
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Dual Graph Diffusion Model for Social Recommendation
Anonymous Author(s)

Abstract
Graph-based social recommender systems utilize user-item interac-

tion graphs and user-user social graphs to model user preferences.

However, their performance can be limited by redundant and noisy

information in these two graphs. Although several recommender

studies on data denoising exist, most either rely on heuristic as-

sumptions, which limit their adaptability, or use a single model

that combines denoising and recommendation, potentially impos-

ing substantial demands on the model capacity. To address these

issues, we propose a dual Graph Diffusion Social Recommender

(GDSR), which consists of two steps: graph denoising and user

preference prediction. First, we design a denoising module which

exploits a dual diffusion model to alleviate noises in the interac-

tion and social graphs by performing multi-step noise diffusion

and removal. We develop three kinds of conditions to guide our

dual graph diffusion paradigm and propose a cross-domain signal

guidance mechanism to enhance the structure of denoised graphs.

Second, we devise a recommender module that employs a dual

graph learning structure on denoised graphs to generate recom-

mendations. Moreover, we use additional supervision signals from

the diffusion-enhanced data augmentation to introduce a graph

contrastive learning task, enhancing the recommender module’s

representation quality and robustness. Experiment results show

the effectiveness of our GDSR. We release the anonymous code for

reproducibility at https://anonymous.4open.science/r/GDSR-www.

Keywords
Recommender Systems, Denoising.

1 Introduction
Social recommender systems, which are designed based on social

influence and homophily theories [30, 31], utilize user-item inter-

action data and user social networks for recommendation. Early

efforts utilize matrix factorization to integrate social data into user-

item interaction modeling [11, 16, 28]. Recently, graph-based social

recommenders, which utilize graph neural networks (GNNs) to

model user high-order preferences and social influence propaga-

tion in the interaction bipartite graph and social graph structures,

have become mainstream and achieved impressive progress [21, 37].

Despite their effectiveness, the performance of graph-based so-

cial recommenders can be limited by the presence of redundant

and noisy information in both the user-item interaction graph and

the social graph. Specifically, interaction data may not accurately

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW, 28 April - 2 May 2025, Sydney, Australia
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

reflect users’ true preferences due to inadvertent or erroneous inter-

action behaviors [32, 40]. Furthermore, recommender models may

be biased by fake interactions created by malicious users [10, 57].

Additionally, social relations might also be inaccurately established,

as users on social media might unintentionally follow or be followed

by bots or fake accounts [24, 29], introducing bias into user mod-

eling. Compared to traditional social recommenders, graph-based

ones are potentially more vulnerable to such noise due to their

neighborhood aggregation-based message-passing mechanism in

GNNs, which enlarges the impact of noise on learning user and item

representations. Thus, enhancing the robustness of graph-based

social recommenders against noise in graphs is crucial.

Previous methods to reduce noise in recommendation data are

typically classified into two categories [58]. One school is based

on data cleaning, which includes resampling [3, 4] and reweight-

ing [34, 44, 47] strategies. Resampling identifies noise and focuses

on cleaner data for model training, while reweighting uses all the

data but assigns lower weights to potentially noisy data. How-

ever, since these methods often depend on heuristic assumptions

[44, 47] related to noise distribution, data cleaning-based methods

require fine-grained adjustments to suit different backend models

or datasets, limiting their adaptability [58]. The second research

line is from the model perspective, enhancing the inherent noise

resistance of recommenders [9, 48, 51]. Specifically, these meth-

ods first augment data by adding random noise [51] or discarding

positive signals [9, 48], and then train recommender models with

the augmented data to learn robust data representations. However,

these model perspective-based approaches rely on a single model

to reduce noisy data and generate recommendations, which may

impose substantial demands on the model representation ability.

Diffusionmodel (DM) is a powerful type of generative model that

has achieved state-of-the-art results in various research domains

[25, 35, 36, 41]. DMs operate through forward and reverse processes,

both of which inherently enhance denoising capabilities [13, 58].

In the forward process, DMs continuously introduce noise with

controllable scales, which increases noise diversity. In the reverse

process, DMs simplify the denoising task by breaking it down into

multiple steps, each reducing the denoising difficulty. Recently, sev-

eral studies attempt to integrate DMs with recommender systems

[20, 22, 45, 58]. However, we believe they are not well-suited for

graph-based social recommendation. Specifically, they do not focus

on denoising from a graph structure perspective, and they lack spe-

cific adaptations (e.g., condition guidance) designed for the social

recommendation task. The above analysis inspired us to design a

DM paradigm specifically tailored for social recommendation.

