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Abstract

Deep neural networks suffer from catastrophic forgetting, where performance on previous
tasks degrades after training on a new task. This issue arises due to the model’s tendency
to overwrite previously acquired knowledge with new information. We present a novel ap-
proach to address this challenge, focusing on the intersection of memory-based methods
and regularization approaches. We formulate a regularization strategy, termed Informa-
tion Maximization (IM) regularizer, for memory-based continual learning methods, which
is based exclusively on the expected label distribution, thus making it class-agnostic. As a
consequence, IM regularizer can be directly integrated into various rehearsal-based continual
learning methods, reducing forgetting and favoring faster convergence. Our empirical vali-
dation shows that, across datasets and regardless of the number of tasks, our proposed reg-
ularization strategy consistently improves baseline performance at the expense of a minimal
computational overhead. The lightweight nature of IM ensures that it remains a practical
and scalable solution, making it applicable to real-world continual learning scenarios where
efficiency is paramount. Finally, we demonstrate the data-agnostic nature of our regular-
izer by applying it to video data, which presents additional challenges due to its temporal
structure and higher memory requirements. Despite the significant domain gap, our exper-
iments show that IM regularizer also improves the performance of video continual learning
methods.

1 Introduction

Continual learning (CL) aims to develop models that can learn from evolving data distributions with minimal
forgetting Rolnick et al. (2019). Due to the high computational and financial costs of training deep neural
network models and growing concerns over privacy regulations, the applicability of CL in various real-world
scenarios has become increasingly critical. For instance, video-sharing platforms such as YouTube and
TikTok receive millions of newly uploaded videos daily, each introducing new trends, visual concepts, and
styles. In these dynamic environments, traditional training algorithms for deep learning models struggle
to maintain their performance due to the necessity of frequent retraining, which is resource-intensive and
impractical at scale. CL can significantly enhance the effectiveness of models designed for such dynamic
data streams by continually adapting previously trained models, rather than retraining them from scratch
as new data is made available.

In recent years, memory-based methods Rolnick et al. (2019); Buzzega et al. (2020b), also known as rehearsal
methods, have emerged as the front-runners in CL, demonstrating better performance at mitigating forgetting
compared to their regularization-based counterparts. This superior performance of rehearsal methods is
attributed to the use of a memory buffer, a dedicated storage that retains a subset of training data from
previously learned tasks. By having access to a subset of past samples, the model can estimate class
prototypes effectively thus alleviate forgetting despite distribution shifts Rolnick et al. (2019); Rebuffi et al.
(2017). This ability to retain past information enables rehearsal-based approaches to maintain stability in
long-term learning while adapting to new tasks.
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The performance improvement of rehearsal methods over regularization methods comes at the cost of in-
creased memory requirements and greater computational overhead. Experience replay methods retrain for
several epochs on both the current data and memory buffer samples, effectively approximating a joint dis-
tribution whenever new data becomes available. This continuous reprocessing of stored data samples not
only increases computational demands but also increases training time, making it less scalable for large
datasets.This computational penalty is further emphasized outside the image domain; for example, in video
data, a single minute-long video recorded at 30 frames per second occupies as much memory as 1800 indi-
vidual images. Despite consuming a significant storage, such video typicality represents a single instance of
a class within the memory buffer, thus limiting the diversity of stored information and further challenging
the efficiency of experience replay in temporal data.

In this paper, we introduce a class-agnostic regularization strategy for continual learning (CL), termed Infor-
mation Maximization (IM), which operates over the distribution of network predictions Liang et al. (2020).
IM is lightweight, efficient, and orthogonal to key design choices in CL algorithms, as it works across different
rehearsal-based methods, memory budgets, and number of tasks. IM jointly encourages prediction diver-
sity and confidence, resulting in robust feature representations under distribution shifts, thereby improving
generalization to past tasks while minimizing memory and computational overhead. Extensive empirical
evaluation shows that IM emerges as an effective regularization technique, outperforming current regular-
ization strategies tailored for the CL setting in both accuracy and retention of past knowledge. Moreover,
IM is not specific to the image CL domain; we further validate its effectiveness by applying it to a video
continual learning setup, where it demonstrates similarly improved results in handling the challenges posed
by temporal dependencies and increased data complexity.

Contributions. Our work makes three main contributions: (i) We provide a systematic evaluation of four
major regularization techniques: Elastic Weight Consolidation (EWC), Synaptic Intelligence (SI), Entropy
Minimization (EM), and Information Maximization (IM), applied to image continual learning. This eval-
uation highlights the advantages of the proposed IM regularizer, demonstrating its superiority in terms of
both performance and overall reduction in catastrophic forgetting. (ii) We demonstrate that IM is orthog-
onal to critical design choices in CL (rehearsal-based method, memory size, and number of tasks), enabling
straightforward integration while preserving computational efficiency. (iii) We extend our analysis beyond
image-based settings by demonstrating the applicability of IM within the context of video continual learning.
Given the additional complexity of temporal dependencies and larger data volumes in videos, our results
show that IM maintains its effectiveness, achieving substantial gains over traditional memory-based baselines
while preserving computational efficiency.

