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Abstract001

Multimodal Large Language Models (MLLMs)002
have demonstrated impressive capabilities in003
vision-language understanding. Recently, with004
the integration of test-time scaling techniques,005
these models have also shown strong poten-006
tial in visual reasoning. However, most exist-007
ing reasoning approaches remain text-level in008
nature: MLLMs are prompted to explore var-009
ious combinations of textual tokens via their010
underlying language model, while the visual011
input remains fixed throughout the reasoning012
process. This paradigm limits the model’s abil-013
ity to fully exploit rich visual information, par-014
ticularly when dealing with images containing015
numerous fine-grained elements. In such cases,016
vision-level reasoning becomes crucial—where017
models dynamically zoom into specific regions018
of the image to gather detailed visual cues nec-019
essary for accurate decision-making. In this020
paper, we propose Zoom Eye, a training-free,021
model-agnostic tree search algorithm tailored022
for vision-level reasoning. Zoom Eye treats an023
image as a hierarchical tree structure, where024
each child node represents a zoomed-in sub-025
region of its parent, and the root corresponds to026
the full image. The algorithm enables MLLMs027
to simulate human-like zooming behavior by028
navigating from root to leaf nodes in search of029
task-relevant visual evidence. We experiment030
on a series of elaborate high-resolution bench-031
marks and the results demonstrate that Zoom032
Eye not only consistently improves the perfor-033
mance of a series of MLLMs with large mar-034
gin (e.g., InternVL2.5-8B increases by 15.71%035
and 17.69% on HR-Bench) but also enables036
small 3-8B MLLMs to outperform strong large037
models such as GPT-4o.038

1 Introduction039

By integrating powerful language models (Tou-040

vron et al., 2023; Yang et al., 2024) with visual041

encoders (Radford et al., 2021; Sun et al., 2023;042

Zhai et al., 2023), Multimodal large language mod-043

els (MLLMs) are able to jointly process textual and044
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Figure 1: Top: When dealing with a high-resolution im-
age, MLLMs effectively perceive the dominant objects
but often fail to recognize finer details, highlighting the
need for vision-level reasoning. Bottom: Applied with
Zoom Eye, MLLMs could perform vision-level reason-
ing, allowed to explore the image details until they can
answer the question.

visual inputs, achieving impressive performance in 045

vision-language understanding (Zhao et al., 2024a; 046

Bai et al., 2023; Chen et al., 2024b; Li et al., 2024). 047

Recently, drawing on test-time scaling techniques 048

that enhance reasoning abilities in LLMs, such 049

as OpenAI-o1 (Jaech et al., 2024) and DeepSeek- 050

R1 (Guo et al., 2025), a series of literature tries to 051

investigate these reasoning techniques in MLLMs 052

to further improve the visual reasoning capabili- 053

ties (Xu et al., 2024; Dong et al., 2024; Yao et al., 054
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2024a; Shen et al., 2025; Meng et al., 2025)055

However, these methods predominantly operate056

at the textual level, leveraging the generative ca-057

pacity of the underlying language model without058

modifying the perception of the image itself. That059

is, the visual input remains static throughout the060

reasoning process, restricting the model’s ability to061

process fine-grained visual content, especially on062

an elements-rich high-resolution image. As illus-063

trated in the top of Figure 1, for the same image,064

the MLLM accurately recognizes the dominant ob-065

ject whereas it struggles to perceive the detailed066

one. This gap highlights the need for vision-level067

reasoning, where the model actively interacts with068

the image by zooming in and out to selectively069

attend to informative regions, as demonstrated in070

the bottom of Figure 1, much like how humans071

visually process complex scenes. A similar vision-072

level zooming mechanism has been adopted in the073

closed-source OpenAI-o3 (OpenAI, 2025). In con-074

trast, our goal is to develop an open-source vision-075

level reasoning method, making this capability ac-076

cessible to the broader research community.077

When viewing a high-resolution image, humans078

typically start with a global scan, then gradually079

zoom into areas of interest for closer inspection080

(Figure 2(b)). If the desired information is not081

found, they zoom out and explore alternative re-082

gions (as shown in Figure 2 (c)). Inspired by this,083

structuring an image as a tree is highly logical for084

simulating similar actions in an MLLM: the root085

denotes the full image, each child node corresponds086

to a zoomed-in sub-region of its parent, and deeper087

nodes indicate higher zoom levels. This hierarchi-088

cal representation, combined with a search algo-089

rithm, allows models to (1) explore fine-grained090

regions (node lookahead) and (2) return to the pre-091

vious view to inspect other regions (node back-092

tracking). Similar tree-based search strategies have093

shown strong performance in text-based LLM rea-094

soning(Yao et al., 2024b; Hao et al., 2023; Feng095

et al., 2023; Zhu et al., 2023).096

In this paper, we propose Zoom Eye, a tree097

search algorithm for vision-level reasoning, which098

navigates MLLMs in the dense image context099

by the hierarchical and visual nature of im-100

ages (contribution #1). This method simulates101

the actions of zooming in and out to inspect image102

details and seek out crucial information. Given a103

question, the adopted MLLM first identifies the104

pertinent objects. We then introduce two types of105

confidence values by prompting the MLLM to rec-106

Node Edge 
（Zoom in） 

Patch number
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Node backtracking 
（Zoom out） 
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3 2 3
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3 3 3

What is the color of the swim ring?
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Figure 2: Zoom Eye enables MLLMs to (a) answer the
question directly when the visual information is ade-
quate, (b) zoom in gradually for a closer examination,
and (c) zoom out to the previous view and explore other
regions if the desired information is not initially found.

ognize the presence of these relevant objects. These 107

confidence values are used to prioritize each candi- 108

date node during the tree search, determining the 109

sequence of node selection. The search concludes 110

based on a stopping criterion when the MLLM can 111

confidently answer the question. This process is 112

illustrated in the bottom part of Figure 1. Finally, 113

the MLLM formulates a final response based on 114

the visual information gathered during the search. 115

We adapt Zoom Eye to a series of main- 116

stream MLLMs, including Qwen2.5VL (Bai et al., 117

2025), LLaVA-v1.5 (Liu et al., 2024a), LLaVA- 118

OneVision (Li et al., 2024), InternVL2.5 (Chen 119

et al., 2024a), and evaluate them on a suite of elab- 120

orate high-resolution visual understanding bench- 121

marks. Equipped with Zoom Eye, all evaluated 122

models achieve substantial performance improve- 123

ments compared to the baseline (contribution #2). 124

Additionally, our analysis also reveals cer- 125

tain deficiencies in visual understanding ex- 126

hibited by these models, which we detail in 127

§4.3 (contribution #3). Addressing these limi- 128

tations is part of our future work. More impor- 129

tantly, as discussed in §4.4.1, we observe a vision- 130

level test-time scaling phenomenon analogous to 131

what has been observed in text-based LLMs: per- 132

formance consistently improves with an increas- 133

ing number of search steps. This finding suggests 134

that vision-level reasoning benefits from deeper 135

exploratory search and opens new avenues for scal- 136

ing MLLM inference beyond static image percep- 137

tion (contribution #4). 138
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2 Preliminary139

