {s} is the element corresponding to leaf v in 7.

Letp € Sp g := {5, ..., 5¢} for some node w = [r, £] on this path. Then, suppose, without loss of
generality, that p € S [z Then we must have

BS[“#] (4i,7) S Bsi, (4is7)

at means that bg qi, T , which 1mplies that this 1s also the case along the path from
Th hB[ (), which implies that this is also th long the path fi

)
P2
r(7T) to v, by induction on the depth of the tree.

Since the error of each copy of Agec all copies in the tree are correct with probability at

is —2—

3nlogn’
least %, even against an adversarially generated query sequence. Hence, the aforementioned path
from the root to v only has answers consisting of ones, meaning that we produce a point in f(.5, ¢;).
On the other hand, if Bg(g;, ) = 0, the query to the root of the tree returns 0 with probability close
to 1, and so we correctly output L.

Runtime For the preprocessing, suppose a single copy of Aqec ran on a dataset S of size n takes
O(+/Q - s(n) - polylog(nQ)) = O(+/Q - n?) bits of space. Then the space of the search algorithm

can be bounded as: - (J@ [n 49 (%) L (%) L D

o[ T GY) oot
=0 (n\/é zi@ﬂl)

-0 (n"VQ) _

For the query time, we visit log, n vertices per query, so if we take O(¢(n)) time in total, which
completes the proof. O

3.3 Step 3: Building the Oblivious ANN Decider via LSH Sampling

In this section we build the oblivious ANN decider .A. For this we cannot simply run the familiar LSH
algorithm and output 1 whenever a point is found or a 0 otherwise. That is because LSH guarantees
to output a point from Bg(q, cr) when Bg(q,r) # () and is allowed to output a point from Bg(q, cr)
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when Bg(q,7) = 0. Our algorithm then would have no way of knowing which case a point in
Bg(q,cr) \ Bs(g, ) is a signal for. It is clear that we need a different approach.

To create the decider algorithm, we modify the query algorithm that acts on top of the LSH data
structure as follows: Given L = O(n” log n) hash functions within an LSH data structure, we sample
one uniformly at random. Let h; be the randomly sampled hash function, and let h;(q) € {0, 1}*
be the bucket that query ¢ is hashed in. Let Sy, (4) be the set of points in S that are also hashed to
h;(q). We sample one of those points uniformly at random. If we hit a point in Bg(q, r) we output it.

n(q,cr)
n(q,r) )

Otherwise, we start the whole sampling process anew. If we haven’t output 1 after O(L logn -
repetitions, then we output 0.

Algorithm 3 Oblivious (¢, 7)-ANN via Sampling

1: Input: A dataset S of n points, parameters c, r.

2: Let p = p(c) be the LSH parameter for this metric space.

3: Let L + O(n”logn) and k = ©(logn).

4: TInitialize LSH data structures Dy, .., Dy, with hash functions h; : M — {0,1}*.

5: for each query ¢ € M do

6:  for at most O(Llogn - "((qq’cr))) iterations do

7: Sample ¢ € [L] uniformly at random. Sample a point p from S}, (4) uniformly at random.
8: if p € Bg(q, r) then

9: Output 1 for query ¢ and proceed to the next query.
10: Output 0 and continue to the next query.

Theorem 3.3. Assume that for each query ¢ € M, we know that ((qqcr)) < N whenn(q,r) # 0.
Then, there exists an oblivious ANN decider algorithm using O(nl‘“’) bits of space and O(dn” -N)
time per query.

Proof. We calculate the probability that we successfully sample a point in Bg(gq, 7). Let x be the
point we sample using one round of the above procedure, and let 7, be the hash function we pick.
Suppose for a point p € S that B, = {i € [L] | h;(p) = h;(¢)} is the set of hash functions that hash
p the same as ¢q. We have that:

Prix € Bs(q,r)] = Y Prpr=pl= > Y Prlx=p|i.=i] Prfi, =1

pEBs(q,r) pEBs(q,r) =1

L
:% > Y Prfr=pli,=1]
pEBg(q,r) =1
1
I X 273

pEBs(q,r) 1€B) ‘ h’(q)‘

1
> S B 2 1P
|BS (q7 T) |
~ 3L-[Bs(g,cr)
where the last two inequalities follow with high probability from which also implies
that | B,| > 1 for all p € Bg(q,r). Now, the probability we do not sample a point p € Bg(q, r) after

T trials is at most:
T
1 _IBs(@n)l N o -spfpstenl 1
3L - |Bs(g,cr)| - n
because we set:
3L -logn - |Bgs(q,cr)]

T =
|Bs(q, qr)|




236

237

238

239

240

241
242

243
244
245
246
247

248
249

250
251

252
253

254
255

256

Thus, we conclude that a point in Bg(q, 7) is returned with high probability. The space complexity

of the algorithm is O(Ln) = O(n'**), while the runtime per query is O(%"r()q’“)) =O(n” -

%), as desired. i

3.4 Step 4: Putting it all together

Combining the three previous steps, we reach the following result:

Theorem 3.4. There exists an adversarially robust ANN algorithm using 6(\/@ -n1*P) bits of space
and O(dn®” - %) time per query.
4 Improvements in Robust and Fair ANN via Concentric LSH

The disadvantage of the sampling approach of [Algorithm 3| let us call it Lsumpiing— is that its query

runtime depends on the fraction 7;(&05), which could be really large. In this section we present a

method for reducing the runtime under some mild assumptions.

