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ABSTRACT

While over-parameterized deep neural networks obtain prominent results on var-
ious machine learning tasks, their superfluous parameters usually make model
training and inference notoriously inefficient. Lottery Ticket Hypothesis (LTH)
addresses this issue from a novel perspective: it articulates that there always ex-
ist sparse and admirable subnetworks in a randomly initialized dense network,
which can be realized by an iterative pruning strategy. Dual Lottery Ticket Hy-
pothesis (DLTH) further investigates sparse network training from a complemen-
tary view. Concretely, it introduces a gradually increased regularization term to
transform a dense network to an ultra-light subnetwork without sacrificing learn-
ing capacity. After revisiting the success of LTH and DLTH, we unify these two
research lines by coupling the stability of iterative pruning and the excellent per-
formance of increased regularization, resulting in two new algorithms (UniLTH
and UniDLTH) for finding and transforming winning tickets, respectively. Unlike
either LTH without regularization or DLTH which applies regularization across
the training, our methods first train the network without any regularization force
until the model reaches a certain point (i.e., the validation loss does not decrease
for several epochs), and then employ increased regularization for information ex-
trusion and iteratively perform magnitude pruning till the end. We theoretically
prove that the early stopping mechanism acts analogously as regularization and
can help the optimization trajectory stop at a particularly better point in space than
regularization. This does not only prevent the parameters from being excessively
skewed to the training distribution (over-fitting), but also better stimulate the net-
work potential to obtain more powerful subnetworks. Extensive experiments show
the superiority of our methods in terms of accuracy and sparsity.

1 INTRODUCTION

Exactly as saying goes: you can’t have your cake and eat it – though over-parameterized deep neural
networks achieve encouraging performance over widespread machine learning tasks Zagoruyko &
Komodakis (2016); Arora et al. (2019); Devlin et al. (2018); Brown et al. (2020), they usually
suffer notoriously high computational costs and necessitate unaffordable storage resources Cheng
et al. (2017); Deng et al. (2020); Wang et al. (2019a). To alleviate this issue, a stream of pruning
approaches Han et al. (2015); Liu et al. (2017); He et al. (2017); Gale et al. (2019); Ding et al.
(2019) tries to uncover a sparse subnetwork that can retain the learning capacity of the original
dense network as much as possible. While these algorithms seek to reach a preferable trade-off
between performance and sparsity, they fall short of satisfying the joint optimization of both.

Recently, Lottery Ticket Hypothesis (LTH) has provided a novel perspective to investigate sparse
network training Frankle & Carbin (2018). It articulates that there consistently exist sparse and high-
performance subnetworks in a randomly initialized dense network, like winning tickets in a lottery
pool. To identify such admirable sparse subnetworks (i.e., winning tickets), LTH trains an over-
parameterized neural network from scratch and prunes its smallest-magnitude weights iteratively,
which is so called iterative pruning. This repeated pruning method, as opposed to one-shot pruning,
allows us to learn faster and achieve higher test accuracy at smaller network size. LTH innovatively
exposes the internal relationships between a randomly initialized network and its corresponding
subnetworks, inspiring a series of follow-ups to explore various iterative pruning and rewind criteria
for training light-weight networks Morcos et al. (2019); Maene et al. (2021); Chen et al. (2021);
Frankle et al. (2019; 2020); Ding et al. (2021); Ma et al. (2021); Chen et al. (2022).
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Figure 1: Illustration of LTH/DLTH and our UniLTH/UniDLTH. In (c), the blue/green solid contour
lines denote the contours of the training/validation negative log-likelihood. Our goal is to drew the
weights closer to ŵ. The black line indicates the training trajectory taken by SGD. Our algorithm
rewinds the training procedure (the yellow line) and add increased regularization (the purple line) to
move towards the validation set distribution when training reaches an early stopping threshold.

Though promising, LTH concentrates solely on identifying one sparse subnetwork by iterative prun-
ing, which is not universal to both practical usages and investigating the relationship between dense
networks and its subnetworks Bai et al. (2022). Hence, Bai et al. (2022) go from a complementary di-
rection to propose Dual Lottery Hypothesis (DLTH) which studies a randomly selected subnetwork
rather than a particular one. As a dual problem of LTH, it hypothesizes that a randomly selected sub-
network in a randomly initialized dense network can be turned into an appropriate condition with
excellent performance, analogy to transforming a random lottery ticket to a winning ticket. To val-
idate this, DLTH trains a dense network and conducts one-shot pruning with a simple yet effective
strategy – it identifies the sparse subnetwork by utilizing a gradually increased regularization term
throughout the training phase, which extrudes information from unimportant weights (which will be
pruned afterward) to target a sparse neural structure. Although this hypothesis does not provide any
theoretical proof on how much information extrusion we can achieve, it does provide a novel view
on harnessing regularization terms to link the dense network with hidden winning tickets.
As the key element to DLTH’s success, the regularization term realizes information extrusion from
the unimportant weights which will be masked (i.e., discarded), but may also become its undoing. In
a training process, the equilibrium of all network weights is usually determined by two forces: loss
gradient force and regularization gradient force. The latter one is generally maintained in a small
regime, as the excessive weight penalty will cause the network to collapse into a suboptimal local
minimum, corresponding to the ill-conditioned small weights LeCun et al. (2015). Using a regu-
larization term at the early training phase as DLTH does, may cripple the model performance since
it complicates the network optimization and misleads the finding of a reliable equilibrium. Mean-
while, regularization-based pruning approaches (e.g., DLTH) typically perform one-shot pruning,
which exacerbates the instability of sparse network training. Considering the efficacy of iterative
pruning in LTH, transforming random tickets into winning tickets iteratively is appealing as well.
In this paper, we aim at presenting a resilient and unified paradigm for searching winning tickets in a
dense network (LTH) or transforming random tickets to winning tickets (DLTH), leading to two new
pruning algorithms termed UniLTH and UniDLTH. As illustrated in Fig. 1(b), both UniLTH and
UniDLTH decouple the pruning task into two separate stages. At the first stage, the two algorithms
share an identical procedure – they do not set up any obstacle force (regularization) when training a
randomly initialized network. Once the validation loss does not decrease for several training cycles,
we cut off the training and rewind the network parameters to several epochs earlier. We demonstrate
that utilizing such an early stopping strategy can defeat the instability caused by regularization, thus
achieving similar or even better performance without compromising the learning potential.
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At the second stage, we integrate the iterative pruning with the increased regularization for searching
or transforming winning tickets. To be more specific, we alternately train the network with increased
regularization and perform pruning to tilt the network distribution towards the validation distribu-
tion until the network reaches the corresponding sparsity. The major difference between UniLTH
and UniDLTH is the weights to which we apply regularization (see Fig. 1(b)). UniLTH differen-
tiates the magnitudes of the weights by applying progressively increasing regularization on all the
weights, while UniDLTH applies L2 regularization only on the unimportant weights for information
extrusion. The contributions of this paper can be summarized as follows:

• We introduce a unified view of searching and transforming winning lottery tickets. We find that the
removal of regularization force of the early training phase is more helpful for preserving network
expressivity. This simple yet efficient winning ticket search/transform paradigm can seamlessly
translate to arbitrary networks without being subject to specific network structure.

