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ABSTRACT

Graph neural networks and graph kernels have achieved great success in solving
machine learning problems on graphs. Recently, there has been considerable in-
terest in determining the expressive power mainly of graph neural networks and
of graph kernels, to a lesser extent. Most studies have focused on the ability
of these approaches to distinguish non-isomorphic graphs or to identify specific
graph properties. However, there is often a need for algorithms whose produced
graph representations can accurately capture similarity/distance of graphs. This
paper studies the expressive power of graph neural networks and graph kernels
from an empirical perspective. Specifically, we compare the graph representations
and similarities produced by these algorithms against those generated by a well-
accepted, but intractable graph similarity function. We also investigate the impact
of node attributes on the performance of the different models and kernels. Our
results reveal interesting findings. For instance, we find that theoretically more
powerful models do not necessarily yield higher-quality representations, while
graph kernels are shown to be very competitive with graph neural networks.

1 INTRODUCTION

In recent years, graph-structured data has experienced an enormous growth in many domains, rang-
ing from chemo- and bio-informatics to social network analysis. Several problems of increasing
interest require applying machine learning techniques to graph-structured data. Examples of such
problems include predicting the quantum mechanical properties of molecules (Gilmer et al., 2017)
and modeling physical systems (Battaglia et al., 2016). To develop successful machine learning
models in the domain of graphs, we need techniques that can both extract the information that is
hidden in the graph structure, and also exploit the information contained within node and edge at-
tributes. In the past years, the problem of machine learning on graphs has been governed by two
major families of approaches, namely graph kernels (Nikolentzos et al., 2019) and graph neural
networks (GNNs) (Wu et al., 2020).

Recently, much research has focused on measuring the expressive power of GNNs (Xu et al., 2019;
Morris et al., 2019; Murphy et al., 2019; Maron et al., 2019a;b; Sato et al., 2019; Keriven & Peyré,
2019; Chen et al., 2019; Dasoulas et al., 2020; Nikolentzos et al., 2020; Barceló et al., 2020). On
the other hand, in the case of graph kernels, there was a limited number of similar studies (Kriege
et al., 2018). This is mainly due to the fact that the landscape of graph kernels is much more diverse
than that of GNNs. Indeed, although numerous GNN variants have been recently proposed, most
of them share the same basic idea, and can be reformulated into a single common framework, so-
called message passing neural networks (MPNNs) (Gilmer et al., 2017). These models employ a
message passing procedure to aggregate local information of vertices and are closely related to the
Weisfeiler-Lehman (WL) test of graph isomorphism, a powerful heuristic which can successfully
test isomorphism for a broad class of graphs (Arvind et al., 2015).

When dealing with learning problems on graphs, a practitioner needs to choose one GNN or one
graph kernel for her particular application. The practitioner is then faced with the following ques-
tion: Does this GNN variant or graph kernel capture graph similarity better than others? Unfortu-
nately, this question is far from being answered. Most of the above studies investigate the power of
GNNs in terms of distinguishing between non-isomorphic graphs or in terms of how well they can
approximate combinatorial problems. However, in graph classification/regression problems, we are
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not that much interested in testing whether two (sub)graphs are isomorphic to each other, but mainly
in classifying graphs or in predicting real values associated with these graphs. In such tasks, it has
been observed that stronger GNNs do not necessarily outperform weaker GNNs. Therefore, it seems
that the design of GNNs is driven by theoretical considerations which are not realistic in practical
settings. Ideally, we would like to learn representations which accurately capture the similarities or
distances between graphs.

A practitioner can then choose an algorithm based on its empirical performance. Indeed, GNNs and
graph kernels are usually evaluated on standard datasets derived from bio-/chemo-informatics and
from social media (Morris et al., 2020). However, several concerns have been raised recently with
regards to the reliability of those datasets, mainly due to their small size and to inherent isomor-
phism bias problems (Ivanov et al., 2019). More importantly, it has been observed that the adopted
experimental settings are in many cases ambiguous or not reproducible (Errica et al., 2020). The ex-
perimental setup is not standardized across different works, and there are often many issues related
to hyperparameter tuning and to how model selection and model assessment are performed. These
issues easily generate doubts and confusion among practitioners that need a fully transparent and
reproducible experimental setting.

Present work. In this paper, we empirically evaluate the expressive power of GNNs and graph
kernels. Specifically, we build a dataset that contains instances of different families of graphs.
Then, we compare the graph representations and similarities produced by GNNs and graph kernels
against those generated by an intractable graph similarity function which we consider to be an oracle
function that outputs the true similarity between graphs. We perform a large number of experiments
where we compare several different kernels, architectures, and pooling functions. Secondly, we
study the impact of node attributes on the performance of the different models and kernels. We show
that annotating the nodes with their degree and/or triangle participation can be beneficial in terms of
performance in the case of GNNs, while it is not very useful in the case of graph kernels. Finally,
we investigate which pairs of graphs (from our dataset) lead GNNs and kernels to the highest error
in the estimated simialrity. Surprisingly, we find that several GNNs and kernels assign identical or
similar representations to very dissimilar graphs. We publicly release code and dataset to reproduce
our results, in order to allow other researchers to conduct similar studies1.

2 RELATED WORK

Over the past years, the expessiveness of graph kernels was assessed almost exclusively from ex-
perimental studies. Therefore, still, there is no theoretical justification on why certain graph kernels
perform better than others. From the early days of the field, it was clear though that the mapping
induced by kernels that are computable in polynomial time is not injective (and thus these kernels
cannot solve the graph isomorphism problem) (Gärtner et al., 2003). Recently, Kriege et al. (2018)
proposed a framework to measure the expressiveness of graph kernels based on ideas from property
testing. It was shown that some well-established graph kernels such as the shortest path kernel, the
graphlet kernel, and the Weisfeiler-Lehman subtree kernel cannot identify basic graph properties
such as planarity or bipartitness.

