
From Search to Decision: A Framework for
Adversarially Robust Approximate Nearest Neighbor

Search

Anonymous Author(s)
Affiliation
Address
email

Abstract

We design robust Approximate Nearest Neighbor (ANN) algorithms for a setting1

where an adversary controls both the dataset and Q adaptive queries.2

Our primary contribution is a general framework that reduces search problems3

to a corresponding robust decision problem via a binary search tree construction.4

Given an oblivious decider, we robustify it by applying the Differential Privacy5

framework of Hassidim, Kaplan, Mansour, Matias, and Stemmer (JACM 2022),6

enhanced by privacy amplification via subsampling. For ANN specifically, the7

main challenge is designing the oblivious decider itself. To that end, we propose a8

sampling-based Locality-Sensitive Hashing (LSH) approach, inspired by the work9

of Aumüller, Har-Peled, Mahabadi, Pagh, and Silvestri (TODS 2022) on fair ANN.10

This method is made efficient against worst-case data distributions via a novel11

concentric LSH construction, which also yields an improved algorithm for the12

exact fair ANN problem. The result is a simple, general, and efficient algorithm for13

all but a narrow class of degenerate datasets.14

For the low-dimensional regime (d = O(
√
Q)), we complement our general15

framework with specialized algorithms that provide a powerful “for-all” guarantee:16

correctness on every possible query with high probability. We propose novel17

metric covering constructions to simplify and improve prior approaches, enhancing18

performance for ANN in both Hamming and ℓp spaces.19

1 Introduction20

Randomness is a crucial tool in algorithm design, enabling resource-efficient solutions by circum-21

venting the worst-case scenarios that plague deterministic approaches [45]. The classical analysis of22

such algorithms assumes an oblivious setting, where data updates and queries are fixed beforehand.23

However, this assumption breaks down in the face of an adaptive adversary, who can issue queries24

based on the algorithm’s previous outputs. These outputs can leak information about the algorithm’s25

internal randomness, allowing an adversary to construct query sequences that maliciously break the26

algorithm’s performance guarantees [37, 34].27

Significant progress has been made in designing adversarially robust algorithms for estimation28

problems, where the output is a single value [44, 38, 20, 8, 15, 54, 25]. A common defense involves29

sanitizing the output, for example, by rounding or adding noise, often borrowing techniques from30

differential privacy to ensure the output reveals little about the algorithm’s internal state [38, 8, 14].31

However, these techniques do not directly apply to search problems. In a search problem, the32

algorithm must return a specific element from a given dataset. Outputting a raw data point can leak33

substantial information, and there is no obvious way to add noise or otherwise obscure the output34

without violating the problem’s core constraint of returning a valid dataset element.35

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Perhaps the most fundamental search problem is Approximate Nearest Neighbor (ANN) Search,36

which has numerous applications ranging from data compression and robotics to DNA sequencing37

and anomaly detection [47, 42, 39, 52, 51, 17]. The goal is to build a data structure that, for any38

query point, quickly finds a data point that is nearly the closest. Achieving the desired trade-off of39

sublinear query time and near-linear space has largely been possible only through randomization. The40

most prominent family of randomized algorithms for ANN is based on Locality-Sensitive Hashing41

(LSH), which has been the subject of a long and fruitful line of research in the oblivious setting42

[33, 41, 1, 3, 7, 4, 2, 5, 40, 18].43

The vulnerability of these classical randomized structures was recently highlighted by Kapralov,44

Makarov, and Sohler [43], who demonstrated an attack on standard LSH data structures. They showed45

that an adaptive adversary can use a polylogarithmic number of queries to learn enough about the46

internal LSH hashes to force the algorithm to fail. This attack leverages the very phenomenon that47

the algorithm’s outputs (specific data points) reveal information about its random choices. Inspired48

by their work, which relies on certain structural properties of the dataset (e.g., an “isolated” point),49

we consider a powerful adversarial model where the adversary chooses both the dataset and the50

sequence of queries, posing a stringent test for robustness. We study the following question:51

Can search problems like ANN be solved efficiently in the face of adversarial queries?52

1.1 Our Results and Techniques53

We provide an extensive study of adversarially robust algorithms for ANN. If the adversary provides54

Q adaptively chosen queries to the algorithm and the metric spaceM is d-dimensional, we examine55

two regimes:56

1.1.1 d = ω(
√
Q): Reduction to Decision Problems and Differential Privacy57

Our main technical contribution is a meta-algorithm that solves search problems robustly by reducing58

them to an underlying robust decision problem. For ANN, this decision problem is simply: given a59

query q, does any “close” neighbor exist within a distance of r? The framework first robustifies an60

oblivious algorithm for the decision problem by applying techniques from Differential Privacy [38].61

With a robust decider A in hand, we solve the search problem by building a binary search tree of62

A-instances on different parts of the input dataset.63

A key challenge, however, is designing the initial oblivious decider for ANN. Standard LSH algo-64

rithms are unsuitable because of a critical ambiguity: for a query q, if the nearest neighbor lies in65

the annulus between distance r and cr, LSH may either return that neighbor or report that no point66

within distance r exists. Since both outcomes are valid for approximate search, LSH cannot be used67

to reliably decide if the r-ball around q is empty. To overcome this, we draw inspiration from work on68

fair ANN [10], which aims to sample uniformly from all valid answers. We develop a sampling-based69

LSH algorithm that resolves this ambiguity, creating an efficient oblivious decider.70

The performance of this sampling decider, however, depends on the density ratio of points between71

the cr-ball and the r-ball for a query q. An adversary can craft a dataset where this ratio is large,72

severely degrading performance. To mitigate this, we introduce a concentric annuli construction. We73

partition the (r, cr)-annulus into several smaller, concentric sub-annuli and apply our sampling LSH74

within each one. A simple counting argument guarantees that at least one of these sub-annuli must75

have a low point-density ratio, allowing the decider to terminate efficiently.76

One limitation of our accelerated method is the existence of degenerate datasets (see Figure 1), which77

an adversary could construct to force a worst-case running time. We formalize this condition in78

Assumption 1 and argue that it corresponds to a contrived data distribution unlikely to appear in79

practice. For all non-degenerate datasets, our method remains efficient:80

Theorem 1.1. Let K ≥ 2 be a parameter such that the input dataset S is not K-degenerate under81

Assumption 1. Then, there exists an adversarially robust ANN algorithm using Õ(
√
Q · n1+ρ+1/K)82

bits of space and Õ(dnρ+1/K) time per query.83

Our method further provides an improved algorithm for the problem of sampling a near-neighbor84

uniformly at random (fair ANN), which we present in Appendix E:85

2

Theorem 1.2. Given Assumption 1, there exists an algorithm that on query q ∈M outputs a point in86

BS(q, r
′) uniformly at random, where r′ ∈ [r, cr], and c, r are the LSH parameters. If such points do87

not exist, the algorithm outputs “⊥” with high probability. The algorithm uses O(n1+ 1
K +ρ · log n)88

bits of space overall and O(dnρ+1/K log n) time per query.89

1.1.2 d = O(
√
Q): For-all Algorithms90

For low-dimensional metric spaces, we develop algorithms for ANN that provide a powerful for-all91

guarantee: with high probability, the data structure correctly answers every possible query q ∈M.92

Our approach builds on a discretization technique applied to an LSH data structure, a paradigm93

explored in prior work [23, 24]. We refine this line of research by introducing a novel, simpler metric94

covering construction, improving the space complexity by a logarithmic factor, and using sampling95

to improve the time complexity by a factor of d.96

Theorem 1.3. For the (c, r)-ANN problem in the d-dimensional Hamming Hypercube, there exists97

an algorithm that correctly answers all possible queries with at least 0.99 probability. The space98

complexity is O(d · n1+ρ+o(1)) and query time is O(d · nρ), where ρ = 1
2c−1 .99

Theorem 1.4. For the (c, r)-ANN problem in the (Rd, ℓp) metric space, there exists an algorithm100

that correctly answers all possible queries with high probability. The pre-processing time and space101

are Õ(nT) and the query time is Õ(T/d), where:102

T = O
(
d · nρ′

(d log d+ log n)
)

and ρ′ =
(10 + c)2

161c2 − 20c− 100
. (1)

Remark (The Price of For-All Algorithms). Despite their remarkable guarantees, for-all algorithms103

have significant drawbacks. Their space complexity scales by a factor of d, making them intractable104

for high-dimensional metric spaces. This is a direct consequence of the large number of hash105

functions required to ensure a tiny probability of error for any query. Furthermore, these algorithms106

lack the generality of their adaptive counterparts; they are metric-space dependent and must be107

tailored to the specific metric space being used.108

2 Preliminaries109

Definition 2.1 (Metric Balls). Consider a metric spaceM = (M, || · ||), and let S ⊂M. We define110

a metric ball BS(x, r) on S of radius r centered at x ∈M as:111

BS(x, r) := {p ∈ S | ||x− p|| ≤ r}

We often write n(x, r) := |BS(x, r)|.112

In the Nearest Neighbors problem, we seek to find a point in our input dataset that minimizes the113

distance to some query point. Randomized algorithms are better suited to tackle the approximate114

version of the problem, which can be used to solve the exact version through boosting:115

116

Definition 2.2 (ANN). Let c > 1 and r > 0 be positive constants. In the (c, r)–Approximate117

Nearest-Neighbors Problem (ANN) we are given as input a set S ⊂M with |S| = n and a sequence118

of queries {qi}Qi=1 with qi ∈M . For each query qi, if there exists p ∈ BS(qi, r), we are required to119

output some point p′ ∈ BS(qi, cr). If BS(qi, cr) = ∅, we are required to output ⊥. In the case where120

BS(qi, r) = ∅ ≠ BS(qi, cr) we can either output a point from BS(qi, cr) or ⊥. Our algorithm121

should successfully satisfy these requirements with probability at least 2/3.122

A prevalent method for solving ANN is Locality Sensitive Hashing (LSH). Intuitively, we seek a123

hash function that hashes close points together and far points apart with high probability.124

125

Definition 2.3 (Locality Sensitive Hashing, [35]). A hash familyH of functions mapping M to a126

set of buckets is called a (c, r, p1, p2)-Locality Sensitive Hash Family (LSH) if the following two127

conditions are satisfied:128

3

• If x, y ∈M have ||x− y|| ≤ r, then Prh∈H[h(x) = h(y)] ≥ p1.129

• If x, y ∈M have ||x− y|| ≥ cr, then Prh∈H[h(x) = h(y)] ≤ p2.130

where p1 ≫ p2 are parameters in (0, 1). We often assume that computing h in a d–dimensional131

metric space requires O(d) time.132

Given a construction of a (c, r, p1, p2)–LSH for a metric space, we can solve the (c, r)–ANN problem133

by amplifying the LSH guarantees. This is done via an “OR of ANDs” construction: we sample134

L = nρ hash functions h1, ..., hL for ρ ∈ (0, 1), each hashing p ∈ M to {0, 1}k by concatenating135

the outputs of k = ⌈log1/p2
n⌉ “prototypical” LSH functions inH whose range is {0, 1}, as shown136

in [35]. This results in the following Theorem:137

138

Theorem 2.4. If a d–dimensional metric space admits a (c, r, p1, p2)–LSH family, then we can solve
the (c, r)–ANN problem on it using O(dn1+ρ) space and O(dnρ) time per query, where

