From Search to Decision: A Framework for Adversarially Robust Approximate Nearest Neighbor Search

Anonymous Author(s)

Affiliation Address email

Abstract

We design robust Approximate Nearest Neighbor (ANN) algorithms for a setting where an adversary controls both the dataset and Q adaptive queries.

Our primary contribution is a general framework that reduces search problems to a corresponding robust decision problem via a binary search tree construction. Given an oblivious decider, we robustify it by applying the Differential Privacy framework of Hassidim, Kaplan, Mansour, Matias, and Stemmer (JACM 2022), enhanced by privacy amplification via subsampling. For ANN specifically, the main challenge is designing the oblivious decider itself. To that end, we propose a sampling-based Locality-Sensitive Hashing (LSH) approach, inspired by the work of Aumüller, Har-Peled, Mahabadi, Pagh, and Silvestri (TODS 2022) on fair ANN. This method is made efficient against worst-case data distributions via a novel concentric LSH construction, which also yields an improved algorithm for the exact fair ANN problem. The result is a simple, general, and efficient algorithm for all but a narrow class of degenerate datasets.

For the low-dimensional regime $(d=O(\sqrt{Q}))$, we complement our general framework with specialized algorithms that provide a powerful "for-all" guarantee: correctness on every possible query with high probability. We propose novel metric covering constructions to simplify and improve prior approaches, enhancing performance for ANN in both Hamming and ℓ_p spaces.

1 Introduction

2

3

4

5

6

9

10

11

12

13

14

15

16

17

18 19

- Randomness is a crucial tool in algorithm design, enabling resource-efficient solutions by circumventing the worst-case scenarios that plague deterministic approaches [45]. The classical analysis of such algorithms assumes an *oblivious* setting, where data updates and queries are fixed beforehand. However, this assumption breaks down in the face of an *adaptive adversary*, who can issue queries based on the algorithm's previous outputs. These outputs can leak information about the algorithm's internal randomness, allowing an adversary to construct query sequences that maliciously break the algorithm's performance guarantees [37, 34].
- Significant progress has been made in designing adversarially robust algorithms for *estimation problems*, where the output is a single value [44, 38, 20, 8, 15, 54, 25]. A common defense involves sanitizing the output, for example, by rounding or adding noise, often borrowing techniques from differential privacy to ensure the output reveals little about the algorithm's internal state [38, 8, 14]. However, these techniques do not directly apply to *search problems*. In a search problem, the algorithm must return a specific element from a given dataset. Outputting a raw data point can leak substantial information, and there is no obvious way to add noise or otherwise obscure the output without violating the problem's core constraint of returning a valid dataset element.

Perhaps the most fundamental search problem is *Approximate Nearest Neighbor (ANN) Search*, which has numerous applications ranging from data compression and robotics to DNA sequencing and anomaly detection [47, 42, 39, 52, 51, 17]. The goal is to build a data structure that, for any query point, quickly finds a data point that is nearly the closest. Achieving the desired trade-off of sublinear query time and near-linear space has largely been possible only through randomization. The most prominent family of randomized algorithms for ANN is based on *Locality-Sensitive Hashing* (*LSH*), which has been the subject of a long and fruitful line of research in the oblivious setting [33, 41, 1, 3, 7, 4, 2, 5, 40, 18].

The vulnerability of these classical randomized structures was recently highlighted by Kapralov, Makarov, and Sohler [43], who demonstrated an attack on standard LSH data structures. They showed that an adaptive adversary can use a polylogarithmic number of queries to learn enough about the internal LSH hashes to force the algorithm to fail. This attack leverages the very phenomenon that the algorithm's outputs (specific data points) reveal information about its random choices. Inspired by their work, which relies on certain structural properties of the dataset (e.g., an "isolated" point), we consider a powerful adversarial model where the **adversary chooses both the dataset and the sequence of queries**, posing a stringent test for robustness. We study the following question:

Can search problems like ANN be solved efficiently in the face of adversarial queries?

1.1 Our Results and Techniques

52

53

57

We provide an extensive study of adversarially robust algorithms for ANN. If the adversary provides Q adaptively chosen queries to the algorithm and the metric space \mathcal{M} is d-dimensional, we examine two regimes:

1.1.1 $d = \omega(\sqrt{Q})$: Reduction to Decision Problems and Differential Privacy

Our main technical contribution is a meta-algorithm that solves search problems robustly by reducing them to an underlying *robust decision problem*. For ANN, this decision problem is simply: given a query q, does any "close" neighbor exist within a distance of r? The framework first robustifies an oblivious algorithm for the decision problem by applying techniques from Differential Privacy [38]. With a robust decider \mathcal{A} in hand, we solve the search problem by building a binary search tree of \mathcal{A} -instances on different parts of the input dataset.

A key challenge, however, is designing the initial oblivious decider for ANN. Standard LSH algorithms are unsuitable because of a critical ambiguity: for a query q, if the nearest neighbor lies in the annulus between distance r and cr, LSH may either return that neighbor or report that no point within distance r exists. Since both outcomes are valid for *approximate* search, LSH cannot be used to reliably decide if the r-ball around q is empty. To overcome this, we draw inspiration from work on fair ANN [10], which aims to sample uniformly from all valid answers. We develop a sampling-based LSH algorithm that resolves this ambiguity, creating an efficient oblivious decider.

The performance of this sampling decider, however, depends on the density ratio of points between the cr-ball and the r-ball for a query q. An adversary can craft a dataset where this ratio is large, severely degrading performance. To mitigate this, we introduce a $concentric \ annuli \ construction$. We partition the (r, cr)-annulus into several smaller, concentric sub-annuli and apply our sampling LSH within each one. A simple counting argument guarantees that at least one of these sub-annuli must have a low point-density ratio, allowing the decider to terminate efficiently.

One limitation of our accelerated method is the existence of *degenerate* datasets (see Figure 1), which an adversary could construct to force a worst-case running time. We formalize this condition in Assumption 1 and argue that it corresponds to a contrived data distribution unlikely to appear in practice. For all non-degenerate datasets, our method remains efficient:

Theorem 1.1. Let $K \ge 2$ be a parameter such that the input dataset S is not K-degenerate under Assumption 1. Then, there exists an adversarially robust ANN algorithm using $\widetilde{O}(\sqrt{Q} \cdot n^{1+\rho+1/K})$ bits of space and $\widetilde{O}(dn^{\rho+1/K})$ time per query.

Our method further provides an improved algorithm for the problem of sampling a near-neighbor uniformly at random (*fair ANN*), which we present in Appendix E:

Theorem 1.2. Given Assumption 1, there exists an algorithm that on query $q \in \mathcal{M}$ outputs a point in $B_S(q,r')$ uniformly at random, where $r' \in [r,cr]$, and c,r are the LSH parameters. If such points do not exist, the algorithm outputs " \bot " with high probability. The algorithm uses $O(n^{1+\frac{1}{K}+\rho} \cdot \log n)$ bits of space overall and $O(dn^{\rho+1/K} \log n)$ time per query.

90 1.1.2 $d = O(\sqrt{Q})$: For-all Algorithms

For low-dimensional metric spaces, we develop algorithms for ANN that provide a powerful *for-all guarantee*: with high probability, the data structure correctly answers *every possible* query $q \in \mathcal{M}$. Our approach builds on a discretization technique applied to an LSH data structure, a paradigm explored in prior work [23, 24]. We refine this line of research by introducing a novel, simpler metric covering construction, improving the space complexity by a logarithmic factor, and using sampling to improve the time complexity by a factor of d.

Theorem 1.3. For the (c,r)-ANN problem in the d-dimensional Hamming Hypercube, there exists an algorithm that correctly answers all possible queries with at least 0.99 probability. The space complexity is $O(d \cdot n^{1+\rho+o(1)})$ and query time is $O(d \cdot n^{\rho})$, where $\rho = \frac{1}{2c-1}$.

Theorem 1.4. For the (c,r)-ANN problem in the (\mathbb{R}^d, ℓ_p) metric space, there exists an algorithm that correctly answers all possible queries with high probability. The pre-processing time and space are $\widetilde{O}(nT)$ and the query time is $\widetilde{O}(T/d)$, where:

$$T = O\left(d \cdot n^{\rho'} \left(d\log d + \log n\right)\right) \quad \text{and} \quad \rho' = \frac{(10+c)^2}{161c^2 - 20c - 100}.$$
 (1)

Remark (The Price of For-All Algorithms). Despite their remarkable guarantees, for-all algorithms have significant drawbacks. Their space complexity scales by a factor of d, making them intractable for high-dimensional metric spaces. This is a direct consequence of the large number of hash functions required to ensure a tiny probability of error for any query. Furthermore, these algorithms lack the generality of their adaptive counterparts; they are metric-space dependent and must be tailored to the specific metric space being used.

2 Preliminaries

109

116

117

118

119 120

121

122

126

127

Definition 2.1 (Metric Balls). Consider a metric space $\mathcal{M} = (M, ||\cdot||)$, and let $S \subset \mathcal{M}$. We define a metric ball $B_S(x, r)$ on S of radius r centered at $x \in M$ as:

$$B_S(x,r) := \{ p \in S \mid ||x - p|| \le r \}$$

112 We often write $n(x,r) := |B_S(x,r)|$.

In the *Nearest Neighbors* problem, we seek to find a point in our input dataset that minimizes the distance to some query point. Randomized algorithms are better suited to tackle the *approximate* version of the problem, which can be used to solve the exact version through boosting:

Definition 2.2 (ANN). Let c > 1 and r > 0 be positive constants. In the (c, r)-Approximate Nearest-Neighbors Problem (ANN) we are given as input a set $S \subset M$ with |S| = n and a sequence of queries $\{q_i\}_{i=1}^Q$ with $q_i \in M$. For each query q_i , if there exists $p \in B_S(q_i, r)$, we are required to output some point $p' \in B_S(q_i, cr)$. If $B_S(q_i, cr) = \emptyset$, we are required to output \bot . In the case where $B_S(q_i, r) = \emptyset \neq B_S(q_i, cr)$ we can either output a point from $B_S(q_i, cr)$ or \bot . Our algorithm should successfully satisfy these requirements with probability at least 2/3.

A prevalent method for solving ANN is Locality Sensitive Hashing (LSH). Intuitively, we seek a hash function that hashes close points together and far points apart with high probability.

Definition 2.3 (Locality Sensitive Hashing, [35]). A hash family \mathcal{H} of functions mapping M to a set of buckets is called a (c, r, p_1, p_2) -Locality Sensitive Hash Family (LSH) if the following two conditions are satisfied:

- If $x, y \in M$ have $||x y|| \le r$, then $\Pr_{h \in \mathcal{H}}[h(x) = h(y)] \ge p_1$.
- 130 If $x, y \in M$ have $||x y|| \ge cr$, then $\Pr_{h \in \mathcal{H}}[h(x) = h(y)] \le p_2$.

129

154

155

157

158

159

where $p_1 \gg p_2$ are parameters in (0,1). We often assume that computing h in a d-dimensional metric space requires O(d) time.

Given a construction of a (c,r,p_1,p_2) –LSH for a metric space, we can solve the (c,r)–ANN problem by amplifying the LSH guarantees. This is done via an " OR of ANDs " construction: we sample $L=n^\rho$ hash functions $h_1,...,h_L$ for $\rho\in(0,1)$, each hashing $p\in\mathcal{M}$ to $\{0,1\}^k$ by concatenating the outputs of $k=\lceil\log_{1/p_2}n\rceil$ "prototypical" LSH functions in \mathcal{H} whose range is $\{0,1\}$, as shown in [35]. This results in the following Theorem:

Theorem 2.4. If a d-dimensional metric space admits a (c, r, p_1, p_2) -LSH family, then we can solve the (c, r)-ANN problem on it using $O(dn^{1+\rho})$ space and $O(dn^{\rho})$ time per query, where

$$\rho = \frac{\log p_1}{\log p_2}$$

As a byproduct of this construction, it is a standard observation that on any query and with high probability, no single bucket contains many outlier points outside of $B_S(q, cr)$ [35, 36].

