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Abstract

Supervised learning approaches for causal
discovery from observational data often achieve
competitive performance despite seemingly avoid-
ing explicit assumptions that traditional methods
make for identifiability. In this work, we investi-
gate CSIvA (Ke et al., 2022), a transformer-based
model promising to train on synthetic data and
transfer to real data. First, we bridge the gap with
existing identifiability theory and show that con-
straints on the training data distribution implicitly
define a prior on the test observations. Consistent
with classical approaches, good performance is
achieved when we have a good prior on the test
data, and the underlying model is identifiable. At
the same time, we find new trade-offs. Training
on datasets generated from different classes of
causal models, unambiguously identifiable in
isolation, improves the test generalization. Perfor-
mance is still guaranteed, as the ambiguous cases
resulting from the mixture of identifiable causal
models are unlikely to occur (which we formally
prove). Overall, our study finds that amortized
causal discovery still needs to obey identifiability
theory, but it also differs from classical methods
in how the assumptions are formulated, trading
more reliance on assumptions on the noise type
for fewer hypotheses on the mechanisms.

1. Introduction
Causal discovery aims to uncover the underlying causal
relationships between variables of a system from pure obser-
vations, which is crucial for answering interventional and
counterfactual queries when experimentation is impractical
or unfeasible (Peters et al., 2017; Pearl, 2009; Spirtes, 2010).
Unfortunately, causal discovery is inherently ill-posed (Gly-
mour et al., 2019): unique identification of causal directions
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requires restrictive assumptions on the class of structural
causal models (SCMs) that generated the data (Shimizu
et al., 2006; Hoyer et al., 2008; Zhang & Hyvärinen, 2009).
These theoretical limitations often render existing meth-
ods inapplicable, as the underlying assumptions are usually
untestable or difficult to verify in practice (Montagna et al.,
2023a).

Recently, supervised learning algorithms trained on
synthetic data have been proposed to overcome the need
for specific hypotheses, which restrains the application of
classical causal discovery methods to real-world problems
(Ke et al., 2022; Lopez-Paz et al., 2015; Li et al., 2020;
Lippe et al., 2022; Lorch et al., 2022). Seminal work from
Lopez-Paz et al. (2015) argues that this learning-based
approach to causal discovery would allow dealing with com-
plex data-generating processes and would greatly reduce the
need for explicitly crafting identifiability conditions a-priori:
despite this ambitious goal, the output of these methods is
generally considered unreliable, as no theoretical guarantee
is provided. A pair of non-identifiable structural causal
models can be associated with different causal graphs
G ≠ G̃, while entailing the same joint distribution p on
the system’s variables. It is thus unclear how a learning
algorithm presented with observational data generated
from p would be able to overcome these theoretical limits
and correctly identify a unique causal structure. However,
the available empirical evidence seems not to care about
impossibility results, as these methods yield surprising
generalization results on several synthetic benchmarks. Our
work aims to bridge this gap by studying the performance
of a transformer architecture for causal discovery through
the lens of the theory of identifiability from observational
data. Specifically, we analyze the CSIvA (Causal Structure
Induction via Attention) model for causal discovery (Ke
et al., 2022), focusing on bivariate graphs, as they offer
a controlled yet non-trivial setting for the investigation.
As our starting point, we provide closed-form examples
that identify the limitations of CSIvA in recovering
causal structures of linear non-Gaussian and nonlinear
additive noise models, which are notably identifiable,
and demonstrate the expected failures through empirical
evidence. These findings suggest that the class of structural
causal models that can be identified by CSIvA is inherently
dependent on the specific class of SCMs observed during
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training. Thus, the need for restrictive hypotheses on the
data-generating process is intrinsic to causal discovery, both
in the traditional and modern learning-based approaches:
assumptions on the test distribution either are posited when
selecting the algorithm (traditional methods) or in the choice
of the training data (learning-based methods). To address
this limitation, we theoretically and empirically analyze
when training CSIvA on datasets generated by multiple
identifiable SCMs with different structural assumptions
improves its generalization at test time. In summary:

• We show that the class of structural causal models that
CSIvA can identify is defined by the class of SCMs
observed through samples during the training. We rein-
force the notion that identifiability in causal discovery
inherently requires assumptions, which must be en-
coded in the training data in the case of learning-based
approaches.

• To overcome this limitation, we study the benefits
of CSIvA training on mixtures of causal models.
We analyze when algorithms learned on multiple
models are expected to identify broad classes of SCMs
(unlike many classical methods). Empirically, we
show that training on samples generated by multiple
identifiable causal models with different assumptions
on mechanisms and noise distribution results in
significantly improved generalization abilities.

Closely related works and their relation with CSIvA. In
this paper, we study amortized inference of causal graphs,
i.e. optimization of an inference model to directly predict a
causal structure from newly provided data. This is the first
work that attempts to understand the connection between
identifiability theory and amortized inference, while several
algorithms have been proposed. In the context of purely
observational data, Lopez-Paz et al. (2015) defines a dis-
tribution regression problem (Szabo et al., 2016) mapping
the kernel mean embedding of the data distribution to a
causal graph, while Li et al. (2020) relies on equivariant
neural network architectures. More recently, Lippe et al.
(2022) and Lorch et al. (2022) proposed learning on inter-
ventional data, in addition to observations (in the same spirit
as CSIvA). Despite different algorithmic implementations,
the target object of estimation of most of these methods is
the distribution over the space of all possible graphs, condi-
tional on the input dataset (similarly, the ENCO algorithm
in Lippe et al. (2022) models the conditional distribution of
individual edges). This justifies our choice of restricting our
study to the CSIvA architecture, as in the infinite observa-
tional sample limit, these methods approximate the same
distribution.

2. Background and motivation
We start introducing structural causal models (SCMs), an
intuitive framework that formalizes causal relations. Let
X be a set of random variables in R defined according to
the set of structural equations:

Xi := fi(XPAG
i
, Ni), ∀i = 1, . . . , k. (1)

Ni ∈ R are noise random variables. The function fi is the
causal mechanism mapping the set of direct causes XPAG

i

of Xi and the noise term Ni, to Xi’s value. The causal
graph G is a directed acyclic graph (DAG) with nodes
X = {X1, . . . , Xk}, and edges {Xj → Xi : Xj ∈ XPAG

i
},

with PAGi indices of the parent nodes of Xi in G. The
causal model induces a density pX over the vector X .