With the exception of the work of Scarselli et al. (2008), until recently, there has been little attempt to
understand the expressive power of GNNs. Several recent studies have investigated the connections
between GNNs and the Weisfeiler-Lehman (WL) test of isomorphism and its higher-order variants.
For instance, it was shown that standard GNNs do not have more power in terms of distinguishing
between non-isomorphic graphs than the WL algorithm (Morris et al., 2019; Xu et al., 2018). Morris
et al. (2019) proposed a family of GNNs which rely on a message passing scheme between subgraphs
of cardinality k, and which have exactly the same power in terms of distinguishing non-isomorphic
graphs as the set-based variant of the k-WL algorithm. In a similar spirit, (Maron et al., 2019a)
introduced k-order graph networks which are at least as powerful as the folklore variant of the k-
WL graph isomorphism test in terms of distinguishing non-isomorphic graphs. These models were
also shown to be universal (Maron et al., 2019c; Keriven & Peyré, 2019), but require using high order
tensors and therefore are not practical. Chen et al. (2019) show that the two main approaches for
studying the expressive power of GNNS, namely graph isomorphism testing and invariant function

1Code available at: https://github.com/xxxxx/xxxxx/
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approximation, are equivalent to each other. Futhermore, the authors propose a GNN that is more
powerful than 2-WL. Barceló et al. (2020) rely on a connection between the WL algorithm and first
order logic, and characterize the expressive power of GNNs in terms of classical logical languages.
The impact of random features on the expressive power of MPNNs is considered in Sato et al.
(2020). Nikolentzos et al. (2020) show that standard GNNs cannot identify fundamental graph
properties such as triangle-freeness and connectivity, and they propose a model that can identify
these properties. Murphy et al. (2019) and Dasoulas et al. (2020) take into account all possible
node permutations and produce universal graph representations. The emerging problems becomes
intractable once the number of nodes is large and they propose approximation schemes to make
the computation tractable in practice. Some recent works have studied the generalization properties
of GNNs (Scarselli et al., 2018; Verma & Zhang, 2019; Garg et al., 2020). For a comprehensive
overview of the expressive power of GNNs, the interested reader is referred to Sato (2020).

3 COMPARING GRAPHS TO EACH OTHER

Formally, for any two graphs G1 = (V1, E1) and G2 = (V2, E2) on n vertices with respective n×n
adjacency matrices A1 and A2, we define a function f : G × G → R where G is the space of
graphs which quantifies the similarity ofG1 andG2. Note that in the literature, this problem is often
referred to as graph comparison. The problem of graph comparison has been the topic of numerous
studies in computer science (Conte et al., 2004). Existing approaches are generally motivated by
runtime considerations. These approaches are computable in polynomial time, but also limited in
terms of expressive power. For instance, for similarity measures that take values between 0 and 1,
f(G1, G1) = f(G1, G2) = 1 may hold even if G1 and G2 are not isomorphic to each other. In this
paper, we consider a graph comparison function which is not computable in polynomial time. The
function can be expressed as a maximization problem, and is defined as follows:

f(G1, G2) = max
P∈Π

∑n
i=1

∑n
j=1

[
A1 � PA2P

>]
ij

||A1||F ||A2||F
(1)

where Π denotes the set of n × n permutation matrices, � denotes the elementwise product, and
|| · ||F is the Froebenius matrix norm. For clarity of presentation we assume n to be fixed (i. e., both
graphs consist of n vertices). In order to apply the function to graphs of different cardinality, one
can append zero rows and columns to the adjacency matrix of the smaller graph to make its number
of rows and columns equal to n. Therefore, the problem of graph comparison can be reformulated as
the problem of maximizing the above function over the set of permutation matrices. A permutation
matrix P gives rise to a bijection π : V1 → V2. The function defined above seeks for a bijection
such that the number of common edges |{(u, v) ∈ E1 :

(
π(u), π(v)

)
∈ E2}| is maximized. Then,

the number of common edges is normalized such that it takes values between 0 and 1. Observe that
the above definition is symmetric in G1 and G2. The two graphs are isomorphic to each other if and
only if there exists a permutation matrix P for which the above function is equal to 1. Therefore, a
value equal to 0 denotes maximal dissimilarity, while a value equal to 1 denotes that the two graphs
are isomorphic to each other. Note that if the compared graphs are not empty (i. e., they contain at
least one edge), the function will take some value greater than 0. Solving the above optimization
problem for large graphs is clearly intractable since there are n! permutation matrices of size n. As
mentioned above, existing approaches for comparing graphs to each other or for generating graph
representations are generally motivated by runtime considerations, and provide no guarantees on
how well they can approximate the above function or other similar graph comparison functions.
In this paper, we investigate how different graph comparison/representation learning approaches
approximate the above-defined function from an empirical standpoint.

4 EMPIRICAL EVALUATION

4.1 DATASET

Since the function defined in equation 1 is intractable for large graphs, we generated graphs consist-
ing of at most 9 vertices. Furthermore, each graph is connected and contains at least 1 edge. We
generated 191 pairwise non-isomorphic graphs. The dataset consists of different types of synthetic
graphs. These include simple structures such as cycle graphs, path graphs, grid graphs, complete
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Synthetic Dataset
Max # vertices 9
Min # vertices 2
Average # vertices 7.29
Max # edges 36
Min # edges 1
Average # edges 11.34
# graphs 191

Table 1: Summary of the synthetic
dataset that we used in our experiments.