In this section, we describe briefly the prevalently140

adopted image preprocessing methods and image-141

text input ways of MLLMs.142

Image preprocessing. For a given image I, a143

naive processing style is to simply resize it to a144

preset fixed resolution and then feed it into an145

vision encoder to generate visual representations.146

This could be formulated as: v = F(R(I)) =147

(v1, v2, . . . , vLv), where F is the vision encoder,148

R is the resize operation, and Lv is the number of149

visual representations. Due to the constraints of150

the naive version’s fixed and limited resolution, an-151

other method, known as AnyRes, was introduced.152

It divides the original image into several equal-area153

blocks and imposes a maximum limit, M , on the154

number of divided blocks. The vision encoder then155

independently encodes each block and the overall156

image. Finally, all the encoded visual representa-157

tions are integrated together. This allows flexible158

processing of various resolutions. Denoting I(0)159

as the whole image and {I(1), . . . , I(a)} (a ≤ M)160

as the blocks, the AnyRes could be formulate as:161

v = F(A(I)) = [v0, v1, . . . , va], where A denotes162

the AnyRes operation and vi = F(R(I(i))) =163

(v(i,1), v(i,2), . . . , v(i,Lv)), i = 0, 1, . . . , a. It is164

noteworthy that the naive method can be considered165

a special case of AnyRes when a = 0 .166

Imga-Text joint input for MLLM. Common167

MLLMs link a vision encoder to the pre-trained168

LLM via projection or alignment modules, allow-169

ing language generation through the autoregressive170

capabilities of their LLM base. Specifically, given171

an image I and an input prompt x, I is first encoded172

into a set of visual representations as described173

in the previous sub-section. Subsequently,174

these visual representations, along with the text175

input, are fed into the LLM base of the MLLM.176

Assuming the length of the output sequence177

and text input are Ly and Lx respectively, the178

probability for a MLLM Φθ to generate an output179

y = (y1, y2, . . . , yLy ) conditioned on the visual180

input F(·(I)) = (v(0,1), . . . , v(a,Lv)) and the text181

input x = (x1, x2, . . . , xLx) is: Φθ(y|F(·(I)), x) =182 ∏Ly

i=1Φθ(yi|v(0,1):(a,Lv), x1:Lx , y1:i−1), where183

F(·) could represent F(R) as naive resize or184

F(A) as AnyRes.185

3 Methodology186

In this section, we introduce the Zoom Eye algo-187

rithm. Firstly, we brief the general tree search188

algorithm. Subsequently, we elaborate on our im- 189

plementation by initializing the components of the 190

tree search algorithms in detail. 191

3.1 Abstraction of Tree Search 192

Tree node. Typically, a node in the tree struc- 193

ture comprises the following attributes:(1) id: The 194

unique identifier of the node. (2) depth: Repre- 195

sents the level of the node within the tree. (3) value: 196

Used to store numeric or textual data in the node. 197

(4) children: A list of references to the node’s chil- 198

dren nodes, which facilitates traversal of the tree 199

structure. (5) Other custom attributes 200

Tree search. The abstraction of the tree search al- 201

gorithm could be modeled as a tuple (T,Q,R,S), 202

where T is the tree structure consisting of a set of 203

nodes, Q is a container that holds all the nodes that 204

might be accessed in the next search step, R is a 205

ranking function used to select the highest prior- 206

ity node based on the used search algorithm, and 207

S represents the stopping criterion. The abstract 208

search process is shown in Algorithm 1. 209

Alg. 1 Abstraction of Tree Search Algorithm
Require: T,Q,R,S
1: Initialize Q as the empty queue {}
2: Q.append(T.root)
3: while Q is not empty do
4: nt ← Q.pop()
5: if S(nt) == True then
6: break
7: s← nt.children.size
8: for j = 1, . . . , s do
9: Q.append(nt.children[j])

10: Q.sort(R)

Consider the example of a DFS search for a node 210

with a value of 5 in the tree, in this case, R is a 211

function that sorts the nodes in Q in descending 212

order of depth, and in ascending order of id when 213

depths are equal. Meanwhile, S is a function check- 214

ing if a node’s value equals 5. 215

A specific implementation of Zoom Eye search 216

involves three key questions: 1. How to formulate 217

the image as a tree T (§3.2). 2. How to set the 218

ranking function R (§3.3). 3. How to determine 219

the stopping criterion S (§3.4). Finally, we provide 220

a description of the overall algorithm in §3.5. 221

3.2 Tree Representation for Image 222

We model the overall image as a tree T . A spe- 223

cific node, denoted as nt, represents an image 224

patch view {I,bt}, where I is the image and 225

bt = (x1,t, y1,t, x2,t, y2,t) is the normalized bound- 226

ing box coordinates. If the size of nt’s image patch 227
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Figure 3: Two image input methods for MLLMs with
distinct image processing.

exceeds the predefined resolution by the image en-228

coder, it can be further divided into four equal-229

sized sub-patches, serving as its children with size230

4. Nodes are recursively divided until they meet231

the resolution limit. At the start of the search, the232

root node T.root = {I, (0, 0, 1, 1)} representing233

the overall image is visited.234

However, due to the detailed nature of high-235

resolution images and information loss from down-236

sampling to the vision encoder’s fixed resolution,237

MLLMs frequently struggle to accurately capture238

key parts of an image initially. Consequently,239

MLLMs should be be allowed to continuously240

scan and zoom into the current view (i.e., ex-241

plore deeper nodes) for more focused informa-242

tion. In our implementation, we consider two im-243

age input methods to enable MLLMs to perceive244

the local patch represented by nt: (1) Local Input:245

only the local patch is provided, suitable for ear-246

lier single-image input MLLMs with naive image247

preprocessing method (Li et al., 2023; Liu et al.,248

2024c,a). (2) Global+Local Input: both the global249

image and local patch are input, ideal for advanced250

MLLMs using AnyRes preprocessing method (Liu251

et al., 2024b; Li et al., 2024; Chen et al., 2024b).252

In this case, we use the visual prompt with a red253

rectangle to emphasize the local focus, applying254

naive processing to the global image and AnyRes255

to the local patch, as shown in Figure 3. Denoting256

V(nt) as the final image input, we have:257

V(nt) =

{
[F(R(I.crop(bt))] Local
[F(R(I)),F(A(I.crop(bt))] Global+Local

(1)258
3.3 Ranking Function259

As shown in Algorithm 1, R is used to rank the260

nodes with the priority value to determine which261

Alg. 2 Ranking Function & Stopping Criterion
Require: Φθ,W, {pe, pl, pa}, τ, o, qs
1: functionR(n1, n2) ▷ Ranking Function
2: return GET PRIORITY(n1) > GET PRIORITY(n2)
3:
4: function S(nt) ▷ Stopping Criterion
5: ca ← LOGITS RATIO(nt, pa(qs))
6: return ca ≥ τ

