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ABSTRACT

Anomaly detection, indicating to identify the anomalies that significantly deviate
from the majority normal instances of data, has been an important role in ma-
chine learning and related applications. Despite the significant success achieved
in anomaly detection on image and text data, the accurate Tabular Anomaly De-
tection (TAD) has still been hindered due to the lack of clear prior structure infor-
mation in the tabular data. Most state-of-the-art TAD studies are along the line of
reconstruction, which first reconstruct training data and then use reconstruction er-
rors to decide anomalies; however, reconstruction on training data can still hardly
distinguish anomalies due to the data entanglement. To address this problem, in
this paper, we propose a novel approach Decomposed Representation Learning
(DRL), to re-map data into a tailor-designed constrained space, in order to capture
the underlying shared patterns of normal samples and differ anomalous patterns
for TAD. Specifically, we enforce the representation of each normal sample in the
latent space to be decomposed into a weighted linear combination of randomly
generated orthogonal basis vectors, where these basis vectors are both data-free
and training-free. Furthermore, we enhance the discriminative capability between
normal and anomalous patterns in the latent space by introducing a novel con-
straint that amplifies the discrepancy between these two categories, supported by
theoretical analysis. Finally, extensive experiments on 40 tabular datasets and 16
competing tabular anomaly detection algorithms show that our method achieves
state-of-the-art performance.

1 INTRODUCTION

Anomaly detection (AD), which aims to identify the anomalies that significantly deviate from the
majority normal instances, is a crucial machine learning task. Tabular data, usually represented as
vectors of heterogeneous features, is a vital data type in AD (Han et al., 2022; Yin et al., 2024) with
numerous applications, including cyber-security (Ahmad et al., 2021), rare disease diagnosis (Fer-
nando et al., 2021; Ye et al., 2023a) and financial fraud detection (Al-Hashedi & Magalingam, 2021).
In most real-world scenarios, labeled anomalies usually need to be manually annotated by domain
experts, which is both expensive and time-consuming, and marking all types of anomalies is usually
impractical (Chandola et al., 2009; Ye et al., 2023b; Guo et al., 2023). Therefore, tabular anomaly
detection (TAD) is usually implemented in a one-class classification setting, where a model is trained
to identify anomalies in the absence of labeled anomalous samples, relying solely on the normal in-
stances available during training (Schölkopf et al., 1999; Sohn et al., 2021; Yin et al., 2024). This
approach fundamentally differs from supervised learning tasks, which have access to examples from
all data classes.

Existing approaches in this literature leverage the assumption that anomalies deviate from character-
istic patterns present in the normal training data. By capturing these normal patterns during training,
one can identify anomalies at the inference time. When considering perceptual data (e.g., image
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and text), many methods (Golan & El-Yaniv, 2018; Liznerski et al., 2020) have demonstrated sig-
nificant success by leveraging the structure of the input data. For example, images can be rotated,
and the ability to distinguish between different rotations varies between anomalies and normal sam-
ples (Golan & El-Yaniv, 2018). However, unlike image or text, tabular data features can have values
with different types (numerical and categorical), ranges and distributions. Thus, there is no prior
information on the structure of tabular data (Borisov et al., 2022; Shenkar & Wolf, 2022; Chang
et al., 2023; Thimonier et al., 2024; Ye et al., 2024). One of the general ideas for TAD is to train
deep learning models that reconstruct training data and use reconstruction error to decide whether a
test datum is normal or anomalous following the assumption that a model can accurately reconstruct
normal samples while failing to reconstruct anomalous ones. Methods (Yin et al., 2024; Thimonier
et al., 2024) built on top of this idea have shown promising performance.

Although fruitful progress has been made in the last several years, capturing the comprehensive nor-
mal patterns that are distinct from anomalous patterns for tabular data remains a challenging task, as
real-world data may exhibit data entanglement between normal and anomalous samples. This paper
develops DRL, a decomposed representation learning framework for TAD that learns the underlying
normal patterns shared among normal samples by re-mapping observations into a tailor-designed
constrained latent space, where normal and anomalous patterns are more effectively distinguished.
To learn the shared information that distinguishes normal samples from anomalies, we enforce each
normal sample’s representation in the latent space to be decomposed into a linear combination of
randomly generated orthogonal basis vectors with sample-specific weights. Notably, these basis
vectors are fixed during training and are data-free. In addition, to enhance the discriminative power
between normal and anomalous patterns within the latent space, we introduce a novel constraint that
amplifies the discrepancy between these two patterns, supported by theoretical analysis.

The contributions of this paper include: 1) Inspired by the effectiveness and popularity of
reconstruction-based approaches in TAD, we propose a novel method that performs representation
decomposition in a constrained latent space, effectively addressing the potential data entanglement
issue between normal and anomalous samples, resulting in significant improvements over existing
methods. 2) We propose a decomposed representation learning framework to enforce that each
normal representation in the latent space could be decomposed into a linear combination of shared
orthogonal basis vectors with sample-specific weights, thereby capturing the underlying unique nor-
mal patterns effectively. Importantly, the choice of basis vectors is data-free and the basis vectors
themselves are training-free. 3) Additionally, we develop a simple and theoretically sound constraint
to further amplify the discrepancy between normal and anomalous patterns within the latent space.
4) We conduct extensive experiments on 40 TAD datasets and 16 competing benchmark algorithms,
and report comprehensive results along with analysis and visualizations. These experiments show
that our method achieves state-of-the-art performance.

2 PRELIMINARIES

Problem Formulation. Following previous works (Yin et al., 2024; Thimonier et al., 2024), we
implement AD in a one-class classification setting, i.e. only normal samples are available during
training. We denote the training set as Dtrain = {xi}Ni=1, where xi ∈ X ⊆ RD, N is the number of
normal samples in the training set and D is the number of input features. The test set Dtest includes
both anomalous and normal samples. The goal of AD is to learn a detection model from Dtrain.
During inference, the detection model takes sample x ∈ Dtest as input and outputs the predicted
anomaly score of x, where a higher score indicates a higher confidence that x is an anomaly.

Reconstruction-based Approaches. These methods (Yin et al., 2024; Thimonier et al., 2024) have
demonstrated promising efficacy in tabular AD by training models to accurately reconstruct normal
samples while failing to reconstruct anomalous ones. Standard reconstruction-based approaches
consider learning a mapping A(·; Θ) : RD → RD to minimize the reconstruction loss within Dtrain.
Typically, A(·; Θ) first maps the sample from observation space to latent space, and then maps it
back to the observation space to obtain the reconstruction of the sample. The Θ can be optimized by
minimizing the reconstruction loss on normal training samples:

min
Θ

1

N

N∑
i=1

d(xi, x̃i) = min
Θ

1

N

N∑
i=1

d(xi, A(xi; Θ)), (1)
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Figure 1: T-SNE visualization for original data space and deep TAD models’ latent space on real-world datasets.
(a-d) are on the Abalone dataset and (e-h) are on the Cardiotocography dataset. “blue” and “orange” points
indicate normal and anomalous samples respectively. (a) and (e) show that the normal and anomalous samples
are entangled in the observed data space. (b) and (f) show the prediction for observations by MCM. In (c)
and (g), which depict the representations learned by MCM, we observe a notable overlap between normal and
anomalous representations in the latent space. In contrast, (d) and (h) demonstrate that our proposed DRL
achieves a more discriminative separation for normal and anomalous representations in the latent space.

where d(xi, x̃i) measures the reconstruction loss for xi, which is often set to be a distance measure-
ment such as the Euclidean distance. The reconstruction loss is typically employed as the anomaly
score to detect anomalies. Recently, MCM (Yin et al., 2024) introduces a learnable masking strat-
egy to the input and aims to reconstruct normal samples well with access to only unmasked entries
of the input, where generating the effective masks is still challenging in this field. Motivated by
the importance of incorporating both feature-feature and sample-sample dependencies in tabular
learning (Kossen et al., 2021; Gorishniy et al., 2024), NPT-AD (Thimonier et al., 2024) trains Non-
Parametric Transformers (Kossen et al., 2021) to reconstruct masked features of normal samples by
utilizing the whole training set. However, NPT-AD involves a high computational cost in terms of
memory and time, due to its reliance on the training set during inference. Both NPT and MCM rely
on the reconstruction about the samples, which usually suffer from the potential data entanglement
in observation space, as shown in Fig. 1 and Fig. 7 of Appendix A.1.

3 METHOD

3.1 MOTIVATION

Despite the effectiveness of aforementioned works based on their specially designed masks and
reconstruction strategies in the observed data space, the issue of potential data entanglement remains
unaddressed, which may impede the ability for TAD. As illustrated in (a) and (e) of Fig. 1, real-world
data may exhibit observation entanglement between normal and anomalous samples. Our empirical
observations indicate that this phenomenon also exists for many other real world tabular datasets
(see Fig. 7 of Appendix A.1). (b) and (f) of Fig. 1 indicate that while MCM (Yin et al., 2024), one
of the best-performing methods, demonstrates promising performance in detecting anomalies, some
mistakes caused by data entanglement persist. Ignoring observation entanglement in TAD under the
one-class classification setting can lead to diminished discriminative power between learned normal
and anomalous patterns, as the overlap between normal and anomalous representations within the
latent space of deep models may obscure the distinction between them, which is illustrated in (c)
and (g) of Fig. 1. We attribute this challenge to the intrinsic heterogeneity of features in tabular data,
which aligns with recent findings (Grinsztajn et al., 2022) indicating that neural networks struggle to
learn irregular patterns, particularly when confronted with numerous uninformative features present
in tabular data. That is to say, using the reconstruction loss about the observed samples to distinguish
the anomalous samples from the normal samples might be insufficient.

3.2 PROPOSED METHOD

To address the above-mentioned challenges, we focus on learning the underlying unique normal
patterns from the representation h = f(x; θf ) produced by a feature extractor f(·; θf ) : RD → RE

and performing representation decomposition in the constrained latent space, where the normal and
anomalous patterns are more discriminative, rather than from the raw observations directly. In the
following, we will elaborate on the specific learning procedure to capture the unique patterns of nor-
mal representations in Section 3.2.1; then, we will provide a constraint to further enhance the dis-
criminative power between normal and anomalous patterns within the latent space in Section 3.2.2;
we also give the overall implementation of the proposed method in Section 3.2.3. As shown in (d)
and (h) of Fig. 1, with our proposed method, the representations of normal and anomalous samples
in the latent space are discriminative. An overview of the proposed framework is depicted in Fig. 2.
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Figure 2: The DRL framework. During training, in step (a), to capture the unique patterns of normal representa-
tions in the latent space, the representation h = f(x; θf ) for each normal sample is enforced by decomposition
loss (Eq. 3) to be decomposed into a linear combination of shared orthogonal basis vectors B = {βk}Kk=1 with
sample-specific weights w, where w is computed by weight learner ϕ(x; θϕ) in step (b); in step (c), a separa-
tion constraint (Eq. 4) is introduced to further enhance the discriminative power between normal and anomalous
patterns within the latent space; in step (d), we incorporate alignment loss (Eq. 5) to preserve intrinsic feature
correlation of x motivated by standard reconstruction-based method. During inference, d(h, h̃) derived from
the decomposition loss (Eq. 3) optimized during training in step (a) is used as the anomaly score.

3.2.1 DECOMPOSED REPRESENTATION LEARNING IN LATENT SPACE

Normal samples, which are drawn from the same distribution, are considered to represent the “nor-
mal” state. Thus, it is reasonable to assume that these samples share common statistical information
that distinguishes them from anomalies. Inspired by techniques from dictionary learning, topic mod-
eling, and matrix factorization (Tošić & Frossard, 2011; Vayansky & Kumar, 2020), we can learn
the shared information by enforcing that each normal sample’s representation is decomposed into a
linear combination of shared basis vectors (analogous to “topics” in topic modeling) with sample-
specific weights (analogous to “topic proportion” in topic modeling). Unlike traditional dictionary
learning or topic modeling mainly performed in the data space, our approach assumes that the repre-
sentation of each normal sample in the latent space can be effectively modeled as a mixture of fixed
basis vectors with specific mixture proportions.

To accurately capture the statistical characteristics of normal samples while distinguishing them
from anomalies, it is crucial that the shared basis vectors are sufficiently diverse to encapsulate
the global structure of the normal data. To this end, we eliminate the dependencies among basis
vectors by leveraging a set of orthogonal vectors as basis vectors B = {βk}Kk=1 ∈ RK×E , where
βk ∈ RE denotes the k-th basis vector and K denotes the number of basis vectors with K <
E. These basis vectors are derived using the classical Gram–Schmidt process (Leon et al., 2013),
which constructs an orthogonal sequence {βk}Kk=1 from a linearly independent sequence {qk}Kk=1 ∈
RK×E by defining βk inductively as follows:

β1 = q1, βk = qk −
k−1∑
i=1

βi · qk

∥βi∥2
βi, k ≥ 2, (2)

where βi · qk denotes the dot product. In practice, we randomly sample {qk}Kk=1 from the standard
Gaussian distribution and then obtain K orthogonal vectors as basis vectors by Eq. 2, which are
fixed during the whole training procedure. Additionally, experimental results demonstrate that ours
is robust and alternative orthogonalization methods can also effectively build basis vectors.