To this end, in this paper, we propose a new graph-based so-

cial recommendation method called dual Graph Diffusion Social

Recommender (GDSR), which contains a denoising module and a

recommendation module. (1) In the denoising module, we design a

dual DM structure, including a collaborative diffusion model (CDM)

and a social diffusion model (SDM), to denoise the user-item in-

teraction graph and the user-user social graph. Specifically, CDM

1

https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW, 28 April - 2 May 2025, Sydney, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

and SDM first corrupt the initial interaction and social graphs by

gradually injecting Gaussian noises, respectively. After multiple

noise accumulation, CDM and SDM iteratively remove noises by

using a denoising neural network to generate denoised interaction

and social graphs. To guide the reverse denoising process, we de-

sign three types of conditional information: global graph semantics,

personalized information, and cross-domain knowledge signals,

rather than relying solely on pure noise. Additionally, we develop a

signal guidance mechanism that establishes collaboration between

the CDM and SDM, leveraging cross-domain semantic signals to

improve the denoised graph structures. (2) In the recommendation

module, based on the denoised graphs, we employ a dual GNN

equipped with a gated interaction mechanism to learn user and

item representations for recommendation. The gated interaction

mechanism facilitates knowledge sharing during the learning pro-

cesses of two graphs. Moreover, we introduce a diffusion-aware

graph contrastive learning task that enhances the representation

quality and robustness of the recommendation module based on

diffusion-enhanced data augmentation. We conduct extensive ex-

periments on three datasets, and the results show that our GDSR

outperforms several strong baselines. Ablation studies and case

analyses are further performed to better understand our GDSR

design and demonstrate the effectiveness of its key modules.

To summarize, our contributions in this work are as follows:

• We propose a social recommender GDSR, which integrates de-

noising and recommendation, enhancing data and recommenda-

tion quality via a dual DM and graph learning architecture.

• We develop a graph denoising approach that leverages dual DMs

with the tailored guidance strategy for social recommendation,

effectively alleviating noise in interaction and social graphs.

• We introduce a dual GNN structure with a diffusion-aware graph

contrastive learning paradigm to model user preferences.

2 Preliminary
In this section, we first present some key definitions, followed by

an introduction to the background of the diffusion model.

2.1 Notation and Problem Formulation
This section introduces the key concepts of the paper and formu-

lates the definition of the social recommendation task. We detail

the key notation table of this paper in Appendix A.
User-Item Interaction Graph. Given a user setU and an item

set V , we define the interaction matrix Y ∈ R |U |×|V |
, where an

entry yuv = 1 denotes an interaction relation between user u ∈ U

and item v ∈ V , and a value of zero indicates no interaction. From

the perspective of graphs, we could transform interaction matrix Y
into bipartite graph structure GB = (U ∪V,Y).

User-User Social Graph. The user social relation can be repre-

sented as a matrix S ∈ R |U |×|U |
, with suu′ = 1 showing a follow or

trust relation between users u and u ′, and zero otherwise. Similarly,

matrix S can be converted into a social graph GS = (U, S).
Task Description. Given the user-item interaction graph GB

and user-user social graph GS , our goal is to first generate two

denoised graphs GB∗ and GS∗ , and then learn a prediction function

F : ŷuv = F (u,v |Θ,Y,GB∗ ,GS∗), where ŷuv is the probability that

u will engage with v , and Θ is the parameter of function F .

2.2 Diffusion Model
Diffusion model (DM) includes forward and reverse processes.

• Forward process. Given a data sample x0, the forward process

gradually introduces Gaussian noise with controllable scales and

steps overT iterations, increasing noise diversity [13, 45, 58]. Specif-

ically, the transition from xt−1 to xt is defined as follows:

q(xt |xt−1) = N(xt ;

√
1 − βtxt−1, βt I), (1)

where t ∈ {1, 2, · · ·T } is the diffusion step, βt ∈ (0, 1) is the Gauss-

ian noise scale introduced at each step t , I is the identity matrix,

and N is the Gaussian distribution and it is used to sample xt .
•Reverse process. This process iteratively denoises the noisy data
xT according to the sequence xT → xT−1 · · · → x0 [13, 45, 58].