2 Related Work

Image Continual Learning. In the field of image-based continual learning, numerous innovative ap-
proaches have been proposed to address catastrophic forgetting. Memory-based methods, such as iCaRL
Rebuffi et al. (2017), utilize incremental classifiers and representation learning to balance new and old knowl-
edge, while GEM Lopez-Paz & Ranzato (2017) and its more efficient variant A-GEM Chaudhry et al. (2019a)
optimize gradient-based episodic memory to mitigate forgetting. Other approaches, including DER Buzzega
et al. (2020b), enhance rehearsal by incorporating logit distillation, while CoPE De Lange & Tuytelaars
(2021) leverages class prototypes to structure the latent space, and ER-ACE Caccia et al. (2021) modifies
cross-entropy loss to address task imbalance. Recent work includes Refresh Learning Wang et al. (2024),
which unifies rehearsal with selective unlearning to refresh model knowledge, and STAR Eskandar et al.
(2025), a plug-and-play regularizer that leverages stability-inducing weight perturbations during rehearsal to
mitigate forgetting. Regularization-based methods aim to preserve past knowledge by constraining weight
updates, typically by identifying the importance of parameters, like Elastic Weight Consolidation (EWC)
Kirkpatrick et al. (2017) and Synaptic Intelligence (SI) Zenke et al. (2017). Architectural innovations also
play a crucial role in continual learning, with L2P Wang et al. (2022c) demonstrating the effectiveness of
learnable prompts in guiding pre-trained models without relying on a rehearsal buffer, and DualPrompt Wang
et al. (2022b) introducing a two-level prompting mechanism for transformer-based architectures. These di-
verse approaches underscore the rapid advancements in continual learning, paving the way for more scalable
and adaptable models in real-world applications.
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Video Continual Learning. To mitigate catastrophic forgetting in video data, various strategies have
been developed, which can be broadly categorized into regularization and memory-based techniques. While
regularization methods apply constraints to preserve previous knowledge, memory-based approaches leverage
data or representations from past tasks. When analyzing video continual learning, the importance of memory
becomes even more pronounced due to the temporal complexity and higher dimensionality of video data.
SMILE Alssum et al. (2023) underscores this by proposing an efficient replay mechanism that stores a
single frame per video, emphasizing video diversity over temporal information. This approach addresses
memory constraints effectively, showcasing the critical role of memory in video continual learning. vCLIMB
Villa et al. (2022) and PIVOT Villa et al. (2023) introduce novel benchmarks and methods focusing on
class incremental learning and the use of prompting mechanisms, respectively, pushing the boundaries of
current methodologies. Utilizing Winning Subnetworks for efficient learning Kang et al. (2023), and creating
multi-modal datasets for egocentric activity recognition Xu et al. (2023) illustrate the expanding scope
of continual learning in video domains. Additionally, Continual Predictive Learning Chen et al. (2022)
and approaches to Video Object Segmentation as a continual learning task Nazemi et al. (2023) represent
significant advancements in handling non-stationary environments and long video sequences. Finally, efforts
to learn new class representations while preserving old ones through time-channel importance maps Park
et al. (2021) further demonstrate the innovative and diverse strategies being developed for video continual
learning.

Test-Time Adaptation. Test-Time Adaptation (TTA) aims to alleviate performance drop of pretrained
models at test time when exposed to domain shifts Sun et al. (2020); Alfarra et al. (2023). Earlier works
augmented the training objective with a self-supervised loss function that is later leveraged at test time
to combat domain shifts Sun et al. (2020); Liu et al. (2021). More recent TTA methods optimize an
unsupervised loss function at test-time on the received unlabeled data to improve performance under domain
shifts Niu et al. (2022). This includes simple adjustments to the statistics of normalization layers Li et al.
(2016), entropy minimization Wang et al. (2020), information maximization Liang et al. (2020), among
others Boudiaf et al. (2022); Wang et al. (2022a). However, most TTA methods are proposed to combat
covariate domain shifts at test time. In this work, we get inspiration from the source hypothesis adaptation
method Liang et al. (2020) to propose an effective regularizer for continual learning. We also analyze the
effectiveness of other adaptation methods such as entropy minimization in mitigating catastrophic forgetting
in continual learning.

This work aims to enhance continual learning performance by introducing a cost-effective regularizer that
improves results even in memory-constrained scenarios. Such scenarios are particularly important when
dealing with memory-intensive data, such as videos, or when sample storage is restricted due to privacy
concerns. We investigate a class-independent regularizer designed to facilitate the learning of generalizable
features.

3 Methodology

In this section, we formalize the problem of class-incremental learning in visual recognition tasks. We define
the underlying framework and introduce the necessary notation to describe the incremental learning process.
Additionally, we present the formulation of the proposed regularizer, Information Maximization (IM), along
with the selected baseline regularizers: Elastic Weight Consolidation (EWC), Synaptic Intelligence (SI), and
Entropy Minimization (EM).

We focus on the offline continual learning problem for visual recognition tasks, where a classifier
fθ : X → P(Y) (a DNN parameterized by θ) maps an input x ∈ X into the probability simplex1

P(Y) , with Y = {1, 2, . . . , K}. In continual learning, fθ is presented with a sequence of T tasks
{(X1, Y1), (X2, Y2), . . . , (XT , YT )} where Xi ⊂ X and Yi ⊂ Y ∀i Villa et al. (2022). Furthermore, we
consider the class-incremental problem setup, where the labels presented in each individual task are mutu-
ally exclusive (Yi ∩ Yj = ϕ ∀i ̸= j). The main objective of the learner is to maximize its performance (e.g.
classification accuracy) on all observed tasks. This objective is often hindered by the catastrophic forgetting

1e.g. the network’s output after Softmax.
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problem: while learning task i, fθ tends to forget previously learned tasks < i, significantly dropping its
performance for any x ∈ X<i.