Our objective is to decompose each normal sample representation h = f(x; θf ) into a linear
combination of orthogonal basis vectors B = {βk}Kk=1, weighted by a sample-specific vector
w = {wk}Kk=1 ∈

∑K , where wk denotes the weight associated with the k-th basis vector, and
∑K

denotes the probability simplex in RK . Considering that the weights w should be sample-specific
to encapsulate the unique representation information in the latent space for an observed sample x,
we apply a weight learner ϕ(x; θϕ) : RD → RK to explicitly compute the corresponding weight
vector w. Consequently, a normal sample representation h that can be successfully decomposed in
the latent space is expressed as h̃ =

∑K
k=1 w

kβk, where h̃ serves as the reconstructed version of h
in the latent space. To ensure that normal sample representations are accurately decomposed using
the orthogonal basis vectors, we formulate the optimization problem to minimize the discrepancy
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between h and h̃ as follows:

min
θf ,θϕ

Ldecomposition = min
θf ,θϕ

1

N

N∑
i=1

d(hi, h̃i) = min
θf ,θϕ

1

N

N∑
i=1

d(f(xi; θf ),

K∑
k=1

wk
i βk)

= min
θf ,θϕ

1

N

N∑
i=1

d(f(xi; θf ), ϕ(xi; θϕ)B),

(3)

where N is the number of training samples, d(·, ·) is the distance measurement and {wk
i }Kk=1 =

ϕ(xi; θϕ). By ensuring that each normal training sample’s representation is mapped to a region
where it can be expressed as a linear combination of fixed orthogonal basis vectors, with the as-
sociate weights explicitly computed, this approach effectively models the shared statistical infor-
mation of normal patterns within the latent space. This shared information encompasses two per-
spectives: (i) by utilizing all features as input, we capture the inherent interactions among fea-
tures, thereby acquiring comprehensive feature-feature dependencies among normal training sam-
ples, and (ii) each training sample’s representation is decomposed into a set of shared basis vectors
with sample-specific weights, thereby optimizing the model to capture sample-sample dependencies
among normal training samples.

3.2.2 CONSTRAINT: REPRESENTATION SEPARATION

To further enhance the discriminative power between normal and anomalous patterns within the
latent space, we introduce a constraint designed to amplify the discrepancy between the two patterns.
We now motivate the proposed constraint by giving a closer look at the discrepancy between normal
and anomalous weights w = {wk}Kk=1 ∈ RK computed by weight learner ϕ(x; θϕ).

Proposition 1 Let wn ∈ N and wa ∈ A denote the computed weights of normal and anomalous
samples, where N and A denote the weight sets of normal and anomalous samples, respectively.
Given w ∈

∑K , where
∑K represents the probability simplex in RK , the expected discrepancy

between normal and anomalous weights, Ewn∈N ,wa∈A
[
∥wn −wa∥22

]
, can be amplified by in-

creasing the variance of ∥wn∥2 among N .

Proposition 2 Denoting µwn = Ewn∈N [wn] as the centroid of the normal samples’ weights,
Ewn∈N ,wa∈A

[
∥wa − µwn

∥22
]
−Ewn∈N

[
∥wn − µwn

∥22
]
, can be amplified by increasing the vari-

ance of ∥wn∥2 among N .

The proofs of Proposition 1 and Proposition 2 are provided in Appendix A.11. Since only normal
samples are available during training, we implement this constraint by enforcing separation among
the weights of normal training samples, i.e., we push each normal sample’s corresponding weight
wn away from any other one. By sufficiently separating the normal weights wn, we can promote
increased variance in their L2 norms (Var(∥wn∥2)), thereby promoting greater discrepancy between
normal weights wn and anomalous weights wa. Given that the reconstructed representation h̃ can
be expressed as h̃ =

∑K
k=1 w

kβk, where basis vectors B={βk}Kk=1 are fixed, w could be viewed as
the computed coordinates of h̃ in the subspace consisting of basis vectors. Therefore, the separation
between wn and wa promotes separation among normal and anomalous h̃. This process is achieved
by minimizing the separation loss as follows:

min
θϕ

Lseparation = max
θϕ

1

N(N − 1)

N∑
i,j=1

1{i ̸=j}d(wi,wj)

= min
θϕ

− 1

N(N − 1)

N∑
i,j=1

1{i ̸=j}d(ϕ(xi; θϕ), ϕ(xj ; θϕ)),

(4)

where d(·, ·) is the distance measurement. This constraint amplifies the discrepancy between normal
and anomalous patterns in the latent space, which is verified in Fig. 5 and Appendix A.10.

3.2.3 OVERALL ALGORITHM AND IMPLEMENTATIONS.

Motivated by reconstruction-based methods (Yin et al., 2024; Thimonier et al., 2024), we also in-
troduce a strategy that incorporates the intrinsic feature correlations of the sample observation x
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into representation h in the latent space. This approach helps prevent the model from extracting
task-irrelevant representations while preserving the critical features of the normal data. Specifically,
we minimize the following alignment loss:

min
θf ,θg

Lalignment = min
θf ,θg

1

N

N∑
i=1

d(xi, x̃i) = min
θf ,θg

1

N

N∑
i=1

d(xi, g(hi; θg))

= min
θf ,θg

1

N

N∑
i=1

d(xi, g(f(xi; θf ); θg)),

(5)

where g(·; θg) : RE → RD is the alignment learner, x̃i = g(hi; θg) = g(f(xi; θf ); θg) is the
reconstruction of xi, and d(·, ·) is the distance measurement.

Altogether, DRL aims to minimize the following objective function w.r.t. θf , θϕ, θg during training:

min
θf ,θϕ,θg

Lall = min
θf ,θϕ

Ldecomposition + λ1 min
θϕ

Lseparation + λ2 min
θf ,θg

Lalignment, (6)

where λ1, λ2 indicates the hyper-parameters for balancing the total loss functions. The decomposed
representation learning is achieved via Ldecomposition (Eq. 3) to capture the unique patterns of nor-
mal sample representations in the latent space. Additionally, a separation constraint via Lseparation

(Eq. 4) is introduced to further enhance the discriminative power between normal and anomalous
patterns within the latent space. In practice, the separation constraint is implemented within each
mini-batch to reduce the computational cost. We also introduce a strategy via Lalignment (Eq. 5)
that incorporates the intrinsic feature correlations of the sample observations into representations.
During inference, we derive the anomaly score s = d(h, h̃) = d(f(x; θf ), ϕ(x; θϕ)B) from the
Ldecomposition (Eq. 3) optimized during training, which performs reconstruction for representation
h in the constrained latent space, rather than in the observed data space (typically adopting d(x, x̃)
as anomaly score discussed in Section 2). A higher anomaly score indicates higher confidence that
x is an anomaly. We provide the training and inference process of DRL in Algorithm 1 and 2 of
Appendix A.3 respectively.

Given the potential entanglement between normal and anomalous samples in the observed data
space, our proposed method offers a notable advantage by providing greater flexibility in adjust-
ing representations within the latent space compared to the observed space (Ye et al., 2024; dan
Guo et al., 2022). This flexibility allows us to enforce constraints on the learned representations,
making them more discriminative between normal and anomalous patterns, and thereby capturing
the distinct characteristics of normal representations more effectively. The representation decom-
position process seen by the model only corresponds to the normal samples during training, and a
separation constraint is applied to further enhance the distinction between normal and anomalous
patterns. This approach significantly impedes the ability to exploit representation decomposition for
anomalies, ensuring a more robust discrimination between the two categories.

4 RELATED WORK

Classical Anomaly Detection. One of the main settings for anomaly detection is one-class classifi-
cation, that is identifying anomalies after observing a set of normal samples (Sohn et al., 2021; Yin
et al., 2024). Over the decades, various classical methods have been developed, consistently show-
ing strong performance, particularly with tabular data. Density estimation This approach typically
involves estimating the distribution of normal data using either parametric or non-parametric tech-
niques, allowing for anomaly detection based on sample likelihoods under the estimated distribution.
Traditional models include KDE (Parzen, 1962) and GMM (Roberts & Tarassenko, 1994). Recently,
ECOD (Li et al., 2022) has employed empirical cumulative distribution for this purpose. Addition-
ally, some methods utilize local density estimation to identify anomalies, such as LOF (Breunig
et al., 2000). Classifiation-based methods This category focuses on learning a decision boundary
using only normal data. For example, OCSVM (Schölkopf et al., 1999) creates this boundary by
maximizing the margin between the input data and the origin. Reconstruction-based methods These
methods are among the most widely used as discussed in Section 2, including classical methods such
as PCA (Shyu et al., 2003). For a comprehensive overview of anomaly detection, we recommend
the following surveys (Pang et al., 2021; Ruff et al., 2021; Chandola et al., 2009).
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Deep Learning-based Anomaly Detection. As classical methods struggle to capture complex pat-
terns and relationships in high-dimensional spaces (Pang et al., 2021), recent studies have prompted
a shift toward deep learning methodologies for tabular data. For example, ICL (Shenkar & Wolf,
2022) learns mapping relationships that maximize the mutual information between the feature sub-
set and its rest. RAPP (Kim et al., 2019) computes anomaly scores by comparing observations
and reconstructions in both the input and hidden space of a well-trained AutoEncoder (Chen et al.,
2018). In contrast, our approach re-maps observations into a specially designed constrained space
and decomposes the representations into basis vectors to capture normal patterns. Inspired by dif-
fusion models (Ho et al., 2020), DTE (Livernoche et al., 2024) simplifies the diffusion process to
reconstruct observations for tabular anomaly detection. Recent advancements, including MCM (Yin
et al., 2024) and NPT-AD (Thimonier et al., 2024), are discussed in Section 2. Among these, the
widely used methods primarily belong to reconstruction-based approaches (Kim et al., 2019; Liver-
noche et al., 2024; Yin et al., 2024; Thimonier et al., 2024). However, the issue of data entanglement
between normal and anomalous samples is ignored.

5 EXPERIMENT & ANALYSIS

5.1 EXPERIMENT SETUP

Datasets. We conduct experiments on an extensive benchmark of 40 tabular anomaly detection
datasets selected from Outlier Detection DataSets (ODDS) (Rayana, 2016) and Anomaly Detection
Benchmark (ADBench) (Han et al., 2022), following previous works (Yin et al., 2024; Thimonier
et al., 2024). These datasets span diverse domains, including healthcare, science, and social sci-
ences, and vary in characteristics from low-dimensional, low-scale to high-dimensional, large-scale.
Detailed information about the dataset properties is provided in Appendix A.1.

Evaluation Metrics. Per the literature (Zong et al., 2018; Bergman & Hoshen, 2020; Yin et al.,
2024; Thimonier et al., 2024), we construct the training set by randomly subsampling 50% of the
normal samples. The remaining 50% of the normal samples are then combined with the entire set
of anomalies to form the test set. Following previous work (Han et al., 2022; Yin et al., 2024), we
employ Area Under the Precision-Recall Curve (AUC-PR) and Area Under the Receiver Operating
Characteristic Curve (AUC-ROC) as our evaluation criteria.

Baseline Models. We conduct a comparative analysis between DRL and 16 other prominent meth-
ods in the field of TAD. Specifically, we include classic techniques such as OCSVM (Schölkopf
et al., 1999), KNN (Ramaswamy et al., 2000), LOF (Breunig et al., 2000), PCA (Shyu et al., 2003),
IForest (Liu et al., 2008), and ECOD (Li et al., 2022), which continue to be widely used. In addition,
we compare our method against recent deep learning-based approaches, including DAGMM (Zong
et al., 2018), Deep SVDD (Ruff et al., 2018), AutoEncoder (Chen et al., 2018), RAPP (Kim et al.,
2019), GOAD (Bergman & Hoshen, 2020), NeuTraLAD (Qiu et al., 2021), ICL (Shenkar & Wolf,
2022), DTE (Livernoche et al., 2024), MCM (Yin et al., 2024), and NPT-AD (Thimonier et al.,
2024). More details about the implementation of baseline models can be found in Appendix A.2.

DRL Details. The DRL architecture remains consistent across all datasets. Specifically, the feature
extractor f(·; θf ) : RD → RE and weight learner ϕ(·; θϕ) : RD → RK are implemented as a
simple two-layer fully connected MLP with Leaky ReLU activation function. The last layer of
weight learner is with Softmax activation function. The alignment learner g(·; θg) : RE → RD is
a linear layer. For the distance measurement d(·, ·), we use L2 distance for Ldecomposition (Eq. 3),
Cosine distance for Lseparation (Eq. 4) and Lalignment (Eq. 5). The default number of basis vectors
K is set to 5, and these basis vectors are not updated during training. λ1, λ2 is set to 0.06 and 0.1
for separation loss and alignment loss respectively. The hidden dimension E is set to 128, the batch
size is set to 512, and the number of epochs is set to 200. Adam optimizer is employed, bounded by
an exponentially decaying learning rate controller with 0.05 as initialization. To reduce the effect of
randomness, the reported performance is averaged over 10 independent runs.1

1The source code is available at https://github.com/yyy12-yy/DRL.
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Figure 3: Comparison of all models’ performance and ranking across different datasets in terms of AUC-PR
and AUC-ROC. The red triangles represent the average value over all datasets.
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(b) P-value of AUC-ROC performance
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(c) P-value of AUC-PR ranking
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(d) P-value of AUC-ROC ranking

Figure 4: The wilcoxon test is conducted between different models across all datasets. The significant dif-
ference of different settings are provided. Blue color indicates the corresponding p-value is lower than 0.05
(significant), while white color indicates the corresponding p-value is higher than 0.05 (not significant).