Lemma 2.5. Let $\mathcal{D}=(h_1,...,h_L)$ be an LSH data structure consisting of $L=O(\log n\cdot n^\rho)$ hash functions that map the metric space \mathcal{M} to $\{0,1\}^k$, where $k=\lceil \log_{1/p_2} n \rceil$. Consider some query $q\in \mathcal{M}$ and let $S_{h_i(q)}:=\{p\in S\mid h_i(q)=h_i(p)\}$ be the set of points in S which are hashed in the same bucket as q under h_i , for $i\in [L]$. Then, with high probability we have that:

$$|S_{h_i(q)}| \le 3 \cdot |B_S(q, cr)|$$

Furthermore, if $p \in B_S(q,r)$, then it is contained in at least one bucket with high probability. In other words, it is true that for some $i \in [L]$, with high probability, $p \in S_{h_i(q)}$.

147 3 A Robust ANN Meta-Algorithm

In this section we give an adversarially robust ANN "meta-algorithm" that outperforms "for-all" algorithms when $d \gg Q$. For necessary theorems and notation on Differential Privacy, please refer to Appendix B.

3.1 Step 1: A Robust ANN "Decider"

152 Consider the following *decision ANN* problem:

Given a point dataset $S \subset M$ and some radius parameter r > 0, on query $q \in M$ we wish to output 1 if and only if $B_S(q,r) \neq \emptyset$. Suppose $\mathcal A$ is an algorithm that can solve this problem with probability at least 9/10 over an obliviously chosen input query sequence. Let us suppose that $\mathcal A$ first pre-processes S to generate a data-structure $\mathcal D$, which it then uses to answer the queries. This algorithm is an *oblivious ANN decider*.

Remark (Deciders are not Necessarily Robust!). It might be intuitively enticing to think that an oblivious decider is also robust. After all, an adversary providing queries knows the answer that they will, with high probability, receive from the algorithm, which is not true for the search version of the problem. However, the decisions alone of the algorithm can be more than enough to infer valuable information about its internal randomness. In particular, if the algorithm maintained a collection of hash tables in typical LSH-fashion, the attack of [43] can be performed on the decider equally well, especially if they have control over the input set S.

We can design a Q-adversarially robust decider \mathcal{A}_{dec} by using \mathcal{A} , while only increasing the space by a factor of \sqrt{Q} . Adhering to the framework of [38], we maintain $L = \widetilde{O}(\sqrt{Q})$ copies of the data

structures $\mathcal{D}_1, ..., \mathcal{D}_L$ generated by \mathcal{A} using L independent random strings, and then for each query q we combine the answers of \mathcal{A} privately.

As opposed to the original framework of [38], we do not need to use a private median algorithm, which simplifies the analysis and removes its dependency on that primitive. To keep the query time small, we utilize privacy amplification by subsampling (Theorem B.7).

Algorithm 1 The robust decider A_{dec} (based on an oblivious decider A)

```
1: Inputs: Random string R = r_1 \circ r_2 \circ \cdots r_L.
```

- 2: **Parameters**: Number of queries Q, number of copies L, number of sampled indices k.
- 3: Receive input dataset $S \subseteq U$ from the adversary, where n = |S|.
- 4: Initialize $\mathcal{D}_1, ..., \mathcal{D}_L$ where $\mathcal{D}_i \leftarrow \mathcal{A}(S)$ on random string r_i .
- 5: **for** i = 1 to Q **do**
- 6: Receive query q_i from the adversary.
- 7: $J_i \leftarrow \text{Sample } k \text{ indices in } [L] \text{ with replacement.}$
- 8: Let $a_{ij} \leftarrow \mathcal{D}_i(q_j) \in \{0, 1\}$ and $N_i := \frac{1}{k} |\{j \in J_i \mid a_{ij} = 1\}|$.
- 9: Let $\widehat{N}_i = N_i + \operatorname{Lap}\left(\frac{1}{k}\right)$.
- 10: Output $\mathbb{1}[\widehat{N}_i > \frac{1}{2}]$

167

176

Theorem 3.1. Let A be an oblivious decider algorithm for ANN that uses s(n) space and t(n) time per query. Let $\delta \in (0,0.995)$ and suppose we set $L=2400\log^{1.5}(1/\delta)\cdot\sqrt{2Q}$ and $k=\log(Q/\delta)$.

Then, the algorithm \mathcal{A}_{dec} is an adversarially robust decider that succeeds with probability at least $1-\Theta(\delta)$ using $s(n)\cdot\widetilde{O}\left(\sqrt{Q}\right)$ bits of space and $\widetilde{O}\left(t(n)\right)$ time per query.

To prove Theorem 3.1 we argue that for all $i \in [Q]$, at least $\frac{8}{10}$ of the k answers a_{ij} are correct, even in the presence of adversarially generated queries. To do this, we first need to show that the algorithm is differentially private with respect to the input random strings R. Our analysis is included in full in Appendix C.

3.2 Step 2: From Robust Deciding to Robust Searching

In this section, we convert $\mathcal{A}_{\mathrm{dec}}$ to an adversarially robust search algorithm. Let us assume for simplicity that n=|S| is a power of two. We create a binary tree \mathcal{T} over the entire input dataset S. Each node in the tree corresponds to a segment $[r_i,\ell_i]$ in S that has size a power of S. We create independent instances of S in each node, each instance being initialized only for the dataset points inside that node's corresponding segment. When processing a query S in we first forward it to the root node. If it answers with a S it means that S in a least one of the two children will also return a S in the can thus perform a root-to-leaf traversal to find and output an element of S that lies in S in the other hand, if S in the query at the root should tell us right away.

Theorem 3.2. Let A be an oblivious ANN decider that uses s(n) bits of space and answers each query in t(n) time. Suppose that the space complexity s(n) can be written as $s(n) = O(n^s)$ for some s > 1. Then, there exists an adversarially robust algorithm A' search ANN problem that uses $\widetilde{O}(\sqrt{Q} \cdot n^s)$ bits of space and has a query time of $\widetilde{O}(t(n))$.

189 *Proof.* Before we execute our algorithm, we boost the probability of success for \mathcal{A}_{dec} to $1 - \frac{2}{3n \log n}$ by scaling δ by $\frac{1}{n \log n}$ in Theorem 3.1. As a result, on any given query, *all* the copies of \mathcal{A}_{dec} in any node are correct with probability at least $\frac{2}{3}$, by a union bound.

Correctness Fix some query q_i that the adversary makes and suppose that $B_S(q_i, r) \neq \emptyset$. Let $p \in B_S(q_i, r)$ and consider the leaf v in the binary tree containing p in its segment. Then, in the path from the root $r(\mathcal{T})$ to v, we claim that all nodes have to answer 1 with high probability, regardless of the adversary's adaptivity, in which case we will definitely find p.

Algorithm 2 A Q-adversarially robust search algorithm

```
1: Receive input dataset S \subseteq U from adversary \mathcal{B}, where n = |S|.
 2: Let (s_1, ..., s_n) be an arbitrary ordering of S.
 3: Create a rooted binary tree \mathcal{T} over [n] with \log_2 n levels. Let r(\mathcal{T}) be the root of \mathcal{T}.
 4: for each node v = [r, \ell] \in \mathcal{T} do
           Initialize an independent copy \mathcal{A}_{dec}^v of \mathcal{A}_{dec} with input dataset \{s_r, ..., s_\ell\} \subseteq S.
 6: for i = 1 to Q do
          Receive query q_i from \mathcal{B}.
          if Query \left(A_{\mathrm{dec}}^{r(\mathcal{T})},q\right)=0 then Output \perp
 8:
 9:
10:
          v \leftarrow r(\mathcal{T}).
          while v \neq \text{leaf do}
11:
                v_r \leftarrow \text{right child of } v.
12:
                if QUERY(A_{dec}^{v_r}, q) = 1 then
13:
14:
15:
16:
           Output s \in S where \{s\} is the element corresponding to leaf v in \mathcal{T}.
17:
```

Let $p\in S_{[r,\ell]}:=\{s_r,...,s_\ell\}$ for some node $w=[r,\ell]$ on this path. Then, suppose, without loss of generality, that $p\in S_{[r,\frac{r+\ell}{2}]}$. Then we must have

$$B_{S_{\left[r,\frac{r+\ell}{2}\right]}}(q_i,r) \subseteq B_{S_{\left[r,\ell\right]}}(q_i,r)$$

That means that $B_{S_{\left[r,\frac{r+\ell}{2}\right]}}(q_i,r) \neq \emptyset$, which implies that this is also the case along the path from $r(\mathcal{T})$ to v, by induction on the depth of the tree.

Since the error of each copy of \mathcal{A}_{dec} is $\frac{2}{3n\log n}$, all copies in the tree are correct with probability at

least $\frac{2}{3}$, even against an adversarially generated query sequence. Hence, the aforementioned path

from the root to v only has answers consisting of ones, meaning that we produce a point in $f(S, q_i)$.

On the other hand, if $B_S(q_i, r) = \emptyset$, the query to the root of the tree returns 0 with probability close to 1, and so we correctly output \bot .

Runtime For the preprocessing, suppose a single copy of \mathcal{A}_{dec} ran on a dataset S of size n takes $O(\sqrt{Q} \cdot s(n) \cdot \text{polylog}(nQ)) = \widetilde{O}(\sqrt{Q} \cdot n^s)$ bits of space. Then the space of the search algorithm can be bounded as:

$$\begin{split} \widetilde{O}\left(\sqrt{Q} \cdot \left[n^s + 2\left(\frac{n}{2}\right)^s + 4\left(\frac{n}{4}\right)^s + \cdots\right]\right) \\ &= \widetilde{O}\left(\sqrt{Q} \cdot \sum_{i=0}^{\infty} 2^i \left(\frac{n}{2^i}\right)^s\right) = \widetilde{O}\left(n^s \sqrt{Q} \cdot \sum_{i=0}^{\infty} 2^{i-i-is}\right) \\ &= \widetilde{O}\left(n^s \sqrt{Q} \cdot \sum_{i=0}^{\infty} (2^{-s})^i\right) \\ &= \widetilde{O}\left(n^s \sqrt{Q}\right) \end{split}$$

For the query time, we visit $\log_2 n$ vertices per query, so if we take O(t(n)) time in total, which completes the proof.

3.3 Step 3: Building the Oblivious ANN Decider via LSH Sampling

208

In this section we build the oblivious ANN decider \mathcal{A} . For this we cannot simply run the familiar LSH algorithm and output 1 whenever a point is found or a 0 otherwise. That is because LSH guarantees to output a point from $B_S(q,cr)$ when $B_S(q,r) \neq \emptyset$ and is allowed to output a point from $B_S(q,cr)$

when $B_S(q,r) = \emptyset$. Our algorithm then would have no way of knowing which case a point in $B_S(q,r) \setminus B_S(q,r)$ is a signal for. It is clear that we need a different approach.

To create the decider algorithm, we modify the query algorithm that acts on top of the LSH data structure as follows: Given $L = O(n^{\rho} \log n)$ hash functions within an LSH data structure, we sample one uniformly at random. Let h_i be the randomly sampled hash function, and let $h_i(q) \in \{0,1\}^k$ be the bucket that query q is hashed in. Let $S_{h_i(q)}$ be the set of points in S that are also hashed to $h_i(q)$. We sample one of those points uniformly at random. If we hit a point in $B_S(q,r)$ we output it. Otherwise, we start the whole sampling process anew. If we haven't output 1 after $O(L \log n \cdot \frac{n(q,cr)}{n(q,r)})$ repetitions, then we output 0.