ρ =
log p1
log p2

As a byproduct of this construction, it is a standard observation that on any query and with high139

probability, no single bucket contains many outlier points outside of BS(q, cr) [35, 36].140

Lemma 2.5. Let D = (h1, ..., hL) be an LSH data structure consisting of L = O(log n · nρ) hash141

functions that map the metric spaceM to {0, 1}k, where k = ⌈log1/p2
n⌉. Consider some query142

q ∈M and let Shi(q) := {p ∈ S | hi(q) = hi(p)} be the set of points in S which are hashed in the143

same bucket as q under hi, for i ∈ [L]. Then, with high probability we have that:144

|Shi(q)| ≤ 3 · |BS(q, cr)|

Furthermore, if p ∈ BS(q, r), then it is contained in at least one bucket with high probability. In145

other words, it is true that for some i ∈ [L], with high probability, p ∈ Shi(q).146

3 A Robust ANN Meta-Algorithm147

In this section we give an adversarially robust ANN “meta-algorithm” that outperforms “for-all”148

algorithms when d≫ Q. For necessary theorems and notation on Differential Privacy, please refer to149

Appendix B.150

3.1 Step 1: A Robust ANN “Decider”151

Consider the following decision ANN problem:152

Given a point dataset S ⊂ M and some radius parameter r > 0, on query q ∈ M we wish to
output 1 if and only if BS(q, r) ̸= ∅. SupposeA is an algorithm that can solve this problem with
probability at least 9/10 over an obliviously chosen input query sequence. Let us suppose that
A first pre-processes S to generate a data-structure D, which it then uses to answer the queries.
This algorithm is an oblivious ANN decider.

Remark (Deciders are not Necessarily Robust!). It might be intuitively enticing to think that an153

oblivious decider is also robust. After all, an adversary providing queries knows the answer that they154

will, with high probability, receive from the algorithm, which is not true for the search version of the155

problem. However, the decisions alone of the algorithm can be more than enough to infer valuable156

information about its internal randomness. In particular, if the algorithm maintained a collection of157

hash tables in typical LSH-fashion, the attack of [43] can be performed on the decider equally well,158

especially if they have control over the input set S.159

We can design a Q–adversarially robust decider Adec by using A, while only increasing the space160

by a factor of
√
Q. Adhering to the framework of [38], we maintain L = Õ(

√
Q) copies of the data161

4

structures D1, ...,DL generated by A using L independent random strings, and then for each query q162

we combine the answers of A privately.163

As opposed to the original framework of [38], we do not need to use a private median algorithm,164

which simplifies the analysis and removes its dependency on that primitive. To keep the query time165

small, we utilize privacy amplification by subsampling (Theorem B.7).166

Algorithm 1 The robust decider Adec (based on an oblivious decider A)

1: Inputs: Random string R = r1 ◦ r2 ◦ · · · rL.
2: Parameters: Number of queries Q, number of copies L, number of sampled indices k.
3: Receive input dataset S ⊆ U from the adversary, where n = |S|.
4: Initialize D1, ...,DL where Di ← A(S) on random string ri.
5: for i = 1 to Q do
6: Receive query qi from the adversary.
7: Ji ← Sample k indices in [L] with replacement.
8: Let aij ← Di(qj) ∈ {0, 1} and Ni :=

1
k |{j ∈ Ji | aij = 1}|.

9: Let N̂i = Ni + Lap
(
1
k

)
.

10: Output 1[N̂i >
1
2]

167

Theorem 3.1. Let A be an oblivious decider algorithm for ANN that uses s(n) space and t(n) time168

per query. Let δ ∈ (0, 0.995) and suppose we set L = 2400 log1.5(1/δ) ·
√
2Q and k = log(Q/δ).169

Then, the algorithm Adec is an adversarially robust decider that succeeds with probability at least170

1−Θ(δ) using s(n) · Õ
(√

Q
)

bits of space and Õ (t(n)) time per query.171

To prove Theorem 3.1 we argue that for all i ∈ [Q], at least 8
10 of the k answers aij are correct, even172

in the presence of adversarially generated queries. To do this, we first need to show that the algorithm173

is differentially private with respect to the input random strings R. Our analysis is included in full in174

Appendix C.175

3.2 Step 2: From Robust Deciding to Robust Searching176

In this section, we convert Adec to an adversarially robust search algorithm. Let us assume for177

simplicity that n = |S| is a power of two. We create a binary tree T over the entire input dataset S.178

Each node in the tree corresponds to a segment [ri, ℓi] in S that has size a power of 2. We create179

independent instances of Adec in each node, each instance being initialized only for the dataset points180

inside that node’s corresponding segment. When processing a query qi, we first forward it to the root181

node. If it answers with a 1, it means that BS(qi, r) ̸= ∅, so at least one of the two children will also182

return a 1. We can thus perform a root-to-leaf traversal to find and output an element of S that lies in183

f(S, qi). On the other hand, if f(S, qi) = ∅, the query at the root should tell us right away.184

Theorem 3.2. Let A be an oblivious ANN decider that uses s(n) bits of space and answers each185

query in t(n) time. Suppose that the space complexity s(n) can be written as s(n) = O(ns) for186

some s > 1. Then, there exists an adversarially robust algorithm A′ search ANN problem that uses187

Õ(
√
Q · ns) bits of space and has a query time of Õ(t(n)).188

Proof. Before we execute our algorithm, we boost the probability of success for Adec to 1− 2
3n logn189

by scaling δ by 1
n logn in Theorem 3.1. As a result, on any given query, all the copies of Adec in any190

node are correct with probability at least 2
3 , by a union bound.191

Correctness Fix some query qi that the adversary makes and suppose that BS(qi, r) ̸= ∅. Let192

p ∈ BS(qi, r) and consider the leaf v in the binary tree containing p in its segment. Then, in the path193

from the root r(T) to v, we claim that all nodes have to answer 1 with high probability, regardless of194

the adversary’s adaptivity, in which case we will definitely find p.195

5

Algorithm 2 A Q–adversarially robust search algorithm

1: Receive input dataset S ⊆ U from adversary B, where n = |S|.
2: Let (s1, ..., sn) be an arbitrary ordering of S.
3: Create a rooted binary tree T over [n] with log2 n levels. Let r(T) be the root of T .
4: for each node v = [r, ℓ] ∈ T do
5: Initialize an independent copy Av

dec of Adec with input dataset {sr, ..., sℓ} ⊆ S.

6: for i = 1 to Q do
7: Receive query qi from B.
8: if QUERY

(
A

r(T)
dec , q

)
= 0 then

9: Output ⊥
10: v ← r(T).
11: while v ̸= leaf do
12: vr ← right child of v.
13: if QUERY(Avr

dec, q) = 1 then
14: v ← vr
15: else
16: v ← vℓ
17: Output s ∈ S where {s} is the element corresponding to leaf v in T .

Let p ∈ S[r,ℓ] := {sr, ..., sℓ} for some node w = [r, ℓ] on this path. Then, suppose, without loss of
generality, that p ∈ S[r, r+ℓ

2]. Then we must have

BS
[r, r+ℓ

2]
(qi, r) ⊆ BS[r,ℓ]

(qi, r)

That means that BS
[r, r+ℓ

2]
(qi, r) ̸= ∅, which implies that this is also the case along the path from196

r(T) to v, by induction on the depth of the tree.197

Since the error of each copy of Adec is 2
3n logn , all copies in the tree are correct with probability at198

least 2
3 , even against an adversarially generated query sequence. Hence, the aforementioned path199

from the root to v only has answers consisting of ones, meaning that we produce a point in f(S, qi).200

On the other hand, if BS(qi, r) = ∅, the query to the root of the tree returns 0 with probability close201

to 1, and so we correctly output ⊥.202

Runtime For the preprocessing, suppose a single copy of Adec ran on a dataset S of size n takes203

O(
√
Q · s(n) · polylog(nQ)) = Õ(

√
Q · ns) bits of space. Then the space of the search algorithm204

can be bounded as:205

Õ
(√

Q ·
[
ns + 2

(n
2

)s
+ 4

(n
4

)s
+ · · ·

])
= Õ

(√
Q ·

∞∑
i=0

2i
(n

2i

)s)
= Õ

(
ns
√

Q ·
∞∑
i=0

2i−i−is

)

= Õ

(
ns
√
Q ·

∞∑
i=0

(2−s)i

)
= Õ

(
ns
√
Q
)

For the query time, we visit log2 n vertices per query, so if we take Õ(t(n)) time in total, which206

completes the proof.207

3.3 Step 3: Building the Oblivious ANN Decider via LSH Sampling208

In this section we build the oblivious ANN deciderA. For this we cannot simply run the familiar LSH209

algorithm and output 1 whenever a point is found or a 0 otherwise. That is because LSH guarantees210

to output a point from BS(q, cr) when BS(q, r) ̸= ∅ and is allowed to output a point from BS(q, cr)211

6

when BS(q, r) = ∅. Our algorithm then would have no way of knowing which case a point in212

BS(q, cr) \BS(q, r) is a signal for. It is clear that we need a different approach.213

To create the decider algorithm, we modify the query algorithm that acts on top of the LSH data214

structure as follows: Given L = O(nρ log n) hash functions within an LSH data structure, we sample215

one uniformly at random. Let hi be the randomly sampled hash function, and let hi(q) ∈ {0, 1}k216

be the bucket that query q is hashed in. Let Shi(q) be the set of points in S that are also hashed to217

hi(q). We sample one of those points uniformly at random. If we hit a point in BS(q, r) we output it.218

Otherwise, we start the whole sampling process anew. If we haven’t output 1 after O(L log n · n(q,cr)n(q,r))219

repetitions, then we output 0.220

Algorithm 3 Oblivious (c, r)–ANN via Sampling

1: Input: A dataset S of n points, parameters c, r.
2: Let ρ = ρ(c) be the LSH parameter for this metric space.
3: Let L← O(nρ log n) and k = Θ(log n).
4: Initialize LSH data structures D1, ..,DL with hash functions hi : M → {0, 1}k.
5: for each query q ∈M do
6: for at most O(L log n · n(q,cr)n(q,r)) iterations do
7: Sample i ∈ [L] uniformly at random. Sample a point p from Shi(q) uniformly at random.
8: if p ∈ BS(q, r) then
9: Output 1 for query q and proceed to the next query.

10: Output 0 and continue to the next query.