For our baseline, we consider rehearsal-based continual learning methods where the learner is allowed to store
up to N training examples from previous tasks into a replay memory buffer M Chaudhry et al. (2019b). Let
Mt denote the replay buffer at task t containing examples from the tasks i < t. Rehearsal-based methods
update the parameter set θ at task t in the following form:

θ∗
t = arg min

θ
E(x,y)∼(Xt,Yt)L(fθ(x), y) + E(u,v)∼Mt

L(fθ(u), v). (1)

That is, for each batch sampled from the newly available data on the tth task, the learner samples another
batch from memory Mt and updates the model on the combined loss.

3.1 Regularizing Replay Methods with Information Maximization

Inspired by the work of Liang et al. (2020) in the domain of test-time adaptation, we propose that in a
continual learning setup, fθ should output confident predictions that distinctly separate all previously seen
classes. To achieve this, we propose a regularizer that encourages the model to make confident predictions
across all encountered classes without biasing its predictions towards recent task data. This means that for
any given input (including those in Mt), the model should assign a high probability to a single class. We
can achieve this by maximizing information in the logits, as a result our approach helps reinforce discrimi-
native representations for all learned classes, improving robustness against distribution shifts. Our proposed
regularizer (RIM) takes the following form:

RIM(θ, Xt) = Lent(θ, Xt) + Ldiv(θ, Xt) (2)

with Lent(θ, Xt) = −Ex∼Xt

K∑
k=1

fk
θ (x) log fk

θ (x) Ldiv =
K∑

k=1
f̂k

θ (x) log f̂k
θ (x),

where f̂θ(x) = Ex∼Xt [fθ(x)] and fk
θ (x) is the kth element in the vector fθ(x). Note that optimizing Lent

increases the model’s confidence on the prediction, while Ldiv promotes diverse label predictions on fθ. Our
regularized rehearsal-based method follows the formulation:

min
θ

E(x,y)∼(Xt,Yt)L(fθ(x), y) + E(u,v)∼Mt
L(fθ(u), v) + RIM(θ, Xt). (3)

Our proposed regularizer has the following advantages: (i) It is orthogonal to the most critical design choices
of continual learning algorithms, as it can operate regardless of the choice of fθ, the replay-based method,
the size of the memory buffer, and the number of tasks. (ii) Efficient computation of RIM : where both Lent
and Ldiv depend exclusively on the output predictions of the model and can be computed in O(n). This
aspect is essential when dealing with memory-intensive setups. For example, on video data, our regularizer
estimates Lent and Ldiv over clip predictions instead of per-frame estimates. (iii) Our formulation is agnostic
to the type of data used in the continual learning problem. Without any modifications, our formulation can
be applied to both image-based or video-based continual learning problems.

3.2 Baseline Regularizers

We compare our proposal against different regularizers to assess its effectiveness in mitigating forgetting and
improving continual learning performance. We follow the formulation in Equation (3), and study alterna-
tives to RIM(θ, Xt). In particular, we analyze different regularizers from the continual learning literature,
namely Elastic Weight Consolidation Kirkpatrick et al. (2017) and Synaptic Intelligence Zenke et al. (2017).
Furthermore, we explore Entropy Minimization Wang et al. (2020) from the test-time adaptation literature.
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Elastic Weight Consolidation (EWC). Kirkpatrick et al. (2017) proposed to regularize the parameter
update during continual learning to prevent catastrophic forgetting by constraining changes to important
weights. The key idea behind EWC is to estimate the importance of each parameter for previously learned
tasks and penalize deviations from their learned values. We analyze the effectiveness of combining EWC
with rehearsal-based methods by replacing RIM in Equation (3) with REWC, defined as:

REWC(θ) =
∑

i

λ

2 Fi(θi − θi
t−1)2,

where F is the Fisher information matrix, which quantifies the importance of each parameter based on how
sensitive the loss function is to changes in that parameter, and λ is a hyper-parameter balancing the relative
importance of the old tasks with respect to the current task.

Synaptic Intelligence (SI). It is a biologically inspired regularizer from the continual learning literature.
It follows a similar principle to EWC but determines weight importance using a different approach. Instead
of using the Fisher Information Matrix, SI tracks the contribution of each parameter during training by
accumulating an importance measure based on changes in loss. This adaptive tracking mechanism allows
the model to selectively constrain updates to crucial parameters while remaining flexible for learning new
tasks. We replace RIM in Equation (3) with RSI which takes the following form:

RSI(θ) =
T∑
t

ωk
t

(∆θt
k)2 + ξ

,

where ∆θt
k = θt

k − θt−1
k and the damping parameter ξ avoids division by zero.

Entropy Minimization (EM). Following the self-supervised spirit of our proposed regularization ap-
proach, we include one self-supervised regularizer that encourages the model to produce more confident
predictions. In particular, we follow Wang et al. (2020) and apply entropy minimization to regularize the
output distribution, reducing the model’s uncertainty when making predictions. Entropy minimization re-
places RIM in Equation (3) with REM where:

REM(θ, Xt) = −Ex∼Xt

K∑
k=1

fk
θ (x) log fk

θ (x). (4)

Entropy minimization encourages the model to assign higher confidence to its predictions, effectively sup-
pressing uncertain outputs. This can be beneficial in a continual learning setup, where distribution shifts
can lead to increased uncertainty.

