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ABSTRACT

We show that running gradient descent on the logistic regression objective guaran-
tees loss f(x ) ≤ 1.1 · f(x ∗) + ε, where the error ε decays exponentially with the
number of iterations. This is in contrast to the common intuition that the absence
of strong convexity precludes linear convergence of first-order methods, and high-
lights the importance of variable learning rates for gradient descent. For separable
data, our analysis proves that the error between the predictor returned by gradi-
ent descent and the hard SVM predictor decays as poly(1/t), exponentially faster
than the previously known bound of O(log log t/ log t). Our key observation is
a property of the logistic loss that we call multiplicative smoothness and is (sur-
prisingly) little-explored: As the loss decreases, the objective becomes (locally)
smoother and therefore the learning rate can increase. Our results also extend to
sparse logistic regression, where they lead to an exponential improvement of the
sparsity-error tradeoff.

1 INTRODUCTION

Logistic regression is one of the most widely used classification methods because of its simplic-
ity, interpretability, and good practical performance. Yet, the convergence behavior of first-order
methods on this task is not well understood: In practice gradient descent performs much better than
what the theory predicts. In particular, a general analysis of gradient descent for smooth functions
implies convergence with the error in function value decaying as O(1/T ). Analyses with stronger,
linear convergence guarantees generally require the function to satisfy the strong convexity property,
which, in contrast to other losses such as the `2 loss, the logistic loss only satisfies in a bounded set
of solutions around zero. As a result, this introduces an exponential runtime dependency on the
magnitude of the optimal solution Rätsch et al. (2001); Freund et al. (2018), which is undesirable in
practice. This poses a serious obstacle to obtaining favorable error rates for logistic regression that
lead to high-precision solutions.

A deeper study into the structure of the exponential and logistic losses was done in Telgarsky &
Singer (2012), who showed that, for linearly separable data, greedy coordinate descent achieves
linear convergence with a rate that depends on the maximum linear classification margin (i.e. hard
SVM margin). Unfortunately, for logistic regression, it also has a 2m dependence on the number of
examples, making it inefficient for any real-world task. The significance of the separability of the
data for convergence has also been observed in Telgarsky (2013); Freund et al. (2018), who present
convergence results based on quantitative measures of separability. Telgarsky (2013) also refines the
results of Telgarsky & Singer (2012) for the exponential loss, but still suffers from an exponential
overhead originating the multiplicative discrepancy between the exponential and the logistic loss.
Interestingly Telgarsky (2013) points out that logistic regression experiments paint a much more
favorable picture than the theory predicts. For separable data, Soudry et al. (2018) showed that the
gradient descent logistic regression estimator converges to the maximum margin estimator at a rate
ofO(log log T/ log T ), which implies function value convergence at a rate ofO(1/T ). Interestingly,
Nacson et al. (2019) experimentally observed that these rates seem to be exponentially improvable if
one uses variable step sizes, in the case of logistic regression and shallow neural networks. However,
as shown in Ji & Telgarsky (2018), the separability assumption is important, and the poly(1/T )
bound of function value convergence is tight for gradient descent on arbitrary data.
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Another approach to obtain high-precision solutions is by using second order methods, which in ad-
dition to first order (gradient) information, use second order (Hessian) information about the func-
tion. These make use of second order stability properties, such as quasi-self-concordance Bach
(2010) combined with Newton’s method Karimireddy et al. (2018), or ball oracles Carmon et al.
(2020); Adil et al. (2021). Such approaches are generally not suitable for large-scale applications
because of their reliance on repeated calls to large linear system solvers.

Our work. In this paper, we show that (under appropriate assumptions) we can get the best of
both worlds of first and second order methods, thus giving a partial explanation for the excel-
lent performance that first-order methods have on logistic regression in practice. In particular,
given a binary classification instance (A ∈ {−1, 1}m×n, b ∈ {−1, 1}m) with associated logis-
tic loss f(x ) =

∑
i

log(1 + exp(−bi(Ax )i)), we show that simple variants of gradient descent

return a solution with f(x ) ≤ (1 + δ) · f(x ∗) + ε after O
(
K
(

1
δ + log f(0)

ε

))
iterations, where

K = poly(n, ‖x ∗‖). Even though the error still decays as 1/T in the worst case because of the 1
δ de-

pendence, the additive error is now δf(x ∗) instead of δf(0), allowing for much faster convergence
when the optimal loss f(x ∗) is smaller (which is our measure of linear separability of the data). For
linearly separable data, i.e. as f(x ∗) approaches 0, the convergence becomes linear. We also show
that the distance to the maximum margin estimator

∥∥∥ x
‖x‖2

− x∗

‖x∗‖2

∥∥∥
2

decays as 1/T , exponentially

improving over the log log T/ log T bound of Soudry et al. (2018).

Instead of properties like Lipschitzness, smoothness, strong convexity that are commonly used in
the study of first order methods, we find that there are two properties that are more relevant to the
structure of the logistic regression problem. The first one is second order robustness, which means
that the Hessian is stable (in a spectral sense) in any small enough norm ball Cohen et al. (2017).
This is closely related to quasi-self-concordance, a property that has been previously used in the
analysis of second order algorithms Bach (2010). The second property is what we call multiplicative
smoothness, which means that the function is locally smooth, with the smoothness constant being
proportional to the function value (loss). Together, these properties show that, as the loss decreases,
the objective becomes (locally) smoother and therefore the learning rate can increase. This motivates
a variable step size schedule that is inversely proportional to the loss, thus making larger steps as
the solution approaches optimality. This in fact agrees with the observations of Soudry et al. (2018);
Nacson et al. (2019) on the importance of a variable learning rate. As can be seen in the toy example
from Soudry et al. (2018) in Figure 1, simply replacing the fixed learning rate η used in Soudry et al.
(2018) by an increasing learning rate η · f(x 0)/f(xT ) yields an exponential improvement, both in
loss and distance to the maximum margin estimator.

Figure 1: Comparison between fixed and increasing step sizes in the toy example from Figure
1 of Soudry et al. (2018). The fixed step size is set to β−1 := ‖A‖−2

2 , and the increasing to
β−1f(x 0)/f(xT ). The estimator error is defined as ‖x t/ ‖x t‖2 − x ∗/ ‖x ∗‖2‖2.
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Algorithm Order Guarantee Runtime Error Dependence

Gradient descent First f(x ) ≤ f(x ∗) + ε m/ε

Accelerated gradient descent First f(x ) ≤ f(x ∗) + ε
√
m/ε

Newton/Trust region Second f(x ) ≤ f(x ∗) + ε log(m/ε)

This paper First f(x ) ≤ (1 + δ) · f(x ∗) + ε δ−1 + log(m/ε)

Table 1: Algorithms for logistic regression and dependence on m/ε (omitting extra polylog(m,n)
factors). Algorithms with exponential dependences on any problem parameter are ommitted.