5.2 EMPIRICAL RESULTS AND ANALYSIS

Main Results. We evaluated the performance and model ranking of DRL against 16 mainstream
baseline models across 40 tabular datasets using two evaluation metrics. The results, compris-
ing 2(performance & ranking)×(16+1)(models)×40(datasets)×2(metrics) = 2720 numerical results,
are summarized in boxplots, with each boxplot representing a model’s performance across various
datasets, as illustrated in Fig. 3. Detailed results, average standard deviations, and analyses of the
baseline methods are available in Appendix A.4. Overall, DRL demonstrates state-of-the-art perfor-
mance, achieving an absolute average AUC-PR gain of at least 9.8% compared to other methods.
Notably, DRL consistently enhances performance across datasets, regardless of dimensionality or
size, as shown in Fig. 8 of Appendix A.4. We conduct the Wilcoxon signed-rank test (with α = 0.05)
(Woolson, 2007) to measure the improvement significance, as illustrated in Fig. 4. In all settings,
the improvement of DRL over baseline models is statistically significant at the 95% confidence
level. Additionally, we provide T-SNE visualizations of real-world data in Fig. 7 of Appendix A.1,
revealing that data entanglement is a common issue in many tabular datasets. Even in cases with-
out data entanglement in the observation space, DRL enhances performance by making normal and
anomalous patterns more distinguishable.

Different Basis Vector Initialization Methods. As we utilize a set of orthogonal vectors as basis
vectors to capture normal patterns, we systematically investigate various orthogonalization methods
for generating these vectors, as detailed in Table 1. Specifically, Random indicates that we randomly
sample linearly independent vectors from the standard Gaussian distribution without applying any
orthogonalization. The Householder (Schreiber & Van Loan, 1989) transformation reflects a given
vector across a hyperplane defined by a unit vector, successively generating orthogonal vectors.
Givens (Shalit & Chechik, 2014) rotation applies a rotation matrix to a pair of coordinates, effec-
tively zeroing out one component while preserving orthogonality. SVD denotes Singular Value

Table 1: Comparison of basis vector generation strategies averaged over all datasets. Orthogonalization of basis
vectors is crucial for capturing normal patterns and distinguishing them from anomalies, with different methods
yielding similar robustness. The Gram-Schmidt process achieves the best performance, while learnable basis
vectors underperform due to optimization complexity.

Metrics Random Householder Givens SVD GS (0.5, 1) GS (0, 1.5) GS* (0, 1) GS (0, 1) (ours)

AUC-PR 0.667 (0.031) 0.729 (0.021) 0.736 (0.024) 0.712 (0.023) 0.730 (0.028) 0.732 (0.030) 0.697 (0.032) 0.734 (0.028)
AUC-ROC 0.831 (0.021) 0.851 (0.011) 0.849 (0.013) 0.837 (0.014) 0.851 (0.014) 0.856(0.015) 0.836 (0.024) 0.857 (0.013)
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Table 2: Analysis on the effects of different components of DRL in terms of AUC-PR and AUC-ROC averaged
over 40 datasets. The full results are provided in Table 11 and Table 12 in Appendix A.10.

Training Inference Evaluation Metric
Variants Ldecomposition Lseparation Lalignment Weight learner Ldecomposition Lalignment AUC-PR AUC-ROC

A ✓ × × ✓ ✓ × 0.6344 0.7882
B ✓ × ✓ ✓ ✓ × 0.6844 0.7999
C ✓ ✓ × ✓ ✓ × 0.7081 0.8123
D × × ✓ × × ✓ 0.5222 0.7066
E ✓(Observation) × × ✓ ✓(Observation) × 0.5407 0.7240
F ✓ ✓ ✓ × (Least square) ✓ × 0.6964 0.8205
G ✓(MCM’s representation) × × ✓ ✓(MCM’s representation) × 0.6013 0.7273

H (MCM w/ DRL) ✓ ✓ ✓ ✓ ✓ × 0.6750 0.7837
I ✓ ✓ ✓ ✓ ✓ ✓ 0.6928 0.8286
J ✓ ✓ ✓ ✓ × ✓ 0.6100 0.7720

DRL (ours) ✓ ✓ ✓ ✓ ✓ × 0.7344 0.8574

Decomposition (Klema & Laub, 1980), which decomposes a matrix into orthogonal matrices and a
diagonal matrix capturing the singular values, thus revealing the matrix’s latent structure. GS refers
to the Gram-Schmidt process (Leon et al., 2013) utilized in our study. In this experiment, we sample
linearly independent vectors from a Gaussian distribution, with the values in parentheses represent-
ing the mean and variance. GS* (0, 1) indicates that the basis vectors are learnable during training,
while they remain fixed in other settings.

Effectiveness of Key Components of DRL. We further analyze the effectiveness of key compo-
nents of DRL, as illustrated in Table 2, by comparing DRL against three groups of variants. Variant
A to E explore training DRL with different loss configurations: (1) variant A, that removes both
separation constraint and alignment loss when training DRL; (2) variant B, that removes separation
constraint when training DRL; (3) variant C, that removes alignment loss when training DRL; (4)
variant D, that uses only the alignment loss when training DRL, with the alignment loss directly
serving as the anomaly score during inference; (5) variant E, that first constructs a set of orthogonal
basis vectors, matching the dimensionality of the input features. It then employs the weight learner,
as detailed in Section 3.2.1, to compute sample-specific weights. These weights are used to form a
linear combination of the basis vectors, yielding the reconstructed observations. The decomposition
loss is applied directly to the observations, and this loss serves as the anomaly score. The removal
of any of the components during training degrades the performance of DRL. Notably, the separation
constraint significantly enhances performance, which we attribute to its ability to improve the dis-
criminative power between normal and anomalous patterns within the latent space. Variant F to H
examine training DRL with different architectures: (6) variant F, decomposes each normal sample
representation into a linear combination of orthogonal basis vectors with sample-specific weights,
and computes these weights using least squares instead of a weight learner; (7) variant G, that applies
the decomposition loss to the well-trained representations of MCM, assuming that the fixed normal
representations can be decomposed into orthogonal basis vectors; (8) variant H, that replaces DRL’s
feature extractor and alignment learner with MCM’s encoder and decoder, effectively training MCM
within the DRL framework. While Variant F achieves promising performance, it still underperforms
compared to DRL. DRL benefits from a learnable weight learner that captures the global distribution
of weights across all normal training samples, enabling it to accurately represent complex normal
patterns. Variant G highlights that well-trained reconstruction-based representations may not lie
within the latent space defined by the basis vectors, complicating the modeling of normal informa-
tion. Moreover, variant H shows that while substituting DRL’s components with MCM’s leads to
significant improvements over MCM itself, it still falls short of DRL due to the observation-centric
strategy, which can introduce data entanglement. Variant I and J test the well-trained DRL with dif-
ferent anomaly score configurations during inference: (9) variant I, that uses both decomposition and
alignment losses as anomaly scores during inference; (10) variant J, that only uses alignment loss as
anomaly scores during inference. The results indicate that decomposition loss is more effective than
alignment loss in capturing normal information during inference.

Different Distance Metrics. Besides, we also provide additional experiments to validate the effec-
tiveness of different distance metrics for decomposition loss, separation constraint and alignment
loss in Table 3. By default, we use L2 distance for decomposition loss, cosine distance for separa-
tion loss and alignment loss. For separation and alignment loss, L1, L2, and cosine distance metrics
all yield promising performance, with cosine distance demonstrating relatively superior and more
stable performance. The separation constraint exhibited more variability depending on the distance
metric used. We attribute this to the fact that when maximizing the L1 and L2 distance metrics, the
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Table 3: Analysis on the effects of various distance metrics in terms of AUC-PR across different datasets. The
average results over 40 datasets are also provided. Full results are in Table 13 and Table 14 in Appendix A.10.

Different components Backdoor Fault Imgseg Lympho Pendigits Vowels Wbc Average of 40 data

Decomposition w/ Cosine distance 0.8808 0.6534 0.9036 0.9868 0.9029 0.4307 0.9417 0.7130
Separation w/ L1 distance 0.8784 0.6391 0.9185 0.8391 0.882 0.44 0.9589 0.7007
Alignment w/ L1 distance 0.8868 0.6433 0.9004 0.9762 0.9218 0.3696 0.9401 0.7063
Separation w/ L2 distance 0.8786 0.6444 0.8998 0.8900 0.8735 0.4635 0.9655 0.7080
Alignment w/ L2 distance 0.8886 0.6576 0.9125 1.0000 0.9090 0.4425 0.9590 0.7134

DRL (ours) 0.8915 0.6649 0.9238 1.0000 0.9360 0.4506 0.9742 0.7344

lack of inherent range limitations can lead to excessively large distance values, which hinder the
model’s optimization process.

Discussion. In Fig. 5, we present the average discrepancy between
normal and anomalous observations over all data pairs which is la-
beled as “Original”, alongside the discrepancy of latent representa-
tions under “DRL w/o S” and “DRL”, where “S” denotes the sep-
aration constraint. The results in Fig. 5 indicate that our proposed
method enhances the discriminative distinction between normal and
anomalous patterns within the latent space. Additionally, we visual-
ize the T-SNE of the learned representations from DRL on the An-
nthyroid dataset in Fig. 6. The findings reveal that the observation
entanglement between normal and anomalous samples in existing
reconstruction-based methods can obscure their distinction within
the latent space. In contrast, DRL effectively separates the repre-
sentations into distinct regions, thereby enhancing the discriminative
capability between normal and anomalous patterns.

Original DRL w/o S DRL
1.0

1.5

2.0

2.5

3.0

3.5

Ra
tio

Figure 5: The ratio of the
mean L2 distance between nor-
mal and anomalous samples to
the mean L2 distance among
pairs of normal samples across
all datasets.
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Figure 6: Visualization for original data space and deep TAD models’ latent space on real-world datasets.

Additional Experiments. The computational efficiency is detailed in Appendix A.5. We incorpo-
rate the sensitivity analysis w.r.t. the number of basis vectors, the loss weight λ1, λ2, the number
of training epochs and the number of batch size in Appendix A.6. We also provide the weight visu-
alization of normal and anomalous representations in Appendix A.7, DRL’s robustness to anomaly
contamination in Appendix A.8, and the model performance on different types of anomalies in Ap-
pendix A.9. Furthermore, additional empirical evidence and theoretical analysis are provided in
Appendix A.10 and Appendix A.11, respectively.

6 CONCLUSION

We study the problem of anomaly detection for tabular data, typically implemented in a one-class
classification setting where the training data comprises solely normal samples. Most state-of-the-art
TAD works are along the line of reconstruction; however, reconstruction on training data can still
hardly distinguish anomalies due to the data entanglement. To address this problem, in this paper, we
propose a novel approach Decomposed Representation Learning (DRL), to re-map data into a tailor-
designed constrained space, in order to capture the underlying shared patterns of normal samples and
differ anomalous patterns for tabular anomaly detection. Our approach decomposes each normal
sample’s representation into a weighted linear combination of randomly generated orthogonal basis
vectors, where these basis vectors are both data-free and training-free. We further enhance the
discriminative ability between normal and anomalous patterns through a simple and theoretically
sound constraint. The empirical results demonstrated the effectiveness of DRL for tabular anomaly
detection. Our work can shed some light on developing better algorithms for similar tasks.
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A APPENDIX

In this section, we provide the details of datasets, the implementations of baseline methods, the full
comparison results with baseline methods, the computational efficiency details, hyper-parameter
sensitivity analysis, robustness to anomaly contamination, model performance on different types of
anomalies and visualization. The source code for implementing DRL will be released after the paper
is published.

A.1 DATASETS DETAILS

We experiment on an extensive benchmark of tabular datasets following previous work (Yin et al.,
2024), which spans diverse domains, including healthcare, natural science, social sciences, etc. We
omit the KDD dataset since it presents a certain number of limitations (Silva et al., 2020). Instead,
according to (Thimonier et al., 2024), we include three real-world datasets from (Han et al., 2022)
that display relatively similar characteristics to KDD in terms of dimensions: Fraud, Campaign,
and Backdoor. In addition, we extend the benchmark of (Yin et al., 2024) by including other com-
monly used tabular real-world datasets from ADBench (Han et al., 2022). The dataset properties
are summarized in Table 4. The Table 4 shows the number of samples, the number of features, and
the number of anomalies of each dataset used. Additionally, we provide T-SNE visualizations of
real-world data in Fig. 7.
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Figure 7: T-SNE visualization of real world datasets.
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Table 4: Dataset properties. We use 40 commonly used tabular anomaly detection datasets in this
paper.