2.1. Causal discovery from observational data

Causal discovery from observational data is the inference
of the causal graph G from a dataset of i.i.d. observations
of the random vector X . In general, without restrictive as-
sumptions on the mechanisms and the noise distributions,
the direction of edges in the graph G is not identifiable, i.e.
it can not be found from the population density pX . In par-
ticular, it is possible to identify only a Markov equivalence
class, which is the set of graphs encoding the same condi-
tional independencies as the density pX . To clarify with an
example, consider the causal graph X1 → X2 associated
with a structural causal model inducing a density pX1,X2

.
If the model is not identifiable, there exists an SCM with
causal graph X2 → X1 that entails the same joint density
pX1,X2

. The set {X1 → X2, X2 → X1} is the Markov
equivalence class of the graph X1 → X2, i.e. the set of all
graphs with X1, X2 mutually dependent. Clearly, in this
setting, even the exact knowledge of pX1,X2

cannot inform
us about the correct causal direction.
Definition 2.1 (Identifiable causal model). Consider a struc-
tural causal model with underlying graph G and pX joint
density of the causal variables. We say that the model is
identifiable from observational data if the density pX can not
be entailed by a structural causal model with graph G̃ ̸= G.

We define the post-additive noise model (post-ANM) as the
causal model with the set of equations:

Xi := f2,i(f1,i(XPAG
i
) +Ni), ∀i = 1, . . . , d, (2)

with f2,i invertible map and mutually independent noise
terms. When f2,i is nonlinear, the post-ANM amounts
to the identifiable post-nonlinear model (PNL) (Zhang &
Hyvärinen, 2009). When f2,i is the identity function and
f1,i nonlinear, it simplifies to the nonlinear additive noise
model (ANM)(Hoyer et al., 2008; Peters et al., 2014), which
is known to be identifiable, and is described by the equa-
tions:

Xi := f1,i(XPAG
i
) +Ni. (3)
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If, additionally, we restrict the mechanisms f1,i to be linear
and the noise terms Ni to a non-Gaussian distribution, we
recover the identifiable linear non-Gaussian additive model
or LiNGAM (Shimizu et al., 2006):

Xi =
∑

j∈PAG
i

αjXj +Ni, αj ∈ R. (4)

2.2. Motivation and problem definition

Causal discovery from observational data relies on specific
assumptions, which can be challenging to verify in practice
(Montagna et al., 2023a). To address this, recent methods
leverage supervised learning for the amortized inference
of causal graphs (Ke et al., 2022; Lopez-Paz et al., 2015;
Li et al., 2020; Lippe et al., 2022; Lorch et al., 2022; Ke
et al., 2023; Löwe et al., 2020), optimizing an inference
model to directly predict a causal structure from a provided
dataset. While these approaches aim to reduce reliance
on explicit identifiability assumptions, they often lack a
clear connection to the existing causal discovery theory,
making their outputs generally unreliable. We illustrate this
limitation through an example.
Example 1. We consider the CSIvA transformer architec-
ture proposed by Ke et al. (2022), which can learn a map
from observational data to a causal graph. The authors
of the paper show that, in the infinite sample regime, the
CSIvA architecture exactly approximates the conditional
distribution p(·|D) over the space of possible graphs, given
a dataset D. Identifiability theory in causal discovery
tells us that if the class of structural causal models that
generated the observations is sufficiently constrained, then
there is only one graph that can fit the data within that
class. For example, consider the case of a dataset that
is known to be generated by a nonlinear additive noise
model, and let p(·|D,ANM) be the conditional distribution
that incorporates this prior knowledge on the SCM: then
p(·|D,ANM) concentrates all the mass on a single point G∗,
the true graph underlying the D observations. Instead, in
the absence of restrictions on the structural causal model, all
the graphs in a Markov equivalence class are equally likely
to be the correct solution given the data. Hence, p(·|D), the
distribution learned by CSIvA, assigns equal probability
to each graph in the Markov equivalence class of G∗.

Our arguments of Example 1 are valid for all learning
methods that approximate the conditional distribution over
the space of graphs given the input data (Ke et al., 2022;
Lopez-Paz et al., 2015; Li et al., 2020; Lippe et al., 2022;
Lorch et al., 2022), and suggest that these algorithms are at
most informative about the equivalence class of the causal
graph underlying the observations. However, the available
empirical evidence does not seem to highlight these
limitations, as in practice these methods can infer the true
causal DAG on several synthetic benchmarks. Thus, further

investigation is necessary if we want to rely on their output
in any meaningful sense. In this work, we analyze these
”black-box” approaches through the lens of established
theory of causal discovery from observational data (causal
inference often lacks experimental data, which we do not
consider). We study in detail the CSIvA architecture (Ke
et al., 2022) (see Appendix A), a variation of the transformer
neural network (Vaswani et al., 2017) for the supervised
learning of algorithms for amortized causal discovery. This
model is optimized via maximum likelihood estimation,
i.e. finding Θ that minimizes −EG,D[ln p̂(G|D; Θ)], where
p̂(G|D; Θ) is the conditional distribution of a graph G given
a dataset D parametrized by Θ. We limit the analysis to
CSIvA as it is a simple yet competitive end-to-end approach
to learning causal models. While this is clearly a limitation
of the paper, our theoretical and empirical conclusions
exemplify both the role of theoretical identifiability in
modern approaches and the new opportunities they provide.
Additionally, it fits well within a line of works arguing that
specifically transformers can learn causal concepts (Jin et al.,
2024; Zhang et al., 2024; Scetbon et al., 2024) and identify
different assumptions in context (Gupta et al., 2023).

3. Experimental results through the lens of
theory

In this section, we present a comprehensive analysis of
causal discovery with transformers and its relation to the the-
oretical boundaries of causal discovery from observational
data. We show that suitable assumptions must be encoded
in the training distribution to ensure the identifiability of
the test data, and we additionally study the effectiveness of
training on mixtures of causal models to overcome these
limitations, improving generalization abilities.

3.1. Experimental design

We concentrate our research on causal models of two
variables, causally related according to one of the two
graphs X → Y , Y → X . Despite this being a limitation,
bivariate models offer a right and non-trivial ground with
a well-known theory of causality inference (Hoyer et al.,
2008; Zhang & Hyvärinen, 2009; Peters et al., 2014), that
is also amenable to manipulation.