Algorithm Guarantee Sparsity Order

Shalev-Shwartz et al. (2010) f(x ) ≤ f(x ∗) + ε ‖x ∗‖21m/ε First

This paper f(x ) ≤ (1 + δ) · f(x ∗) + ε ‖x ∗‖21 (δ−1 + log(m/ε)) First

Table 2: Algorithms for sparse logistic regression

1.1 SPARSE LOGISTIC REGRESSION

In practice, it is often important to force the solution of a logistic regression problem to be sparse, i.e.
have only a few non-zero entries, which is a form of feature selection. This is because most of the
features might only be marginally useful, and thus one can drastically reduce the size of the model
while not significantly sacrificing the predictive performance. Apart from computational efficiency,
feature selection is also important to improve interpretability and avoid overfitting.

Most progress in sparse optimization has focused on objective functions with condition number
bounded by some κ > 0. Results in this line of work guarantee a solution with relaxed spar-
sity s′ ≥ s, where s is the target sparsity, and algorithms include lasso, orthogonal matching pur-
suit (OMP), and iterative hard thresholding (IHT) Natarajan (1995); Blumensath & Davies (2009);
Shalev-Shwartz et al. (2010); Jain et al. (2011; 2014); Axiotis & Sviridenko (2021; 2022). The state
of the art result by Axiotis & Sviridenko (2022) gives a sparsity of s′ = O(κ) · s using a variant of
the IHT algorithm.

However, the condition number of the logistic loss is unbounded, because it is not strongly convex.
Therefore, these results do not directly apply, although they do apply to `2-regularized logistic re-
gression. Some works Van de Geer (2008); Bunea (2008) have analyzed lasso methods for logistic
regression without condition number assumptions, and Shalev-Shwartz et al. (2010) provides three
different analyses for smooth but not strongly convex functions. These apply to logistic regression
and give a sparsity of O

(
‖x ∗‖21

m
ε

)
to achieve a loss of f(x ) ≤ f(x ∗) + ε. The most practical of

these is a forward greedy selection algorithm, which is also known as greedy coordinate descent.

Our work. Using the second order stability and multiplicative smoothness properties, we show that
a slight variation of greedy coordinate descent gives a sparsity of

O
(
‖x ∗‖21 (δ−1 + log(m/ε))

)
and a loss of f(x ) ≤ (1 + δ) · f(x ∗) + ε. As long as the 1 + δ approximation in front of f(x ∗)
is tolerated, as is the case when f(x ∗) � m, this implies an exponential improvement in the ε
dependence from m

ε to log m
ε . In addition, our analysis does not require (but is also not affected

by) fully corrective steps, in which the function is fully re-optimized over the support of the current
solution.

2 PRELIMINARIES

Notation. We denote [n] = {1, 2, . . . , n}. We will use bold to refer to vectors or matrices. We
denote by 0 the all-zero vector, 1 the all-one vector, O the all-zero matrix, and by I the identity
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matrix (with dimensions understood from the context). Additionally, we will denote by 1i the i-th
basis vector, i.e. the vector that is 0 everywhere except at position i.

In order to ease notation and where not ambiguous for two vectors x ,y ∈ Rn, we denote by
xy ∈ Rn a vector with elements (xy)i = xiyi, i.e. the element-wise multiplication of two vectors
x and y . In contrast, we denote their inner product by 〈x ,y〉 or x>y . Similarly, x 2 ∈ Rn will be
the element-wise square of vector x .

For any vector x ∈ Rn and set S ⊆ [n], we denote by xS the vector that results from x after
zeroing out all the entries except those in positions given by indices in S. We will also use the
notation ∇Sf(x ) := (∇f(x ))S to denote the restriction of a gradient to S.

We use the notation Õ (·) to hide poly log(n,m) factors in O-notation, where n is the dimension of
the problem and m is the number of examples.

Norms. For any p ∈ (0,∞) and weight vector w ≥ 0, we define the weighted `p norm of a vector
x ∈ Rn as:

‖x‖p,w =

(∑
i

wix
p
i

)1/p

.

For p = 0, we denote ‖x‖0 = |{i | xi 6= 0}| to be the sparsity of x . For p = ∞, we denote
‖x‖∞ = maxi |xi| to be the maximum absolute value of x .

Smoothness and convexity. A differentiable function f : Rn → R is called convex if for any
x ,y ∈ Rn we have f(y) ≥ f(x ) + 〈∇f(x ),y − x 〉. Furthermore, f is called β-smooth (with
respect to some norm ‖·‖) for some real number β > 0 if for any x ,y ∈ Rn we have f(y) ≤
f(x ) + 〈∇f(x ),y − x 〉 + (β/2) ‖y − x‖2. If f is only β-smooth along s-sparse directions (i.e.
only for x ,y ∈ Rn such that ‖y − x‖0 ≤ s), then we call f β-smooth at sparsity level s and denote
the smallest such β by βs and call it the restricted smoothness constant (at sparsity level s).

3 LOGISTIC REGRESSION ANALYSIS VIA MULTIPLICATIVE SMOOTHNESS

In the logistic regression problem, our goal is to minimize the function f(x ) =
m∑
i=1

log(1+e−(Ax)i),

where A ∈ Rm×n is a data matrix1

Our starting point, as is usually the case with first-order methods, will be the second order Taylor
expansion of f :

f(x + x̃ ) = f(x ) + 〈∇f(x ), x̃ 〉+
1

2
〈x̃ ,∇2f(x̄ )x̃ 〉 , (1)

where, by the mean value theorem for twice continuously differentiable functions, x̄ is entry-wise
between x and x ′, and ∇2f(x̄ ) is the Hessian of f at x̄ . In fact, as long as the step x̃ is not too
large, the Hessian at x̄ will not differ much (spectrally) from the Hessian at x . This is because of
the following property of the logistic function called second order robustness Cohen et al. (2017),
which is also very closely related to quasi-self-concordance Bach (2010).
Definition 3.1 (Second-order robustness). A twice differentiable function f : Rn → R is called
q-second order robust with respect to a norm ‖·‖ if its Hessian is stable in any (1/q)-sized ‖·‖-ball,
i.e. for any x ,x ′ ∈ Rn such that ‖x ′ − x‖ ≤ 1/q, we have 1

2∇
2f(x ) � ∇2f(x ′) � 2∇2f(x ).