Algorithm 3 Oblivious (c, r)-ANN via Sampling

- 1: **Input:** A dataset S of n points, parameters c, r.
- 2: Let $\rho = \rho(c)$ be the LSH parameter for this metric space.
- 3: Let $L \leftarrow O(n^{\rho} \log n)$ and $k = \Theta(\log n)$.
- 4: Initialize LSH data structures $\mathcal{D}_1, ..., \mathcal{D}_L$ with hash functions $h_i: M \to \{0, 1\}^k$.
- 5: for each query $q \in M$ do
- 6: **for** at most $O(L \log n \cdot \frac{n(q, cr)}{n(q, r)})$ iterations **do**
- 7: Sample $i \in [L]$ uniformly at random. Sample a point p from $S_{h_i(q)}$ uniformly at random.
- 8: **if** $p \in B_S(q,r)$ **then**
- 9: Output 1 for query q and proceed to the next query.
- 10: **Output** 0 and continue to the next query.
- Theorem 3.3. Assume that for each query $q \in \mathcal{M}$, we know that $\frac{n(q,cr)}{n(q,r)} \leq N$ when $n(q,r) \neq 0$.
- Then, there exists an oblivious ANN decider algorithm using $\widetilde{O}(n^{1+
 ho})$ bits of space and $\widetilde{O}(dn^{
 ho}\cdot N)$
- 223 time per query.
- 224 *Proof.* We calculate the probability that we successfully sample a point in $B_S(q,r)$. Let \star be the
- point we sample using one round of the above procedure, and let i_{\star} be the hash function we pick.
- Suppose for a point $p \in S$ that $B_p = \{i \in [L] \mid h_i(p) = h_i(q)\}$ is the set of hash functions that hash
- p the same as q. We have that:

$$\Pr[\star \in B_{S}(q, r)] = \sum_{p \in B_{S}(q, r)} \Pr[\star = p] = \sum_{p \in B_{S}(q, r)} \sum_{i=1}^{L} \Pr[\star = p \mid i_{\star} = i] \cdot \Pr[i_{\star} = i]$$

$$= \frac{1}{L} \sum_{p \in B_{S}(q, r)} \sum_{i=1}^{L} \Pr[\star = p \mid i_{\star} = i]$$

$$= \frac{1}{L} \sum_{p \in B_{S}(q, r)} \sum_{i \in B_{p}} \frac{1}{|S_{h_{i}(q)}|}$$

$$\geq \frac{1}{3L \cdot |B_{S}(q, cr)|} \sum_{p \in B_{S}(q, r)} |B_{p}|$$

$$\geq \frac{|B_{S}(q, r)|}{3L \cdot |B_{S}(q, cr)|}$$

- where the last two inequalities follow with high probability from Theorem 2.5, which also implies
- that $|B_p| \ge 1$ for all $p \in B_S(q,r)$. Now, the probability we do not sample a point $p \in B_S(q,r)$ after
- T trials is at most:

$$\left(1 - \frac{|B_S(q,r)|}{3L \cdot |B_S(q,cr)|}\right)^T \le e^{-\frac{T \cdot |B_S(q,r)|}{3L \cdot |B_S(q,cr)|}} \le \frac{1}{n}$$

because we set:

$$T = \frac{3L \cdot \log n \cdot |B_S(q, cr)|}{|B_S(q, qr)|}$$

Thus, we conclude that a point in $B_S(q,r)$ is returned with high probability. The space complexity of the algorithm is $O(Ln) = \widetilde{O}(n^{1+\rho})$, while the runtime per query is $O(\frac{L \log n \cdot n(q,cr)}{n(q,r)}) = \widetilde{O}(n^{\rho} \cdot \frac{n(q,cr)}{n(q,r)})$, as desired.

3.4 Step 4: Putting it all together

235

- 236 Combining the three previous steps, we reach the following result:
- Theorem 3.4. There exists an adversarially robust ANN algorithm using $\widetilde{O}(\sqrt{Q} \cdot n^{1+\rho})$ bits of space and $\widetilde{O}(dn^{\rho} \cdot \frac{n(q,cr)}{n(q,r)})$ time per query.

4 Improvements in Robust and Fair ANN via Concentric LSH

The disadvantage of the sampling approach of Algorithm 3 – let us call it $\mathcal{L}_{\text{sampling}}$ – is that its query runtime depends on the fraction $\frac{n(q,cr)}{n(q,r)}$, which could be really large. In this section we present a method for reducing the runtime under some mild assumptions.

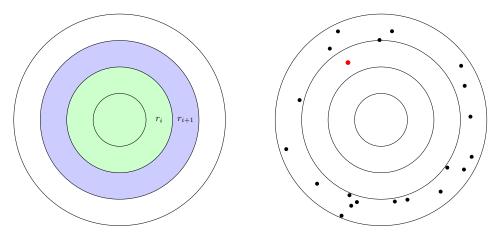


Figure 1: Left: In green lies the set $B_S(q, r_i)$, and blue represents the annulus that extends to $B_S(q, r_{i+1})$. Right: The degenerate case we explicitly disallow in Theorem 4.1.

Let K be a parameter that we will soon resolve. Consider the following sequence of radii be-243 tween r and cr, interspersed so that the ratio between two consecutive ones is constant: $r_0 =$ 244 $r, r_1, ..., r_{K-1}, r_K = cr$ are defined as $r_i = c' \cdot r_{i-1}$ for $i \in [K]$, where $c' = c^{1/K}$. We create K instances of $\mathcal{L}_{\text{sampling}}$ where the i-th instance \mathcal{L}_i , for $i \in [K]$, is initialized with parameters (r_i, c') . 245 246 Our algorithm then runs each instance \mathcal{L}_i to decide whether $B_S(q, r_i) \neq \emptyset$. If we observe an instance 247 running for longer than $\Theta(n^{\rho + \frac{1}{K}})$ timesteps, we stop the execution and switch to the next instance. 248 As a result, our algorithm can decide whether $B_S(q, r_{K-1}) = \emptyset$ efficiently. However, there exists a 249 degenerate case in which the time complexity is large, as shown in Figure 1. If $B_S(q, r_{K-2}) = \emptyset$, 250 then it could be the case that $B_S(q, r_{K-1}) \neq \emptyset$ and $B_S(q, cr) \setminus B_S(q, r_{K-1})$ contains many points. 251 This case is significantly rarer than the generic upper bound on $\frac{n(q,cr)}{n(q,r)}$ we assumed earlier, and we 252 explicitly avoid it in our analysis: 253

Assumption 1 (K-Degenerate Datasets). Suppose input dataset $S \in \mathcal{M}^n$ and parameter $K \in \mathbb{Z}_+$ are such that if $n(q, r_{K-2}) = 0$ and $n(q, r_{K-1}) \geq 1$ then $n(q, cr) \leq n^{1/K} \cdot n(q, r_{K-1})$.

Theorem 4.1. Assuming that dataset S is not K-Degenerate for some integer $K \geq 2$, there exists an algorithm that on query $q \in \mathcal{M}$ outputs $\mathbb{1}[B_S(q,r) \neq \emptyset]$ with high probability, while using $O(n^{1+\frac{1}{K}+\rho} \cdot \log n)$ bits of space overall and $O(dn^{\rho+1/K} \log n)$ time per query.

Algorithm 4 Concentric Annuli LSH: An Improved Oblivious Decider

```
1: Input: A dataset S of n points, parameters c, r, K.
 2: Let c' \leftarrow c^{1/K} and r_1 = r.
 3: for i \in [K] do
 4:
         Initialize an independent copy \mathcal{L}_i of \mathcal{L}_{\text{sampling}} on S with parameters (r_i, c').
 5:
         Update r_{i+1} = c' \cdot r_i.
 6: for each query q \in M do
         for i \in [K] do
 7:
             Let (r_i, r_{i+1}) be the sub-annulus \mathcal{L}_i was initialized on.
 8:
             Run \mathcal{L}_i for at most 100 \cdot n^{\rho+1/K} sample timesteps.
 9:
             if a point p \in B_S(q, r_i) is found then
10:
                  Output 1 and continue to the next query.
11:
12:
         Output 0 and continue to the next query.
```

Proof. Our algorithm clearly runs in $\widetilde{O}(dn^{\rho+1/K})$ time because we truncate it at that timestep. The space complexity is implied by Theorem 3.3. Now, given a query q, first consider the case that for all $i \in \{0,1,...,K-1\}$ it is true that $n(q,r_i) \neq 0$. Then, suppose in that case that for all $i \in \{0,...,K-1\}$ it holds that:

$$\frac{n(q, r_{i+1})}{n(q, r_i)} > n^{\frac{1}{K}}$$

Then, via a telescoping product we can write:

$$\frac{n(q,cr)}{n(q,r)} = \frac{n(q,r_1)}{n(q,r_0)} \cdot \frac{n(q,r_2)}{n(q,r_1)} \cdot \cdot \cdot \cdot \frac{n(q,r_{K-1})}{n(q,r_{K-2})} \cdot \frac{n(q,cr)}{n(q,r_{K-1})} > \left(n^{\frac{1}{K}}\right)^K = n$$

This is a contradiction because:

$$\frac{n(q,cr)}{n(q,r)} \le n(q,cr) \le n$$

Thus, Algorithm 4 will, in that case, terminate with output 1. Next, suppose that for all $0 \le i \le K-1$ we have that $n(q,r_i)=0$. Then, we must have that $B_S(q,r_{K-1})=\emptyset$, and Algorithm 4 correctly outputs 0 with high probability. Finally, let $j \le K-1$ be the minimum index such that $n(q,r_i)>0$. If j < K-1, then \mathcal{L}_j will quickly and with high probability detect a point in $B_S(q,r_j)\subset B_S(q,r_{K-1})$ and output 1. If j=K-1, then $\mathcal{L}_{\text{sampling}}$ will find a point from $B_S(q,r_{K-1})$ in time $\widetilde{O}(n^{\rho}\cdot\frac{n(q,r_K)}{n(q,r_{k-1})})=\widetilde{O}(n^{\rho+1/K})$ due to our structural assumption.

Refining Theorem 3.4 Combining our concentric LSH approach with the meta-algorithm of the previous section, we arrive at our initially claimed result:

Theorem 4.2. Let $K \geq 2$ be a parameter such that the input dataset S is not K-degenerate. Then, there exists an adversarially robust ANN algorithm using $\widetilde{O}(\sqrt{Q} \cdot n^{1+\rho+1/K})$ bits of space and $\widetilde{O}(dn^{\rho+1/K})$ time per query.

5 Conclusion

273

We studied efficient algorithms for Approximate Nearest Neighbor (ANN) queries against adaptive adversaries. Our approach uses a binary search tree to reduce the search task to a robust decision problem which we solve using techniques from Differential Privacy. We implement the decider with a sampling-based Locality-Sensitive Hashing (LSH) scheme accelerated by a concentric annuli construction. As a byproduct, this construction also yields a more efficient algorithm for exact fair ANN. Our approach constitutes a simple, universal framework for solving search problems efficiently against adaptive adversaries. Future work involves adapting our framework to other search problems and establishing computational lower bounds for robust search.

