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Abstract
Graph neural networks (GNNs) have become the
standard approach for performing machine learn-
ing on graphs. However, concerns have been
raised regarding their vulnerability to small ad-
versarial perturbations. Existing defense methods
suffer from high time complexity and can nega-
tively impact the model’s performance on clean
graphs. In this paper, we propose NoisyGCN, a
defense method that injects noise into the GCN ar-
chitecture. We derive a mathematical upper bound
linking GCN’s robustness to noise injection, es-
tablishing our method’s effectiveness. Through
empirical evaluations on the node classification
task, we demonstrate superior or comparable per-
formance to existing methods while minimizing
the added time complexity.

1. Introduction
In recent years, graphs have garnered significant attention
due to their natural occurrence in various fields, including so-
cial networks, chemo- and bio-informatics. The abundance
of graph-structured data has necessitated the development of
machine learning algorithms capable of operating on graphs.
One such powerful technique is the graph neural network
(GNN), which has emerged as a valuable tool for learning
representations of nodes and graphs. Many GNNs belong to
the family of Message Passing Neural Networks (MPNNs)
(Gilmer et al., 2017), such as Graph Isomorphism Networks
(GIN) (Xu et al., 2019b) and Graph Convolutional Networks
(GCN) (Kipf & Welling, 2017). GNNs have proven success-
ful in tackling numerous real-world problems. For example,
in the field of chemistry, considerable attention has been de-
voted to employing deep learning systems based on graphs
for drug screening and design, where molecules are repre-
sented as graphs (Kearnes et al., 2016). Furthermore, these
methods have demonstrated efficacy in predicting protein
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functions modeled as graphs (You et al., 2021) and session-
based recommendation systems (Wu et al., 2019b).

Recently, deep learning architectures, particularly in com-
puter vision related tasks, have been shown to give unreli-
able predictions when subject to small perturbations to the
input (Goodfellow et al., 2014). These perturbations, com-
monly referred to as Adversarial attacks, impose limitations
on the practicality of neural networks for real-world prob-
lems. Notably, numerous investigations (Dai et al., 2018a;
Zügner et al., 2018; Günnemann, 2022) have highlighted
that graph neural networks (GNNs) are also prone to such
adversarial attacks. By introducing slight structural or node
feature-based perturbations, an attacker can successfully
manipulate the model’s predictions, thus posing a substan-
tial threat to the reliability of GNNs. This vulnerability is
particularly concerning in safety-critical applications like
finance and healthcare. Consequently, it is imperative to
delve into the vulnerability of these models by investigating
and proposing new adversarial attacks and defenses. Numer-
ous studies have been dedicated to developing techniques
that mitigate the potential effects of perturbations and en-
hance the robustness of Message Passing Neural Networks
(MPNNs). These proposed methods encompass strategies
such as augmenting training data with adversarial exam-
ples and retraining the model (Feng et al., 2019), fortify-
ing the robustness of pre-trained GNNs (Zhang & Zitnik,
2020), and more recently introducing robustness certificates
(Schuchardt et al., 2021). While some of these defense
methods have exhibited success in countering adversarial
perturbations, they often entail a high level of complexity
due to their underlying architecture. In many cases, the
time complexity of these methods tends to increase heavily
with the graph’s size. Furthermore, a significant portion of
these approaches requires extensive adaptations to the inter-
nal architecture posing challenge to integrate into different
models.

Recently, there has been growing interest in utilizing adver-
sarial weight perturbation as a means to improve the gener-
alization capabilities of graph neural networks (GNNs) (Wu
et al., 2023). In line with this perspective, the present study
explores a defense strategy, denoted NoisyGCN, that lever-
ages randomization by introducing random noise within the
network architecture. We begin by establishing a mathemat-
ical formulation to the robustness of GNNs against adver-
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sarial attacks targeting both the structure and features of the
graphs. We afterwards theoretically analyze the effect of ran-
domization in enhancing the robustness of GNNs. We note
that while we will be focusing on the Graph Convolutional
Networks (GCN), we consider that our analysis is model ag-
nostic and can be applied to different architectures. Finally,
we empirically evaluate the proposed perturbation defense
for its effectiveness against various adversarial attack meth-
ods in comparison to other available defense approaches on
commonly used real-world benchmark datasets.