It is not hard to see that f is 2M -second order robust with respect to the `1 norm, where M is a
upper bound on the entries of A in absolute value. Because of this, (1) implies the much simpler

f(x + x̃ ) = f(x ) + 〈∇f(x ), x̃ 〉+ 〈x̃ ,∇2f(x )x̃ 〉 , (2)

as long as ‖x̃‖1 ≤ 1/(2M). We can easily calculate that ∇f(x ) = −A> (1− σ(Ax )), where
σ(t) = 1/(1 + e−t) is the sigmoid function, and ∇2f(x ) = A>diag(w(x ))A, where w(x ) =

1This formulation is without loss of generality, because we can incorporate the binary ±1 labels into the
matrix A and assume that all the labels are positive.
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σ(x )(1 − σ(x )) are diagonal weights. Now, we should note that the second order term of (1) can
be re-written as 1

2 〈w(x ), (Ax̃ )2〉. This term, whose magnitude is what will determine the step size
of the algorithm and in turn the bound on the total number of iterations, becomes smaller as the
weights w(x ) become smaller. The crucial observation is that these weights are bounded in a way
that depends on the loss of x̄ , concretely:

m∑
i=1

(w(x ))i ≤ f(x ) . (3)

In other words, as the loss decreases, f becomes smoother (in an appropriate sense). This is the
main observation on which our analysis is based, and is what allows the algorithm to employ a step
size that is inversely proportional to the loss.

Multiplicative smoothness. The above discussion motivates the following definition of multi-
plicative smoothness. This is related to the usual definition of smoothness but also incorporates the
property that the function becomes smoother as the loss decreases.
Definition 3.2 (Multiplicative smoothness). We call a twice differentiable function f : Rn → R>0

µ-multiplicatively smooth with respect to a norm ‖·‖, if for any x , x̃ ∈ Rn we have

x̃>∇2f(x )x̃

f(x )
≤ µ ‖x̃‖2 .

Our use of a general norm is not an over-generalization, since as we will see the `1 norm is more
suitable for sparse logistic regression, and the `2 norm is more suitable for the unrestricted case. In
fact, it can be proved that f is M2-multiplicatively smooth with respect to the `1 norm, where we
remind that M is a bound on the entries of A in absolute value.

In the following sections, we will see how the second order robustness and multiplicative smoothness
properties play into the design and analysis of algorithms for sparse and general logistic regression.

4 SPARSE LOGISTIC REGRESSION

As we saw, the logistic loss is 2M -second order robust andM2-multiplicatively smooth with respect
to the `1 norm. This is an ideal norm for sparse logistic regression, where in addition to minimizing
the loss we want to restrict the solution to have few non-zero entries. In particular, it yields a
variant of the `1 gradient descent algorithm (aka greedy coordinate descent), which is presented in
Algorithm 1.

Algorithm 1 Greedy Coordinate Descent
1: procedure GREEDYCOORDINATEDESCENT(x 0, T,M,B)

2: Let f(x ) :=
m∑
i=1

log(1 + e−bi(Ax)i)

3: for t = 0, . . . , T − 1 do

4: For all i ∈ [n] define ζi =


λt if xti = 0

0 if ‖x t‖1 ≥ B and ∇if(x t) · xti < 0

1 otherwise
5: i← argmaxi {ζi |∇if(x t)|}
6: η ← (2M max{Mf(x t), |∇if(x t)|})−1

7: xt+1
i ← xti − η∇if(x t)

return xT

The first thing that should be noted about this algorithm is the crucial parameters λt. These parame-
ters offer a quantitative threshold between sparsity and speed of convergence. In particular, when λt
is 1, then all entries (regardless of whether they are zero or not) are treated the same. When λt � 1,
on the other hand, the gradient entries corresponding to zero entries are discounted by a factor� 1,
thus making the algorithm less eager to update these as opposed to non-zero entries, whose update
doesn’t increase sparsity.
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A practical consideration about Algorithm 1 is order. The second condition in line 4 is to make sure
that the `1 norm of the solution never exceeds a given bound on the `1 norm of the optimal solu-
tion. This check is useful for the theoretical analysis but should likely be removed in any practical
implementation.

We are ready for the main theorem of this section. In the proof, which can be found in Ap-
pendix A.2.2, we present an analysis of Algorithm 1 for sparse logistic regression. In addition
to an upper bound B ≥ ‖x ∗‖∞, it also requires an approximation B1 of ‖x ∗‖1. One possible ap-
proach is to approximate it by B, but in practice this would be a learning rate hyperparameter to be
tuned.

Theorem 4.1 (Sparse logistic regression). Given a binary classification instance (A ∈
[−M,M ]m×n, b ∈ {1,−1}m) and for any solution x ∗ ∈ [−B,B]n with M ≥
max{‖x ∗‖−1

∞ , B−1} 2 and a known parameter B1 ∈
[

1
C ‖x

∗‖1 , ‖x ∗‖1
]

for some C ≥ 1, Algo-
rithm 1 with λt = min{B1/ ‖x t‖1 , 1}, initial solution x 0 ∈ Rn, and error tolerance 0 < ε < m/2
returns a solution x with

f(x ) ≤ (1 + δ) · f(x ∗) + ε

and sparsity

s′ := ‖x‖0 = O

(
‖x ∗‖21M

2

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

))
in

T = O

((
‖x‖20 + ‖x ∗‖20

)
M2B2C2

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

))
iterations, for any choice of δ ∈ (0, 1) and parameter c > 0. Each iteration consists of evaluating
the logistic regression gradient∇f plus O(m+ n) additional time.

Corollary 4.2. If M,B,C ≤ Õ (1) and x ∗ is s-sparse, then Algorithm 1 with λt =
min {1/ ‖x t‖1 , 1} returns a solution x with

f(x ) ≤ 1.1 · f(x ∗) + ε

and sparsity

s′ := ‖x‖0 = Õ

(
s2 log

1

ε

)
in

T = Õ

(
s4 log3 1

ε

)
iterations.

It is useful to compare these results to the results of Shalev-Shwartz et al. (2010) for sparse opti-
mization of general smooth convex functions. Even though they achieve the stronger error bound of
f(x ) ≤ f(x ∗) + ε, the sparsity of the final solution is in the order of s2m

ε , which has an exponen-
tially worse error dependence than s2 log m

ε . Therefore, if the approximation rate (1+δ) is tolerable
in front of f(x ∗), then one can obtain exponentially faster sparsity and convergence.

If we are willing to perform fully corrective steps as described in Algorithm 2, then we can get
a cleaner and slightly simpler analysis. This is presented in Theorem 4.3 and proved in Ap-
pendix A.2.3. Fully corrective steps can be useful when there is an efficient (dense) optimization
algorithm and one wishes to use it as a black box for sparse optimization. In practice, one does not
need to perform a full correction, but only a small number of corrective (usually gradient) steps over
the current support of the solution.