Theorem 3.3. Assume that for each query q ∈ M, we know that n(q,cr)
n(q,r) ≤ N when n(q, r) ̸= 0.221

Then, there exists an oblivious ANN decider algorithm using Õ(n1+ρ) bits of space and Õ(dnρ ·N)222

time per query.223

Proof. We calculate the probability that we successfully sample a point in BS(q, r). Let ⋆ be the224

point we sample using one round of the above procedure, and let i⋆ be the hash function we pick.225

Suppose for a point p ∈ S that Bp = {i ∈ [L] | hi(p) = hi(q)} is the set of hash functions that hash226

p the same as q. We have that:227

Pr[⋆ ∈ BS(q, r)] =
∑

p∈BS(q,r)

Pr[⋆ = p] =
∑

p∈BS(q,r)

L∑
i=1

Pr[⋆ = p | i⋆ = i] · Pr[i⋆ = i]

=
1

L

∑
p∈BS(q,r)

L∑
i=1

Pr[⋆ = p | i⋆ = i]

=
1

L

∑
p∈BS(q,r)

∑
i∈Bp

1

|Shi(q)|

≥ 1

3L · |BS(q, cr)|
∑

p∈BS(q,r)

|Bp|

≥ |BS(q, r)|
3L · |BS(q, cr)|

where the last two inequalities follow with high probability from Theorem 2.5, which also implies228

that |Bp| ≥ 1 for all p ∈ BS(q, r). Now, the probability we do not sample a point p ∈ BS(q, r) after229

T trials is at most:230 (
1− |BS(q, r)|

3L · |BS(q, cr)|

)T

≤ e
− T ·|BS(q,r)|

3L·|BS(q,cr)| ≤ 1

n

because we set:231

T =
3L · log n · |BS(q, cr)|

|BS(q, qr)|

7

Thus, we conclude that a point in BS(q, r) is returned with high probability. The space complexity232

of the algorithm is O(Ln) = Õ(n1+ρ), while the runtime per query is O(L logn·n(q,cr)
n(q,r)) = Õ(nρ ·233

n(q,cr)
n(q,r)), as desired.234

3.4 Step 4: Putting it all together235

Combining the three previous steps, we reach the following result:236

Theorem 3.4. There exists an adversarially robust ANN algorithm using Õ(
√
Q ·n1+ρ) bits of space237

and Õ(dnρ · n(q,cr)n(q,r)) time per query.238

4 Improvements in Robust and Fair ANN via Concentric LSH239

The disadvantage of the sampling approach of Algorithm 3 – let us call it Lsampling– is that its query240

runtime depends on the fraction n(q,cr)
n(q,r) , which could be really large. In this section we present a241

method for reducing the runtime under some mild assumptions.242

ri+1ri

Figure 1: Left: In green lies the set BS(q, ri), and blue represents the annulus that extends to BS(q, ri+1).
Right: The degenerate case we explicitly disallow in Theorem 4.1.

Let K be a parameter that we will soon resolve. Consider the following sequence of radii be-243

tween r and cr, interspersed so that the ratio between two consecutive ones is constant: r0 =244

r, r1, ..., rK−1, rK = cr are defined as ri = c′ · ri−1 for i ∈ [K], where c′ = c1/K . We create K245

instances of Lsampling where the i-th instance Li, for i ∈ [K], is initialized with parameters (ri, c′).246

Our algorithm then runs each instance Li to decide whether BS(q, ri) ̸= ∅. If we observe an instance247

running for longer than Θ(nρ+ 1
K) timesteps, we stop the execution and switch to the next instance.248

As a result, our algorithm can decide whether BS(q, rK−1) = ∅ efficiently. However, there exists a249

degenerate case in which the time complexity is large, as shown in Figure 1. If BS(q, rK−2) = ∅,250

then it could be the case that BS(q, rK−1) ̸= ∅ and BS(q, cr) \BS(q, rK−1) contains many points.251

This case is significantly rarer than the generic upper bound on n(q,cr)
n(q,r) we assumed earlier, and we252

explicitly avoid it in our analysis:253

Assumption 1 (K-Degenerate Datasets). Suppose input dataset S ∈Mn and parameter K ∈
Z+ are such that if n(q, rK−2) = 0 and n(q, rK−1) ≥ 1 then n(q, cr) ≤ n1/K · n(q, rK−1).

Theorem 4.1. Assuming that dataset S is not K-Degenerate for some integer K ≥ 2, there exists254

an algorithm that on query q ∈ M outputs 1[BS(q, r) ̸= ∅] with high probability, while using255

O(n1+ 1
K +ρ · log n) bits of space overall and O(dnρ+1/K log n) time per query.256

8

Algorithm 4 Concentric Annuli LSH: An Improved Oblivious Decider

1: Input: A dataset S of n points, parameters c, r,K.
2: Let c′ ← c1/K and r1 = r.
3: for i ∈ [K] do
4: Initialize an independent copy Li of Lsampling on S with parameters (ri, c′).
5: Update ri+1 = c′ · ri.
6: for each query q ∈M do
7: for i ∈ [K] do
8: Let (ri, ri+1) be the sub-annulus Li was initialized on.
9: Run Li for at most 100 · nρ+1/K sample timesteps.

10: if a point p ∈ BS(q, ri) is found then
11: Output 1 and continue to the next query.

12: Output 0 and continue to the next query.

Proof. Our algorithm clearly runs in Õ(dnρ+1/K) time because we truncate it at that timestep. The257

space complexity is implied by Theorem 3.3. Now, given a query q, first consider the case that258

for all i ∈ {0, 1, ...,K − 1} it is true that n(q, ri) ̸= 0. Then, suppose in that case that for all259

i ∈ {0, ...,K − 1} it holds that:260

n(q, ri+1)

n(q, ri)
> n

1
K

Then, via a telescoping product we can write:261

n(q, cr)

n(q, r)
=

n(q, r1)

n(q, r0)
· n(q, r2)
n(q, r1)

· · · n(q, rK−1)
n(q, rK−2)

· n(q, cr)

n(q, rK−1)
>
(
n

1
K

)K
= n

This is a contradiction because:
n(q, cr)

n(q, r)
≤ n(q, cr) ≤ n

Thus, Algorithm 4 will, in that case, terminate with output 1. Next, suppose that for all 0 ≤ i ≤262

K − 1 we have that n(q, ri) = 0. Then, we must have that BS(q, rK−1) = ∅, and Algorithm263

4 correctly outputs 0 with high probability. Finally, let j ≤ K − 1 be the minimum index such264

that n(q, ri) > 0. If j < K − 1, then Lj will quickly and with high probability detect a point265

in BS(q, rj) ⊂ BS(q, rK−1) and output 1. If j = K − 1, then Lsampling will find a point from266

BS(q, rK−1) in time Õ(nρ · n(q,rK)
n(q,rk−1)

) = Õ(nρ+1/K) due to our structural assumption.267

Refining Theorem 3.4 Combining our concentric LSH approach with the meta-algorithm of the268

previous section, we arrive at our initially claimed result:269

Theorem 4.2. Let K ≥ 2 be a parameter such that the input dataset S is not K-degenerate. Then,270

there exists an adversarially robust ANN algorithm using Õ(
√
Q · n1+ρ+1/K) bits of space and271

Õ(dnρ+1/K) time per query.272

5 Conclusion273

We studied efficient algorithms for Approximate Nearest Neighbor (ANN) queries against adaptive274

adversaries. Our approach uses a binary search tree to reduce the search task to a robust decision275

problem which we solve using techniques from Differential Privacy. We implement the decider276

with a sampling-based Locality-Sensitive Hashing (LSH) scheme accelerated by a concentric annuli277

construction. As a byproduct, this construction also yields a more efficient algorithm for exact fair278

ANN. Our approach constitutes a simple, universal framework for solving search problems efficiently279

against adaptive adversaries. Future work involves adapting our framework to other search problems280

and establishing computational lower bounds for robust search.281

9

References282

[1] A. Andoni. Nearest neighbor search: the old, the new, and the impossible. PhD thesis,283

Massachusetts Institute of Technology, 2009.284

[2] A. Andoni and P. Indyk. Nearest neighbors in high-dimensional spaces. In Handbook of285

Discrete and Computational Geometry, pages 1135–1155. Chapman and Hall/CRC, 2017.286

[3] A. Andoni, P. Indyk, and I. Razenshteyn. Approximate nearest neighbor search in high287

dimensions. In Proceedings of the International Congress of Mathematicians: Rio de Janeiro288

2018, pages 3287–3318. World Scientific, 2018.289

[4] A. Andoni, T. Laarhoven, I. Razenshteyn, and E. Waingarten. Lower bounds on time-space290

trade-offs for approximate near neighbors. arXiv preprint arXiv:1605.02701, 2016.291

[5] A. Andoni, T. Laarhoven, I. Razenshteyn, and E. Waingarten. Optimal hashing-based time-292

space trade-offs for approximate near neighbors. In Proceedings of the twenty-eighth annual293

ACM-SIAM symposium on discrete algorithms, pages 47–66. SIAM, 2017.294

[6] A. Andoni and I. Razenshteyn. Optimal data-dependent hashing for approximate near neighbors.295

In Proceedings of the forty-seventh annual ACM symposium on Theory of computing, pages296

793–801, 2015.297

[7] A. Andoni, I. Razenshteyn, and N. S. Nosatzki. Lsh forest: Practical algorithms made theoretical.298

In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,299

pages 67–78. SIAM, 2017.300

[8] I. Attias, E. Cohen, M. Shechner, and U. Stemmer. A framework for adversarial streaming via301

differential privacy and difference estimators. Algorithmica, pages 1–56, 2024.302

[9] M. Aumüller, S. Har-Peled, S. Mahabadi, R. Pagh, and F. Silvestri. Sampling a near neighbor303

in high dimensions—who is the fairest of them all? ACM Transactions on Database Systems304

(TODS), 47(1):1–40, 2022.305

[10] M. Aumüller, R. Pagh, and F. Silvestri. Fair near neighbor search: Independent range sampling306

in high dimensions. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on307

Principles of Database Systems, pages 191–204, 2020.308

[11] R. Bassily, K. Nissim, A. Smith, T. Steinke, U. Stemmer, and J. Ullman. Algorithmic stability309

for adaptive data analysis. In Proceedings of the forty-eighth annual ACM symposium on Theory310

of Computing, pages 1046–1059, 2016.311

[12] R. Bassily, A. Smith, T. Steinke, and J. Ullman. More general queries and less generalization312

error in adaptive data analysis. arXiv preprint arXiv:1503.04843, 2015.313

[13] S. Behnezhad, R. Rajaraman, and O. Wasim. Fully dynamic (∆ + 1)-coloring against adaptive314

adversaries. In Y. Azar and D. Panigrahi, editors, Proceedings of the 2025 Annual ACM-SIAM315

Symposium on Discrete Algorithms, SODA 2025, New Orleans, LA, USA, January 12-15, 2025,316

pages 4983–5026. SIAM, 2025.317

[14] A. Beimel, H. Kaplan, Y. Mansour, K. Nissim, T. Saranurak, and U. Stemmer. Dynamic algo-318

rithms against an adaptive adversary: generic constructions and lower bounds. In Proceedings319

of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 1671–1684, 2022.320

[15] O. Ben-Eliezer, T. Eden, and K. Onak. Adversarially robust streaming via dense-sparse trade-321

offs. In Symposium on Simplicity in Algorithms (SOSA), pages 214–227. SIAM, 2022.322

[16] O. Ben-Eliezer, R. Jayaram, D. P. Woodruff, and E. Yogev. A framework for adversarially323

robust streaming algorithms. ACM Journal of the ACM (JACM), 69(2):1–33, 2022.324

[17] L. Bergman, N. Cohen, and Y. Hoshen. Deep nearest neighbor anomaly detection. arXiv325

preprint arXiv:2002.10445, 2020.326

10

[18] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise independent327

permutations. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,328

pages 327–336, 1998.329

[19] M. Bun, K. Nissim, U. Stemmer, and S. Vadhan. Differentially private release and learning330

of threshold functions. In 2015 IEEE 56th Annual Symposium on Foundations of Computer331