Datasets. Unless otherwise specified, in our experiments
we train CSIvA on a sample of 15000 synthetically gener-
ated datasets, consisting of 1500 i.i.d. observations. Each
dataset is generated according to a single class of SCMs, de-
fined by the mechanism type and the noise terms distribution.
The coefficients of the linear mechanisms are sampled in
the range [−3,−0.5] ∪ [0.5, 3], removing small coefficients
to avoid close-to-unfaithful effects (Uhler et al., 2012). Non-
linear mechanisms are parametrized according to a neural
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(c) PNL1

Figure 1: In-distribution generalization of CSIvA trained and tested on data generated according to the same structural causal models,
fixing mechanisms, and noise distributions between training and testing). As baselines for comparison, we use DirectLiNGAM on linear
SCMs and NoGAM on nonlinear ANM (we use their causal-learn and dodiscover implementations). CSIvA performance is clearly
non-trivial and generalizing well.

network with random weights, a strategy commonly adopted
in the literature of causal discovery (Ke et al., 2022; Mon-
tagna et al., 2023a). The post-nonlinearity of the PNL model
consists of a simple map z 7→ z3. Noise terms are sampled
from common distributions and a randomly generated den-
sity that we call mlp, previously adopted in Montagna et al.
(2023a), defined by a standard Gaussian transformed by a
multilayer perceptron (MLP) (Appendix B.2). We name
these datasets mechanism-noise to refer to their underlying
causal model. For example, data sampled from a nonlinear
ANM with Gaussian noise are named nonlinear-gaussian.
All data are standardized by their empirical variance.

Metric and error bars. As our metric we use the
structural Hamming distance (SHD), which is the number
of edge removals, insertions or flips to transform one graph
to another. In this context, correct inference corresponds
to SHD = 0, and an incorrect prediction gives SHD = 1.
Each architecture we analyze in the experiments is trained
3 times, with different parameter initialization and training
samples: the SHD presented in the plots is the average of
each of the 3 models on 1500 distinct test datasets of 1500
points each, and the error bars are 95% confidence intervals.

Next, we start investigating how well CSIvA generalizes on
distributions unseen during training.

3.2. Warm up: is CSIvA capable of in and
out-of-distribution generalization?

In-distribution generalization. First, we investigate the
generalization of CSIvA on datasets sampled from the struc-
tural casual model that generates the train distribution, with

mechanisms and noise distributions fixed between training
and testing. We call this in-distribution generalization.
As a benchmark, we present the performance of several
state-of-the-art approaches from the literature on causal
discovery: we consider the DirectLiNGAM, and NoGAM
algorithms (Shimizu et al., 2011; Montagna et al., 2023c),
respectively designed for the inference on LiNGAM and
nonlinear ANM generated data1. The results of Figure 1
show that CSIvA can properly generalize to unseen samples
from the training distribution: the majority of the trained
models present SHD close to zero and comparable to the
relative benchmark algorithm.

Out-of-distribution generalization. In practice, we
generally do not know the SCM defining the test distribu-
tion, so we are interested in CSIvA’s ability to generalize
to data sampled from a class of causal models that is
unobserved during training. We call this out-of-distribution
generalization (OOD). We study OOD generalization to
different noise terms, analyzing the network performance
on datasets generated from causal models where the mech-
anisms are fixed with respect to the training, while the noise
distribution varies (e.g., given linear-mlp training samples,
testing occurs on linear-uniform data). Orthogonally

1The causal-learn implementation of the PNL algorithm could
not perform better than random on our synthetic post-nonlinear
data, and we observed that this was due to the sensitivity of the
algorithm to the variance scale. So we report the plot of Figure
1c without benchmark comparison. We remark that the point
of this experiment is not to make any claims on CSIvA being
state-of-the-art but to validate that the performance we obtain in
our re-implementation is non-trivial. This is clear for PNL, even
without comparison.
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Figure 2: Out-of-distribution generalisation. We train three CSIvA models on data sampled from SCMs with linear, nonlinear additive,
and post-nonlinear mechanisms; and noise fixed mlp noise distribution. In Figure (a) we test across different noise distributions, with test
mechanisms fixed from training. In Figure (b) we test each network on different mechanisms and fixed mlp noise. CSIvA struggles to
generalize to unseen causal mechanisms and often displays degraded performance over new noise distributions.

to these experiments, we empirically validate CSIvA’s
OOD generalization over different mechanism types
(linear, nonlinear, post-nonlinear), while leaving the noise
distribution (mlp) fixed across test and training. In Figure
2a, we observe that CSIvA cannot generalize across the
different mechanisms, as the SHD of a network tested on
unseen causal mechanisms approximates that of the random
baseline. Further, Figure 2b shows that out-of-distribution
generalization across noise terms does not work reliably,
and it is hard to predict when it might occur.

Implications. CSIvA generalizes well to test data
generated by the same class of SCMs used for training, in
line with the findings in Ke et al. (2022), which validates
our implementation and training procedure. However, it
struggles when the test data are out-of-distribution, not
generated by causal models with the same mechanisms and
noise terms it was trained on. While training on a wider
class of SCMs might overcome this limitation, it requires
caution. The identifiability of causal graphs indeed results
from the interplay between the data-generating mechanisms
and noise distribution. However, as we argue in our
Example 1, the class of causal models that a supervised
learning algorithm can identify is generally not clear. In
what follows, we investigate this point and its implications
for CSIvA, showing that the identifiability of the test
samples can be ensured by imposing suitable assumptions
on the class of SCMs generating the training distribution.

3.3. How does CSIvA relate to identifiability theory for
causal graphs?

The CSIvA algorithm does not make structural assumptions
about the causal model underlying the input data. This
implies that the output of this method is unclear: as CSIvA
targets the conditional distribution p(·|D) over the space
of graphs, in the absence of restrictions on the functional

mechanisms and the distribution of the noise terms, the
causal graph X → Y is indistinguishable from Y → X ,
as they are both equally likely to underlie the joint density
pX,Y generating the data. As we discuss in Example 1,
the graphical output of the trained architecture could at
most identify the equivalence class of the true causal graph.
Yet, our experiments of Section 3.2 show that CSIvA
is capable of good in-distribution generalization, often
inferring the correct DAG at test time. We explain this
seeming contradiction with the following hypothesis, which
motivates the analysis in the remainder of this section.