Our main contributions can be summarized in the following
points:

• We provide a mathematical formalization of adversarial
attacks on GNNs and propose our general framework
NoisyGCN for defending against structural perturba-
tions through noise injection.

• We derive an upper bound, from a theoretical point,
that demonstrates the effectiveness of our proposed
framework in enhancing the robustness of GCN-based
classifiers.

• We conduct extensive evaluations of our theoretical
findings on the node classification task using various
benchmark datasets. Our model is compared to several
state-of-the-art defense methods, and in the majority of
cases, our proposed framework demonstrates superior
or comparable performance while minimizing the time
complexity.

2. Related Work
In recent years, there has been significant interest in the
field of attacking machine learning models (Goodfellow
et al., 2014; Ren et al., 2020). While most research has
focused on image-based attacks, there has been a growing
body of work exploring attacks in discrete spaces, particu-
larly in the context of graphs. However, the discrete nature
of graphs poses unique challenges when applying attack
methods from other domains. Similar to attacks on images,
existing graph-based attack methods typically approach the
problem as a search task, aiming to discover the closest ad-
versarial perturbation to a given input graph. This approach
has led to the development of various attack strategies. For
example, Nettack (Zügner et al., 2018) introduced a tar-
geted attack method that perturbs both the graph structure
and node features using a greedy optimization algorithm.
Building upon this, Mettack (Zügner & Günnemann, 2019)
formulated the problem as a bi-level optimization task and
employed meta-gradients to solve it. Zhan & Pei (2021) ex-
panded this work by proposing a black-box gradient attack
algorithm to overcome several limitations of the original
work. Alternatively, Dai et al. (2018b) proposed the use of

Reinforcement Learning to solve the search problem and
generate adversarial attacks, offering a different perspective
on tackling the challenge.

From another perspective, given the limitations of the
aforementioned methods in terms of theoretical guarantees,
there has been a growing interest in exploring robustness
certificates (Zügner & Günnemann, 2019; Bojchevski &
Günnemann, 2019) as a promising direction to address ad-
versarial attacks by providing attack-independent guarantees
regarding the stability of model predictions. For instance,
(Bojchevski et al., 2020) introduced the use of random-
ized smoothing techniques to offer highly scalable model-
agnostic certificates for graphs. Their approach provides
a robustness guarantee that is independent of the attack
method employed. Furthermore, (Jin et al., 2020) proposed
robustness certificates specifically for GCN-based graph
classification in the presence of topological perturbations.
These certificates consider both local and global budgets,
enabling a comprehensive analysis of the model’s stability.

Recently, defending against adversarial attacks through the
injection of noise into the architecture has emerged as a
promising approach in the field of Computer Vision. Sev-
eral studies (Pinot et al., 2019; Liu et al., 2018; Rakin et al.,
2018) have showed that noise injection can enhance the
robustness of networks against adversarial perturbations.
In line with this, and in the context of GNNs, the work
(Wu et al., 2023) investigated the effect of injecting noise,
specifically adversarial weight perturbation, on improving
the generalization of models. The findings of this study
demonstrate that these perturbations effectively mitigate the
vanishing-gradient issue and lead to significant enhance-
ments in generalization performance. In our work, we ex-
tend upon these insights by considering the application of
noise injection schemes to enhance the robustness of graph
neural networks (GNNs) against adversarial attacks.

3. Preliminaries
Before continuing with our contribution, we begin by intro-
ducing notation and some fundamental concepts.

Notation and Problem Setup. Let G = (V,E) be a graph
where V is its set of vertices and E its set of edges. We will
denote by n = |V | and m = |E| the number of vertices and
number of edges, respectively. Let N (v) denote the set of
neighbors of a node v ∈ V , i. e., N (v) = {u : (v, u) ∈ E}.
The degree of a node is equal to its number of neighbors, i. e.,
equal to |N (v)| for a node v ∈ V . A graph is commonly rep-
resented by its adjacency matrix A ∈ Rn×n which encodes
edge information. The (i, j)-th element of the adjacency
matrix is equal to the weight of the edge between the i-th
and j-th node of the graph and a weight of 0 in case the edge
does not exist. In some settings, the nodes of a graph might
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be annotated with feature vectors. We use X ∈ Rn×K to
denote the node features where K is the feature dimension-
ality. The feature of the i-th node of the graph corresponds
to the i-th row of X. In a node classification setting, we
consider a graph G, represented by its adjacency matrix A
and its node attribute matrix X . Formally, given a set of
labeled VL ⊂ V , where nodes are assigned exactly one class
in C = {y1, y2, . . . , yc} ⊂ Y , the goal is to learn a function
fθ, which maps each node v ∈ V to exactly one of the c
classes in C while minimizing a classification loss (Cross
entropy for example).