7:
8: function GET PRIORITY(nt)
9: if nt.priority is None then

10: ce ← LOGITS RATIO(nt, pe(o))
11: cl ← LOGITS RATIO(nt, pl(o))
12: α←W(nt.depth) ▷ weighted factor
13: nt.priority← α · cl + (1− α) · ce
14: return nt.priority
15:
16: function LOGITS RATIO(nt, x)
17: z1 ← Φθ(y = Yes | V(nt), x)
18: z2 ← Φθ(y = No | V(nt), x)
19: z ← (softmax(z1, z2)[0]− 0.5)× 2)
20: return z ▷ z ∈ (−1, 1)

one to visit in the next step. A well-defined R 262

strategically steers the search process. In Zoom 263

Eye, we adopt the MLLM to calculate the priority 264

value and use R to sort nodes by the value. Specif- 265

ically, let o denote the visual cue that is crucial 266

for answering the question, a MLLM should have 267

the following capabilities: (1) It could perceive 268

whether o exists within the visible view; (2) If o 269

occupies a small area and is not clearly visible, it 270

can leverage the common sense knowledge to in- 271

fer whether o might be discerned through further 272

zooming. Thus, we query the MLLM with two 273

prompts pe(o) and pl(o) (e.g., “Is there a o in 274

the sub-patch?", “Is it possible to find 275

a o by further zooming the sub-patch?") to 276

trigger these two capabilities, and use the ratio of 277

the next-word probability of the token “Yes" and 278

“No" as priority values. We refer to these two val- 279

ues as existing confidence and latent confidence, 280

denoted as ce and cl. 281

The overall priority value for a node is the 282

weighted sum of ce and cl. We introduce a weight 283

function W(d) that is related to a node’s depth. 284

When the depth is shallow, indicating minimal 285

zoom and the MLLM might not clearly perceive 286

the cue, assign more weight cl. As depth increases, 287

shift more weight to ce. Finally, ranking function R 288

is introduced to rank nodes by the overall priority 289

value, as shown in Algorithm 2. 290

3.4 Stopping Criterion 291

Zoom Eye exits the search process when the 292

MLLM provides feedback that the current view 293
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is sufficient to answer the provided question, de-294

noted as qs. Specifically, we query the MLLM295

with a prompt pa(qs) (e.g., “Could you answer296

qs now?") and use the same method as described297

in §3.3 to quantify the positive feedback. We refer298

to it as answering confidence, denoted as ca. When299

ca exceeds a predefined threshold τ , the search300

terminates. The implementation of S is shown in301

Algorithm 2.302

3.5 Overall Search Algorithm303

With the above notations in place, we now describe304

how Zoom Eye works for a given image-question305

pair (I, q). The complete algorithm workflow is306

shown in Appendix D.4.307

Generating visual cues to guide the search. Be-308

fore search, the MLLM has to predefine the visual309

cues essential for addressing q, enabling a targeted310

and guided search based on these cues. We utilize311

the in-context capability from the LLM base of312

the MLLM, using a sequence of contextual exam-313

ples as prefixes to generate visual cues. Ultimately,314

the MLLM produces k visual cues {o1, . . . , ok}315

pertinent to q. Each oi (i ∈ {1, . . . , k}) can be316

categorized into two types: (type 1) those requiring317

a search for a single instance, and (type 2) those re-318

quiring identification of all instances in the image.319

Question Visual cues Type

1 What is the color of the dog? dog type 1

2 What is the relative position
of the dog to the cat?

dog,
cat

type 1,
type 1

3 How many dogs in the image? all dogs type 2

Table 1: Examples of visual cues and their types.

Searching for cues. For each cue oi (i ∈320

{1, . . . , k}), Zoom Eye explores the image tree to321

capture pertinent visual information. When search-322

ing for type 1 cues, the search is guided with R and323

concludes as soon as it meets S, then the current324

node is recorded in a list L . For a single type 1 clue,325

as shown in line 1 of Table 1, the applied qs forS326

is the input question q. If multiple type 1 clues are327

generated as in line 2 of Table 1, we introduce a de-328

composed question template pdq(oi) such as “what329

is the location of the {oi}?" specific to each330

cue. In this case, the applied qs of oi is pdq(oi). If a331

type 2 cue is generated, as shown in line 3 of Table332

1, S is not applied, and we search the whole tree to333

add all nodes with sufficient existing confidence to334

L.335

Answering the question using the searched cues.336

Given the searched nodes L = {n∗
1, . . . , n

∗
K} 337

, the MLLM formulates a response to the in- 338

put question q by synthesizing information of 339

these nodes. Denoting b∗
i = (x∗1,i, y

∗
1,i, x

∗
2,i, y

∗
2,i) 340

as the bounding-box of n∗
i (i ∈ {1, . . . ,K}), 341

we union the bounding-box coordinates of all 342

nodes in L to create a union bounding-box b∗ = 343

(mini x
∗
1,i,mini y

∗
1,i,maxi x

∗
2,i,maxi y

∗
2,i). For the 344

two distinct image input methods, we apply Eq. 1 345

to feed the focused region b∗ along with q into 346

models and derive the final response. 347

4 Experiments 348

4.1 Implementation Details 349

Local input. We select LLaVA-v1.5-7B (Liu et al., 350

2024a) as the base MLLM, with the naive image 351

processing. We set τ at 0.8 and define W as 1−b
D2 × 352

d2 + b, where D denotes the depth of the image 353

tree, d is the depth of the visited node during the 354

search, and b is a bias value, set here at 0.2. 355

Global + Local input. We select Qwen2.5VL- 356

3B (Bai et al., 2025), LLaVA-ov(oneVision)-7B (Li 357

et al., 2024), and InternVL2.5-8B (Chen et al., 358

2024a) as our MLLMs, with the AnyRes image 359

processing. For LLaVA-ov and InternVL, we de- 360

fine the maximum AnyRes block as 12, and for 361

QwenVL, we set the max pixels as 12, 845, 056. 362

We set τ at 0.6 and define W similarly to the above, 363

except with b of 0.6. 364

For both input implementation, we set the maxi- 365

mum search depth at 2 when searching for type 2 366

cues to save costs. Additionally, the decomposed 367

question template pdq(oi) is assigned as “What is 368

the appearance of the {oi}?". More details 369

are described in Appendix D. 370

4.2 Results on High-Resolution Benchmark 371

Evaluated benchmark. We evaluate Zoom Eye 372

on two meticulously curated high-resolution bench- 373

marks. The first, V∗ Bench (Wu and Xie, 2024), 374

with an average resolution of 2246x1582, features 375

sub-tasks in attribute recognition and spatial reason- 376

ing. The second, HR-Bench 8K (Wang et al., 2024) 377

boasts average resolution of 7680, which consists 378

of two sub-tasks: Fine-grained Single-instance Per- 379

ception (FSP) and Fine-grained Cross-instance Per- 380

ception (FCP). The 8K images are cropped around 381

the objects in question to produce HR-Bench 4K. 382

Both benchmarks are comprised of rich visual el- 383

ements and required detailed perception to accu- 384

rately respond. More results are displayed in Ta- 385
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V ∗ Bench HR-Bench 4K HR-Bench 8K
Model Attr Spatial Overall FSP FCP Overall FSP FCP Overall