• We provide a theoretical proof of the early stopping strategy’s ability to substitute L2 regular-
ization, as well as an intuitive explanation of its benefits. This new training paradigm show great
promise in retrieving winning tickets from a large dense network. We also verify that networks can
perform better under lower regularization pressures with a novel nonlinear regularization scheme.

• We conduct extensive experiments to evaluate our algorithms in terms of sparsity and perfor-
mance. In particular, UniLTH outperforms LTH by 0.19%∼1.35% and UniDLTH surpasses DLTH
0.29%∼0.56% on accuracy over four representative backbones on the CIFAR-10 dataset. Remark-
ably, we can even obtain 90% sparse winning tickets without performance dropping, especially on
the large-scale dataset ImageNet, which verifies the superiority of our algorithms.

2 RELATED WORK

Winning Lottery Tickets. LTH elaborately draw an analogy between uncovering admirable subnet-
works in a dense network and finding winning tickets in a lottery pool. It articulates that a randomly
initialized dense network contains a high-performance subnetwork which can be trained in isolation
for at most the same number of iterations as the original network Frankle & Carbin (2018). In light
of LTH, some follow-ups have explored the prospect of training sparse subnetworks in place of the
entire models without sacrificing performance Malach et al. (2020). LTH is also adopted to discover
the presence of “supermasks”, which can transform an untrained, randomly initialized network to
a far higher-performance model Zhou et al. (2019). Furthermore, a stream of research has been
dedicated to the findings of early-bird (EB) tickets You et al. (2019) (the tickets which emerge at the
very early training phase) to reduce the computational overheads, e.g., in graph neural networks You
et al. (2021); Chen et al. (2021), in natural language processing Chen et al. (2020). To generalize
the lottery tickets across tasks, Zhou et al. (2019); Morcos et al. (2019) verify the performance of
the winning ticket initializations generated by sufficiently large datasets, and discover these sub-
networks contain inductive biases generic to neural networks more broadly which improve training
across many tasks. In addition to the above work, DLTH considers a more general and challenging
case to find the relationship between a dense network and its sparse counterparts Bai et al. (2022)
– it argues that a randomly selected subnetwork from a dense network can be transformed into a
trainable condition and achieve admirable performance compared with the winning lottery pool Bai
et al. (2022), which suggests a more adjustable way of investigating sparse neural networks.

Regularization-based Pruning. Regularization has long been exploited for pruning deep neural
networks by enforcing a part of parameters in the original network to zeros. The most popular ap-
proaches are using L0-norm or L1-norm Louizos et al. (2017); Liu et al. (2017); Ye et al. (2018). For
instance, He et al. (2017) adopt LASSO to achieve channel pruning for accelerating very deep neural
networks. Following this trend, the Group LASSO algorithm is further introduced to obtain a regular
sparse subnetwork Lebedev & Lempitsky (2016); Wen et al. (2016). Ding et al. (2018) proposes to
employ various penalty factors for different weights. Among these works, the ”regularization force”
is maintained in a small regime to avoid crippling the model performance. To take advantage of the
model sparseness brought by the large penalty strength, Wang et al. (2019b; 2020) present the first
attempt to utilize gradually increased regularization terms to achieve high sparsity and preserve the
admirable performance of the original model. However, the magnitude of the regularization term is
extremely important and needs to be carefully controlled, since an excessive weight penalty will may
cause the model weights ill-conditioned. In this paper, we focus on a simple and efficient usage of
the regularization term to discover more reliable subnetworks, i.e., winning tickets, while ensuring
that the regularization term does not have a catastrophic influence on the training process.
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3 METHODOLOGY

3.1 A UNIFIED APPROACH FOR SOLVING LTH AND DLTH

Here, we delineate our algorithm which unifies the line of LTH and DLTH to obtain winning lottery
tickets. As depicted in Algo. 1, it can be flexibly adopted to the settings of LTH and DLTH with a
few modifications. We denote in blue the procedures for uncovering the winning tickets (marked as
UniLTH), and in red the procedures for transforming a random selected subnetwork to the winning
tickets (i.e., UniDLTH). The other lines (in black) are shared by both.

UniDLTH. We first describe UniDLTH which aims to transform randomly-selected tickets to the
winning tickets. Unlike DLTH, we do not introduce any regularization force at the early training
phase to ensure that the model accurately learns the training data distribution. Instead, we perform
training, early stopping, and rewind at the first stage (Line 1-6) – when the validation loss does not
drop in ϕ epochs, we stop training and rewind the parameters to ξ epochs earlier. Then we produce
the random tickets by randomly selecting a set of important parameters (the rest are unimportant) in
Line 7. After rewinding all weights, we integrate the iterative pruning strategy with the gradually
increased regularization (Line 8-16) to extrude information from unimportant weights Θun to target
the sparse structure, i.e., the winning tickets Θim.

UniLTH. For UniLTH, our target is to find the winning tickets in a dense, random initialized neural
network. The whole pipeline is shown in Algo. 1 and almost similar to UniDLTH, thus we mainly
highlight how UniLTH differs from UniDLTH. Firstly, UniLTH does not need to specify a random
set of weights to realize information extrusion as UniDLTH does at the second stage (in Line 7).
Secondly, UniLTH applies regularization to the universe of the network while UniDLTH merely
decays the unimportant weights (see Line 9). Lastly, UniDLTH prunes the non-important weights at
each iteration, whereas UniLTH has no such restriction (see Line 13).