Hypothesis 1. The class of structural causal models that
can be identified by CSIvA is defined by the class of struc-
tural causal models underlying the generation of the train-
ing data.

To support and clarify our statement, we present the
following example, adapted from Hoyer et al. (2008).

Example 2. Consider the causal model Y = f(X) + N,
where f(X) = −X and pX , pN are Gumbel densities
pX(x) = exp(−x − exp(−x)) and pN (n) = exp(−n −
exp(−n)). This model satisfies the assumptions of the
LiNGAM, so it is identifiable, in the sense that a backward
linear model with the same distribution does not exist. How-
ever, in this special case, we can build a backward nonlinear
additive noise model X = g(Y )+Ñ with independent noise
terms: taking pY (y) = exp(−y−2 log(1+exp(−y))) to be
the density of a logistic distribution, pÑ (ñ) = exp(−2ñ−
exp(−ñ)) and g(y) = log(1+exp(−y)); we see that pX,Y

can factorize according to two opposite causal directions, as
pX,Y (x, y) = pN (y− f(x))pX(x) = pÑ (x− g(y))pY (y).
Given a dataset D of observations from the forward lin-
ear model, causal discovery methods like DirectLiNGAM
(Shimizu et al., 2011) can provably identify the correct
causal direction X → Y , assuming that sufficient samples
are provided. Instead, the behavior of CSIvA seems hard to
predict: given that the network approximates the conditional

5
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(b) Linear Gaussian test data

Figure 3: Experiments on identifiability theory. In Figure (a) we test the performance on linear-Gaussian data. Models are trained with
different ratios of samples from linear and nonlinear SCMs with Gaussian noise. The validation results showcase that the networks were
trained successfully. Figure (b) shows the SHD of models trained on different ratios of linear and nonlinear invertible data of Example 2.
CSIvA behaves according to identifiability theory, failing to predict on linear Gaussian models and invertible data (50:50 ratio).

distribution p(·|D) over the possible graphs, for D with ar-
bitrary many samples we have p(X → Y |D) = p(Y →
X|D) = 0.5. On the other hand, given the prior knowledge
that the data-generating SCM is a linear non-gaussian ad-
ditive noise model, we have p(X → Y |D,LiNGAM) = 1,
because the LiNGAM is identifiable. In this sense, the
class of structural causal models that CSIvA correctly infers
appears to be determined by the structural causal models
underlying the generation of the training data. Under our
Hypothesis 1, training CSIvA exclusively on LiNGAM-
generated data is equivalent to learning the distribution
p(·|D,LiNGAM), such that the network should be able to
identify the forward linear model, whereas it could only
infer the equivalence class of the causal graph if its train-
ing datasets include observations from a nonlinear additive
noise model.

The empirical results of Figure 3a show that CSIvA behaves
according to our hypothesis: when training exclusively
occurs on datasets {Di,→}i generated by the forward
linear-gumbel model of Example 2, the network can
identify the causal direction of test data generated according
to the same SCM. Similarly, the transformer trained on
datasets {Di,←}i from the backward nonlinear model of
the example can generalize to test data coming from the
same distribution. According to our claim, instead, the
network that is trained on the union of the training samples
{Di,→}i∪{Di,←}i from the forward and backward models
(50:50 ratio in Figure 3a) displays the same test SHD
(around 0.5) as a random classifier assigning the causal
direction with equal probability.

Further, we investigate CSIvA’s relation with known iden-
tifiability theory by training and testing the architecture on
data from a linear Gaussian model, which is well-known to
be unidentifiable. Not surprisingly, the results of Figure 3b
show that none of the algorithms that we learn can infer the
causal order of linear Gaussian models with test SHD any

better than a random baseline.

Implications. Our experiments show that CSIvA learns al-
gorithms that closely follow identifiability theory for causal
discovery. In particular, while the method itself does not
require explicit assumptions on the data-generating process,
the chosen training data ultimately determines the class of
causal models identifiable during inference. Notably, pre-
vious work has argued that supervised learning approaches
in causal discovery would help with ”dealing with complex
data-generating processes and greatly reduce the need of
explicitly crafting identifiability conditions a-priori”, Lopez-
Paz et al. (2015). In the case of CSIvA, this expectation
does not appear to be fulfilled, as the assumptions still need
to be encoded explicitly in the training data. However, this
observation opens two new important questions: (1) Can
we train a single network to encompass multiple (or even
all) identifiable causal structures? (2) How much ambiguity
might exist between these identifiable models?

3.4. A low-dimensions argument in favor of learning
from multiple causal models

Example 2 of the previous section shows that elements
of distinct classes of identifiable structural causal models,
such as LiNGAM and nonlinear ANM, may become non-
identifiable when we consider their union. In this section, we
show that in the class of post-additive noise models given
by equation (2) (obtained as the union of the LiNGAM,
the nonlinear ANM, and the post-nonlinear model), the set
of distributions that is non-identifiable is negligible. Our
proposition extends the results of Hoyer et al. (2008), which
are limited to the case of linear and nonlinear additive noise
models, and Zhang & Hyvärinen (2009), which provides
the conditions of identifiability of the post-ANM without
bounding the set of non-identifiable distributions.

Let X,Y be a pair of random variables generated according
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(c) PNL test data

Figure 4: Mixture of causal mechanisms. We train four models on samples from structural casual models with different mechanism types.
We compare their test SHD (the lower, the better) against networks trained on datasets generated according to a single type of mechanism.
The dashed line indicates the test SHD of a model trained on samples with the same mechanisms as test SCM. Training on multiple causal
models with different mechanisms (mixed bars) always improves performance compared to training on single SCMs.

to the causal direction X → Y and the post-additive noise
model structural equation:

Y = f2(f1(X) +NY ), (5)

where NY and X are independent random variables, and
f2 is invertible. If the SCM is non-identifiable, the data-
generating process can be described by a backward model
with the structural equation:

X = g2(g1(Y ) +NX), (6)

NX independent from Y , and g2 invertible. We introduce
the random variables X̃, Ỹ , such that the forward and back-
ward equations can be rewritten as

Y = f2(Ỹ ), Ỹ := f1(X) +NY ,

X = g2(X̃), X̃ := g1(Y ) +NX .

