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ABSTRACT

Minimizing the space complexity of entity representations without the loss of
information makes data science procedures computationally efficient and effective.
For the entities with the tree structure, hyperbolic-space-based representation
learning (HSBRL) has successfully reduced the space complexity of representations
by using low-dimensional space. Nevertheless, it has not minimized the space
complexity of each representation since it has used the same dimension for all
representations and has not selected the best dimension for each representation.
This paper, for the first time, constructs a sparse learning scheme to minimize the
dimension for each representation in HSBRL. The most significant difficulty is
that we cannot construct a well-defined sparse learning scheme for HSBRL based
on a coordinate system since there is no canonical coordinate system that reflects
geometric structure perfectly, unlike in linear space. Forcibly applying a linear
sparse learning method on a coordinate system of hyperbolic space causes a non-
uniform sparsity. Another difficulty is that existing Riemannian gradient descent
cannot reach a sparse solution since the algorithm oscillates on a non-smooth
function, which is essential in sparse learning. To overcome the above issue, for
the first time, we geometrically define the sparseness and sparse regularization in
hyperbolic space, to achieve geometrically uniform sparsity. Also, we propose
the first optimization algorithm that can avoid the oscillation problem and obtain
sparse representations in hyperbolic space by geometric shrinkage-thresholding.

1 INTRODUCTION

Data science applies a composition of mathematical operations, called algorithms, to solve real-life
issues. For mathematical operations to handle real-world entities, we need their mathematical repre-
sentations. Representation learning (RL) aims to obtain those entities’ mathematical representations
that reflect their semantic meaning. As an interface between the real world and data science, RL has
been applied to various areas, e.g., machine translation and sentiment analysis for natural language
(Mikolov et al., 2013; Pennington et al., 2014; Bojanowski et al., 2017; Ganea et al., 2018a), and com-
munity detection and link prediction for social network data (Hoff et al., 2002; Perozzi et al., 2014;
Tang et al., 2015b;a; Grover & Leskovec, 2016), pathway prediction of biochemical network (Dale
et al., 2010; MA Basher & Hallam, 2021), and link prediction and triplet classification for knowledge
base (Nickel et al., 2011; Bordes et al., 2013; Riedel et al., 2013; Nickel et al., 2016; Trouillon et al.,
2016; Ebisu & Ichise, 2018). The fact that data science handles real entities throughout mathematical
representations implies that reducing the space complexity of representations will benefit the whole
of data science. Recent studies have shown that hyperbolic-space-based RL (HSBRL) can obtain
effective low-dimensional representations, typical low space complexity representations, if the entities
have the tree structure (Nickel & Kiela, 2017; Ganea et al., 2018b; Nickel & Kiela, 2018; Tay et al.,
2018; Sala et al., 2018; Gu et al., 2019; Suzuki et al., 2019; Tifrea et al., 2019; Yu & De Sa, 2019;
Law et al., 2019; Mathieu et al., 2019; Balazevic et al., 2019; Tabaghi & Dokmanic, 2020; Chami
et al., 2020; Sonthalia & Gilbert, 2020; Kyriakis et al., 2021; Suzuki et al., 2021a;b). Still, existing
HSBRL methods have not minimized the space complexity of each representation since they have
used the same dimension for all representations and have not selected the best space complexity for
each entity. Specifically, it would be more efficient to allocate high space complexity only for repre-
sentations in non-tree-like parts of the data, if the data structure has tree-like parts and non-tree-like
parts. For minimizing each representation’s space complexity, sparse learning has been effective for
linear-space-based machine learning. Sparse learning aims to obtain representations filled with the
most zero elements to the extent that it does not lose the essential information. Typically, we have
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implemented sparse learning by the 1-norm regularization, which optimizes the sum of the original
loss function of the problem and the 1-norm regularization term. The 1-norm regularization has
mainly been developed in many application areas, such as time-frequency data analysis (Donoho &
Johnstone, 1995; Chen et al., 2001), natural image processing (Olshausen & Field, 1996), and visual
tracking (Liu et al., 2010). In the context of the linear model, the 1-norm regularization’s statistical
property has also been well studied (Tibshirani, 1996; Chen et al., 2001; Friedman et al., 2010) as well
as geometric property (Donoho & Tanner, 2009a;b; 2010). Also, in statistics and machine learning
communities, it has been intensively studied from theoretical perspectives (Ng, 2004; Shalev-Shwartz
& Tewari, 2009; Tomioka et al., 2011; Zhang et al., 2016b) and applications for precision matrix
learning (Friedman et al., 2008), neural-network-based learning (Liu et al., 2017b; Alizadeh et al.,
2020), Ising model learning (Kuang et al., 2017), and transfer learning (Takada & Fujisawa, 2020).
However, the above work is all for linear space; sparse learning has not been proposed for HSBRL.
This paper aims to establish a sparse learning scheme for HSBRL. We have the following three
challenges in establishing the scheme.

Firstly, defining sparsity in hyperbolic space is non-trivial. In linear space, we can define a point’s
sparsity as the number of zero elements in the coordinate representing the point. This definition’s
advantage is that it directly indicates representations’ space complexity since a computer uses a
coordinate system to represent points. Hence, we want to define the sparsity of a point in hyperbolic
space so that it inherits this property. The issue is that the straightforward application of the definition
in hyperbolic space is ill-defined since we cannot determine a unique coordinate system for a general
manifold. To avoid this issue, we must have a geometric definition, i.e., one independent of the
coordinate system, and we expect it to be interpretable as computational complexity at the same time.

Secondly, we need to design a continuous regularization term to induce the sparsity of representations.
If the objective function includes the 0-norm, the number of non-zero elements, it involves combina-
torial optimization since the 0-norm is not a continuous function. Hence, direct use of the 0-norm
does not scale to big data. For this reason, we relax the 0-norm to the 1-norm in optimizing a function
in linear space. However, defining a hyperbolic counterpart of the 1-norm is, again, non-trivial. For
example, applying the 1-norm in a coordinate system of hyperbolic space naïvely has two drawbacks
below. First, we will get different results depending on which coordinate system we use. Second, the
regularization’s strength cannot be uniform because a coordinate does not always reflect the distance
structure in hyperbolic space.

Thirdly, we need an effective optimization algorithm to obtain sparse representations. We can apply
the Riemannian gradient descent (RGD) algorithm in theory to the objective function with our 1-norm
regularization term since it is a continuous function on the Riemannian manifold. However, the RGD
fails to get sparse representations since it oscillates around the true sparse solution.

This paper proposes a novel sparse learning scheme for HSBRL to solve these issues. It is
regularization-based, so applicable to any HSBRL using a continuous loss function. The core
contributions of our scheme are the following three, each of which addresses one of the above issues:

1. The Hyperbolic sparsity, a novel geometric definition of a point’s sparsity. We can also interpret
the value as the space complexity of a point in hyperbolic space.

2. The Hyperbolic 1-norm, a novel sparse regularization term for continuous optimization. It
achieves a uniform sparseness strength since it measures the geometric distance from the point to
the subspaces with higher hyperbolic sparsity.

3. The Hyperbolic iterative shrinkage-thresholding algorithm (HISTA), a novel optimization
algorithm free from the oscillating issue, realizing the shrinkage-thresholding idea (Bruck Jr,
1977; Chambolle et al., 1998; Figueiredo & Nowak, 2003; Daubechies et al., 2004; Vonesch &
Unser, 2007; Hale et al., 2007; Wright et al., 2009; Beck & Teboulle, 2009) in hyperbolic space.

The above definitions are all geometric, i.e., free from the coordinate system selection problem.
Also, we give closed-form formulae for them in hyperbolic space. We can calculate them in linear
time/space complexity for the space dimension, the same as in the linear case. The above concepts
are well-defined for a general Cartan-Hadamard manifold (CHM), i.e., a simply-connected complete
Riemannian manifold with non-positive curvature, including Euclidean space, hyperbolic space, and
the products of Euclidean and multiple hyperbolic spaces.