2the theorem can be stated without this additional constraint, but we include it because it makes the bounds
considerably simpler
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Algorithm 2 Greedy coordinate descent with fully corrective steps
1: procedure FULLYCORRECTIVEGREEDYCOORDINATEDESCENT(x 0, T,M,B)

2: Let f(x ) :=
m∑
i=1

log(1 + e−bi(Ax)i)

3: S0 ← supp(x 0)
4: for t = 0, . . . , T − 1 do
5: i← argmaxi {|∇if(x t)|}
6: St+1 ← St ∪ {i}
7: x t+1 ← argmin

x :supp(x)⊆St+1

f(x )

return xT

Theorem 4.3 (Sparse logistic regression with fully corrective steps). Given a binary classification
instance (A ∈ [−M,M ]m×n, b ∈ {1,−1}m) and for any solution x ∗ ∈ Rn, Algorithm 2 with
error tolerance 0 < ε < m/2 and initial solution x 0 returns a solution x with

f(x ) ≤ (1 + δ) · f(x ∗) + ε

and sparsity

s′ := ‖x‖0 =
∥∥x 0

∥∥
0

+O

(
‖x ∗‖21M

2

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

))
in T = ‖x‖0 iterations, for any choice of δ ∈ (0, 1). Each iteration consists of evaluating the
logistic regression gradient∇f , solving a logistic regression problem on s′ variables, plusO(m+n)
additional time.

5 DENSE LOGISTIC REGRESSION

In this section, our goal is to minimize the logistic function f without any constraint on the sparsity
of the solution. The results of the Section 4 applied to a full sparsity of n already imply Corollary 5.1.

Corollary 5.1 (Dense logistic regression). Given a binary classification instance (A ∈
[−M,M ]m×n, b ∈ {−1, 1}m) and for any solution x ∗ ∈ [−B,B]n with M ≥
max

{
‖x ∗‖−1

∞ , B−1
}

, Algorithm 1 with λt = 1 for all t, initial solution x 0 ∈ Rn, and error

tolerance 0 < ε < m/2 returns a solution x with

f(x ) ≤ (1 + δ) · f(x ∗) + ε

in

T = O

(
n2M2B2

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

))
.

iterations, for any choice of δ ∈ (0, 1). Additionally, ‖x‖∞ ≤ B + 1
2M . Each iteration consists of

evaluating the logistic regression gradient∇f plus O(m+ n) additional time.

Even though Corollary 5.1 has the same favorable convergence in terms of δ and ε as Theorem 4.1,
based on practical intuitions we would expect (`2-based) gradient descent to perform better than
greedy coordinate descent, which only updates one coordinate at a time, while having access to the
full gradient. In fact, we can verify that the logistic loss does have the multiplicative smoothness
condition with respect to the `2 norm, albeit in an almost trivial sense:

〈w(x ), (Ax )2〉 ≤ ‖w(x )‖1 ‖Ax‖2∞ ≤ f(x ) ‖A‖22→∞ ‖x‖
2
2 ≤ f(x )β ‖x‖22 .

Here, using the inequality ‖A‖22→∞ ≤ ‖A‖
2
2 := β implies β-multiplicative smoothness with re-

spect to the `2 norm. Unfortunately, this is not significantly better than the `1 case: The number of
iterations will be proportional to β ‖x ∗‖22, which can be� m.
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Table 3: Upper bounds on the quantity
〈
w(x ), (A∇f(x ))

2
〉
/
(
f(x )m−1 ‖A∇f(x )‖22

)
. Shown

here is the maximum of this over x being one one of the first 1000 iterates.

Dataset Max ratio

letter 0.40
rcv1.test 0.36
ijcnn1 0.47
vehv2binary 0.37
magic04 0.37

Dataset Max ratio

skin 0.44
w8all 0.40
shuttle.binary 0.37
kddcup04.phy 0.36
kddcup04.bio 0.48

Dataset Max ratio

census 0.50
adult 0.40
poker 0.36
nomao 0.50
covtype 0.36

Interestingly, real logistic regression instances exhibit the `2 multiplicative smoothness property
with significantly better constants. In our experiments we found that along the path of gradients
encountered by gradient descent in a variety of instances, the following property was true:

〈w(x ), (A∇f(x ))
2 ≤ f(x )βm−1 ‖∇f(x )‖22

This is an effective βm−1-multiplicative smoothness property, because it is only assumed to be true
for x ’s encountered by the gradient descent algorithm. As such, it is an empirical property. In
order to check our hypothesis, we have run the gradient descent algorithm with the step sizes that
are implied by Theorem 5.2, which we will see later. For each of the 15 experiments, we have run
gradient descent for 1000 iterations, and calculated the maximum of the following quantity, over all
iterations:

〈w(x ), (A∇f(x ))
2

f(x )m−1 ‖A∇f(x )‖22
.

If this is bounded by 1, and using the fact that ‖A∇f(x )‖22 ≤ β ‖∇f(x )‖22, this implies that f
is effectively βm−1-multiplicatively smooth with respect to the `2 norm. Indeed, as we can see in
Table 3, these values are indeed less than 1 for all datasets and all iterations.

In the following, our plan is to prove convergence, assuming that f has the multiplicative smoothness
property with the constants in our hypothesis above. Under this assumption, we can now prove a
much stronger convergence theorem (here we are also using the fact that M2 ≤ β to replace 2M -
by 2
√
β-second order robustness):

Theorem 5.2. Let f : Rn → R be a convex function that is 2
√
β-second order robust with respect

to the `1 norm and βm−1-multiplicatively smooth with respect to the `2 norm. Let x 0 ∈ Rn be an
initial solution and x ∗ ∈ Rn be an arbitrary solution, where R :=

∥∥x 0 − x ∗
∥∥

2
and R ≥

√
n.3

Then, gradient descent with step size ηt = 0.5 min
{

1
βm−1f(x) ,

1√
β‖∇f(x)‖1

}
returns a solution

with

f(x ) ≤ (1 + δ)f(x ∗) + ε

after

T = O

(
βR2

m

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

))
iterations.

6 MAXIMUM MARGIN SOLUTIONS

It is known that running gradient descent on the logistic loss on linearly separable data converges to
the hard SVM (maximum margin) classifier Soudry et al. (2018), yet at the slow rate of∥∥∥∥ x t

‖x t‖2
− x ∗

‖x ∗‖2

∥∥∥∥
2

≤ O
(

log log t

log t

)
.

3The assumption R ≥
√
n is not necessary but simplifies the bounds.
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As all our results work best when the data is separable, it is natural to ask about what they imply for
margin maximization.

We consider the constrained logistic regression problem

min
‖x‖2≤1

fp(x ) :=
∑
i

log(1 + e−pbi(Ax)i) (4)

We start by observing that Corollary 5.1 and Theorem 5.2 can be modified to solve (4), with
a blowup of p2 in the number of iterations. In particular, the number of iterations will be
Õ
(
p2X

(
1
δ + log 1

ε

))
, where X depends on whether we use Corollary 5.1 or Theorem 5.2, but

is beyond the point of this section, since here we are interested in the error dependence.