Ti41

Figure 1: Left: In green lies the set Bs(g,r;), and blue represents the annulus that extends to Bs(g, Ti+1).

Right: The degenerate case we explicitly disallow in[Theorem 4.1}

Let K be a parameter that we will soon resolve. Consider the following sequence of radii be-
tween r and cr, interspersed so that the ratio between two consecutive ones is constant: rg =
P71, TE_1, T = cr are defined as r; = ¢ - r;_; for i € [K], where ¢/ = c'/%. We create K
instances of Lgampling Where the i-th instance £;, for ¢ € [K], is initialized with parameters (r;, ¢’).
Our algorithm then runs each instance £; to decide whether Bgs(q,7;) # 0. If we observe an instance

running for longer than @(n”%) timesteps, we stop the execution and switch to the next instance.

As a result, our algorithm can decide whether Bg(q, 7 1) = () efficiently. However, there exists a
degenerate case in which the time complexity is large, as shown in If Bs(q,rx—2) =0,
then it could be the case that Bg(q,7x—1) # 0 and Bgs(q,cr) \ Bs(g, 7k —1) contains many points.
This case is significantly rarer than the generic upper bound on % we assumed earlier, and we

,C
ar
explicitly avoid it in our analysis:

Assumption 1 (K -Degenerate Datasets). Suppose input dataset S € M™ and parameter K €
7.y are such that if n(q, 7 _2) = 0 and n(q, 7 1) > 1 then n(q,cr) < n'/% -n(q,rg_1).

Theorem 4.1. Assuming that dataset S is not K-Degenerate for some integer K > 2, there exists
an algorithm that on query q € M outputs 1[Bg(q,7) # (0] with high probability, while using
O(n**+%+¢ . logn) bits of space overall and O(dn?'/¥ log n) time per query.
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Algorithm 4 Concentric Annuli LSH: An Improved Oblivious Decider

1: Input: A dataset .S of n points, parameters ¢, r, K.

2: Letc « /K
3: for i € [K] do
4: Initialize an independent copy L; of Lempling On S with parameters (r;, ¢’).
Update Ti+1 = c - .
: for each query ¢ € M do
for i € [K] do

Let (r;,7;+1) be the sub-annulus £; was initialized on.

Run £; for at most 100 - n° /% sample timesteps.

if a point p € Bg(q, ;) is found then

Output 1 and continue to the next query.

andr{ = r.

YRR W

—_—

12: Output 0 and continue to the next query.

Proof. Our algorithm clearly runs in 5(dnp+1/ &) time because we truncate it at that timestep. The

space complexity is implied by Now, given a query g, first consider the case that
foralli € {0,1,..., K — 1} it is true that n(q,r;) # 0. Then, suppose in that case that for all

i €{0,..., K — 1} it holds that:

n(q, riv1)

1
>nkK
n(q,ri)

Then, via a telescoping product we can write:

n(q,cr) B n(q,m1) ' n(q,r2) .n(q,rK_l) ' n(q,cr) ok K .
n(q,r) B n(gq,m0) n(g,m1) n(g,rx—2) n(g,7x-1) >( )

This is a contradiction because:

n(g,cr)

n(q,r)
Thus, Algorithm [4] will, in that case, terminate with output 1. Next, suppose that for all 0 < ¢ <
K — 1 we have that n(g,r;) = 0. Then, we must have that Bg(¢q,7x—1) = (), and Algorithm
correctly outputs 0 with high probability. Finally, let 5 < K — 1 be the minimum index such
that n(q,r;) > 0. If j < K — 1, then £; will quickly and with high probability detect a point
in Bs(q,r;) C Bs(q,7x—1) and output 1. If j = K — 1, then Lgmpiing Will find a point from

<n(gcr) <n

Bs(q,rx—1) in time 6(n” . %) = 6(np+1/K) due to our structural assumption. O

Refining|Theorem 3.4] Combining our concentric LSH approach with the meta-algorithm of the
previous section, we arrive at our initially claimed result:

Theorem 4.2. Let K > 2 be a parameter such that the input dataset S is not K-degenerate. Then,
there exists an adversarially robust ANN algorithm using O(/Q - n* TP+ K bits of space and
O(dnP*+/ 5 time per query.

5 Conclusion

We studied efficient algorithms for Approximate Nearest Neighbor (ANN) queries against adaptive
adversaries. Our approach uses a binary search tree to reduce the search task to a robust decision
problem which we solve using techniques from Differential Privacy. We implement the decider
with a sampling-based Locality-Sensitive Hashing (LSH) scheme accelerated by a concentric annuli
construction. As a byproduct, this construction also yields a more efficient algorithm for exact fair
ANN. Our approach constitutes a simple, universal framework for solving search problems efficiently
against adaptive adversaries. Future work involves adapting our framework to other search problems
and establishing computational lower bounds for robust search.
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A Related Work

The challenge of designing algorithms robust to adversarial queries is well-studied, particularly in
privacy and statistics [12} 49} [11], where Differential Privacy is a central tool for ensuring robustness
[28L127]. The question of adversarial robustness was formally introduced to streaming algorithms by
Ben-Eliezer et al. [[16], motivated by attacks on linear sketches [37], and has since inspired a long
line of work on robustifying various streaming algorithms [38} 120} 44} 21} 1501 54} [15]].