0.2 0.4 0.6 0.8 1.0
Similarity

0

200

400

600

800

1000

1200

1400

Fr
eq

ue
nc

y

Figure 1: Distribution of similarities between the
synthetically generated graphs.

graphs and star graphs, but also randomly-generated graphs such as Erdős-Rényi graphs, Barabási-
Albert graphs and Watts-Strogatz graphs. Table 1 shows statistics of the synthetic dataset that we
used in our experiments. Figure 1 illustrates the distribution of the similarities of the generated
graphs as computed by the proposed measure. There are 191∗192/2 = 18, 336 pairs of graphs in total
(including pairs consisting of a graph and itself). Interestingly, most of the similarities take values
between 0.5 and 0.8.

4.2 SELECTED APPROACHES

Suitable graph kernels and GNNs were selected according to the following criteria: (1) publicly
available implementations, (2) strong architectural differences, (3) popularity, and (4) peer reviewed.
We next present the graph kernels and GNNs that were included into our evaluation. For a detailed
description of each kernel and each GNN, we refer the reader to their respective papers.

Graph kernels. We selected the following 6 graph kernels: (1) the random walk kernel (RW)
(Gärtner et al., 2003), (2) the shortest path kernel (SP) (Borgwardt & Kriegel, 2005), (3) the graphlet
kernel (GR) (Shervashidze et al., 2009), (4) the Weisfeiler-Lehman subtree kernel (WL) (Sher-
vashidze et al., 2011), (5) the pyramid match kernel (PM) (Nikolentzos et al., 2017), and (6) the
GraphHopper kernel (Feragen et al., 2013). Note that GR can only operate on unlabeled graphs.
The rest of the kernels can handle graphs with discrete node labels, while GraphHopper is the only
kernel that can deal with continuous multi-dimensional node features.

GNNs. We also selected the following GNNs: (1) GCN (Kipf & Welling, 2016), (2) GAT
(Veličković et al., 2017), (3) 1-GNN (Morris et al., 2019), (4) GG-NN (Li et al., 2015), (5) Graph-
SAGE (Hamilton et al., 2017), (6) GIN (Xu et al., 2019), (7) ChebNet (Defferrard et al., 2016), (8)
ARMA (Bianchi et al., 2019), (9) 1-2-GNN (Morris et al., 2019), (10) k-hop GNN (Nikolentzos
et al., 2020), and (11) Provably Powerful GNN (Maron et al., 2019a). To produce graph represen-
tations, we use 3 common pooling functions, namely the sum aggregator, the mean aggregator and
the max aggregator.

4.3 BASELINES

We utilize some simple baselines whose purpose is to understand the extent to which graph kernels
and GNNs can indeed learn representations that capture graph similarity. The first baseline is a
function that randomly computes the similarity of two graphs by sampling a number from [0, 1] with
uniform probability. The second baseline is a constant function. The outputs of this functions is
equal to 1. Using such simple baselines as a reference is crucial since they can provide feedback on
the effectiveness of graph kernels and GNNs in the considered task. If the performance of a GNN or
kernel is close to that of one of the baselines, that would mean that the GNN/kernel fails to encode
accurately graph representations, and therefore, graph similarities.

4.4 EXPERIMENTAL SETTINGS

Normalization. As discussed above, the function defined in equation 1 gives an output in the range
[0, 1]. The similarity of two graphs G1 and G2 is equal to 1 if and only if G1 and G2 are isomorphic
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to each other. We normalize the obtained kernel values as follows such that they also take values in
the range [0, 1]: kij = kij/

√
kii

√
kjj . where kij is the kernel between graphs Gi and Gj . For the

GNNs, we compute the cosine similarity between the graph representations of the penultimate layer
as follows: z>

i zj/||zi|| ||zj || where zi is the representation of graph Gi. Note that the ReLU function
has already been applied to these representations, and thus the cosine similarity also takes values
between 0 and 1. In fact, the two employed normalization schemes (i. e., for kernels and GNNs) are
equivalent since a kernel value corresponds to an inner product between the representations of two
graphs in some Hilbert space.

We should stress that the normalized kernel value and cosine similarity can take a value equal to 1
even if the compared graphs are mapped to different representations. Indeed, if the angle between
the vector representations of two graphs is 0◦, then their normalized kernel value/cosine similarity
is equal to 1. To avoid such a scenario, we could define a distance function between graphs and
accordingly compute the Euclidean distance between the graph representations generated by the
different approaches. However, it turns out that most widely-used learning algorithms compute
the inner products between the input objects or some transformations of these objects. In fact,
when learning with kernels, we usually normalize the kernel matrices using the equation defined
above before feeding to a kernel method such as the SVM classifier. Therefore, we believe that
evaluating the “similarity” of the obtained representations is of higher significance than evaluating
their “distance”.

Evaluation metrics. To assess how well the different approaches approximate the similarity func-
tion defined in equation 1, we employed two evaluation metrics: the Pearson correlation coefficient
and the mean squared error (MSE). The Pearson correlation coefficient measures the linear rela-
tionship between two variables. It takes values between −1 and 1, while a value of 1 denotes total
positive linear correlation. In our setting, a high value of correlation would mean that the approach
under consideration captures the relationships between the similarities (e. g., whether the similarity
of a pair of graphs is greater or lower than that of another pair). The second measure, MSE, is equal
to the average squared difference between the estimated values and the actual values. A very small
value of MSE denotes that the derived similarities are very close to those produced by the func-
tion defined in equation 1. A credible graph representation learning/similarity approach would yield
both a high correlation and a small MSE. The former would ensure that similar/dissimilar graphs
are indeed deemed similar/dissimilar by the considered approach, while the latter would verify that
the similarity values are on par with those produced by the function defined in equation 1. Note that
the correlation between the output of a constant function and the output of equation 1 is not defined
since the values produced by the constant function have a variance equal to zero.