4 Experiments

In this section, we proceed with the empirical assessment of our proposed approach to validate its effective-
ness. For completeness, we first evaluate several rehearsal-based continual learning (CL) methods (ER, DER,
and DER++) when paired with the regularizers IM, EWC, SI, and EM. We then extend the analysis by
applying IM to more advanced rehearsal approaches (Refresh Learning and STAR), showing that its benefits
generalize consistently across different methods and datasets.

Datasets. Following the image CL literature, we focus on two main datasets: Split-CIFAR100 Zenke et al.
(2017) and Split-Tiny ImageNet Le & Yang (2015). Split-CIFAR100 contains a total of 100 classes and 6000
images per class. It is divided into 10 tasks, each containing 10 classes. Split-Tiny ImageNet consists of 200
classes with 500 images per class, and is divided into 10 tasks of 20 classes each.

5



Under review as submission to TMLR

Evaluation Metrics. To evaluate the performance of CL methods, we consider two metrics: Average
Accuracy, which is defined as the average performance across all tasks, and Forgetting Rate that measures
the impact of the learned task on the performance of the previous tasks Chaudhry et al. (2019a). These
metrics provide complementary perspectives on the effectiveness of each approach in balancing stability and
adaptability in a continual learning setting.

• Average Accuracy (ACC) quantifies the model’s overall performance across all tasks it has en-
countered. It is defined as:

ACC = 1
T

T∑
i=1

ai, (5)

where T is the total number of tasks and ai represents the accuracy of the model on the i-th task
after it has been trained on all T tasks. ACC provides a comprehensive measure of how well the
model learns and retains knowledge across a full sequence of tasks.

• Forgetting Rate (FR) measures the decrease in performance on past tasks after a model has been
trained on new ones. It directly measures catastrophic forgetting. FR is defined as:

FR = 1
T − 1

T −1∑
i=1

max
j<T

(aij − aiT ), (6)

where aij is the accuracy on task i immediately after training on task j, and aiT is the accuracy on
task i after the final task T has been learned. A lower FR indicates better retention of previously
learned knowledge, while a higher FR points to significant forgetting.

Implementation Details. We train a ResNet18 He et al. (2016) model from scratch and summarize the
training parameters in the Appendix. Following our limited memory setting, we define a budget of 5,
10 and 20 samples per class as the maximum allowed in Mt at any moment. We integrate the different
regularizers into the Mammoth CL framework Boschini et al. (2022); Buzzega et al. (2020a). To balance the
loss terms, we multiply the regularization term by λ=0.5 and the cross-entropy loss with 1-λ.

Baselines. We consider four regularizers: EWC Kirkpatrick et al. (2017), SI Zenke et al. (2017), EM Wang
et al. (2020), and IM Liang et al. (2020), applied on top of three memory-based continual learning methods:
ER Rolnick et al. (2019), DER Buzzega et al. (2020b), and DER++ Buzzega et al. (2020b). For the IM
regularizer, we further extend the evaluation to include Refresh Learning Wang et al. (2024), implemented
on top of DER++, and STAR Eskandar et al. (2025), implemented on top of ER.

4.1 Regularized Rehearsal Methods Results

Figure (1) summarizes the performance of rehearsal-based methods ER, DER, and DER++ on Split-
CIFAR100 (left columns) and Split-Tiny ImageNet (right columns) for the selected memory sizes. We include
the baseline performance (light blue) and outline the impact of incorporating regularization techniques on
top of these rehearsal methods.

Our results demonstrate that introducing IM on top of rehearsal-based methods consistently leads to im-
provements across all memory sizes. For instance, when IM is applied to ER on Split-CIFAR100, we observe
an enhancement of 10-13% in performance across all memory sizes. The improvement is slightly lower for
DER and DER++, ranging around 2-7% for DER and 1-2% for DER++. In contrast, other regularizers
like EWC, SI, and EM generally do not improve the baseline methods, and can even degrade performance in
some cases, as is the case for EWC on DER and DER++, where the model’s accuracy drops by nearly half.

We can also observe in Figure (1) that forgetting is significantly reduced when the rehearsal methods are
paired with IM. For ER (paired with IM) applied on Split-CIFAR100, the reduction in forgetting is around
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Figure 1: Results of Integrating Different Regularizers on Split-CIFAR100 and Split-Tiny
ImageNet. This figure plots the average accuracy and forgetting rate of three baseline methods (ER,
DER, and DER++) across various sizes of memory buffer, in combination with the analyzed regularizers
(IM, EM, EW, and SI), and across two datasets (Split-CIFAR100 and Split-Tiny ImageNet). The results
demonstrate that the proposed information maximization regularizer (IM) consistently outperforms other
methods, achieving higher accuracy and lower forgetting rates on both datasets regardless of the memory
setting.

(22-25%) across all memory sizes. For DER and DER++ on Split-CIFAR100, our results show a smaller
reduction compared to ER with about (9-13%) and (4-6%), respectively. On the other hand, EM and SI do
not generally reduce forgetting compared to the original baselines. This is since EM aims at increasing the
model’s confidence in predicting samples from the current task. While this approach might accelerate the
learning process over tasks, it does not promote the retention of previously learned information.