2 References

- [1] A. Andoni. Nearest neighbor search: the old, the new, and the impossible. PhD thesis, Massachusetts Institute of Technology, 2009.
- [2] A. Andoni and P. Indyk. Nearest neighbors in high-dimensional spaces. In *Handbook of Discrete and Computational Geometry*, pages 1135–1155. Chapman and Hall/CRC, 2017.
- [3] A. Andoni, P. Indyk, and I. Razenshteyn. Approximate nearest neighbor search in high dimensions. In *Proceedings of the International Congress of Mathematicians: Rio de Janeiro* 289 2018, pages 3287–3318. World Scientific, 2018.
- 290 [4] A. Andoni, T. Laarhoven, I. Razenshteyn, and E. Waingarten. Lower bounds on time-space trade-offs for approximate near neighbors. *arXiv preprint arXiv:1605.02701*, 2016.
- [5] A. Andoni, T. Laarhoven, I. Razenshteyn, and E. Waingarten. Optimal hashing-based timespace trade-offs for approximate near neighbors. In *Proceedings of the twenty-eighth annual* ACM-SIAM symposium on discrete algorithms, pages 47–66. SIAM, 2017.
- [6] A. Andoni and I. Razenshteyn. Optimal data-dependent hashing for approximate near neighbors.
 In *Proceedings of the forty-seventh annual ACM symposium on Theory of computing*, pages 793–801, 2015.
- [7] A. Andoni, I. Razenshteyn, and N. S. Nosatzki. Lsh forest: Practical algorithms made theoretical.
 In *Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms*,
 pages 67–78. SIAM, 2017.
- [8] I. Attias, E. Cohen, M. Shechner, and U. Stemmer. A framework for adversarial streaming via differential privacy and difference estimators. *Algorithmica*, pages 1–56, 2024.
- [9] M. Aumüller, S. Har-Peled, S. Mahabadi, R. Pagh, and F. Silvestri. Sampling a near neighbor in high dimensions—who is the fairest of them all? *ACM Transactions on Database Systems* (*TODS*), 47(1):1–40, 2022.
- [10] M. Aumüller, R. Pagh, and F. Silvestri. Fair near neighbor search: Independent range sampling
 in high dimensions. In *Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems*, pages 191–204, 2020.
- [11] R. Bassily, K. Nissim, A. Smith, T. Steinke, U. Stemmer, and J. Ullman. Algorithmic stability
 for adaptive data analysis. In *Proceedings of the forty-eighth annual ACM symposium on Theory* of Computing, pages 1046–1059, 2016.
- [12] R. Bassily, A. Smith, T. Steinke, and J. Ullman. More general queries and less generalization error in adaptive data analysis. *arXiv preprint arXiv:1503.04843*, 2015.
- [13] S. Behnezhad, R. Rajaraman, and O. Wasim. Fully dynamic (Δ + 1)-coloring against adaptive adversaries. In Y. Azar and D. Panigrahi, editors, *Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2025, New Orleans, LA, USA, January 12-15, 2025*, pages 4983–5026. SIAM, 2025.
- 318 [14] A. Beimel, H. Kaplan, Y. Mansour, K. Nissim, T. Saranurak, and U. Stemmer. Dynamic algorithms against an adaptive adversary: generic constructions and lower bounds. In *Proceedings* of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 1671–1684, 2022.
- [15] O. Ben-Eliezer, T. Eden, and K. Onak. Adversarially robust streaming via dense-sparse tradeoffs. In *Symposium on Simplicity in Algorithms (SOSA)*, pages 214–227. SIAM, 2022.
- [16] O. Ben-Eliezer, R. Jayaram, D. P. Woodruff, and E. Yogev. A framework for adversarially robust streaming algorithms. *ACM Journal of the ACM (JACM)*, 69(2):1–33, 2022.
- 17] L. Bergman, N. Cohen, and Y. Hoshen. Deep nearest neighbor anomaly detection. *arXiv* preprint arXiv:2002.10445, 2020.

- [18] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise independent permutations. In *Proceedings of the thirtieth annual ACM symposium on Theory of computing*, pages 327–336, 1998.
- [19] M. Bun, K. Nissim, U. Stemmer, and S. Vadhan. Differentially private release and learning
 of threshold functions. In 2015 IEEE 56th Annual Symposium on Foundations of Computer
 Science, pages 634–649. IEEE, 2015.
- 333 [20] A. Chakrabarti, P. Ghosh, and M. Stoeckl. Adversarially robust coloring for graph streams. 334 arXiv preprint arXiv:2109.11130, 2021.
- [21] A. Chakrabarti and M. Stoeckl. Finding missing items requires strong forms of randomness. In
 39th Computational Complexity Conference (CCC 2024). Schloss Dagstuhl–Leibniz-Zentrum
 für Informatik, 2024.
- 338 [22] M. S. Charikar. Similarity estimation techniques from rounding algorithms. In *Proceedings of the thiry-fourth annual ACM symposium on Theory of computing*, pages 380–388, 2002.
- [23] Y. Cherapanamjeri and J. Nelson. On adaptive distance estimation. Advances in Neural
 Information Processing Systems, 33:11178–11190, 2020.
- 342 [24] Y. Cherapanamjeri and J. Nelson. Terminal embeddings in sublinear time. *TheoretiCS*, 3, 2024.
- 343 [25] Y. Cherapanamjeri, S. Silwal, D. P. Woodruff, F. Zhang, Q. Zhang, and S. Zhou. Robust algorithms on adaptive inputs from bounded adversaries. *arXiv preprint arXiv:2304.07413*, 2023.
- [26] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based
 on p-stable distributions. In *Proceedings of the twentieth annual symposium on Computational* geometry, pages 253–262, 2004.
- [27] I. Dinur, U. Stemmer, D. P. Woodruff, and S. Zhou. On differential privacy and adaptive
 data analysis with bounded space. In *Annual International Conference on the Theory and Applications of Cryptographic Techniques*, pages 35–65. Springer, 2023.
- [28] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. Roth. Generalization in adaptive data analysis and holdout reuse. *Advances in neural information processing systems*, 28, 2015.
- [29] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. L. Roth. Preserving statistical
 validity in adaptive data analysis. In *Proceedings of the forty-seventh annual ACM symposium* on Theory of computing, pages 117–126, 2015.
- [30] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data
 analysis. In *Theory of Cryptography: Third Theory of Cryptography Conference, TCC* 2006,
 New York, NY, USA, March 4-7, 2006. Proceedings 3, pages 265–284. Springer, 2006.
- [31] C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and differential privacy. In 2010 IEEE 51st annual symposium on foundations of computer science, pages 51–60. IEEE, 2010.
- [32] S. Feng, Y. Feng, G. Z. Li, Z. Song, D. Woodruff, and L. Zhang. On differential privacy for
 adaptively solving search problems via sketching. In *Forty-second International Conference on Machine Learning*, 2025.
- [33] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In
 Proceedings of the 25th International Conference on Very Large Data Bases, VLDB '99, page
 518–529, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.
- E. Gribelyuk, H. Lin, D. P. Woodruff, H. Yu, and S. Zhou. A strong separation for adversarially robust ℓ_0 estimation for linear sketches. In 2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS), pages 2318–2343. IEEE, 2024.
- 372 [35] S. Har-Peled, P. Indyk, and R. Motwani. Approximate nearest neighbor: Towards removing the curse of dimensionality. *Theory of Computing*, 1(8):321–350, 2012.

- 374 [36] S. Har-Peled and S. Mahabadi. Near neighbor: Who is the fairest of them all? *Advances in neural information processing systems*, 32, 2019.
- 376 [37] M. Hardt and D. P. Woodruff. How robust are linear sketches to adaptive inputs? In *Proceedings* of the forty-fifth annual ACM symposium on Theory of computing, pages 121–130, 2013.
- 378 [38] A. Hassidim, H. Kaplan, Y. Mansour, Y. Matias, and U. Stemmer. Adversarially robust streaming algorithms via differential privacy. *Journal of the ACM*, 69(6):1–14, 2022.
- [39] J. Ichnowski and R. Alterovitz. Fast nearest neighbor search in se (3) for sampling-based motion
 planning. In Algorithmic Foundations of Robotics XI: Selected Contributions of the Eleventh
 International Workshop on the Algorithmic Foundations of Robotics, pages 197–214. Springer,
 2015.
- [40] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of dimensionality. In *Proceedings of the thirtieth annual ACM symposium on Theory of computing*, pages 604–613, 1998.
- ³⁸⁷ [41] O. Jafari, P. Maurya, P. Nagarkar, K. M. Islam, and C. Crushev. A survey on locality sensitive hashing algorithms and their applications. *arXiv preprint arXiv:2102.08942*, 2021.
- Y. Kalantidis and Y. Avrithis. Locally optimized product quantization for approximate nearest neighbor search. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 2321–2328, 2014.
- M. Kapralov, M. Makarov, and C. Sohler. On the adversarial robustness of locality-sensitive hashing in hamming space. *arXiv preprint arXiv:2402.09707*, 2024.
- [44] L. Lai and E. Bayraktar. On the adversarial robustness of robust estimators. *IEEE Transactions* on Information Theory, 66(8):5097–5109, 2020.
- 396 [45] R. Motwani and P. Raghavan. Randomized algorithms. *ACM Computing Surveys (CSUR)*, 397 28(1):33–37, 1996.
- N. Pham and R. Pagh. Scalability and total recall with fast coveringlsh. In *Proceedings of the*25th ACM International on Conference on Information and Knowledge Management, pages
 1109–1118, 2016.
- [47] J. SantaLucia, H. T. Allawi, and P. A. Seneviratne. Improved nearest-neighbor parameters for predicting dna duplex stability. *Biochemistry*, 35(11):3555–3562, 1996.
- 403 [48] S. Shalev-Shwartz and S. Ben-David. *Understanding machine learning: From theory to algorithms*. Cambridge university press, 2014.
- 405 [49] A. Smith. Information, privacy and stability in adaptive data analysis. *arXiv preprint* 406 *arXiv:1706.00820*, 2017.
- [50] M. Stoeckl. Streaming algorithms for the missing item finding problem. In *Proceedings of the* 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 793–818. SIAM,
 2023.
- 410 [51] Y. Tagami. Annexml: Approximate nearest neighbor search for extreme multi-label classification. In *Proceedings of the 23rd ACM SIGKDD international conference on knowledge* 412 discovery and data mining, pages 455–464, 2017.
- 413 [52] K. Verstrepen and B. Goethals. Unifying nearest neighbors collaborative filtering. In *Proceedings of the 8th ACM Conference on Recommender systems*, pages 177–184, 2014.
- [53] A. Wei. Optimal las vegas approximate near neighbors in ℓ_p . ACM Transactions on Algorithms (TALG), 18(1):1–27, 2022.
- Late Total D. P. Woodruff and S. Zhou. Tight bounds for adversarially robust streams and sliding windows via difference estimators. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 1183–1196. IEEE, 2022.

420 A Related Work

The challenge of designing algorithms robust to adversarial queries is well-studied, particularly in privacy and statistics [12, 49, 11], where Differential Privacy is a central tool for ensuring robustness [28, 27]. The question of adversarial robustness was formally introduced to streaming algorithms by Ben-Eliezer et al. [16], motivated by attacks on linear sketches [37], and has since inspired a long line of work on robustifying various streaming algorithms [38, 20, 44, 21, 50, 54, 15].

Our work is most directly inspired by the framework of Hassidim et al. [38], who used Differential Privacy to solve estimation problems robustly, and by Cherapanamjeri et al. [25], who applied this framework with low query time overhead. While we adapt a similar approach, their methods are fundamentally limited to estimation and don't extend to search problems like NNS, where the output must be a specific dataset element. The difficulty of robust search is further highlighted by Beimel et al. [14], who established lower bounds showing that robust algorithms for certain search problems are inherently slower than their oblivious counterparts, motivating our investigation.

Different works further reinforce the unique challenges of robust search. Work on robust graph coloring, for example, also requires techniques beyond simple noise addition due to its discrete output space [20, 13]. Our approach is also distinct from Las Vegas LSH constructions [46, 53]. While these methods guarantee no false negatives, they remain vulnerable to adversaries who can inflate their expected runtime [43]. Our focus, in contrast, is on robustifying traditional Monte Carlo algorithms.