Samples Dims Anomalies

Abalone 4177 7 2081
Amazon 10000 768 500
Annthyroid 7200 6 534
Arrhythmia 452 274 66
Backdoor 95329 196 2329
Breastw 683 9 239
Campaign 41188 62 4640
Cardio 1831 21 176
Cardiotocography 2114 21 466
Census 299285 500 18568
Comm.and.crime 1994 101 993
Cover 286048 10 2747
Fault 1941 27 673
Fraud 284807 29 492
Glass 214 9 9
Hepatitis 80 19 13
Imgseg 2310 18 990
Ionosphere 351 33 126
Lympho 148 18 6
Mammography 11183 6 260
Mnist 7603 100 700
Musk 3062 166 97
Optdigits 5216 64 150
Parkinson 195 22 147
Pendigits 6870 16 156
Pima 768 8 268
Satellite 6435 36 2036
Satimage-2 5803 36 71
Shuttle 49097 9 3511
SpamBase 4207 57 1679
Speech 3686 400 61
Thyroid 3772 6 93
Vertebral 240 6 30
Vowels 1456 12 50
WDBC 367 30 10
WPBC 198 33 47
Wbc 378 30 21
Wilt 4819 5 257
Wine 129 13 10
Yeast 1484 8 507
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A.2 BASELINE MODELS DETAILS

We conduct a comparative analysis between DRL and 16 other prominent methods in the field of
TAD, including classical non-deep methods and recent deep learning based methods. Specifically,
OCSVM (Schölkopf et al., 1999), KNN (Ramaswamy et al., 2000), LOF (Breunig et al., 2000),
PCA (Shyu et al., 2003), IForest (Liu et al., 2008) and ECOD (Li et al., 2022) represent classic AD
approaches that continue to maintain popularity. In addition, we compare our method to recent deep
learning based methods, namely DAGMM (Zong et al., 2018), Deep SVDD (Ruff et al., 2018), Au-
toEncoder (Chen et al., 2018), RAPP (Kim et al., 2019), GOAD (Bergman & Hoshen, 2020), Neu-
TraLAD (Qiu et al., 2021), ICL (Shenkar & Wolf, 2022), DTE (Livernoche et al., 2024), MCM (Yin
et al., 2024) and NPT-AD (Thimonier et al., 2024). We use the popular PyOD python package (Zhao
et al., 2019) to implement OCSVM, LOF, PCA, IForest, ECOD, Deep SVDD and AutoEncoder. We
use the DeepOD python library (Xu et al., 2023) to implement GOAD, NeuTraLAD and ICL. The
implementation of the other methods is based on their official open-source code releases. Following
latest works (Yin et al., 2024; Thimonier et al., 2024), We implement all baseline models’ hyper-
parameters following their original papers. All the methods are implemented with identical dataset
partitioning and preprocessing procedures, following previous works (Yin et al., 2024).

A.3 DRL WORKFLOW

Algorithm 1 DRL training workflow.

Input: Training dataset Dtrain, feature extractor f(·; θf ) : RD → RE , weight learner ϕ(·; θϕ),
alignment learner g(·; θg) : RE → RD, orthogonal basis vectors B = {βk}Kk=1 ⊆ RK×E

obtained by Eq. 2, hyper-parameters λ1, λ2;
1: while θf , θϕ, θg has not converged do
2: Sample a mini-batch B from Dtrain;
3: for xi in B do
4: Obtain sample representation hi by f(xi; θf );
5: Calculate the corresponding weights wi in latent space by ϕ(xi; θϕ);
6: Obtain the estimated observation x̃i by g(hi; θg);
7: end for
8: Compute Ldecomposition = 1

|B|
∑

xi∈B d(f(xi; θf ), ϕ(xi; θϕ)B) with Eq. 3;

9: Compute Lseparation = − 1
|B|(|B|−1)

∑|B|
i,j=1 1{i ̸= j} d(ϕ(xi; θϕ), ϕ(xj ; θϕ)) with Eq. 4;

10: Compute Lalignment =
1

|B|
∑

xi∈B d(xi, g(f(xi; θf ); θg)) with Eq. 5;
11: Update θf , θϕ, θg by minimizing Lall = Ldecomposition + λ1Lseparation + λ2Lalignment

with Eq. 6 through gradient descent.
12: end while
Output: Trained feature extractor f(·; θf ), trained weight learner ϕ(·; θϕ).

Algorithm 2 DRL inference workflow.

Input: Test dataset Dtest, trained feature extractor f(·; θf ), trained weight learner ϕ(·; θϕ), orthog-
onal basis vectors B = {βk}Kk=1 ⊆ RK×E obtained by Eq. 2;

1: for xi in Dtest do
2: Obtain sample representation hi by f(xi; θf );
3: Calculate the corresponding weights wi in latent space by ϕ(xi; θϕ);
4: Compute si = d(f(xi; θf ), ϕ(xi; θϕ)B) as anomaly score (higher score indicates higher

confidence that xi is an anomaly) derived from the Ldecomposition (Eq. 3).
5: end for

Output: Anomaly score {si}|Dtest|
i=1 .
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A.4 FULL COMPARISON RESULTS WITH BASELINE METHODS

We compare the performance and model ranking of DRL against 16 mainstream baseline mod-
els across 40 tabular datasets using 2 evaluation metrics. We summarize this large-scale experiment
results (2(performance & ranking)×(16+1)(models)×40(datasets)×2(metrics) = 2720 numerical re-
sults) in boxplots, where each boxplot corresponding to each model shows its results across different
datasets, as shown in Fig. 3. The full results and average standard deviation are provided in table 5
and table 6. We can observe that DRL achieves the highest average performance, and the lowest
average ranking overall datasets for both AUC-PR and AUC-ROC. Specifically, DRL obtains an
absolute average AUC-PR gain of at least 9.8% compared to other methods. Considering the over-
all performance and model ranking across 40 datasets, DRL achieves state-of-the-art performance.
Furthermore, DRL consistently improves performance compared to baseline models w.r.t. both di-
mensionality and data size, as detailed in Fig. 8. Additionally, we conduct Wilcoxon signed-rank test
(with α = 0.05) (Woolson, 2007) to measure the improvement significance, as illustrated in Fig. 4.
In all settings, the improvement of DRL over baseline models is statistically significant at the 95%
confidence level. This demonstrates the superior effectiveness of DRL compared to baseline models
across different datasets. As the representative reconstruction-based methods for tabular anomaly
detection, DTE, MCM and NPT-AD belong to the best-performing baseline methods according to
the results, which is aligned with the results in their original papers. However, as discussed in Sec-
tion 3.1, relying on reconstruction loss from observed samples to differentiate anomalous samples
may be insufficient due to inherent data entanglement. RAPP computes anomaly scores by compar-
ing sample observations with their autoencoder reconstructions in both the input and hidden spaces,
yet it does not address the underlying issue of data entanglement between normal and anomalous
samples. In contrast, DRL enhances anomaly detection in tabular data by learning the shared un-
derlying normal patterns of normal samples through representation decomposition in a constrained
latent space, where normal and anomalous patterns are more discriminative. We provide TSNE
visualizations of real-world data in Fig. 7, and our empirical observations indicate that data entan-
glement is a prevalent issue in many real-world tabular datasets. As shown in table 5 and table 6,
even in cases without data entanglement in the observation space, DRL still improves performance
by making normal and anomalous patterns more distinguishable.
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Table 5: Comparison of AUC-PR (↑) results between baseline methods and DRL on 40 datasets.

OCSVM KNN LOF PCA IForest ECOD DAGMM DeepSVDD AutoEncoder RAPP GOAD NeuTraLAD ICL DTE MCM NPT-AD DRL (ours)

Abalone 0.8459 0.8596 0.813 0.8393 0.8481 0.6554 0.7869 0.7173 0.8295 0.8125 0.8233 0.7768 0.7654 0.4798 0.7471 0.4899 0.885
Amazon 0.105 0.0904 0.1117 0.1072 0.1091 0.104 0.1022 0.1003 0.117 0.1179 0.1086 0.1007 0.1077 0.1115 0.1083 0.0861 0.1206
Annthyroid 0.1831 0.3525 0.4513 0.5657 0.6149 0.4002 0.2189 0.3235 0.5291 0.3348 0.2132 0.5057 0.4114 0.6288 0.3215 0.62 0.6761
Arrhythmia 0.5339 0.6008 0.5277 0.5336 0.5097 0.4461 0.4668 0.6036 0.3029 0.4487 0.4091 0.6237 0.6155 0.4912 0.6107 0.4345 0.627
Backdoor 0.1674 0.7554 0.5138 0.1107 0.0926 0.1552 0.2424 0.7291 0.8435 0.7055 0.0911 0.8716 0.8226 0.6244 0.7049 0.8828 0.8915
Breastw 0.9934 0.9712 0.9923 0.9934 0.9449 0.9522 0.7584 0.9924 0.9896 0.9762 0.8335 0.9117 0.9656 0.8825 0.9952 0.9813 0.9966
Campaign 0.4749 0.4383 0.4459 0.4884 0.4608 0.4705 0.2472 0.2529 0.4857 0.4242 0.203 0.4033 0.4506 0.469 0.604 0.4769 0.5013
Cardio 0.8614 0.758 0.836 0.8628 0.7018 0.3636 0.3089 0.788 0.4778 0.7201 0.6225 0.4535 0.8037 0.6929 0.8489 0.7733 0.8325
Cardiotocography 0.6619 0.6162 0.5732 0.6969 0.6036 0.6968 0.444 0.4602 0.4705 0.6729 0.4647 0.6431 0.5955 0.5334 0.6993 0.6401 0.754
Census 0.2279 0.146 0.2343 0.2004 0.1357 0.1773 0.1066 0.1514 0.1913 0.1703 0.1445 0.1103 0.1949 0.1794 0.242 0.2672 0.2649
Comm.and.crime 0.8371 0.851 0.8519 0.8892 0.894 0.6854 0.7475 0.8239 0.8678 0.8751 0.933 0.9202 0.8962 0.7901 0.8549 0.8668 0.9164
Cover 0.019 0.0961 0.1598 0.0716 0.0362 0.1435 0.1355 0.0229 0.1422 0.1302 0.2071 0.0686 0.0714 0.6373 0.0438 0.0184 0.783
Fault 0.6062 0.6028 0.5101 0.6035 0.5948 0.5171 0.5894 0.563 0.6501 0.6227 0.5872 0.6083 0.5937 0.6393 0.6022 0.7578 0.6649
Fraud 0.349 0.4052 0.4046 0.2366 0.6939 0.4062 0.0099 0.332 0.3611 0.55 0.1249 0.2312 0.596 0.6214 0.5141 0.3868 0.6614
Glass 0.0896 0.1099 0.0923 0.0896 0.0952 0.1113 0.1019 0.0912 0.1079 0.0963 0.0948 0.1491 0.2573 0.2151 0.1905 0.2204 0.167
Hepatitis 0.2815 0.2744 0.3201 0.5828 0.4182 0.4049 0.4063 0.4264 0.4248 0.3006 0.3393 0.369 0.3357 0.6582 0.3372 0.3813 0.6627
Imgseg 0.7883 0.8531 0.8702 0.7724 0.7556 0.7365 0.6409 0.6699 0.8391 0.7871 0.7114 0.8747 0.8916 0.6846 0.8124 0.8644 0.9238
Ionosphere 0.8969 0.9297 0.9591 0.8969 0.9768 0.9713 0.7046 0.867 0.7328 0.8915 0.928 0.9355 0.9777 0.9683 0.9802 0.9812 0.9895
Lympho 0.8107 0.9401 0.9762 1 0.9593 0.8972 0.573 0.9749 0.2709 0.6972 0.7656 0.646 0.6091 0.8677 0.4204 0.9929 1
Mammography 0.4178 0.381 0.4063 0.4165 0.3334 0.538 0.1141 0.419 0.253 0.2944 0.2426 0.1326 0.1894 0.3985 0.4755 0.364 0.8406
Mnist 0.1686 0.761 0.838 0.6499 0.5349 0.3018 0.2742 0.4158 0.279 0.7233 0.7182 0.9021 0.8915 0.5226 0.7782 0.7485 0.887
Musk 0.0614 0.9917 1 1 0.5279 0.982 0.0482 1 1 1 0.5372 1 1 1 0.639 1 1
Optdigits 0.0692 0.8589 0.4363 0.0602 0.157 0.0669 0.0536 0.1159 0.1418 0.3436 0.0633 0.1709 0.1696 0.1534 0.8885 0.4203 0.9356
Parkinson 0.8892 0.7952 0.834 0.9297 0.9595 0.8906 0.8484 0.9192 0.9243 0.8378 0.8413 0.8172 0.8568 0.7304 0.7996 0.9637 0.921
Pendigits 0.5178 0.9692 0.7855 0.3863 0.5133 0.4145 0.0441 0.0616 0.8904 0.7321 0.0259 0.693 0.4039 0.4844 0.8258 0.9671 0.936
Pima 0.7008 0.7098 0.697 0.7008 0.6662 0.5877 0.5956 0.7165 0.7174 0.6962 0.5027 0.6168 0.6965 0.6798 0.7389 0.7527 0.7449
Satellite 0.7778 0.8515 0.8088 0.7778 0.8583 0.8334 0.6866 0.8217 0.8218 0.8136 0.7786 0.8588 0.8799 0.8479 0.8532 0.8576 0.8692
Satimage-2 0.9192 0.9555 0.9692 0.9192 0.8846 0.7775 0.1142 0.9427 0.9688 0.9051 0.9726 0.9684 0.8124 0.6821 0.985 0.9862 0.9703
Shuttle 0.9488 0.937 0.9601 0.9627 0.9172 0.9815 0.4875 0.9818 0.9316 0.9724 0.9545 0.9971 0.9811 0.9403 0.9479 0.9151 0.9819
SpamBase 0.8136 0.7885 0.6764 0.8184 0.8902 0.7126 0.5721 0.7785 0.8253 0.818 0.5534 0.4789 0.6573 0.838 0.8078 0.8433 0.8413
Speech 0.0279 0.0197 0.0315 0.0277 0.0353 0.0287 0.0515 0.04 0.027 0.0262 0.0424 0.0386 0.0335 0.0285 0.038 0.0584 0.0584
Thyroid 0.8134 0.5903 0.7892 0.8134 0.6055 0.6807 0.1095 0.7282 0.8096 0.6655 0.6931 0.7435 0.6575 0.8167 0.8417 0.8179 0.8626
Vertebral 0.1517 0.1239 0.2063 0.1381 0.1342 0.1917 0.1954 0.159 0.1476 0.1544 0.1451 0.1658 0.1598 0.2514 0.1949 0.2279 0.2854
Vowels 0.2969 0.3146 0.3277 0.1051 0.0984 0.1772 0.0843 0.1717 0.3475 0.1183 0.2274 0.1224 0.1574 0.381 0.0977 0.9498 0.4506
WDBC 0.4348 0.9323 0.9573 0.9833 0.9749 0.7734 0.7105 0.9184 0.9591 0.9383 0.9276 0.6372 0.8821 0.6882 0.889 0.9112 1
WPBC 0.3974 0.3882 0.3878 0.394 0.376 0.3525 0.3981 0.3903 0.3848 0.4287 0.3738 0.3631 0.4238 0.4935 0.402 0.4005 0.5017
Wbc 0.8391 0.8022 0.8412 0.8391 0.8573 0.7217 0.2959 0.834 0.8578 0.775 0.3362 0.6051 0.7218 0.3997 0.8887 0.8079 0.9742
Wilt 0.2254 0.1496 0.2233 0.0641 0.0848 0.0768 0.0997 0.0705 0.0867 0.1246 0.1061 0.244 0.1382 0.2541 0.0759 0.0717 0.4543
Wine 0.1424 0.9917 0.1253 0.1325 0.2458 0.3578 0.4907 0.1476 0.1605 0.5852 0.1619 0.9078 0.5659 0.9985 0.9335 0.7746 1
Yeast 0.4803 0.4737 0.4866 0.4678 0.4654 0.4943 0.5411 0.4953 0.4833 0.4869 0.5877 0.5458 0.5097 0.4974 0.4631 0.4888 0.5416