For EWC, we observe reduction in forgetting when paired with ER, but not with the remaining baselines.
More detailed and comprehensive results can be found in the Appendix.

To further validate the effectiveness of IM, we expand our analysis to include two additional rehearsal-based
baselines: Refresh Learning and STAR. Figure (2) presents the performance gains when IM is integrated
into all five rehearsal methods (ER, DER, DER++, Refresh Learning, STAR) across both Split-CIFAR100
and Split-Tiny ImageNet.

On Split-CIFAR100, IM consistently improves the performance of Refresh Learning and STAR, but with
varying impact. When paired with Refresh Learning, the improvements are more modest, about 1–2% in
accuracy, but forgetting is reduced by (7–9%) across all memory sizes. This indicates that while Refresh
Learning already stabilizes training to some degree, IM provides an additional layer of retention without
significantly altering the learning dynamics. For STAR, the effect is more significant, as we observe accuracy
gains of 2–6%, along with a substantial reduction in forgetting (18–24%).

On Split-Tiny ImageNet, IM continues to yield consistent improvements. For Refresh Learning, the accuracy
gains are larger than on Split-CIFAR100, ranging from 2–8%, with forgetting reduced by (7–20%). STAR
also benefits considerably, with accuracy improvements of 3–9% and forgetting reductions between (9–15%).
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Figure 2: Results on Split-CIFAR100 and Split-Tiny ImageNet. This figure presents the average
accuracy and forgetting rate of five rehearsal-based methods (ER, DER, DER++, Refresh Learning, and
STAR) across different memory buffer sizes, both in their baseline form and when combined with Information
Maximization (IM). The results show that integrating IM consistently enhances performance, leading to
higher accuracy and reduced forgetting across all methods, datasets, and memory settings.

Conclusion. These results reveal that Information Maximization (IM) serves as an effective regularization
technique, consistently improving the performance of image continual learning baselines across various mem-
ory budgets. By encouraging confident yet balanced predictions, IM enhances both accuracy and knowledge
retention, thereby mitigating catastrophic forgetting.

4.2 Ablation Analysis

To explore the limitations of Information Maximization (IM) as a regularizer for continual learning methods,
we conduct three ablation experiments aimed at understanding its performance under various conditions.
First, we assess the impact of IM when the computational budget is reduced to determine whether it improves
the convergence of the baseline methods. Second, we evaluate if the improvement obtained by using IM
diminishes with additional tasks. Specifically, we investigate the performance of our approach when the
number of tasks exceeds 10, to understand how IM scales with an increasing number of tasks. Third, we
examine the effect of applying IM exclusively to buffer samples, as opposed to both buffer and current task
samples, to assess whether applying IM beyond current task samples is beneficial.

Computational Budget. In the experiments presented in Section (4.1), the computational budget was
set following the default settings of Mammoth CL framework, i.e. 50 epochs per task for Split-CIFAR100
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Table 1: Ablation Study on Compute Budget. This table presents the performance of ER and
DER, with and without the Information Maximization (IM) regularizer, on Split-CIFAR100 and Split-Tiny
ImageNet datasets. For Split-CIFAR100, the baselines are run with 10 epochs instead of the original 50, while
for Split-Tiny ImageNet, the experiments are run with 50 epochs instead of the original 100. The results
indicate that incorporating IM leads to improved convergence and consistently higher average accuracy.

Split-Cifar100 Split-Tiny ImageNet
Buffer Size 500 1000 2000 1000 2000 4000
ER 20.8 26.8 35.6 13.2 18.7 25.6
ER + IM 28.8 35.7 40.1 21.5 26.6 31.8
DER 24.1 21.1 19.9 21.6 26.3 24.2
DER + IM 33.5 37.3 34.4 27.9 32.1 33.3

and 100 epochs per task for Split-Tiny ImageNet. These settings ensure sufficient training iterations for
each task, allowing models to stabilize and learn meaningful representations. However, in practical scenar-
ios, computational efficiency is a critical factor, as training deep learning models over multiple tasks can
be prohibitively expensive. Currently, there is a growing interest in exploring low-computational regimes
Ghunaim et al. (2023); Prabhu et al. (2023) for CL, as computing resources are far more expensive than
storage Prabhu et al. (2023). This shift in focus reflects the necessity of developing continual learning ap-
proaches that remain effective even with reduced training time. Therefore, to investigate how our proposed
regularizer, IM, performs under computational constraints, we run ablation experiments with about half of
the computational budget on Split-Tiny ImageNet (i.e. half of the training epochs per task) and less than
a quarter of the computational budget on Split-CIFAR100 compared to our original experimental setup.

The results in Table (1) show that, even with a lower computational budget of 10 and 50 epochs per task
on Split-CIFAR100 and Split-Tiny ImageNet, respectively, the proposed ER+IM and DER+IM methods
outperform their counterparts without IM regularizer. For instance, on the Split-CIFAR100 dataset with a
buffer size of 1000, ER+IM achieves an accuracy of 35.7%, significantly higher than ER at 26.8%. Similarly,
DER+IM attains 37.3% accuracy, surpassing DER’s 21.1% by a large margin. These trends hold for different
buffer sizes and datasets, highlighting the effectiveness of the proposed regularization in low-compute regimes.