As described, our pruning algorithm is iterative-based. Suppose a dense network has been pruned
for i iterations and each round cut off p% of the weights that survive in the previous iteration, we
target a sparse structure to be r% of the original network size. In this case, p can be expressed as
p% = 1 − (r%)

1/ψ and decreased over iterations. Notably, such pruning rate becomes very low
near the end of the pruning, which is analogy to the fine-tuning technique. The rest of this section
are organized as follows. In Sec. 3.2, we will theoretically prove the equivalence between early
stopping and regularization, and explain why we should employ early stopping and rewinding rather
than regularization at the early stage. In Sec. 3.3, we will elaborate on the second stage, i.e., iterative
pruning with three variants of nonlinear increased regularization.

Algorithm 1 UniLTH and UniDLTH Algorithms (aligned with Fig. 1)

Require: Network f(X,Θ) with data X and parameters Θ; sparsity level Sf ; mask matrix mΘ with initial-
ization m0

Θ = 1; pruning rate p%; times ψ; step size η; patience ϕ for early stopping.
1: while 1− ||mΘ||0

|m0
Θ| < Sf do

2: Forward f(X,Θ) to compute loss Ls = L (X,Θ)

3: Update Θ(j+1) ← Θ(j) − η∇Θ(j)Ls

4: if the validation loss is not descending for ϕ epoch then
5: Rewind Θ to several training epochs ago (Note weights as Θ(E))
6: Load weight Θ(E)

7: Select unimportant weights Θun and important weights Θim

8: for iteration i = 1, 2 . . .M do
9: Forward f(X;mΘ; Θ) to compute the loss L̃s = Ls (X,mΘ ⊙Θ) + α ||Θ||22 (or L̃s =

Ls (X,mΘ ⊙Θ) + α ||Θun||22), where α is a hyper-parameter to control sparsity
10: Update Θ(i+1) ← Θ(i) − η∇Θ(i) L̃s

11: Adopt nonlinear increasing regularization (i.e., LogLaw, TanLaw and ExpLaw. )
12: if i ==M/ψ · γ(γ = 1, 2 . . . ψ) then
13: Prune p% parameters with the lowest magnitude values in Θ (or Θun)
14: Update mΘ by zeroing the elements in mΘ which are corresponding to the p% pruned parameters
15: if 1− ||mΘ||0

|m0
Θ| < Sf (or Θun = 0) then

16: Stopping training and obtain Θ(M)

17: return mΘ ⊙Θ(M) or Θim
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3.2 EARLY STOPPING VERSUS REGULARIZATION

As the key operation of DLTH, regularization borrows learning capacity and perform information
extrusion from the pruned weights from beginning to end. However, both early and excessive reg-
ularization considerably impedes the model expressivity: 1) At the early stage, the model should
focus more on fitting the data distribution without restricting its capacity. 2) Excessive regulariza-
tion force makes the training process hard to control, e.g., a slight excess may cause irreversible
reactions or ill-conditioned weights. To this end, we figure out that the early stopping mechanism is
a simple yet effective alternative to regularization at the early training phase with a theoretical proof.
Compared to regularization, early stopping not only has no negative effect on the early-stage behav-
ior of fitting to the data distribution, but is also more controllable due to its non-parametric nature.
In next part, we will mathematically analyze why regularization is equivalent to early stopping.

L2 Regularization. We first revisit the theory of regularization. Let J(w) denote an unregularized
objective function, w∗ = argminw J(w) is the weight vector when J(w) achieves the minimum
training error. Assuming the existence of second-order partial derivatives, we perform a quadratic
approximation to the unregularized objective function in a small neighborhood of w∗ as

Ĵ(w) = J (w∗) +
1

2
(w − w∗)

T
H (w − w∗) , (1)

where w in the neighborhood of w∗ and H is the Hessian matrix LeCun et al. (1990) at point w∗.
Given w is a local optimal point, the first-order term (Jacobian matrix) in Eq. 1 has been eliminated
and H is positive semi-definite. When Ĵ(w) get minimum, we have ∇wĴ(w) = H (w − w∗) = 0.

L2 regularization has long been the most popular form of regularization, also known as weight decay
Cortes et al. (2012), which ensures the weight constrained within a small range by adding a penalty
term Ω(w) = 1

2 α||w||
2
2 to J(w). Under this circumstance, the optimal point of w will be perturbed

by the new force, causing the network to reach a new balance point ẃ as

αẃ +H (ẃ − w∗) = 0 ⇒ ẃ = (H + αI)−1Hw∗. (2)

With the increase of α, we decompose H (H is real symmetric) into the diagonal matrix Λ and the
standard orthonormal basis Q of the eigenvectors, H = QΛQT :

ẃ =
(
QΛQT + αI

)−1
QΛQTw∗ = Q(Λ + αI)−1ΛQTw∗. (3)

As seen above, the weight decay is essentially scaling w∗ along the axis defined by the eigenvectors
of H . This scaling effect has less effect on the direction with larger eigenvalues and more on the
direction with smaller eigenvalues, indicating that the weights of various curvatures in the network
behave differently when performing such regularization.

Early Stopping. A fundamental principle is recognized in deep neural networks – when the valida-
tion set loss does not decrease in several training cycles, we can intuitively find that the model has
undergone slight over-fitting. We usually stop training as soon as the error on the validation set is
higher than it was the last time it was checked, which is so called early stopping. Compared with L2

regularization, early stopping is more inconspicuous since it barely affects the training process, the
objective function, or any set of allowable parameter values.