GNNs. A GNN model consists of a series of neighbor-
hood aggregation layers which use the graph structure and
the nodes’ feature vectors from the previous layer to gener-
ate new representations for the nodes. Specifically, GNNs
update nodes’ feature vectors by aggregating local neigh-
borhood information. Suppose we have a GNN model that
contains T neighborhood aggregation layers. Let also h

(0)
v

denote the initial feature vector of node v, i. e., the row
of matrix X that corresponds to node v. At each iteration
(t > 0), the hidden state h

(t)
v of a node v is updated as

follows:

a(t)v = AGGREGATE(t)
({

h(t−1)
u : u ∈ N (v)

})
;

h(t)
v = COMBINE(t)

(
h(t−1)
v ,a(t)v

)
,

where AGGREGATE is a permutation invariant function
that maps the feature vectors of the neighbors of a node v
to an aggregated vector. This aggregated vector is passed
along with the previous representation of v (i. e., h(t−1)

v ) to
the COMBINE function which combines those two vectors
and produces the new representation of v.

4. Proposed Approach
In this section, we provide a mathematical formalization
of robustness specifically tailored for Graph Neural Net-
works (GNNs). Subsequently, we investigate the impact
of noise injection on the robustness of GNNs. Throughout
our analysis, without loss of generality, we will focus on
the semi-supervised node classification task as a represen-
tative scenario. Let us consider the following three metric
spaces, the graph space associated with the adjacency ma-
trices (A, ∥·∥A), the feature space associated with the node
feature attributes (X , ∥·∥X ) and the label space (Y, ∥·∥Y ).
We finally consider an underlying probability distribution
D defined on (A,X ,Y).

4.1. Graph Adversarial Attacks

Let’s consider a trained victim classifier f : (A,X ) → Y .
Let (A,X) ∈ (A,X ) be an input graph with its associ-
ated label vectors y ∈ Y , such that f(A,X) = y. The

objective of an adversarial attack is to generate a perturbed
graph, represented by the adjacency matrix Ã and the corre-
sponding features X̃ , which are only slightly different from
the original input (A,X), resulting in a predicted class for
(Ã, X̃) that differs from the predicted class for (A,X). The
effectiveness of the adversarial attack relies on defining a
similarity measure between the input graph and the adversar-
ially generated graph. We hence introduce a distance metric
that considers both the graph structure and its associated
features:

d([A,X], [Ã, X̃]) = minP∈Π{∥A− PÃPT ∥2 + ∥X − PX̃∥2}, (1)

with Π being the set of permutation matrices. It is impor-
tant to note that for graphs without attributed features, the
distance defined in Equation 1 corresponds to the widely
used graph edit distance. This distance metric measures the
similarity between two graphs by quantifying the minimum
number of edge modifications required to transform one
graph into another, while considering graph isomorphism.
Building on this distance, we formulate the adversarial task
as the search for a perturbed attributed graph (Ã, X̃) within
a defined budget ϵ, such that f(Ã, X̃) = ỹ ̸= y, while sat-
isfying d([A,X], [Ã, X̃]) < ϵ. Additionally, as the attacker
typically lacks access to the true labels, we consider an ad-
versarial graph attack successful when f(Ã, X̃) ̸= f(A,X).
From this perspective, we can define a quantity related to
the vulnerability of a GNN to adversarial attacks within a
certain budget ϵ as the following:

Advϵ[f ] = P(A,X)∼DA,X [(Ã, X̃) ∈ B([A,X]; ϵ) :

dY(f(Ã, X̃), f(A,X)) > 0],
(2)

with B(A,X; ϵ) = {(Ã, X̃) : d([A,X], [Ã, X̃]) < ϵ} for
any budget ϵ ≥ 0 and dY can be any defined distance in
the measurable output space Y . We can consider a GNN as
robust when its vulnerability, as formulated in 2 is upper-
bounded, we can consequently introduce the following ro-
bustness definition:

Definition 4.1. (Adversarial Robustness). Let d be a graph
distance on the measurable sets A,X . The graph-based
function f : (A,X ) → Y is said to be d − (ϵ, γ) robust if
Advϵ[f ] ≤ γ.