Picking δ = 1, ε = me−pα, and p = log(6m)
αε̂ for some target error ε̂ ∈ (0, 1), we get the following

theorem:
Theorem 6.1. Consider a linearly separable binary classification instance (A ∈ Rm×n, b ∈
{1,−1}m), and a solution x ∗ that maximizes mini

bi(Ax∗)i
‖x∗‖2

:= α. Then, we can obtain a solu-

tion x with ‖x‖2 ≤ 1 and fp(x ) ≤ 3fp(x
∗) in Õ

(
X 1
α2ε̂3

)
iterations of gradient descent, where

p = log(6m)
αε̂ . Furthermore, x has (1− ε̂)-optimal margins:

min
i

bi(Ax )i
‖x‖2

≥ α(1− ε̂)

and is close to the maximum margin classifier:∥∥∥∥ x

‖x‖2
− x ∗

‖x ∗‖2

∥∥∥∥
2

≤ 2
√
ε̂

It is not hard to see that Theorem 6.1 gives an exponential improvement in the error dependence
compared to Soudry et al. (2018).

7 NUMERICAL EXAMPLE

In order to numerically validate our algorithm, we run logistic regression on the well known UCI
adult binary classification dataset. In order to simulate a separable dataset, we first run gradient
descent on the whole data, and then discard the misclassified data points. This gives us a separable
dataset. Then, we run two variants of gradient descent: One with constant step size given by β−1,
and one with increasing step size given by ηt = β−1f(x 0)/f(x t), with no other change. This is
motivated by our findings, which suggest that the step size should increase proportionally to the
decrease of the loss. As we can see in Figure 2, the error in the case of fixed step size decays as
poly(1/t), while in the case of increasing step size we have linear convergence (albeit with a low
rate because the margins are in the order of 10−6).

Figure 2: Comparison of fixed vs increasing step size on logistic regression on adult dataset
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A MISSING PROOFS FROM SECTION 4

A.1 PROOF OF MAIN LEMMA

Lemma A.1 (Gradient lower bound). Let f : Rn → R be a differentiable convex function and let
x ∈ [−B′, B′]n, x ∗ ∈ [−B,B]n be two solutions for some parametersB′ ≥ B > 0. For all i ∈ [n]
we define

ζi =


λ if xi = 0

0 if |xi| ≥ B and ∇if(x ) · xi < 0

1 otherwise

where 0 < λ ≤ 1, and let i∗ = argmaxi {ζi |∇if(x )|}. Then, at least one of the following is true:

• |∇i∗f(x )| ≥ f(x )− f(x ∗)

‖x ∗‖1 + λ ‖x‖1

• |∇i∗f(x )| ≥ f(x )− f(x ∗)

λ−1 ‖x ∗‖1 + ‖x‖1
and xi 6= 0 .

Proof. Let S = {i | xi 6= 0} and F = {i | |xi| < B or∇il(x ) · xi ≥ 0}. By convexity of f , we
have

f(x ∗) ≥ f(x ) + 〈∇f(x ),x ∗ − x 〉
≥ f(x ) + 〈∇F f(x ),x ∗ − x 〉
= f(x ) + 〈∇F f(x ),x ∗〉 − 〈∇S∩F f(x ),x 〉
≥ f(x )− ‖∇F f(x )‖∞ ‖x

∗‖1 − ‖∇S∩F f(x )‖∞ ‖x‖1 ,

therefore

‖∇F f(x )‖∞ ‖x
∗‖1 + ‖∇S∩F f(x )‖∞ ‖x‖1 ≥ f(x )− f(x ∗) . (5)

Now, if i∗ /∈ S, by definition of the ζi’s and i∗ we have

λ ‖∇F f(x )‖∞ = λ |∇i∗f(x )| ≥ ‖∇S∩F f(x )‖∞ .

and so (5) implies

|∇i∗f(x )| ‖x ∗‖1 + λ |∇i∗f(x )| ‖x‖1 ≥ f(x )− f(x ∗)

⇒|∇i∗f(x )| ≥ f(x )− f(x ∗)

‖x ∗‖1 + λ ‖x‖1
.

Otherwise if i∗ ∈ S, we have

‖∇S∩F f(x )‖∞ = |∇i∗f(x )| ≥ λ ‖∇F f(x )‖∞ ,

and so (5) implies

λ−1 |∇i∗f(x )| ‖x ∗‖1 + |∇i∗f(x )| ‖x‖1 ≥ f(x )− f(x ∗)

⇒|∇i∗f(x )| ≥ f(x )− f(x ∗)

λ−1 ‖x ∗‖1 + ‖x‖1
.
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Lemma A.2 (Coordinate update). Let f : Rn → R≥0 be a twice continuously differentiable convex
function that is 2γ-second order robust and γ2-multiplicatively smooth with respect to the `1 norm,
for some γ > 0. Let x ∈ [−B′, B′]n be a suboptimal solution such that f(x ) ≥ f(x ∗), where x ∗ ∈
[−B,B]n is some unknown solution with γ ‖x ∗‖1 ≥ 1, and B′ ≥ B > 0 are some parameters. We
make the update

x ′ = x − η∇if(x )1i ,

where i is picked as in Lemma A.1 for some parameter λ ∈ (0, 1) and η =

0.5 min
{

1
γ2f(x) ,

1
γ|∇if(x)|

}
is a step size. Then, at least one of the following is true about the

progress in decreasing f :

• f(x )− f(x ′) ≥ (f(x )− f(x ∗))
2

4γ2f(x ) (‖x ∗‖1 + λ ‖x‖1)
2

• f(x )− f(x ′) ≥ (f(x )− f(x ∗))
2

4γ2f(x ) (λ−1 ‖x ∗‖1 + ‖x‖1)
2 and xi 6= 0 ,

and the norm of the new solution is bounded as ‖x ′‖∞ ≤ max {B′, B + 1
2γ }. In the case that

f(x ) < f(x ∗) we have f(x ′) ≤ f(x ).

Proof. We first consider a generic update x ′ = x + x̃ . By Taylor’s theorem and the fact that f is
twice continuously differentiable, we have

f(x ′) = f(x ) + 〈∇f(x ), x̃ 〉+
1

2
〈x̃ ,∇2f(x̄ )x̃ 〉 ,

for some x̄ that is entrywise between x and x̃ .

Since f is 2γ-second-order-robust and γ2-multiplicatively-smooth with respect to the `1 norm, as
long as the update is bounded in `1 norm as

‖x̃‖1 ≤ 1/(2γ) (6)
we have

f(x ′) ≤ f(x ) + 〈∇f(x ), x̃ 〉+ 〈x̃ ,∇2f(x )x̃ 〉
≤ f(x ) + 〈∇f(x ), x̃ 〉+ γ2f(x ) ‖x̃‖21 .