The rest of the paper is organized as follows. Section 2 introduces related work. Section 3 is the
preliminary for the core discussion of the paper. Section 4 geometrically defines the sparsity on a

2



Under review as a conference paper at ICLR 2024

CHM, including hyperbolic space. Section 5 proposes our sparse learning scheme on a Rieman-
nian manifold. Section 6 specializes the scheme for hyperbolic space and gives specific formulae,
Section briefly explains numerical experiments in Section F while the details are in the Appendix.
Section 8 discusses the limitation of the framework. Section 9 concludes this paper. Note that we
provide the table of acronyms in Section H in Supplementary materials.

2 RELATED WORK

This paper proposes multiple operations in hyperbolic space. There has been much work on defining
operations for hyperbolic space in the mathematical context e.g., (Gromov, 1987; Ungar, 1994; 1996;
Sabinin et al., 1998), and machine learning context e.g., the work cited above and general Riemannian
optimization work (Absil et al., 2009; Qi et al., 2010; Zhang & Sra, 2016; Zhang et al., 2016a; Liu
et al., 2017a; Becigneul & Ganea, 2019; Kasai et al., 2019; Zhou et al., 2019) and neural hyperbolic
network papers (Ganea et al., 2018c; Chami et al., 2019; Liu et al., 2019; Tan et al., 2021; Shimizu
et al., 2021; Takeuchi et al., 2022). Still, none of them have proposed the operations to get sparse
representations. The work closest to our motivation is the Riemannian proximal gradient (RPG)
descent (Huang & Wei, 2022) since the iterative shrinkage-thresholding algorithm (ISTA) can be
regarded as a special case of the proximal gradient descent method. Despite its solid theoretical
background, however, the closed form solution of the RPG operation for the sparse regularization has
not been known except for the linear space case, where the RPG is reduced to the ISTA. Hence, the
RPG cannot get sparse representations. Conversely, our algorithm can give sparse representations
and computationally cheap since the closed form algorithm is given for hyperbolic space. Still, both
the RPG and our algorithm can be regarded as generalizations of the ISTA since they are reduced to
the ISTA for optimizing the 1-norm regularization problem in linear space.

3 PRELIMINARY

Linear space We denote the set of real values, nonnegative real values, positive real values, and
nonnegative integers by R, R≥0, R>0, and Z≥0, respectively. For D ∈ Z≥0, we denote the D-
dimensional real coordinate space (RCS) by RD. Also, for M,N ∈ Z≥0 we denote the set of
M ×N -real matrices by RM×N . In this paper, an element in RCS is denoted by a bold lower letter,
e.g., p, q, and a real matrix is denoted by a bold upper letter, e.g., G. We denote the transpose of
p ∈ RD by p⊤ and define |p| :=

√
p⊤p. We denote the D-dimensional zero vector and one vector

by 0D and 1D, respectively, and D×D identity matrix by ID. In this paper, a mathematical constant
is denoted by an upright letter, e.g., 0D and ID, whereas a variable is denoted by an italic letter,
e.g., D,p, q. We call the inner product space

(
RD, ⟨·, ·⟩

)
the D-dimensional Euclidean vector space

(EVS), where ⟨·, ·⟩ : RD × RD → R by ⟨p, q⟩ = p⊤q. For a scalar-valued function f of a scalar,
typically a hyperbolic function in this paper, we extend it to a vector-valued function of a vector,
defined by f

(
[p1 p2 · · · pD]

⊤
)
:= [f(p1) f(p2) · · · f(pD)]

⊤.

Riemannian manifold LetM andM′ be C∞-Riemannian manifolds. We denote by C∞(M)
the set of real C∞-functions onM, by TpM the tangent space at point p, and by ⟨·, ·⟩Mp : TpM×
TpM→ R the metric tensor at TpM. For C∞-map φ :M→M′, the differential dφp : TpM→
Tφ(p)M′ of φ at p is defined by (dφp(v))(f) = v(f ◦ φ). We call a diffeomorphism φ :M→M′

an isometry if ⟨u, v⟩Mp = ⟨dφp(u),dφp(v)⟩Mφ(p) for any point p and tangent vectors u, v ∈ TpM.
We denote by ∆M(p, q) the Riemannian distance between p ∈M and q ∈M, which is defined as the
length of the shortest piecewise smooth curve connecting p and q. We denote by expp : TpM→M
the exponential map at point p ∈M. Here, we define the exponential map based on the Levi-Civita
connection. Intuitively, expp (v) indicates the point reached in one unit time by the motion with a zero
acceleration (called a geodesic) starting at the point p with the initial velocity v. If the exponential
map expp is bijective, then we can define its inverse map, called logarithmic map logp :M→ TpM.
A complete, simply connected Riemannian manifold with nonpositive sectional curvature is called a
Cartan-Hadamard manifold (CHM). The exponential map at any point in a CHM is diffeomorphic,
in particular, bijective, according to Cartan-Hadamard theorem (See, e.g., Kobayashi & Nomizu,
1996). For definitions of these terms of the Riemannian geometry, we refer readers to (e.g., Kobayashi
& Nomizu, 1996; Lee, 2018).
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Coordinate system This paper deals with CHMs. Since they are always diffeomorphic to RD

for some D ∈ Z≥0, we can represent a CHM by a pair (U,G·) of an open set U ⊂ RD and the
coordinate representation matrix Gp ∈ RD×D of the Riemannian metric at point p for all p ∈ U.
We denote by (U,G·) the CHM determined this way. For the open set U ⊂ RD, the coordinate
system

(
x1, x2, . . . , xD

)
for U, and d = 1, 2, . . . , D, we define the partial derivative operator

∂d|p : C∞(U)→ R by ∂d|pf := ∂
∂xd f(p), where C∞(U) is the set of real C∞-functions on U. For

v :=
[
v1 v2 . . . vD

]⊤ ∈ RD, we denote v1∂1|p + v2∂2|p + · · · + vD∂D|p by v⊤∂|p. Here,
we have that TpM =

{
v⊤∂|p | v ∈ RD

}
. Using the coordinate representation Gp at p ∈ U of the

Riemannian metric ⟨·, ·⟩·,(U,G·), we can calculate the inner product ⟨u⊤∂|p,v⊤∂|p⟩·,(U,G·) of two
tangent vectors u⊤∂|p,v⊤∂|p ∈ Tp(U,G·) by ⟨u⊤∂|p,v⊤∂|p⟩·,(U,G·) = u⊤Gpv.

The following examples are the CHMs we mainly discuss in the paper.
Example 1. (a) The CHM

(
RD, ID,·

)
is the D-dimensional Euclidean space, where ID,p = ID for

all p ∈ RD.

(b) Let DD be the D-dimensional open ball DD :=
{
p ∈ RD | p⊤p < 1

}
. For p ∈ DD, we define

GP
p,G

K
p ∈ RD×D by GP

p = 4
1−p⊤p

ID and GK
p =

(
1− p⊤p

)(
ID − pp⊤). The CHMs

(
DD,GP

·
)

and
(
DD,GK

·
)

are isometric to each other. Specifically, there is an isometry φP,K : DD → DD

defined by φP,K(p) := tanh (atanh (p)) p
|p| . The CHM determined by these two is called the

D-dimensional hyperbolic space. When we distinguish these two coordinate systems of the D-
dimensional hyperbolic space, we call

(
DD,GP

·
)

and
(
DD,GK

·
)

the Poincaré model and Klein
model, respectively.

(c) The product manifold of Euclidean space and hyperbolic spaces is also a CHM. In the representa-
tion learning context, we consider optimization of multiple points in a CHM. This can be regarded as
the optimization in the product manifold. In general, the product manifold of CHMs is also a CHM.