Specifically, DMs learn the denoising process xt → xt−1, as follows:

pθ (xt−1 |xt) = N(xt−1; µθ (xt , t), Σθ (xt , t)), (2)

where µθ (xt , t) and Σθ (xt , t) are the mean and covariance values,

predicted by a neural network with parameters θ . To maintain

training stability, the learning of Σθ is commonly ignored [13],

while mean µθ can be further factorized as follows:

µθ (xt , t) =
1

√
αt

(
xt −

1 − αt
√

1 − ᾱt
ϵθ (xt , t)

)
, (3)

where αt = 1 − βt , ᾱt =
∏t

t ′=1
αt ′ and ϵθ learns to predict the

source noise ϵ ∼ N(0, I) determining xt from x0 [26].
• Training. The denoising neural network θ can be trained using

the following simplified objective function [14, 54]:

Lθ = Et,ϵ∼N(0,I)
[
∥ ϵ − ϵθ (xt , t) ∥

2

2

]
, (4)

where t is sampled from {1, . . . ,T } uniformly.

3 Methodology
Our GDSR consists of two components: a denoising module and a

recommendation module. The former devise a dual diffusion model

(DM) to denoise the original interaction graph and social graph. The

latter introduces a dual graph learning framework with a diffusion-

aware graph contrastive task to model user preferences based on

the denoised graphs. Figure 1 shows the architecture of our GDSR.

3.1 Denoising Module
This subsection first introduces the denoising module’s two parts:

dual DMs and the cross-domain signal guidance mechanism. Next,

we describe the training process of the denoising module.

3.1.1 Dual Diffusion Models. Inspired by the effectiveness of

diffusionmodels (DMs) in data denoising [13, 35, 36, 45], we propose

a dual DM structure consisting of a collaborative diffusion model

(CDM) and a social diffusion model (SDM). This dual structure

aims to mitigate the negative impact of irrelevant or noisy data

in social recommendation. Specifically, CDM generates a denoised

interaction graph GB∗ from the original interaction graph GB .

Similarly, the SDM denoises the original social graph GS to obtain a

cleaner graph GS∗ . Both CDM and SDM employ a forward process

that gradually introduces noise to the initial graph data. Then,

they utilize a reverse process to gradually recover original graphs,

effectively reducing the impact of noisy signals. Next, we introduce

the forward and reverse processes for our dual DM model.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Dual Graph Diffusion Model for Social Recommendation WWW, 28 April - 2 May 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

()()

Social Signal Guidance Mechanism

[]

Social Diffusion Model (SDM)

Collaborative Diffusion Model (CDM)

positive pairs
negative pairs

Diffusion-aware Bipartite Graph
Contrastive Learning

bipartite graph GB

social graph GS

x

x

x

x

x

denoised graph GB

denoised graph G *S

*

C1

S1 S2 ST

C2 CT

t = 1 t = 2 t = T

t = 1 t = 2 t = T

forward

reverse

forward

reverse

multiplication

S

C0
^

Ev,B

Eu,S

multiplication

Y

S0
^

Ev,B

Eu,B

Collaborative Signal Guidance Mechanism

C
onstraint

C
onstraint

denoised graph GB

denoised graph GS*

*

Bipartite GNN

Social GNN

Gated Interaction
u%

cosine
GB*

GB

Contrastive Learning on Bipartite
Graph View (GB , GB)

Contrastive Learning on Social
Graph View (GS , GS)

*

*

(a) Dual Diffusion Model (b) Cross-Domain Signal Guidance Mechanism (c) Dual Graph Neural Network (d) Contrastive Learning

similarity

u%

v%

v%

*

*

Guidance
Collaborative

Guidance
Social

*

*
*

*

Layer 1

Layer 2

Layer L

Layer 1

Layer 2

Layer L

YS0
^

Ev,B*π () Eu,B()π||[]KL

π Eu,Sπ||KL S C0
^

Ev,B
*

Figure 1: The structure of our GDSR, which contains a denoising module ((a)&(b)) and a recommendation module ((c)&(d)).