We note that in the previous definition, we consider that
a perturbed graph for which an attacker successfully flip
one node’s prediction is considered as a valid attack. In
other setting that are less sensitive and in which the previ-
ous assumption doesn’t hold, this definition can be easily
generalized by adding an extra hyper-parameter to control
the confidence level.

4.2. Effect of Noise Injection

In our study, we want to investigate the effect of noise
addition in term of defending against adversarial attacks.
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Specifically, we consider injecting noise sampled from a
predefined distribution. We will hence, and similar to (Pinot
et al., 2019), consider that our victim model f is a proba-
bilistic mapping where an output is obtained by sampling
from the mapping. Accordingly, we will consider the Kull-
back–Leibler (KL) divergence in our robustness quantifica-
tion as introduced in Equation 2.

Our analysis will focus on the widely used Graph Convo-
lutional Neural Network (GCN) (Kipf & Welling, 2017)
within the broader context of GNNs. As introduced in Sec-
tion 3, we can write an iteration of the iterative process of
GCN as follows:

Φ(ℓ) = ϕ(ℓ)(ÃΦ(ℓ−1)W (ℓ)), (3)

where Φ(ℓ) represents the hidden state in the ℓ-th GCN
layer with Φ(0) corresponding to the initial node features
X ∈ Rn×K , W (ℓ) ∈ Rp×e is the weight matrix in the
ℓ-th layer, e is the embedding dimension and ϕ(ℓ) is a 1-
Lipschitz continuous non-linear activation function. More-
over, Ã ∈ Rn×n is the normalized adjacency matrix
Ã = D−1/2AD−1/2.

In the remaining of our analysis, we consider our victim
model to be a GCN-based classifier utilizing 1-Lipschitz
continuous activation functions, such as the Hyperbolic Tan-
gent. Our focus will be on the injection of noise sampled
from a centered Gaussian distribution (N (0, I)) with a scal-
ing parameter controlling its covariance matrix. The work
(Wu et al., 2023) has shown that injecting noise at each layer
can lead to a collapse in the model’s generalization. As a
result, we will restrict the introduction of noise to specific
layers. Under these assumptions, our victim model can be
expressed as f(.) = Φl ◦ . . . ◦ Φi+1(Φi ◦ . . . ◦ Φ1(.) + T ),
where T represents the Gaussian random variable.

Theorem 4.2. Let f denote a graph-based function com-
posed of 2 GCN layers, where the weight matrix of the i-th
layer is denoted by W (i). We assume that f is based on
1-Lipschitz continuous activation functions. We consider
injecting noise drawn from a centered Gaussian with a scal-
ing parameter β. When subject to structural perturbations
of the input graph (A,X), with a budget ϵ, the classifier f
is d-(ϵ, γ) robust (with respect to Definition 4.1) with:

γ = 2(∥W (2)∥∥W (1)∥∥X∥ϵ)2
β .

Theorem 4.2 formulate an upper bound on GCN’s robust-
ness and establishes the connection between noise injection
and defending against adversarial attacks based on structural
perturbations with a predefined neighborhood and budget ϵ.
A tighter upper bound intuitively signifies a higher level of
robustness in the targeted victim model. Therefore, based
on the results derived from the theorem, controlling the in-
jected noise using the β parameter can effectively enhance
the model’s robustness. However, it is important to exercise

caution when increasing the injected noise as it can poten-
tially compromise the model’s performance. Hence, striking
a balance between defending against adversarial attacks and
preserving the model’s clean accuracy becomes crucial. Fur-
thermore, although the previous theorem primarily focuses
on a 2-layer GCN-based graph classifier known for its bench-
mark accuracy across diverse datasets, the results can be
easily extended to graph classifiers with L layers. The proof
of Theorem 4.2 is provided in Appendix A.