4 THE CARTAN-HADAMARD SPARSENESS

In this section, we define the sparsity of a point in CHM geometrically. Our sparsity also indicates
the space computational complexity to represent a point in hyperbolic space. In the definition of the
sparsity of a point in RCS, the origin and canonical bases play an essential role as a “reference point”
and “reference direction.” Hence, we need to begin with the definition of the origin and the bases to
discuss the sparsity of a point in a manifold.
Definition 1 (CHM with an origin and orthonormal bases (CHMOO)). LetM be a D-dimensional
CHM. For a point o ∈ M and orthonormal basis (ONB) e1, e2, . . . , eD ∈ ToM, the triple
(M, o, (e1, e2, . . . , eD)) is called a D-dimensional CHM with an origin and orthonormal bases
(CHMOO). Here, the point o and set (e1, e2, . . . , eD) are called the origin and ONB of the CHMOO,
respectively.
Definition 2 (Isometric CHMOOs). Let (M, o, (e1, e2, . . . , eD)) and (M′, o′, (e′1, e

′
2, . . . , e

′
D)) be

CHMOOs and φ :M→M′ is an isometry. If φ(o) = o′ and dφo(ed) = e′d for d = 1, 2, . . . , D,
then φ is called an isometry from (M, o, (e1, e2, . . . , eD)) and (M′, o′, (e′1, e

′
2, . . . , e

′
D)). If there

exists an isometry between two CHMOOs, we say that the CHMOOs are isometric to each other.
Example 2. (a) The triple

(
(RD, ID,·),0, (∂1|0, ∂2|0, . . . , ∂D|0)

)
is a CHMOO. We call it the D-

dimensional Euclidean vector CHMOO (EVCHMOO). Here, we can identify v⊤∂|0 ∈ T0RD with
v ∈ RD since exp0

(
v⊤∂|0

)
= v holds. Under these identifications, we can say that the canonical

bases e1, e2, . . . , eD of the D-dimensional RCS are the ONB of the EVCHMOO. Although the
D-dimensional EVCHMOO is no more than Riemannian reformulation of the D-dimensional RCS,
it helps us to see the correspondence between the D-dimensional RCS and hyperbolic space.

(b)
((
DD,GP

·
)
,0,
(
1
2∂1|0,

1
2∂2|0, . . . ,

1
2∂D|0

))
and

((
DD,GK

·
)
,0, (∂1|0, ∂2|0, . . . , ∂D|0)

)
are

CHMOOs isometric to each other. We call it the D-dimensional hyperbolic CHMOO. Here, the map
φP,K is an isometry.

(c) If we have multiple CHMOOs, we can consider the product of them. Let(
M[m], o[m],

(
ẽ
[m]
1 , ẽ

[m]
2 , . . . , ẽ

[m]

D[m]

))M
m=1

be the series of CHMOOs and let M = M[1] ×
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M[2] × . . . ,×M[M ] be the product CHM and define o =
(
o[1], o[2], . . . , o[M ]

)
∈ M. For any

m = 1, 2, . . . ,M , d = 1, 2, . . . , D[m], and any basis ẽ[m]
d ∈ To[m]M[m], there is a corresponding

tangent vector e[m]
d ∈ ToM (See Appendix for the specific construction).

We can see that
(
e
[1]
1 , e

[1]
2 , . . . , e

[1]

D[1] , e
[2]
1 , e

[2]
2 , . . . , e

[2]

D[2] , . . . , e
[M ]
1 , e

[M ]
2 , . . . , e

[M ]

D[M]

)
is an ONB in TpM. Hence, we can define the product CHMOO(
M, o,

(
e
[1]
1 , e

[1]
2 , . . . , e

[1]

D[1] , e
[2]
1 , e

[2]
2 , . . . , e

[2]

D[2] , . . . , e
[M ]
1 , e

[M ]
2 , . . . , e

[M ]

D[M]

))
.

Other important examples are the direct product of Euclidean space and (multiple) hyperbolic space,
which we discuss in Appendix.

In EVS, a vector has sparsity with respect to a basis if the point is orthogonal to the basis. We can
generalize this definition to CHMOOs as follows.
Definition 3 (Sparse hyperplane (SHP)). Let (M, o, (e1, e2, . . . , eD)) be a D-dimensional
CHMOO. The d-th sparse hyperplane (SHP), denoted by ΠM

d , is defined by ΠM
d :=

{p ∈M | ⟨ed, logo (p)⟩o = 0}.
Remark 1. (i) Since expo : ToM→M is bijective in a CHM, logo is uniquely defined.

(ii) An SHP is a D − 1-dimensional submanifold ofM.

Once we have defined the sparseness of a point for a basis, we can define that for all the bases as
follows.
Definition 4 (Cartan-Hadamard sparseness and 0 norm). Let (M, o, (e1, e2, . . . , eD)) be a D-
dimensional CHMOO. We define the Cartan-Hadamard sparseness (CH sparseness) spM (p) of a
point p ∈M as the number of SHPs that includes p, i.e., spM (p) :=

∣∣{d = 1, 2, . . . , D | p ∈ Πd̂

}∣∣.
Also, we define the Cartan-Hadamard 0-norm (CH 0-norm) ∥p∥M0 of a point p ∈ M by
∥p∥M0 = D − spM (p).
Remark 2. (i) By definition, the CH 0-norm does not depend on the coordinate system. Specifically,
for two isometric CHMOOs (M, o, (e1, e2, . . . , eD)) and (M′, o′, (e′1, e

′
2, . . . , e

′
D)) and an isometry

φ :M→M′, and we have that ∥p∥M0 = ∥φ(p)∥M
′

0 for any point p ∈M.

(ii) Since the SHPs, CH sparseness, and CH 0-norm depend on the origin o and ONB (e1, e2, . . . , eD),
we could clarify these by, e.g., Π((M,⟨·,·⟩·),o,(e1,e2,...,eD))

d . Nevertheless, we omit these from notation
since they are clear for each CHM and coordinate system in this paper.
Example 3. For the D-dimensional EVCHMOO

(
(RD, ID,·),0, (∂1|0, ∂2|0, . . . , ∂D|0)

)
, the d-th

SHP is given by ΠM
d =

{
p ∈ RD | p⊤eD = 0

}
=
{
p ∈ RD | [p]d = 0

}
, where [p]d indicates the

d-th element of p. Hence, we have ∥p∥(R
D,ID,·)

0 = ∥p∥0. The above results directly follow the fact

that ⟨log0 (p), log0 (q)⟩
(RD,ID,·)
0 = p⊤q.

Example 4. In D-dimensional hyperbolic space, the specific form of the 0-norm is given by

∥p∥(D
D,GP

·)
0 = ∥p∥0, and ∥p∥(D

D,GK
· )

0 = ∥p∥0.

We call ∥p∥(D
D,GP

·)
0 and ∥p∥(D

D,GP
·)

0 the hyperbolic 0-norm of p ∈ DD in the Poincaré model and
in the Klein model, respectively.

Example 5. The SHP ΠM
[m],d of the product CHMOO corresponding to e

[m]
d ∈ T

[m]
o M⊂ ToM is

given by

ΠM
[m],d =

{(
p[1], p[2], . . . , p[M ]

)∣∣∣∣∣p[m′] ∈ ΠM[m]

d if m′ = m, p[m
′] ∈M[m] if m′ ̸= m,

}
. (1)

Remark 3. (i) Example 4 implies that the Riemannian 0-norm, which is defined geometrically in
Definition 4, also indicates the number of non-zero elements to represent the point in each coordinate
system on a computer. This fact justifies our Riemannian 0-norm definition for HSBRL in both
geometric and computational senses.
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(ii) Results similar to Example 4 hold for the proper velocity model, hyperboloid model, and
hemisphere model. Note that it does NOT hold for the upper half space model. In the first place, the
upper plane model does not use the coordinate whose 0-norm is larger than two; hence the model is
not suitable for discussing the sparsity of a point. This is not our definitions’ issue but the coordinate
system’s issue. Even in RCS, if we introduce a new coordinate system by p′ = exp (p), where p is a
canonical coordinate, then we cannot discuss the sparsity on the new coordinate system since all the
elements of the coordinate is positive everywhere.