Number of Tasks. In the experiments presented in Section (4.1), we used the conventional 10-tasks
split for Split-CIFAR100 and Split-Tiny ImageNet, which is commonly used in continual learning studies.
However, as shown in Villa et al. (2022); Prabhu et al. (2023), performance may vary when more tasks are
introduced. More tasks can make the problem harder because the model has to remember more information
and avoid forgetting earlier tasks while learning new information. Consequently, we reran the experiments
in Section (4.1), doubling the number of tasks from 10 to 20. This allows us to evaluate whether Infor-
mation Maximization (IM) regularizer remains effective when the continual learning problem becomes more
challenging due to having more tasks to learn. The results presented in Table (2) show that incorporating
IM into ER and DER can significantly improve their performance on longer sequences of tasks. For ex-
ample, ER+IM shows an improvement of (4-7%) and (6-8%) on Split-CIFAR100 and Split-Tiny ImageNet,
respectively. On the other hand, DER+IM shows a (4-7%) and (4-5%) improvement on Split-CIFAR100 and
Split-Tiny ImageNet, respectively.

Regularization Targets. For the experimental assessment in Section (4.1), we apply the regularization
loss to current task samples only. This raises the question of how the proposed method would behave if the
IM loss were applied exclusively to memory samples or to both memory and current task samples. For this
reason, we reran the experiments shown in Section (4.1) for both variants, and the results are summarized
in Table (3). We find that applying the IM loss to the current task (CT) is superior to applying it to the
memory/buffer samples only (BF) or to both buffer and current task samples (ALL). Notably, this trend

9
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Table 2: Ablation Study on Number of Tasks. This table presents the performance of ER and DER
, with and without Information Maximization (IM) regularizer, on a sequence of 20 tasks for both Split-
CIFAR100 and Split-Tiny ImageNet datasets. Our evaluation shows that, despite the increased amount of
tasks our proposal still outperform the ER and DER baselines in every single scenario.

Split-CIFAR100 Split-Tiny ImageNet
Buffer Size 500 1000 2000 1000 2000 4000
ER 16.6 25.8 34.7 9.1 14.5 22.1
ER + IM 23.4 31.3 38.9 18.3 23.4 29.1
DER 25.1 35.8 38.9 18.0 22.5 27.8
DER + IM 32.8 39.8 45.0 23.2 27.0 32.1

Table 3: Ablation Study on Regularization Target Selection. In the main results, the Information
Maximization (IM) regularizer is applied exclusively to the current task samples (CT). This table presents
the results of applying the regularizer to the buffer samples only (BF) and to both current task samples and
buffer samples simultaneously (ALL). The findings indicate that applying the regularizer to the current task
samples consistently leads to superior performance compared to the other variants.

Split-CIFAR100 Split-Tiny ImageNet
Buffer Size 500 1000 2000 1000 2000 4000
ER + IM (ALL) 25.9 34.6 42.7 15.0 20.3 27.8
ER + IM (CT) 33.6 39.8 46.2 21.6 27.0 32.1
ER + IM (BF) 21.7 28.9 38.8 12.7 17.7 24.2
DER + IM (ALL) 33.5 46.0 53.5 27.7 32.7 35.1
DER + IM (CT) 40.6 48.7 53.6 28.1 33.3 38.7
DER + IM (BF) 27.3 41.0 50.2 21.2 27.7 34.6

remains consistent across various buffer sizes, datasets, and continual learning methods, highlighting the
robustness of this strategy.

For example, with a buffer size of 500 on the Split-CIFAR100, ER+IM (CT) achieves an accuracy of 33.6%,
which is significantly higher than ER+IM (ALL) and ER+IM (BF), which achieve 25.9% and 21.7%, re-
spectively. Similarly, DER+IM (CT) consistently outperforms DER+IM (ALL) and DER+IM (BF) across
various buffer sizes and datasets, reinforcing the advantage of applying IM solely to current task samples.
For example, it achieves 48.7% accuracy on Split-CIFAR100 with a buffer size of 1000, while DER +IM
(ALL) and DER +IM (BF) achieve 46.0% and 41.0%, respectively. These results indicate that applying IM
loss to the current task samples is more effective than applying it exclusively to the memory/buffer samples
only or to both buffer and current task samples.

4.3 Generalization to Video Continual Learning

To further validate the effectiveness of Information Maximization (IM) as a cost-effective regularization
technique for enhancing continual learning methods, we extend our analysis to representative experiments
in the video domain. Specifically, we experiment with the iCaRL approach as part of the popular vCLIMB
framework Rebuffi et al. (2017); Villa et al. (2022) to assess IM’s performance in this video CL context.

We evaluate the use of IM loss on two widely recognized datasets in the video domain: UCF-101, consisting
of 101 classes split into 10 tasks, and ActivityNet, comprising 200 classes also divided into 10 tasks. We set

10
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Figure 3: Application of Information Maximization to Video Continual Learning. This figure
illustrates the average accuracy and forgetting rates of the iCARL video continual learning variant, intro-
duced by vCLIMB Villa et al. (2022), with and without our Information Maximization (IM) regularizer. The
results demonstrate that incorporating the IM regularizer on top of iCARL leads to consistent improvements
in average accuracy and reductions in the forgetting rate.

the memory size to 5, 10 and 20 samples per class and adopt the training hyperparameters from Villa et al.
(2022).