4.3. On the Complexity and Advantages of our
Approach

Many existing defense methods suffer from a significant in-
crease in complexity as the input graph size grows, making
them challenging to apply in practical scenarios. For exam-
ple, GNNGuard (Zhang & Zitnik, 2020) involves computing
neighbor importance estimation, which has a complexity of
O(e× | E |), where e denotes the embedding dimension
and | E | represents the graph size. In contrast, our pro-
posed approach based on noise injection in the architecture
is advantageous due to its minimal complexity, requiring
only sampling from a distribution. Additionally, unlike
many existing methods, our approach does not compromise
the performance of the underlying GCN when applied to
clean, non-attacked graphs, as it will be demonstrated in our
experimental results.

5. Experimental Results
This section focuses on empirically validating our theoreti-
cal findings by evaluating the performance of the proposed
approach on real-world benchmarks. We begin by outlining
the experimental settings employed in our study, followed
by a comprehensive analysis and discussion of the obtained
results. Through our experimental evaluation, we aim to
address two key aspects: firstly, the effectiveness of our
method in defending against adversarial attacks, particularly
structural perturbations, and secondly, its capability to main-
tain the model’s accuracy and performance, specially when
tested on clean/non-attacked input graphs.

5.1. Experimental Setup

In our analysis, we focus on node classification where we
use the citation networks Cora, CiteSeer and PubMed (Sen
et al., 2008). Further information about the used datasets
and implementation details are provided in Appendix B.
For all the experiments, the baseline models consisted of a
2-layer GCN-based classifier combined with a Multi-Layer
Perception (MLP) as a readout. This choice aimed to en-
sure a fair evaluation of the models’ robustness within an
iso-architectural framework. For our proposed approach,
we have to chosen to inject noise after the first message
passing step. The experiments were conducted using the
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Table 1. Classification accuracy (± standard deviation) of the models on different benchmark node classification dataset before (“Clean”)
and after the attack application. The higher the accuracy (in %) the better the model. The best accuracy in each setting and each dataset is
typeset in bold.

Attack Dataset Budget GCN GNNGuard GCN-Jaccard RGCN GCN-SVD NoisyGCN

Mettack

Cora
Clean 82.2 ± 0.3 77.5 ± 0.7 80.8 ± 0.4 83.5 ± 0.3 63.2 ± 2.4 82.4 ± 0.5
Budget (5%) 79.2 ± 1.2 75.8 ± 0.6 77.9 ± 0.8 78.3 ± 0.6 61.3 ± 0.7 81.2 ± 0.7
Budget (10%) 73.2 ±1.1 74.7 ± 0.4 76.7 ± 0.7 70.7 ± 0.8 63.8 ± 1.8 74.4 ± 0.6

CiteSeer
Clean 71.8 ± 0.3 68.9 ± 1.5 71.2 ± 0.7 72.2 ± 0.3 63.7 ± 1.2 71.9 ± 0.2
Budget (5%) 69.4 ± 2.1 69.9 ± 1.1 70.3 ± 2.3 70.6 ± 0.7 63.9 ± 0.8 72.2 ± 0.6
Budget (10%) 67.5 ± 1.3 70.0 ± 1.5 67.2 ± 2.1 67.3 ± 0.4 65.0 ± 1.9 68.6 ± 0.3

PubMed
Clean 84.9 ± 0.4 84.5 ± 0.6 84.9 ± 0.5 85.2 ± 0.8 81.0 ± 0.6 84.9 ± 0.8
Budget (5%) 79.0 ± 0.2 84.2 ± 0.9 79.6 ± 0.3 81.1 ± 0.7 81.0 ± 0.2 81.8 ± 0.4
Budget (10%) 64.5 ± 1.2 84.1 ± 0.3 67.4 ± 1.1 65.0 ± 0.4 81.0 ± 0.2 73.3 ± 0.6

PGD

Cora
Clean 82.2 ± 0.3 77.5 ± 0.7 80.8 ± 0.4 83.5 ± 0.3 63.2 ± 2.4 82.4 ± 0.5
Budget (5%) 74.9 ± 0.8 71.0 ± 1.0 73.9 ± 0.8 75.8 ± 0.9 55.9 ± 0.6 76.6 ± 0.3
Budget (10%) 71.8 ± 1.2 69.9 ± 1.6 72.2 ± 1.4 72.4 ± 1.8 55.3 ± 0.9 73.4 ± 0.5