Science, pages 634–649. IEEE, 2015.332

[20] A. Chakrabarti, P. Ghosh, and M. Stoeckl. Adversarially robust coloring for graph streams.333

arXiv preprint arXiv:2109.11130, 2021.334

[21] A. Chakrabarti and M. Stoeckl. Finding missing items requires strong forms of randomness. In335

39th Computational Complexity Conference (CCC 2024). Schloss Dagstuhl–Leibniz-Zentrum336

für Informatik, 2024.337

[22] M. S. Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of338

the thiry-fourth annual ACM symposium on Theory of computing, pages 380–388, 2002.339

[23] Y. Cherapanamjeri and J. Nelson. On adaptive distance estimation. Advances in Neural340

Information Processing Systems, 33:11178–11190, 2020.341

[24] Y. Cherapanamjeri and J. Nelson. Terminal embeddings in sublinear time. TheoretiCS, 3, 2024.342

[25] Y. Cherapanamjeri, S. Silwal, D. P. Woodruff, F. Zhang, Q. Zhang, and S. Zhou. Robust343

algorithms on adaptive inputs from bounded adversaries. arXiv preprint arXiv:2304.07413,344

2023.345

[26] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based346

on p-stable distributions. In Proceedings of the twentieth annual symposium on Computational347

geometry, pages 253–262, 2004.348

[27] I. Dinur, U. Stemmer, D. P. Woodruff, and S. Zhou. On differential privacy and adaptive349

data analysis with bounded space. In Annual International Conference on the Theory and350

Applications of Cryptographic Techniques, pages 35–65. Springer, 2023.351

[28] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. Roth. Generalization in352

adaptive data analysis and holdout reuse. Advances in neural information processing systems,353

28, 2015.354

[29] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. L. Roth. Preserving statistical355

validity in adaptive data analysis. In Proceedings of the forty-seventh annual ACM symposium356

on Theory of computing, pages 117–126, 2015.357

[30] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data358

analysis. In Theory of Cryptography: Third Theory of Cryptography Conference, TCC 2006,359

New York, NY, USA, March 4-7, 2006. Proceedings 3, pages 265–284. Springer, 2006.360

[31] C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and differential privacy. In 2010 IEEE361

51st annual symposium on foundations of computer science, pages 51–60. IEEE, 2010.362

[32] S. Feng, Y. Feng, G. Z. Li, Z. Song, D. Woodruff, and L. Zhang. On differential privacy for363

adaptively solving search problems via sketching. In Forty-second International Conference on364

Machine Learning, 2025.365

[33] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In366

Proceedings of the 25th International Conference on Very Large Data Bases, VLDB ’99, page367

518–529, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.368

[34] E. Gribelyuk, H. Lin, D. P. Woodruff, H. Yu, and S. Zhou. A strong separation for adversarially369

robust ℓ0 estimation for linear sketches. In 2024 IEEE 65th Annual Symposium on Foundations370

of Computer Science (FOCS), pages 2318–2343. IEEE, 2024.371

[35] S. Har-Peled, P. Indyk, and R. Motwani. Approximate nearest neighbor: Towards removing the372

curse of dimensionality. Theory of Computing, 1(8):321–350, 2012.373

11

[36] S. Har-Peled and S. Mahabadi. Near neighbor: Who is the fairest of them all? Advances in374

neural information processing systems, 32, 2019.375

[37] M. Hardt and D. P. Woodruff. How robust are linear sketches to adaptive inputs? In Proceedings376

of the forty-fifth annual ACM symposium on Theory of computing, pages 121–130, 2013.377

[38] A. Hassidim, H. Kaplan, Y. Mansour, Y. Matias, and U. Stemmer. Adversarially robust streaming378

algorithms via differential privacy. Journal of the ACM, 69(6):1–14, 2022.379

[39] J. Ichnowski and R. Alterovitz. Fast nearest neighbor search in se (3) for sampling-based motion380

planning. In Algorithmic Foundations of Robotics XI: Selected Contributions of the Eleventh381

International Workshop on the Algorithmic Foundations of Robotics, pages 197–214. Springer,382

2015.383

[40] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of384

dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,385

pages 604–613, 1998.386

[41] O. Jafari, P. Maurya, P. Nagarkar, K. M. Islam, and C. Crushev. A survey on locality sensitive387

hashing algorithms and their applications. arXiv preprint arXiv:2102.08942, 2021.388

[42] Y. Kalantidis and Y. Avrithis. Locally optimized product quantization for approximate nearest389

neighbor search. In Proceedings of the IEEE conference on computer vision and pattern390

recognition, pages 2321–2328, 2014.391

[43] M. Kapralov, M. Makarov, and C. Sohler. On the adversarial robustness of locality-sensitive392

hashing in hamming space. arXiv preprint arXiv:2402.09707, 2024.393

[44] L. Lai and E. Bayraktar. On the adversarial robustness of robust estimators. IEEE Transactions394

on Information Theory, 66(8):5097–5109, 2020.395

[45] R. Motwani and P. Raghavan. Randomized algorithms. ACM Computing Surveys (CSUR),396

28(1):33–37, 1996.397

[46] N. Pham and R. Pagh. Scalability and total recall with fast coveringlsh. In Proceedings of the398

25th ACM International on Conference on Information and Knowledge Management, pages399

1109–1118, 2016.400

[47] J. SantaLucia, H. T. Allawi, and P. A. Seneviratne. Improved nearest-neighbor parameters for401

predicting dna duplex stability. Biochemistry, 35(11):3555–3562, 1996.402

[48] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to403

algorithms. Cambridge university press, 2014.404

[49] A. Smith. Information, privacy and stability in adaptive data analysis. arXiv preprint405

arXiv:1706.00820, 2017.406

[50] M. Stoeckl. Streaming algorithms for the missing item finding problem. In Proceedings of the407

2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 793–818. SIAM,408

2023.409

[51] Y. Tagami. Annexml: Approximate nearest neighbor search for extreme multi-label classi-410

fication. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge411

discovery and data mining, pages 455–464, 2017.412

[52] K. Verstrepen and B. Goethals. Unifying nearest neighbors collaborative filtering. In Proceed-413

ings of the 8th ACM Conference on Recommender systems, pages 177–184, 2014.414

[53] A. Wei. Optimal las vegas approximate near neighbors in ℓp. ACM Transactions on Algorithms415

(TALG), 18(1):1–27, 2022.416

[54] D. P. Woodruff and S. Zhou. Tight bounds for adversarially robust streams and sliding windows417

via difference estimators. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer418

Science (FOCS), pages 1183–1196. IEEE, 2022.419

12

A Related Work420

The challenge of designing algorithms robust to adversarial queries is well-studied, particularly in421

privacy and statistics [12, 49, 11], where Differential Privacy is a central tool for ensuring robustness422

[28, 27]. The question of adversarial robustness was formally introduced to streaming algorithms by423

Ben-Eliezer et al. [16], motivated by attacks on linear sketches [37], and has since inspired a long424

line of work on robustifying various streaming algorithms [38, 20, 44, 21, 50, 54, 15].425

Our work is most directly inspired by the framework of Hassidim et al. [38], who used Differential426

Privacy to solve estimation problems robustly, and by Cherapanamjeri et al. [25], who applied this427

framework with low query time overhead. While we adapt a similar approach, their methods are428

fundamentally limited to estimation and don’t extend to search problems like NNS, where the output429

must be a specific dataset element. The difficulty of robust search is further highlighted by Beimel et430

al. [14], who established lower bounds showing that robust algorithms for certain search problems431

are inherently slower than their oblivious counterparts, motivating our investigation.432

Different works further reinforce the unique challenges of robust search. Work on robust graph433

coloring, for example, also requires techniques beyond simple noise addition due to its discrete output434

space [20, 13]. Our approach is also distinct from Las Vegas LSH constructions [46, 53]. While these435

methods guarantee no false negatives, they remain vulnerable to adversaries who can inflate their436

expected runtime [43]. Our focus, in contrast, is on robustifying traditional Monte Carlo algorithms.437

Finally, our approach builds on the use of discretization and net-based arguments to achieve ’for-all’438

guarantees for ANN. This technique was previously used for robust distance estimation [23] and439

for ANN in conjunction with partition trees [24]. We contribute a simpler and more streamlined440

construction that offers a modest performance improvement over this prior work.441

A.1 Comparison with [32]442

Our work was conducted concurrently and independently with that of Feng et al. [32], which also443

addresses adaptively solving search problems. The key similarities and differences are:444

1. Methodology: The papers use fundamentally different approaches. Feng et al. employ a445

reduction to the private selection problem that is tightly coupled with the structure of DP446

noise. In contrast, we introduce a general “search-to-decision” meta-algorithm that treats447

the differentially private component as a black-box primitive.448

2. Assumptions and Performance: The algorithms have different performance dependencies.449

Their runtime and space complexity both scale with a parameter s, which bounds the450

near-neighbor density: |BS(q, cr)| ≤ s. In contrast, our algorithm’s space complexity451

has no such dependence on data density, making it strictly better in scenarios where s452

is large. Our runtime is also independent of s, degrading only for degenerate datasets453

(Assumption 1)—a condition we argue is less restrictive. On the other hand, our algorithm454

increases the exponent by an additive factor of 1
K , which in practice may be negligible1.455

While the scaling differs, both methods share a
√
Q factor in space complexity from the use456

of DP.457

Table 1: Comparison with Feng et al. [32]
Metric Our Algorithm Feng et al. [32]
Query Time O(d · nρ+1/K)2 O(d · s · nρ)

Space O(
√
Q · n1+ρ+1/K) O(

√
Q · s · n1+ρ)

B Review of Differential Privacy458

Our work leans heavily on results from differential privacy, so we give the necessary definitions and459

results here.460

1For instance, if ρ = 0.25 and K = 100.
2This holds for non-degenerate datasets as defined in Assumption 1.