Our work is most directly inspired by the framework of Hassidim et al. [38]], who used Differential
Privacy to solve estimation problems robustly, and by Cherapanamjeri et al. [25]], who applied this
framework with low query time overhead. While we adapt a similar approach, their methods are
fundamentally limited to estimation and don’t extend to search problems like NNS, where the output
must be a specific dataset element. The difficulty of robust search is further highlighted by Beimel et
al. [14], who established lower bounds showing that robust algorithms for certain search problems
are inherently slower than their oblivious counterparts, motivating our investigation.

Different works further reinforce the unique challenges of robust search. Work on robust graph
coloring, for example, also requires techniques beyond simple noise addition due to its discrete output
space [20} [13]]. Our approach is also distinct from Las Vegas LSH constructions [46} 53]]. While these
methods guarantee no false negatives, they remain vulnerable to adversaries who can inflate their
expected runtime [43]. Our focus, in contrast, is on robustifying traditional Monte Carlo algorithms.

Finally, our approach builds on the use of discretization and net-based arguments to achieve ’for-all’
guarantees for ANN. This technique was previously used for robust distance estimation [23]] and
for ANN in conjunction with partition trees [24]. We contribute a simpler and more streamlined
construction that offers a modest performance improvement over this prior work.

A.1 Comparison with [32]

Our work was conducted concurrently and independently with that of Feng et al. [32], which also
addresses adaptively solving search problems. The key similarities and differences are:

1. Methodology: The papers use fundamentally different approaches. Feng et al. employ a
reduction to the private selection problem that is tightly coupled with the structure of DP
noise. In contrast, we introduce a general “search-to-decision” meta-algorithm that treats
the differentially private component as a black-box primitive.

2. Assumptions and Performance: The algorithms have different performance dependencies.
Their runtime and space complexity both scale with a parameter s, which bounds the
near-neighbor density: |Bg(g,cr)| < s. In contrast, our algorithm’s space complexity
has no such dependence on data density, making it strictly better in scenarios where s
is large. Our runtime is also independent of s, degrading only for degenerate datasets
(Assumption T)—a condition we argue is less restrictive. On the other hand, our algorithm
increases the exponent by an additive factor of %, which in practice may be negligibleﬂ
While the scaling differs, both methods share a /() factor in space complexity from the use
of DP.

Table 1: Comparison with Feng et al. [32]]

Metric | Our Algorithm | Feng et al. [32]
Query Time O(d - nPHV/EY| O(d - s-nP)
Space OG- n P /) [ O(/Q 5 01 17)

B Review of Differential Privacy

Our work leans heavily on results from differential privacy, so we give the necessary definitions and
results here.

"For instance, if p = 0.25 and K = 100.

2This holds for non-degenerate datasets as defined in
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B.1 Definition of differential privacy

Definition B.1 (Differential Privacy). Let A be any randomized algorithm that operates on
databases whose elements come from some universe. For parameters ¢ > 0 and 6 € [0, 1], the
algorithm A is (e, §)—differentially private (DP) if for any two neighboring databases S ~ S’ (ones
that differ on one row only), the distributions on the algorithm’s outputs when run on S vs S’ are
very close. That is, for any S ~ S’ and any subset of outcomes T of the output space of A we have:

Pr[A(S) e T) <e® -PrlA(S) € T] + 4§

B.2 The Laplace Mechanism and its properties

Theorem B.2 (The Laplace Mechanism, [30]). Let f : X* — R be a function. Define its sensitivity
{ to be an upper bound to how much f can change on neighboring databases:

VS~ S f(S) = f(S) < ¢

The algorithm that on input S € X* returns f(S) + Lap (f) is (¢,0)-DP, where

is the Laplace Distribution over R.

We will make use of the following concentration property of the Laplace Distribution:

Lemma B.3. Form > 1, let Zy,...Z,, ~ Lap (\) be iid random variables. We have that:

Pr [mwzlxx Z; > AMIn(m) + t)} <et

=1

B.3 Properties of differential privacy

Differential Privacy has numerous properties that are useful in the design of algorithms. The
following theorem is known as “advanced adaptive composition” and describes a situation when DP
algorithms are linked sequentially in an adaptive way.

Theorem B.4 (Advanced Composition, [31]). Suppose algorithms Ay, ..., Ay, are (¢,0)-DP. Let A’
be the adaptive composition of these algorithms: on input database x, algorithm A; is provided with

x, and, for i > 2, with the output y;_1 of A;—1. Then, for any ¢’ € (0,1), Algorithm A'is (€,6)-DP

with:
E=c-/2kIn(1/8") + 2ke* and 6 = ké + &'

The next theorem dictates that post-processing the output of a DP algorithm cannot degrade its
privacy guarantees, as long as the processing does not use information from the original database.