• Forward process. In CDM, we use C0={cu,0 }
|U|

u=1
to denote user

neighborhoods in GB , where cu,0=[c1

u ,c
2

u , · · · ,c
|V|
u] is user u’s neigh-

bors over item set V and ciu = 1 or 0 implies whether u interacts

with item i or not. Starting with the state C0, the forward transition

is performed independently on each user neighborhood as:

q(Ct |Ct−1) =

|U|∏
u=1

q(cu,t |cu,t−1) =

|U|∏
u=1

N(cu,t ;

√
1 − βt cu,t−1, βt I), (5)

Similarly, in SDM, user neighborhoods in GS is denoted as S0=

{su,0 }
|U|

u=1
, where su,0=[s1

u ,s
2

u , · · · ,s
|U|
u] denotes user u’s neighbors over

user set U and s
j
u = 1 or 0 indicates whether user u has social

relation with user j or not. The forward transition in SDM is as:

q(St |St−1) =

|U|∏
u=1

q(su,t |su,t−1) =

|U|∏
u=1

N(su,t ;

√
1 − βt su,t−1, βt I). (6)

• Reverse process. After obtaining the noise-added user interac-

tion neighbor CT , we denoise them in the reverse process, as:

pθ (Ct−1 |Ct)=

|U|∏
u=1

pθ (cu,t−1 |Ct)=

|U|∏
u=1

N(cu,t−1; µθ (Ct , t), Σθ (Ct , t)).

where µθ and Σθ denote the Gaussian parameters outputted by the

our denoising neural network in CDM with parameter θ .
Similarly, in SDM, the reverse process from ST is defined as:

pψ (St−1 |St)=

|U|∏
u=1

pψ (su,t−1 |St)=

|U|∏
u=1

N(su,t−1; µψ (St , t), Σψ (St , t)).

whereψ is the parameter in SDM’s denoising neural network.

• Condition Encoders. In the denoising process, it is crucial to

use specific conditions as guidance. In the graph-based social recom-

mendation task, in addition to the step information t , we introduce
three conditions, including global graph semantics, personalized

information, and cross-domain knowledge signals. Specifically, for

CDM, the reverse process is rewritten as follows:

pθ (Ct−1 |Ct) =
∏ |U |

u=1

pθ (cu,t−1 |cu,t , t ,дB ,hu,B ,wu,S), (7)

where дB is the global semantics for the bipartite graph, and we

define it by applying a pooling operation to embedding matrices

E∗u,B , E
∗
v,B in the collaborative domain (cf. Eq.(25) in Section 3.2.1):

дB = Pool(E∗u,B) + Pool(E
∗
v,B). (8)

Here, дB is the graph-level property, which help in understand-

ing the contextual semantics during the denoising process.

In Eq.(7), hu,B represents the personalized information condi-

tion, and we directly define it using the user embedding u∗
B
from

E∗u,B in the collaborative domain, as hu,B = u∗
B
. This condition in-

tuitively reflects user interaction behaviors with items and enables

the denoising module to recognize user preferences.

For the cross-domain knowledgewu,S , it represents the semantic

signals of the user in the social domain, a condition unique to the

social recommendation task. According to social influence and

homophily theories [30, 31], a user’s preferences are influenced by

those of their friends. Based on this, we definewu,S as follows:

wu,S =
∑

i ∈NS
u

∑
j ∈NB

i
j∗
B
. (9)

where j∗
B
is embedding of item j from E∗v,B (cf. Eq.(25)). Here, we

aggregate the set of items (i.e., NB
i) interacted with by user u’s

social neighbors (i.e., NS
u) as cross-domain guidance.

Similarly, the reverse process in SDM is rewritten as follows:

pψ (St−1 |St) =
∏ |U |

u=1

pψ (su,t−1 |su,t , t ,дS ,hu,S ,wu,B), (10)

where дS ,hu,S ,wu,B are the global graph semantics, personalized

information, and cross-domain knowledge signals respectively:

дS = Pool(E∗u,S), hu,S = u∗
S
, wu,B =

∑
i ∈NB

u
i∗
B
, (11)

where E∗u,S is the user social embedding matrix (cf. Eq.(25)), u∗
S
is

the user social feature from E∗u,S , and cross-domain signalwu,B is

obtained by aggregating the user interaction history (i.e., NB
u).

• Training. To optimize our CDM and SDM, we define the follow-

ing loss function according to Eq.(4), as:

LCDM =
∑ |U |

u=1
Et [| | fθ (cu,t ,дB ,hu,B ,wu,S , t) − cu,0 | |2

2
], (12)

LSDM =
∑ |U |

u=1
Et [| | fψ (su,t ,дS ,hu,S ,wu,B , t) − su,0 | |2

2
]. (13)

where fθ and fψ represent the denoising neural networks for CDM

and SDM, respectively. We define them using a two-layer feedfor-

ward neural network. Taking fθ as an example, its input is the

concatenation of the three conditional embeddings дB , hu,B , and
wu,S , along with cu,t and the embedding of step t .