Hyperparameters. For RW, we set λ to 0.01. For GR, we count all the graphlets of size 3. For
the WL kernel, we choose the number of iterations from {1, 2, . . . , 6}. For PM, the dimensionality
of the embeddings d and the number of levels L are set equal to 6 and 4, respectively. For the
GraphHopper kernel, a linear kernel is used on the continuous-valued attributes.

For the GNNs, we use 2 neighborhood aggregation layers. For GraphSAGE, we use the mean
function to aggregate the neighbors of a node. For ChebNet, we use polynomials of order 2, and for
ARMA, we set the number of stacks K to 2 and the depth T also to 2. The hidden-dimension size
of the neighborhood aggregation layers is set equal to 64. We apply the ReLU activation function
to the output of each neighborhood aggregation layer. As mentioned above, we use 3 common
readout functions: sum, mean and max. The output of the readout function is passed on to a fully-
connected layer with 32 hidden units followed by ReLU nonlinearity. The output of the ReLU
function corresponds to the representation of the input graph (i. e., each graph is represented by a
32-dimensional vector). For Provably Powerful GNN, we use a network suffix that consists of an
invariant readout function followed by 2 fully connected layers. To train all neural networks, we
use the Adam optimizer with learning rate 0.001. We set the batch size to 32 and the number of
epochs to 100. We store the model that achieved the best validation accuracy into disk. At the end
of training, the model is retrieved from the disk, and we use it to generate graph representations.

Protocol. For deterministic approaches, we compute the graph similarities once and report the
emerging correlation and MSE. For the remaining approaches (e. g., GNNs, since their parameters
are randomly initialized), we repeat the experiment 10 times and report the average correlation, the
average MSE and the corresponding standard deviations.
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Figure 2: Performance of the different approaches without node features. For GNNs, the different
colors indicate the three pooling functions: sum (•), mean (•), and max (•). The horizontal lines
correspond to the two baselines (random, constant).

Implementations. For the graph kernels, we used the implementations contained in the GraKeL
library (Siglidis et al., 2020). For 1-2 GNN, k-hop GNN, and Provably Poewrful GNN, we use
the publicly available implementations provided by the authors. The remaining GNNs were imple-
mented using the Pytorch Geometric library (Fey & Lenssen, 2019).

4.5 RESULTS

4.5.1 NO FEATURES

In the first set of experiments, we do not use any pre-computed features, and therefore, the emerg-
ing representations/similarities rely solely on the representational capabilities of the different ap-
proaches. Note that all GNNs except Provably Powerful GNN and most kernels require the nodes
to be annotated with either continuous attributes or discrete labels. Therefore, for these approaches,
we annotate each node with a single feature (i. e., the discrete label 1 or the real value 1.0).

For GNNs, we consider two alternatives: (1) we randomly initialize the parameters of the models and
we perform a feedforward pass to generate the graph representations or (2) we randomly initialize the
parameters of the models, we train the models on some independent dataset and then we perform the
feedforward pass to generate the representations. Kernels are, in a sense, unsupervised, and cannot
be trained on any dataset. The obtained results for the two aforementioned cases are illustrated in
Figures 2 and 3. Note that in the second case, the models were trained on the IMDB-BINARY graph
classification dataset (results for two other datasets are given in the Appendix).

In terms of correlation, 1-GNN and GIN are the best-performing approaches followed by GG-NN
and one variant of Chebnet. The 6 kernels along with 2-hop GNN and Provably Powerful GNN
perform slighly worse than the above models. In terms of MSE, the kernels outperform in general
the GNNs. Notably, some kernels such as WL and PM achieve very low values of MSE. On the
other hand, most GNNs fail to outperform the random baseline. Specifically, the only models that
outperform this baseline are 1-GNN, 2-hop GNN, GG-NN with sum pooling, Chebnet with sum
pooling and Provably Powerful GNN with max pooling. With regards to the three pooling functions,
the sum operator seems to outperform the others. Furthermore, it is important to mention that more
powerful architectures (e. g., 1-2-GNN, 2-hop GNN, Provably Powerful GNN) do not necessarily
lead to higher correlation and lower MSE than standard, less expressive GNNs. We next investigate
how the performance of the GNNs changes when the models are first trained on the IMDB-BINARY
dataset. The results are shown in Figure 3. We observe that there is a decrease in correlation, and no
GNN achieves higher correlation than the ones achieved by the WL and PM kernels anymore. On
the other hand, the MSE of most GNNs also decreases. For instance, most GNNs now yield lower
MSEs than the random baseline. However, still, GCN, GAT and GraphSAGE fail to outperform this
baseline.
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Figure 3: Performance of the different approaches without node features. The GNNs were trained
on the IMDB-BINARY dataset, and the different colors indicate the three pooling functions: sum
(•), mean (•), and max (•). The horizontal lines correspond to the two baselines (random, constant).
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Figure 4: Performance of the different approaches with node features. For GNNs, the different
colors indicate the three pooling functions: sum (•), mean (•), and max (•). The horizontal lines
correspond to the two baselines (random, constant).