CiteSeer
Clean 71.8 ± 0.3 68.9 ± 1.5 71.2 ± 0.7 72.2 ± 0.3 63.7 ± 1.2 71.9 ± 0.2
Budget (5%) 61.8 ± 1.1 57.9 ± 2.8 62.9 ± 1.5 58.1 ± 2.2 51.7 ± 1.3 64.5 ± 1.2
Budget (10%) 60.5 ± 0.7 58.2 ± 3.8 61.3 ± 0.7 56.2 ± 0.8 50.5 ± 0.3 62.2 ± 1.0

PubMed
Clean 84.9 ± 0.4 84.5 ± 0.6 84.9 ± 0.5 85.2 ± 0.8 81.0 ± 0.6 84.9 ± 0.8
Budget (5%) 75.9 ± 0.8 75.3 ± 0.4 76.1 ± 0.7 78.5 ± 0.8 67.7 ± 1.5 76.2 ± 0.7
Budget (10%) 64.8 ± 0.6 70.7 ± 0.9 64.7 ± 1.2 65.6 ± 0.9 67.5 ± 1.7 65.2 ± 1.1

DICE

Cora
Clean 82.2 ± 0.3 77.5 ± 0.7 80.8 ± 0.4 83.5 ± 0.3 63.2 ± 2.4 82.4 ± 0.5
Budget (5%) 81.3 ± 0.8 76.4 ± 0.4 79.6 ± 0.6 81.9 ± 0.6 61.3 ± 1.3 82.5 ± 0.8
Budget (10%) 79.5 ± 0.9 76.6 ± 0.5 78.6 ± 0.8 80.0 ± 0.6 61.5 ± 1.5 80.5 ± 0.6

CiteSeer
Clean 71.8 ± 0.3 68.9 ± 1.5 71.2 ± 0.7 72.2 ± 0.3 63.7 ± 1.2 71.9 ± 0.2
Budget (5%) 69.9 ± 0.3 68.5 ± 1.6 70.9 ± 0.4 69.3 ± 0.5 65.4 ± 1.6 70.8 ± 0.3
Budget (10%) 68.2 ± 1.7 69.9 ± 1.5 69.9 ± 0.6 67.8 ± 1.1 65.1 ± 1.5 70.4 ± 0.8

PubMed
Clean 84.9 ± 0.4 84.5 ± 0.6 84.9 ± 0.5 85.2 ± 0.8 81.0 ± 0.6 84.9 ± 0.8
Budget (5%) 83.4 ± 0.6 84.0 ± 0.8 83.4 ± 0.7 83.8 ± 0.6 81.5 ± 0.8 83.6 ± 0.9
Budget (10%) 81.7 ± 1.1 83.6 ± 1.0 81.8 ± 0.5 82.4 ± 0.8 81.4 ± 0.5 82.1 ± 2.3

Adam optimizer (Kingma & Ba, 2014) and standardized hy-
perparameters, including a learning rate of 1e-2, 300 epochs,
and a hidden feature dimension of 16. To reduce the impact
of random initialization, we repeated each experiment 10
times and used the train/validation/test splits provided with
the datasets (Yang et al., 2016).

Attacks. We use three main global structural based adver-
sarial attacks: (i) We first consider the optimization-based
formulation of the adversarial task Mettack with the ”Meta-
Self” training strategy. (ii) We afterwards consider another
optimization based adversarial attack based on Proximal
Gradient Descent (PGD) (Xu et al., 2019a). (iii) We finally
consider DICE (Zügner & Günnemann, 2019). For all these
attacks, we tested and considered two perturbation budgets
∆ = 5% and ∆ = 10%.

Baseline Models. We additionally conducted a compre-

hensive empirical evaluation by comparing our proposed
NoisyGCN against five baseline defense algorithms that
focus on structural perturbations: GNN-Jaccard (Wu et al.,
2019a), RobustGCN (Zhu et al., 2019), GNN-SVD (En-
tezari et al., 2020), and GNNGuard (Zhang & Zitnik, 2020).