3.1.2 Denoised Graph Generation. After training, we gener-

ate denoised interaction and social graphs GB∗ and GS∗ . Tak-

ing GB∗ as an example, for each user u, CDM first corrupts cu,0
as cu,0 → cu,1 · · · → cu,T ′ over T ′

steps in the forward pro-

cess. Then, CDM sets c̃u,T = cu,T ′ and performs denoising as

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW, 28 April - 2 May 2025, Sydney, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

c̃u,T → c̃u,T−1 · · · → c̃u,0 for T steps. Since the original interac-

tion data contains noise and to preserve user preference informa-

tion [45], we set T ′ < T . Next, for each user’s denoised interaction,

c̃u,0 = [c̃1

u , c̃
2

u , · · · , c̃
|V |
u], we design a sampling method to con-

struct the denoised graph. Specifically, for user u, we first select a
set Ic

u containing kc elements based on c̃u,0, as follows:

Ic
u ∼ Multinomial(kc ,π (c̃u,0)), (14)

where π is the softmax function and Multinomial refers to sampling

kc elements based on the probability distribution π (c̃u,0). We define

kc as the number of neighbors user u has in the original graph GB .

Next, we form a candidate neighborhood from the items corre-

sponding to the elements of set Ic
u in c̃u,0 and take the intersection

of this candidate neighborhood with user u’s original item neigh-

borhood in GB to obtain the final neighborhood for constructing

the denoised graph GB∗ . Similarly, we apply the same sampling

strategy to construct the denoised social graph GS∗ . In this way,

our graph generation preserves important information from the

original graph while performing denoising and filtering.

3.1.3 Cross-Domain SignalGuidanceMechanism. To further
guide our dual DM in generating denoised graphs, GB∗ and GS∗ ,

suitable for recommendation, we introduce a signal guidance (SG)

mechanism. This method establishs communication between CDM

and SDM by integrating social signals from SDM into the CDM and

collaborative signals from CDM into the SDM.

Specifically, to optimizeGB∗ , we first introduce the denoised user

social relationmatrix S∗ from generatedGS∗ to update the predicted

user-item relation matrices
ˆC0 in the CDM denoising process (by

combining the ĉ0 predicted by fθ). Then, we introduce the item
feature matrix E∗v,B (cf. Eq.(25)) and apply the graph convolution to

obtain a social-aware user feature matrix E◦c(u) = S∗ ˆC0E∗v,B . Next,
we introduce user social embeddings E∗u,S (cf. Eq.(25)) and utilize

KL divergence as a constraint to align user embeddings in Eq.(15).

This operation injects cross-domain information by aligning the

distribution of user embeddings. Similarly, to optimize GS∗ , we

introduce the denoised user-item relation matrix Y∗ from generated

GB∗ and item feature matrix E∗v,B to update user relation matrix

ˆS0 in the SDM denoising process (by combining the ŝ0 predicted by

fψ) and obtain a collaborative-aware user feature matrix E◦s(u) =
ˆS0Y∗E∗v,B . Then, based on Eq.(16), we align E◦s(u) with the user

collaborative feature matrix E∗u,B (cf. Eq.(25)).

L
KL(C) =

1

|U|

(
π (E◦c(u)) ·

(
logπ (E◦c(u)) − logπ (E∗u,S)

))
, (15)

L
KL(S) =

1

|U|

(
π (E◦s(u)) ·

(
logπ (E◦s(u)) − logπ (E∗u,B)

))
. (16)

In summary, the above process uses cross-domain relations and

knowledge from the recommendation module to constrain
ˆC0 and

ˆS0, thereby optimizing denoised graph. In practice, we exploit batch

data instead of the entire matrix to improve efficiency. In Section

Sections 4.4 and 4.6.2, we validate the effectiveness of this design.

3.1.4 Denoising Module Training. To train this module, we

integrate losses from dual DM and signal guidance mechanism:

LDenoising = LCDM + LSDM + L
KL(C) + L

KL(S). (17)

3.2 Recommendation Module
In this section, we first introduce our dual graph neural network

(GNN) for recommendation. Then, we describe the diffusion-aware

contrastive learning used for model representation enhancement.