4.6 THE EFFECT OF NODE FEATURES

In GNN literature, it is common practice to use local features (e. g., degree) as node attributes. In
previous studies, it has been reported that using node degrees as input features leads to an increase in
performance on almost all graph classification datasets (Errica et al., 2020). We next investigate what
is the impact of such features on the learned graph representations. In the first set of experiments,
we assign a single feature to each node, i. e., its degree. In the second set of experiments, each
node is annotated with a 2-dimensional vector where the two elements correspond to its degree and
to the number of triangles in which it participates. Note that the GR kernel cannot handle node
labels/attributes, and hence, it is excluded from the evaluation. Furthemore, all the other kernels
except GraphHopper can only handle discrete node labels. For the first set of experiments, since
degrees are natural numbers, we can treat them as node labels. For the second set of experiments,
we map each unique pair of features (i. e., degree and trangle participation) to a natural number.

Figures 4 and 5 illustrate the obtained results for the case of randomly initialized GNNs and GNNs
trained on IMDB-BINARY, respectively. We observe that GraphHopper, the only kernel that can
naturally handle multi-dimensional continuous node features, takes advantage of the node degree
and triangle participation information since it exhibits a very high correlation and a small MSE. On
the other hand, the quality of the representations learned by the remaining kernels seems to be lower
when these features are taken into account. The addition of the degrees leads to slight increase in
correlation, but also to a large increase in MSE. When both features are considered, there is still a
large increase in MSE, but also a decrease in correlation. This suggests that for kernels that are not
designed to operate on graphs with continuous node attributes, using these features may result into
a decrease in performance. In the case of randomly initialized GNNs, in the first set of experiments,
we observe an increase in the correlation between most models and the considered graph similarity
function. The models, however, reach similar MSE levels to the previous ones, and most of them are
still outperformed by the random baseline. This changes when triangle participation is taken into
account. The correlations remain high, while now all the models outperform the random baseline.
1-2-GNN, 1-GNN and GG-NN achieve the highest levels of correlation, while 2-hop GNN, GG-NN
and Provably Powerful GNN are the best-performing models in terms of MSE. Again, more compli-

7



Under review as a conference paper at ICLR 2021

●

● ●

●

●

●

●
●

●
●●

●

●

●
●

●
● ●

●● ●●

●

●

●
●

●●●

●

●

●

●

●
●

●

●

●

−0.05

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

C
or

re
la

tio
n

●

● ●

●

●

●

●
●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●● ●

●●

●

●
●

●

●

●

−0.05

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

C
or

re
la

tio
n

●

●

●
●

●

●●●

●●●

●

●
● ●

●
●

●
●

● ●●
●

●
●●

●●●

●

●

●

●
●

●

●
●

●

−0.01

0.04

0.09

0.14

0.19

0.24

0.29

0.34

RW SP WL PM Graph
Hopper

GCN GAT 1−GNN Graph
SAGE

GG−NN GIN ChebNet ARMA 1−2−GNN 2−hop
GNN

Provably
Powerful

GNN

M
S

E

●

●

●

●

●

●

●●

●
●●

●
●

●
●

●●

●
●●

●

●● ●
●● ●

●● ●

●

●

●●
●

●●●

−0.01

0.04

0.09

0.14

0.19

0.24

0.29

0.34

RW SP WL PM Graph
Hopper

GCN GAT 1−GNN Graph
SAGE

GG−NN GIN ChebNet ARMA 1−2−GNN 2−hop
GNN

Provably
Powerful

GNN

M
S

E

Figure 5: Performance of the different approaches with node features. The GNNs were trained on
the IMDB-BINARY dataset, and the different colors indicate the three pooling functions: sum (•),
mean (•), and max (•). The horizontal lines correspond to the two baselines (random, constant).

(a) Pair 1: P2 vs. K9. (b) Pair 2: C9 vs. S8. (c) Pair 3: P2 vs. T (9, 3).

(d) Pair 4: C3 vs. T (9, 2). (e) Pair 5: S7 vs. C9. (f) Pair 6: C3 vs. C9.

Figure 6: Performance of 1-GNN with with respect to the different activation functions.

cated models do not necessarily outperform simpler models. When trained on IMDB-BINARY, the
correlation between the models and equation 1 decreases. At the same time, the models yield lower
and slightly higher MSEs in the first and second set of experiments, respectively.

4.6.1 WHICH PAIRS ARE HARD?
We next find for each approach the similarity that deviates most from the one computed using equa-
tion 1. These pairs of graphs can be thought of as the most challenging for a model or kernel. For
each approach, we find the pair of graphs which maximizes the absolute difference between the sim-
ilarity computed using equation 1 and the one produced by the model/kernel. Note that for GNNs,
we focus on the worst-case scenario independent of the pooling function. The different pairs of
graphs are illustrated in Figure 6. Surprisingly, a lot of methods/kernels fail to accurately estimate
the similarity of structurally very dissimilar graphs. For instance, GCN, GAT, GraphSAGE, ARMA,
Chebnet, SP and GraphHopper all found the first two graphs (the path graph P2 and the complete
graph on 9 vertices) to be identical to each other (i. e., similarities equal to 1), while the output
of equation 1 is 0.166. In the case of the two kernels, this is because the implicit vector representa-
tion of one graph is a positive scalar multiple of the representation of the other. With regards to the
GNNs, note that the above models use the mean function to aggregate the representations of their
neighborhoods. When such neighborhood aggregation approaches are followed by mean or max
pooling functions, they produce identical representations for the P2 and K9 graphs. Another pair of
graphs which turns out to be challenging for several approaches is the one consisting of the cycle
graph with 9 vertices and the star graph S8, i. e., a tree with one internal node and 8 leaves. The out-
put of equation 1 for this pair is equal to 0.235, while the similarities produced by all the following
approaches are greater than 0.900: GIN, 1-GNN, GG-NN, 2-hop GNN and RW. The next four pairs
of graphs correspond to the worst-case scenarios for Provably Powerful GNN, 1-2-GNN, PM and
WL, respectively. The similarity between the path graph P2 and the Turán graph T (9, 3) (i. e., 3rd