Upon applying iCARL to UCF-101 with IM, we achieve an improvement of 2-8% across all memory sizes.
Similarly, on ActivityNet, the accuracy gain is between 4-8% with the incorporation of IM. These results
further underscore the potential of IM as a valuable regularization technique for enhancing performance
in the video domain and continual learning scenarios. Note that video data has an additional temporal
dimension compared to images, which requires more memory to store. Being able to improve continual
learning performance with small memory buffer sizes, as shown in Figure 3, is crucial for facilitating the
development of memory-efficient approaches for video continual learning.

5 Conclusion

In conclusion, this paper explores the combined potential of memory-based methods and regularization
techniques in the context of Continual Learning (CL), specifically within a class incremental setup. We
introduce a novel, class-agnostic regularization strategy for CL, which focuses on the distribution of the
network’s predictions. This strategy, termed Information Maximization (IM) regularization, facilitates the
learning of enhanced feature representations across multiple distribution shifts, while simultaneously mini-
mizing memory requirements and computational overhead. Our extensive empirical evaluation underscores
the effectiveness of the proposed IM regularizer, demonstrating its superiority over existing regularization
strategies designed for CL. Furthermore, the simplicity and versatility of our approach allow it to be applied
across different input domains, as evidenced by its successful application in the video continual learning
setup. Unlike traditional image-based settings, video CL presents additional challenges due to its tempo-
ral structure and higher memory demands. Despite these complexities, our method demonstrates strong
performance, reinforcing its applicability to real-world, resource-constrained scenarios.
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6 Appendix

6.1 Regularized Rehearsal Methods Results

Tables 4 and 5, contain the numerical results for the average accuracy and forgetting rate metrics, respec-
tively, on three baseline methods (ER, DER, and DER++) in combination with the analyzed regularizers
(IM, EM, EW, and SI), as well as for integrating IM into Refresh Learning and STAR. These results were
summarized as plots in Figures (1) and (2) of the main paper. We observe that our proposed regularize (IM)
consistently outperforms other methods across different memory settings. The hyper-parameters we used
for every baseline when combined with the analyzed regularizers (IM, EM, EW, and SI) are listed in Table
6 and 7.

Table 4: Average Accuracy on Split-CIFAR100 and Split-Tiny ImageNet. This table shows the
average accuracy of three baseline methods (ER, DER, and DER++) across various sizes of memory buffer,
in combination with the analyzed regularizers (IM, EM, EW, and SI), as well as for integrating IM into
Refresh Learning and STAR.

Dataset Split-CIFAR100 Split-Tiny ImageNet
Buffer 500 1000 2000 1000 2000 4000
ER 21.6 29.6 36.3 13.3 18.0 25.2
ER (IM) 33.6 39.8 46.2 21.6 27.0 32.1
ER (EM) 20.8 28.8 38.3 12.2 16.6 24.1
ER (EWC) 24.2 31.4 37.4 11.4 15.4 21.3
ER (SI) 21.8 29.0 36.4 11.2 15.7 20.4
DER 33.6 42.6 51.9 23.3 31.4 35.7
DER (IM) 40.6 48.7 53.6 28.1 33.3 38.7
DER (EM) 32.3 42.6 49.3 24.4 30.9 35.5
DER (EWC) 20.5 19.5 25.0 10.9 15.2 17.6
DER (SI) 29.5 42.3 50.4 13.2 17.0 16.8
DER++ 40.4 45.9 52.5 23.0 31.2 38.0
DER++ (IM) 41.6 47.3 54.3 27.5 33.3 38.5
DER++ (EM) 40.5 44.6 52.6 25.1 30.7 36.8
DER++ (EWC) 18.0 17.6 22.8 12.9 14.3 21.3
DER++ (SI) 33.7 42.3 50.3 17.6 17.4 22.2
Refresh 40.8 48.0 53.6 18.5 21.8 33.6
Refresh (IM) 42.7 49.5 55.1 25.5 30.1 35.2
STAR 28.6 36.9 46.6 16.8 23.2 26.3
STAR (IM) 34.7 43.4 48.8 25.8 26.1 34.7

6.2 Generalization to Video Continual Learning

Tables 8 and 9 present the numerical results of average accuracy and forgetting rate, respectively, for iCaRL
approach with and without IM on two video datasets (UCF101 and ActivityNet). Combining iCaRL with
IM shows improvement in average accuracy and reduces forgetting rate across different memory settings.
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Table 5: Forgetting Rate on Split-CIFAR100 and Split-Tiny ImageNet. This table shows the
forgetting rate of three baseline methods (ER, DER, and DER++) across various sizes of memory buffer, in
combination with the analyzed regularizers (IM, EM, EW, and SI), as well as the results for integrating IM
into Refresh Learning and STAR.