Average AUC-PR 0.4957 0.6109 0.5858 0.5532 0.5391 0.5059 0.3602 0.5254 0.5413 0.5693 0.4599 0.5553 0.5687 0.5815 0.605 0.6362 0.7344
Average ranking 10.25 9.425 8.2875 8.85 9.675 10.775 13.55 10.3625 8.7875 9.3875 11.725 9.0875 8.3875 8.5125 7.475 6.4875 1.975
Win 0 1 1 3 2 0 0 1 1 1 2 3 3 1 1 8 22
Average std 0 0 0 0 0.017 0 0.056 0.038 0.022 0.042 0.015 0.021 0.033 0.048 0.064 0.004 0.028

18



Published as a conference paper at ICLR 2025

Table 6: Comparison of AUC-ROC (↑) results between baseline methods and DRL on 40 datasets.

OCSVM KNN LOF PCA IForest ECOD DAGMM DeepSVDD AutoEncoder RAPP GOAD NeuTraLAD ICL DTE MCM NPT-AD DRL (ours)

Abalone 0.7237 0.7894 0.7154 0.7044 0.7351 0.4867 0.6785 0.5468 0.7019 0.6842 0.7407 0.6992 0.6208 0.4624 0.5822 0.9143 0.8086
Amazon 0.5418 0.5768 0.584 0.549 0.5593 0.5379 0.5256 0.5095 0.6004 0.6095 0.5584 0.5187 0.5596 0.5671 0.5615 0.4617 0.5699
Annthyroid 0.5551 0.6903 0.7216 0.8519 0.9112 0.7845 0.615 0.5678 0.7295 0.6536 0.6008 0.8196 0.6997 0.909 0.6894 0.8682 0.9239
Arrhythmia 0.7689 0.7933 0.7688 0.7684 0.7734 0.7199 0.7283 0.7941 0.5682 0.6676 0.581 0.79 0.8145 0.5912 0.8114 0.7185 0.7742
Backdoor 0.8464 0.9379 0.9344 0.7193 0.7461 0.8385 0.7143 0.861 0.9354 0.9529 0.7228 0.926 0.9154 0.9165 0.9641 0.9554 0.9788
Breastw 0.9938 0.9714 0.9937 0.9938 0.9719 0.9649 0.7605 0.9925 0.9909 0.9777 0.7327 0.9458 0.9725 0.9278 0.9955 0.9848 0.9968
Campaign 0.7626 0.7324 0.7061 0.7707 0.7269 0.7555 0.5785 0.5254 0.8011 0.7348 0.453 0.6982 0.7241 0.7595 0.8902 0.7915 0.7714
Cardio 0.9654 0.8979 0.9562 0.9655 0.922 0.637 0.6951 0.9313 0.567 0.8729 0.6812 0.7349 0.9514 0.8726 0.9603 0.9453 0.9562
Cardiotocography 0.7522 0.6925 0.6449 0.7889 0.7249 0.7889 0.6101 0.5149 0.5227 0.7639 0.4428 0.7177 0.6478 0.6013 0.8001 0.7187 0.84
Census 0.7158 0.6584 0.711 0.7075 0.6015 0.5772 0.4506 0.6327 0.7092 0.6678 0.5615 0.4685 0.6831 0.6962 0.7581 0.7715 0.7714
Comm.and.crime 0.7047 0.7269 0.72 0.7871 0.8044 0.517 0.5956 0.6941 0.7449 0.7682 0.8785 0.8517 0.8213 0.6134 0.7361 0.7621 0.8461
Cover 0.5003 0.8713 0.9121 0.8789 0.7185 0.8932 0.7659 0.5324 0.9277 0.7896 0.6276 0.7042 0.7393 0.9173 0.6095 0.5392 0.9804
Fault 0.5682 0.5795 0.4763 0.5587 0.5609 0.5037 0.5552 0.5342 0.6073 0.6019 0.5742 0.5753 0.5777 0.5864 0.6062 0.7621 0.6279
Fraud 0.9548 0.9235 0.9573 0.9445 0.963 0.8535 0.7271 0.9519 0.9335 0.9256 0.4808 0.8807 0.9107 0.9352 0.9357 0.9565 0.9314
Glass 0.548 0.6141 0.562 0.548 0.5771 0.6235 0.5982 0.5566 0.6088 0.6307 0.5741 0.6312 0.835 0.6964 0.7225 0.7875 0.6969
Hepatitis 0.4955 0.4682 0.5396 0.8122 0.7255 0.6991 0.6407 0.6621 0.5977 0.5701 0.5724 0.6584 0.5618 0.8022 0.5289 0.6629 0.8122
Imgseg 0.7414 0.8723 0.8407 0.6735 0.6859 0.6242 0.5304 0.5348 0.7991 0.7633 0.6824 0.8726 0.8717 0.7252 0.8134 0.8471 0.9093
Ionosphere 0.8765 0.9167 0.9454 0.8765 0.9683 0.9569 0.7041 0.8552 0.6231 0.8965 0.8993 0.9453 0.971 0.9542 0.9726 0.9735 0.984
Lympho 0.9812 0.987 0.9977 1 0.9945 0.9906 0.9343 0.9977 0.7856 0.9648 0.9757 0.9648 0.9546 0.9899 0.9257 0.9993 1
Mammography 0.9003 0.864 0.8922 0.8993 0.822 0.8251 0.7412 0.8879 0.8472 0.8504 0.7348 0.7449 0.6548 0.8862 0.9053 0.8873 0.9455
Mnist 0.5 0.9265 0.9511 0.9022 0.8623 0.7487 0.6119 0.6371 0.5151 0.9289 0.9201 0.9737 0.9646 0.8743 0.9284 0.9436 0.9712
Musk 0.5 0.9917 1 1 0.9521 0.9987 0.3649 1 1 1 0.9543 1 1 1 0.9752 1 1
Optdigits 0.6338 0.9862 0.9665 0.5817 0.8239 0.6145 0.4706 0.7603 0.6694 0.9122 0.5972 0.8471 0.787 0.8238 0.9947 0.9317 0.9972
Parkinson 0.6043 0.4365 0.4206 0.6927 0.768 0.515 0.4828 0.6601 0.6943 0.4915 0.4688 0.4205 0.4747 0.4672 0.3661 0.816 0.6732
Pendigits 0.9636 0.9906 0.9905 0.9437 0.9666 0.9295 0.3982 0.4563 0.9937 0.9764 0.2141 0.9859 0.9142 0.9761 0.9919 0.9987 0.9979
Pima 0.7133 0.6723 0.6913 0.7133 0.6737 0.5834 0.6108 0.7348 0.7163 0.6628 0.4338 0.617 0.6727 0.6788 0.7639 0.7553 0.7651
Satellite 0.6663 0.8139 0.7391 0.6663 0.8026 0.7884 0.7259 0.7659 0.7233 0.7894 0.7374 0.808 0.8549 0.7661 0.7962 0.806 0.832
Satimage-2 0.9817 0.9891 0.9961 0.9817 0.9938 0.965 0.8994 0.9881 0.9979 0.9915 0.9929 0.9979 0.9792 0.9967 0.9992 0.9995 0.9968
Shuttle 0.9969 0.9893 0.9983 0.9936 0.9961 0.9978 0.9049 0.9952 0.9944 0.9982 0.9897 0.9994 0.9935 0.9993 0.9975 0.9931 0.9992
SpamBase 0.7682 0.745 0.613 0.814 0.858 0.6883 0.5395 0.7328 0.8212 0.7776 0.3842 0.3824 0.6042 0.8174 0.8019 0.8068 0.8289
Speech 0.3673 0.3561 0.3759 0.3638 0.3812 0.3596 0.5178 0.5071 0.3633 0.3824 0.5065 0.4809 0.4883 0.3817 0.4409 0.5925 0.5821
Thyroid 0.9855 0.9525 0.9856 0.9855 0.9271 0.8827 0.7149 0.9887 0.978 0.9442 0.8523 0.9701 0.9518 0.9863 0.9804 0.9787 0.9911
Vertebral 0.2654 0.1171 0.4317 0.1746 0.1444 0.4124 0.4128 0.2706 0.2375 0.3058 0.2262 0.3121 0.2821 0.543 0.3767 0.5347 0.6216
Vowels 0.7557 0.8174 0.8564 0.5229 0.5902 0.6147 0.5581 0.5734 0.7905 0.6311 0.7247 0.7239 0.702 0.8142 0.6529 0.9935 0.8511
WDBC 0.9637 0.9728 0.9978 0.9989 0.9983 0.9793 0.9661 0.9879 0.9976 0.9959 0.995 0.9568 0.9898 0.9852 0.9419 0.9953 1
WPBC 0.47 0.4854 0.477 0.4686 0.4975 0.4706 0.4847 0.4956 0.4942 0.5487 0.4591 0.4709 0.5482 0.5916 0.5105 0.5424 0.6198
Wbc 0.9667 0.9536 0.967 0.9667 0.9715 0.8747 0.7999 0.9633 0.9737 0.9299 0.4806 0.9133 0.908 0.8054 0.9814 0.9619 0.9963
Wilt 0.7923 0.7295 0.7668 0.2607 0.4595 0.3748 0.5011 0.342 0.4633 0.6053 0.5589 0.8328 0.5332 0.6291 0.3741 0.3505 0.9357
Wine 0.485 0.9917 0.4083 0.4467 0.6571 0.7433 0.8833 0.5067 0.5356 0.8672 0.5366 0.9753 0.915 0.9944 0.9538 0.9622 1
Yeast 0.4483 0.4366 0.4571 0.4324 0.4095 0.4464 0.5297 0.479 0.4503 0.4645 0.6 0.5488 0.5076 0.4458 0.4259 0.4691 0.512

Average AUC-ROC 0.7181 0.7729 0.7667 0.7427 0.7556 0.7141 0.6382 0.6982 0.7253 0.7637 0.6427 0.7591 0.7639 0.7747 0.7756 0.8185 0.8574
Average ranking 10.3 9.3 7.8 9.4 8.975 11.625 13.425 10.65 8.9125 8.6625 12.5 8.9125 9.0125 8.1875 7.275 5.6125 2.45
Win 0 0 1 3 2 0 0 1 1 2 2 3 4 1 1 9 20
Average std 0 0 0 0 0.012 0 0.047 0.034 0.032 0.024 0.009 0.017 0.026 0.029 0.046 0.003 0.013
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Figure 8: Model performance w.r.t. different sample size and dimensionality. We categorized all
datasets into four intervals based on sample size: ≤ 1000, ≥ 1000 & ≤ 10000, ≥ 10000 & ≤
100000, ≥ 100000 & ≤ 300000. For dimensionality, the intervals are defined as: ≤ 25, ≥ 25 & ≤
50, ≥ 50 & ≤ 100, ≥ 100 & ≤ 1000. We provide the average performance for each interval across
different datasets.
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A.5 COMPUTATIONAL COST

We provide the runtime in seconds of DRL for the training and inference phase on a single GTX
3090 GPU, as shown in Table 7.

Table 7: Runtime in seconds of DRL for the training and inference phase.