Open-source MLLMs
minigptv2-7B (Chen et al., 2023a) - - - 25.75 25.25 25.50 26.0 26.25 26.13
LLaVA-v1.6-7B (Liu et al., 2024b) 60.87 63.16 61.78 49.0 46.75 47.88 37.25 44.25 40.75
LLaVA-v1.6-13B (Liu et al., 2024b) 60.0 64.47 61.78 49.75 41.25 45.50 38.0 38.25 38.13
Yi-VL-34B (AI et al., 2024) - - - 46.0 42.75 44.38 39.50 38.50 39.0
LLaVA-HR-X-7B (Luo et al., 2024) 51.30 64.47 56.54 57.75 46.25 52.0 42.0 41.25 41.63

Closed-source MLLMs
QWen-VL-max (Bai et al., 2023) - - - 65.0 52.0 58.50 54.0 51.0 52.50
GPT4o (Achiam et al., 2023) - - 66.0 70.0 48.0 59.0 62.0 49.0 55.5

Baseline and Local Input Zoom Eye
LLaVA-v1.5-7B (Liu et al., 2024a) 43.47 56.57 48.68 38.5 33.75 36.13 33.0 31.25 32.13
LLaVA-v1.5-7B w/ Zoom Eye 83.45 82.89 83.25 67.75 38.75 53.25 65.50 36.0 50.75

∆ +40.48 +26.32 +34.57 +29.25 +5.0 +17.12 +32.50 +4.75 +18.62

Baseline and Global+Local Input Zoom Eye
Qwen2.5VL-3B (Bai et al., 2025) 80.87 71.05 76.96 82.75 49.0 65.88 80.5 45.25 62.88
Qwen2.5VL-3B w/ Zoom Eye 88.70 89.47 89.01 86.75 53.50 70.13 84.75 52.0 68.38

∆ +7.83 +18.42 +12.05 +4.0 +4.50 +4.25 +4.25 +6.75 +5.50
LLaVA-ov-7B (Li et al., 2024) 75.65 75.0 75.39 72.0 54.0 63.0 67.25 52.25 59.75
LLaVA-ov-7B w/ Zoom Eye 93.91 85.53 90.58 84.25 55.0 69.63 88.5 50.0 69.25

∆ +18.26 +10.53 +14.19 +12.25 +1.0 +6.63 +21.25 -2.25 +10.0
InternVL2.5-8B (Chen et al., 2024a) 67.83 71.05 69.11 75.75 56.25 66.0 61.5 53.25 57.38
InternVL2.5-8B w/ Zoom Eye 86.09 82.89 84.82 88.75 61.50 75.13 89.75 57.5 73.63

∆ +18.26 +11.84 +15.71 +13.0 +5.25 +9.13 +28.25 +4.25 +16.25

Table 2: Results of different models on high-resolution benchmarks. FSP: Fine-grained Single-instance Perception;
FCP: Finegrained Cross-instance Perception. More results are displayed in Table 5.

MO AD RS
Method Calculate Intention Property Orientation Color† Intention† Attention Motion† Count Position

LLaVA-ov-7B 36.33 27.55 55.0 14.94 34.19 37.32 71.89 30.61 32.95 61.40
w/ Zoom Eye 38.67 38.78 60.0 14.62 47.09 38.56 68.66 42.71 35.56 48.45

∆ +2.34 +11.23 +5.0 -0.32 +12.90 +1.24 -3.23 +12.10 +2.61 -12.95

Table 3: Performance comparison on MME-RealWorld benchmark. This benchmark comprises numerous sub-tasks,
and we only list those that exhibit obvious performance changes of Zoom Eye against the baseline. MO (Monitoring),
AD (Autonomous Driving), and RS (Remote Sensing) are data categories within this benchmark. †This result is an
average derived from multiple similar sub-tasks (e.g., Color is the average of Vehicle Color and Person Color).

ble 5.386

Main results. As shown in Table 2, all evaluated387

models exhibit significant performance gains after388

incorporating Zoom Eye, highlighting its model-389

agnostic applicability. For instance, LLaVA-ov-7B390

achieves performance improvements of 14.19%,391

6.63%, and 10.00% on V ∗ Bench, HR-Bench 4K,392

and HR-Bench 8K, respectively. In conjunction393

with the case studies presented in Figure 5, these394

results demonstrate that vision-level reasoning en-395

ables MLLMs to more effectively capture fine-396

grained and task-relevant visual information in397

complex scenes, thereby enhancing their overall398

visual understanding capabilities.399

4.3 Results on Real-World Benchmark400

Evaluated benchmark. We further evaluate Zoom401

Eye on MME-RealWorld (Zhang et al., 2024), a402

manually annotated benchmark tailored for real-403

world applications, featuring an average resolution404

of 2000×1500. It includes 5 data categories and405

43 sub-class tasks. Due to the page limit, we report406

on only 13 sub-tasks that show significant perfor-407

mance changes with Zoom Eye. These sub-tasks 408

span 3 data categories, with similar types merged 409

(e.g., Vehicle Color and Person Color into Color) 410

to present average scores. Detailed results are pro- 411

vided in Appendix C. 412

Results. As shown in Table 3, Zoom Eye im- 413

proves the performance of LLaVA-ov-7B on most 414

sub-tasks, especially on MO/Intention (+11.23%), 415

MO/Color (+12.9%), and AD/Motion (+12.1%). 416

However, we also notice that the model’s perfor- 417

mance with Zoom Eye decline on some sub-tasks. 418

We selecte one error example each from MO/Orien- 419

tation and RS/Position and display them in Figure 420

5. For MO/Orientation, the low direct response 421

scores for LLaVA-ov, as seen in the Table 3, along 422

with error example in the figure, suggest a probable 423

deficiency of orientation data during training, nega- 424

tively impacting model performance in this aspect. 425

For RS/Position, despite Zoom Eye locates the tar- 426

get, the final response was incorrect, suggesting 427

the model struggles to link positional relationships 428

between the full image and sub-images, resulting in 429

a marked decline in performance on this sub-task. 430
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Figure 4: The relationship between the number of search
steps and the performance of the MLLM. The experi-
mental statistics are derived from LLaVA-ov-7B’s re-
sults on V ∗ Bench.