5 SPARSE LEARNING SCHEME ON A CARTAN-HADAMARD MANIFOLD (CHM)

We have defined the CH sparseness and 0-norm. We are ready to discuss the scheme to obtain sparse
representations in the sense of the CH sparseness. This section discusses the general CHMOO case.
We will discuss the hyperbolic CHMOO case in the next section as a special case of this section’s
discussion.

5.1 THE CARTAN-HADAMARD 1-NORM (CH 1-NORM)

The 0-norm in RCS is not continuous as a function of a point. Hence, we cannot optimize the 0-norm
regularized function by a gradient method. To solve this issue, we have often relaxed the 0-norm
to the 1-norm, which is a continous function. Likewise, we define the CH 1-norm of a point on a
CHMOO as a relaxation of the CH 0-norm so that we can use it as a regularization term for gradient
methods. To define an appropriate counterpart of the 1-norm on CHMOO, we discuss D-dimensional
RCS again. The 1-norm ∥p∥1 of a point p = [p1 p2 · · · pD]

⊤ ∈ RD is given by the sum of
the absolute element values |p1|, |p2|, . . . , |pD|. The absolute value |pd| of each element of a vector
is natural as a relaxed regularization term to induce sparsity with respect to the d-th axis since the
element indicates the distance ∆M

(
p, Πd̂

)
:= infp′∈Πd̂

∆M(p,p′) between the point and the d-th
SHP. The above observation inspires our definition below of the 1-norm in a CHMOO. We begin
with defining the (signed) distance between a point and an SHP, since it plays an essential role to
define the 1-norm as we have seen in RCS.

Definition 5 (Signed SHP distance map (SSDM)). Let (M, o, (e1, e2, . . . , eD)) be a D-dimensional
CHMOO, and assume that expo : ToM→M is bijective. We define the signed distance δMd (p) ∈
R of a point p ∈ M from the d-th SHP by δMd (p) := sgn (⟨ed, logo (p)⟩o)∆M

(
p,Πd̂

)
, where

∆M
(
p,Πd̂

)
:= infp′∈Πd̂

∆M(p, p′). We also define the signed SHP distance map (SSDM) δM :

M→ RD by δM(p) :=
[
δM1 (p) δM2 (p) · · · δMD (p)

]⊤
.

Remark 4. We consider the signed version in Definition 5 since we often have a bijective SSDM as a
result of considering the signed version. We can specify a point by the signed distances if the SSDM
is bijective. Hence, a bijective SSDM plays an essential role to develop our optimization algorithm
controlling the signed distances, as we see later.

Appendix A has the visualization of the SSDM. Based on the SSDM, we define the Cartan-Hadamard
1-norm (CH 1-norm), which is this subsection’s objective.

Definition 6 (Cartan-Hadamard 1-norm (CH 1-norm)). Let (M, o, (e1, e2, . . . , eD)) be a D-
dimensional CHMOO, and assume that expo : ToM → M is bijective. We define the
Cartan-Hadamard 1-norm (CH 1-norm) ∥p∥M1 of a point p ∈ M by ∥p∥M1 :=

∥∥∥δM(p)
∥∥∥
1
=∑D

d=1

∣∣δMd (p)
∣∣. We call it the CH 1-norm regularization to add the CH 1-norms of the points

multiplied by some factor in optimizing a loss function of points in a CHMOO.

Example 6. Consider the D-dimensional EVCHMOO
(
(RD,GRD

· ),0, (∂1|0, ∂2|0, . . . , ∂D|0)
)

.

Then, the SSDM is given by δ(R
D,GRD

· )(p) = p. The CH 1-norm is given by ∥p∥1 =
∑D

d=1 |pd|,
which is equivalent to the 1-norm as a real numeric vector.

Remark 5. Since the SHP does not depend on the coordinate system, the SSDM does not depend on
it, either. Hence, the CH 1-norm does not depend on the coordinate system, either.
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5.2 THE CARTAN-HADAMARD ITERATIVE SHRINKAGE-THRESHOLDING ALGORITHM

To optimize a function differentiable almost everywhere, one might use (sub)gradient methods.
However, the direct application of gradient methods in the 1-norm regularization causes residuals to
the sparse solution. See the following simplest example. Details are also in Appendix B

Example 7. Suppose that we optimize f(p) = |p| by the gradient descent method with learning
rate α > 0 and initial point p(0) ̸= 0. Then the algorithm ends up oscillating between p(0) − αn
and p(0) − α(n+ 1) and cannot achieve the true sparse solution p(0) = 0, unless p(0) is an integral
multiple of α. Here, n =

[
p(0)

α

]
is the maximum integer that is no greater than p(0)

α .

Example 7 is also an example of an oscillation in a CHMOO optimization problem since it is
equivalent to optimization of the 1-norm function of 1-dimensional Euclidean space or hyperbolic
space. Note that 1-dimensional Euclidean space and 1-dimensional hyperbolic space are isometric.

To address the above oscillation issue to obtain the true sparse solution, the iterative shrinkage-
thresholding algorithm (ISTA) (e.g., Bruck Jr, 1977) has been used. The ISTA is designed to
optimize a function in RCS in the following form:

J(p) := L(p) + λ∥p∥1, (2)

where L : RD → R is an almost everywhere differentiable function and λ ∈ R≥0 is the regularization
weight. The ISTA iterates the following two steps: (i) q ← p− α ∂

∂pL(p), (ii) p← T αλ (q). Here,
T β : RD → RD is the soft-thresholding operator (STO) defined by

T β

(
[p1 p2 · · · pD]

⊤
)
:= [τβ (p1) τβ (p2) · · · τβ (pD)]

⊤
, (3)

where τβ : RD → RD is defined by τβ (p) := sgn (p)max {|p| − β, 0}.
This section aims to generalize the ISTA for functions in a CHMOO. We begin with discussing why
in RD the ISTA, and in particular, the STO, works well to obtain the sparse solution in the 1-norm
regularization. The STO decreases the absolute value of each coordinate element by β, leaving the
sign unchanged. If the absolute value is no larger than β, then the element will shrink to zero. This
is why the ISTA causes sparsity of the solution. This is in contrast to the gradient descent method.
Since each SHP’s volume is zero, we cannot expect gradient descent method to induce sparsity unless
the function has a special property. Let us evaluate the strength of the shrinkage effect geometrically.
Recall that each element of a vector indicates the signed distance from an SHP. Hence, the following
holds.

Proposition 1. For p ∈ RD, ∥T β (p)∥0 < ∥p∥0 if and only if mind=1,2,...,D ∆RD

(
p, Πd̂

)
≤ β.

Remark 6. Proposition 1 clarifies when the STO increases the sparsity of a point. It only depends on
the distance of a point from the SHPs and β, and does not directly depend on the position of the point.
This means that the strength of STO’s sparsity induction effect is “uniform” everywhere in RD and
only β determines the strength. Since β = αλ in the ISTA, the strength of the STO is proportional to
λ. This is compatible to the aim of the objective function J in (2), where we expect λ to control the
regularization strength.

Algorithm 1 Cartan-Hadamard ISTA (CHISTA)

Require: pinit ∈M: initial point,
α ∈ R>0: learning rate,
T ∈ Z≥0: # iterations.

Ensure: poutput ∈M
p(0) ← pinit
for t← 1, 2, . . . , T do
q(t) ← expp(t−1)

(
−α gradp(t−1) L

)
p(t) ← T αλ

(
q(t)
)

▷Difference from RGD.
end for
poutput ← p(T )

7
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As explained in Remark 6, Proposition 1 is the core property of the STO for the ISTA. This motivates
us to keep the property in designing the STO for a CHMOO and the Cartan-Hadamard ISTA based
on that. Our idea is to shrink the signed distance from each SHP the same way as the STO in RCS
does. We can formulate this idea using the SSDM and its inverse if the SSDM is bijective, as follows:

Definition 7 (Cartan-Hadamard STO (CHSTO)). Let (M, o, (e1, e2, . . . , eD)) be a D-dimensional
CHMOO, and assume that expo : ToM → M and the SSDM δ : M → RD are bijective. We
define the Cartan-Hadamard STO (CHSTO) TM

β : M → M on the CHMOO by TM
β (p) :=

δ−1(T β (δ(p))).