3.2.1 Dual Graph Neural Networks. Based on the generated

denoised interaction graph GB∗ and social graph GS∗ in Section

3.1.2, we introduce a dual GNN structure to model user prefer-

ences for items. Specifically, given a user ui and an item vj , we
apply a bipartite GNN (i.e., AGGB) on graph GB∗ to learn their

representations in the collaborative space, as follows:

uli,B = AGG
l
B

(
ui ,GB∗

)
=
∑

vk ∈NB
ui

1

pB,ik
vl−1

k,B , (18)

vlj,B = AGG
l
B

(
vj ,GB∗

)
=
∑

uk ∈NB
vj

1

pB, jk
ul−1

k,B , (19)

where pB,ik=
√
|NB

ui |
√
|NB
vk

|, pB, jk=
√
|NB
vj |

√
|NB

uk
| are normalization

terms, and NB
ui and NB

vj are neighborhoods for ui and vj in GB∗ .

Additionally, we use another social GNN (i.e., AGGS) based on

GS∗ to learn the representation of user ui in the social space, as:

uli,S = AGG
l
S

(
ui ,GS∗

)
=
∑

uj ∈NS
ui

1

pS,i j
ul−1

j,S , (20)

where pS,i j=
√
|NS

ui |
√
|NS

uj | and NS
ui is ui ’s neighborhood in GS∗ .

Here, the initial representations of user ui and item vj are de-
noted as ui and vj, and they are used as inputs for the dual GNN

(i.e., ui = u0

i,B = u0

i,S , and vj = v0

j,B). Compared to the standard

GCN [19], we follow the idea in LightGCN [12] and remove the

feature transformation and nonlinear activation. Other models (e.g.,

NGCF [46] and LR-GCCF [2]) can also be employed.

Currently, the bipartite GNN and social GNN independently

model GB∗ and GS∗ , overlooking the potential knowledge signal

sharing between them. To capture the interplay between GNNs, we

design a gated interaction (GI) mechanism that leverages the user as

a bridge. Specifically, the GI mechanism takes user representations

ui,B from AGGB and ui,S from AGGS at each layer as inputs, and

then uses a gating mechanism to model their interactions:

ul,⋄i,B = GI(uli,B ,u
l
i,S)[B] = GB ⊙ uli,S + (1 − GB) ⊙ uli,B , (21)

ul,⋄i,S = GI(uli,B ,u
l
i,S)[S] = GS ⊙ uli,B + (1 − GS) ⊙ uli,S , (22)

GB = σ
(
wдB (u

l
i,B ⊕ uli,S)

)
, GS = σ

(
wдS (u

l
i,S ⊕ uli,B)

)
, (23)

where ul,⋄i,B , u
l,⋄
i,S are updated embeddings, GB ,GS are gated struc-

tures,wдB ,wдS are weight matrices, σ is the sigmoid function, and

⊙ and ⊕ are the element-wise product and vector concatenation.

We integrate the GI mechanism into the current dual GNN (i.e.,

Eqs.(18)-(20)) to capture the interplay between GNNs, We present

the matrix form of the layer-wise propagation rules, as follows:

El
B
=

[
Elu,B ,E

l
v,B

]
=
(
D
− 1

2

B
ABD

− 1

2

B

) [
GI

(
El−1

u,B ,E
l−1

u,S
)
[B],El−1

v,B
]
,

El
S
= Elu,S =

(
D
− 1

2

S
ASD

− 1

2

S

)
GI

(
El−1

u,B ,E
l−1

u,S
)
[S]. (24)

where DB ,DS are diagonal matrices and AB ,AS are adjacency

matrices, for corresponding denoised interaction and social graphs;

Eu,B , Ev,B , and Eu,S are user collaborative embedding matrix

from AGGB , item collaborative embedding matrix from AGGB ,

and user social embedding matrix from AGGS , respectively.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Dual Graph Diffusion Model for Social Recommendation WWW, 28 April - 2 May 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

By incorporating the GI mechanism, we facilitate the exchange of

relevant information between GNN aggregations. We will analyze

the efficacy of this GI mechanism in experiments (cf. Section 4.4).