These error examples reveal the model’s deficien-431

cies, by which we will guide the direction of im-432

provements in the model’s capabilities in our future433

work.434

4.4 Ablation Studies435

4.4.1 Vision-level test-time scaling436

We progressively reduce the answering confidence437

threshold τ and analyze the relationship between438

the number of search steps and the performance of439

the MLLM, as illustrated in Figure 4.440

From the figure, it can be seen that as the num-441

ber of search steps increases, the model perfor-442

mance improves and eventually stabilizes. This443

behavior is analogous to the test-time scaling in444

text-level reasoning, where the accuracy of the fi-445

nal answer improves with more CoT tokens being446

explored. This finding could be viewed as a form447

of vision-level test-time scaling, where exploring448

more detailed zoomed information instead of the449

static image could enhance the ability of MLLM to450

generate more accurate responses.451

When deploying Zoom Eye in real-world sce-452

narios, we can adjust the confidence threshold or453

the maximum number of search steps based on spe-454

cific needs to achieve the best trade-off between455

performance and efficiency.456

4.4.2 Does the Zoom operation contribute to457

the improvement of the MLLM?458

By comparing the answer accuracy of MLLM when459

Zoom is successful versus when it fails, we investi-460

gate the contribution of the Zoom operation to the461

model. As shown in Table 4, the accuracy sees a462

remarkable improvement (from 54.55% to 93.45%)463

when Zoom is successfully applied. This substan-464

tial gain highlights the critical role of the Zoom465

operation. By effectively refining the model’s fo-466

cus on relevant visual details, it contributes to more467

Used MLLM Zoom Successfully Performance

LLaVA-ov-7B ✓ 93.45
LLaVA-ov-7B ✗ 54.55

Table 4: Comparison of MLLM performance condi-
tioned on whether zoom is successful. A zoom is con-
sidered successful when the searched box covers at least
50% of the target object. The experimental statistics are
derived from V ∗ Bench.

accurate and reliable responses, reinforcing its im- 468

portance as a key mechanism for optimizing visual 469

understanding. 470

4.5 Case Study 471

We visualize some cases in Figure 5, along with er- 472

ror examples mentioned in §4.3. We present cases 473

for single type 1 cue, multiple type 1 cues, and 474

type 2 cue, which is corresponding to the examples 475

in Table 1. From the figure, it can be observed that 476

Zoom Eye accurately seeks out cues, enabling the 477

MLLM to focus on the crucial visual information 478

and respond to queries precisely. 479

5 Related Work 480

Multimodal LLMs. Since the advent of large lan- 481

guage models (LLMs), they have achieved success 482

across various linguistic applications, such as in- 483

context learning (Dong et al., 2022; Zhang et al., 484

2022) and retrieval augmented generation (Liu 485

et al., 2024d; Zhao et al., 2024b,c), which facil- 486

itated the emergence of Multimodal LLMs, with 487

pioneering works including (Alayrac et al., 2022; 488

Li et al., 2023; Koh et al., 2023). Following 489

these, LLaVA (Liu et al., 2024c) employed GPT- 490

4 (Achiam et al., 2023) to develop training data, 491

inspiring a series of works focused on visual in- 492

struction data (Liu et al., 2024a; Dai et al., 2023; 493

Chen et al., 2023b). Since these models utilize 494

pretrained vision encoders (Radford et al., 2021; 495

Zhai et al., 2023) to process image information, the 496

resolution that MLLMs can handle is limited by the 497

input resolution of these encoders. To address this 498

limitation, AnyRes was developed to flexibly man- 499

age images of varying resolutions (Liu et al., 2024b; 500

Chen et al., 2024b). Additionally, there are efforts 501

focused on utilizing high-resolution encoders to 502

accommodate high-resolution images (Lu et al., 503

2024; Wei et al., 2025). However, despite these 504

efforts, the perception of the image by the MLLM 505

remains as the original image itself. We hope to 506

enable MLLMs to explore the varying hierarchical 507

features of images to capture key information. 508
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Question: What is the message written on the sign? 
Answer: KHU VUC NGUY HIEM KHONG NHAY 

4032 ×  4032

Question: Is the baby stroller on the left or
right side of the person in orange? 
Answer: Right side 

2250 ×  1500

7360  ×  4912

Question: How many yellow buoys are
there on the water in this picture? 
Answer: 3 

6000  ×  6000

2000  ×  1500

Question: What is the orientation of the tricycle? 
Answer: The right of the image 
Ground truth: The left of the image 

Analysis: Zoom Eye successfully seeks out the tricycle but
fail to recognize its orientation. Combined with the low
performance of this aspect on Table 3, we conjecture that
there exists deficiency of orientation data during training.

Question: Where is the blue hexagon in the picture? 
Answer: In the lower right area of the picture 
Ground truth: In the middle top area of the picture 

Analysis: Zoom Eye successfully seeks out the blue hexagon
but fail to recognize its position in the global image,
revealing the deficiency in understanding the  positional
relationships between the global image and sub-images.
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Figure 5: Examples of Zoom Eye. The resolution of the image is displayed. Red rectangles are patches searched by
Zoom Eye.