Abalone Amazon Annthyroid Arrhythmia Backdoor Breastw Campaign Cardio

Train 2.4855 8.6840 6.5400 0.3842 77.9249 0.3972 32.1423 1.8538
Inference 0.0095 0.0225 0.0248 0.0027 0.1546 0.0030 0.0660 0.0091

Cardiotocography Census Comm.and.crime Cover Fault Fraud Glass Hepatitis

Train 1.7553 247.3347 0.9703 236.5932 1.0365 233.1834 0.3029 0.2812
Inference 0.0085 0.5250 0.0106 0.3724 0.0109 0.3743 0.0022 0.0025

Imgseg Ionosphere Lympho Mammography Mnist Musk Optdigits Parkinson

Train 1.6713 0.3324 0.2868 8.6523 5.2673 2.5212 3.8596 0.2775
Inference 0.0060 0.0025 0.0022 0.0256 0.0145 0.0060 0.0127 0.0029

Pendigits Pima Satellite Satimage-2 Shuttle SpamBase Speech Thyroid

Train 5.8137 0.7752 3.6661 4.9489 40.0011 2.6029 2.8119 3.5806
Inference 0.0103 0.0067 0.0172 0.0163 0.0929 0.0175 0.0128 0.0094

Vertebral Vowels WDBC WPBC Wbc Wilt Wine Yeast

Train 0.3003 1.5365 0.3250 0.2854 0.3436 4.0054 0.2858 0.9532
Inference 0.0023 0.0065 0.0024 0.0024 0.0024 0.0080 0.0022 0.0091

Table 8: Runtime in seconds of DRL and other baseline methods for the training and inference phase
averaged over all datasets.

OCSVM KNN LOF PCA IForest ECOD DAGMM DeepSVDD AutoEncoder RAPP GOAD NeuTraL ICL MCM NPT-AD DRL

Train 224.5780 16.7915 13.9255 0.4415 1.3064 0.2819 5.2457 45.5777 45.3946 20.5383 326.4836 107.5398 188.0606 78.2938 811.0800 23.6743
Inference 95.4769 236.1779 15.1572 0.4116 0.3713 0.6268 1.6679 0.3185 0.1404 0.0930 77.8951 4.2395 11.0595 1.8856 182.5385 0.0472

A.6 HYPER PARAMETER SENSITIVITY ANALYSIS

We incorporate the sensitivity analysis for the number of basis vectors, the loss weight λ1, λ2, the
number of training epochs, and the number of batch size in Fig. 9.

A.7 REPRESENTATION WEIGHT OF WEIGHT LEARNER VISUALIZATION

The weight visualization in Fig. 10 shows that the separation constraint effectively diversifies the
weights of normal representations, while the weights for anomalous representations differ signifi-
cantly from those of normal representations.

A.8 ROBUSTNESS TO ANOMALY CONTAMINATION

Our method is implemented in a one-class classification setting where the training set consists en-
tirely of normal data. However, real-world anomaly detection applications frequently encounter
contaminated training sets, requiring models to be robust against small levels of dataset contami-
nation. To analyse the robustness of DRL w.r.t anomaly contamination, we conduct experiments
in the case of anomaly contamination ratio of 0%, 1%, 2%, 3%, 4% and 5%, as shown in Fig. 11.
The results indicate that DRL exhibits greater stability and consistently outperforms other models,
demonstrating its superior robustness to anomaly contamination.

A.9 PERFORMANCE ON DIFFERENT TYPES OF ANOMALIES

While extensive public datasets are available for benchmarking, they often contain a mix of differ-
ent types of anomalies Existing works (Han et al., 2022) have summarized four common types of
anomalies and proposed methods for generating them. Following this framework, we conducted
experiments to generate synthetic anomalies based on the realistic Shuttle dataset and assess the

20



Published as a conference paper at ICLR 2025

3 5 7 9 11 13 15 17 19 40 60 80100

0.65

0.70

0.75

0.80

0.85

AUC-PR
AUC-ROC

(a) Number of basis vectors

0.06  0.2  0.4  0.6  0.9  1

0.725

0.750

0.775

0.800

0.825

0.850

AUC-PR
AUC-ROC

(b) Weight λ1 for separation loss

 0.2  0.4  0.6  0.8  1

0.725

0.750

0.775

0.800

0.825

0.850

AUC-PR
AUC-ROC

(c) Weight λ2 for alignment loss

50 100 150 200 250 300 350
0.49
0.54
0.59
0.64
0.69
0.74
0.79
0.84

AUC-PR
AUC-ROC

(d) Number of training epochs

32 64 128 256 512 1024
0.700

0.725

0.750

0.775

0.800

0.825

0.850

AUC-PR
AUC-ROC

(e) Number of batch size

Figure 9: Sensitivity analysis. The results are averaged over all datasets.
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Figure 10: Weight visualization of normal and anomalous representations. For each subfigure, the
left 20 columns and right 20 columns correspond to the weights of normal and anomalous repre-
sentations respectively. For each dataset, we randomly select 20 normal samples and 20 anomalous
samples for visualization.
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Figure 11: Model performance w.r.t. different contamination ratios (the percentage of anomalies in
the training set).
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performance of DRL on these specific anomaly types. For details on the generation process of the
four types of anomalies, please refer to (Han et al., 2022). The four types of anomalies are as fol-
lows: Local anomalies refer to the anomalies that are deviant from their local neighborhoods; Global
anomalies are samples scattering throughout the entire space, while being far from the normal data
distribution; Dependency anomalies represent samples that do not adhere to the correlation struc-
ture among normal data; Clustered anomalies refer to groups of data with similar characteristics but
significantly different from normal data. The results on these different anomaly types are provided
in Table 9. The results show that DRL exhibits strong performance across all anomaly types.

Table 9: The AUC-PR results on different types of anomalies.

Iforest LOF OCSVM ECOD NeuTralAD ICL MCM NPT-AD DRL

Local 0.3494 0.5256 0.3847 0.4324 0.4247 0.3284 0.5103 0.5125 0.6742
Cluster 0.9888 0.9772 0.9909 0.9272 0.9995 1 1 1 1

Dependency 0.6333 0.325 0.5 0.625 0.1213 0.3333 0.6429 0.673 0.6913
Global 0.9992 0.9453 0.9847 0.9996 0.999 0.9992 1 1 1

A.10 ADDITIONAL EXPERIMENT RESULTS

Table 10: The comparison between E
[
∥wa − µwn

∥22
]

and E
[
∥wn − µwn

∥22
]

under the influence of
separation loss over all datasets. wn and wa denote the computed weights of normal and anomalous
samples respectively. µwn

= E [wn], represents the the center of normal weights.

abalone amazon annthyroid arrhythmia backdoor breastw campaign cardio Cardiotocography census

w/o separation
E
[
∥wa − µwn∥2

2

]
0.2550 0.1126 0.1717 0.5577 0.1916 0.1738 0.0057 0.3347 0.2055 0.0270

E
[
∥wn − µwn∥2

2

]
0.1411 0.1021 0.0744 0.3935 0.0995 0.0307 0.0041 0.1836 0.1439 0.0274

Gap 0.1139 0.0105 0.0973 0.1642 0.0921 0.1431 0.0016 0.1511 0.0616 -0.0004

w/ separation
E
[
∥wa − µwn∥2

2

]
0.5647 0.3276 0.3049 0.6160 0.2893 0.2080 0.8078 0.3935 0.2411 0.8362

E
[
∥wn − µwn∥2

2

]
0.2316 0.1928 0.1859 0.4333 0.1678 0.0480 0.1964 0.2077 0.1739 0.1206

Gap 0.3331 0.1348 0.119 0.1827 0.1215 0.16 0.6114 0.1858 0.0672 0.7156

comm.and.crime cover fault fraud glass Hepatitis imgseg ionosphere lympho mammography

w/o separation
E
[
∥wa − µwn∥2

2

]
0.3816 0.2953 0.1154 0.1011 0.1766 0.0853 0.0645 0.1679 0.3146 0.2532

E
[
∥wn − µwn∥2

2

]
0.0794 0.0537 0.1353 0.0233 0.1570 0.0737 0.0655 0.0676 0.0437 0.1768

Gap 0.3022 0.2416 -0.0199 0.0778 0.0196 0.0116 -0.001 0.1003 0.2709 0.0764

w/ separation
E
[
∥wa − µwn∥2

2

]
0.7966 0.3140 0.1681 0.1914 0.3291 0.1919 0.3160 0.1949 0.4917 0.4266

E
[
∥wn − µwn∥2

2

]
0.1136 0.0668 0.1574 0.1135 0.2207 0.1749 0.1422 0.0853 0.1512 0.2022

Gap 0.683 0.2472 0.0107 0.0779 0.1084 0.017 0.1738 0.1096 0.3405 0.2244

mnist musk optdigits Parkinson pendigits pima satellite satimage-2 shuttle SpamBase

w/o separation
E
[
∥wa − µwn∥2

2

]
0.7646 0.2715 0.0612 0.4004 0.0537 0.4218 0.1488 0.0981 0.3905 0.1306

E
[
∥wn − µwn∥2

2

]
0.6229 0.1382 0.0553 0.2336 0.0399 0.3810 0.1460 0.0493 0.1179 0.0542

Gap 0.1417 0.1333 0.0059 0.1668 0.0138 0.0408 0.0028 0.0488 0.2726 0.0764

w/ separation
E
[
∥wa − µwn∥2

2

]
0.7950 0.3669 0.0807 0.5102 0.1953 0.4723 0.1966 0.1601 0.4801 0.3845

E
[
∥wn − µwn∥2

2

]
0.6390 0.1457 0.0653 0.2582 0.1527 0.4199 0.1672 0.0676 0.1548 0.1060

Gap 0.156 0.2212 0.0154 0.252 0.0426 0.0524 0.0294 0.0925 0.3253 0.2785

speech thyroid vertebral vowels WDBC WPBC wbc Wilt wine yeast

w/o separation
E
[
∥wa − µwi

∥2
2

]
0.0422 0.2963 0.0336 0.0736 0.3867 0.0403 0.3776 0.0769 0.7894 0.0631

E
[
∥wn − µwn∥2

2

]
0.0333 0.0958 0.0504 0.1161 0.0757 0.0432 0.0830 0.0808 0.5375 0.0672

Gap 0.0089 0.2005 -0.0168 -0.0425 0.311 -0.0029 0.2946 -0.0039 0.2519 -0.0041

w/ separation
E
[
∥wa − µwn∥2

2

]
0.2306 0.4663 0.0991 0.1912 0.4423 0.2614 0.4883 0.2243 0.8883 0.2191

E
[
∥wn − µwn∥2

2

]
0.1303 0.1142 0.0645 0.1472 0.0893 0.0621 0.1037 0.1129 0.5874 0.1091

Gap 0.1003 0.3521 0.0346 0.044 0.353 0.1993 0.3846 0.1114 0.3009 0.11
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Figure 12: The T-SNE visualization of representation h by feature extractor f and the reconstructed
representation h̃ by linear combination of basis vectors wB over all datasets. hn and ha correspond
to normal and anomalous representations respectively.
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Figure 13: T-SNE visualization of normal and anomalous representations extracted by the feature
extractor f , illustrating the impact of separation loss across all datasets. Each pair of subfigures cor-
responds to the same dataset; for instance, the first and second subfigures in the first row correspond
to representations without and with separation loss, respectively.

24



Published as a conference paper at ICLR 2025

Representation of RAPP

abalone

Representation of GOAD

abalone

Representation of MCM

abalone

Representation of DRL

abalone

Representation of RAPP

amazon

Representation of GOAD

amazon

Representation of MCM

amazon

Representation of DRL

amazon

Representation of RAPP

annthyroid

Representation of GOAD

annthyroid

Representation of MCM

annthyroid

Representation of DRL

annthyroid

Representation of RAPP

arrhythmia

Representation of GOAD

arrhythmia

Representation of MCM

arrhythmia

Representation of DRL

arrhythmia

Representation of RAPP

backdoor

Representation of GOAD

backdoor

Representation of MCM

backdoor

Representation of DRL

backdoor

Representation of RAPP

breastw

Representation of GOAD

breastw

Representation of MCM

breastw

Representation of DRL

breastw

Representation of RAPP

campaign

Representation of GOAD

campaign

Representation of MCM

campaign

Representation of DRL

campaign

Representation of RAPP

cardio

Representation of GOAD

cardio

Representation of MCM

cardio

Representation of DRL

cardio

Representation of RAPP

Cardiotocography

Representation of GOAD

Cardiotocography

Representation of MCM

Cardiotocography

Representation of DRL

Cardiotocography

Representation of RAPP

census

Representation of GOAD

census

Representation of MCM

census

Representation of DRL

census

Representation of RAPP

comm.and.crime

Representation of GOAD

comm.and.crime

Representation of MCM

comm.and.crime

Representation of DRL

comm.and.crime

Representation of RAPP

cover

Representation of GOAD

cover

Representation of MCM

cover

Representation of DRL

cover

Representation of RAPP

fault

Representation of GOAD

fault

Representation of MCM

fault

Representation of DRL

fault

Representation of RAPP

fraud

Representation of GOAD

fraud

Representation of MCM

fraud

Representation of DRL

fraud

Representation of RAPP

glass

Representation of GOAD

glass

Representation of MCM

glass

Representation of DRL

glass

Representation of RAPP

Hepatitis

Representation of GOAD

Hepatitis

Representation of MCM

Hepatitis

Representation of DRL

Hepatitis

Representation of RAPP

imgseg

Representation of GOAD

imgseg

Representation of MCM

imgseg

Representation of DRL

imgseg

Representation of RAPP

ionosphere

Representation of GOAD

ionosphere

Representation of MCM

ionosphere

Representation of DRL

ionosphere

Representation of RAPP

lympho

Representation of GOAD

lympho

Representation of MCM

lympho

Representation of DRL

lympho

Representation of RAPP

mammography

Representation of GOAD

mammography

Representation of MCM

mammography

Representation of DRL

mammography

Figure 14: T-SNE Visualization of different deep TAD models’ latent representations across all
datasets (the former 20 datasets). This figure serves as an extension of Fig. 1, with each group of
four subfigures corresponding to the same dataset.
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Figure 15: T-SNE Visualization of different deep TAD models’ latent representations across all
datasets (the latter 20 datasets). This figure serves as an extension of Fig. 1, with each group of four
subfigures corresponding to the same dataset.
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Figure 16: Progression of E
[
∥wn −wa∥22

]
and Var(∥wn∥2) during training. The results could

verify Proposition 1 in Section 3.2.2. wn and wa denote the computed weights of normal and
anomalous samples respectively.
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Figure 17: Visualization of test samples’ anomaly score by DRL with and without separation loss
as training progresses. We report the average anomaly score of normal and anomalous test samples
respectively. The anomaly score is calculated by decomposition loss (Eq. 3).
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Figure 18: Effect of separation loss on decomposition loss (Eq. 3) convergence. We report the
average decomposition loss of training samples. The dataset dimension is as follows, breastw: 9;
Hepatitis: 19; ionosphere: 33; lympho: 18; musk: 166; satellite: 36; SpamBase: 57; satimage-2:
36; speech: 400.
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Figure 19: Effect of separation loss on overall training loss (Eq. 6) convergence. We report the
average overall training loss of training samples. The dataset dimension is as follows, breastw: 9;
Hepatitis: 19; ionosphere: 33; lympho: 18; musk: 166; satellite: 36; SpamBase: 57; satimage-2:
36; speech: 400.
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Table 11: Full analysis on the effects of different components in DRL in terms of AUC-PR. This
table serves as an extension of Table 2.