13

B.1 Definition of differential privacy461

Definition B.1 (Differential Privacy). Let A be any randomized algorithm that operates on462

databases whose elements come from some universe. For parameters ε > 0 and δ ∈ [0, 1], the463

algorithm A is (ε, δ)–differentially private (DP) if for any two neighboring databases S ∼ S′ (ones464

that differ on one row only), the distributions on the algorithm’s outputs when run on S vs S′ are465

very close. That is, for any S ∼ S′ and any subset of outcomes T of the output space of A we have:466

Pr[A(S) ∈ T] ≤ eε · Pr[A(S′) ∈ T] + δ

B.2 The Laplace Mechanism and its properties467

Theorem B.2 (The Laplace Mechanism, [30]). Let f : X∗ → R be a function. Define its sensitivity468

ℓ to be an upper bound to how much f can change on neighboring databases:469

∀S ∼ S′ : |f(S)− f(S′)| ≤ ℓ

The algorithm that on input S ∈ X∗ returns f(S) + Lap
(
ℓ
ε

)
is (ε, 0)–DP, where

Lap(λ;x) :=
1

2λ
exp

(
− |x|

λ

)
is the Laplace Distribution over R.470

We will make use of the following concentration property of the Laplace Distribution:471

472

Lemma B.3. For m ≥ 1, let Z1, ...Zm ∼ Lap (λ) be iid random variables. We have that:473

Pr
[

m
max
i=1

Zi > λ(ln(m) + t)
]
≤ e−t

B.3 Properties of differential privacy474

Differential Privacy has numerous properties that are useful in the design of algorithms. The475

following theorem is known as “advanced adaptive composition” and describes a situation when DP476

algorithms are linked sequentially in an adaptive way.477

478

Theorem B.4 (Advanced Composition, [31]). Suppose algorithmsA1, ...,Ak are (ε, δ)–DP. LetA′
be the adaptive composition of these algorithms: on input database x, algorithm Ai is provided with
x, and, for i ≥ 2, with the output yi−1 of Ai−1. Then, for any δ′ ∈ (0, 1), Algorithm A is (ε̃, δ̃)–DP
with:

ε̃ = ε ·
√
2k ln(1/δ′) + 2kε2 and δ̃ = kδ + δ′

The next theorem dictates that post-processing the output of a DP algorithm cannot degrade its479

privacy guarantees, as long as the processing does not use information from the original database.480

481

Theorem B.5 (DP is closed under Post-Processing). Let A : Un → Y m and B : Y m → Zr be482

randomized algorithms, where U, Y, Z are arbitrary sets. If A is (ε, δ)–DP, then so is the composed483

algorithm B(A(·)).484

The following theorem showcases the power of DP algorithms in learning.485

486

Theorem B.6 (DP and Generalization, [11, 29]). Let ε ∈ (0, 1/3) and δ ∈ (0, ε/4). Let A be a487

(ε, δ)–DP algorithm that operates on databases in Xn and outputs m predicate functions hi : X →488

{0, 1} for i ∈ [m]. Then, if D is any distribution over X and S consists of n ≥ 1
ε2 · log

(
2εm
δ

)
iid489

samples from D, we have for all i ∈ [m] that:490

Pr
S∼Dn

hi←A(S)

[∣∣∣∣∣ 1|S|∑
x∈S

hi(x)− E
x∼D

[hi(x)]

∣∣∣∣∣ ≥ 10ε

]
≤ δ

ε

14

In other words, a privately generated predicate is a good estimator of its expectation under any491

distribution on the input data. A final property of privacy that we will use is a boosting technique492

through sub-sampling:493

494

Theorem B.7 (Privacy Amplification by Subsampling, [19, 25]). Let A be an (ε, δ)–DP algorithm495

operating on databases of size m. For n ≥ 2m, consider an algorithm that for input a database of496

size n, it subsamples (with replacement) m rows from the database and runs A on the result. Then497

this algorithm is (ε′, δ′)–DP for498

ε′ =
6εm

n
and δ′ = exp

(
6εm

n

)
· 4m

n
· δ

C Proof of Theorem 3.1499

In this section we include a formal proof of Theorem 3.1 on the construction of a robust decider500

algorithm.501

502

Lemma C.1. Let ε = 0.01 and δ ∈ (0, 0.995). Algorithm Adec is (ε, δ)–DP with respect to the503

string of randomness R.504

Proof. We analyze the privacy of the algorithm Adec given in Algorithm 1 with respect to the string
of randomness R, which we interpret as its input. Suppose we let

ε′ =
ε

2
√

2Q ln(1/δ)

For all i ∈ [Q], we claim that the response to query qi is (ε′, 0)–DP with respect to R. This is because505

the statistic Ni defined in Line 8 of Algorithm 1 has sensitivity 1/k and therefore by Theorem B.2,506

after applying the Laplace mechanism in Line 9, we have that releasing N̂i is (1, 0)–DP with respect507

to the strings R. The binary output based on comparing N̂i with the constant threshold 1/2 is still508

(1, 0)-DP by post-processing (Theorem B.5).509

Since L ≥ 2k, using the amplification by sub-sampling property (Theorem B.7), we get that each
iteration is (ε′, 0)–DP, because for large enough Q we have:

6k

L
=

6ε log 1
δ + 6ε logQ

24 · log 1
δ

√
2Q ln

(
1
δ

) <
2ε

4
√

2Q ln
(
1
δ

) = ε′

Finally, by adaptive composition (Theorem B.4), after Q adaptive steps our resulting algorithm is510

(ε′′, δ)-DP where:511

ε′′ = ε′

√
2Q ln

(
1

δ

)
+Q(ε′)2 =

ε

2
+

ε2

4 ln
(
1
δ

) ≤ ε

for ε ≤ 2 ln δ−1, which is satisfied for δ ∈ (0, 0.995). Thus, Algorithm Adec is (ε, δ)–DP with512

respect to its inputs – the random strings R.513

Next, we show that a majority of the data structures Di output accurate verdicts with high probability,514

even against adversarially generated queries.515

516

Lemma C.2. With probability at least 1 − δ, for all i ∈ [Q], at least 0.8L of the answers aij are517

accurate responses to the decision problem with query qi.518

Proof. The central idea of the proof, as it appeared in [38], is to imagine the adversary B as a519

post-processing mechanism that tries to guess which random strings lead A to making a mistake.520

Imagine a wrapper meta-algorithm C, outlined as Algorithm 5, that takes as input the random string521

R = r1 ◦ r2 ◦ · · · ◦ rL, which is generated according to some unknown, arbitrary distributionR. This522

15

algorithm C simulates the game between Adec and B: It first runs B to provide some input dataset523

S ⊆ U to Adec, which is seeded with random strings in R. Then, C uses B to query Adec adaptively524

with queries (q1, ..., qQ). At the same time, it simulates Adec to receive answers a1, ..., aQ that are525

fed back to B. By Theorem C.1, the output (a1, ..., aQ) is produced privately with respect to R,526

regardless of how the adversary makes their queries.527

At every step i, once B has provided q⃗i = (q1, ..., qi) and has gotten back i answers (a1, ..., ai)528

from Adec, our meta-algorithm C post-processes this output history {(qj , aj)}ij=1 to generate a529

predicate hq⃗i : {0, 1}∗ → {0, 1}. This predicate tells which strings r ∈ {0, 1}∗ lead algorithm A530

to successfully answer query prefix q⃗i on input dataset S, in the decision-problem regime. More531

formally3:532

hq⃗i(r) :=
∧

1≤j≤i

{A(r)(S, qj) = 1 [BS(qj , r̄) ̸= ∅]} (2)

Algorithm 5 The meta-algorithm C, ran for i steps

1: Inputs: Random string R = r1 ◦ r2 ◦ · · · rL, descriptions of AlgorithmsAdec and B.
2: Simulate B to obtain a dataset S ⊂ U .
3: Initialize Adec with random strings (r1, ..., rL) and the dataset S.
4: for i ∈ Q do
5: Simulate B to produce a query qj based on the prior history of queries and answers.
6: Simulate A on query qj to produce an answer.
7: Compute (via post-processing of query/answer history) predicate hq⃗i(·) from Equation 2.
8: Output (hq⃗1 , ..., hq⃗Q).

Generating these predicates is possible because hq⃗i only depends on q⃗i, which is a substring of the533

output history that C has access to. As a result, C can produce hq⃗i by (say) calculating its value for534

each value of R exhaustively4. Because C is only allowed to post-process the query/answer vector535

(q1, a1, ..., qi, ai), the output predicate hq⃗i is also generated in a (ε, δ)–DP manner with respect to536

r1, ..., rL, by Theorem B.5.537

Given these Q privately generated predicates, and since L > 1
ε2 log

2εQ
δ for large enough Q, by the538

generalization property of DP (Theorem B.6) we have that with probability at least 1− δ
ε = 1−Θ(δ)539

it holds for any distributionR and for all i ∈ [Q] that:540 ∣∣∣∣∣∣ E
r∼R

[hq⃗i(r)]−
1

L

L∑
j=1

hq⃗i(rj)

∣∣∣∣∣∣ ≤ 10ε =
1

10
(3)

But if R is the uniform distribution, then Er∼R [hq⃗i(r)] is simply the probability that A2 gives an541

accurate answer on the fixed query sequence q⃗i. Since A is an oblivious decider, Equation 3 implies542

that:543

E
r∼R

[hq⃗i(r)] ≥
9

10
(4)

Further, 1
L

∑L
j=1 hq⃗i(rj) is the fraction of random strings that lead A2 to be correct. Thus, by544

Equation 4, this fraction is at least
(

9
10 −

1
10

)
L = 0.8L for all i ∈ [Q].545

We are now ready to prove the main theorem of this section.546

Proof of Theorem 3.1. Let us condition on the event that Theorem C.2 holds, which happens with547

probability at least 1−Θ(δ). Then, for all i ∈ [Q], Ni is either at least 0.8, when BS(qj , r̄) ̸= ∅, or548

3We replace the radius parameter r with r̄ briefly in this argument. The symbol r is reserved for an arbitrary
random string.

4We assume C has unbounded computational power.

16

at most 1− 0.8 = 0.2, otherwise. By Theorem B.3, we require that the maximum Laplacian noise549

not exceed 0.2 with high probability:550

Pr [|Zi| > 0.2] = Pr

[
|Zi| >

1

k
(ln(1) + 0.2k)

]
≤ e−0.2k (5)

Since our threshold for deciding is N̂i := Ni + Zi ≥ 0.5, we can see that setting k = Ω(log(Q/δ))551

will make the probability in Equation 5 at most δ
Q , implying, by union bound, that Adec outputs the552

correct answer at every timestep i ∈ [Q] with high probability.553

D Improved Robust ANNS Algorithms with ∀ guarantees554

In this section, we will discuss another path to adversarial robustness for search problems –providing555

a for-all guarantee. We will focus on the ANN problem for this section, due to its ubiquity and556

importance, as well as its amenity to the techniques we discuss.557

D.1 A For-all guarantee in the Hamming cube558

We present the Hamming Distance ANN case first because it is the most natural for-all guarantee one559

can give. This is because the space we are operating over is discrete, and we can easily union-bound560

over all possible queries and only incur a cost polynomial to the dimension d of the metric space.561

562

Theorem D.1. There exists an adversarially robust algorithm solving the (c, r)–ANN problem in the563

d–dimensional Hamming Hypercube that can answer every possible query correctly with probability564

at least 1− 1/n2. The space requirements are Õ(d · n1+ρ+o(1)), and the time required per query is565

Õ(d2 · nρ), where ρ = 1/c.566

Proof. First, let us recall the standard LSH in the Hamming Hypercube: We are given a point set567

S ⊆ {0, 1}d with |S| = n. We receive queries q ∈ {0, 1}d. Our Locality Sensitive Hash family H568

is defined as follows: Pick some coordinate i ∈ [d] and hash x ∈ {0, 1}d according to xi ∈ {0, 1}.569

This function h acts as a hyperplane separating the points in the hypercube into two equal halves,570

depending on the i-th coordinate. Sampling h uniformly at random fromH is equivalent to sampling571

i ∈ [d] uniformly at random. We can easily see thatH is an (r, cr, p1, p2)–LSH family, as:572