5.2. Experimental Results

Table 1 presents the average node classification accuracies
for the GCN, the GNNGUard, GCN-Jaccard, RGCN, GCN-
SVD and the proposed approach, NoisyGCN.

The empirical findings reveal that, in the absence of attacks,
the proposed approach demonstrates comparable accuracy
to the classical GCN, and in some cases, it even improves
the model’s generalization and performance, as studied by
prior research (Wu et al., 2023). Importantly, these results
affirm that our approach does not compromise the perfor-
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mance of the underlying network, addressing our second
research question. This is particularly significant as real-
world scenarios often involve uncertain knowledge regard-
ing potential malicious perturbations on the input graph.
Hence, it is crucial that an effective defense strategy does
not diminish the predictive capabilities of the model, while
simultaneously enhancing its robustness. From another per-
spective, the results indicate that our proposed approach,
NoisyGCN, performs on par with or even surpasses state-
of-the-art defense baselines in several instances. Notably,
it demonstrates greater efficiency when subjected to the
”DICE” attack framework. Moreover, we observe consis-
tent outperformance compared to GCN-SVD, GCN-Jaccard,
and RGCN, while also exhibiting competitive performance
against the highly performant GNNGuard. It is important
to highlight that despite similar performance to GNNGuard,
our approach offers significantly reduced complexity in term
of operation and time. The complete time analysis study is
provided in Appendix C.

6. Conclusion
In this study, we introduce NoisyGCN, a cost-effective
and highly effective defense method for Graph Neural Net-
works (GNNs). Through a theoretical analysis, we establish
a clear connection between noise injection in the victim
model’s architecture and improved robustness. Our pro-
posed method offers the key advantage of minimal added
complexity while delivering strong defense performance.
Experimental comparisons on diverse real-world datasets
demonstrate that NoisyGCN achieves similar or superior
performance compared to the standard GCN and existing de-
fense methods. While our focus was on GCN in this study,
our theoretical analysis can be extended to other GNNs
architectures, which we plan to explore in future work.
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A. Proof Of Theorem 4.2
Theorem Let f denote a graph-based function composed of 2 GCN layers, where the weight matrix of the i-th layer is
denoted by W (i). We assume that f is based on 1-Lipschitz continuous activation functions. We consider injecting noise
drawn from a centered Gaussian with a scaling parameter β. When subject to structural perturbations of the input graph
(A,X), with a budget ϵ, the classifier f is d-(ϵ, γ) robust (with respect to Definition 4.1) with:

γ = 2(∥W (2)∥∥W (1)∥∥X∥ϵ)2
β .

Proof: We consider f to be a 2-Layers GCN-based classifier with 1-Lipschitz continuous activation functions. Let A′ the
produced perturbed adjacency matrix. We consider injecting noise that is sampled from a Gaussian distribution N (0, I) with
a scaling parameter β. We start therefore by considering the general case of a centered Gaussian with a matrix parameter Σ.

Let’s consider the general case of KL divergence which is the Renyi Divergence with parameter λ. Our victim model can be
transformed into a probabilistic mapping using the Dirac distribution. Based on the general formula of the sum (convolution)
of two random variables, we have the following:

dR,λ(f(A,X), f(A′, X)) =
1

λ− 1
log

∫
Re

(pG ∗ δf(A,X))
λ(pG ∗ δf(A′,X))

(1−λ)dµ

=
1

λ− 1
log

∫
Re

e−1/2[λ(z−f(A,X))TΣ−1(z−f(A,X))+(1−λ)(z−f(A′,X))TΣ−1(z−f(A′,X))]

(2π)
n
2 | Σ | 12

=
λ− 1

2
[f(A,X)− f(A′, X)]T (Σ−1)[f(A,X)− f(A′, X)]

≤ λ

2
σmax(Σ

−1)∥f(A,X)− f(A′, X)∥2

From this result, we can deduce the KL divergence:

d(f(A,X), f(A′, X)) = lim
λ→1

dR,λ(f(A,X), f(A′, X)) (4)

=
1

2
σmax(Σ

−1)∥f(A,X)− f(A′, X)∥2 (5)

In what follows, we study the effect of input perturbation which is reflected by the quantity ∥f(A,X)− f(A′, X)∥ in the
previous result:

∥f(A,X), f(A′, X)∥ = ∥ϕ(2)(ÃΦ(1)(A,X)W (2))− ϕ(2)(Ã′Φ(1)(A′, X)W (2))∥
≤ ∥ÃΦ(1)(A,X)W (2) − Ã′Φ(1)(A′, X)W (2)∥
≤ ∥W (2)∥∥ÃΦ(1)(A,X)− ÃΦ(1)(A′, X) + ÃΦ(1)(A′, X)− Ã′Φ(1)(A′, X)∥
≤ ∥W (2)∥∥Ã[Φ(1)(A,X)− Φ(1)(A′, X)] + Φ(1)(A′, X)[Ã− Ã′]∥

We also have the following:

∥Φ(1)(A,X)− Φ(1)(A′, X)∥ = ∥ϕ(1)(ÃXW (1))− ϕ(1)(Ã′XW (1))∥
≤ ∥ÃXW (1) − Ã′XW (1)∥
≤ ∥W (1)∥∥X∥ϵ

From the previous result and using the triangular inequality, we have the following:

∥W (2)∥∥Ã[Φ(1)(A,X)− Φ(1)(A′, X)] + Φ(1)(A′, X)[Ã− Ã′]∥ ≤ ∥W (2)∥[∥W (1)∥∥X∥ϵ+ ∥W (1)∥∥X∥ϵ]
= 2∥W (2)∥∥W (1)∥∥X∥ϵ



Defending GCNs Through Noise Injection

We finally conclude that:

d(f(A,X), f(A′, X)) =
1

2β
∥f(A,X)− f(A′, X)∥2

=
2(∥W (2)∥∥W (1)∥∥X∥ϵ)2

β

B. Datasets and Implementation Details
Characteristics and information about the datasets utilized in the node classification part of the study are presented in Table
2. As outlined in the main paper, we conduct experiments the citation networks Cora, CiteSeer, and PubMed (Sen et al.,
2008). For these benchmarks, we adhere to the train/valid/test splits provided by the datasets.

Table 2. Statistics of the node classification datasets used in our experiments.

DATASET #FEATURES #NODES #EDGES #CLASSES

CORA 1433 2708 5208 7
CITESEER 3703 3327 4552 6
PUBMED 500 19717 44338 3

B.1. Implementation Details

Our implementation is built using the open-source library PyTorch Geometric (PyG) under the MIT license (Fey & Lenssen,
2019). We leveraged the publicly available implementation of the different benchmarks from their available reposito-
ries : From GNNGuard 1, for RGCN, GCN-Jaccard and GCN-SVD, we used the implementation from the DeepRobust
package. Note that we additionally utilized the PyTorch DeepRobust package2 to implement the adversarial attacks used in
this study. The experiments have been run on both a Tesla V100 GPU.

C. Time Complexity Analysis
Our proposed method NoisyGCN, based on noise injection, offers a clear advantage in term of its required complexity. It
only requires sampling from a pre-defined distribution during each forward pass, independent of the graph size. Therefore,
its complexity does not increase with the graph size, unlike other baselines. For example, GNNGuard, the state-of-the-art
defense method, involves computing neighbor importance estimation, which results in complexity that scales with the input
graph. We empirically validate this observation by comparing the training time complexity of each baseline.

Table 3. Mean training time analysis (in s) of the NoisyGCN in comparison to other baselines.

DATASET GNNGUARD GCN-JACCARD RGCN GCN-SVD NOISYGCN

CORA 14.19 1.56 0.73 0.47 0.52
CITESEER 16.65 1.18 0.68 0.46 0.48
PUBMED 695.31 10.24 12.18 3.65 0.89

The analysis of training time, as presented in Table 3, highlights the distinct time complexities observed between NoisyGCN
and the other baseline methods. Specifically, there is a notable disparity in training time complexity between NoisyGCN and
GNNGuard. While GCN-SVD exhibits a comparable time complexity to our approach, the superior defense capabilities of
NoisyGCN, as demonstrated in Table 1, differentiate it from GCN-SVD. Furthermore, the results obtained on the PubMed
dataset affirm the motivation outlined in our paper, illustrating that the majority of existing methods impose a complexity
burden when dealing with large graphs.

1https://github.com/mims-harvard/GNNGuard
2https://github.com/DSE-MSU/DeepRobust