Theorem B.5 (DP is closed under Post-Processing). Let A: U™ — Y™ and B: Y™ — Z" be
randomized algorithms, where U, Y, Z are arbitrary sets. If A is (¢, §)-DP, then so is the composed
algorithm B(A(")).

The following theorem showcases the power of DP algorithms in learning.

Theorem B.6 (DP and Generalization, [11,29]). Let = € (0,1/3) and 6 € (0,e/4). Let A be a
(e,8)-DP algorithm that operates on databases in X™ and outputs m predicate functions h; : X —

{0,1} for i € [m]. Then, if D is any distribution over X and S consists of n > siz - log (%Tm) iid
samples from D, we have for all i € [m)] that:

LIS

S hi(e) = E [hi(o)

zeS

1
P -
S l E
h;«A(S)

> 105] <

14



491
492
493
494

495
496
497
498

499

500
501
502

503
504

505
506

507

508
509

510
511

512

514
515
516

517
518

519

520

521
522

In other words, a privately generated predicate is a good estimator of its expectation under any
distribution on the input data. A final property of privacy that we will use is a boosting technique
through sub-sampling:

Theorem B.7 (Privacy Amplification by Subsampling, [19,25])). Let A be an (e, §)-DP algorithm
operating on databases of size m. For n > 2m, consider an algorithm that for input a database of
size n, it subsamples (with replacement) m rows from the database and runs A on the result. Then
this algorithm is (&', 6')—-DP for

, bem <6am> 4m

-0

e'=—"— and § =exp
n n

C Proof of

In this section we include a formal proof of on the construction of a robust decider
algorithm.

Lemma C.1. Let ¢ = 0.01 and § € (0,0.995). Algorithm Ay is (€,)-DP with respect to the
string of randomness R.

Proof. We analyze the privacy of the algorithm A, given in Algorithm [T with respect to the string
of randomness R, which we interpret as its input. Suppose we let

;o 5
24/2Q1n(1/6)

For all 7 € [Q], we claim that the response to query g; is (¢/, 0)-DP with respect to R. This is because

the statistic N; defined in Line 8]of Algorithm 1] has sensitivity 1/k and therefore by

after applying the Laplace mechanism in Line we have that releasing N; is (1,0)-DP with respect

to the strings R. The binary output based on comparing ]\Afi with the constant threshold 1/2 is still

(1,0)-DP by post-processing (Theorem B.5).

Since L > 2k, using the amplification by sub-sampling property (Theorem B.7), we get that each
iteration is (¢’, 0)-DP, because for large enough @ we have:

6k  Gc log & 5 + 6e logQ

L 94.10g1,/2Qn (1 4,/2Q1n

Finally, by adaptive composition (Theorem B.4)), after () adaptive steps our resulting algorithm is
(¢”,0)-DP where:

3 52

e = 2an< >+Q( = +@§5

for ¢ < 2Iné~*, which is satisfied for § € (0,0.995). Thus, Algorithm Age is (g, d)-DP with
respect to its inputs — the random strings R. [

Next, we show that a majority of the data structures D; output accurate verdicts with high probability,
even against adversarially generated queries.

Lemma C.2. With probability at least 1 — 6, for all i € [Q)], at least 0.8L of the answers a;; are
accurate responses to the decision problem with query q;.

Proof. The central idea of the proof, as it appeared in [38§]], is to imagine the adversary B as a
post-processing mechanism that tries to guess which random strings lead A to making a mistake.

Imagine a wrapper meta-algorithm C, outlined as Algorithm 5] that takes as input the random string
R =riorgo---orp, which is generated according to some unknown, arbitrary distribution R. This
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algorithm C simulates the game between Age. and B: It first runs B to provide some input dataset
S C U to Agec, which is seeded with random strings in R. Then, C uses B to query Aq.. adaptively
with queries (g1, ..., ¢g). At the same time, it simulates A to receive answers ay, ..., a¢ that are
fed back to B. By h the output (a1, ...,aq) is produced privately with respect to R,
regardless of how the adversary makes their queries.

At every step 4, once B has provided ¢; = (qi,...,¢;) and has gotten back ¢ answers (ay, ..., a;)
from Ajgec, our meta-algorithm C post-processes this output history {(g;, aj)}§:1 to generate a
predicate hg : {0,1}* — {0,1}. This predicate tells which strings r € {0,1}* lead algorithm A
to successfully answer query prefix ¢; on input dataset .S, in the decision-problem regime. More
formall

hg(r) = N\ {A(r)(S,q;) = 1[Bs(q;,7) # 0]} )

1<5<i

Algorithm 5 The meta-algorithm C, ran for ¢ steps

1: Inputs: Random string R = r1 o9 o - - - r,, descriptions of Algorithms.4g4.. and B.

2: Simulate B to obtain a dataset S C U.

3: Initialize Age. with random strings (71, ..., 77,) and the dataset S.

4: fori € ) do

5 Simulate 3 to produce a query g; based on the prior history of queries and answers.

6: Simulate A on query ¢; to produce an answer.