After L layers of aggregation, we combine the embeddings from

each layer to form user collaborative feature E∗u,B and social feature

E∗u,S , and item collaborative feature E∗v,B , as follows:

E∗u,B =
∑L

l=0

Elu,B , E
∗
u,S =

∑L

l=0

Elu,S , E
∗
v,B =

∑L

l=0

Elv,B . (25)

Then, we model the user ui ’s preference for item vj , as:

ŷi j =
1

2

(
u∗⊤i,Bv

∗
j,B + u

∗⊤
i,Sv

∗
j,B

)
, (26)

where u∗
i,B=

[
E∗
u,B

]
ui
,u∗

i,S=
[
E∗
u,S

]
ui
,v∗j,B=

[
E∗
v,B

]
vj

are feature vectors.

Based on the prediction, we define the recommendation loss, as:

LREC = −
∑

yi j=1

log(ŷi j) −
∑

yi j=0

log(1 − ŷi j) + λr | |Θ| |
2

2
, (27)

where Θ is model parameters and λr is the regularization strength.

3.2.2 Diffusion-aware Contrastive Learning. Recommender

models using contrastive learning can effectively enhance model

performance and robustness [20, 56]. We introduce a diffusion-

aware contrastive learning approach. We consider the graphs af-

ter and before denoising in Section 3.1 as contrastive views (i.e.,

(GB∗ ,GB) and (GS∗ ,GS). We then use the dual GNN in Section 3.2.1

to process these graphs and obtain node representations. Finally,

we treat the representations of the same node in different views as

positive pairs and those of different nodes as negative pairs.

For users in the contrastive views (GB∗ ,GB), we define our con-

trastive loss using the InfoNCE [33], as follows:

L
CL

B
u
=

∑
ui ∈U

− log

exp

(
cos

(
u∗i,B ,u

⋆
i,B

)
/τ
)

∑
ui′ ∈U exp

(
cos

(
u∗i,B ,u

⋆
i′,B

)
/τ
) , (28)

where cos(·, ·) is cosine similarity function, τ is the temperature

hyper-parameter, u∗i,B and u⋆i,B are the representations of user ui
obtained by processing GB∗ and GB using our dual GNN.

Similarly, we obtain the item contrastive loss in views (GB∗ ,GB)

as L
CL

B
v
, and the user contrastive loss in views (GS∗ ,GS) as LCL

S
u
.

Combining these terms, we get the final loss of diffusion-aware

contrastive task as LCL = L
CL

B
u
+L

CL
B
v
+L

CL
S
v
. The effectiveness

of our contrastive learning will be validated in Sections 4.4 and 4.7.

3.2.3 Recommendation Module Training. Our recommenda-

tion module contains two components: a dual GNN and a diffusion-

aware contrastive learning task. To train this module, we integrate

the losses from both components as follows:

L
Recommendation

= LREC + λCLLCL, (29)

where hyper-parameter λCL adjust the contrastive learning strength.

3.3 Model Optimization
To optimize our GDSR model, we integrate the losses from both the

denoising module (i.e., Eq.(17)) and the recommendation module

(i.e., Eq.(29)). The combined loss is defined asLGDSR = LDenoising+

L
Recommendation

. We then alternately train the two loss terms. The

pseudocode for all the optimization procedure, including denoising

and recommendation modules, is provided in Appendix B.

3.4 Model Complexity and Generalization
We introduce our GDSR’s model complexity and generalization,

and time analysis experiments in Appendix C.

4 Experiment
In this section, we first introduce the experimental setup and then

conduct experiments to analyze the effectiveness of our GDSR

(anonymous code https://anonymous.4open.science/r/GDSR-WWW).

4.1 Experimental Setup
This subsection introduces the datasets, comparisonmethods, hyper-

parameter settings, and evaluation metrics.

4.1.1 Datasets. We use three real-world datasets: Yelp, Douban,

and Flixster, which are collected from online applications and

widely used in social recommendation. Each dataset contains the

user-item interaction and user social information. More details of

the datasets are in Appendix D.1. For each dataset, we select 60%,

20%, and 20% of interactions as training, evaluation, and test sets,

respectively. Table 1 shows the statistics of the three datasets.

Table 1: Statistical details of the three datasets.
Datasets # users # items # interactions # social links

Yelp 16,239 14,284 198,397 158,590

Douban 2,848 39,586 894,887 35,770

Flixster 42,935 15,816 2,448,110 517,966

4.1.2 ComparisonMethods. We compare GDSRwith four group

methods: (1) graph-based collaborative recommenders (i.e., LR-

GCCF [2] and LightGCN [12]), (2) graph-based social recommenders

(i.e., GraphRec+ [7] and DiffNet++ [49]), (3) denoising graph-based

collaborative recommenders (i.e., RGCF [40], DDRM [58], AdaGCL

[17]), and (4) denoising graph-based social recommenders (i.e.,

GDMSR [34], DSL [43], GDSSL [20], and RecDiff [22]). The charac-

teristics of these baselines are introduced in Appendix D.2.