We note that this implies that the following invertible addi-
tive noise models on X̃, Ỹ hold:

Ỹ = hY (X̃) +NY , hY := f1 ◦ g2, (7)

X̃ = hX(Ỹ ) +NX , hX := g1 ◦ f2. (8)

Proposition 3.1 (Adapted from Hoyer et al. (2008)).
Let pNY

, hX , hY be fixed, and define νY := log pNY
,

ξ := log pX̃ . Suppose that pNY
and pX̃ are strictly positive

densities, and that νY , ξ, f1, f2, g1, and g2 are three times
differentiable. Further, assume that for a fixed pair hY , νY
exists ỹ ∈ R s.t. ν′′Y (ỹ − hY (x̃))h

′
Y (x̃) ̸= 0 is satisfied for

all but a countable set of points x̃ ∈ R. Then, the set of all
densities pX̃ of X̃ such that both equations (5) and (6) are
satisfied is contained in a 2-dimensional space.

Implications. Our result is closely related to Theorem
1 of Hoyer et al. (2008), which we simply generalize to
the post-ANM. Intuitively, it says that the space of all con-
tinuous distributions such that the bivariate post-ANM is

non-identifiable is contained in a 2-dimensional space. As
the space of continuous distributions of random variables
is infinite-dimensional, we conclude that the post-ANM is
generally identifiable, which suggests that the setting of Ex-
ample 2 is rather artificial. Our results provide a theoretical
ground for training causal discovery algorithms on datasets
generated from multiple identifiable SCMs. This is particu-
larly appealing in the case of CSIvA, given the poor OOD
generalization observed in our experiments of Section 3.2.

3.5. Can we train CSIvA on multiple causal models for
better generalization?

In this section, we investigate the benefits of training over
multiple causal models, i.e. on samples generated by a
combination of classes of identifiable SCMs characterized
by different mechanisms and noise terms distribution. Our
motivation is as follows: given that our empirical evidence
shows that CSIvA is capable of in-distribution generaliza-
tion, whereas dramatically degrades the performance when
testing occurs out-of-distribution, it is thus desirable to in-
crease the class of causal models represented in the train-
ing datasets. We separately study the effects of training
over multiple mechanisms and multiple noise distributions
and compare the testing performance against architectures
trained on samples of a single SCM.

Mixture of causal mechanisms. We consider four net-
works optimized by training of CSIvA on datasets generated
from pairs (or triples) of distinct SCMs, with fixed mlp
noise and which differ in terms of their mechanisms type:
linear and nonlinear; nonlinear and post-nonlinear; linear
and post-nonlinear; linear, nonlinear and post-nonlinear.
The number of training datasets for each architecture is
fixed (15000) and equally split between the causal models
with different mechanism types. The results of Figure 4
show that the networks trained on mixtures of mechanisms
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(c) PNL test data

Figure 5: Mixture of noise distributions. We train three networks on samples from SCMs with different noise distributions and fixed
mechanism types: linear, nonlinear, and post-nonlinear. We present their test SHD (the lower, the better) on data from SCMs with the
mechanisms fixed with respect to training, and noise terms changing between each dataset. Training on multiple causal models with differ-
ent noises (all distributions bars) always improves performance compared to training on single SCMs with fixed mlp noise (only mlp bars).

all present significantly better test SHD compared to
CSIvA models trained on a single mechanism type. We
find that learning on multiple SCMs improves the SHD
from ∼ 0.5 to ∼ 0.2 both on linear and nonlinear test data
(Figures 4a and 4b), and even better accuracy is achieved
on post-nonlinear samples, as shown in Figure 4c.

Mixture of noise distributions. Next, we analyze the
test performance of three CSIvA networks optimized on
samples from structural causal models that have different
distributions for their noise terms, while keeping the
mechanism types fixed. Figure 5 shows that training over
different noises (beta, gamma, gumbel, exponential, mlp,
uniform) always results in a network that is agnostic with
respect to the noise distributions of the SCM generating
the test samples, always achieving SHD < 0.1, with the
exception of datasets with mlp error terms (0.2 average
SHD on nonlinear and pnl data).

Implications. We have shown that learning on mixtures
of SCMs with different noise term distributions and mecha-
nism types leads to models generalizing to a much broader
class of structural causal models during testing. Hence,
combining datasets generated from multiple models looks
like a promising framework to overcome the limited out-
of-distribution generalization abilities of CSIvA observed
in Section 3.2. However, it is easier to incorporate prior
assumptions on the class of causal mechanisms (linear, non-
linear, post-non-linear) compared to the noise distributions
(which are potentially infinite). This introduces a trade-
off between amortized inference and classical methods for
causal discovery: for example, RESIT, NoGAM, and CAM
(Peters et al., 2014; Montagna et al., 2023c; Bühlmann et al.,
2014) algorithms require no assumptions on the noise type,

but only work for a limited class of mechanisms (nonlinear).

4. Conclusion
In this work, we investigate the interplay between identifia-
bility theory and supervised learning for amortized inference
of causal graphs, using CSIvA as the ground of our study.
Consistent with classical algorithms, we demonstrate that
good performance can be achieved if (i) we have a good
prior on the structural causal model generating the test data
(ii) the setting is identifiable. In particular, prior knowledge
of the test distribution is encoded in the training data in
the form of constraints on the structural causal model un-
derlying their generation. With these results, we highlight
the need for identifiability theory in modern learning-based
approaches to causality, while past works have mostly disre-
garded this connection. Further, our findings provide the the-
oretical ground for training on observations sampled from
multiple classes of identifiable SCMs, a strategy that im-
proves test generalization to a broad class of causal models.
Finally, we highlight an interesting new trade-off regarding
identifiability: traditional methods like LiNGAM, RESIT,
and PNL require strong restrictions on the structural mecha-
nisms underlying the data generation (linear, nonlinear or
post-nonlinear) while generally being agnostic relative to
the noise terms distribution. Training on mixtures of causal
models instead offers an alternative that is less reliant on
assumptions on the mechanisms, while incorporating knowl-
edge about all possible noise distributions in the training
data is practically impossible to achieve. We leave it to
future work to reproduce our analysis on a wider class of ar-
chitectures, as well as extending our study to interventional
data with more than two nodes.
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A. Learning to induce: causal discovery with transformers
A.1. A supervised learning approach to causal discovery

First, we describe the training procedure for the CSIvA architecture, which aims to learn the distribution of causal graphs
conditioned on observational and/or interventional datasets. We omit interventional datasets from the discussion as they are
not of interest to our work. Training data are generated from the joint distribution pG,D between a graph G and a dataset D.
First, we sample a set of directed acyclic graphs {Gi}ni=1 with nodes X1, . . . , Xd, from a distribution pG . Then, for each
graph we sample a dataset of m observations of the graph nodes Di = {xj

1, . . . , x
j
d}mj=1, i = 1, . . . , n. Hence, we build a

training dataset {Gi,Di}ni=1.