Suppose J(w) reaches its minimum (see Eq. 1), we obtain ∇wĴ(w) = H (w − w∗) = 0. We study
the process of parameter updates during training, assuming we optimize τ steps with the learning
rate ϵ, by analyzing the gradient descent on Ĵ to approximately study the gradient descent on J . The
parameters of the τ -th step can be derived from the (τ − 1)-th step as follows:

w(τ) = w(τ−1) − ϵH
(
w(τ−1) − w∗

)
⇒ w(τ) − w∗ = (I − ϵH)

(
w(τ−1) − w∗

)
(4)

Taking H = QΛQT into the above equation, we can easily obtain:
QT

(
w(τ) − w∗) = (I − ϵΛ)QT

(
w(τ−1) − w∗)

QT
(
w(τ−1) − w∗) = (I − ϵΛ)QT

(
w(τ−2) − w∗)

...
QT

(
w(1) − w∗) = (I − ϵΛ)QT

(
w(0) − w∗) ⇒ QTw(τ) = (I − ϵΛ)

τ
QTw(0)+

[I − (I − ϵΛ)
τ
]QTw∗

(5)
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For simplicity, we first prove the equivalence under w(0) = 0. As a result, Eq. 5 can be simplified
into QTw(τ) = [I − (I − ϵΛ)

τ
]QTw∗. For L2 regularization (see Eq. 3), Λ can be written as

Λ = diag(λ1, . . . , λn), then we can get an expression similar to the early stopping:

QT ẃ = (Λ + αI)
−1

ΛQTw∗ = diag(
λ1

λ1 + α
, · · · , λn

λn + α
)QTw∗ =

[
I − (Λ + αI)−1α

]
QTw∗

(6)
Now we are able to link the formula of L2 regularization (Eq. 6) with the early stopping (Eq. 5):

QT ẃ =
[
I − (Λ + αI)−1α

]
QTw∗︸ ︷︷ ︸

L2 Regularization

⇔ QTw(τ) = [I − (I − ϵΛ)
τ
]QTw∗︸ ︷︷ ︸

early stopping

(7)

As shown in Eq. 7, the early stopping is equivalent to L2 regularization if (Λ+αI)−1α = (I − ϵΛ)
τ

satisfies. In this case, we further take the logarithm form on both sides and derive:

τ log (I − ϵΛ) = − log (I + Λ/α) (8)

When τϵΛ ≈ Λ
α (i.e., α ≈ 1

ϵτ ), L2 regularization is equivalent to the early stopping mechanism.
More generally, when w(0) ̸= 0, we can draw similar conclusions (The above two proofs will be
shown in detail in Appendix A and B). ϵτ is the product of the learning rate and the number of steps,
which can be intuitively regarded as the capacity of the network. For some changing learning rates,
ϵτ can be viewed as the distance that the optimization curve moves in the high-dimensional space.

Why Early Stopping is Preferable? After demonstrating their equivalence, we articulate the major
advantages of our early stopping strategy against regularization. In the case of early termination, this
actually means in the direction of the large curvature parameters than smaller curvature direction ear-
lier to learn, at the same time can terminate automatically determine the result of the regularization
(only need to change the observation test loss decline times), and the weight decay require different
parameter values of weights training experiment. We believe that excessive reliance on regulariza-
tion at the early stage of training is not conducive to the network moving to the training distribution.
At the early stage of training, we only use the early stopping strategy, which can not only learn the
data distribution better, but also will not disrupt the dynamic learning process of the network.

3.3 ITERATIVE PRUNING WITH INCREASED REGULARIZATION

Figure 2: Different nonlinear in-
creased regularization methods. For
simplicity, we draw these nonlinear
growth curves in continuous forms.

We perform our pruning procedure iteratively after rewinding
the weights to several epochs earlier, i.e., we repeatedly train,
prune, and reset the network acrossM rounds (i.e., iterations).
Each round eliminates p% of the weights that survive the pre-
vious round, indicating that the remaining weights in the final
round has been constantly verified for M times, which en-
sures the reliability of the retained weights. In comparison to
one-shot pruning, this iterative strategy empowers us to learn
faster and achieve higher test accuracy with a small-scale net-
work (see our experiments in Sec. 4.1).

During the pruning process, we perform increased regulariza-
tion to tilt the network distribution towards the validation dis-
tribution. Existing regularization-based pruning approaches
(e.g., DLTH) mostly utilize linear increased regularization,
where the coefficient α grows by a constant for each round. As a result, the regularization will
increase continuously at equal intervals to mine out the diversity of parameters Bai et al. (2022) and
enable us to obtain a more expressive subnetwork (see the proof in Appendix C).

However, linear increased regularization may not be conducive to the search of optimal parameters,
since a large magnitude of regularization may destroy the network dynamics at the late training
phase. Instead, we expect that the regularization term can be controlled in a relatively small range
for a long time while continuously increasing. As opposed to the linear increased regularization, we
argue that using a nonlinear increased regularization term is more beneficial to the expressiveness
of the winning tickets. As shown in Fig. 3.3, we propose several nonlinear regularization schemes:
(1) Logarithmic-Law (LogLaw): R = 1

ln2 ·Rceil · ln
(
φ
E + 1

)
; (2) Exponential-Law (ExpLaw):
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R = 1
e−1 · Rceil ·

(
e

φ
E − 1

)
; (3) Tangent-Law (TanLaw): R = 1

2 · Rceil ·
[
tan

[
π·φ
2E − π

4

]
+ 1

]
.

Rceil is the ceiling value of the regularization term. φ is the current epoch and E is the total epochs.
Different growth strategies can increase the degrees of freedom in such regularization methods,
thereby enabling us to obtain more diverse optimal subnetworks.

4 EXPERIMENTS

In this section, we evaluate our pruning algorithms (UniLTH and UniDLTH) on several widely-
used datasets. Our goal is to answer the following research questions. RQ1: How effective do our
algorithms find and transform winning lottery tickets (Sec 4.1)? RQ2: How does the subnetwork
perform under different pruning rates (Sec 4.1)? RQ3: Is nonlinear increased regularization more
powerful than its linear counterpart (Sec 4.2)? RQ4: How should we specify the detection the
patience (people typically define a patience, i.e. the number of epochs to wait before early stop if no
progress on the validation set.) ϕ of early stopping and the rewind epochs ξ (Sec 4.3)? RQ5: Can
our algorithms generalize to more backbones and larger-scale datasets (Appendix E)?

Datasets and Backbones. We first evaluate our algorithms on CIFAR10/100 datasets Krizhevsky
et al. (2009) using VGG-19 Simonyan & Zisserman (2014) or ResNet-50 He et al. (2016) as the
backbone. To further verify its effectiveness on large-scale datasets, we conduct experiments on
ImageNet Simonyan & Zisserman (2014) using the backbone ResNet-50. Meanwhile, we consider
the following methods for comparisons: 1) L1 is the L1 regularization pruning based on a pre-
trained network Li et al. (2016). 2) LTH/LTH-Iter is the lottery ticket hypothesis based on one-
shot/iterative pruning strategies Frankle & Carbin (2018). 3) EB is the Early-Bird ticket (i.e., LT
which emerge at the very early training phase) for LTH with an one-shot pruning strategy Frankle &
Carbin (2018). 4) DLTH/DLTH-Iter is the dual lottery ticket hypothesis based on one-shot/iterative
pruning strategies Bai et al. (2022). Our experiments are run on two NVIDIA Tesla V100 GPUs.
Due to the page limit, we describe the experimental settings in Appendix D.