Finally, our approach builds on the use of discretization and net-based arguments to achieve 'for-all' guarantees for ANN. This technique was previously used for robust distance estimation [23] and for ANN in conjunction with partition trees [24]. We contribute a simpler and more streamlined construction that offers a modest performance improvement over this prior work.

A.1 Comparison with [32]

442

443

444

445

446

447

448

449

450

451

452

453

454

455 456

457

Our work was conducted concurrently and independently with that of Feng et al. [32], which also addresses adaptively solving search problems. The key similarities and differences are:

- 1. **Methodology:** The papers use fundamentally different approaches. Feng et al. employ a reduction to the private selection problem that is tightly coupled with the structure of DP noise. In contrast, we introduce a general "search-to-decision" meta-algorithm that treats the differentially private component as a black-box primitive.
- 2. Assumptions and Performance: The algorithms have different performance dependencies. Their runtime and space complexity both scale with a parameter s, which bounds the near-neighbor density: $|B_S(q,cr)| \leq s$. In contrast, our algorithm's space complexity has no such dependence on data density, making it strictly better in scenarios where s is large. Our runtime is also independent of s, degrading only for **degenerate** datasets (Assumption 1)—a condition we argue is less restrictive. On the other hand, our algorithm increases the exponent by an additive factor of $\frac{1}{K}$, which in practice may be negligible¹. While the scaling differs, both methods share a \sqrt{Q} factor in space complexity from the use of DP.

Table 1: Comparison with Feng et al. [32]

Metric	Our Algorithm	Feng et al. [32]
Query Time	$O(d \cdot n^{\rho+1/K})^2$	$O(d \cdot s \cdot n^{\rho})$
Space	$O(\sqrt{Q} \cdot n^{1+\rho+1/K})$	$O(\sqrt{Q} \cdot s \cdot n^{1+\rho})$

458 B Review of Differential Privacy

Our work leans heavily on results from differential privacy, so we give the necessary definitions and results here.

¹For instance, if $\rho = 0.25$ and K = 100.

²This holds for non-degenerate datasets as defined in Assumption 1.

461 B.1 Definition of differential privacy

Definition B.1 (Differential Privacy). Let A be any randomized algorithm that operates on databases whose elements come from some universe. For parameters $\varepsilon > 0$ and $\delta \in [0,1]$, the algorithm A is (ε, δ) -differentially private (DP) if for any two neighboring databases $S \sim S'$ (ones that differ on one row only), the distributions on the algorithm's outputs when run on S vs S' are very close. That is, for any $S \sim S'$ and any subset of outcomes T of the output space of A we have:

$$\Pr[\mathcal{A}(S) \in T] \le e^{\varepsilon} \cdot \Pr[\mathcal{A}(S') \in T] + \delta$$

467 B.2 The Laplace Mechanism and its properties

Theorem B.2 (The Laplace Mechanism, [30]). Let $f: X^* \to \mathbb{R}$ be a function. Define its sensitivity ℓ to be an upper bound to how much f can change on neighboring databases:

$$\forall S \sim S' : |f(S) - f(S')| \le \ell$$

The algorithm that on input $S \in X^*$ returns $f(S) + Lap\left(\frac{\ell}{\varepsilon}\right)$ is $(\varepsilon, 0)$ -DP, where

$$Lap(\lambda; x) := \frac{1}{2\lambda} \exp\left(-\frac{|x|}{\lambda}\right)$$

is the Laplace Distribution over \mathbb{R} .

472

478

481

486

We will make use of the following concentration property of the Laplace Distribution:

Lemma B.3. For $m \geq 1$, let $Z_1, ... Z_m \sim Lap(\lambda)$ be iid random variables. We have that:

$$\Pr\left[\max_{i=1}^{m} Z_i > \lambda(\ln(m) + t)\right] \le e^{-t}$$

474 B.3 Properties of differential privacy

Differential Privacy has numerous properties that are useful in the design of algorithms. The following theorem is known as "advanced adaptive composition" and describes a situation when DP algorithms are linked sequentially in an adaptive way.

algorithms are linked sequentially in an adaptive way

Theorem B.4 (Advanced Composition, [31]). Suppose algorithms $A_1, ..., A_k$ are (ε, δ) -DP. Let \mathcal{A}' be the adaptive composition of these algorithms: on input database x, algorithm A_i is provided with x, and, for $i \geq 2$, with the output y_{i-1} of A_{i-1} . Then, for any $\delta' \in (0,1)$, Algorithm A is $(\widetilde{\varepsilon}, \widetilde{\delta})$ -DP with:

$$\widetilde{\varepsilon} = \varepsilon \cdot \sqrt{2k \ln(1/\delta')} + 2k\varepsilon^2$$
 and $\widetilde{\delta} = k\delta + \delta'$

The next theorem dictates that post-processing the output of a DP algorithm cannot degrade its privacy guarantees, as long as the processing does not use information from the original database.

Theorem B.5 (DP is closed under Post-Processing). Let $A:U^n\to Y^m$ and $\mathcal{B}:Y^m\to Z^r$ be randomized algorithms, where U,Y,Z are arbitrary sets. If A is (ε,δ) -DP, then so is the composed algorithm $\mathcal{B}(A(\cdot))$.

The following theorem showcases the power of DP algorithms in learning.

Theorem B.6 (DP and Generalization, [11, 29]). Let $\varepsilon \in (0, 1/3)$ and $\delta \in (0, \varepsilon/4)$. Let \mathcal{A} be a (ε, δ) -DP algorithm that operates on databases in X^n and outputs m predicate functions $h_i : X \to \{0, 1\}$ for $i \in [m]$. Then, if D is any distribution over X and S consists of $n \ge \frac{1}{\varepsilon^2} \cdot \log\left(\frac{2\varepsilon m}{\delta}\right)$ iid samples from D, we have for all $i \in [m]$ that:

$$\Pr_{\substack{S \sim D^n \\ h_i \leftarrow \mathcal{A}(S)}} \left[\left| \frac{1}{|S|} \sum_{x \in S} h_i(x) - \underset{x \sim D}{\mathbb{E}} [h_i(x)] \right| \ge 10\varepsilon \right] \le \frac{\delta}{\varepsilon}$$

In other words, a privately generated predicate is a good estimator of its expectation under any distribution on the input data. A final property of privacy that we will use is a boosting technique through sub-sampling:

494

Theorem B.7 (Privacy Amplification by Subsampling, [19, 25]). Let A be an (ε, δ) -DP algorithm operating on databases of size m. For $n \geq 2m$, consider an algorithm that for input a database of size n, it subsamples (with replacement) m rows from the database and runs A on the result. Then this algorithm is (ε', δ') -DP for

$$\varepsilon' = \frac{6\varepsilon m}{n}$$
 and $\delta' = \exp\left(\frac{6\varepsilon m}{n}\right) \cdot \frac{4m}{n} \cdot \delta$

499 C Proof of Theorem 3.1

In this section we include a formal proof of Theorem 3.1 on the construction of a robust decider algorithm.

502

Lemma C.1. Let $\varepsilon = 0.01$ and $\delta \in (0, 0.995)$. Algorithm \mathcal{A}_{dec} is (ε, δ) –DP with respect to the string of randomness R.

Proof. We analyze the privacy of the algorithm \mathcal{A}_{dec} given in Algorithm 1 with respect to the string of randomness R, which we interpret as its input. Suppose we let

$$\varepsilon' = \frac{\varepsilon}{2\sqrt{2Q\ln(1/\delta)}}$$

For all $i \in [Q]$, we claim that the response to query q_i is $(\varepsilon', 0)$ -DP with respect to R. This is because the statistic N_i defined in Line 8 of Algorithm 1 has sensitivity 1/k and therefore by Theorem B.2, after applying the Laplace mechanism in Line 9, we have that releasing \widehat{N}_i is (1,0)-DP with respect to the strings R. The binary output based on comparing \widehat{N}_i with the constant threshold 1/2 is still (1,0)-DP by post-processing (Theorem B.5).

Since $L \ge 2k$, using the amplification by sub-sampling property (Theorem B.7), we get that each iteration is $(\varepsilon', 0)$ –DP, because for large enough Q we have:

$$\frac{6k}{L} = \frac{6\varepsilon \log \frac{1}{\delta} + 6\varepsilon \log Q}{24 \cdot \log \frac{1}{\delta} \sqrt{2Q \ln \left(\frac{1}{\delta}\right)}} < \frac{2\varepsilon}{4\sqrt{2Q \ln \left(\frac{1}{\delta}\right)}} = \varepsilon'$$

Finally, by adaptive composition (Theorem B.4), after Q adaptive steps our resulting algorithm is (ε'', δ) -DP where:

$$\varepsilon'' = \varepsilon' \sqrt{2Q \ln \left(\frac{1}{\delta}\right)} + Q(\varepsilon')^2 = \frac{\varepsilon}{2} + \frac{\varepsilon^2}{4 \ln \left(\frac{1}{\delta}\right)} \le \varepsilon$$

for $\varepsilon \leq 2 \ln \delta^{-1}$, which is satisfied for $\delta \in (0, 0.995)$. Thus, Algorithm \mathcal{A}_{dec} is (ε, δ) -DP with respect to its inputs – the random strings R.

Next, we show that a majority of the data structures \mathcal{D}_i output accurate verdicts with high probability, even against adversarially generated queries.

516

Lemma C.2. With probability at least $1 - \delta$, for all $i \in [Q]$, at least 0.8L of the answers a_{ij} are accurate responses to the decision problem with query q_i .

Proof. The central idea of the proof, as it appeared in [38], is to imagine the adversary \mathcal{B} as a post-processing mechanism that tries to guess which random strings lead \mathcal{A} to making a mistake.

Imagine a wrapper *meta-algorithm* C, outlined as Algorithm 5, that takes as input the random string $R = r_1 \circ r_2 \circ \cdots \circ r_L$, which is generated according to some unknown, arbitrary distribution R. This

algorithm \mathcal{C} simulates the game between \mathcal{A}_{dec} and \mathcal{B} : It first runs \mathcal{B} to provide some input dataset $S \subseteq U$ to \mathcal{A}_{dec} , which is seeded with random strings in R. Then, \mathcal{C} uses \mathcal{B} to query \mathcal{A}_{dec} adaptively with queries $(q_1, ..., q_Q)$. At the same time, it simulates \mathcal{A}_{dec} to receive answers $a_1, ..., a_Q$ that are fed back to \mathcal{B} . By Theorem C.1, the output $(a_1, ..., a_Q)$ is produced privately with respect to R, regardless of how the adversary makes their queries.

At every step i, once \mathcal{B} has provided $\vec{q_i} = (q_1, ..., q_i)$ and has gotten back i answers $(a_1, ..., a_i)$

At every step i, once \mathcal{B} has provided $\vec{q_i} = (q_1,...,q_i)$ and has gotten back i answers $(a_1,...,a_i)$ from \mathcal{A}_{dec} , our meta-algorithm \mathcal{C} post-processes this output history $\{(q_j,a_j)\}_{j=1}^i$ to generate a predicate $h_{\vec{q_i}}: \{0,1\}^* \to \{0,1\}$. This predicate tells which strings $r \in \{0,1\}^*$ lead algorithm \mathcal{A} to successfully answer query prefix $\vec{q_i}$ on input dataset S, in the decision-problem regime. More formally³:

$$h_{\vec{q_i}}(r) := \bigwedge_{1 \le j \le i} \left\{ \mathcal{A}(r)(S, q_j) = \mathbb{1} \left[B_S(q_j, \vec{r}) \ne \emptyset \right] \right\} \tag{2}$$

Algorithm 5 The meta-algorithm C, ran for i steps

- 1: **Inputs:** Random string $R = r_1 \circ r_2 \circ \cdots r_L$, descriptions of Algorithms \mathcal{A}_{dec} and \mathcal{B} .
- 2: Simulate B to obtain a dataset $S \subset U$.
- 3: Initialize A_{dec} with random strings $(r_1, ..., r_L)$ and the dataset S.
- 4: for $i \in Q$ do
- 5: Simulate \mathcal{B} to produce a query q_j based on the prior history of queries and answers.
- 6: Simulate A on query q_i to produce an answer.
- 7: Compute (via post-processing of query/answer history) predicate $h_{\vec{q_i}}(\cdot)$ from Equation 2.
- 8: **Output** $(h_{\vec{q_1}}, ..., h_{\vec{q_O}})$.