The CSIvA model defines a distribution p̂G|D(·; Θ) of graphs conditioned on the observational data and parametrized by Θ.
Given an invertible map G 7→ A from a graph to its binary adjacency matrix representation of d× d entries (where Aij = 1
iff Xi → Xj in G), we consider an equivalent estimated distribution p̂A|D(·; Θ), which has the following autoregressive
form:

p̂A,D(A|D; Θ) =

d2∏
l=1

σ(Al; ρ = fΘ(A1, . . . , Al−1,D)),

where σ(·; ρ) is a Bernoulli distribution parametrized by ρ. ρ itself is a function of fΘ defined by the encoder-decoder
transformer architecture, taking as input previous elements of the matrix A (here represented as a vector of d2 entries)
and the dataset D. Θ is optimized via maximum likelihood estimation, i.e. Θ∗ = argminΘ −EG,D[ln p̂(G|D; Θ)], which
corresponds to the usual cross-entropy loss for the Bernoulli distribution. Training is achieved using stochastic gradient
descent, in which each gradient update is performed using a pair (Di, Ai), i = 1 . . . , d. In the infinite sample limit, we have
p̂G|D(·; Θ∗) = pG|D(·), while in the finite-capacity case, it is only an approximation of the target distribution.

A.2. CSIvA architecture

In this section, we summarize the architecture of CSIvA, a transformer neural network that can learn a map from data to
causally interpreted graphs, under supervised training.

Transformer neural network. Transformers (Vaswani et al., 2017) are a popular neural network architecture for modeling
structured, sequential data data. They consist of an encoder, a stack of layers that learns a representation of each element in
the input sequence based on its relation with all the other sequence’s elements, through the mechanism of self-attention,
and a decoder, which maps the learned representation to the target of interest. Note that data for causal discovery are not
sequential in their nature, which motivates the adaptations introduced by Ke et al. (2022) in their CSIvA architecture.

CSIvA embeddings. Each element xj
i of an input dataset is embedded into a vector of dimensionality E. Half of this

vector is allocated to embed the value xj
i itself, while the other half is allocated to embed the unique identity for the node Xi.

We use a node-specific embedding because the values of each node may have very different interpretations and meanings.
The node identity embedding is obtained using a standard 1D transformer positional embedding over node indices. The
value embedding is obtained by passing xj

i , through a multi-layer perceptron (MLP).

CSIvA alternating attention. Similarly to the transformer’s encoder, CSIvA stacks a number of identical layers, per-
forming self-attention followed by a nonlinear mapping, most commonly an MLP layer. The main difference relative to
the standard encoder is in the implementation of the self-attention layer: as transformers are in their nature suitable for the
representation of sequences, given an input sample of D elements, self-attention is usually run across all elements of the
sequence. However, data for causal discovery are tabular, rather than sequential: one option would be to unravel the n× d
matrix of the data, where n is the number of observations and d the number of variables, into a vector of n · d elements, and
let this be the input sequence of the encoder. CSIvA adopts a different strategy: the self-attention in each encoder layer
consists of alternate passes over the attribute and the sample dimensions, known as alternating attention (Kossen et al.,
2021). As a clarifying example, consider a dataset {(xi

1, x
i
2)}ni=1 of n i.i.d. samples from the joint distribution of the pair of

random variables X1, X2. For each layer of the encoder, in the first step (known as attention between attributes), attention
operates across all nodes of a single sample (xi

1, x
i
2) to encode the relationships between the two nodes. In the second

step (attention between samples), attention operates across all samples (x1
k, . . . , x

n
k ), k ∈ {1, 2} of a given node, to encode

information about the distribution of single node values.
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Hypeparameter Value

Hidden state dimension 64
Encoder transformer layers 8
Decoder transformer layers 8
Num. attention heads 8
Optimizer Adam
Learning rate 10−4

Samples per dataset (n) 1500
Num. training datasets 15000
Num. iterations < 150000
Batch size 5

Table 1: Hyperparameters for the training of the CSIvA models of the experiments in Section 3.

CSIvA encoder summary. The encoder produces a summary vector si with H elements for each node Xi, which captures
essential information about the node’s behavior and its interactions with other nodes. The summary representation is formed
independently for each node and involves combining information across the n samples. This is achieved with a method
often used with transformers that involves a weighted average based on how informative each sample is. The weighting is
obtained using the embeddings of a summary ”sample” n+ 1 to form queries, and embeddings of node’s samples {xj

i}nj=1

to provide keys and values, and then using standard key-value attention.

CSIvA decoder. The decoder uses the summary information from the encoder to generate a prediction of the adjacency
matrix A of the underlying G. It operates sequentially, at each step producing a binary output indicating the prediction Âi,j

of Ai,j , proceeding row by row. The decoder is an autoregressive transformer, meaning that each prediction Âi,j is obtained
based on all elements of A previously predicted, as well as the summary produced by the encoder. The method does not
enforce acyclicity, although Ke et al. (2022) shows that in cyclic outputs genereally don’t occur, in practice.

B. Training details
B.1. Hyperparameters

In Table 1 we detail the hyperparameters of the training of the network of the experiments. We define an iteration as a
gradient update over a batch of 5 datasets. Models are trained until convergence, using a patience of 5 (training until five
consecutive epochs without improvement) on the validation loss - this always occurs before the 25-th epoch (corresponding
to ≈ 150000 iterations). The batch size is limited to 5 due to memory constraints.