4.1 PRUNING ALGORITHMS COMPARISON

In this part, we explore the efficacy of our proposed algorithms. For LTH, different iterative pruning
values were proposed for comparison. For EB, we follow its original paper to set the early stopping
point at 37 epochs (1/8 of the total epochs). For DLTH, we set weight decay starting from 0, and
ceiling bound is 2e-3. Here we just adopt linear growth regularization for comparison and nonlinear
regularization will be discussed in Sec. 4.2. In Tab. 1, we report the mean top-1 accuracy with its
standard deviation of three-run experiments and we have placed notations in Appendix D.

Performance Comparison (RQ1). From Tab. 1, we have the following observations: (1) In most
cases, our algorithms outperform other approaches on the four datasets in terms of both accuracy and
standard deviation; (2) Using our training paradiam on the training process, the parameters of a large
model (e.g., ResNet50, MobileNet) are heavily slashed (even by a factor of 10) while obtaining an
excellent subnetwork under the same sparse condition (e.g., 93.09%/92.96% and 73.88%/73.68% of
Vgg-19+CIFAR10 and ResNet-50+CIFAR100 settings); (3) Iterative pruning can help us get better
lottery tickets. As seen in Tab. 1, UniLTH (Iter-10) mostly outperforms UniLTH (one-shot) among
various backbones counterpart with datasets experimental settings. Similarly, we can draw the same
conclusions in UniDLTH algorithm. These results experimentally demonstrate that iterative pruning
allows our model to gain benefits to get better sub-networks. (4) Similar to standard LTH and DLTH,
our algorithm can considerably improve the inference speed without significant performance drop.

Results of Different Pruning Rate (RQ2). Iterative pruning, early stopping with rewind, and grad-
ually increased regularization are three key components of our algorithms. To answer RQ2, we
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Figure 3: ResNet-50 on CIFAR-10 using 50%/70% sparsity with UniLTH/UniDLTH algorithms.
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Table 1: Performance comparison of Vgg-19/ResNet50 on CIFAR10/CIFAR100 datasets using
30%, 50%, 70% and 90% sparsity ratios. Except for the L1 row, the highest/second highest per-
formances are emphasized with red/blue fonts

Vgg19+CIFAR10; Baseline accuracy: 92.19% Vgg19+CIFAR100; Baseline accuracy: 56.33%

Pruning ratio(%)/Speedup 30%/1.43× 50%/2.0× 70%/3.33× 90%/10.0× 30%/1.43× 50%/2.0× 70%/3.33× 90%/10.0×
L1(pre-trained model) 90.99±0.09 89.92±0.17 87.74±0.26 84.27±0.35 56.21±0.21 54.39±0.37 50.47±1.23 49.77±1.47

LTH(one-shot) 90.28±0.09 93.01±0.21 92.37±0.39 92.08±0.54 56.34±0.22 56.37±0.32 56.09±0.43 55.98±0.56

LTH(Iter-10) 93.29±0.16 93.15±0.38 92.77±0.23 92.34±0.25 56.51±0.17 56.53±0.23 56.32±0.27 56.38±0.28

EB 92.89±0.14 91.44±0.27 90.41±0.26 90.33±0.47 56.32±0.11 55.89±0.29 55.77±0.33 55.43±0.42

DLTH(one-shot) 92.94±0.18 92.87±0.44 92.16±0.51 92.07±0.49 56.23±0.19 56.21±0.21 55.87±0.38 55.71±0.53

DLTH(Iter-10) 92.95±0.12 92.78±0.22 92.84±0.31 92.40±0.37 56.37±0.13 56.43±0.14 56.29±0.25 56.04±0.29

UniLTH(one-shot) 93.34±0.06 93.21±0.38 93.08±0.25 92.88±0.28 56.47±0.09 56.42±0.27 55.98±0.23 56.01±0.36

UniLTH(Iter-10) 93.40±0.04 93.45±0.27 93.28±0.18 93.09±0.14 56.50±0.08 56.73±0.15 56.27±0.18 56.44±0.24

UniDLTH(one-shot) 93.27±0.13 93.20±0.26 92.89±0.34 92.72±0.35 56.48±0.14 56.43±0.31 56.21±0.35 55.78±0.49

UniDLTH(Iter-10) 93.52±0.11 93.48±0.17 93.19±0.28 92.96±0.21 56.77±0.13 56.68±0.24 56.47±0.27 56.41±0.29

ResNet50+CIFAR10; Baseline accuracy: 93.45% ResNet50+CIFAR100; Baseline accuracy: 73.87%

Pruning ratio(%)/Speedup 30%/1.43× 50%/2.0× 70%/3.33× 90%/10.0× 30%/1.43× 50%/2.0× 70%/3.33× 90%/10.0×
L1(pre-trained model) 93.28±0.17 92.17±0.24 90.34±0.31 87.25±0.42 72.98±0.16 70.26±0.35 69.30±0.47 68.43±0.42

LTH(one-shot) 92.68±0.17 92.78±0.36 92.38±0.29 92.29±0.43 72.38±0.14 72.66±0.27 72.45±0.33 72.37±0.36

LTH(Iter-10) 93.56±0.15 93.38±0.21 93.40±0.23 93.21±0.37 73.27±0.09 73.66±0.11 73.42±0.23 73.49±0.28

EB 92.89±0.21 91.56±0.38 89.73±0.32 89.69±0.35 73.13±0.18 72.88±0.24 72.04±0.35 72.16±0.63

DLTH(one-shot) 93.42±0.25 93.37±0.36 93.17±0.43 92.87±0.46 72.88±0.17 72.67±0.29 72.84±0.51 72.71±0.47

DLTH(Iter-10) 93.57±0.17 93.69±0.23 93.50±0.15 93.29±0.28 73.67±0.04 73.23±0.14 73.41±0.25 73.22±0.30

UniLTH(one-shot) 93.63±0.33 93.58±0.22 93.26±0.38 93.18±0.36 73.77±0.18 73.60±0.33 73.19±0.43 73.41±0.52

UniLTH(Iter-10) 93.71±0.27 93.66±0.15 93.58±0.19 93.69±0.22 73.91±0.07 73.89±0.20 73.75±0.22 73.68±0.18