Generating these predicates is possible because $h_{\vec{q_i}}$ only depends on $\vec{q_i}$, which is a substring of the output history that $\mathcal C$ has access to. As a result, $\mathcal C$ can produce $h_{\vec{q_i}}$ by (say) calculating its value for each value of R exhaustively⁴. Because $\mathcal C$ is only allowed to post-process the query/answer vector $(q_1,a_1,...,q_i,a_i)$, the output predicate $h_{\vec{q_i}}$ is also generated in a (ε,δ) -DP manner with respect to $r_1,...,r_L$, by Theorem B.5.

Given these Q privately generated predicates, and since $L > \frac{1}{\varepsilon^2}\log\frac{2\varepsilon Q}{\delta}$ for large enough Q, by the generalization property of DP (Theorem B.6) we have that with probability at least $1 - \frac{\delta}{\varepsilon} = 1 - \Theta(\delta)$ it holds for any distribution $\mathcal R$ and for all $i \in [Q]$ that:

$$\left| \underset{r \sim \mathcal{R}}{\mathbb{E}} \left[h_{\vec{q_i}}(r) \right] - \frac{1}{L} \sum_{j=1}^{L} h_{\vec{q_i}}(r_j) \right| \le 10\varepsilon = \frac{1}{10}$$
 (3)

But if \mathcal{R} is the uniform distribution, then $\mathbb{E}_{r \sim \mathcal{R}} \left[h_{\vec{q_i}}(r) \right]$ is simply the probability that \mathcal{A}_2 gives an accurate answer on the *fixed* query sequence $\vec{q_i}$. Since \mathcal{A} is an oblivious decider, Equation 3 implies that:

$$\underset{r \sim \mathcal{R}}{\mathbb{E}} \left[h_{\vec{q_i}}(r) \right] \ge \frac{9}{10} \tag{4}$$

Further, $\frac{1}{L}\sum_{j=1}^{L}h_{\vec{q_i}}(r_j)$ is the fraction of random strings that lead \mathcal{A}_2 to be correct. Thus, by Equation 4, this fraction is at least $\left(\frac{9}{10}-\frac{1}{10}\right)L=0.8L$ for all $i\in[Q]$.

We are now ready to prove the main theorem of this section.

Proof of Theorem 3.1. Let us condition on the event that Theorem C.2 holds, which happens with probability at least $1-\Theta(\delta)$. Then, for all $i\in[Q]$, N_i is either at least 0.8, when $B_S(q_j,\bar{r})\neq\emptyset$, or

³We replace the radius parameter r with \bar{r} briefly in this argument. The symbol r is reserved for an arbitrary random string.

 $^{{}^{4}}$ We assume ${\mathcal C}$ has unbounded computational power.

at most 1 - 0.8 = 0.2, otherwise. By Theorem B.3, we require that the maximum Laplacian noise not exceed 0.2 with high probability:

$$\Pr[|Z_i| > 0.2] = \Pr\left[|Z_i| > \frac{1}{k} \left(\ln(1) + 0.2k\right)\right] \le e^{-0.2k}$$
(5)

Since our threshold for deciding is $\widehat{N}_i := N_i + Z_i \geq 0.5$, we can see that setting $k = \Omega(\log(Q/\delta))$ will make the probability in Equation 5 at most $\frac{\delta}{Q}$, implying, by union bound, that \mathcal{A}_{dec} outputs the correct answer at every timestep $i \in [Q]$ with high probability.

554 D Improved Robust ANNS Algorithms with ∀ guarantees

In this section, we will discuss another path to adversarial robustness for search problems –providing a *for-all* guarantee. We will focus on the ANN problem for this section, due to its ubiquity and importance, as well as its amenity to the techniques we discuss.

D.1 A For-all guarantee in the Hamming cube

558

We present the Hamming Distance ANN case first because it is the most natural *for-all* guarantee one can give. This is because the space we are operating over is discrete, and we can easily union-bound over all possible queries and only incur a cost polynomial to the dimension *d* of the metric space.

Theorem D.1. There exists an adversarially robust algorithm solving the (c,r)-ANN problem in the d-dimensional Hamming Hypercube that can answer every possible query correctly with probability at least $1-1/n^2$. The space requirements are $\widetilde{O}(d \cdot n^{1+\rho+o(1)})$, and the time required per query is $\widetilde{O}(d^2 \cdot n^{\rho})$, where $\rho = 1/c$.

Proof. First, let us recall the standard LSH in the Hamming Hypercube: We are given a point set $S \subseteq \{0,1\}^d$ with |S|=n. We receive queries $q \in \{0,1\}^d$. Our Locality Sensitive Hash family \mathcal{H} is defined as follows: Pick some coordinate $i \in [d]$ and hash $x \in \{0,1\}^d$ according to $x_i \in \{0,1\}$. This function h acts as a hyperplane separating the points in the hypercube into two equal halves, depending on the i-th coordinate. Sampling h uniformly at random from h is equivalent to sampling h if h is equivalent to sampling h uniformly at random. We can easily see that h is an h is an h is equivalent to sampling h is equivalent to sampling h in h in

$$\Pr_{h \sim \mathcal{H}}\left[h(p) = h(q)\right] = \frac{d - ||p - q||}{d} = \begin{cases} \geq 1 - \frac{r}{d} := p_1, & \text{when } ||p - q|| \leq r \\ \leq 1 - \frac{cr}{d} := p_2, & \text{when } ||p - q|| \geq cr \end{cases}$$

We now go through the typical amplification process for LSH families [33]. Instead of sampling just one coordinate, we sample k. And instead of sampling just one hash function, we sample L different ones $h_1, ..., h_L \in \mathcal{H}^k$ and require that a close point collides with q at least once. With this scheme, we know that if we fix $q \in \{0,1\}^d$ and $p \in B_S(q,r)$ we have:

$$\Pr\left[\exists i \in [L] : h_i(p) = h_i(q)\right] \ge 1 - (1 - p_1^k)^L$$

Furthermore, if $||p-q|| \ge cr$, we must have:

$$\Pr\left[\exists i \in [L] : h_i(q) = h_i(p)\right] \le Lp_2^k$$

Now, we want to guarantee that with high probability there doesn't exist any query $q \in \{0, 1\}^d$ such that for all points $p \in B_S(q, r)$ we have $h_i(q) \neq h_i(p)$ for all $i \in [L]$. In other words, we want:

$$\Pr\left[\exists q \in \{0,1\}^d : \forall p \in B_S(q,r) \, \forall i \in [L] : h_i(p) \neq h_i(q)\right] \leq \frac{1}{n}$$

We can use the union bound to get:

$$\Pr\left[\exists q \in \{0,1\}^d : \forall p \in B_S(q,r) \,\forall i \in [L] : h_i(p) \neq h_i(q)\right]$$

$$\leq \sum_{q \in \{0,1\}^d} \Pr\left[\forall p \in B_S(q,r) \,\forall i \in [L] : h_i(p) \neq h_i(q)\right]$$

So it suffices to establish that for fixed $q \in \{0, 1\}^d$ we have:

$$\Pr\left[\forall p \in B_S(q, r) \,\forall i \in [L] : h_i(p) \neq h_i(q)\right] \leq \frac{1}{n2^d}$$

We can weaken this statement and union-bound as follows:

$$\Pr\left[\forall p \in B_S(q,r) \,\forall i \in [L] : h_i(p) \neq h_i(q)\right] \leq \Pr\left[\exists p \in B_S(q,r) \, \mid \exists i \in [L] : h_i(p) = h_i(q)\right]$$

$$\leq \sum_{p \in B_S(q,r)} \Pr\left[\exists i \in [L] : h_i(p) = h_i(q)\right]$$

$$\leq |B_S(q,r)| \cdot (1 - p_1^k)^L$$

$$\leq n(1 - p_1^k)^L$$

So it suffices to require that:

$$(1 - p_1^k)^L \le \frac{1}{n^2 2^d} \tag{6}$$

On the other hand, the expected number of points in $S \setminus B_S(q, cr)$ that we will see in the same buckets as q is:

$$\mathbb{E}\left[|p \in S \setminus B_S(q, cr) \mid \exists i \in [L] : h_i(p) = h_i(q)|\right] = \sum_{p \in S \setminus B_S(q, cr)} \Pr\left[\exists i \in [L] \mid h_i(p) = h_i(q)\right]$$
(7)

$$\leq nLp_2^k \tag{8}$$

We can now combine Equation 6 and Equation 8 to work out the values of k and L. First, we want to get O(L) time in expectation, so we require $p_2^k \le 1/n$, which gives:

$$k \ge \log_{1/p_2}(n)$$

Now, let $p_1=p_2^{\rho}$. Substituting, we resolve the value of L as:

$$L \ge n^{\rho} d \log n$$

With that in place, we can see that our algorithm takes O(L) time with high probability. Indeed, let X be the number of points in $S \setminus B_S(q, cr)$ that are hashed to some common bucket with q. Using a simplified Chernoff bound, we have that:

$$\Pr[X \ge 10L] \le 2^{-10L} = \frac{1}{n^{10dn^{\rho}}} \ll \frac{1}{n^{\Omega(1)}}$$

which implies that our runtime per query is O(L) with high probability. As for the value of the constant ρ we have by definition that:

$$\rho := \frac{\log p_1}{\log p_2} = \frac{\log \left(1 - \frac{r}{d}\right)}{\log \left(1 - \frac{cr}{d}\right)} \approx \frac{1}{c}$$

Overall, evaluating our hash function requires $O(\log n)$ time, and evaluating distances between points requires O(d) time. We maintain $O(d \cdot n^{\rho} \log n)$ hash tables, meaning that on a single query we spend $O(d^2 \cdot n^{\rho} \log n)$ time. For pre-processing, apart from storing the entire dataset in dn space, we take $O(d \cdot n^{1+\rho+o(1)})$ space to construct our data structure.

D.1.1 Improving the query runtime via sampling

598

601

We can improve the dependency on d for the query runtime by using sampling to find a good bucket. The following theorem encapsulates this finding, reducing the runtime complexity by a factor of d:

Theorem D.2. There exists an adversarially robust algorithm solving the (c, r)-ANN problem in the d-dimensional Hamming Hypercube that can answer all possible queries correctly with probability at least $1 - 1/n^2$. The space requirements are $\widetilde{O}(d \cdot n^{1+\rho+o(1)})$ and the time required per query is $\widetilde{O}(d \cdot n^{\rho})$, where $\rho = 1/c$.