B.2. Synthetic data

In this section, we provide additional details on the synthetic data generation, which was performed with the causally2

Python library (Montagna et al., 2023a). Our data-generating framework follows that of Montagna et al. (2023a), an
extensive benchmark of causal discovery methods on different classes of SCMs.

Causal mechanisms. The nonlinear mechanisms of the PNL model and the nonlinear ANM model are generated by
a neural network with one hidden layer with 10 hidden units, with a parametric ReLU activation function. The network
weights are randomly sampled according to a standard Gaussian distribution. The linear mechanisms are generated by
sampling the regression coefficients in the range [−3,−0.5] ∪ [0.5, 3].

Distribution of the noise terms. We generated datasets from structural causal models with the following distribution of
the noise terms: Beta, Gamma, Gaussian (for nonlinear data), Gumbel, Exponential, and Uniform. Additionally, we define
the mlp distribution by nonlinear transformations of gaussian samples from a guassian distribution centered at zero and
with standard deviation σ uniformly sampled between 0.5 and 1. The nonlinear transformation is parametrized by a neural

2https://causally.readthedocs.io/en/latest/
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network with one hidden layer with 100 units, and sigmoid activation function. The weights of the network are uniformly
sampled in the range [−1.5, 1.5]. We additionally standardized the output of each mlp sample by the empirical variance
computed over all samples.

Data are standardized with their empirical variance, which removes the presence of shortcuts which could be learned by the
network, notably varsortability (Reisach et al., 2021) and score-sortability (Montagna et al., 2023b).

B.3. Computer resources

Our experiments were run on a local computing cluster, using any and all available GPUs (all NVIDIA). For replication
purposes, GTX 1080 Ti’s are entirely suitable, as the batch size was set to match their memory capacity, when working with
bivariate graphs. All jobs ran with 10GB of RAM and 4 CPU cores. The results presented in this paper were produced after
145 days of GPU time, of which 68 were on GTX 1080 Ti’s, 13 on RTX 2080 Ti’s, 11 on A10s, 19 on A40s, and 35 on RTX
3090s. Together with previous experiments, while developing our code and experimental design, we used 376 days of GPU
time (for reference, at a total cost of 492.14 Euros), similarly split across whichever GPUs were available at the time: 219
on GTX 1080 Ti’s, 38 on RTX 2080 Ti’s, 18 on A10s, 63 on RTX 3090s, 31 on A40s, and 6 on A100s.

C. Further experiments
We present our experimental results on one further question, to help clarify the results in the main text of the paper. Our aim
is to understand when to make tradeoffs between computational resources, and having models that have been trained on a
wider variety of SCMs. We compare training on multiple SCMs to single-SCM training, when all models see the same
amount of training data from each SCM type as a non-mixed model (i.e. a mixed network trains on 15, 000 linear datasets
and 15, 000 PNL datasets, instead of 15, 000 divided between the two SCM types).

In the main text of this paper, we compare neural networks trained on a mix of structural causal models (e.g. noise
distributions, or mechanism types), to models trained on a single mechanism-noise combination, where all models have
the same amount of training data, 15, 000 datasets. In mixed training, we split these evenly, so a ”lin, nl” model is trained
on 7, 500 datasets from linear SCMs, and 7, 500 from nonlinear SCMs. Our results in this framework are promising, and
show that for many combinations of SCM types, we can train one model instead of two, and achieve good progress, while
making a 50% savings on training costs. However, if our training budget is high/unlimited, we should also ask whether
there is a downside to mixed training - can we achieve the same performance as a model trained on a single SCM type?
Figure 6 shows good results in this direction - the models trained with the same number of datasets per SCM type as an
unmixed model had similar (or even better, for PNL data) performance as the un-mixed model trained on the same SCM
type as the test data. These mixed models are also significantly more useful than having 2 or 3 separate models per SCM
type, as they have good across-the-board performance. However, if we used the same computational resources to train 3
separate networks (one for each mechanism type) and wanted to use them for causal discovery on a dataset with unknown
assumptions, we would be left with the rather difficult task of deciding which model to trust.

D. Theoretical results and proofs
Before stating the proof of Proposition 3.1, we show under which condition the pair of random variables X,Y satisfies
the forward and backward models of equations (5), (6): this is relevant for our discussion, as the proof of Proposition 3.1
consists of showing that this condition is almost never satisfied.

Notation. We adopt the following notation: νX := log pNX
, νY := log pNY

, ξ := log pX̃ , η := log pỸ , and π :=
log pX̃,Ỹ .

Theorem D.1 (Theorem 1 of Zhang & Hyvärinen (2009)). Assume that X,Y satisfies both causal relations of equations
(5) and (6). Further, suppose that pNY

and pX̃ are positive densities on the support of NY and X̃ respectively, and that
νY , ξ, f1, f2, g1, and g2 are third order differentiable. Then, for each pair (x̃, ỹ) satisfying ν′′Y (ỹ − hY (x̃))hY (x̃) ̸= 0, the
following differential equation holds:

ξ′′′ = ξ′′
(
h′′Y
h′Y

− ν′′′Y h′Y
ν′′Y

)
+

ν′′′Y ν′Y h
′′
Y h
′
Y

ν′′Y
− ν′Y (h

′′
Y )

2

h′Y
− 2ν′′Y h

′′
Y h
′
Y + ν′Y h

′′′
Y ,
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(a) Linear test data
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(b) Nonlinear test data
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(c) PNL test data

Figure 6: Mixtures of causal mechanisms, with varying amounts of training data. We train eight models on samples from structural casual
models with different mechanisms. Four (in purple), were trained on 15, 000 samples for each SCM type (so the ”lin,nl” model saw
30, 000 samples in total, and the ”all” model saw 45, 000), and the other four (blue) are the same as in Figure 4, and were trained on
15, 000 samples in total, evenly split between the SCM types they were trained on. We compare their test SHD (the lower, the better)
against networks trained on datasets generated according to a single type of mechanism. The dashed line indicates the test SHD of a
model trained on samples with the same mechanisms as the test SCM. Training on multiple causal models with different mechanisms
(mixed bars) always improves performance compared to training on single SCMs.

and hX is constrained in the following way:

1

h′X
=

ξ′′ + ν′′Y (h
′
Y )

2 − ν′Y h
′′
Y

ν′′Y h
′
Y

, (9)

where the arguments of the functions have been left out for clarity.