UniDLTH(one-shot) 92.87±0.38 93.46±0.29 93.52±0.34 93.28±0.40 73.10±0.19 73.12±0.21 72.89±0.38 73.11±0.37

UniDLTH(Iter-10) 94.15±0.21 93.58±0.20 93.62±0.17 93.48±0.17 74.05±0.12 73.98±0.14 73.60±0.12 73.88±0.26

control the number of pruning iterations ψ to 10, the monitoring threshold ϕ (i.e., patience) for the
descent of validation loss to be 2, and the rewind epoch to be 2 to keep these variables consistent. As
shown in Fig. 3, we validate our methods under 50%/70% pruning ratio on combination settings of
ResNet-50 and CIFAR-10. It can be seen that our unified algorithms (i.e., UniLTH and UniDLTH)
clearly surpass the traditional algorithms on both pruning rates, which demonstrates their effective-
ness. Additionally, we observe in Fig. 3 that at the early stage of training, the abandonment of
regularization can help the network to learn data distribution faster.

4.2 LINEAR VERSUS NONLINEAR INCREASED REGULARIZATION

In this paper, we propose three forms of nonlinear increased regularization (including LogLaw,
TanLaw and ExpLaw) with different regularization intensities at the early, middle and late stage, re-
spectively. To answer RQ3, we compare them with the linear counterpart and meanwhile investigate
the effect of different regularization force ceiling Rceil on the model performance.

ExpLaw of UniLTH/UniDLTH ResNet50+CIFAR10 (Pruning ratio=50%)

����� Epoch

Figure 4: (Left) ExpLaw on ResNet-50 + CIFAR-10 +
50% sparsity experimental settings under different Rceil.
(Right) Network performance under different validation
loss monitor threshold ϕ (i.e., patience).

In Tab. 2, when using Rceil with the
same magnitude, ExpLaw significantly
outperforms the other three strategies
under all pruning ratios. As mentioned
before, increased regularization stimu-
lates the diversity of parameters. Dif-
ferent growth strategies (linear or non-
linear) further increase the degrees of
freedom in such regularization meth-
ods, i.e., enabling us to obtain more di-
verse optimal subnetworks. For exam-
ple, LogLaw keeps the network under
intense regularization during the whole
training process (see Fig.2), which
might lead to ill-conditioned weights. Conversely, ExpLaw utilizes smaller penalty for a long train-
ing time and can simultaneously ensure that the weights magnitude discrepancy will be magnified.
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Table 2: Performance comparison of different increased regularization strategies on Vgg-
19/CIFAR10 and ResNet-50/CIFAR100 experimental settings. For fairness, we set all Rceil to be
consistent and keep at 1e-3 (UniLTH/LTH) and 1e-2 (UniDLTH/DLTH).

Settings Pruning ratio(%)/Speedup
Datasets/Backbones Algorithms Regularization 30%/1.43× 50%/2.0× 70%/3.33× 90%/10.0×

CIFAR 10/
Vgg-19

UniLTH
(Iter-10)

Linear 93.40±0.16 93.45±0.27 93.28±0.18 93.09±0.14
LogLaw 91.89±0.12 91.77±0.17 90.79±0.31 91.04±0.43
TanLaw 92.44±0.18 92.35±0.23 91.48±0.25 91.21±0.39
ExpLaw 93.98±0.24 93.79±0.26 93.48±0.27 93.22±0.31

UniDLTH
(Iter-10)

Linear 93.52±0.11 93.48±0.17 93.19±0.28 92.96±0.21
LogLaw 91.57±0.18 91.32±0.48 91.03±0.44 89.99±0.31
TanLaw 92.48±0.32 92.36±0.39 91.49±0.35 91.15±0.51
ExpLaw 93.80±0.27 93.65±0.34 93.77±0.29 93.29±0.43

CIFAR 100/
ResNet-50

UniLTH
(Iter-10)

Linear 73.91±0.07 73.89±0.20 73.75±0.22 73.68±0.18
LogLaw 71.17±0.34 71.21±0.36 70.66±0.47 70.83±0.41
TanLaw 72.17±0.20 72.05±0.34 72.15±0.44 71.62±0.53
ExpLaw 74.14±0.36 74.29±0.32 74.77±0.28 74.47±0.30

UniDLTH
(Iter-10)

Linear 74.05±0.12 73.98±0.14 73.60±0.12 73.88±0.26
LogLaw 71.12±0.15 71.29±0.22 70.37±0.35 70.27±0.46
TanLaw 72.21±0.17 72.24±0.38 71.79±0.41 71.62±0.53
ExpLaw 74.18±0.15 74.09±0.24 74.64±0.35 74.38±0.37

Moreover, the ill-conditioned weight issue can also be prevented by means of a small penalty, which
is more conducive to the search/transformation of excellent subnetworks. We further explore the
impacts of different Rceil on the model results. As depicted in the left hand side of Fig. 4, we find
that UniLTH requires less penalty force than UniDLTH. This may be attributed to the uncertainty of
the subnetwork structure at the beginning of LTH and the need to slowly drop weights for a reliable
subnetwork. Excessive regularization force will destroy the learning process and complicate the
search of winning tickets. In contrast, the discarded parameters in UniLTH are given at the begin-
ning, which requires a larger gradually increasing regularization force to extrude the information as
much as possible, so Rceil large is allowed.

4.3 EFFECTS OF PATIENCE FOR EARLY STOPPING AND REWIND VALUES

Table 3: Top-1 accuracy of UniLTH vs.
rewind epochs ξ and early-stopping pa-
tience p. We adopt CIFAR10+Vgg-19 for
evaluation and set ϕ = 2.

Pruning ratio ξ = 1 ξ = 2 ξ = 3 ξ = 4 ξ = 5
p = 30% 93.44 93.65 92.98 91.34 89.45
p = 50% 93.48 93.87 92.68 92.01 90.55
p = 70% 93.45 93.64 93.35 92.17 90.11
p = 90% 93.65 93.66 93.44 92.45 90.24

To answer RQ4, we first set patience ϕ to 2 and mon-
itor the top-1 accuracy under various rewind epochs ξ.
After that, we fix ξ as 2 and test network performance
under different early stopping patience ξ under 30%,
50%, 70% and 90% pruning ratio (denoted by p). Re-
lated results are reported in Tab. 3 and Fig. 4 (Right),
from which we have the following findings. The model
exhibits strong expressiveness when ξ is controlled in
a small regime such as 1 or 2. In contrast, when enlarg-
ing the rewind epochs to some extent, e.g., ξ = 4, 5,
the model performance will be degenerated by a considerable margin. Based on such observations,
smaller ξ are recommended to avoid crippling the model capacity. Meanwhile, we find that different
ϕ does not have much effect on final model performance. Although the early train performance of
the model was different in various patience, the model always reached the optimum at nearly 200
epochs with similar accuracy (Seen Fig. 4 (Right)).