Proof. From our analysis above, we know that we take $L = n^{\rho} \cdot d \log n$ different hash functions. 606 Consider some query q. We analyze the expected number of buckets that contain some point 607 $p \in B_S(q,r)$. Let X_q be a random variable representing the number of buckets $i \in [L]$ for which 608 some point in $B_S(q,r)$ lies in bucket i. Define the following indicator random variable: 609

$$\mathbb{1}_i = \begin{cases} 1, & \text{if some point } p \in B_S(q,r) \text{ lies in bucket } i \in [L] \\ 0, & \text{otherwise} \end{cases}$$

By linearity of expectation, we can now write:

$$\mathbb{E}[X_q] = \sum_{i=1}^L \Pr[\mathbb{1}_i = 1]$$

$$= \sum_{i=1}^L \Pr\left[\bigcup_{p \in B_S(q,r)} \{h_i(p) = h_i(q)\}\right]$$

$$\geq L \cdot p_1^k$$

$$= L \cdot (p_2)^{\rho k}$$

$$\geq \frac{L}{n^{\rho}}$$

$$= d \log n$$

By using the Chernoff bound, we can see that with high probability, X_q is close to its expectation:

$$\Pr\left[X_q \le \frac{1}{2}d\log n\right] \le e^{-\frac{d\log n}{8}} = \frac{1}{n^{d/8}} \ll \frac{1}{n}$$

Let us, then, condition on $X_q > \frac{1}{2}d\log n$. On query time, we can simply sample $m = \Theta(n^\rho \log n)$ buckets uniformly at random from [L]. We know that with probability at least $\frac{d\log n}{2n^\rho d\log n} = \frac{1}{2n^\rho}$, a 613 single randomly selected bucket contains some point from $B_S(q,r)$. So, for all m of the selections to 614 not contain such a point, the probability is at most: 615

$$\left(1 - \frac{1}{n^{\rho}}\right)^{n^{\rho} \log n} \le e^{-\log n} = \frac{1}{n}$$

So, with probability at least $1 - \frac{1}{n}$ we find a bucket containing a good point. Since, with high probability, the number of points in $P \setminus B_S(q, cr)$ in any bucket are O(L), we see that this sampling 616 617 method improves the query runtime to $O(n^{\rho} \log n)$. 618

D.1.2 Utilizing the optimal LSH algorithm

619

620

621

622 623

624

626 627 Our earlier exposition used the original LSH construction for the Hamming Hypercube [40] that achieves $\rho = 1/c$. We can also use the state-of-the-art approach from [6] that achieves $\rho = \frac{1}{2c-1}$ in place of Theorem D.1. This slightly improves the exponent on n:

Theorem D.3. There exists an adversarially robust algorithm solving the (c,r)-ANN problem in the d-dimensional Hamming Hypercube that can answer all possible queries correctly with probability at least 0.99. The space complexity is $O(d \cdot n^{1+\rho+o(1)})$, and the time required per query is $O(d \cdot n^{\rho})$, where $\rho = \frac{1}{2c-1}$. These runtime guarantees hold with high probability. 625

The analysis is identical, so we will not repeat it again: Since the algorithm succeeds with constant 628 probability, and we want it to succeed on all 2^d possible queries, we boost its success probability to $1 - \frac{1}{100 \cdot 2^d}$. This way, after the union bound, any query succeeds with probability at least 0.99. 629 630 Furthermore, the analysis of the sampling algorithm for improving the query runtime in Theorem D.2 631 also remains the same. All that changes between using the standard Hamming norm LSH as opposed 632 to the optimal one is the ratio $\rho := \frac{\log p_1}{\log p_2}$

634 D.2 Discretization of continuous spaces through metric coverings

The *for-all* algorithm we presented as Theorem D.2 cannot be applied outside of discrete spaces, however, because the key to our analysis was the union bound over all the possible queries.

To simulate a similar argument for solving ANN in continuous, ℓ_p spaces, we can consider a strategy 637 of discretizing the space. We place special "marker" points and guarantee that some version of the 638 ANN problem is solvable around them. Then, when a query comes in, we find its corresponding 639 marker point, and solve the ANN problem for it. We show that the answer we get is valid for the 640 original query as well, so long as the "neighborhood" around the marker points is small enough. A 641 similar strategy and covering construction appeared in [24], although they did not make algorithmic 642 use of the ability to project any query point to the covering set. Instead, their algorithm deems it 643 sufficient to be successful on every point on just the covering set. 644

645 D.2.1 Metric coverings in continuous spaces

To initiate our investigation, we need the definition of a *metric covering*:

Definition D.4. Consider a metric space $\mathcal{M} = (\mathbb{R}^d, ||\cdot||_p)$ with metric μ . Let $U \subset \mathbb{R}^d$ be a bounded subset. A set $\widehat{S} \subseteq \mathbb{R}^d$ is called an Δ -covering of U if for all $q \in U$ there exists some $\widehat{s} \in \widehat{S}$ such that

$$||q - \widehat{s}||_p \le \Delta$$

Suppose that U is a bounded subset of \mathbb{R}^d . We can construct the following the following Δ -covering of U: Let $C:=\sup_{x\in U}||x||_{\infty}$ and suppose $\{u_i\}_{i=1}^d$ is an orthonormal basis spanning U. We know that

649 $||x||_{\infty} \leq C$ for all $x \in U$, so let us define:

$$\widehat{S} = \sum_{i=1}^{d} \widehat{\alpha}_i u_i, \text{ where}$$

$$\widehat{\alpha}_i \in \{-C, -C + \varepsilon, ..., C - \varepsilon, C\}$$

for some choice of ε that we will decide later. This is a standard construction for ℓ_2 that we now extend to ℓ_p [48]. As defined, we have:

$$\left|\widehat{S}\right| = \left(\frac{2C}{\varepsilon}\right)^d$$

Now, fix some $q \in U$. We can write:

$$q = \sum_{i=1}^{d} \alpha_i u_i$$

For all $i \in [d]$, let $\widehat{\alpha}_i$ be such that $\alpha_i \in \widehat{\alpha}_i \pm \varepsilon$. Let $\widehat{s} := \sum_{i=1}^d \widehat{\alpha}_i u_i$. Now we have that:

$$||q - \widehat{s}||_p^p = \left| \left| \sum_{i=1}^d (\alpha_i - \widehat{\alpha}_i) u_i \right| \right|_p^p = \sum_{i=1}^d |\alpha_i - \widehat{\alpha}_i|^p \le d\varepsilon^p$$

Now, let us set:

$$\varepsilon = \frac{\Delta}{d^{1/p}} \implies ||q - \widehat{s}||_p \le \Delta$$

655 Our construction thus has size:

$$|\widehat{S}| = \left(\frac{2Cd^{1/p}}{\Delta}\right)^d$$

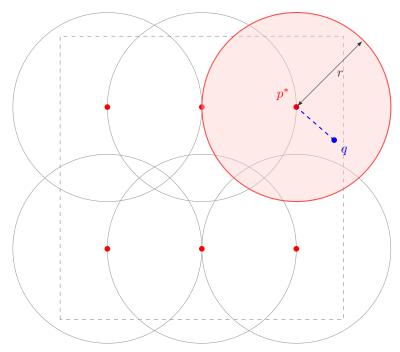


Figure 2: An illustration of an r-covering.

D.2.2 The robust ANN algorithm

With this construction in mind, our algorithm for robust (c,r)-ANN in ℓ_p space follows as Algorithm 6. The algorithm remains agnostic to the specific LSH data structure that could be used to solve ANN in ℓ_p metric spaces obliviously [22, 26], but assumes that the success probability over a set of queries in that data structure can be boosted by increasing the number of hash functions taken. This was the case for the Hamming norm as well.

Algorithm 6 Robust ℓ_p ANN through discretization

- 1: Parameters: Max-norm C, runtime/accuracy tradeoff $\Delta > 0$, LSH parameters c, r > 0.
- 2: Receive point dataset $S \subset U$ with |S| = n from the adversary.
- 3: Let \widehat{S} be a Δ -covering of U as constructed in Section D.2.1, and let $c' \leftarrow \frac{cr \Delta}{r + \Delta}$.
- 4: Initialize an LSH data structure \mathcal{D} for solving $(c', r + \Delta)$ -ANN that answers all queries in \widehat{S} correctly with high probability.
- 5: while Adversary provides queries do
- 6: Receive query $q \in U$ from the adversary.
- 7: Find $\hat{s} \in \hat{S}$ such that $||q \hat{s}||_p \le \Delta$.
 - Query \mathcal{D} on \widehat{s} and output whatever it outputs.

Theorem D.5. There exists an adversarially robust algorithm solving the (c, r)-ANN problem in the (\mathbb{R}^d, ℓ_p) metric space that can answer an unbounded number of adversarial queries. Assumming that the input dataset and the queries are all elements of $U = \{x \in \mathbb{R}^d \mid ||x||_p \leq C\}$ for some C > 0, the pre-processing space is $\widetilde{O}(nT)$ and the time per query is $\widetilde{O}(T)$, where:

$$T = O\left[d \cdot n^{\rho'} \log\left(\frac{Cd^{1/p}}{cr}\right)\right] \tag{9}$$

667 where:

662

664

665

666

656

$$\rho' = \frac{(10+c)^2}{161c^2 - 20c - 100}$$

Proof. First, to argue for correctness, let q be any query. Suppose there exists some point $x \in S$ with $||x-q||_p \le r$. Then, by triangle inequality it holds that:

$$||x - \hat{s}||_p \le ||x - q||_p + ||\hat{s} - q||_p \le \Delta + r$$

Thus, with high probability, \mathcal{D} will find some point $x' \in S$ with $||x' - \widehat{s}||_p \le cr - \Delta$. For that point, we have that:

$$||x' - q||_p \le ||x' - \hat{s}||_p + ||\hat{s} - q||_p \le cr - \Delta + \Delta = cr$$

Therefore, Algorithm 6 will output a correct answer. If there doesn't exist such a point x, it is valid for our algorithm to output \perp , so are done.

For the runtime, recall that $|\widehat{S}| \leq O(2Cd^{1/p}/\Delta)^d$. Hence, in order to guarantee success for all queries in \widehat{S} , a similar analysis as to the one for the Hamming Hypercube shows that \mathcal{D} takes up:

$$O\left[d \cdot n^{1 + \frac{1}{2c'^2 - 1}} \log\left(\frac{2Cd^{1/p}}{\Delta}\right)\right]$$

space for pre-processing and

$$O\left[n^{\frac{1}{2c'^2-1}}\log\left(\frac{2Cd^{1/p}}{\Delta}\right)\right]$$

time per query processed, where

$$c' := \frac{cr - \Delta}{r + \Delta}$$

Note that we use the optimal LSH algorithm for ℓ_p spaces, which guarantees $\rho = \frac{1}{2c^2-1}$. Our only constraint is that we must have $\Delta < cr$. If we set $\Delta = \frac{c}{10}r$, we get a per-query runtime of:

$$O\left[n^{1+\frac{1}{2c'^2-1}}\log\left(\frac{20Cd^{1/p}}{cr}\right)\right], \quad \text{where } c' = \frac{9c}{10+c}$$

676

677 D.2.3 Removing the dependency on the scale

Our algorithm from Theorem D.5 crucially depends on $\log C$, where C is a bounding box for the query and input point space in the ℓ_p norm. We can remove the dependency on C by designing our covering to be data dependent, instead paying an additional logarithmic factor.