The CHSTO applies the STO on the signed distances from SHPs. By this definition, the CHSTO has
the uniform strength property corresponding to Proposition 1.

Theorem 1. Let (M, o, (e1, e2, . . . , eD)) be a D-dimensional CHMOO, and assume that expo :

ToM → M is bijective. Also, we assume that the SSDM δM : M → RD is bijective. For all
p ∈M,

∥∥TM
β (p)

∥∥
0
< ∥p∥0 if and only if mind=1,2,...,D ∆RD

(
p,Πd̂

)
≤ β.

Remark 7. Similar to Proposition 1, Theorem 1 states that the CHSTO has a “uniform” sparsity
inducing strength determined only by β everywhere inM. See also Remark 6.

We can define the Cartan-Hadamard ISTA (CHISTA), the CHMOO version of the ISTA, based
on Definition 7. Recall that the Riemannian gradient descent methods, e.g., (Zhang & Sra, 2016),
update the point by the exponential map: p(t+1) ← expp(t)

(
−α gradp(t) L

)
, where J :M→ R is

the objective function, gradp(t) J is its Riemannian gradient at p(t), and α ∈ R>0 is the learning
rate. This operation is the Riemannian counterpart of the “negative gradient addition” in the gradient
descent method in linear space. Replacing the “negative gradient addition” and the STO by the update
by the exponential map and the CHSTO, we obtain the CHISTA as in Algorithm 1. As in the ISTA
for linear space, the STO’s parameter is proportional to αλ. We have established the sparse learning
scheme for a general CHMOO. In the next section, we will derive the specific formulae of the 1-norm
and STO for hyperbolic space, which is this paper’s primary interest.

6 SPARSE LEARNING SCHEME FOR HYPERBOLIC SPACE

This section derives specific formulae of the core operations of our sparse learning scheme, the
CH 1-norm and CHSTO, for hyperbolic space. We also briefly discuss the product manifold in this
section.

As we can see in the previous sections, we can immediately calculate the CH 1-norm and CHSTO if
we have the formula of the SSDM. We provide the SSDM formula for hyperbolic space and a product
manifold below (The proof is in Appendix C).

Theorem 2. The SSDM δ(D
D,GP

· ) : DD → RD is bijective. We can calculate the SSDM δ(D
D,GP

· )

and its inverse maps
(
δ(D

D,GP
· )
)−1

: RD → DD by

δ(D
D,GP

· )(p) = asinh

(
2p

1− p⊤p

)
,

(
δ(D

D,GP
· )
)−1

(σ) =
sinh (σ)√

1 + (sinhσ)⊤(sinhσ) + 1
, (4)

whose time and space complexities are O(D).

Proposition 2. The SSDM of δM(p) of the product CHMOO corresponding to e
[m]
d ∈ T

[m]
o M⊂

ToM is given by δM(p) =
[
δM

[1](
p[1]
)

δM
[2](

p[2]
)
· · · δM

[M](
p[M ]

)]⊤
.

Remark 8. The SSDM formula in Theorem 2 is not surprising since point-hyperplane distance
formulae have been given (e.g., Cho et al., 2019; Chien et al., 2021). Theorem 2’s significance is that
it calculates the distance to D SHPs at once in O(D), while the straightforward application of the
existing formula requires time complexity O(D2). The inverse SSDM formula is also novel.
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Corollary 1. The CH 1-norm ∥p∥(D
D,GP

· )
1 of any p ∈ DD, which we call the hyperbolic 1-norm of

p, and the CHSTO T (D
D,GP

· )
β , which we call the hyperbolic STO (HSTO), are given by

∥p∥(D
D,GP

· )
1 =

∥∥∥∥asinh( 2p

1− p⊤p

)∥∥∥∥
1

, T (D
D,GP

· )
β (p) =

sinh (σ)√
1 + (sinhσ)

⊤
(sinhσ) + 1

, (5)

where σ ∈ RD is given by σ := asinh
(

2p
1−p⊤p

)
− β1D.

By substituting the CHSTO in Algorithm 1 by HSTO, we obtain the CHISTA for hyperbolic space,
which we call the hyperbolic ISTA (HISTA). Appendix D shows a pseudocode of HISTA.
Remark 9. Since HISTA is a CHISTA, HSTO in HISTA satisfies Theorem 1. It means that we have
provided a sparse learning scheme with a uniform sparseness strength in hyperbolic space, which is
the goal of our paper.

Lastly, we evaluate the non-uniform strength of the STO applied to the Poincaré model. Let ϵ = 10−3

and p, q = [0, ϵ]
⊤
, [1− ϵ, ϵ]

⊤. The distances from these two points to the 2nd SHP are significantly
different: ∆(DD,GP

· )
(p, Π2) ≈ 0.002,∆(DD,GP

· )
(q, Π2) ≈ 0.882. Nevertheless, both points are on

the border of the area where the sparsity is increased by T ϵ. This example shows the non-uniformness
of the STO. In contrast, Theorem 1 guarantees that the CHSTO does not cause this issue.

7 NUMERICAL EXPERIMENTS IN SUPPLEMENTARY MATERIALS

We have formulated our sparse learning scheme in hyperbolic space and shown its theoretical
advantages, which achieve our motivation. Nevertheless, for readers interested in the empirical
behaviors of our sparse learning scheme, we provide numerical experiment results in Supplementary
materials. Section F empirically show our HISTA can avoid the oscillation issue as expected.
Section G empirically show that our sparse learning scheme can improve both space complexity and
representation quality of existing HSBRL. They also empirically clarify when our sparse learning
scheme is practically effective and when not.

8 LIMITATION

One limitation of our sparse learning scheme is that it is limited to Cartan-Hadamard manifolds.
Although the discussion on Cartan-Hadamard manifolds is sufficient to deal with Euclidean spaces
and hyperbolic spaces, other types of Riemannian manifolds are also used in the representation
learning context, such as a torus (Ebisu & Ichise, 2018) and a sphere (Gu et al., 2019). Since a torus
and a sphere are symmetric, defining sparsity for each manifold itself is not difficult. Still, defining
sparsity for all types of manifolds in an integrated way is possible future work.

Another limitation is the convergence analysis of CHISTA and HISTA. In Euclidean space, the
convergence of ISTA has been intensively analyzed as a special case of the proximal gradient method.
However, we cannot analyze the convergence of CHISTA and HISTA in the same technique. The
convergence analysis of CHISTA and HISTA can be interesting future work.

9 CONCLUSION AND FUTURE WORK

This paper has established a novel sparse learning scheme for HSBRL for the first time, based on
geometric definitions of the sparsity, regularization term, and the optimization algorithm, with effec-
tive closed-form formulae. The HISTA is the fundamental optimization algorithm for sparse learning
with uniform sparseness strength and avoiding the oscillation issue. Its extension to algorithms in
general Riemannian manifolds and accelerated methods could be interesting and realistic future work.
Also, its convergence analyses have not been given, which is a limitation of this paper and can be
interesting future work. Although this paper has focused on the theoretical concept, application of
HISTA in general machine learning settings, such as hyperbolic neural networks, would be interesting
future work.
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Supplementary materials
A VISUALIZATION OF THE SSDM

This section gives a visualization of the SSDM. See Figure 1. Recall that the d-th sparse hyperplane
(SHP), denoted by ΠM

d , is defined by ΠM
d := {p ∈M | ⟨ed, logo (p)⟩o = 0}. This means that

ΠM
d = expo (span {e1, e2, . . . , ed−1, ed+1, ed+2, . . . , eD}). For example, ΠM

1 = Π1 in Figure 1
is the image under the exponential map expo of a linear subspace spanned by e2 and e3. The d-th
element δMd (p) = δd(p) of SSDM measures the signed distance from the d-th SHP to the point p.
For example, δ1(p) is the signed distance from Π1 to p in Figure 1.