5 CONCLUSION

In this work, we present a unified paradigm for searching and transforming winning lottery tick-
ets. At the early training phase, we replace regularization with early stopping to mitigate overfitting
and ensure the stability of training. When parameter distribution reaches a certain point, we rewind
weights and alternately adopt increased regularization and pruning to search/transform subnetworks
to achieve network capacity and sparsity joint-optimization. In addition, to compensate for the ill-
conditioned small-weight problem caused by linearly increased regularization, a variety of nonlinear
regularization methods are proposed, among which ExpLaw method improves the network expres-
sion power by limiting the network role to a small penalty force for a long time. We have bench-
marked our algorithms on extensive datasets and backbones, achieving comparable performance on
ultra-lightweight subnetworks.
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A PROOF OF EQ. 8

In Eq. 7, the early stopping is equivalent to L2 regularization when (Λ+αI)−1α = (I − ϵΛ)
τ . We

take the logarithm on both sides as:

log[(Λ + αI)
−1
α] = log (I − ϵΛ)

τ → log(diag[
α

λ1 + α
, ...,

α

λ1 + α
]) = τ · log(I−ϵΛ) (9)

Substituting α
λi+α

= (1 + λi

α )
−1

into Eq. 9, we can obtain:

− log

(
I +

Λ

α

)
= τ log (I − ϵΛ) (10)

According to the Taylor’s Expansion, when x approaches zero, log(1 − x) can be approximated as
x. Likewise, when the eigenvalues in Λ approach zeros, it can be seen that − log (I + Λ/α) ≈ Λ/α
and τ log (I − ϵΛ) ≈ τϵΛ. Therefore, the equivalence holds if α ≈ 1

ϵτ .

B PROOF OF L2 REGULARIZATION IS EQUIVALENT TO EARLY STOPPING
WHEN w(0) ̸= 0

When w(0) ̸= 0, we have:

QTw(τ) = (I − ϵΛ)
τ
QTw(0) + [I − (I − ϵΛ)

τ
]QTw∗ (11)

This equation can also be written as:

QTw(τ) =

[
(I − ϵΛ)

τ w
(0)

w∗ + I − (I − ϵΛ)
τ

]
QTw∗ =

[
I − (I − ϵΛ)

τ

(
I − w(0)

w∗

)]
QTw∗

(12)

In practice w(0) is usually much smaller than w∗, which means that w(0)

w∗ approaches 0 (i.e., I −
w(0)

w∗ ≈ I). Compare Eq. 12 with Eq. 7, the equivalence still holds if α ≈ 1
ϵτ .
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C PROOF OF INCREASED REGULARIZATION

Increased Regularization. As the formula ẃ = (H + αI)−1Hw∗ shown, after the regularization
force increases (increase δα on the original basis), the parameters in the network will exercise to
a new position. When the network converges again, it still exists ẃ = (H + δαI)−1Hw∗. Due
to (H + δαI)

−1 is very complicated or even difficult to solve, to better analyze the changes of the
parameters in the network after the regularization force increases, we simply explore two H forms
of H forms (we investigate two simplify cases to help us move forward) Wang et al. (2020).

(1) H is diagonal matrix, which is a simplest form for Hessian information LeCun et al. (1989). We
assume H = diag(h1,1, . . . ,diag hn,n), then:

ẃ = (H + δαI)−1Hw∗ = diag

(
h1,1

h1,1 + δα
, · · · , hn.n

hn.n + δα

)
w∗ (13)

We can find that for i-th w∗
i in w∗, ẃi

w∗
i
=

hi,i

hi,i+δα
∈ [0, 1) since hi,i > 0 and δα > 0. It is not

difficult to find a larger curvature corresponding to the larger hessian element. The closer the ratio
of ẃi

w∗
i

is to 1, the less the weight moves.

(2) H is not diagonal. Here we analysis 2d matrix, w∗ =

(
w∗

1
w∗

2

)
and H =

(
h1,1 h1,2
h2,1 h2,2

)
, then:

(
ẃ1

ẃ2

)
=

1

|H + δαI|

{
(h1,1h2,2 + h1,1δα− h21,2)w

∗
1 + δαh1,2w

∗
2

(h1,1h2,2 + h2,2δα− h21,2)w
∗
2 + δαh1,2w

∗
1

}
(14)

Due to δα is small, we can obtain:(
ẃ1

ẃ2

)
≈ 1

|H + δαI|

{
(h1,1h2,2 + h1,1δα− h21,2)w

∗
1

(h1,1h2,2 + h2,2δα− h21,2)w
∗
2

}
(15)

It is not difficult to find that at h1,1 > h2,2, we can still get ẃ1

w∗
1
> ẃ2/w

∗
2 similar conclusion.

To summarize, due to different local second-order partial derivative structures, different weight re-
sponses are different in response to increased regularization forces. Larger curvature results in the
weights being relatively less moved towards the original points. The magnitude of the difference
among the weights will increase as regularization grow.

D EXPERIMENTAL SETTINGS AND NOTATIONS

The experiments are conducted on two NVIDIA Tesla V100 (16GB per GPU) and all selected
backbones follow the same experimental settings for fairness. Specifically, experiments on CI-
FAR10/CIFAR100 are optimized by Stochastic Gradient Descent (SGD), and we control the learn-
ing rate to 0.1 with 0.9 momentum using batch size 128. We use the Cosine Annealing Warm
Restarts Loshchilov & Hutter (2016) scheduler as our learning rate scheduler and set the maximum
number of iterations Tmax = 200. Those models for ImageNet classification are optimized by SGD
and lr=0.1 with 0.9 momentum and we follow the same setting in learning rate scheduler.

Table 4: The notations commonly reported in this work are placed here.