Tree-based search. Tree-based search algorithms509

have been applied in text-only LLM reasoning and510

have demonstrated superior performance. Early511

works such as (Wei et al., 2022; Wang et al., 2022)512

relied on chain reasoning, a method susceptible to513

errors in one step propagating through subsequent514

steps. Consequently, ToT (Yao et al., 2024b) pro-515

posed a tree-based reasoning method that leverages516

the expansiveness of tree structures to widen the517

reasoning space. Simultaneously, several similar518

studies were also introduced, which define a de-519

composed question step as a node and utilize beam520

search (Xie et al., 2023) and Monte-Carlo Tree521

Search (Hao et al., 2023) to uncover optimal solu-522

tions. Subsequently, TS-LLM (Feng et al., 2023)523

utilized reinforcement learning to increase search524

depth, further enhancing reasoning performance.525

In our work, we conceptualize an image as a tree526

to search for crucial visual information using a spe-527

cific algorithm. A close-related work is V ∗ (Wu528

and Xie, 2024), and we describe the detailed com-529

parison with it in Appendix B.530

6 Limitations531

Although Zoom Eye offers several advantages,532

such as strong interpretability, model-agnostic, and533

training-free, it also comes with certain limitations.534

First, the current search procedure relies on heuris-535

tic strategies, including manually defined ranking536

functions and stopping criteria. While these de-537

signs are effective in many settings, they may not538

generalize optimally across all image types or task539

conditions. Second, the image is partitioned into540

fixed-size patches to construct the hierarchical tree541

structure, which may not align well with the se- 542

mantic regions of the image. As a result, some 543

visual cues may be fragmented or overlooked dur- 544

ing traversal. Lastly, Zoom Eye is primarily tai- 545

lored for natural images with spatially distributed 546

visual elements. It is less applicable to document 547

understanding tasks, where layout, reading order, 548

and structured information (e.g., tables, forms) are 549

central. Addressing these challenges—such as by 550

integrating learnable search strategies or adaptive 551

patch partitioning—will be an important direction 552

for future work. 553

7 Conclusion 554

To address the limitations of text-level visual rea- 555

soning, we propose Zoom Eye, a type of vision- 556

level reasoning method, a tree search algorithm de- 557

signed to navigate the hierarchical and visual nature 558

of images to capture detailed crucial information. 559

Through prompts guiding MLLMs, we develop a 560

ranking function and stopping criterion for Zoom 561

Eye, which steers models to efficiently search along 562

the image tree, seek out pertinent information, and 563

accurately respond to related queries. Experiments 564

show the broad-applicability and effectiveness of 565

Zoom Eye, which substantially improves MLLMs’ 566

performance. Notably, Zoom Eye exhibits a test- 567

time scaling phenomenon analogous to that ob- 568

served in text-level reasoning. Meanwhile, through 569

the analysis of failure cases, we identify several 570

inherent limitations in current MLLMs’ visual rea- 571

soning capabilities, which we aim to address in 572

future work. 573
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A Results of More MLLMs on 827

High-Resolution Benchmark 828

We present the results of additional MLLMs on 829

high-resolution benchmarks in Table 5, including 830

models of smaller or larger scale. Consistent with 831

the findings in the main paper, all evaluated models 832

exhibit improved performance after being adapted 833

to Zoom Eye, further demonstrating the effective- 834

ness of vision-level reasoning in handling complex 835

visual scenarios. 836

B Compared with Other HR Processing 837

Methods 838

Compared method. We choose two 839

high-resolution processing methods to 840

compare—V ∗ (Wu and Xie, 2024) (published in 841

CVPR 2024) and DC2 (Wang et al., 2024) (pub- 842

lished in AAAI 2025). V ∗ is a LLM-guided search 843

pipeline for MLLMs. To match the input resolution 844

of the V ∗ model, we specifically trained a 224px 845

version of the LLaVA-v1.5 model for a fair 846

comparison. Apart from using CLIP-224 (Radford 847

et al., 2021) as the vision encoder, all other settings 848

were identical to those of LLaVA-v1.5. 849

DC2 (Divide, Conquer, and Combine) is a 850

framework that supplements visual information us- 851

ing text for high-resolution images understanding. 852

Like our approach, it recursively splits an image 853

into patches. The MLLM then generates textual 854

descriptions for each leaf patch. These descriptions 855

are then relayed to the parent nodes, which create 856

combined descriptions by synthesizing the contents 857

from their child nodes with their own. This process 858

continues up to the root node. 859

B.1 Zoom Eye vs. V∗. 860

From Table 6, it is evident that compared to V ∗, 861

our method offers several advantages: (1) The V ∗ 862

pipeline requires specifically targeted training data, 863

making zero-shot searches impossible, whereas our 864

method utilizes the native capabilities of MLLMs, 865

allowing adaptation to any MLLM without addi- 866

tional training; (2) V ∗’s search process necessi- 867

tates the integration of another specially trained 868

MLLM to guide the search, along with an extra 869

high-resolution image encoder (Minderer et al., 870

2022)(768px), while our approach operates at the 871

native resolution of MLLMs and conducts searches 872

independently; (3) Our method demonstrates supe- 873

rior performance. 874
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V ∗ Bench HR-Bench 4K HR-Bench 8K
Model Attr Spatial Overall FSP FCP Overall FSP FCP Overall

Baseline and Local Input Zoom Eye
LLaVA-v1.5-13B (Liu et al., 2024a) 41.74 55.26 47.12 45.25 41.25 43.25 37.50 38.0 37.75
LLaVA-v1.5-13B w/ Zoom Eye 87.83 81.58 85.34 73.0 43.25 58.13 67.25 45.50 56.38

∆ +46.09 +26.32 +38.22 +27.75 +2.00 +14.88 +29.75 +7.50 +18.63

Baseline and Global+Local Input Zoom Eye
LLaVA-ov-0.5B (Li et al., 2024) 63.48 64.47 63.87 63.50 39.50 51.50 47.25 38.25 42.75
LLaVA-ov-0.5B w/ Zoom Eye 85.22 73.68 80.62 75.50 39.75 57.63 68.50 38.25 53.38

∆ +21.74 +9.21 +16.75 +12.00 +0.25 +6.13 +21.25 +0.00 +10.63
InternVL2.5-4B (Chen et al., 2024a) 69.57 71.05 70.16 77.50 53.75 65.63 63.00 49.25 56.13
InternVL2.5-4B w/ Zoom Eye 85.22 77.63 82.20 81.25 56.75 69.00 80.00 52.25 66.13

∆ +15.65 +6.58 +12.04 +3.75 +3.00 +3.37 +17.00 +3.00 +10.00
InternVL2.5-26B (Chen et al., 2024a) 73.91 72.37 73.30 82.00 66.25 74.13 73.00 61.75 67.38
InternVL2.5-26B w/ Zoom Eye 91.30 86.84 89.53 89.75 68.25 79.00 89.25 63.00 76.13

∆ +17.39 +14.47 +16.23 +7.75 +2.00 +4.87 +16.25 +1.25 +8.75

Table 5: Results of more models on high-resolution benchmarks.

Input
Res.

Search
Res.

Zero
shot

Indep.
search

V ∗

Bench
HR

BenchMethod

V ∗ search(Wu and Xie, 2024) 224 768 ✗ ✗ 75.39 37.81
Zoom Eye 224 224 ✓ ✓ 81.58 47.63

Table 6: Performance comparison between Zoom Eye
and V ∗ Search. Input Res.: The input resolution of the
model generating the final response; Search Res.: The
resolution required during the search process; Zero shot:
Whether the method could be adapted for models with-
out the need for specialized additional training; Indep.
search: Whether the method could be applied directly
to an MLLM instead of requiring an additional search
model.