pair) is 0.192 according to equation 1, while the representations generated by Provably Powerful
GNN yielded a similarity equal to 0.955. Likewise, the output of equation 1 is 0.258 for the 4th pair
of graphs, while 1-2-GNN produced a value equal to 0.922. The star graph S7 along with the cycle
graph with 9 vertices (i. e., 5th pair) led PM to the worst similarity estimation. While equation 1
gave a similarity of 0.251, the normalized kernel value was equal to 0.773. The last pair of graphs,
the cycle graph with 3 vertices and the cycle graph with 9 vertices, turns out to be the hardest for the
WL kernel. While the value of equation 1 is 0.384, the normalized kernel value is equal to 1. Again,
this is due to the fact that the vector representation of one graph is a positive scalar multiple of the
representation of the other.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph Attention Networks. In Proceedings of the 6th International Conference on Learn-
ing Representations, 2018.

Saurabh Verma and Zhi-Li Zhang. Stability and Generalization of Graph Convolutional Neural
Networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1539–1548, 2019.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
Comprehensive Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and
Learning Systems, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? arXiv preprint arXiv:1810.00826, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In International Conference on Learning Representations, 2019.

Pinar Yanardag and SVN Vishwanathan. Deep Graph Kernels. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374,
2015.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hi-
erarchical Graph Representation Learning with Differentiable Pooling. In Advances in Neural
Information Processing Systems, pp. 4800–4810, 2018.

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware Graph Neural Networks. In Proceedings
of the 36th International Conference on Machine Learning, pp. 7134–7143, 2019.

12



Under review as a conference paper at ICLR 2021

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An End-to-End Deep Learning
Architecture for Graph Classification. In Proceedings of the 32nd AAAI Conference on Artificial
Intelligence, pp. 4438–4445, 2018.

A APPENDIX

A.1 EXPANDED RELATED WORK

Graph kernels. Graph kernels have attracted a lot of attention in the past 20 years, and have been
applied to several learning problems on graphs. A graph kernel is a symmetric, positive semidefi-
nite function that maps graphs implicitly or explicitly into some Hilbert space, and then computes
the inner product between the graph representations in that space. Early work in this area includes
functions that compare substructures of graphs that are computable in polynomial time such as ran-
dom walks (Gärtner et al., 2003; Kashima et al., 2003), shortest paths (Borgwardt & Kriegel, 2005)
and subtrees (Ramon & Gärtner, 2003). More recently, research in the field has been directed to-
wards more scalable approaches. This led to the development of the Weisfeiler-Lehman subtree
kernel which employs a relabeling procedure inspired by the Weisfeiler-Lehman test of isomor-
phism (Shervashidze et al., 2011). Several extensions of the Weisfeiler-Lehman kernel have also
been explored in the previous years (Morris et al., 2017; Togninalli et al., 2019; Rieck et al., 2019).
Other recent works use the orthonormal representations associated with the Lovász ϑ number to
produce subgraph representations (Johansson et al., 2014), employ assignment kernels to compare
substructures (Kriege et al., 2016; Nikolentzos et al., 2017), compare the neighborhood subgraphs
of vertices using spectral approaches (Kondor & Pan, 2016), or use randomized binning approaches
(Heimann et al., 2019). Recently, some frameworks have also been proposed for deriving variants of
graph kernels. These frameworks capitalize on recent advances in natural language processing (Ya-
nardag & Vishwanathan, 2015) or on graph decomposition techniques (Nikolentzos et al., 2018a).
For a thorough survey of graph kernels, the interested reader is referred to Nikolentzos et al. (2019).

GNNs. GNNs have recently emerged as another promising family of approaches for performing
machine learning tasks on graphs. These models have attracted a lot of attention in the past few
years. The main advantage of GNNs over graph kernels is that they do not require expensive Gram
matrix computations and that they can naturally handle node and edge attributes (continuous values
in general). Most GNN variants that have been proposed in the past years (Li et al., 2015; Def-
ferrard et al., 2016; Kearnes et al., 2016; Lei et al., 2017; Hamilton et al., 2017; Kipf & Welling,
2017; Velickovic et al., 2018; Zhang et al., 2018) all share the same basic idea, and can be refor-
mulated into a single common framework, known as Message Passing Neural Networks (MPNNs)
(Gilmer et al., 2017). These models employ an iterative message passing procedure, where each
node updates its feature vector by aggregating the feature vectors of its neighbors. This procedure
is typically followed by a pooling phase where a feature vector for the entire graph is produced
using some permutation invariant function. All these models correspond to minor adaptations of
previous works (Sperduti & Starita, 1997; Gori et al., 2005; Scarselli et al., 2009). There have been
proposed several extensions and improvements to the MPNN framework. Most studies have focused
on the message passing procedure and have proposed more expressive aggregation functions (Mur-
phy et al., 2019; Seo et al., 2019; Dasoulas et al., 2020), schemes that incorporate different local
structures or high-order neighborhoods (Jin et al., 2020; Abu-El-Haija et al., 2019), approaches that
utilize node positional information (You et al., 2019), non-euclidian geometry approaches (Chami
et al., 2019), while others have focused on efficiency (Gallicchio & Micheli, 2020). Fewer works
have focused on the pooling phase and have proposed more sophisticated pooling functions (Ying
et al., 2018; Gao & Ji, 2019). Note that there exist GNNs that do not belong to the family of MPNNs
(Niepert et al., 2016; Nikolentzos et al., 2018b; Bai et al., 2019). A survey of recent advancements
in GNN models can be found in Wu et al. (2020).