A B C D E F G H I J DRL (ours)

Abalone 0.8764 0.8786 0.8804 0.7281 0.6711 0.8827 0.7974 0.8453 0.8573 0.7621 0.885
Amazon 0.1067 0.1079 0.1119 0.0139 0.1073 0.1125 0.1027 0.1160 0.1215 0.1096 0.1206

Annthyroid 0.4534 0.5666 0.6775 0.3213 0.2802 0.6702 0.4729 0.5326 0.5629 0.6260 0.6761
Arrhythmia 0.6261 0.6266 0.6267 0.4174 0.4257 0.5967 0.5413 0.5952 0.627 0.5827 0.627
Backdoor 0.7504 0.8742 0.8845 0.5214 0.1093 0.841 0.5174 0.7487 0.8941 0.8787 0.8915
Breastw 0.9974 0.9975 0.9979 0.8959 0.9828 0.9981 0.9388 0.9939 0.9965 0.8956 0.9966

Campaign 0.4772 0.4995 0.5209 0.3968 0.1423 0.4875 0.4120 0.4742 0.4863 0.4264 0.5013
Cardio 0.8261 0.8671 0.8676 0.6247 0.8732 0.809 0.7663 0.8275 0.8322 0.7026 0.8325

Cardiotocography 0.7543 0.7543 0.755 0.6165 0.6128 0.7197 0.6678 0.7103 0.754 0.7147 0.754
Census 0.1667 0.2339 0.2731 0.1918 0.4062 0.1717 0.1927 0.2474 0.2642 0.1469 0.2649

Comm.and.crime 0.917 0.9179 0.9183 0.7525 0.7524 0.89 0.8415 0.8957 0.917 0.8111 0.9164
Cover 0.8044 0.8264 0.8602 0.286 0.0107 0.8821 0.7110 0.7692 0.783 0.6998 0.783
Fault 0.6245 0.6372 0.6454 0.5143 0.5939 0.6425 0.5667 0.6227 0.6563 0.6059 0.6649
Fraud 0.0703 0.4723 0.6597 0.3105 0.2165 0.5905 0.3987 0.6608 0.7586 0.7773 0.6614
Glass 0.0959 0.1052 0.1242 0.1076 0.0972 0.0969 0.1068 0.1550 0.167 0.0792 0.167

Hepatitis 0.5056 0.5138 0.5533 0.4155 0.6289 0.6467 0.0159 0.6248 0.6186 0.6421 0.6627
Imgseg 0.9088 0.9153 0.9306 0.6685 0.6954 0.9161 0.6947 0.9079 0.9098 0.8318 0.9238

Ionosphere 0.9804 0.9814 0.9827 0.9748 0.9039 0.9779 0.9225 0.9889 0.9909 0.8135 0.9895
Lympho 0.8179 0.8734 0.9762 0.8151 1 0.9151 0.9686 0.9970 1 0.8278 1

Mammography 0.3237 0.5114 0.5135 0.1945 0.5104 0.8107 0.2743 0.3196 0.3344 0.6452 0.8406
Mnist 0.882 0.8894 0.8894 0.6568 0.1092 0.7681 0.8167 0.8861 0.887 0.6484 0.887
Musk 0.9274 0.9533 1 0.8983 1 1 0.9637 0.9885 1 0.0327 1

Optdigits 0.6387 0.6405 0.6578 0.1194 0.0521 0.854 0.6032 0.6429 0.6459 0.7712 0.9356
Parkinson 0.92 0.9209 0.921 0.8221 0.9311 0.9199 0.7982 0.8347 0.921 0.9318 0.921
Pendigits 0.5909 0.6647 0.815 0.2225 0.4575 0.7704 0.7594 0.8010 0.7102 0.7157 0.936

Pima 0.7448 0.7449 0.745 0.6105 0.6905 0.6904 0.6602 0.7049 0.7449 0.6053 0.7449
Satellite 0.8428 0.8521 0.8652 0.7484 0.7711 0.8489 0.7857 0.8061 0.8634 0.7856 0.8692

Satimage-2 0.2661 0.9621 0.9748 0.8812 0.9154 0.9293 0.9295 0.8725 0.9668 0.8340 0.9703
Shuttle 0.974 0.9796 0.9849 0.7824 0.9656 0.965 0.9113 0.9452 0.9823 0.8714 0.9819

SpamBase 0.8437 0.8486 0.8489 0.7133 0.8186 0.8157 0.7918 0.7865 0.8342 0.8401 0.8413
Speech 0.0482 0.055 0.0608 0.0321 0.0304 0.0466 0.0435 0.0455 0.0525 0.0245 0.0584
Thyroid 0.7967 0.7976 0.8364 0.5174 0.4413 0.839 0.4143 0.8063 0.8236 0.7357 0.8626
Vertebral 0.2216 0.2224 0.2242 0.1469 0.18 0.1726 0.2322 0.2460 0.2457 0.1689 0.2854
Vowels 0.3518 0.3993 0.4007 0.3411 0.1422 0.442 0.3429 0.3819 0.1964 0.3160 0.4506
WDBC 1 1 1 0.9 0.9909 0.9909 0.9894 0.9808 1 0.1167 1
WPBC 0.4126 0.4345 0.4696 0.338 0.4126 0.4068 0.4173 0.4439 0.3747 0.4574 0.5017
Wbc 0.9405 0.9522 0.9527 0.8159 0.8531 0.8119 0.9256 0.9408 0.9742 0.9111 0.9742
Wilt 0.4074 0.412 0.4226 0.195 0.3372 0.4207 0.4100 0.4295 0.4474 0.5401 0.4543
Wine 1 1 1 0.9909 1 1 0.9696 0.9184 1 0.9898 1
Yeast 0.4847 0.4864 0.4952 0.3882 0.5083 0.5073 0.3765 0.5064 0.5099 0.5240 0.5416

Average 0.6344 0.6844 0.7081 0.5222 0.5407 0.6964 0.6013 0.6750 0.6928 0.6100 0.7344
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Table 12: Full analysis on the effects of different components in DRL in terms of AUC-ROC. This
table serves as an extension of Table 2.

A B C D E F G H I J DRL (ours)

Abalone 0.7575 0.7633 0.7638 0.6373 0.5582 0.7963 0.6050 0.5976 0.7833 0.7531 0.8086
Amazon 0.4891 0.5075 0.5171 0.4861 0.5497 0.5465 0.5466 0.5806 0.5227 0.5386 0.5699

Annthyroid 0.7381 0.8321 0.8927 0.7371 0.7211 0.8047 0.6219 0.6959 0.8805 0.7925 0.9239
Arrhythmia 0.7339 0.734 0.7341 0.6754 0.5584 0.7342 0.8022 0.8093 0.7541 0.5867 0.7742
Backdoor 0.929 0.9291 0.9425 0.8507 0.718 0.8995 0.9185 0.9646 0.9787 0.9759 0.9788
Breastw 0.9574 0.9574 0.9579 0.8957 0.9818 0.998 0.9721 0.9665 0.9967 0.8413 0.9968

Campaign 0.7176 0.7637 0.7684 0.7114 0.7874 0.7336 0.6750 0.9199 0.7793 0.7247 0.7714
Cardio 0.9135 0.9263 0.9263 0.8112 0.9712 0.9659 0.8734 0.9404 0.9561 0.8676 0.9562

Cardiotocography 0.8 0.8001 0.8005 0.7529 0.6859 0.8167 0.6358 0.8225 0.82 0.8195 0.8400
Census 0.6084 0.6897 0.7691 0.5964 0.837 0.5856 0.6709 0.7615 0.7509 0.6210 0.7714

Comm.and.crime 0.8047 0.8055 0.8075 0.6332 0.5696 0.8028 0.8330 0.7512 0.8192 0.7436 0.8461
Cover 0.9479 0.9501 0.9502 0.8694 0.1528 0.9908 0.6772 0.6223 0.9604 0.9627 0.9804
Fault 0.5459 0.5505 0.5728 0.4811 0.5475 0.6273 0.5314 0.6017 0.6239 0.6079 0.6279
Fraud 0.8534 0.8545 0.8996 0.7343 0.9403 0.944 0.9031 0.9258 0.9102 0.9149 0.9314
Glass 0.5382 0.5425 0.5921 0.5192 0.5858 0.5836 0.7161 0.6846 0.6269 0.5790 0.6969

Hepatitis 0.6885 0.693 0.7881 0.6919 0.81 0.7059 0.5361 0.5353 0.7466 0.7276 0.8122
Imgseg 0.8516 0.8718 0.8722 0.7681 0.5608 0.8751 0.7869 0.8323 0.889 0.8636 0.9093

Ionosphere 0.9306 0.932 0.9353 0.8685 0.8838 0.9666 0.9506 0.9743 0.9274 0.8322 0.9840
Lympho 0.9483 0.9506 0.9577 0.893 1 0.993 0.9176 0.9470 1 0.9507 1.0000

Mammography 0.8124 0.8605 0.8754 0.6967 0.8574 0.8999 0.8942 0.9034 0.8621 0.7484 0.9455
Mnist 0.9295 0.9321 0.9321 0.8219 0.2673 0.875 0.6193 0.9161 0.9312 0.9164 0.9712
Musk 0.9546 0.9573 0.96 0.8999 1 1 0.8621 0.9818 1 0.6706 1.0000

Optdigits 0.9254 0.9302 0.9305 0.7737 0.4667 0.9487 0.7806 0.9948 0.9653 0.8000 0.9972
Parkinson 0.6247 0.6315 0.6318 0.5715 0.6976 0.6658 0.3728 0.4927 0.6532 0.7035 0.6732
Pendigits 0.9372 0.9392 0.9534 0.8031 0.9449 0.8833 0.9430 0.9694 0.9903 0.9577 0.9979

Pima 0.725 0.7251 0.7253 0.6204 0.6857 0.7243 0.6671 0.7506 0.7451 0.6231 0.7651
Satellite 0.7575 0.7653 0.7858 0.7064 0.6594 0.824 0.7486 0.8099 0.8173 0.7569 0.8320

Satimage-2 0.9038 0.9573 0.9573 0.8992 0.9789 0.9953 0.9629 0.9865 0.9955 0.9247 0.9968
Shuttle 0.9588 0.959 0.9594 0.8992 0.9919 0.9965 0.9951 0.9846 0.9993 0.9885 0.9992

SpamBase 0.7967 0.8035 0.8039 0.7543 0.8148 0.8066 0.7621 0.8049 0.8118 0.8071 0.8289
Speech 0.5775 0.5804 0.5848 0.3215 0.4268 0.5867 0.4622 0.4830 0.5631 0.4541 0.5821
Thyroid 0.942 0.9425 0.9477 0.862 0.8319 0.9876 0.9522 0.9831 0.9832 0.9288 0.9911
Vertebral 0.4616 0.4708 0.4781 0.1381 0.4032 0.3657 0.2511 0.4726 0.5254 0.5540 0.6216
Vowels 0.8097 0.8131 0.8355 0.7871 0.6506 0.934 0.6313 0.7652 0.7504 0.7562 0.8511
WDBC 0.96 0.96 0.96 0.9 0.9994 0.9994 0.9380 0.9466 1 0.8832 1.0000
WPBC 0.4956 0.4998 0.5023 0.4235 0.5451 0.5599 0.5022 0.5167 0.5034 0.5930 0.6198
Wbc 0.9504 0.9528 0.9531 0.8606 0.9713 0.9511 0.7803 0.9821 0.9763 0.8174 0.9963
Wilt 0.8794 0.8861 0.8866 0.6467 0.8752 0.9357 0.4442 0.3820 0.8736 0.8827 0.9357
Wine 0.96 0.96 0.96 0.8983 1 1 0.9041 0.9597 1 0.8717 1.0000
Yeast 0.4109 0.4163 0.4206 0.3655 0.4712 0.5084 0.4451 0.3294 0.4706 0.5379 0.5120

Average 0.7882 0.7999 0.8123 0.7066 0.7240 0.8205 0.7273 0.7837 0.8286 0.7720 0.8574
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Table 13: Full analysis on the effects of different distance metrics in DRL in terms of AUC-PR. This
table serves as an extension of Table 3.