Pr
h∼H

[h(p) = h(q)] =
d− ||p− q||

d
=

{
≥ 1− r

d := p1, when ||p− q|| ≤ r

≤ 1− cr
d := p2, when ||p− q|| ≥ cr

We now go through the typical amplification process for LSH families [33]. Instead of sampling just573

one coordinate, we sample k. And instead of sampling just one hash function, we sample L different574

ones h1, ..., hL ∈ Hk and require that a close point collides with q at least once. With this scheme,575

we know that if we fix q ∈ {0, 1}d and p ∈ BS(q, r) we have:576

Pr [∃i ∈ [L] : hi(p) = hi(q)] ≥ 1− (1− pk1)
L

Furthermore, if ||p− q|| ≥ cr, we must have:577

Pr [∃i ∈ [L] : hi(q) = hi(p)] ≤ Lpk2

Now, we want to guarantee that with high probability there doesn’t exist any query q ∈ {0, 1}d such578

that for all points p ∈ BS(q, r) we have hi(q) ̸= hi(p) for all i ∈ [L]. In other words, we want:579

Pr
[
∃q ∈ {0, 1}d : ∀p ∈ BS(q, r)∀i ∈ [L] : hi(p) ̸= hi(q)

]
≤ 1

n

We can use the union bound to get:580

Pr
[
∃q ∈ {0, 1}d : ∀p ∈ BS(q, r)∀i ∈ [L] : hi(p) ̸= hi(q)

]
≤

∑
q∈{0,1}d

Pr [∀p ∈ BS(q, r)∀i ∈ [L] : hi(p) ̸= hi(q)]

17

So it suffices to establish that for fixed q ∈ {0, 1}d we have:581

Pr [∀p ∈ BS(q, r)∀i ∈ [L] : hi(p) ̸= hi(q)] ≤
1

n2d

We can weaken this statement and union-bound as follows:582

Pr [∀p ∈ BS(q, r)∀i ∈ [L] : hi(p) ̸= hi(q)] ≤ Pr [∃p ∈ BS(q, r) ̸ ∃i ∈ [L] : hi(p) = hi(q)]

≤
∑

p∈BS(q,r)

Pr [̸ ∃i ∈ [L] : hi(p) = hi(q)]

≤ |BS(q, r)| · (1− pk1)
L

≤ n(1− pk1)
L

So it suffices to require that:583

(1− pk1)
L ≤ 1

n22d
(6)

On the other hand, the expected number of points in S \ BS(q, cr) that we will see in the same584

buckets as q is:585

E [|p ∈ S \BS(q, cr) | ∃i ∈ [L] : hi(p) = hi(q)|] =
∑

p∈S\BS(q,cr)

Pr [∃i ∈ [L] | hi(p) = hi(q)]

(7)

≤ nLpk2 (8)

We can now combine Equation 6 and Equation 8 to work out the values of k and L. First, we want to586

get O(L) time in expectation, so we require pk2 ≤ 1/n, which gives:587

k ≥ log1/p2
(n)

Now, let p1 = pρ2. Substituting, we resolve the value of L as:588

L ≥ nρd log n

With that in place, we can see that our algorithm takes O(L) time with high probability. Indeed, let589

X be the number of points in S \BS(q, cr) that are hashed to some common bucket with q. Using a590

simplified Chernoff bound, we have that:591

Pr [X ≥ 10L] ≤ 2−10L =
1

n10dnρ ≪
1

nΩ(1)

which implies that our runtime per query is O(L) with high probability. As for the value of the592

constant ρ we have by definition that:593

ρ :=
log p1
log p2

=
log
(
1− r

d

)
log
(
1− cr

d

) ≈ 1

c

Overall, evaluating our hash function requires Õ(log n) time, and evaluating distances between points594

requires O(d) time. We maintain O(d · nρ log n) hash tables, meaning that on a single query we595

spend O(d2 · nρ log n) time. For pre-processing, apart from storing the entire dataset in dn space, we596

take O(d · n1+ρ+o(1)) space to construct our data structure.597

D.1.1 Improving the query runtime via sampling598

We can improve the dependency on d for the query runtime by using sampling to find a good bucket.599

The following theorem encapsulates this finding, reducing the runtime complexity by a factor of d:600

601

Theorem D.2. There exists an adversarially robust algorithm solving the (c, r)–ANN problem in the602

d–dimensional Hamming Hypercube that can answer all possible queries correctly with probability603

at least 1− 1/n2. The space requirements are Õ(d · n1+ρ+o(1)) and the time required per query is604

Õ(d · nρ), where ρ = 1/c.605

18

Proof. From our analysis above, we know that we take L = nρ · d log n different hash functions.606

Consider some query q. We analyze the expected number of buckets that contain some point607

p ∈ BS(q, r). Let Xq be a random variable representing the number of buckets i ∈ [L] for which608

some point in BS(q, r) lies in bucket i. Define the following indicator random variable:609

1i =

{
1, if some point p ∈ BS(q, r) lies in bucket i ∈ [L]

0, otherwise

By linearity of expectation, we can now write:610

E[Xq] =

L∑
i=1

Pr[1i = 1]

=

L∑
i=1

Pr

 ⋃
p∈BS(q,r)

{hi(p) = hi(q)}


≥ L · pk1
= L · (p2)ρk

≥ L

nρ

= d log n

By using the Chernoff bound, we can see that with high probability, Xq is close to its expectation:611

Pr

[
Xq ≤

1

2
d log n

]
≤ e−

d log n
8 =

1

nd/8
≪ 1

n

Let us, then, condition on Xq > 1
2d log n. On query time, we can simply sample m = Θ(nρ log n)612

buckets uniformly at random from [L]. We know that with probability at least d logn
2nρd logn = 1

2nρ , a613

single randomly selected bucket contains some point from BS(q, r). So, for all m of the selections to614

not contain such a point, the probability is at most:615 (
1− 1

nρ

)nρ logn

≤ e− logn =
1

n

So, with probability at least 1 − 1
n we find a bucket containing a good point. Since, with high616

probability, the number of points in P \BS(q, cr) in any bucket are O(L), we see that this sampling617

method improves the query runtime to O(nρ log n).618

D.1.2 Utilizing the optimal LSH algorithm619

Our earlier exposition used the original LSH construction for the Hamming Hypercube [40] that620

achieves ρ = 1/c. We can also use the state-of-the-art approach from [6] that achieves ρ = 1
2c−1 in621

place of Theorem D.1. This slightly improves the exponent on n:622

623

Theorem D.3. There exists an adversarially robust algorithm solving the (c, r)–ANN problem in the624

d–dimensional Hamming Hypercube that can answer all possible queries correctly with probability625

at least 0.99. The space complexity is O(d · n1+ρ+o(1)), and the time required per query is O(d · nρ),626

where ρ = 1
2c−1 . These runtime guarantees hold with high probability.627

The analysis is identical, so we will not repeat it again: Since the algorithm succeeds with constant628

probability, and we want it to succeed on all 2d possible queries, we boost its success probability629

to 1 − 1
100·2d . This way, after the union bound, any query succeeds with probability at least 0.99.630

Furthermore, the analysis of the sampling algorithm for improving the query runtime in Theorem D.2631

also remains the same. All that changes between using the standard Hamming norm LSH as opposed632

to the optimal one is the ratio ρ := log p1

log p2
.633

19

D.2 Discretization of continuous spaces through metric coverings634

The for-all algorithm we presented as Theorem D.2 cannot be applied outside of discrete spaces,635

however, because the key to our analysis was the union bound over all the possible queries.636

To simulate a similar argument for solving ANN in continuous, ℓp spaces, we can consider a strategy637

of discretizing the space. We place special “marker” points and guarantee that some version of the638

ANN problem is solvable around them. Then, when a query comes in, we find its corresponding639

marker point, and solve the ANN problem for it. We show that the answer we get is valid for the640

original query as well, so long as the “neighborhood” around the marker points is small enough. A641

similar strategy and covering construction appeared in [24], although they did not make algorithmic642

use of the ability to project any query point to the covering set. Instead, their algorithm deems it643

sufficient to be successful on every point on just the covering set.644

D.2.1 Metric coverings in continuous spaces645

To initiate our investigation, we need the definition of a metric covering:646

Definition D.4. Consider a metric spaceM = (Rd, || · ||p) with metric µ. Let U ⊂ Rd be a bounded
subset. A set Ŝ ⊆ Rd is called an ∆-covering of U if for all q ∈ U there exists some ŝ ∈ Ŝ such that

||q − ŝ||p ≤ ∆

Suppose that U is a bounded subset of Rd. We can construct the following the following ∆-covering647

of U : Let C := sup
x∈U
||x||∞ and suppose {ui}di=1 is an orthonormal basis spanning U . We know that648

||x||∞ ≤ C for all x ∈ U , so let us define:649

Ŝ =

d∑
i=1

α̂iui, where

α̂i ∈ {−C,−C + ε, ..., C − ε, C}

for some choice of ε that we will decide later. This is a standard construction for ℓ2 that we now650

extend to ℓp [48]. As defined, we have:651 ∣∣∣Ŝ∣∣∣ = (2C

ε

)d

Now, fix some q ∈ U . We can write:652

q =

d∑
i=1

αiui

For all i ∈ [d], let α̂i be such that αi ∈ α̂i ± ε. Let ŝ :=
d∑

i=1

α̂iui. Now we have that:653

||q − ŝ||pp =

∣∣∣∣∣
∣∣∣∣∣

d∑
i=1

(αi − α̂i)ui

∣∣∣∣∣
∣∣∣∣∣
p

p

=

d∑
i=1

|αi − α̂i|p ≤ dεp

Now, let us set:654

ε =
∆

d1/p
=⇒ ||q − ŝ||p ≤ ∆

Our construction thus has size:655

|Ŝ| =
(
2Cd1/p

∆

)d

20

q

p∗
r

Figure 2: An illustration of an r-covering.

D.2.2 The robust ANN algorithm656

With this construction in mind, our algorithm for robust (c, r)–ANN in ℓp space follows as Algorithm657

6. The algorithm remains agnostic to the specific LSH data structure that could be used to solve ANN658

in ℓp metric spaces obliviously [22, 26], but assumes that the success probability over a set of queries659

in that data structure can be boosted by increasing the number of hash functions taken. This was the660

case for the Hamming norm as well.661

Algorithm 6 Robust ℓp ANN through discretization

1: Parameters: Max-norm C, runtime/accuracy tradeoff ∆ > 0, LSH parameters c, r > 0.
2: Receive point dataset S ⊂ U with |S| = n from the adversary.
3: Let Ŝ be a ∆-covering of U as constructed in Section D.2.1, and let c′ ← cr−∆

r+∆ .
4: Initialize an LSH data structure D for solving (c′, r +∆)–ANN that answers all queries in Ŝ

correctly with high probability.
5: while Adversary provides queries do
6: Receive query q ∈ U from the adversary.
7: Find ŝ ∈ Ŝ such that ||q − ŝ||p ≤ ∆.
8: Query D on ŝ and output whatever it outputs.