Dataset Split-CIFAR100 Split-Tiny ImageNet
Buffer 500 1000 2000 1000 2000 4000
ER 73.8 64.5 54.8 71.8 65.9 57.5
ER (IM) 47.9 40.6 32.8 53.3 47.6 40.9
ER (EM) 75.5 66.9 55.5 72.9 68.3 59.3
ER (EWC) 65.2 55.3 47.4 62.0 57.5 50.4
ER (SI) 73.0 65.3 56.0 68.5 60.8 57.6
DER 58.8 46.5 32.4 55.9 43.0 35.7
DER (IM) 45.1 32.7 23.2 44.3 34.5 26.0
DER (EM) 60.0 46.9 38.2 53.7 44.8 38.4
DER (EWC) 67.7 72.0 64.8 67.4 61.3 58.8
DER (SI) 63.8 47.1 36.0 58.9 49.7 51.5
DER++ 50.7 42.7 35.1 56.7 41.0 33.9
DER++ (IM) 46.0 37.1 28.1 46.1 32.1 28.4
DER++ (EM) 49.6 43.1 32.5 48.8 40.5 32.9
DER++ (EWC) 68.4 70.7 63.0 64.7 64.4 53.8
DER++ (SI) 58.3 46.7 36.1 57.4 52.7 49.8
Refresh 45.0 35.1 28.5 62.7 57.9 42.2
Refresh (IM) 36.4 25.9 21.8 44.6 37.9 35.4
STAR 62.6 55.1 42.2 65.7 50.9 54.1
STAR (IM) 40.8 31.4 23.7 50.4 42.0 40.4
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Table 6: Experiments Hyper-Parameters (Split-CIFAR100). Columns list the training hyper-
parameters. Buf. = buffer size, LR = learning rate, Mom. = momentum, WD = weight decay, α
= distillation coefficient (used in DER/DER++/Refresh), β = memory balancing coefficient (used in
DER++/Refresh), γ, λ, s (specific to STAR), Γ, J (specific to Refresh Learning). A dash (–) indicates
that the parameter is not applicable to the method.

Baseline Buf. LR Mom. WD α β γ λ s Γ J

ER 500 0.1 0 0 – – – – – – –
ER 1000 0.1 0 0 – – – – – – –
ER 2000 0.1 0 0 – – – – – – –

DER 500 0.03 0 0 0.3 – – – – – –
DER 1000 0.03 0 0 0.3 – – – – – –
DER 2000 0.03 0 0 0.3 – – – – – –

DER++ 500 0.03 0 0 0.3 0.5 – – – – –
DER++ 1000 0.03 0 0 0.3 0.5 – – – – –
DER++ 2000 0.03 0 0 0.3 0.5 – – – – –

Refresh 500 0.03 0 1e-4 0.3 0.5 – – – 1e-5 1
Refresh 1000 0.03 0 1e-4 0.3 0.5 – – – 1e-5 1
Refresh 2000 0.03 0 1e-4 0.3 0.5 – – – 1e-5 1

STAR 500 0.1 0 0 – – 0.05 0.05 1 – –
STAR 1000 0.05 0 0 – – 0.05 0.05 1 – –
STAR 2000 0.05 0 0 – – 0.05 0.05 1 – –
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Table 7: Experiments Hyper-Parameters (Split-Tiny ImageNet). Columns list the training
hyper-parameters. Buf. = buffer size, LR = learning rate, Mom. = momentum, WD = weight decay,
α = distillation coefficient (used in DER/DER++/Refresh), β = memory balancing coefficient (used in
DER++/Refresh), γ, λ, s (specific to STAR), Γ, J (specific to Refresh Learning). A dash (–) indicates that
the parameter is not applicable to the method.

Baseline Buf. LR Mom. WD α β γ λ s Γ J

ER 500 0.03 0 0 – – – – – – –
ER 1000 0.03 0 0 – – – – – – –
ER 2000 0.03 0 0 – – – – – – –

DER 500 0.03 0 0 0.1 – – – – – –
DER 1000 0.03 0 0 0.1 – – – – – –
DER 2000 0.03 0 0 0.1 – – – – – –

DER++ 500 0.03 0 0 0.3 0.5 – – – – –
DER++ 1000 0.03 0 0 0.3 0.5 – – – – –
DER++ 2000 0.03 0 0 0.3 0.5 – – – – –

Refresh 500 0.03 0 1e-4 0.3 0.5 – – – 1e-5 1
Refresh 1000 0.03 0 1e-4 0.3 0.5 – – – 1e-5 1
Refresh 2000 0.03 0 1e-4 0.3 0.5 – – – 1e-5 1

STAR 500 0.1 0 0 – – 0.01 0.1 1 – –
STAR 1000 0.1 0 0 – – 0.05 0.1 1 – –
STAR 2000 0.1 0 0 – – 0.01 0.1 1 – –

Table 8: Average Accuracy on UCF101 and ActivityNet. This table shows the average accuracy of
iCaRL with and without IM across various sizes of memory buffer on two datasets (UCF101 and ActivityNet).
The results demonstrate that the integration of information maximization (IM) regularizer consistently
outperforms iCaRL on both datasets regardless of the memory setting.

Dataset UCF101 ActivityNet

Buffer 505 1010 2020 1000 2000 4000

iCaRL 68.44 74.70 81.07 41.72 45.05 46.91
iCaRL (IM) 75.60 79.11 83.53 45.76 50.01 55.20
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Table 9: Forgetting Rate on UCF101 and ActivityNet. This table shows the forgetting rate of iCaRL
with and without IM across various sizes of memory buffer on two datasets (UCF101 and ActivityNet). The
results demonstrate that the integration of information maximization (IM) regularizer consistently achieves
lower forgetting rates on both datasets regardless of the memory setting.

Dataset UCF101 ActivityNet

Buffer 505 1010 2020 1000 2000 4000

iCaRL 25.55 20.37 14.31 21.29 19.46 18.55

iCaRL + IM 16.87 16.02 10.54 19.01 18.55 15.48
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