Proof of Theorem D.1. We demonstrate separately the two statements of the theorem.

Part 1. Given that equations (5) and (6) hold, this implies that the forward and backward models on X̃, Ỹ of equations (7)
and (8) are also valid, namely that:

Ỹ = hY (X̃) +NY ,

X̃ = hX(Ỹ ) +NX .

These are the structural equations of two causal models, associated with the forward X̃ → Ỹ and backward Ỹ → X̃ graphs,
respectively. Applying the Markov factorization of the distribution according to the forward direction, we get:

pX̃,Ỹ (x̃, ỹ) = pỸ |X̃(ỹ|x̃)pX̃(x̃) = pNY
(ỹ − hY (x̃))pX̃(x̃),

which implies
π(x̃, ỹ) = νY (ỹ − hY (x̃)) + ξ(x̃), (10)

for any x̃, ỹ. Similarly, the Markov factorization on the backward model implies:

π(x̃, ỹ) = νX(x̃− hX(ỹ)) + η(ỹ). (11)

From (11), we have that:

∂2

∂x̃2
π(x̃, ỹ) = ν′′X(x̃− hX(ỹ))

∂2

∂x̃∂ỹ
π(x̃, ỹ) = −ν′′X(x̃− hX(ỹ))h′X(ỹ),

which implies
∂

∂x̃

(
∂2

∂x̃2π(x̃, ỹ)
∂2

∂x̃∂ỹπ(x̃, ỹ)

)
= 0. (12)
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Computing the same set of partial derivatives from (10), we find:

∂2

∂x̃2
π(x̃, ỹ) = ν′′Y (ỹ − hY (x̃))(h

′
Y (x̃))

2 − ν′Y (ỹ − hY (x̃))h
′′
Y (x̃) + ξ′′(x̃)

∂2

∂x̃∂ỹ
π(x̃, ỹ) = −ν′′Y (ỹ − hY (x̃))h

′
Y (x̃).

from which follows:

∂

∂x̃

(
∂2

∂x̃2π(x̃, ỹ)
∂2

∂x̃∂ỹπ(x̃, ỹ)

)
= −2h′′Y +

ν′Y h
′′′
Y

ν′′Y h
′
Y

− ξ′′′

ν′′Y h
′
Y

+
ν′′′Y ν′Y h

′′
Y

(ν′′Y )
2

− ν′Y (h
′′
Y )

2

ν′′Y (h
′
Y )

2
+

ξ′′ν′′′Y h′′Y
(ν′′Y )

2ν′′Y (h
′
Y )

2

= 0.

where we drop the input arguments for conciseness. The equality with 0 is given by the equality with (12). Manipulating the
above expression, the first claim follows.

Part 2. Next, we prove the constraint derived on hX . To do this, we exploit the fact that Ỹ is independent of NX , which
implies the following condition (Lin, 1997):

∂2

∂ỹ∂nx
log p(ỹ, nx) = 0, (13)

for any (ỹ, nx). According to equations (7), (8), we have that:

Ỹ = hY (X̃) +NY ,

NX = X̃ − hX(Ỹ ),

such that we can define an invertible map Φ : (ỹ, nx) 7→ (x̃, nY ). It is easy to show that the Jacobian of the transformation
has determinant |JΦ| = 1, such that

p(ỹ, nY ) = p(x̃, nY ),

where (x̃, nY ) = Φ−1(ỹ, nX). Thus, being X̃,NY independent random variables, we have that:

log p(ỹ, nX) = log p(x̃) + log p(nY ) = ξ(x̃) + νY (nY ).

Given that X̃ = hX(Ỹ ) +NX , we have that

∂2

∂ỹ∂ñX
log p(x̃) = ξ′′h′X ,

while NY = Ỹ − hY (X̃) implies

∂2

∂ỹ∂ñX
log p(nY ) = −ν′′Y h

′
Y + ν′′Y h

′
X(h′Y )

2 − ν′Y h
′
Xh′′Y ,

such that
log p(x̃, nY ) = ξ′′h′X +−ν′′Y h

′
Y + ν′′Y h

′
X(h′Y )

2 − ν′Y h
′
Xh′′Y ,

which must be equal to zero, being equal to the LHS of (13). Thus, we conclude that

1

h′X
=

ξ′′ + ν′′Y (h
′
Y )

2 − ν′Y h
′′
Y

ν′′Y h
′
Y

,

proving the claim.
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D.1. Proof of Proposition 3.1

Proof. Under the hypothesis that equations (5), (6) hold, i.e. when the data generating process satisfy both a forward and a
backward model, by Theorem D.1 we have that:

ξ′′′(x̃) = ξ′′(x̃)G(x̃, ỹ) +H(x̃, ỹ), (14)

where

G(x̃, ỹ) =

(
h′′Y
h′Y

− ν′′′Y h′Y
ν′′Y

)
,

H(x̃, ỹ) =
ν′′′Y ν′Y h

′′
Y h
′
Y

ν′′Y
− ν′Y (h

′′
Y )

2

h′Y
− 2ν′′Y h

′′
Y h
′
Y + ν′Y h

′′′
Y .

Define z := ξ′′′, such that the above equation can be written as z′(x̃) = z(x̃)G(x̃, ỹ) +H(x̃, ỹ). given that such function z
exists, it is given by:

z(x̃) = z(x̃0)e
∫ x̃
x̃0

G(t,y)dt
+

∫ x̃

x̃0

e
∫ x̃
t̂

G(t,y)dtH(t̂, y)dt̂. (15)

Let ỹ such that ν′′Y (ỹ − hY (x̃))h
′
Y (x̃) ̸= 0 holds for all but countable values of x̃. Then, z is determined by z(x̃0), as we

can extend equation (15) to all the remaining points. The set of all functions ξ satisfying the differential equation (14)
is a 3-dimensional affine space, as fixing ξ(x̃0), ξ

′′(x̃0), ξ
′′(x̃0) for some point x̃0 completely determines the solution ξ.

Moreover, given νY , hX , hY fixed, ξ′′ is specified by (9) of theorem D.1, which implies:

ξ′′ =
ν′′Y h

′
Y

h′X
+ ν′Y h

′′
Y − ν′′Y (h

′
Y )

2,

which confines ξ solutions of (14) to a 2-dimensional affine space.
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