Note that the right hand side is minimized for

x̃ = −H1 (∇f(x ))

2γ2f(x )
,

whereH1 is the hard thresholding operator that zeroes out all but the top entry in absolute value. This
is a coordinate descent step. Our step will be slightly more careful so that it doesn’t unnecessarily
increase the sparsity of x . We consider the following coordinate step

x̃ = −η∇if(x ) ,

where η > 0 and i are as defined in the lemma statement. We now have
f(x )− f(x ′) ≥

(
η − η2γ2f(x )

)
(∇if(x ))2

The term
(
η − η2γ2f(x )

)
is maximized at η = 1

2γ2f(x) . In addition, to stay in the `1 neighborhood
where the Hessian in stable, we need to satisfy (6) by making sure that η ≤ 1

2γ|∇if(x)| . Based on
these requirements, we pick

η = min

{
1

2γ2f(x )
,

1

2γ|∇if(x )|

}
and conclude that

f(x )− f(x ′) ≥ min

{
1

4γ2f(x )
,

1

4γ|∇if(x )|

}
(∇if(x ))

2

= min

{
(∇if(x ))2

4γ2f(x )
,
|∇if(x )|

4γ

}
.

Note that this is always≥ 0 and so we have f(x ′) ≤ f(x ) even if f(x ) < f(x ∗). We now take two
cases and use the two bullets of Lemma A.1 accordingly.
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Case 1: xi = 0. The first bullet of Lemma A.1 has to be true, i.e.

|∇if(x )| ≥ f(x )− f(x ∗)

‖x ∗‖1 + λ ‖x‖1
.

Therefore,

f(x )− f(x ′) ≥ min

{
(f(x )− f(x ∗))2

4γ2f(x ) (‖x ∗‖1 + λ ‖x‖1)
2 ,

f(x )− f(x ∗)

4γ (‖x ∗‖1 + λ ‖x‖1)

}

=
(f(x )− f(x ∗))2

4γ2f(x ) (‖x ∗‖1 + λ ‖x‖1)
2 ,

where we used the facts that f(x )− f(x ∗) ≤ f(x ) and γ ‖x ∗‖1 ≥ 1.

Case 2: xi 6= 0. If the first bullet of Lemma A.1 is true, we can proceed as in the previous case.
Otherwise, we use the second bullet of Lemma A.1 and similarly get

f(x )− f(x ′) ≥ (f(x )− f(x ∗))2

4γ2f(x ) (λ−1 ‖x ∗‖1 + ‖x‖1)
2 .

Finally, in order to bound ‖x ′‖∞, we first note that ‖x‖∞ ≤ B′. Now, by our choice of i we have
that either |xi| < B, or ∇if(x ) · xi > 0. In the first case, we have

|x′i| ≤ |xi|+ |x̃i| < B +
1

2γ
,

where we used (6). Otherwise, we have that |xi| ≥ B and ∇if(x ) · xi > 0. This implies that xi
and x̃i have different signs, so

|x′i| = |xi + x̃i| ≤ max {|xi|, |x̃i|} ≤ max

{
B′,

1

2γ

}
.

Therefore, in any case we have |x′i| ≤ max
{
B′, B + 1

2γ

}
.

A.2 PROOFS OF THEOREMS

A.2.1 PROOF OF COROLLARY 5.1

Proof. We will apply Lemma A.2 for T iterations to obtain solutions x 0, . . . ,xT , where for some T
that will be defined later. The logistic function f is 2M -second order robust andM2-multiplicatively
smooth with respect to the `1 norm, so Lemma A.2 can be applied with γ = M and B′ = B + 1

2M .

Based on the guarantee of Lemma A.2, we get the following bound on the `1 norm of x t at all times:∥∥x t∥∥
1
≤ n

∥∥x t∥∥∞ ≤ n(B +
1

2M

)
≤ (3/2)nB .

Let t̄ be the smallest t ≥ 0 for which f(x t̄) ≤ 2f(x ∗) or f(x t̄) ≤ f(x ∗) + ε, and let t̄ =∞ if this
never happens. Therefore, for all t < t̄ we have f(x t) ≥ 2f(x ∗) ⇒ f(x t)−f(x∗)

f(x t) ≥ 1
2 , and so the

statement of Lemma A.2 gives:

f(x t)− f(x t+1) ≥ f(x t)− f(x ∗)

8M2(‖x ∗‖1 + ‖x t‖1)2

≥ f(x t)− f(x ∗)

8n2M2(B + (3/2)B)2

≥ f(x t)− f(x ∗)

50n2M2B2
,

where we used the fact that ‖x ∗‖1 ≤ n ‖x ∗‖∞ ≤ nB. Equivalently,

f(x t+1)− f(x ∗) ≤
(

1− 1

50n2M2B2

)
(f(x t)− f(x ∗)) ,

13
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and summing up these for t ∈ {0, 1, . . . , t̄− 1}, we get

f(x t̄)− f(x ∗) ≤
(

1− 1

50n2M2B2

)t̄
(f(x 0)− f(x ∗))

≤ ε ,
as long as

t̄ ≥ 50n2M2B2 log
f(x 0)− f(x ∗)

ε
,

therefore we conclude that t̄ is at most this quantity.

Now we consider the iterations t ≥ t̄. If f(x t̄) ≤ f(x ∗) + ε there are no such iterations and we
are done. Therefore we have that f(x t̄) ≤ 2f(x ∗). We again use Lemma A.2 for all such t, which
gives

f(x t)− f(x t+1) ≥ (f(x t)− f(x ∗))2

4M2f(x t)(‖x ∗‖1 + ‖x t‖1)2

≥ (f(x t)− f(x ∗))2

25f(x t)n2M2B2

≥ (f(x t)− f(x ∗))2

50f(x ∗)n2M2B2
.

By known convergence results, this recurrence leads to the bound

f(xT ) ≤ f(x ∗) +
100f(x ∗)n2M2B2

T − t̄

≤ f(x ∗)

(
1 +

100n2M2B2

T − t̄

)
,

implying that f(xT ) ≤ (1 + δ)f(x ∗) after

T − t̄ = O

(
n2M2B2 1

δ

)
additional iterations after t̄. Therefore, the total number of iterations to achieve f(xT ) ≤ (1 + δ) ·
f(x ∗) + ε is

O

(
n2M2B2

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

))
.

A.2.2 PROOF OF THEOREM 4.1

Proof. Similarly to the proof of Corollary 5.1, we apply Lemma A.2 for T iterations to obtain
solutions x 0, . . . ,xT , but now we also have to account for the sparsity increase of x t. For this
reason, we use λt < 1, which disincentivizes updating zero entries of the solution vector.

Compared to Corollary 5.1, we have the differences that
λ−1
t ‖x ∗‖1 = max

{
c−1

∥∥x t∥∥
1
, ‖x ∗‖1

}
,

and that we have the following tighter bounds because of sparsity:
‖x ∗‖1 ≤ sB∥∥x t∥∥

1
≤
∥∥x t∥∥

0

∥∥x t∥∥∞ ≤ ∥∥x t∥∥0
(3/2)B .