B.2 Zoom Eye vs. DC2.875

Our approach differs from DC2 in two key ways:876

(1) DC2 uses textual modalities to supplement the877

missing visual information at high resolutions,878

whereas Zoom Eye employs simulated zooming879

operations, allowing the MLLM to actively dis-880

cover missing visual details and provide more per-881

tinent information for multimodal tasks; (2) DC2882

is question-agnostic, generating descriptions con-883

sistently across different questions which may lead884

to unfocused textual content. In contrast, Zoom885

Eye is question-driven in its visual cues searching,886

yielding more precise visual information that is in-887

strumental in answering the input question. Table888

7 shows that Zoom Eye performs better than DC2889

using the same MLLM.890

C Complete Results on MME-RealWorld891

Benchmark892

We provide the complete results of Zoom Eye on893

MME-RealWorld Benchmark (Zhang et al., 2024),894

as show in Table 8. This benchmark includes 5 data895

categories: Monitoring (MO), Autonomous Driv-896

ing (AD), OCR, emote Sensing (RS), and Diagram897

Method V ∗ Bench HR-Bench 8K

LLaVA-v1.5-7B 48.7 32.1
w/ DC2 (Wang et al., 2024) 57.3 39.5
w/ Zoom Eye 83.3 50.8

LLaVA-v1.5-13B 47.1 37.8
w/ DC2 57.3 40.5
w/ Zoom Eye 85.3 56.4

Table 7: Performance comparison between Zoom Eye
and DC2.

and Table (TD). Since Zoom Eye is not applica- 898

ble to the TD task, we do not conduct tests on 899

it. It could be observed that Zoom Eye improves 900

the performance of LLaVA-ov-7B across most sub- 901

tasks, with particularly significant improvements 902

in certain tasks. For instance, it achieves a 20.22% 903

improvement in the Personcolor task, a 29.11% im- 904

provement in the Motionvehicle task, and a 12.93% 905

improvement in the Visualtrafficsignal task, demon- 906

strating the effectiveness of Zoom Eye. However, 907

performance declines were observed in some sub- 908

tasks when using Zoom Eye. We have analyzed 909

these cases in the main paper, revealing certain lim- 910

itations of the employed MLLM. Addressing these 911

issues will be a focus of our future work. 912

D Implementation Details 913

Due to the page limit of the main paper, we pro- 914

vide more implementation details here. In §D.1 915

and §D.2, we detail the implementation of Local 916

Input and Global+Local Input, respectively. §D.3 917

describes the implementations common to both. Fi- 918

nally, based on the introductions in the first three 919

subsections, we present the complete algorithm 920

workflow of Zoom Eye in §D.4. 921

D.1 Local Input 922

We select LLaVA-v1.5-7B (Liu et al., 2024a) and 923

13B as our MLLMs, with the vision encoder’s input 924
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Task LLaVAov-7B +ZoomEye ∆ ↑

MO

Calculate 36.33 38.67 +2.34
Intention 27.55 38.78 +11.23
Property 55.0 60.0 +5.0

Vehiclecounting 59.89 61.14 +1.25
Personcounting 61.35 61.87 +0.52
Vehiclelocation 33.82 33.82 -

Vehicleorientation 19.35 18.71 -0.64
Vehiclecolor 43.65 49.24 +5.59
Personcolor 24.72 44.94 +20.22

Personorientation 10.53 10.53 -

AD

Intentionego 28.62 28.95 +0.33
Intentionpedestrian 52.43 53.40 +0.97
Intentionvehicle 30.92 33.33 +2.41

Interactionother2other 12.94 13.43 +0.49
Attentiontrafficsignal 71.89 68.66 -3.23

Interactionego2pedestrain 27.36 28.30 +0.94
Interactionego2trafficsignal 22.86 25.71 +2.85

Interactionego2vehicle 20.79 19.80 -0.99
Objectsidentify 64.40 64.85 +0.45
Motionvehicle 23.42 52.53 +29.11

Motionmultivehicles 34.26 34.75 +0.49
Visualtrafficsignal 60.20 73.13 +12.93
Motionpedestrain 34.15 40.85 +6.70

Objectcount 37.92 39.86 +1.94
Motionmultipedestrians 31.24 31.64 +0.40

OCR

Scene understanding 64.80 64.80 -
Character identification 57.60 56.40 -1.20

Adver & product 76.64 78.37 +1.73
Book map poster 77.17 75.24 -1.93

License 80.16 82.39 +2.23
Phone & address 77.82 81.28 +3.46

Text recog 74.87 77.13 +2.26

RS
Color 59.60 60.56 +0.96
Count 32.95 35.56 +2.61

Position 61.40 48.45 -12.95

Table 8: Performance comparison between Zoom Eye
and the baseline model on MME-RealWorld benchmark.
MO (Monitoring), AD (Autonomous Driving), OCR
and RS (Remote Sensing) are data categories within this
benchmark.

resolution as 336px and naive processing. We set925

the threshold of the stopping criterion at τ = 0.8 and926

define the weighted function as W = 1−b
D2 × d2 + b,927

where D denotes the depth of the image tree, d928

is the depth of the visited node during the search,929

and b is a bias value, set here at 0.2. The prompt930

templates for calculating existing confidence, latent931

confidence, and answering confidence (please refer932

to §3.3 and §3.4 for the discussion on these three933

confidence values) are set as:934

Prompt Templates of Local Input

• pe(o): <local patch> Is there a {o} in the
image? Answer Yes or No.

• pl(o): <local patch> According to your
common sense knowledge and the content
of the image, is it possible to find a {o} in
the image? Answer Yes or No and tell the
reason.

• pa(q): <local patch> Question: {q}
\nCould you answer the question based
on the the available visual information?
Answer Yes or No.

935

where the o and q are the input visual cue and 936

question, which could be referred to §3.5 . 937

As mentioned in §3.5, the final visual input uses 938

the union of all searched patches. However, when 939

multiple distant patches are combined, they may 940

form a large image. For MLLMs using naive re- 941

size processing, information can still be lost dur- 942

ing downsampling. Therefore, for the Local Input 943

Zoom Eye with naive resize processing, when the 944

area of b∗ is relatively large (with the longer side 945

exceeding 1000px), we skip the Union operation. 946

Instead, we paste the searched patches onto a blank 947

image according to their relative positions in the 948

original image, and then feed it to the MLLMs. An 949

example is shown in Figure 6. 950

Is the red backpack on the left or 
right side of the clock? 

Searched
patches 

Union 

It's too large 

＞ 1000px

Resize 

MLLM

Is the red backpack on the left or 
right side of the clock? 

Paste onto a blank image 

Figure 6: If the area of the union bounding box is too
large, we paste the searched patches onto a blank image
according to their relative positions in the original image,
and then feed it to the MLLMs.It is notable that this
operation is only applied to Local Input, while for
Local+Global, we consistently provide the MLLMs
with the full union patch as input.
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D.2 Global + Local Input951

We select LLaVA-ov(oneVision)-0.5B (Li et al.,952

2024) and 7B as our MLLMs, with the vision en-953

coder’s input resolution as 384px and AnyRes pro-954

cessing. We define the maximum AnyRes block955

as 12, set τ at 0.6 and define W as 1−b
D2 × d2 + b,956

where D denotes the depth of the image tree, d957

is the depth of the visited node during the search,958

and b is a bias value, set here at 0.6. The prompt959

templates for calculating existing confidence, latent960

confidence, and answering confidence are set as:961

Prompt Templates of Global + Local Input

• pe(o): <global image><local patch> Is
there a {o} in the zoomed-in view? An-
swer Yes or No.

• pl(o): <global image><local
patch> According to your common
sense knowledge and the content of the
zoomed-in view, along with its location
in the image, is it possible to find a {o}
by further zooming in the current view?
Answer Yes or No and tell the reason.