Notation Definition

X Input data
Θ Network parameters
mΘ Mask matrix
p% Pruning rate
ψ Pruning times
ϕ Validation patience
ξ Rewind epochs

Rceil The ceiling of regularization term
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E EXPERIMENTS ON MORE BACKBONES AND LARGE-SCALE DATASETS

To answer RQ5, we here evaluate MobileNets (v1) Howard et al. (2017) and EfficientNetB0Tan &
Le (2019) two backbones on CIFAR-10 datasets, and add additional ImageNet dataset to verify the
performance of our proposed unified lottery ticket search/transform algorithm. The results are given
in the table below.

Table 5: Performance comparasion of different pruning algorithm counterpart with MobileNets(v1)
and EfficientNetB0 backbones on CIFAR 10 dataset using 30%, 50%, 70% and 90% sparsity ratios.
For convenience, we highlight show the highest/second highest performances with red/blue fonts.

MobileNets+CIFAR 10; Baseline accuracy: 91.11%
pruning ratio(%)/speedup 30/1.43× 50/2.0× 70/3.33× 90/10.0×
L1(pre-trained model) 90.21±0.09 89.37±0.25 88.77±0.41 87.21±0.52
LTH(one-shot) 90.23±0.38 90.16±0.47 89.91±0.52 88.73±0.60
LTH(Iter-10) 91.37±0.25 90.67±0.29 91.11±0.32 89.16±0.37
EB 91.47±0.23 90.16±0.34 89.96±0.41 89.25±0.39
DLTH(one-shot) 90.98±0.34 90.16±0.33 89.65±0.48 89.31±0.58
DLTH(Iter-10) 91.27±0.18 91.10±0.26 89.49±0.34 89.99±0.40
UniLTH(one-shot) 91.17±0.24 90.89±0.17 90.04±0.25 89.90±0.33
UniLTH(Iter-10) 92.14±0.07 91.18±0.15 91.12±0.19 90.24±0.26
UniDLTH(one-shot) 91.24±0.21 90.44±0.12 90.01±0.32 89.52±0.27
UniDLTH(Iter-10) 92.07±0.11 91.20±0.14 90.10±0.21 89.97±0.25

EfficientNetB0+CIFAR 10; Baseline accuracy: 90.64%
pruning ratio(%)/speedup 30/1.43× 50/2.0× 70/3.33× 90/10.0×
L1(pre-trained model) 90.72±0.19 89.88±0.21 89.02±0.33 87.16±0.59
LTH(one-shot) 90.29±0.32 90.16±0.41 89.87±0.50 89.72±0.68
LTH(Iter-10) 90.66±0.25 90.21±0.19 89.98±0.37 89.96±0.34
EB 90.27±0.37 89.98±0.46 89.45±0.62 88.93±0.73
DLTH(one-shot) 90.44±0.31 90.27±0.45 90.10±0.39 89.65±0.47
DLTH(Iter-10) 90.79±0.22 90.66±0.38 90.09±0.25 90.11±0.35
UniLTH(one-shot) 90.37±0.27 90.23±0.33 90.16±0.42 89.26±0.37
UniLTH(Iter-10) 90.77±0.19 90.79±0.25 90.23±0.26 90.34±0.22
UniDLTH(one-shot) 90.44±0.34 90.21±0.41 89.40±0.39 89.18±0.58
UniDLTH(Iter-10) 91.26±0.37 90.14±0.24 90.18±0.25 90.42±0.31

The results of comparative evaluation experiments on MobileNets(v1) and EfficientNetB0 back-
bones are summarized in Table 5. Our proposed pruning algorithm achieves almost the best perfor-
mance under the same pruning ratios, which demonstrates the effectiveness of our unified winning
lottery tickets search/transform algorithms in a more general scenario.

Table 6: Performance on ImageNet dataset counterpart with different backbones and UniLTH prun-
ing algorithm using 30%, 50%, 70% and 90% sparsity ratios. Acc@1: If the highest probability is
the correct answer, it is considered correct. Acc@5: A correct answer is considered correct if the
top five probabilities contain the correct answer.

Different backbones + UniLTH: ImageNet
Pruning ratio(%)/speedup 30/1.43× 50/2.0× 70/3.33× 90/10.0×
Metrics Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5
Vgg19 (baseline Acc@1=71.98, Acc@5=90.18) 72.66 90.47 72.35 90.35 72.17 90.24 71.63 89.96
ResNet50 (baseline Acc@1=74.72, Acc@5=91.87) 74.98 92.03 74.86 92.19 73.96 92.07 73.88 91.44
MobileNets (baseline Acc@1=70.77,Acc@5=88.43) 71.34 90.17 70.86 89.52 71.05 89.11 70.69 88.26
EfficientNet (baseline Acc@1=76.28,Acc@5=92.96) 76.96 93.14 76.77 93.17 76.23 92.45 75.89 92.34

From Table 6 and Table 7, we can observe that when using the larger-scale dataset ImageNet, our
unified lottery pruning algorithm is still effective, and when the model is pruned to one tenth of
the original network, the backbones performance can still be comparable to the original backbones
excellent performance. To summarize, We conclude our UniLTH/UniDLTH are also adaptable and
robust for general backbones and large-scale datasets and even obtains better performances using the
same parameter setting compared with LTH/DLTH, whcih can further search/transform the ultra-
lightweight subnetworks.
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Table 7: Performance on ImageNet dataset counterpart with different backbones and UniDLTH
pruning algorithm using 30%, 50%, 70% and 90% sparsity ratios. Acc@1: If the highest probability
is the correct answer, it is considered correct. Acc@5: A correct answer is considered correct if the
top five probabilities contain the correct answer.

Different backbones + UniDLTH: ImageNet
Pruning ratio(%)/speedup 30/1.43× 50/2.0× 70/3.33× 90/10.0×
Metrics Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5
Vgg19 (baseline Acc@1=71.98, Acc@5=90.18) 72.25 90.28 71.98 90.66 72.13 90.33 71.41 89.87
ResNet50 (baseline Acc@1=74.72, Acc@5=91.87) 74.96 92.14 74.75 92.23 73.84 92.11 73.81 91.5
MobileNets (baseline Acc@1=70.77,Acc@5=88.43) 71.41 89.13 70.72 89.24 71.47 89.23 70.48 88.22
EfficientNet (baseline Acc@1=76.28,Acc@5=92.96) 76.97 93.07 76.76 92.98 76.45 92.08 76.07 92.41
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