7 Compute (via post-processing of query/answer history) predicate hg; () from
8

: Olltpllt (hqﬂl, ceny hqb)

Generating these predicates is possible because hg; only depends on ¢;, which is a substring of the
output history that C has access to. As a result, C can produce hg; by (say) calculating its value for

each value of R exhaustivelyﬂ Because C is only allowed to post-process the query/answer vector
(q1, @1, ..., ¢, a;), the output predicate hy; is also generated in a (&, §)-DP manner with respect to

r1s- 7L, by [Theorem B.5}

Given these Q privately generated predicates, and since L > - log @ for large enough @, by the

e2

generalization property of DP (Theorem B.6) we have that with probability at least 1 — g =1-0(9)

it holds for any distribution R and for all 7 € [Q)] that:

1 & 1
E [ha()] -1 ;h (ry)| <102 = o5 3

But if R is the uniform distribution, then E, % [hg: ()] is simply the probability that A5 gives an
accurate answer on the fixed query sequence ¢;. Since A is an oblivious decider, [Equation 3|implies
that:

9
B Iha ()] = 5 @

Further, + Zle hg: (r;) is the fraction of random strings that lead A5 to be correct. Thus, by

Equation 4] this fraction is at least ({5 — 15) L = 0.8L for all i € [Q]. O

We are now ready to prove the main theorem of this section.

Proof of[Theorem 3.1] Let us condition on the event that[Theorem C.2]holds, which happens with
probability at least 1 — ©(¢). Then, for all ¢ € [Q], NN; is either at least 0.8, when Bg(q;,7) # (), or

3We replace the radius parameter r with 7 briefly in this argument. The symbol 7 is reserved for an arbitrary
random string.
*We assume C has unbounded computational power.
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at most 1 — 0.8 = 0.2, otherwise. By [Theorem B.3] we require that the maximum Laplacian noise
not exceed 0.2 with high probability:

Pr[|Z;| > 0.2] = Pr [|ZZ > %(111(1) +0.2k)| < e 02 )

Since our threshold for deciding is N; := N; + Z; > 0.5, we can see that setting k = Q(log(Q/4))

will make the probability in at most %, implying, by union bound, that Age. outputs the
Q

correct answer at every timestep ¢ € with high probability. O

D Improved Robust ANNS Algorithms with V guarantees

In this section, we will discuss another path to adversarial robustness for search problems —providing
a for-all guarantee. We will focus on the ANN problem for this section, due to its ubiquity and
importance, as well as its amenity to the techniques we discuss.

D.1 A For-all guarantee in the Hamming cube

We present the Hamming Distance ANN case first because it is the most natural for-all guarantee one
can give. This is because the space we are operating over is discrete, and we can easily union-bound
over all possible queries and only incur a cost polynomial to the dimension d of the metric space.

Theorem D.1. There exists an adversarially robust algorithm solving the (c,r)-ANN problem in the
d—dimensional Hamming Hypercube that can answer every possible query correctly with probability

at least 1 — 1/n?. The space requirements are 6(d . n1+p+°(1)), and the time required per query is
O(d? - nP), where p = 1/c.

Proof. First, let us recall the standard LSH in the Hamming Hypercube: We are given a point set
S C {0,1}? with | S| = n. We receive queries ¢ € {0, 1}¢. Our Locality Sensitive Hash family #
is defined as follows: Pick some coordinate i € [d] and hash € {0,1}% according to z; € {0, 1}.
This function h acts as a hyperplane separating the points in the hypercube into two equal halves,
depending on the i-th coordinate. Sampling h uniformly at random from # is equivalent to sampling
i € [d] uniformly at random. We can easily see that A is an (r, cr, p1, p2)-LSH family, as:

>1—Z%:=p1;, whenl|p—gq|[<r

_ _d—llp—qll _
Pr [h(p) - h(q)} - - < 1— % = pa, when Hp_qH > cr

h~H d

We now go through the typical amplification process for LSH families [33]]. Instead of sampling just
one coordinate, we sample k. And instead of sampling just one hash function, we sample L different
ones hy, ..., hy, € H* and require that a close point collides with ¢ at least once. With this scheme,
we know that if we fix ¢ € {0,1}% and p € Bg(q,r) we have:

Pr(3i € [L] : hi(p) = hi(q)] = 1 - (1 - ph)*
Furthermore, if ||p — ¢|| > ¢r, we must have:
Pr[3i € [L] : hi(q) = hi(p)] < Lps

Now, we want to guarantee that with high probability there doesn’t exist any query ¢ € {0, 1}¢ such
that for all points p € Bg(q,r) we have h;(q) # h;(p) for all i € [L]. In other words, we want:

1

n

Pr[3q € {0,1}* : Vp € Bs(q,7) Vi € [L] : hi(p) # hi(q)] <
We can use the union bound to get:
Pr (3¢ € {0,1}* : Vp € Bs(q,7)Vi € [L] : hi(p) # hi(q)
< Y PrivpeBs(q,r)Vi€[L]: hi(p) # hilq)]

qe{0,1}4

—
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So it suffices to establish that for fixed ¢ € {0, 1} we have:

Pr[Vp € Bs(q,7) Vi € [L] : hi(p) # hi(q)] < #

‘We can weaken this statement and union-bound as follows:
Pr[Vp € Bs(q,r) Vi € [L] : hi(p) # hi(q)] < Pr[3p € Bs(q,r) Ai € [L]: hi(p) = hi(q)]
< Z Pr[Ai € [L]: hi(p) = hi(q)]

pEBs(q,r)
<|Bs(g,7)| - (1 = pi)*
<n(l - pp)*
So it suffices to require that:
1
n22d
On the other hand, the expected number of points in S \ Bg(g, cr) that we will see in the same

buckets as q is:

Ellp€ S\ Bs(g,er) [3i€ (L] : hi(p) =hi@)] = D Pr[Bie[L]]hi(p) = hi(e)]
peS\Bs(g,cr)

(1-phH* < (6)

@)
< nLpk ®)

We can now combine [Equation 6and [Equation 8|to work out the values of k and L. First, we want to
get O(L) time in expectation, so we require p5 < 1/n, which gives:

k > log, ,, (n)
Now, let p; = pg. Substituting, we resolve the value of L as:
L > nfdlogn

With that in place, we can see that our algorithm takes O(L) time with high probability. Indeed, let
X be the number of points in S \ Bg(q, ¢r) that are hashed to some common bucket with ¢. Using a
simplified Chernoff bound, we have that:
1 1
—10L _
PI‘[XZlOL]SQ —W<<m

which implies that our runtime per query is O(L) with high probability. As for the value of the
constant p we have by definition that:

_logpr log(l— 5) 1

" logpy  log (1— <) T

Overall, evaluating our hash function requires O(log n) time, and evaluating distances between points
requires O(d) time. We maintain O(d - n” log n) hash tables, meaning that on a single query we
spend O(d? - n* log n) time. For pre-processing, apart from storing the entire dataset in dn space, we
take O(d - n'*+P+°()) space to construct our data structure. O

D.1.1 Improving the query runtime via sampling

We can improve the dependency on d for the query runtime by using sampling to find a good bucket.
The following theorem encapsulates this finding, reducing the runtime complexity by a factor of d:

Theorem D.2. There exists an adversarially robust algorithm solving the (c, r)—ANN problem in the

d—dimensional Hamming Hypercube that can answer all possible queries correctly with probability
at least 1 — 1/n?. The space requirements are O(d - n”’”o(l)) and the time required per query is

O(d - n*), where p=1/c.
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Proof. From our analysis above, we know that we take L = n” - dlogn different hash functions.
Consider some query q. We analyze the expected number of buckets that contain some point
p € Bs(q,r). Let X, be a random variable representing the number of buckets ¢ € [L] for which
some point in Bg(g, ) lies in bucket i. Define the following indicator random variable:

L — 1, if some point p € Bg(q, ) lies in bucket ¢ € [L]
~ 10, otherwise

By linearity of expectation, we can now write:
L
= Z Pr[l; =
i=1

L
= ZPr U {hi(p) = hi(q)}

pEBs(q,r)
> L-p}
: (m)pk
L
> -
=y

=dlogn

h

By using the Chernoff bound, we can see that with high probability, X is close to its expectation:

1 dlogn 1 1
Pr {X 2d10gn] <e "8 —m<<ﬁ

Let us, then, condition on X, > %d logn. On query time, we can simply sample m = O(n” log n)
buckets uniformly at random from [L]. We know that with probability at least % =g,a

single randomly selected bucket contains some point from Bg(g, 7). So, for all m of the selections to
not contain such a point, the probability is at most:

n” logn
1_i Se—logn:l
nrP n

So, with probability at least 1 — == we find a bucket containing a good point. Since, with high
probability, the number of points in P \ Bg (g, ¢r) in any bucket are O(L), we see that this sampling
method improves the query runtime to O(n” logn). O

D.1.2 Utilizing the optimal LSH algorithm

Our earlier exposition used the original LSH construction for the Hamming Hypercube [40] that
achieves p = 1/c. We can also use the state-of-the-art approach from [6] that achieves p = in
place of Theorem [D.1] This slightly improves the exponent on 7:

c—1

Theorem D.3. There exists an adversarially robust algorithm solving the (c,r)-ANN problem in the
d—dimensional Hamming Hypercube that can answer all possible queries correctly with probability
at least 0.99. The space complexity is O(d - n*+P+t°()) and the time required per query is O(d - n”),
where p = . These runtime guarantees hold with high probability.

The analysis is identical, so we will not repeat it again: Since the algorithm succeeds with constant
probability, and we want it to succeed on all 2¢ possible queries, we boost its success probability
tol — 100%2[1. This way, after the union bound, any query succeeds with probability at least 0.99.
Furthermore, the analysis of the sampling algorithm for improving the query runtime in
also remains the same. All that changes between using the standard Hamming norm LSH as opposed

to the optimal one is the ratio p := %zé Z L
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D.2 Discretization of continuous spaces through metric coverings

The for-all algorithm we presented as cannot be applied outside of discrete spaces,
however, because the key to our analysis was the union bound over all the possible queries.