Our new covering \hat{S}' will be a collection of n Δ -coverings, as constructed in Algorithm 6, each one discretizing the r-ball around a point $p \in S$. The number of points in this new covering is:

$$|\widehat{S'}| \le O\left[n \cdot \left(\frac{r \cdot d^{1/p}}{cr}\right)^d\right] = O\left[n \cdot \left(\frac{d^{1/p}}{c}\right)^d\right]$$
(10)

Note that the size of this covering improves upon the $(nd)^d$ size of the covering given in [24], which results in a slightly better runtime. This new covering notably does not cover every possible query. However, it covers exactly the queries we care about. This improved covering leads to the following for-all guarantee for robust ANN:

Theorem D.6. There exists an adversarially robust algorithm solving the (c,r)-ANN problem in the (\mathbb{R}^d, ℓ_p) metric space that can answer an unbounded number of adversarial queries. The pre-processing time / space is $\widetilde{O}(nT)$ and the time per query is $\widetilde{O}(T/d)$, where:

$$T = O\left[d \cdot n^{\rho'} \left(d\log d + \log n\right)\right] \tag{11}$$

691 where:

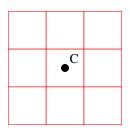
687

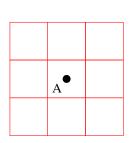
688

689

690

$$\rho' = \frac{1}{2c'^2 - 1} = \frac{(10 + c)^2}{161c^2 - 20c - 100}$$





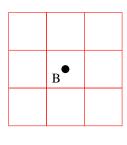


Figure 3: Data-Dependent Discretization of the input query space.

692 Proof. We distinguish between two cases:

693

694

695

696

697

698

699

700

702

703

704

705

706

708 709

- 1. If a query q is not included in any $B_S(p,r)$ for any $p \in S$, then the answer can safely be \bot because $B_S(q,r) = \emptyset$ necessarily. Thus, we can just run the default LSH algorithm and simply output whatever it outputs.
- 2. Otherwise, a query q can be included in some $B_S(p,r)$ for some $p \in S$. Then, suppose $\widehat{s'} \in \widehat{S'}$ is a point in our covering such that $||q \widehat{s'}||_p \leq \Delta$. Then:

$$||p - \hat{s'}||_p \le ||p - q||_p + ||\hat{s'} - q||_p \le r + \Delta$$
 (12)

Thus, as we argued before, with high probability \mathcal{D} finds some point $x \in S$ with $||x - \widehat{s'}||_p \le cr - \Delta$, and for that point we have:

$$||x - q||_p \le ||x - \hat{s'}||_p + ||\hat{s'} - q||_p \le cr - \Delta + \Delta = cr$$
 (13)

which means our algorithm will output a correct answer.

As before, our algorithm's space and runtime guarantees scale with $\log |\widehat{S}'|$.

E An Improvement to Exact Fair ANN

A **fair** algorithm outputs, on input x, a uniformly distributed output over some pre-determined space of outcomes. In the problem of *exact fair approximate nearest neighbor search*⁵, we aim to output a point uniformly in $B_S(q,r)$. Fair ANN algorithms have been studied extensively by Aumüller, Har-Peled, Mahabadi, Pagh, and Silvestri [9]. Their techniques, which inspired the design of Algorithm 3, involved the use of LSH and sampling to yield an fair ANN algorithm whose runtime scales with our familiar $\frac{n(q,cr)}{n(q,r)}$. They prove the following theorem:

Theorem E.1. There exists a fair ANN algorithm using $\widetilde{O}(n^{1+\rho})$ bits of space and $\widetilde{O}(dn^{\rho} \cdot \frac{n(q,cr)}{n(q,r)})$ time per query, where ρ is an LSH parameter.

⁵Approximate notions of fairness are also studied in [9] and our approach likely extends to those concepts as well. For simplicity in presentation, we focus on the most straightforward definition of fairness.

Our concentric LSH construction can yield an exact fair ANN algorithm with an almost purely sublinear query time, modulo the outlier structural assumption. The algorithm and analysis remain the same, but instead of $\mathcal{L}_{sampling}$, we apply it to the fair ANN algorithm of Theorem E.1:

715

Theorem E.2. Given Assumption 1, there exists an algorithm that on query $q \in \mathcal{M}$ outputs a point in $B_S(q,r')$ uniformly at random, where $r' \in [r,cr]$, and c,r are the LSH parameters. If such points do not exist, the algorithm outputs " \bot " with high probability. The algorithm uses $O(n^{1+\frac{1}{K}+\rho} \cdot \log n)$ bits of space overall and $O(dn^{\rho+1/K} \log n)$ time per query.

Remark (Different Notions of Fairness). Our algorithm returns a uniformly sampled point from a sphere with radius r', which is potentially different from r. This radius r' depends on S, q and the internal randomness used, which makes our guarantee technically different from the one given by Theorem E.1. However, the output is nevertheless fairly produced among a set of valid candidate points.

Remark (Fairness and Robustness). A natural follow-up question is whether a connection exists between fairness and adversarial robustness. One might intuitively argue that fair algorithms are inherently robust because they don't exhibit bias in their internal randomness toward any specific output. However, this is not always the case. We can always construct an oblivious decider by simply wrapping it around a fair algorithm, and we have seen that deciders are not necessarily robust. Nevertheless, an interesting direction for future work is to quantify levels of robustness and position fair algorithms along this spectrum.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: We provide exact statements and proofs of our results.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have numerous remarks about the assumptions our algorithms make and their limitations.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: Proofs are either part of the main text or the Appendix.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: No experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

838 Answer: [NA]

840

841

842

844

845

846

847

850

851

852

855

856

857

859

860

861

862

863

864

865

866

867

868

869

870

871 872

873

874

875

876

877

878

880

881

882

883

884

886

887

888

889

Justification: No experiments.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new
 proposed method and baselines. If only a subset of experiments are reproducible, they
 should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [NA]

Justification: No experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [NA]

Justification: No experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.

- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how
 they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [NA]

890

891

892

893

894

895

896

897

898

900

901

902

903

904

905

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

Justification: No experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]
Justification:
Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied
 to particular applications, let alone deployments. However, if there is a direct path to
 any negative applications, the authors should point it out. For example, it is legitimate
 to point out that an improvement in the quality of generative models could be used to

- generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

941

942

943

944

945

946

947

948

949

950

951

952

953

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

979

980

981

983

984

985

986

988

989

990

991

992

993

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]
Justification:

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]
Justification:
Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

994		Answer: [NA]
995		Justification:
996		Guidelines:
997		• The answer NA means that the paper does not release new assets.
998		• Researchers should communicate the details of the dataset/code/model as part of their
999		submissions via structured templates. This includes details about training, license,
1000		limitations, etc.
1001		• The paper should discuss whether and how consent was obtained from people whose
1002		asset is used.
1003		 At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.
1004	1.4	· · · · · · · · · · · · · · · · · · ·
1005	14.	Crowdsourcing and research with human subjects
1006		Question: For crowdsourcing experiments and research with human subjects, does the paper
1007 1008		include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?
1009		Answer: [NA]
1010		Justification:
1011		Guidelines:
1012		• The answer NA means that the paper does not involve crowdsourcing nor research with
1013		human subjects.
1014		 Including this information in the supplemental material is fine, but if the main contribu- tion of the paper involves human subjects, then as much detail as possible should be
1015 1016		included in the main paper.
		* *
1017		• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
1017 1018		 According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data
1018	15.	or other labor should be paid at least the minimum wage in the country of the data collector. Institutional review board (IRB) approvals or equivalent for research with human
1018 1019	15.	or other labor should be paid at least the minimum wage in the country of the data collector. Institutional review board (IRB) approvals or equivalent for research with human subjects
1018 1019 1020	15.	or other labor should be paid at least the minimum wage in the country of the data collector. Institutional review board (IRB) approvals or equivalent for research with human subjects Question: Does the paper describe potential risks incurred by study participants, whether
1018 1019 1020 1021 1022 1023	15.	or other labor should be paid at least the minimum wage in the country of the data collector. Institutional review board (IRB) approvals or equivalent for research with human subjects Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
1018 1019 1020 1021 1022 1023 1024	15.	or other labor should be paid at least the minimum wage in the country of the data collector. Institutional review board (IRB) approvals or equivalent for research with human subjects Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or
1018 1019 1020 1021 1022 1023 1024 1025	15.	or other labor should be paid at least the minimum wage in the country of the data collector. Institutional review board (IRB) approvals or equivalent for research with human subjects Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?
1018 1019 1020 1021 1022 1023 1024 1025 1026	15.	or other labor should be paid at least the minimum wage in the country of the data collector. Institutional review board (IRB) approvals or equivalent for research with human subjects Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained? Answer: [NA]
1018 1019 1020 1021 1022 1023 1024 1025 1026	15.	or other labor should be paid at least the minimum wage in the country of the data collector. Institutional review board (IRB) approvals or equivalent for research with human subjects Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained? Answer: [NA] Justification:
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027	15.	or other labor should be paid at least the minimum wage in the country of the data collector. Institutional review board (IRB) approvals or equivalent for research with human subjects Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained? Answer: [NA] Justification: Guidelines:
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028	15.	or other labor should be paid at least the minimum wage in the country of the data collector. Institutional review board (IRB) approvals or equivalent for research with human subjects Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained? Answer: [NA] Justification: Guidelines: • The answer NA means that the paper does not involve crowdsourcing nor research with
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030	15.	or other labor should be paid at least the minimum wage in the country of the data collector. Institutional review board (IRB) approvals or equivalent for research with human subjects Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained? Answer: [NA] Justification: Guidelines: • The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030	15.	or other labor should be paid at least the minimum wage in the country of the data collector. Institutional review board (IRB) approvals or equivalent for research with human subjects Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained? Answer: [NA] Justification: Guidelines: • The answer NA means that the paper does not involve crowdsourcing nor research with human subjects. • Depending on the country in which research is conducted, IRB approval (or equivalent)
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030	15.	or other labor should be paid at least the minimum wage in the country of the data collector. Institutional review board (IRB) approvals or equivalent for research with human subjects Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained? Answer: [NA] Justification: Guidelines: • The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032	15.	or other labor should be paid at least the minimum wage in the country of the data collector. Institutional review board (IRB) approvals or equivalent for research with human subjects Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained? Answer: [NA] Justification: Guidelines: • The answer NA means that the paper does not involve crowdsourcing nor research with human subjects. • Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033	15.	or other labor should be paid at least the minimum wage in the country of the data collector. Institutional review board (IRB) approvals or equivalent for research with human subjects Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained? Answer: [NA] Justification: Guidelines: • The answer NA means that the paper does not involve crowdsourcing nor research with human subjects. • Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper. • We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033	15.	or other labor should be paid at least the minimum wage in the country of the data collector. Institutional review board (IRB) approvals or equivalent for research with human subjects Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained? Answer: [NA] Justification: Guidelines: • The answer NA means that the paper does not involve crowdsourcing nor research with human subjects. • Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper. • We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037	15.	or other labor should be paid at least the minimum wage in the country of the data collector. Institutional review board (IRB) approvals or equivalent for research with human subjects Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained? Answer: [NA] Justification: Guidelines: • The answer NA means that the paper does not involve crowdsourcing nor research with human subjects. • Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper. • We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution. • For initial submissions, do not include any information that would break anonymity (if
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035		or other labor should be paid at least the minimum wage in the country of the data collector. Institutional review board (IRB) approvals or equivalent for research with human subjects Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained? Answer: [NA] Justification: Guidelines: • The answer NA means that the paper does not involve crowdsourcing nor research with human subjects. • Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper. • We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution. • For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037		or other labor should be paid at least the minimum wage in the country of the data collector. Institutional review board (IRB) approvals or equivalent for research with human subjects Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained? Answer: [NA] Justification: Guidelines: • The answer NA means that the paper does not involve crowdsourcing nor research with human subjects. • Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper. • We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution. • For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review. Declaration of LLM usage
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038		or other labor should be paid at least the minimum wage in the country of the data collector. Institutional review board (IRB) approvals or equivalent for research with human subjects Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained? Answer: [NA] Justification: Guidelines: • The answer NA means that the paper does not involve crowdsourcing nor research with human subjects. • Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper. • We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution. • For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

Answer: [NA]

1042

1043

1044

scientific rigorousness, or originality of the research, declaration is not required.

only for writing, editing, or formatting purposes and does not impact the core methodology,

Justification: Guidelines: The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components. Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.