Figure 1: The SSDM’s visualization for a 3-dimensional CHMOO case. The hyperplane ΠM
d = Πd

is the d-th sparse hyperplane (SHP). The d-th element δMd (p) = δd(p) of SSDM measures the signed
distance from the d-th SHP to the point p.

B DETAILED EXPLANATION OF EXAMPLE 7

The function f(p) = |p| is differentiable at p ̸= 0 and the derivative is given by d
dpf(p) = sgn(p).

Suppose that the learning rate is α > 0 and the initial point is p(0) ̸= 0. By the symmetry about the
origin, we can assume that p(0) > 0 without loss of generality. Then the gradient descent generates
the series p(0), p(1), . . . of points according to the following recursion:

p(t+1) ← p(t) − α
d

dp
f(p(t)) =

{
p(t) − α if p(t) > 0,
p(t) + α if p(t) < 0.

(6)

Here, we usually set p(t+1) ← p(t) if p(t) = 0, which we can justify as a subgradient method. We can
see from (6) that the algorithm ends up oscillating between p(0)−αn and p(0)−α(n+1) unless p(0)

is an integral multiple of α, where n =
[
p(0)

α

]
is the maximum integer that is no greater than p(0)

α .

C PROOF OF THEOREM 2

Proof. We prove for the SSDM δ(D
D,GP

·). It suffices to prove that the absolute values are correct
since the logarithmic map at the origin of the Poincaré model does not change the sign of each
element. Let h ∈ D2 be the foot of the geodesic pass through p on Πd. Note that h is unique
according to Gauss-Bonnet theorem. We have that h = argminq ∆(DD,GP

· )
(p, q) from hyperbolic

Pythagorean theorem. In the following, we regard the ball of the Poincaré model as a unit ball in
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Euclidean space and discuss using elementary geometry. A geodesic in hyperbolic space is now
an arc orthogonal to the unit ball and Πd and passing through p. Define p′ = p

p⊤p
and h′ = h

h⊤h
.

Also denote by m the midpoint of p and p′ and by j the midpoint of h and h′. Note that j is the
center of the arc drawn by the geodesic. Since the arc is orthogonal to the unit ball, it also passes
through p′ and h′ according to the power of a point theorem. The subplane including the arc also
contains p, h, and p′. Hence, the following discussion is on the subplane. We regard the axis in
the subplane on the intersection of the subplane and Πd as x-axis, and the other axis orthogonal
to Πd to y-axis. We indicate the coordinate of the p in the subplane by [x y]

⊤ and that of h by
[h 0]

⊤. The coordinates of p′ and h′ are 1
x2+y2 [x y]

⊤ and [1/h 0]
⊤, respectively. See also

Figure 2. We have that |m| = 1
2

(√
x2 + y2 + 1√

x2+y2

)
and |j| = 1

2

(
h+ 1

h

)
. By similarity of two

Figure 2: Hyperbolic subdisk.

right triangles, we have that
√

x2+y2

x = |j|
|m| . Hence, |j| = x2+y2+1

2x . Noting that h < 1 < 1
h , we

have that h =
x2+y2−

√
(x2+y2)2−4x2

2x . We get the expected result by substituting this to the distance

formula of the Poincaré model: ∆(D2,GP
· )
(p, q) = acosh

(
1 + 2|p−q|2

(1−|p|2)(1−|q|2)

)
. Specifically,

∆(D2,GP
· )
([x y], [h 0])

= acosh

1 +
2
(
(x− h)

2
+ y2

)
(1− (x2 + y2))(1− h2)


= acosh

(√
1 +

4y2

(1− (x2 + y2))
2

)

= asinh

(
2y

(1− (x2 + y2))
2

)
.

(7)
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We complete the proof by recalling that y = pd and (x2 + y2) = p⊤p.

D EXPLICIT PSEUDOCODE OF THE HISTA

Algorithm 2 shows the explicit form of HISTA on the Poincaré model. Here, sinhc is defined by

sinhc (x) :=

{
1 if x = 0,
sinh x

x if x ̸= 0.
(8)

Algorithm 2 HISTA (Explicit form)

Require: pinit ∈ DD: initial point,
α ∈ R>0: learning rate,
t ∈ Z≥0: # iterations.

Ensure: poutput ∈ DD

p(0) ← pinit
for t← 1, 2, . . . , T do
γ(t) ← ∂|p(t−1)J

ρ(t) ← 4(
1−|p(t−1)|2

)2

g(t) ←
(
ρ(t)
)2
γ(t)

q(t−1) ← ρ(t) ·
[
cosh(|−αg(t)|)−ρ(t)α(g(t))

⊤
(p(t−1))

]
p(t−1)+sinhc (|αg(t)|)g(t)

1+(ρ(t)−1) cosh(|−αg(t)|)−(ρ(t))
2
α(g(t))

⊤
(p(t−1)) sinhc (|αg(t)|)

σ(t) ← asinh
(

2p
1−p⊤p

)
− αλ1D

p(t) ← sinh (σ(t))√
1+(sinhσ(t))

⊤
(sinhσ(t))+1

end for
poutput ← p(T )

E FORMULAE FOR A PRODUCT MANIFOLD.

We discuss the formulae of our sparse representation learning scheme for product manifolds. We
do not give detailed proofs, but they can easily be proved using a specific coordinate space. Let
M[1],M[2], . . . ,M[M ] are Riemannian manifolds. The Riemannian product manifoldM =M[1]×
M[2]×· · ·×M[M ] is given as the topological product manifold ofM[1],M[2], . . . ,M[M ] equipped
with the metric tensor defined as follows. For p =

(
p[1], p[2], . . . p[M ]

)
∈M, the metric tensor and

a direct some decomposition of the tangent space TpM is given as follows. For tangent vectors
v, v′ ∈ TpM, let c : I →M and c′ : I ′ →M be C∞ curves onM tangent to v and v′ respectively,
where I, I ′ ⊂ R is open intervals such that 0 ∈ I ∩ I ′. Here, c being tangent to u means that
c(0) = p and v = ċ

∣∣
0
, where ċ

∣∣
t
: C∞(M) → R for t ∈ I is defined by ċ

∣∣
t′
f := d

dt (c(t))
∣∣
t′

.
There exist C∞ curves c[m] : I → M and c′[m] : I ′ → M for m = 1, 2, . . . ,M such that
c[m](t) = c′[m](t) = p[m] for m = 1, 2, . . . ,M and c(t) =

(
c[1](t), c[2](t), . . . , c[M ](t)

)
and

c′(t) =
(
c′[1](t), c′[2](t), . . . , c′[M ](t)

)
. Then we can define ṽ[m] := c

∣∣
0
∈ TpM and ṽ′[m] :=

c′
∣∣
0
∈ TpM for m = 1, 2, . . . ,M . We can prove that it does not depend on the choice of c. In

the following, we denote the linear operation to obtain ṽ[m] ∈ Tp[m]M[m] from v ∈ TpM by

π
[m]
p : TpM→ Tp[m]M[m]. We define the metric tensor on TpM by

⟨v, v′⟩Mp :=

M∑
m=1

⟨ṽ[m], ṽ′[m]⟩Mp . (9)

We can prove that the above metric is symmetric and positive-definite.
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A tangent vector ṽ[m] ∈ Tp[m]M[m] can be identified with v[m] ∈ TpM that satisfies{
π
[m′]
p

(
v[m]

)
= ṽ[m] if m′ = m,

π
[m′]
p

(
v[m]

)
= 0 if m′ ̸= m.