662

Theorem D.5. There exists an adversarially robust algorithm solving the (c, r)–ANN problem in the663

(Rd, ℓp) metric space that can answer an unbounded number of adversarial queries. Assumming that664

the input dataset and the queries are all elements of U = {x ∈ Rd | ||x||p ≤ C} for some C > 0,665

the pre-processing space is Õ(nT) and the time per query is Õ(T), where:666

T = O

[
d · nρ′

log

(
Cd1/p

cr

)]
(9)

where:667

ρ′ =
(10 + c)2

161c2 − 20c− 100

21

Proof. First, to argue for correctness, let q be any query. Suppose there exists some point x ∈ S with668

||x− q||p ≤ r. Then, by triangle inequality it holds that:669

||x− ŝ||p ≤ ||x− q||p + ||ŝ− q||p ≤ ∆+ r

Thus, with high probability, D will find some point x′ ∈ S with ||x′ − ŝ||p ≤ cr −∆. For that point,670

we have that:671

||x′ − q||p ≤ ||x′ − ŝ||p + ||ŝ− q||p ≤ cr −∆+∆ = cr

Therefore, Algorithm 6 will output a correct answer. If there doesn’t exist such a point x, it is valid672

for our algorithm to output ⊥, so are done.673

For the runtime, recall that |Ŝ| ≤ O(2Cd1/p/∆)d. Hence, in order to guarantee success for all
queries in Ŝ, a similar analysis as to the one for the Hamming Hypercube shows that D takes up:

O

[
d · n1+ 1

2c′2−1 log

(
2Cd1/p

∆

)]
space for pre-processing and

O

[
n

1
2c′2−1 log

(
2Cd1/p

∆

)]
time per query processed, where

c′ :=
cr −∆

r +∆

Note that we use the optimal LSH algorithm for ℓp spaces, which guarantees ρ = 1
2c2−1 . Our only674

constraint is that we must have ∆ < cr. If we set ∆ = c
10r, we get a per-query runtime of:675

O

[
n
1+ 1

2c′2−1 log

(
20Cd1/p

cr

)]
, where c′ =

9c

10 + c

676

D.2.3 Removing the dependency on the scale677

Our algorithm from Theorem D.5 crucially depends on logC, where C is a bounding box for the678

query and input point space in the ℓp norm. We can remove the dependency on C by designing our679

covering to be data dependent, instead paying an additional logarithmic factor.680

Our new covering Ŝ′ will be a collection of n ∆-coverings, as constructed in Algorithm 6, each one681

discretizing the r-ball around a point p ∈ S. The number of points in this new covering is:682

|Ŝ′| ≤ O

[
n ·
(
r · d1/p

cr

)d
]
= O

[
n ·
(
d1/p

c

)d
]

(10)

Note that the size of this covering improves upon the (nd)d size of the covering given in [24], which683

results in a slightly better runtime. This new covering notably does not cover every possible query.684

However, it covers exactly the queries we care about. This improved covering leads to the following685

for-all guarantee for robust ANN:686

687

Theorem D.6. There exists an adversarially robust algorithm solving the (c, r)–ANN problem688

in the (Rd, ℓp) metric space that can answer an unbounded number of adversarial queries. The689

pre-processing time / space is Õ(nT) and the time per query is Õ(T/d), where:690

T = O
[
d · nρ′

(d log d+ log n)
]

(11)

where:691

ρ′ =
1

2c′2 − 1
=

(10 + c)2

161c2 − 20c− 100

22

A

B

C

Figure 3: Data-Dependent Discretization of the input query space.

Proof. We distinguish between two cases:692

1. If a query q is not included in any BS(p, r) for any p ∈ S, then the answer can safely be693

⊥ because BS(q, r) = ∅ necessarily. Thus, we can just run the default LSH algorithm and694

simply output whatever it outputs.695

2. Otherwise, a query q can be included in some BS(p, r) for some p ∈ S. Then, suppose696

ŝ′ ∈ Ŝ′ is a point in our covering such that ||q − ŝ′||p ≤ ∆. Then:697

||p− ŝ′||p ≤ ||p− q||p + ||ŝ′ − q||p ≤ r +∆ (12)

Thus, as we argued before, with high probabilityD finds some point x ∈ S with ||x− ŝ′||p ≤698

cr −∆, and for that point we have:699

||x− q||p ≤ ||x− ŝ′||p + ||ŝ′ − q||p ≤ cr −∆+∆ = cr (13)

which means our algorithm will output a correct answer.700

As before, our algorithm’s space and runtime guarantees scale with log |Ŝ′|.701

E An Improvement to Exact Fair ANN702

A fair algorithm outputs, on input x, a uniformly distributed output over some pre-determined703

space of outcomes. In the problem of exact fair approximate nearest neighbor search5, we aim704

to output a point uniformly in BS(q, r). Fair ANN algorithms have been studied extensively by705

Aumüller, Har-Peled, Mahabadi, Pagh, and Silvestri [9]. Their techniques, which inspired the design706

of Algorithm 3, involved the use of LSH and sampling to yield an fair ANN algorithm whose runtime707

scales with our familiar n(q,cr)
n(q,r) . They prove the following theorem:708

709

Theorem E.1. There exists a fair ANN algorithm using Õ(n1+ρ) bits of space and Õ(dnρ · n(q,cr)n(q,r))710

time per query, where ρ is an LSH parameter.711

5Approximate notions of fairness are also studied in [9] and our approach likely extends to those concepts as
well. For simplicity in presentation, we focus on the most straightforward definition of fairness.

23

Our concentric LSH construction can yield an exact fair ANN algorithm with an almost purely712

sublinear query time, modulo the outlier structural assumption. The algorithm and analysis remain713

the same, but instead of Lsampling, we apply it to the fair ANN algorithm of Theorem E.1:714

715

Theorem E.2. Given Assumption 1, there exists an algorithm that on query q ∈M outputs a point in716

BS(q, r
′) uniformly at random, where r′ ∈ [r, cr], and c, r are the LSH parameters. If such points do717

not exist, the algorithm outputs “⊥” with high probability. The algorithm uses O(n1+ 1
K +ρ · log n)718

bits of space overall and O(dnρ+1/K log n) time per query.719

Remark (Different Notions of Fairness). Our algorithm returns a uniformly sampled point from a720

sphere with radius r′, which is potentially different from r. This radius r′ depends on S, q and the721

internal randomness used, which makes our guarantee technically different from the one given by722

Theorem E.1. However, the output is nevertheless fairly produced among a set of valid candidate723

points.724

Remark (Fairness and Robustness). A natural follow-up question is whether a connection exists725

between fairness and adversarial robustness. One might intuitively argue that fair algorithms are726

inherently robust because they don’t exhibit bias in their internal randomness toward any specific727

output. However, this is not always the case. We can always construct an oblivious decider by simply728

wrapping it around a fair algorithm, and we have seen that deciders are not necessarily robust.729

Nevertheless, an interesting direction for future work is to quantify levels of robustness and position730

fair algorithms along this spectrum.731

24

NeurIPS Paper Checklist732

1. Claims733

Question: Do the main claims made in the abstract and introduction accurately reflect the734

paper’s contributions and scope?735

Answer: [Yes]736

Justification: We provide exact statements and proofs of our results.737

Guidelines:738

• The answer NA means that the abstract and introduction do not include the claims739

made in the paper.740

• The abstract and/or introduction should clearly state the claims made, including the741

contributions made in the paper and important assumptions and limitations. A No or742

NA answer to this question will not be perceived well by the reviewers.743

• The claims made should match theoretical and experimental results, and reflect how744

much the results can be expected to generalize to other settings.745

• It is fine to include aspirational goals as motivation as long as it is clear that these goals746

are not attained by the paper.747

2. Limitations748

Question: Does the paper discuss the limitations of the work performed by the authors?749

Answer: [Yes]750

Justification: We have numerous remarks about the assumptions our algorithms make and751

their limitations.752

Guidelines:753

• The answer NA means that the paper has no limitation while the answer No means that754

the paper has limitations, but those are not discussed in the paper.755

• The authors are encouraged to create a separate "Limitations" section in their paper.756

• The paper should point out any strong assumptions and how robust the results are to757

violations of these assumptions (e.g., independence assumptions, noiseless settings,758

model well-specification, asymptotic approximations only holding locally). The authors759

should reflect on how these assumptions might be violated in practice and what the760

implications would be.761

• The authors should reflect on the scope of the claims made, e.g., if the approach was762

only tested on a few datasets or with a few runs. In general, empirical results often763

depend on implicit assumptions, which should be articulated.764

• The authors should reflect on the factors that influence the performance of the approach.765

For example, a facial recognition algorithm may perform poorly when image resolution766

is low or images are taken in low lighting. Or a speech-to-text system might not be767

used reliably to provide closed captions for online lectures because it fails to handle768

technical jargon.769

• The authors should discuss the computational efficiency of the proposed algorithms770

and how they scale with dataset size.771

• If applicable, the authors should discuss possible limitations of their approach to772

address problems of privacy and fairness.773

• While the authors might fear that complete honesty about limitations might be used by774

reviewers as grounds for rejection, a worse outcome might be that reviewers discover775

limitations that aren’t acknowledged in the paper. The authors should use their best776

judgment and recognize that individual actions in favor of transparency play an impor-777

tant role in developing norms that preserve the integrity of the community. Reviewers778

will be specifically instructed to not penalize honesty concerning limitations.779

3. Theory assumptions and proofs780

Question: For each theoretical result, does the paper provide the full set of assumptions and781

a complete (and correct) proof?782

Answer: [Yes]783

25

Justification: Proofs are either part of the main text or the Appendix.784

Guidelines:785

• The answer NA means that the paper does not include theoretical results.786

• All the theorems, formulas, and proofs in the paper should be numbered and cross-787

referenced.788

• All assumptions should be clearly stated or referenced in the statement of any theorems.789

• The proofs can either appear in the main paper or the supplemental material, but if790

they appear in the supplemental material, the authors are encouraged to provide a short791

proof sketch to provide intuition.792

• Inversely, any informal proof provided in the core of the paper should be complemented793

by formal proofs provided in appendix or supplemental material.794

• Theorems and Lemmas that the proof relies upon should be properly referenced.795

4. Experimental result reproducibility796

Question: Does the paper fully disclose all the information needed to reproduce the main ex-797

perimental results of the paper to the extent that it affects the main claims and/or conclusions798

of the paper (regardless of whether the code and data are provided or not)?799

Answer: [NA]800

Justification: No experiments.801

Guidelines:802

• The answer NA means that the paper does not include experiments.803

• If the paper includes experiments, a No answer to this question will not be perceived804

well by the reviewers: Making the paper reproducible is important, regardless of805

whether the code and data are provided or not.806

• If the contribution is a dataset and/or model, the authors should describe the steps taken807

to make their results reproducible or verifiable.808

• Depending on the contribution, reproducibility can be accomplished in various ways.809