We first bound the sparsity. Note that the sparsity increases by at most 1 every time the first bullet
of Lemma A.2 is true, and does not increase when the second bullet is true. Therefore, the progress
in each sparsity-increasing iteration is

f(x t)− f(x t+1) ≥ (f(x t)− f(x ∗))
2

4f(x ∗)M2 (‖x ∗‖1 + λt ‖x t‖1)
2

≥ (f(x t)− f(x ∗))
2

4(1 + c)2f(x ∗)M2 ‖x ∗‖21
.
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Completely analogously to the proof of Corollary 5.1, this implies that the total number of such
iterations (and thus total sparsity) is

s′ :=
∥∥xT∥∥

0
≤ O

(
‖x ∗‖21 (1 + c)2M2

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

))
.

Now it remains to bound the total number of iterations. We have

max
{
‖x ∗‖1 + λt

∥∥x t∥∥
1
, λ−1
t ‖x ∗‖1 +

∥∥x t∥∥
1

}
≤ max

{
‖x ∗‖1 +

∥∥x t∥∥
1
, c−1

∥∥x t∥∥
1

+
∥∥x t∥∥

1

}
≤ ‖x ∗‖1 + (1 + c−1)

∥∥x t∥∥
1

≤ ‖x ∗‖1 +
3

2
(1 + c−1)

∥∥x t∥∥
0
B

≤ ‖x ∗‖1 +
3

2
(1 + c−1)

∥∥xT∥∥
0
B .

As a result, the progress bound of Lemma A.2 becomes

f(x t)− f(x t+1) ≥ (f(x )− f(x ∗))
2

4f(x )M2
(
‖x ∗‖1 + 3

2 (1 + c−1) ‖xT ‖0B
)2 ,

and, analogously to the proof of Corollary 5.1 and using the fact that ‖x ∗‖1 ≤ ‖x ∗‖0B, the total
number of iterations is bounded by

T = O

(
(1 + c−1)2

(∥∥xT∥∥2

0
+ ‖x ∗‖20

)
M2B2

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

))
.

A.2.3 PROOF OF THEOREM 4.3

Proof. We move similarly to the proof of Theorem 4.1, but now we can strengthen Lemma A.2
because x t is fully corrected for all t, i.e. ∇if(x t) = 0 for all i ∈ supp(x t). As in the proof of
Lemma A.2, we can lower bound the amount of progress as a function of ‖∇f(x t)‖∞ as follows:

f(x t)− f(x t+1) ≥ min

{
(∇if(x t))2

4M2f(x t)
,
|∇if(x t)|

4M

}
.

Now, by convexity of f we have

〈∇f(x t),x t − x ∗〉 ≥ f(x t)− f(x ∗) . (7)

Because of fully corrective steps we have 〈∇f(x t),x t〉 = 0, and so the left hand side of (7) is upper
bounded by ‖∇f(x t)‖∞ ‖x ∗‖1. As a result, we have∥∥∇f(x t)

∥∥2

∞ ≥
(f(x )− f(x ∗))

2

‖x ∗‖21
,

and so we get the progress bound of

f(x t)− f(x t+1) ≥ min

{
(f(x t)− f(x ∗))2

4M2f(x t) ‖x ∗‖21
,
f(x t)− f(x ∗)

4M ‖x ∗‖1

}

≥ (f(x t)− f(x ∗))2

4M2f(x t) ‖x ∗‖21
,

becauseM ‖x ∗‖1 > 1. Similarly to the proof of Theorem 4.1, this progress bound leads to a sparsity
of

s′ :=
∥∥xT∥∥

0
≤ O

(
‖x ∗‖21M

2

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

))
and the same number of iterations.
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B MISSING PROOFS FROM SECTION 5

B.1 GRADIENT UPDATE LEMMA

Lemma B.1 (Gradient update). Let f : Rn → R>0 be a twice continuously differentiable convex
function that is 2γ-second order robust with respect to the `1 norm and µ-multiplicatively smooth
with respect to the `2 norm for some γ, µ > 0. Let x ∈ Rn be a solution such that f(x ) > f(x ∗),
where x ∗ ∈ Rn is an unknown solution with ‖x − x ∗‖2 ≤ ‖x ∗‖2. We make the update

x ′ = x − η∇f(x ) ,

where η = 0.5 min
{

1
µf(x) ,

1
γ‖∇f(x)‖1

}
is a step size. Then, the progress in decreasing f is:

f(x )− f(x ′) ≥ min

{
(f(x )− f(x ∗))2

4µf(x ) ‖x ∗‖22
,
f(x )− f(x ∗)

4γ
√
n ‖x ∗‖2

}
.

Additionally, as long as x ′ is still suboptimal with respect to x ∗, i.e. f(x ′) > f(x ∗), the distance
to x ∗ decreases: ‖x ′ − x ∗‖2 ≤ ‖x − x ∗‖2. Finally, if f(x ) ≤ f(x ∗), then f(x ′) ≤ f(x ).

Proof. We first consider a generic update x ′ = x + x̃ . By Taylor’s theorem and the fact that f is
twice continuously differentiable, we have

f(x ′) = f(x ) + 〈∇f(x ), x̃ 〉+
1

2
〈x̃ ,∇2f(x̄ )x̃ 〉 ,

for some x̄ that is entrywise between x and x ′.

Since f is 2γ-second-order-robust with respect to `1 and and µ-multiplicatively-smooth with respect
to the `2 norm, as long as the update is bounded in `1 norm as

‖x̃‖1 ≤ 1/(2γ) (8)

we have

f(x ′) ≤ f(x ) + 〈∇f(x ), x̃ 〉+ 〈x̃ ,∇2f(x )x̃ 〉
≤ f(x ) + 〈∇f(x ), x̃ 〉+ µf(x ) ‖x̃‖22 .

Note that the right hand side is minimized for

x̃ = − 1

2µf(x )
∇f(x ) .

In addition, to stay in the `1 neighborhood where the Hessian in stable, we need to satisfy (8). Based
on these requirements, we make the update x̃ = −η∇f(x ), where

η = min

{
1

2µf(x )
,

1

2γ ‖∇f(x )‖1

}
.

We thus have

f(x )− f(x ′) ≥
(
η − η2µf(x )

)
‖∇f(x )‖22

≥ η

2
‖∇f(x )‖22

and so

f(x )− f(x ′) ≥ min

{
1

4µf(x )
,

1

4γ ‖∇f(x )‖1

}
‖∇f(x )‖22

≥ min

{
‖∇f(x )‖22

4µf(x )
,
‖∇f(x )‖2

4γ
√
n

}
.
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This takes care of the case f(x ) ≤ f(x ∗), since it shows that f(x ′) ≤ f(x ). Now we deal with the
case f(x ) > f(x ∗). By convexity we have

f(x ∗) ≥ f(x ) + 〈∇f(x ),x ∗ − x 〉
≥ f(x )− ‖∇f(x )‖2 ‖x

∗ − x‖2
≥ f(x )− ‖∇f(x )‖2 ‖x

∗‖2 ,

which gives

‖∇f(x )‖22 ≥
(f(x )− f(x ∗))2

‖x ∗‖22
,

and so

f(x )− f(x ′) ≥ min

{
(f(x )− f(x ∗))2

4µf(x ) ‖x ∗‖22
,
f(x )− f(x ∗)

4γ
√
n ‖x ∗‖2

}
.