To simulate a similar argument for solving ANN in continuous, ¢,, spaces, we can consider a strategy
of discretizing the space. We place special “marker” points and guarantee that some version of the
ANN problem is solvable around them. Then, when a query comes in, we find its corresponding
marker point, and solve the ANN problem for it. We show that the answer we get is valid for the
original query as well, so long as the “neighborhood” around the marker points is small enough. A
similar strategy and covering construction appeared in [24], although they did not make algorithmic
use of the ability to project any query point to the covering set. Instead, their algorithm deems it
sufficient to be successful on every point on just the covering set.

D.2.1 Maetric coverings in continuous spaces

To initiate our investigation, we need the definition of a metric covering:

Definition D.4. Consider a metric space M = (R%, || - ||,,) with metric j. Let U C R? be a bounded
subset. A set S C R? is called an A-covering of U if for all q € U there exists some 3 € S such that

llg—5ll, <A

Suppose that U is a bounded subset of R%. We can construct the following the following A-covering
of U: Let C' := sup ||z||- and suppose {u;}%_, is an orthonormal basis spanning U. We know that
xcU

[|z]|oc < C forall z € U, so let us define:

~

d
S = g Q;u;, where
—

a,€e{-C,—C+e,...C—¢,C}

for some choice of ¢ that we will decide later. This is a standard construction for /5 that we now
extend to £, [48]]. As defined, we have:
~ 20\ *
i1-(9)
€

Now, fix some ¢ € U. We can write:
d
q= Z QU4
i=1

d
For all i € [d], let &; be such that «; € @; £ ¢. Let5:= > @;u;. Now we have that:
i=1

p d
= g —@lP < de?
i=1

d

Z(Oéi - ai)ui

=1

g =3 =

p

Now, let us set:

= lg—3ll, <A

3 20! /7
|—( ¢ )

20

Our construction thus has size:
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Figure 2: An illustration of an r-covering.

D.2.2 The robust ANN algorithm

With this construction in mind, our algorithm for robust (¢, 7)—ANN in ¢,, space follows as Algorithm
[l The algorithm remains agnostic to the specific LSH data structure that could be used to solve ANN
in £, metric spaces obliviously [22[26]], but assumes that the success probability over a set of queries
in that data structure can be boosted by increasing the number of hash functions taken. This was the
case for the Hamming norm as well.

Algorithm 6 Robust £, ANN through discretization

Parameters: Max-norm C, runtime/accuracy tradeoff A > 0, LSH parameters ¢, r > 0.

Receive point dataset S C U with |S| = n from the adversary.

Let S be a A-covering of U as constructed in Section and let ¢/ < = AA.

Initialize an LSH data structure D for solving (¢, + A)~ANN that answers all queries in S
correctly with high probability.

L A

while Adversary provides queries do
Receive query g € U from the adversary.
Find § € S such that ||q — 5|, < A.
Query D on 5 and output whatever it outputs.

Theorem D.5. There exists an adversarially robust algorithm solving the (c,r)-ANN problem in the
(R, ¢,) metric space that can answer an unbounded number of adversarial queries. Assumming that
the input dataset and the queries are all elements of U = {z € R? | ||z||, < C} for some C > 0,
the pre-processing space is O(nT’) and the time per query is O(T'), where:
, Ccdi/p
T:O{d-n” log( )} 9

cr

where:
;o (10 + 6)2
P = 161¢ — 20c — 100
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Proof. First, to argue for correctness, let ¢ be any query. Suppose there exists some point z € S with
||z — q||p, < r. Then, by triangle inequality it holds that:

Iz =5llp < llz—qllp + 5 —qllp <A+

Thus, with high probability, D will find some point 2’ € S with ||z’ — §]|,, < ¢r — A. For that point,
we have that:

2" = allp < [l =5l + 5 —qllp <er = A+ A=cr

Therefore, Algorithm [6] will output a correct answer. If there doesn’t exist such a point z, it is valid
for our algorithm to output L, so are done.

For the runtime, recall that |S| < O(2Cd/?/A)?. Hence, in order to guarantee success for all
queries in S, a similar analysis as to the one for the Hamming Hypercube shows that D takes up:

1+ﬁ QCdl/p
0] {d n log ( A

1 1/P
0] |:n2¢/21 log <2Ci ):|

, o —A
¢ =
r+ A
Note that we use the optimal LSH algorithm for £, spaces, which guarantees p = ﬁ Our only
constraint is that we must have A < cr. If we set A = {57, we get a per-query runtime of:

1 20Cd'/»
1) [n1+2u51 log (OC)} ,  wherec = Je
cr

space for pre-processing and

time per query processed, where

D.2.3 Removing the dependency on the scale

Our algorithm from Theorem crucially depends on log C, where C is a bounding box for the
query and input point space in the £, norm. We can remove the dependency on C' by designing our
covering to be data dependent, instead paying an additional logarithmic factor.