For example, if the contribution is a novel architecture, describing the architecture fully810

might suffice, or if the contribution is a specific model and empirical evaluation, it may811

be necessary to either make it possible for others to replicate the model with the same812

dataset, or provide access to the model. In general. releasing code and data is often813

one good way to accomplish this, but reproducibility can also be provided via detailed814

instructions for how to replicate the results, access to a hosted model (e.g., in the case815

of a large language model), releasing of a model checkpoint, or other means that are816

appropriate to the research performed.817

• While NeurIPS does not require releasing code, the conference does require all submis-818

sions to provide some reasonable avenue for reproducibility, which may depend on the819

nature of the contribution. For example820

(a) If the contribution is primarily a new algorithm, the paper should make it clear how821

to reproduce that algorithm.822

(b) If the contribution is primarily a new model architecture, the paper should describe823

the architecture clearly and fully.824

(c) If the contribution is a new model (e.g., a large language model), then there should825

either be a way to access this model for reproducing the results or a way to reproduce826

the model (e.g., with an open-source dataset or instructions for how to construct827

the dataset).828

(d) We recognize that reproducibility may be tricky in some cases, in which case829

authors are welcome to describe the particular way they provide for reproducibility.830

In the case of closed-source models, it may be that access to the model is limited in831

some way (e.g., to registered users), but it should be possible for other researchers832

to have some path to reproducing or verifying the results.833

5. Open access to data and code834

Question: Does the paper provide open access to the data and code, with sufficient instruc-835

tions to faithfully reproduce the main experimental results, as described in supplemental836

material?837

26

Answer: [NA]838

Justification: No experiments.839

Guidelines:840

• The answer NA means that paper does not include experiments requiring code.841

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/842

public/guides/CodeSubmissionPolicy) for more details.843

• While we encourage the release of code and data, we understand that this might not be844

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not845

including code, unless this is central to the contribution (e.g., for a new open-source846

benchmark).847

• The instructions should contain the exact command and environment needed to run to848

reproduce the results. See the NeurIPS code and data submission guidelines (https:849

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.850

• The authors should provide instructions on data access and preparation, including how851

to access the raw data, preprocessed data, intermediate data, and generated data, etc.852

• The authors should provide scripts to reproduce all experimental results for the new853

proposed method and baselines. If only a subset of experiments are reproducible, they854

should state which ones are omitted from the script and why.855

• At submission time, to preserve anonymity, the authors should release anonymized856

versions (if applicable).857

• Providing as much information as possible in supplemental material (appended to the858

paper) is recommended, but including URLs to data and code is permitted.859

6. Experimental setting/details860

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-861

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the862

results?863

Answer: [NA]864

Justification: No experiments.865

Guidelines:866

• The answer NA means that the paper does not include experiments.867

• The experimental setting should be presented in the core of the paper to a level of detail868

that is necessary to appreciate the results and make sense of them.869

• The full details can be provided either with the code, in appendix, or as supplemental870

material.871

7. Experiment statistical significance872

Question: Does the paper report error bars suitably and correctly defined or other appropriate873

information about the statistical significance of the experiments?874

Answer: [NA]875

Justification: No experiments.876

Guidelines:877

• The answer NA means that the paper does not include experiments.878

• The authors should answer "Yes" if the results are accompanied by error bars, confi-879

dence intervals, or statistical significance tests, at least for the experiments that support880

the main claims of the paper.881

• The factors of variability that the error bars are capturing should be clearly stated (for882

example, train/test split, initialization, random drawing of some parameter, or overall883

run with given experimental conditions).884

• The method for calculating the error bars should be explained (closed form formula,885

call to a library function, bootstrap, etc.)886

• The assumptions made should be given (e.g., Normally distributed errors).887

• It should be clear whether the error bar is the standard deviation or the standard error888

of the mean.889

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should890

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis891

of Normality of errors is not verified.892

• For asymmetric distributions, the authors should be careful not to show in tables or893

figures symmetric error bars that would yield results that are out of range (e.g. negative894

error rates).895

• If error bars are reported in tables or plots, The authors should explain in the text how896

they were calculated and reference the corresponding figures or tables in the text.897

8. Experiments compute resources898

Question: For each experiment, does the paper provide sufficient information on the com-899

puter resources (type of compute workers, memory, time of execution) needed to reproduce900

the experiments?901

Answer: [NA]902

Justification: No experiments.903

Guidelines:904

• The answer NA means that the paper does not include experiments.905

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,906

or cloud provider, including relevant memory and storage.907

• The paper should provide the amount of compute required for each of the individual908

experimental runs as well as estimate the total compute.909

• The paper should disclose whether the full research project required more compute910

than the experiments reported in the paper (e.g., preliminary or failed experiments that911

didn’t make it into the paper).912

9. Code of ethics913

Question: Does the research conducted in the paper conform, in every respect, with the914

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?915

Answer: [Yes]916

Justification:917

Guidelines:918

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.919

• If the authors answer No, they should explain the special circumstances that require a920

deviation from the Code of Ethics.921

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-922

eration due to laws or regulations in their jurisdiction).923

10. Broader impacts924

Question: Does the paper discuss both potential positive societal impacts and negative925

societal impacts of the work performed?926

Answer: [NA]927

Justification:928

Guidelines:929

• The answer NA means that there is no societal impact of the work performed.930

• If the authors answer NA or No, they should explain why their work has no societal931

impact or why the paper does not address societal impact.932

• Examples of negative societal impacts include potential malicious or unintended uses933

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations934

(e.g., deployment of technologies that could make decisions that unfairly impact specific935

groups), privacy considerations, and security considerations.936

• The conference expects that many papers will be foundational research and not tied937

to particular applications, let alone deployments. However, if there is a direct path to938

any negative applications, the authors should point it out. For example, it is legitimate939

to point out that an improvement in the quality of generative models could be used to940

28

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out941

that a generic algorithm for optimizing neural networks could enable people to train942

models that generate Deepfakes faster.943

• The authors should consider possible harms that could arise when the technology is944

being used as intended and functioning correctly, harms that could arise when the945

technology is being used as intended but gives incorrect results, and harms following946

from (intentional or unintentional) misuse of the technology.947

• If there are negative societal impacts, the authors could also discuss possible mitigation948

strategies (e.g., gated release of models, providing defenses in addition to attacks,949

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from950

feedback over time, improving the efficiency and accessibility of ML).951

11. Safeguards952

Question: Does the paper describe safeguards that have been put in place for responsible953

release of data or models that have a high risk for misuse (e.g., pretrained language models,954

image generators, or scraped datasets)?955

Answer: [NA]956

Justification:957

Guidelines:958

• The answer NA means that the paper poses no such risks.959

• Released models that have a high risk for misuse or dual-use should be released with960

necessary safeguards to allow for controlled use of the model, for example by requiring961

that users adhere to usage guidelines or restrictions to access the model or implementing962

safety filters.963

• Datasets that have been scraped from the Internet could pose safety risks. The authors964

should describe how they avoided releasing unsafe images.965

• We recognize that providing effective safeguards is challenging, and many papers do966

not require this, but we encourage authors to take this into account and make a best967

faith effort.968

12. Licenses for existing assets969

Question: Are the creators or original owners of assets (e.g., code, data, models), used in970

the paper, properly credited and are the license and terms of use explicitly mentioned and971

properly respected?972

Answer: [NA]973

Justification:974

Guidelines:975

• The answer NA means that the paper does not use existing assets.976

• The authors should cite the original paper that produced the code package or dataset.977

• The authors should state which version of the asset is used and, if possible, include a978

URL.979

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.980

• For scraped data from a particular source (e.g., website), the copyright and terms of981

service of that source should be provided.982

• If assets are released, the license, copyright information, and terms of use in the983

package should be provided. For popular datasets, paperswithcode.com/datasets984

has curated licenses for some datasets. Their licensing guide can help determine the985

license of a dataset.986

• For existing datasets that are re-packaged, both the original license and the license of987

the derived asset (if it has changed) should be provided.988

• If this information is not available online, the authors are encouraged to reach out to989

the asset’s creators.990

13. New assets991

Question: Are new assets introduced in the paper well documented and is the documentation992

provided alongside the assets?993

29

paperswithcode.com/datasets

Answer: [NA]994

Justification:995

Guidelines:996

• The answer NA means that the paper does not release new assets.997

• Researchers should communicate the details of the dataset/code/model as part of their998

submissions via structured templates. This includes details about training, license,999

limitations, etc.1000

• The paper should discuss whether and how consent was obtained from people whose1001

asset is used.1002

• At submission time, remember to anonymize your assets (if applicable). You can either1003

create an anonymized URL or include an anonymized zip file.1004

14. Crowdsourcing and research with human subjects1005

Question: For crowdsourcing experiments and research with human subjects, does the paper1006

include the full text of instructions given to participants and screenshots, if applicable, as1007

well as details about compensation (if any)?1008

Answer: [NA]1009

Justification:1010

Guidelines:1011

• The answer NA means that the paper does not involve crowdsourcing nor research with1012

human subjects.1013

• Including this information in the supplemental material is fine, but if the main contribu-1014

tion of the paper involves human subjects, then as much detail as possible should be1015

included in the main paper.1016

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1017

or other labor should be paid at least the minimum wage in the country of the data1018

collector.1019

15. Institutional review board (IRB) approvals or equivalent for research with human1020

subjects1021

Question: Does the paper describe potential risks incurred by study participants, whether1022

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1023

approvals (or an equivalent approval/review based on the requirements of your country or1024

institution) were obtained?1025

Answer: [NA]1026

Justification:1027

Guidelines:1028

• The answer NA means that the paper does not involve crowdsourcing nor research with1029

human subjects.1030

• Depending on the country in which research is conducted, IRB approval (or equivalent)1031

may be required for any human subjects research. If you obtained IRB approval, you1032

should clearly state this in the paper.1033

• We recognize that the procedures for this may vary significantly between institutions1034

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1035

guidelines for their institution.1036

• For initial submissions, do not include any information that would break anonymity (if1037

applicable), such as the institution conducting the review.1038

16. Declaration of LLM usage1039

Question: Does the paper describe the usage of LLMs if it is an important, original, or1040

non-standard component of the core methods in this research? Note that if the LLM is used1041

only for writing, editing, or formatting purposes and does not impact the core methodology,1042

scientific rigorousness, or originality of the research, declaration is not required.1043

Answer: [NA]1044

30

Justification:1045

Guidelines:1046

• The answer NA means that the core method development in this research does not1047

involve LLMs as any important, original, or non-standard components.1048

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1049

for what should or should not be described.1050

31

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Our Results and Techniques
	d = (Q): Reduction to Decision Problems and Differential Privacy
	d = O(Q): For-all Algorithms

	Preliminaries
	A Robust ANN Meta-Algorithm
	Step 1: A Robust ANN ``Decider''
	Step 2: From Robust Deciding to Robust Searching
	Step 3: Building the Oblivious ANN Decider via LSH Sampling
	Step 4: Putting it all together

	Improvements in Robust and Fair ANN via Concentric LSH
	Conclusion
	Related Work
	Comparison with fengdifferential

	Review of Differential Privacy
	Definition of differential privacy
	The Laplace Mechanism and its properties
	Properties of differential privacy

	Proof of Theorem 3.1
	Improved Robust ANNS Algorithms with guarantees
	A For-all guarantee in the Hamming cube
	Improving the query runtime via sampling
	Utilizing the optimal LSH algorithm

	Discretization of continuous spaces through metric coverings
	Metric coverings in continuous spaces
	The robust ANN algorithm
	Removing the dependency on the scale

	An Improvement to Exact Fair ANN