• pa(q): <global image><local
patch> Question: {q} \nCould you
answer the question based on the the
available visual information? Answer Yes
or No.

962

D.3 Additional Settings963

For both input implementation, we set the maxi-964

mum search depth at 2 when searching for type 2965

cues to save costs. In §3.5, we state that we search966

the whole tree to add all nodes with sufficient exist-967

ing confidence to L if type 2 cue is generated. Thus,968

we introduce an additional threshold τ2 for this con-969

dition, which is set at 0.8 for both implementation.970

The decomposed question template pdq(oi) is as-971

signed as “What is the appearance of the972

{oi}?". For type 1 search, a key aspect is determin-973

ing the value of τ . If it is set too low, an incorrect974

patch, which probably lead to erroneous guidance975

for MLLMs, may be selected. Conversely, setting976

τ too high, surpassing the ca values of all nodes977

in the tree, would compel MLLMs to search the978

entire tree unnecessarily, thus wasting time. There-979

fore, we adopt a strategy where τ is progressively980

reduced as the number of search steps increases.981

Specifically, if the number of search steps exceeds982

the step threshold C, we reduce the value of τ by983

0.1. This reduction occurs every δ steps, until the 984

ca value of a node having been visited surpasses τ 985

or τ falls below a predefined minimum limit τmin. 986

For both implementation, we set δ at 2, τmin at 0, 987

and C as D × 3. Finally, the in-context examples 988

we utilized to generate visual cues are denote as 989

(q(1), o(1), . . . , q(m), o(m)) and are presented at the 990

end of this document. 991

D.4 Complete Algorithm Workflow 992

With the aforementioned notation and description 993

in place, we provide the complete algorithm work- 994

flow in Algorithm 3, where the Zoom Eye search 995

method is shown in Algorithm 4. 996

Algorithm 3 Complete Algorithm Workflow of
Zoom Eye
Require: Multimodal LLM Φθ , input question-image pair (I,

q), decomposed question template pdq , in-context exam-
ples (q(1), o(1), . . . , q(m), o(m), q)

1: {o1, . . . , ok} ←
Φθ.generate(q(1), o(1), . . . , q(m), o(m), q)

2: Initialize L as the empty list
3: Build I as a tree T
4: for i = 1, . . . , k do
5: if k == 1 then
6: qs ← q
7: else
8: qs ← pdq(oi)

9: L.extend(ZOOM EYE(T, oi, qs))
10: b∗ ← Union bounding-boxes of all nodes in L
11: n∗ ← {I, b∗}
12: Final response← Φθ.generate(V(n∗), q)
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Algorithm 4 Zoom Eye Search
Require: Threshold of type 1 cue and type 2 cue (τ, τ2),

minimum limit τmin, interval δ
1: function ZOOM EYE( T, oi, qs)
2: Initialize Q as the empty queue {}
3: Q.append(T.root)
4: Initialize Li as the empty list
5: search all← oi.startswith(“all")
6: if not search all then
7: ZOOM EYE TYPE 1( T,Q,Li, qs, τ )
8: else
9: ZOOM EYE TYPE 2( Q,Li, τ2)

10: return Li

11:
12: function ZOOM EYE TYPE 1( T,Q,Li, qs, τ )
13: importR and S from Algorithm 2
14: count← 0
15: C ← T.depth× 3
16: Initialize nm as T .root to record the node with the

best ca
17: while Q is not empty do
18: nt ← Q.pop()
19: N .append(nt)
20: count← count + 1
21: if count ≥ C then
22: τ ← τ − 0.1
23: C ← C + δ
24: if τ < τmin then
25: break
26: if S(nt, qs, τ) == True then
27: Li.append(nt)
28: break
29: else if S(nm, qs, τ) == True then
30: Li.append(nm)
31: break
32: if nt.ca ≥ nm.ca then
33: nm ← nt

34: s← nt.children.size
35: for j = 1, . . . , s do
36: Q.append(nt.children[j])

37: Q.sort(R(oi))
38:
39: function ZOOM EYE TYPE 2( Q,Li, τ2)
40: while Q is not empty do
41: if nt.depth ≥ 2 then
42: break
43: ce← calculate the existing confidence of nt

44: if ce ≥ τ2 then
45: Li.append(nt)
46: s← nt.children.size
47: for j = 1, . . . , s do
48: Q.append(nt.children[j])

In-Context Examples of V ∗ Bench

User: Question: What is the color of the boy’s bag?
If you want to answer the question, which objects’
information do you need?

Assistant: To answer the question, I need know the
location of the boy with a bag so that I can deter-
mine the color of the bag. So I need the information
about the following objects: boy with a bag.

User: Is the yellow car on the left or right side of
the white car?

Assistant: To answer the question, I need know the
location of the yellow car and the white car so that
I can determine the positional relationship between
the two of them. So I need the information about
the following objects: white car and yellow car.

User: Tell me the number on the black board.

Assistant: To answer the question, I need know the
location of the black board so that I can determine
the number on it. So I need the information about
the following objects: black board

User: Is the girl with pink hair on the left or right
side of the man with backpack?

Assistant: To answer the question, I need know the
location of the girl with pink hair and the man with
backpack so that I can determine the positional
relationship between the two of them. So I need the
information about the following objects: girl with
pink hair and man with backpack.

User: What kind of animal is on the red sign?

Assistant: To answer the question, I need know the
location of the red sign so that I can determine the
kind of animal on it. So I need the information
about the following objects: red sign.

User: From the information on that advertising
board, what is the type of this shop?

Assistant: To answer the question, I need know the
location of the advertising board so that I can deter-
mine the type of the shop. So I need the information
about the following objects: advertising board.
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In-Context Examples of HR-Bench

User: Question: What is the color of the boy’s bag?
If you want to answer the question, which objects’
information do you need?

Assistant: To answer the question, I need know the
location of the boy with a bag so that I can deter-
mine the color of the bag. So I need the information
about the following objects: boy with a bag.

User: Is the yellow car on the left or right side of
the white car?

Assistant: To answer the question, I need know the
location of the yellow car and the white car so that
I can determine the positional relationship between
the two of them. So I need the information about
the following objects: white car and yellow car.

User: Tell me the number on the black board above
the dog.

Assistant: To answer the question, I need know
the location of the black board above the dog so
that I can determine the number on it. So I need
the information about the following objects: black
board above the dog.

User: Is the girl with pink hair on the left or right
side of the man with backpack?

Assistant: To answer the question, I need know the
location of the girl with pink hair and the man with
backpack so that I can determine the positional
relationship between the two of them. So I need the
information about the following objects: girl with
pink hair and man with backpack.

User: What kind of animal is on the red sign?

Assistant: To answer the question, I need know the
location of the red sign so that I can determine the
kind of animal on it. So I need the information
about the following objects: red sign.

User: How many cars in the image?

Assistant: To answer the question, I need know
the location of all cars so that I can determine the
number of cars. So I need the information about
the following objects: all cars.
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