Expressive power of graph kernels and GNNs. Over the past years, the expessiveness of graph
kernels was assessed almost exclusively from experimental studies. Therefore, still, there is no
theoretical justification on why certain graph kernels perform better than others. From the early
days of the field, it was clear though that the mapping induced by kernels that are computable
in polynomial time is not injective (and thus these kernels cannot solve the graph isomorphism
problem) (Gärtner et al., 2003). Recently, Kriege et al. (2018) proposed a framework to measure the
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expressiveness of graph kernels based on ideas from property testing. It was shown that some well-
established graph kernels such as the shortest path kernel, the graphlet kernel, and the Weisfeiler-
Lehman subtree kernel cannot identify basic graph properties such as planarity or bipartitness.

With the exception of the work of Scarselli et al. (2008), until recently, there has been little attempt to
understand the expressive power of GNNs. Several recent studies have investigated the connections
between GNNs and the Weisfeiler-Lehman (WL) test of isomorphism and its higher-order variants.
For instance, it was shown that standard GNNs do not have more power in terms of distinguishing
between non-isomorphic graphs than the WL algorithm (Morris et al., 2019; Xu et al., 2018). Morris
et al. (2019) proposed a family of GNNs which rely on a message passing scheme between subgraphs
of cardinality k, and which have exactly the same power in terms of distinguishing non-isomorphic
graphs as the set-based variant of the k-WL algorithm. In a similar spirit, (Maron et al., 2019a)
introduced k-order graph networks which are at least as powerful as the folklore variant of the k-
WL graph isomorphism test in terms of distinguishing non-isomorphic graphs. These models were
also shown to be universal (Maron et al., 2019c; Keriven & Peyré, 2019), but require using high order
tensors and therefore are not practical. Chen et al. (2019) show that the two main approaches for
studying the expressive power of GNNS, namely graph isomorphism testing and invariant function
approximation, are equivalent to each other. Futhermore, the authors propose a GNN that is more
powerful than 2-WL. Barceló et al. (2020) rely on a connection between the WL algorithm and first
order logic, and characterize the expressive power of GNNs in terms of classical logical languages.
The impact of random features on the expressive power of MPNNs is considered in Sato et al.
(2020). Nikolentzos et al. (2020) show that standard GNNs cannot identify fundamental graph
properties such as triangle-freeness and connectivity, and they propose a model that can identify
these properties. Murphy et al. (2019) and Dasoulas et al. (2020) take into account all possible
node permutations and produce universal graph representations. The emerging problems becomes
intractable once the number of nodes is large and they propose approximation schemes to make
the computation tractable in practice. Some recent works have studied the generalization properties
of GNNs (Scarselli et al., 2018; Verma & Zhang, 2019; Garg et al., 2020). For a comprehensive
overview of the expressive power of GNNs, the interested reader is referred to Sato (2020).

A.2 EXPECTED VALUE OF SIMILARITY FUNCTION

The similarity function defined in equation 1 is intractable. However, we should mention that if
instead of the maximum over all permutation matrices, we are interested in the expected value, this
can be computed efficiently as follows:

f̄(G1, G2) = EP∼Π

∑n
i=1

∑n
j=1

[
A1 � PA2P

>]
ij

||A1||F ||A2||F
=

∑n
i=1

∑n
j=1

[
A1 � EP∼ΠPA2P

>]
ij

||A1||F ||A2||F
(2)

Furthermore, note that:

EP∼ΠPA2P
> =

1

n!
P1A2P

>
1 +

1

n!
P2A2P

>
2 + . . .+

1

n!
Pn!A2P

>
n! =

2m2

n(n− 1)
Jn (3)

where m2 is the number of edges of G2, n = max(n1, n2) where n1 and n2 are the number of
nodes of G1 and G2, respectively, and Jn is the n × n matrix of ones. Then, from equation 2
and equation 3, we have that:

f̄(G1, G2) =
2m1

2m2/n(n−1)√
2m1

√
2m2

=
2
√
m1m2

n(n− 1)

where m1 and m2 are the number of edges of G1 and G2, respectively. Interestingly, for classes
of graphs where A = PAP> holds for any permutation matrix P , then f(G1, G2) = f̄(G1, G2).
Clearly, the above is true for the class of complete graphs Kn.

A.3 FURTHER EXPERIMETAL RESULTS

A.3.1 IMPACT OF HYPERPARAMETERS

We next will investigate how performance varies with respect to two hyperparameters: (1) the di-
mensionality of the hidden layers, and (2) the number of message passing layers. The greater the
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Figure 7: Performance of 1-GNN with with respect to the dimensionality of the hidden layers.

value of these two hyperparameters, the larger the capacity of the model. Therefore, we expect the
models to produce better and better graph representations as these two hyperparameters increase.
We study the impact of these hyperparameters on the performance of the 1-GNN model. The ob-
tained results are shown in Figures 7 and 8. Note that the model is not trained on any dataset. We
observe that the correlation between 1-GNN and the considered similarity function increases as the
dimensionality of the hidden layers increases. With regards to the MSE metric, strikingly, we ob-
serve that it also slightly increases as the dimensionality of the hidden layers increases. We next
investigate how performance of the 1-GNN model changes as a function of the number of message
passing layers. As can be seen in Figure 8, the correlation between 1-GNN and the proposed func-
tion first increases, while then decreases. The best results are obtained for 3 message passing layers.
On the other hand, MSE generally decreases as the number of message passing layers increases.