(10)

We can prove that the above v[m] is uniquely defined. By the above identification, we can identify each

Tp[m]M[m] with T
[m]
p M :=

(
π
[m]
p

)−1(
Tp[m]M[m]

)
⊂ TpM, which is a linear subspace of TpM

with the same dimension as Tp[m]M[m]. Also, we can prove that Tp[m]M[m] =
⊕M

m=1 T
[m]
p M is

the orthogonal direct sum decomposition. Since the restriction π
[m]
p

∣∣∣
T

[m]
p M

is one-to-one, we can

define its inverse map
(
π
[m]
p

∣∣∣
T

[m]
p M

)−1

: Tp[m]M[m] → T
[m]
p M.

Based on the identification, if we have multiple CHMOOs(
M[m], o[m],

(
ẽ
[m]
1 , ẽ

[m]
2 , . . . , ẽ

[m]

D[m]

))M
m=1

, we can see that(
e
[1]
1 , e

[1]
2 , . . . , e

[1]

D[1] , e
[2]
1 , e

[2]
2 , . . . , e

[2]

D[2] , . . . , e
[M ]
1 , e

[M ]
2 , . . . , e

[M ]

D[M]

)
is an ONB in TpM,

where e
[m]
d =

(
π
[m]
o

∣∣∣
T

[m]
o M

)−1(
ẽ
[m]
d

)
for m = 1, 2, . . . ,M and d = 1, 2, . . . , D[m],

M =M[1] ×M[2] × . . . ,×M[M ], and o =
(
o[1], o[2], . . . , o[M ]

)
∈M. Hence, we can define the

product CHMOO
(
M, o,

(
e
[1]
1 , e

[1]
2 , . . . , e

[1]

D[1] , e
[2]
1 , e

[2]
2 , . . . , e

[2]

D[2] , . . . , e
[M ]
1 , e

[M ]
2 , . . . , e

[M ]

D[M]

))
.

We are interested in the SHP, Riemannian 0-norm, SSDM, its inverse, CH 1-norm, and CHSTO of the
product CHMOO. In the following, we derive the formula for the SSDM, which enable us to calculate
the others. To achieve that, we review the basic property of the product Riemannian manifold.

Suppose that p =
(
p[1], p[2], . . . , p[M ]

)
∈M and v ∈ TpM and we consider the unique decomposi-

tion v =
∑M

m v[m], where v[m] ∈ T
[m]
p M for m = 1, 2, . . . ,M . Define ṽ[m] = π

[m]
p

∣∣∣
T

[m]
p M

(
v[m]

)
for m = 1, 2, . . . ,M . We can see that if we can define expp[m]

(
ṽ[m]

)
∈M[m] for m = 1, 2, . . . ,M ,

it follows that expp (v) =
(
expp[1]

(
ṽ[1]
)
, expp[2]

(
ṽ[2]
)
, . . . , expp[M]

(
ṽ[M ]

))
. We can calculate the

logarithmic map similarly.

The distance between two points p =
(
p[1], p[2], . . . , p[M ]

)
and q =

(
q[1], q[2], . . . , q[M ]

)
is given by

∆M(p, q) =

√√√√ M∑
m=1

[
∆Mm

(
p[m], q[m]

)]2
. (11)

From the above property, we can confirm that the SHP ΠM
[m],d of the product CHMOO corresponding

to e
[m]
d ∈ T

[m]
o M⊂ ToM is given by

ΠM
[m],d =

{(
p[1], p[2], . . . , p[M ]

)∣∣∣∣∣p[m′] ∈ ΠM[m]

d if m′ = m, p[m
′] ∈M[m] if m′ ̸= m,

}
.

(12)
Hence, we immediately get the SSDM formula.

δM(p) =


δM

[1](
p[1]
)

δM
[2](

p[2]
)

· · ·
δM

[M](
p[M ]

)
. (13)

The above formula enables us to calculate the SHP, Riemannian 0-norm, SSDM, its inverse, CH
1-norm, and CHSTO for the product CHMOO if we can calculate them for each component CHMOO.
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For example, we can calculate them for the product of the EVCHMOO and hyperbolic CHMOOs.
Note that the product of EVCHMOOs is again a higher dimensional EVCHMOO, while the product
of hyperbolic CHMOOs is not a hyperbolic CHMOO since the product of hyperbolic space is not a
hyperbolic space.

F NUMERICAL EXPERIMENTS: HISTA AVOIDS THE OSCILLATION

Remark 9 states that our motivation in this paper has almost been achieved. The last thing we need to
do is to confirm by numerical experiments that our HISTA avoids the oscillation issue. Hence, we
compare the HISTA and RGD for sparse solution and non-sparse solution cases.

We consider minimizing the square distance with the hyperbolic 1-norm regularization: L(z) =[
∆(D2,GP

· )
(z, z′)

]2
+ λ∥z∥1,(D2,GP

· )
. Here, we set z′ = [0.0 0.0]

⊤
, [0.0 0.8]

⊤
, [0.4 0.8]

⊤. We
expect that the true solution is sparse for the first two cases and non-sparse for the last case, though
we do not know the analytic solution for the latter two. We set λ = 1.0 and α = 0.1 for all cases.

Figure 3 shows that the HISTA outperforms the RGD for z′ = [0.0 0.0]
⊤
, [0.0 0.4]

⊤ in terms of
the objective function’s value as well as obtaining a sparse solution. For z′ = [0.4 0.8]

⊤, the RGD
can outperform the HISTA. We also observe a “bounce back” effect by the HISTA, which could be a
drawback. Still, the HISTA is stable for all the cases, while the oscillation of the RGD is significant
for z′ = [0.0 0.0]

⊤. See also Figure 4. Our results confirm that the superiority of the HISTA over
the RGD in the function value for sparse solution cases. Still, detecting the cause of the bounce back
effect by the HISTA would be interesting future work.
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Figure 3: The optimization performances of HISTA and RGD in minimizing the square distance
from a fixed point z′ with the hyperbolic 1-norm, where z′ = [0.0, 0.0]

⊤ (Left), z′ = [0.0, 0.8]
⊤

(Center), and z′ = [0.4, 0.8]
⊤ (Right). Note that in (Left), the blue dashed line indicating HISTA

goes infinitely downward because the objective function value reaches 0. See Figure 4 for details.
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Figure 4: The optimization performances of HISTA and RGD in minimizing the square distance from
a fixed point z′ with the hyperbolic 1-norm, where z′ = [0.0, 0.0]

⊤. Here we focus on the first 100
iterations to see the oscillation issue of the RGD.
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G NUMERICAL EXPERIMENTS ON GRAPH EMBEDDING SETTING

This section gives numerical-experimental results. Note that the objective is not to achieve state-of-
the-art representations, but to show how our sparse learning scheme influences HSBRL.

We denote a graph by G = (V, E), where V is the vertex set and E is the edge set. Since edges are the
most fundamental form of information about entity relations, graph embedding has wide applications.
Hence, we choose graph embedding as the problem on which we evaluate the performance of our
sparse learning scheme. Our objective here is NOT to maximize the quality of representations, but to
compare our sparse learning scheme with possible alternatives. Hence, we use the following simplest
graph embedding setting. Let C(V, 2) be the set of subsets of V , whose size is two. That is, C(V, 2)
is the set of unordered vertex pairs. Define the label of a vertex pair yu,v ∈ {−1,+1} and the sample
weight wu,v ∈ R>0 for u, v ∈ V such that u /∈ v by

yu,v :=

{
+1 if {u, v} ∈ E ,
−1 if {u, v} /∈ E ,

wu,v := 2 · |{{u
′, v′} ∈ C(V, 2) | yu′,v′ = yu,v}|

|C(V, 2)|
.

(14)

Also, define the 0-1 loss function l0-1 : R× {−1,+1} → {0,+1} by

l0-1(ŷ, y) :=

{
0 if sgn (ŷ) = y,
+1 otherwise.

(15)

The objective of our experimental setting is to minimize the following balanced 0-1 loss:

L0-1
(
(zv)v∈V ;G

)
:=

∑
{u,v}∈C(V,2)

wu,vl0,1

([
∆(DD,GP

· )
(zu, zv)

]2 − θ, yu,v

)
, (16)

where the hyperparameter θ ∈ R>0 determines the threshold in labeling the pair to be positive or
negative.