For the norm bound, we suppose that f(x ′) > f(x ∗) (otherwise we are done). We have

‖x ′ − x ∗‖22 − ‖x − x ∗‖22
= ‖x ′ − x‖22 + 2〈x − x ∗,x ′ − x 〉
= η2 ‖∇f(x )‖22 − 2η〈x − x ∗,∇f(x )〉 .

Now, note that
η

2
‖∇f(x )‖22 ≤ f(x )− f(x ′) ≤ f(x )− f(x ∗)

and by convexity 〈x − x ∗,∇f(x )〉 ≥ f(x )− f(x ∗), so

‖x ′ − x ∗‖22 − ‖x − x ∗‖22
= η2 ‖∇f(x )‖22 − 2η〈x − x ∗,∇f(x )〉
≤ 0 .

B.2 PROOF OF THEOREM 5.2

Proof. We repeatedly use Lemma B.1 to obtain iterates x 0,x 1, . . . ,xT . Note that as long as
f(x t) > f(x ∗), we have ‖x t − x ∗‖2 ≤

∥∥x 0 − x ∗
∥∥

2
:= R.

Let t̄ be the smallest t ≥ 0 for which f(x t̄) ≤ 2f(x ∗) or f(x t̄) ≤ f(x ∗) + ε, and let t̄ =∞ if this
never happens. Therefore, for all t < t̄ we have f(x t) ≥ 2f(x ∗) ⇒ f(x t)−f(x∗)

f(x t) ≥ 1
2 , and so the

statement of Lemma B.1 gives:

f(x t)− f(x t+1) ≥ min

{
1

8µ ‖x ∗‖22
,

1

4γ
√
n ‖x ∗‖2

}
· (f(x t)− f(x ∗))

≥ 1

8µ ‖x ∗‖22 + 4γ
√
n ‖x ∗‖2

· (f(x t)− f(x ∗)) .

Equivalently,

f(x t+1)− f(x ∗) ≤

(
1− 1

8µ ‖x ∗‖22 + 4γ
√
n ‖x ∗‖2

)
(f(x t)− f(x ∗)) ,

and summing up these for t ∈ {0, 1, . . . , t̄− 1}, we get

f(x t̄)− f(x ∗) ≤

(
1− 1

8µ ‖x ∗‖22 + 4γ
√
n ‖x ∗‖2

)t̄
(f(x 0)− f(x ∗))

≤ ε ,
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as long as

t̄ ≥
(
8µR2 + 4γ

√
nR
)

log
f(x 0)− f(x ∗)

ε
,

therefore we conclude that t̄ is at most this quantity.

Now we consider the iterations t ≥ t̄. If f(x t̄) ≤ f(x ∗) + ε there are no such iterations and we
are done. Therefore we have that f(x t̄) ≤ 2f(x ∗). We again use Lemma B.1 for all such t, which
gives

f(x t)− f(x t+1) ≥ (f(x t)− f(x ∗))2

4µf(x t)R2

≥ (f(x t)− f(x ∗))2

8µf(x ∗)R2
.

By known convergence results, this recurrence leads to the bound

f(xT ) ≤ f(x ∗) +
16µf(x ∗)R2

T − t̄

= f(x ∗)

(
1 +

16µR2

T − t̄

)
,

implying that f(xT ) ≤ (1 + δ)f(x ∗) after

T − t̄ = O

(
µR2 1

δ

)
additional iterations after t̄.

Therefore, the total number of iterations to achieve f(xT ) ≤ (1 + δ) · f(x ∗) + ε is

O

((
µR2 + γ

√
nR
)(1

δ
+ log

f(x 0)− f(x ∗)

ε

))
.

For µ = βm−1, γ =
√
β, and using the fact that R ≥

√
n, we get

O

(
βR2

m

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

))
iterations.

C PROOF OF THEOREM 6.1

Proof. Let us consider a classifier x ∗ with ‖x ∗‖2 = 1 and margins ≥ α, i.e. bi(Ax ∗)i ≥ α for
all i ∈ [m]. Now, Corollary 5.1 and Theorem 5.2 imply that we can compute a solution fλ(x ) ≤
2fλ(x ∗) + ε after T = O

(
λ2X log m

ε

)
iterations. Now, note that∑

i

log(1 + e−λbi(Ax)i) ≤ 2
∑
i

log(1 + e−λbi(Ax∗)i) + ε

≤ 2m log(1 + e−λα) + ε

≤ 2me−λα + ε

≤ 3me−λα ,

after setting ε = me−λα.

Now, re-arranging and using the fact that 3me−λα ≤ 2 implies e3me−λα ≤ 1 + 6me−λα, we have
that

bi(Ax )i ≥ −λ−1 log
(
e3me−λα − 1

)
≥ −λ−1 log

(
6me−λα

)
= α− λ−1 log (6m)

≥ α(1− ε̂) ,
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where the last equality follows by our setting of λ ≥ log(6m)
αε̂ . Therefore, the number of iterations is

O(λ3α) ≤ Õ
(

1
α2ε̂3

)
. Additionally, ‖x‖2 ≤ ‖x ∗‖2.

To bound the distance from the classifier, we note that

E2 :=

∥∥∥∥ x

‖x‖2
− x ∗

∥∥∥∥2

2

=

∥∥∥∥ x

‖x‖2
− x ∗

∥∥∥∥2

2

= 2− 2

〈
x

‖x‖2
,x ∗

〉
.

On the other hand, we let x̄ = 1
2

x
‖x‖2

+ 1
2x
∗ and compute its smallest margin as

α ≥ bi(Ax̄ )i
‖x̄‖2

≥
α(1−ε̂)
2‖x‖2

+ α
2√

1
4 + 1

4 + 1
2 〈

x
‖x‖2

,x ∗〉
≥

α(1−ε̂)
2 + α

2√
1− E2/4

.

Re-arranging, we get that

1− E2/4 ≥ 1

4
(2− ε̂)2 = 1− ε̂+ ε̂2/4

E2 ≤ 4ε̂(1− ε̂) ≤ 4ε̂ .

Therefore, we have ∥∥∥∥ x

‖x‖2
− x ∗

∥∥∥∥
2

≤ 2
√
ε̂ ,

or in other words ∥∥∥∥ x

‖x‖2
− x ∗

∥∥∥∥
2

≤ E

after Õ
(

1
α2E6

)
iterations.
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