A.3.2 IMPACT OF ACTIVATION FUNCTIONS

We also investigate what is the impact of different activation functions on the performance of 1-
GNN. We experiment with four activation functions, namely tanh, sigmoid, ELU and ReLU. We
also use message passing layers that contain no activation functions at all (i. e., linear activation
function). Again, we do not train the model on any dataset. The obtained correlations and MSEs are
given in Figure 9. We can see that ELU and tanh yield in most cases higher correlations and lower
MSEs than the remaining activation functions, while sigmoid is the worst-performing activation
function.

A.3.3 GNNS TRAINED ON MUTAG AND PTC-MR

We next present some results similar to those of Figures 3 and 5. However, we now train the GNNs
on two other standard graph classification datasets: MUTAG and PTC-MR. Note that these datasets
contain node-labeled graphs, however, for the purposes of this study, we ignore these labels. We
first present the results for the case where nodes are not annotated with any pre-computed features.
The results are shown in Figures 10 and 11. We observe that GIN, 1-GNN and 1-2-GNN both
trained on MUTAG and on PTC-MR generate representations that yield high values of correlation,
while the representations produced by GCN and 2-hop GNN lead to the lowest levels of correla-
tion. Interestingly, when GAT is combined with the max or mean pooling functions, its generated
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Figure 8: Performance of 1-GNN with with respect to the number of message passing layers.
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Figure 9: Performance of 1-GNN with with respect to the different activation functions.

representations achieve much lower correlation compared to the case where the model is followed
by the sum aggregator. In terms of MSE, 1-GNN, ARMA, ChebNet, 2-hop-GNN and GIN are
the best-performing models, while GCN, GAT, GraphSAGE and Provably Powerful GNN are the
worst-performing models. For the models trained on PTC-MR, much lower MSE is attained when
the models are followed by the sum pooling function. With regards to the three pooling functions, in
general, the sum operator outperforms the two other operators. For the models that were trained on
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Figure 10: Performance of the different approaches without node features. The GNNs were trained
on the MUTAG dataset, and the different colors indicate the three pooling functions: sum (•), mean
(•), and max (•). The horizontal lines correspond to the two baselines (random, constant).
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Figure 11: Performance of the different approaches without node features. The GNNs were trained
on the PTC-MR dataset, and the different colors indicate the three pooling functions: sum (•), mean
(•), and max (•). The horizontal lines correspond to the two baselines (random, constant).

the PTC-MR dataset, the max operator achieves MSEs comparable or lower than those of the sum
operator, but also achieves smaller correlations than those of the sum operator in almost all cases.

We next evaluate the expressive power of the different models in the case of graphs whose nodes
are annotated with local features such as their degree and the number of triangles in which they
participate. The models are first trained on the two aforementioned datasets (i. e., MUTAG and PTC-
MR), and then, the synthetic graphs are fed into them to produce a vector representation for each one
of those graphs. The results are illustrated in Figures 12 and 13. For both training scenarios, with a
single feature, GraphSAGE, GCN, 1-GNN and GAT achieve the highest correlations in general. The
lowest MSEs emerge from 1-2-GNN, 1-GNN, 2-hop GNN and GraphSAGE. When both features are
passed on to the models, and for models trained on MUTAG, GCN, 1-GNN and ARMA followed
by the sum pooling function yield high values of correlation. In terms of MSE, GCN and 1-GNN
both with sum pooling and 2-hop GNN with max pooling reach the lower values than the remaining
models. For models trained on PTC-MR, Provably Powerful GNN yields the highest correlation
with equation 1, followed by Chebnet, ARMA and GCN, in that order. All the models generally
achieve the same levels of MSE, but ARMA, 1-2-GNN, 2-hopGNN and Provably Powerful GNN
produce slightly lower MSEs than the others. We also observe that the use of the degree as feature
leads to an increase in correlation, while the use of an extra feature (i. e., triangle participation)
leads to a decrease in correlation. In terms of MSE, we can see that generally the use of a single
feature results into a decrease in MSE, while the use of both features leads to a further decrease in
MSE. With regards to the pooling functions, in the case of the models trained on MUTAG, the sum
operator leads to much better performance (i. e., higher correlations and lower MSEs) compare to
the other two operators. In the case of the models trained on PTC-MR, the sum operator still leads to
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Figure 12: Performance of the different approaches with node features. The GNNs were trained on
the MUTAG dataset, and the different colors indicate the three pooling functions: sum (•), mean
(•), and max (•). The horizontal lines correspond to the two baselines (random, constant).
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Figure 13: Performance of the different approaches with node features. The GNNs were trained on
the PTC-MR dataset, and the different colors indicate the three pooling functions: sum (•), mean
(•), and max (•). The horizontal lines correspond to the two baselines (random, constant).

higher correlations in most cases, but in terms of MSE, no pooling function results into consistently
better performance than the others.

18


	Introduction
	Related Work
	Comparing Graphs to Each Other
	Empirical Evaluation
	Dataset
	Selected Approaches
	Baselines
	Experimental Settings
	Results
	No Features

	The Effect of Node Features
	Which Pairs are Hard?


	Appendix
	Expanded Related Work
	Expected Value of Similarity Function
	Further Experimetal Results
	Impact of Hyperparameters
	Impact of Activation Functions
	GNNs Trained on MUTAG and PTC-MR