The above function L0-1 is not easy to optimize since it is not continuous. Hence, in the optimization
step, we replace l0-1 by the hinge loss function lhinge : R×{−1,+1} → R≤0 defined by lhinge(ŷ, y) =
max−ŷy + 1, 0, widely used in machine learning area, e.g., support vector machines (Cortes &
Vapnik, 1995). That is, the loss function in the optimization step is

L
(
(zv)v∈V ;G

)
:=

∑
{u,v}∈C(V,2)

wu,vl
([

∆(DD,GP
· )
(zu, zv)

]2 − θ, yu,v

)
. (17)

Also, we add the regularization term λ
∑

v∈V r(zv) to the objective function, where the regularization
function r : DD → R≥0 is the object of the comparison in the experiments and varies for each
method. Note that λR≥0 determines the regularization strength. To wrap up, we optimize the function
J
(
(zv)v∈V ;G

)
:= L

(
(zv)v∈V ;G

)
+ λ

∑
v∈V r(zv).

As a regularization function r, we compare the following three:

r(z) =


∥z∥1,(DD,GP

· )
hyperbolic 1-norm (H 1-norm),

∥z∥1 linear 1-norm,
0 no regularization.

(18)

We use the HISTA for the hyperbolic 1-norm. For the linear-norm, we apply Riemannian gradient
descent and traditional shrinkage-thresholding operator. Note that this is also what we propose for
a baseline. For the no regularization case, these two are the same. Strictly speaking, we need to
regard the problem as the optimization of a function of the product of |V| hyperbolic spaces since we
consider |V| points in hyperbolic space. The rigorous discussion for the product manifold is given in
Appendix E. Still, it shows that what we need to do is to calculate a partial derivative for each point,
convert it into a Riemannian gradient, and apply the HISTA or RGD for each point, like existing
papers do.

We evaluate the balanced accuracy 1 − L0-1
(
(zv)v∈V ;G

)
and the sum

∑
v∈V ∥zv∥0,(DD,GP

· )
=∑

v∈V ∥zv∥0 of the 0-norms of the representations. The higher accuracy and lower 0-norm, the
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Figure 5: The datasets’ structure. Left: TRLC, right: TRC.

better, but there is a trade-off between the accuracy and the 0-norm. Specifically, the stronger the
regularization is, the lower accuracy and lower 0-norm it gets, and vice versa. Hence, we vary
the regularization weight λ and observe how the accuracy and the 0-norm changes. For the no
regularization method, we vary D instead of λ. In this case, the lower D is, the lower accuracy and
lower 0-norm it gets, and vice versa.

As a graph, we consider tree-like structures that are not completely tree, which are our main focus.
To see the difference between the CH 1-norm regularization and Linear 1-norm regularization, we
experiment on synthetic datasets defined below.

• TREE-ROOTLEAFCUBES (TRLC) consisting of two complete n-ary trees with height h and five
m-dimensional cubes. One cube is in between the roots of the two trees, where each vertex of a
hyperbody diagonal pair (a most distant pair) in the cube has an edge to the root of a tree. The
other four cubes are connected to a leaf of a tree. Two cubes are connected to one tree and the other
two cubes are connected to the other tree. Here, each of the former two cubes have one edge to a
leaf of the tree, where the two leaves connected to a cube are most distant to each other. The same
holds true for the other tree and the latter two cubes.

• TREE-ROOTCUBES (TRC) is similar to TRLC but without the cube connected to the leaves.

Uniform regularization is needed for TRLC since it has cubes both at the root and around the leaves.
Conversely, strong regularization around the boundary and weak regularization could work well
for TRC since it has a cube only at the root. Hence, our natural expectation is that CH 1-norm
regularization works better for TRLC than Linear 1-norm regularization, but the tendency is not clear
for TRC. Figure 5 visualizes these graph structures.

To show our sparse learning scheme’s behavior in real applications, we conduct the same experiment
on the following real datasets.

• ENRON-EMAIL is an email network reflecting the hierarchical tree structure of the company. At
the same time, it also contains edges corresponding to cross-departmental communications, which
might be an omen of Enron’s bankruptcy in 2001. Since it is a mixture of a tree-like structure
and a non-tree-like structure, we expect that our sparse learning scheme works better than the no
regularization method in the ENRON-EMAIL.

• CORA is a citation network, which shows a highly tree-like structure. Since it is highly tree-like,
we expect it to be more effective to apply a (non-sparse) hyperbolic embedding method in low-
dimensional space than to apply our sparse learning scheme in high-dimensional space. Hence, we
do NOT expect that our sparse learning scheme works so effectively in CORA as in ENRON-EMAIL.

Other experimental settings are as follows. We set n = 2, h = 3, and m = 3. The dimension
D = 6 is fixed for the two regularization methods, while D = 2, 3, 4, 5, 6 for the no regularization
method. The regularization strength varies among λ = {1.0, 2.0, 5.0} × 10{−3,−2,−1} for the
two regularization methods. The learning rate that achieved the best accuracy is selected from
λ = {1.0, 2.0, 5.0} × 10{1,2,3}. The threshold hyperparameter θ is set to 1.0. The number of
iterations is set to T = 10000.

Figure 6 shows how the accuracy and the 0-norm changes by varying λ or D. The closer to the
left upper corner, the better. Here, we show the range where the sum of the 0-norms is no smaller
than 2|V|; otherwise the mean 0-norm would be lower than two, which would be meaningless as
representations. We have also plotted the results of the H 1-norm regularization optimized by RGD,
which shows that RGD fails to get sparse representations, while shrinkage-thresholding operators
succeeded. As we have expected, the H 1-norm regularization outperforms the others in TRLC. It
shows that our H 1-norm regularization can select the dimension of each representations efficiently.
In TRC, the linear 1-norm regularization outperforms others around where the sum of the 0-norm is
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Figure 6: The trade-off between the representation quality (balanced accuracy) and the space
complexity (the 0-norm). From left to right: TRLC, TRC, EMAIL-ENRON, Cora. The closer to the
left upper corner are the graphs, the better.

75, as we have expected. Interestingly, our H 1-norm regularization outperforms the linear 1-norm
regularizations where the sum of the 0-norm is larger. One possible reason is that the linear 1-norm
regularizations tend to be unstable since the STO changes the representations dramatically around
the ball boundary. Although comparing the optimization process is not trivial since they optimize
different functions, clarifying the reason for the low performance of the linear regularization would
be interesting future work. In ENRON-EMAIL, our H 1-norm outperformed other methods both in
the balanced accuracy and the sum of 0-norm, when the sum of 0-norm is around 400. While our
method’s advantage is clear where the sum of 0-norm is small, no method outperforms the remaining
in both balanced accuracy and the sum of 0-norm where the sum of 0-norm is large. The investigation
of this phenomenon is interesting future work. In CORA, no regularization method outperformed
both the regularization methods. The reason is that CORA is highly tree-like, so it is most suitable for
low-dimensional hyperbolic space. Hence, the result is consistent with our expectations.

H ACRONYM TABLE

To increase readability, we provide the table of acronyms used in this paper in Table 1

RL representation learning
HSBRL hyperbolic-space-based representation learning

RGD Riemannian gradient descent
HISTA hyperbolic iterative shrinkage-thresholding algorithm
RCS real coordinate space
CHM Cartan-Hadamard manifold

CHMOO CHM with an origin and orthonormal bases
ONB orthonormal basis

EVCHMOO Euclidean vector CHMOO
SHP sparse hyperplane

SSDM signed SHP distance map
CH Cartan-Hadamard
H hyperbolic

ISTA iterative shrinkage-thresholding algorithm
STO soft-thresholding operator

CHSTO Cartan-Hadamard STO
CHISTA Cartan-Hadamard ISTA

Table 1: Acronyms
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