Decomposition Separation Alignment Separation Alignment DRL (ours)w/ Cosine distance w/ L1 distance w/ L1 distance w/ L2 distance w/ L2 distance

Abalone 0.8350 0.8792 0.8535 0.876 0.8631 0.885
Amazon 0.0984 0.1091 0.1094 0.1006 0.1028 0.1206

Annthyroid 0.6824 0.6551 0.6484 0.6494 0.6497 0.6761
Arrhythmia 0.6165 0.5900 0.5852 0.5697 0.5924 0.627
Backdoor 0.8808 0.8784 0.8868 0.8786 0.8886 0.8915
Breastw 0.8851 0.9961 0.9957 0.9958 0.9943 0.9966

Campaign 0.4972 0.4344 0.4678 0.4609 0.4811 0.5013
Cardio 0.8253 0.8158 0.7921 0.8123 0.8209 0.8325

Cardiotocography 0.7318 0.7430 0.7458 0.7316 0.7415 0.754
Census 0.2109 0.2358 0.2421 0.2204 0.2333 0.2649

Comm.and.crime 0.8903 0.8538 0.9079 0.8692 0.903 0.9164
Cover 0.7663 0.7134 0.7793 0.7423 0.7613 0.783
Fault 0.6534 0.6391 0.6433 0.6444 0.6576 0.6649
Fraud 0.6097 0.6739 0.6551 0.6297 0.6444 0.6614
Glass 0.2792 0.1134 0.1187 0.1449 0.097 0.167

Hepatitis 0.6486 0.5816 0.6453 0.6179 0.6574 0.6627
Imgseg 0.9036 0.9185 0.9004 0.8998 0.9125 0.9238

Ionosphere 0.9526 0.9092 0.9549 0.9539 0.969 0.9895
Lympho 0.9868 0.8391 0.9762 0.8901 1 1

Mammography 0.8145 0.7645 0.8211 0.7972 0.8041 0.8406
Mnist 0.8579 0.8893 0.7912 0.8243 0.835 0.887
Musk 0.9705 0.8125 0.8484 0.9335 0.951 1

Optdigits 0.9035 0.9358 0.9350 0.9493 0.947 0.9356
Parkinson 0.9175 0.9442 0.9237 0.9476 0.9314 0.921
Pendigits 0.9029 0.8820 0.9218 0.8735 0.909 0.936

Pima 0.6978 0.7398 0.7440 0.7486 0.7584 0.7449
Satellite 0.8426 0.8364 0.8212 0.8499 0.8099 0.8692

Satimage-2 0.9185 0.9174 0.9648 0.9345 0.9491 0.9703
Shuttle 0.9622 0.9318 0.9718 0.9674 0.9671 0.9819

SpamBase 0.8327 0.8629 0.8113 0.8852 0.8205 0.8413
Speech 0.0545 0.0310 0.0342 0.0398 0.0408 0.0584
Thyroid 0.8561 0.8113 0.8210 0.8209 0.8299 0.8626
Vertebral 0.2312 0.2681 0.2542 0.2686 0.2781 0.2854
Vowels 0.4307 0.4400 0.3696 0.4635 0.4425 0.4506
WDBC 0.9954 0.9928 1.0000 0.93 0.9319 1
WPBC 0.4896 0.4911 0.4843 0.4984 0.4943 0.5017
Wbc 0.9417 0.9589 0.9401 0.9655 0.959 0.9742
Wilt 0.4146 0.4384 0.4105 0.413 0.4238 0.4543
Wine 1.0000 1.0000 0.9714 1 1 1
Yeast 0.5308 0.5010 0.5049 0.5206 0.4817 0.5416

Average 0.7130 0.7007 0.7063 0.708 0.7134 0.7344
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Table 14: Full analysis on the effects of different distance metrics in DRL in terms of AUC-ROC.
This table serves as an extension of Table 3.

Decomposition Separation Alignment Separation Alignment DRL (ours)w/ Cosine distance w/ L1 distance w/ L1 distance w/ L2 distance w/ L2 distance

Abalone 0.7934 0.7744 0.7610 0.7691 0.7748 0.8086
Amazon 0.5525 0.5413 0.5649 0.5109 0.5258 0.5699

Annthyroid 0.8828 0.8342 0.8931 0.8672 0.9031 0.9239
Arrhythmia 0.7667 0.7309 0.7376 0.7296 0.742 0.7742
Backdoor 0.9607 0.9036 0.9248 0.9339 0.9372 0.9788
Breastw 0.9888 0.9932 0.9958 0.9961 0.9944 0.9968

Campaign 0.7646 0.7423 0.7188 0.7229 0.736 0.7714
Cardio 0.9327 0.9110 0.9586 0.9139 0.9236 0.9562

Cardiotocography 0.8134 0.7912 0.7276 0.7805 0.6999 0.84
Census 0.7659 0.6987 0.7083 0.7169 0.7354 0.7714

Comm.and.crime 0.8346 0.7802 0.8075 0.7976 0.8155 0.8461
Cover 0.9742 0.9417 0.9297 0.9394 0.952 0.9804
Fault 0.6495 0.5632 0.6057 0.5749 0.6028 0.6279
Fraud 0.9248 0.9243 0.9330 0.9362 0.9417 0.9314
Glass 0.6785 0.6729 0.6724 0.6887 0.6736 0.6969

Hepatitis 0.7936 0.7163 0.8032 0.733 0.8281 0.8122
Imgseg 0.9010 0.6974 0.7933 0.8724 0.882 0.9093

Ionosphere 0.9794 0.9685 0.9562 0.9501 0.9065 0.984
Lympho 0.9965 0.9507 0.9977 0.9005 1 1

Mammography 0.9473 0.8969 0.8956 0.8891 0.8753 0.9455
Mnist 0.9709 0.9686 0.9417 0.9352 0.9464 0.9712
Musk 0.9921 0.9006 0.9908 0.9295 0.9619 1

Optdigits 0.9631 0.8779 0.8706 0.8757 0.8908 0.9972
Parkinson 0.6688 0.7287 0.6738 0.7423 0.6984 0.6732
Pendigits 0.9712 0.8971 0.9321 0.9136 0.9275 0.9979

Pima 0.7607 0.7524 0.7505 0.7495 0.7773 0.7651
Satellite 0.8596 0.7916 0.7999 0.7952 0.8021 0.832

Satimage-2 0.9335 0.8948 0.9696 0.9191 0.988 0.9968
Shuttle 0.9779 0.9860 0.9976 0.8803 0.9973 0.9992

SpamBase 0.8496 0.8717 0.7980 0.8696 0.818 0.8289
Speech 0.5123 0.4773 0.5173 0.5078 0.4901 0.5821
Thyroid 0.8935 0.9424 0.9856 0.9619 0.9879 0.9911
Vertebral 0.6276 0.5505 0.5848 0.5546 0.5857 0.6216
Vowels 0.8009 0.7824 0.8255 0.7909 0.7999 0.8511
WDBC 0.9749 0.9732 1.0000 0.9542 0.9955 1
WPBC 0.6096 0.5325 0.5702 0.5438 0.5796 0.6198
Wbc 0.9925 0.8801 0.9636 0.9483 0.9702 0.9963
Wilt 0.5033 0.7463 0.8637 0.8795 0.8407 0.9357
Wine 1.0000 1.0000 0.9933 1 1 1
Yeast 0.5078 0.4622 0.4857 0.4602 0.4668 0.512

Average 0.8318 0.8012 0.8225 0.8109 0.8243 0.8574
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A.11 THEORETICAL ANALYSIS

Proposition 1 Let wn ∈ N and wa ∈ A denote the computed weights of normal and anomalous
samples, where N and A denote the weight sets of normal and anomalous samples, respectively.
Given w ∈

∑K , where
∑K represents the probability simplex in RK , the expected discrepancy

between normal and anomalous weights, Ewn∈N ,wa∈A
[
∥wn −wa∥22

]
, can be amplified by in-

creasing the variance of ∥wn∥2 among N .

Proof. The expected discrepancy between normal and anomalous weights is formulated as:

E
[
∥wn −wa∥22

]
=E

[
(wn −wa)

T(wn −wa)
]
= E

[
∥wn∥22

]
+ E

[
∥wa∥22

]
− 2E

[
wT

nwa

]
=Var(∥wn∥2) + E2 [∥wn∥2] + E

[
∥wa∥22

]
− 2E

[
wT

nwa

]
≥Var(∥wn∥2) + E2

[
1√
K

]
+ E

[
(

1√
K

)2
]
− 2E [∥wn∥2∥wa∥2]

≥Var(∥wn∥2) +
2

K
− 2E [1 ∗ 1] = Var(∥wn∥2) +

2

K
− 2,

(7)

where Var(·) denotes the variance, w is a probability simplex as discussed above and satisfies∑K
k=1 w

k = 1 and 0 ≤ wk ≤ 1, ∥w∥2 =
√∑K

k=1(w
k)2 ≥

∑K
k=1 wk

√
K

= 1√
K

is given by Arith-
metic Mean-Geometric Mean Inequality (Bhatia & Kittaneh, 2000), E

[
wT

nwa

]
≤ E

[
|wT

nwa|
]
≤

E [∥wn∥2∥wa∥2] is given by Cauchy–Schwarz inequality (Bhatia & Davis, 1995), and ∥w∥2 ≤ 1
arises from the condition about the simplex. The lower bound of E

[
∥wn−wa∥22

]
is given by

Var(∥wn∥2) + 2
K − 2. To increase this lower bound, we can enhance Var(∥wn∥2).

Proposition 2 Let wn ∈ N and wa ∈ A denote the computed weights of normal and anoma-
lous samples, where N and A denote the weight sets of normal and anomalous samples, respec-
tively. Given w ∈

∑K , where
∑K represents the probability simplex in RK , denoting µwn =

Ewn∈N [wn] as the centroid of the normal samples’ weights, Ewn∈N ,wa∈A
[
∥wa − µwn

∥22
]
−

Ewn∈N
[
∥wn − µwn∥22

]
, can be amplified by increasing the variance of ∥wn∥2 among N .

Proof. Ewn∈N ,wa∈A
[
∥wa − µwn∥22

]
− Ewn∈N

[
∥wn − µwn∥22

]
is formulated as:

E
[
∥wa − µwn∥22

]
− E

[
∥wn − µwn∥22

]
=E

[
∥wa − µwn∥22 − ∥wn − µwn∥22

]
=E

[
(wa − µwn)

T(wa − µwn)− (wn − µwn)
T(wn − µwn)

]
=E

[
wT

awa − 2wT
a µwn + µT

wn
µwn − (wT

nwn − 2wT
nµwn + µT

wn
µwn)

]
=E

[
wT

awa +wT
nwn − 2wT

nwn + 2wT
nµwn

− 2wT
a µwn

]
=E

[
∥wa∥22

]
+ E

[
∥wn∥22

]
− 2E

[
∥wn∥22

]
+ 2E

[
wT

nµwn
−wT

a µwn

]
=E

[
∥wa∥22

]
+ Var(∥wn∥2) + E2 [∥wn∥2]− 2E

[
∥wn∥22

]
+ 2E

[
wT

nµwn

]
− 2E

[
wT

a µwn

]
=Var(∥wn∥2) + E

[
∥wa∥22

]
+ E2 [∥wn∥2]− 2E

[
∥wn∥22

]
+ 2E

[
wT

nµwn

]
− 2E

[
wT

a µwn

]
≥Var(∥wn∥2) + E

[
(

1√
K

)2
]
+ E2

[
1√
K

]
− 2E [∥wn∥2∥wn∥2]− 2E [∥wa∥2∥µwn

∥2]

≥Var(∥wn∥2) + E
[
(

1√
K

)2
]
+ E2

[
1√
K

]
− 2E [1 ∗ 1]− 2E [1 ∗ 1]

=Var(∥wn∥2) +
2

K
− 4,

(8)

where Var(·) denotes the variance, ∥w∥2 =
√∑K

k=1(w
k)2 ≥

∑K
k=1 wk

√
K

= 1√
K

is given by Arith-
metic Mean-Geometric Mean Inequality (Bhatia & Kittaneh, 2000), E

[
wT

a µwn

]
≤ E

[
|wT

a µwn
|
]
≤

E [∥wa∥2∥µwn
∥2] is given by Cauchy–Schwarz Inequality (Bhatia & Davis, 1995), µwn

∈
∑K is

given by wn ∈
∑K , and ∥w∥2 ≤ 1 arises from the conditions

∑K
k=1 w

k = 1 and 0 ≤ wk ≤ 1.
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Therefore the lower bound of Ewn∈N ,wa∈A
[
∥wa − µwn

∥22
]
−Ewn∈N

[
∥wn − µwn

∥22
]

is given by
Var(∥wn∥2) + 2

K − 4. To increase this lower bound, we can enhance Var(∥wn∥2).

A.12 LIMITATION

The primary limitation of the current DRL method is that it is designed specifically for tabular
anomaly detection. Although our method can be used to different data types for the anomaly detec-
tion task by introducing representation decomposition, we may need to design the specific architec-
ture for the weight learner and alignment learner due to the difference between data types. In the
future, we plan to explore its application to other data types, where incorporating prior structural
knowledge from these data types might be a possible solution.
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