Our new covering 5" will be a collection of n A-coverings, as constructed in Algorithm@ each one
discretizing the r-ball around a point p € S. The number of points in this new covering is:

AN /p\ ¢
n.(r iu)}:o[n(dlcp)] (10)

Note that the size of this covering improves upon the (nd)? size of the covering given in [24], which
results in a slightly better runtime. This new covering notably does not cover every possible query.
However, it covers exactly the queries we care about. This improved covering leads to the following
for-all guarantee for robust ANN:

1S <0

Theorem D.6. There exists an adversarially robust algorithm solving the (c,r)-ANN problem
in the (R4, £p,) metric space that can answer an unbounded number of adversarial queries. The

pre-processing time / space is O (nT) and the time per query is 6(T/ d), where:
T=0|d-n” (dlogd + logn) (11)

where:
, 1 (10 + ¢)?

P = 5¢2 =1 7 161¢2 — 20c — 100
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Figure 3: Data-Dependent Discretization of the input query space.

Proof. We distinguish between two cases:

1. If a query ¢ is not included in any Bg(p, r) for any p € .S, then the answer can safely be
1 because Bs(q,r) = 0 necessarily. Thus, we can just run the default LSH algorithm and
simply output whatever it outputs.

2. Otherwise, a query ¢ can be included in some Bg(p,r) for some p € S. Then, suppose
s’ € S’ is a point in our covering such that ||¢ — s’||, < A. Then:

lp=s'llp < llp = dllp +ls" = gll, <7+ A (12)

Thus, as we argued before, with high probability D finds some point z € .S with ||z — s [lp <
cr — A, and for that point we have:

|z —gllp <llz = &'llp +Is" —gllp <er —A+A=cr (13)

which means our algorithm will output a correct answer.

As before, our algorithm’s space and runtime guarantees scale with log |§’ | O

E An Improvement to Exact Fair ANN

A fair algorithm outputs, on input z, a uniformly distributed output over some pre-determined
space of outcomes. In the problem of exact fair approximate nearest neighbor searclﬂ we aim
to output a point uniformly in Bg(q,r). Fair ANN algorithms have been studied extensively by
Aumiiller, Har-Peled, Mahabadi, Pagh, and Silvestri [9]. Their techniques, which inspired the design
of involved the use of LSH and sampling to yield an fair ANN algorithm whose runtime

T;((qq’ir)) . They prove the following theorem:

scales with our familiar

Theorem E.1. There exists a fair ANN algorithm using O(n'**) bits of space and O(dn® - 75(26:)) )
time per query, where p is an LSH parameter.

3 Approximate notions of fairness are also studied in [9] and our approach likely extends to those concepts as
well. For simplicity in presentation, we focus on the most straightforward definition of fairness.
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Our concentric LSH construction can yield an exact fair ANN algorithm with an almost purely
sublinear query time, modulo the outlier structural assumption. The algorithm and analysis remain

the same, but instead of Lgampling, We apply it to the fair ANN algorithm of [Theorem E.1

Theorem E.2. Given[Assumption 1) there exists an algorithm that on query ¢ € M outputs a point in
Bgs(q, ") uniformly at random, where v’ € [r, cr], and ¢, r are the LSH parameters. If such points do

not exist, the algorithm outputs “1” with high probability. The algorithm uses O(nl‘*%ﬂ) -logn)
bits of space overall and O(dn?t'/% logn) time per query.

Remark (Different Notions of Fairness). Our algorithm returns a uniformly sampled point from a
sphere with radius ', which is potentially different from r. This radius 1’ depends on S, q and the
internal randomness used, which makes our guarantee technically different from the one given by
However, the output is nevertheless fairly produced among a set of valid candidate

points.

Remark (Fairness and Robustness). A natural follow-up question is whether a connection exists
between fairness and adversarial robustness. One might intuitively argue that fair algorithms are
inherently robust because they don’t exhibit bias in their internal randomness toward any specific
output. However, this is not always the case. We can always construct an oblivious decider by simply
wrapping it around a fair algorithm, and we have seen that deciders are not necessarily robust.
Nevertheless, an interesting direction for future work is to quantify levels of robustness and position
fair algorithms along this spectrum.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We provide exact statements and proofs of our results.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have numerous remarks about the assumptions our algorithms make and
their limitations.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Proofs are either part of the main text or the Appendix.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: No experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: No experiments.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: No experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: No experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: No experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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13.

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

31


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Our Results and Techniques
	d = (Q): Reduction to Decision Problems and Differential Privacy
	d = O(Q): For-all Algorithms


	Preliminaries
	A Robust ANN Meta-Algorithm
	Step 1: A Robust ANN ``Decider''
	Step 2: From Robust Deciding to Robust Searching
	Step 3: Building the Oblivious ANN Decider via LSH Sampling
	Step 4: Putting it all together

	Improvements in Robust and Fair ANN via Concentric LSH
	Conclusion
	Related Work
	Comparison with fengdifferential

	Review of Differential Privacy
	Definition of differential privacy
	The Laplace Mechanism and its properties
	Properties of differential privacy

	Proof of Theorem 3.1
	Improved Robust ANNS Algorithms with  guarantees
	A For-all guarantee in the Hamming cube
	Improving the query runtime via sampling
	Utilizing the optimal LSH algorithm

	Discretization of continuous spaces through metric coverings
	Metric coverings in continuous spaces
	The robust ANN algorithm
	Removing the dependency on the scale


	An Improvement to Exact Fair ANN