4.1.3 Hyper-parameter Settings. For baselines, we implement

them based on their source code. More about the implementation de-

tails are in Appendix D.3. For our GDSR, diffusion stepT is tuned

in {2, 5, 10, 20, 50, 100}. For the noise, its scale s , lower bound αmin,

and upper boundαmax are searched in {10
−5, 10

−4, 10
−3, 10

−2, 10
−1},

{10
−4, 10

−3, 2 × 10
−3}, and {5 × 10

−3, 10
−2, 2 × 10

−2}. In the dual

GNN, we set the embedding size as 32 and the aggregation layer as

2. We study the impact of key hyper-parameters in Section 4.5.

4.1.4 Evaluation Metrics. Two scenarios are used to evaluate

the model performance: (1) in the top-k recommendation, precision

(P@K) and recall (R@K) are utilized as the metrics, where K is set

as 10 by default; (2) in click-through rate (CTR) prediction, area

under curve (AUC) and accuracy (ACC) are adopted as the metrics.

4.2 Performance Comparison
Tables 2 and 3 present the model performance on the three datasets.

We find that: (1) Graph-based social recommenders generally out-

perform graph-based collaborative recommenders due to the use

of additional social information. However, this is not always the

case. For example, LightGCN sometimes outperforms DiffNet++

and GraphRec+ on the Yelp and Douban datasets. This suggests that

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW, 28 April - 2 May 2025, Sydney, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

social connections might contain noise or irrelevant information.

(2) Denoising collaborative and social recommenders outperform

their respective non-denoising graph-based methods. This further

indicates that irrelevant information in user-item interactions and

social relations could affect user preference modeling. It also high-

lights the necessity of denoising both interaction and social data.

(3) Our GDSR shows superior performance, indicating the effective-

ness of its denoising and recommendation modules. Specifically,

in the top-K recommendation, GDSR outperforms the best base-

lines with a 4.87%, 2.12%, and 1.48% increase in P@10 on the three

datasets, respectively. For CTR prediction, our GDSR achieves aver-

age AUC gains of 2.80%, 2.03%, and 1.88% on the three datasets. We

will discuss the effectiveness of key designs of GDSR in Section 4.4.

Table 2: Top-k recommendation results. * denotes the statis-
tical significance for p < 0.001 compared to the best baseline.

Method

Yelp Douban Flixster

P@10 R@10 P@10 R@10 P@10 R@10

LR-GCCF 0.0162 0.0389 0.1823 0.0655 0.1051 0.1196

LightGCN 0.0178 0.0415 0.1969 0.0684 0.1073 0.1224

GraphRec+ 0.0170 0.0394 0.1895 0.0662 0.1109 0.1263

DiffNet++ 0.0174 0.0409 0.1998 0.0703 0.1087 0.1260

RGCF 0.0182 0.0436 0.2031 0.0697 0.1129 0.1238

DDRM 0.0193 0.0471 0.2110 0.0750 0.1186 0.1289

AdaGCL 0.0185 0.0442 0.2114 0.0761 0.1160 0.1278

GDMSR 0.0179 0.0420 0.2007 0.0708 0.1122 0.1265

DSL 0.0195 0.0458 0.2059 0.0736 0.1174 0.1277

GDSSL 0.0176 0.0416 0.2028 0.0717 0.1180 0.1286

RecDiff 0.0187 0.0423 0.2086 0.0749 0.1195 0.1310

GDSR 0.0206* 0.0497* 0.2162* 0.0781* 0.1217* 0.1383*

Table 3: CTR prediction results. * denotes the statistical sig-
nificance for p < 0.001 compared to the best baseline.

Method

Yelp Douban Flixster

AUC ACC AUC ACC AUC ACC

LR-GCCF 0.7658 0.7066 0.8567 0.7869 0.9353 0.8844

LightGCN 0.7820 0.7209 0.8596 0.7964 0.9387 0.8853

GraphRec+ 0.7704 0.7110 0.8609 0.7933 0.9472 0.8919

DiffNet++ 0.7881 0.7245 0.8710 0.7976 0.9423 0.8928

RGCF 0.8011 0.7388 0.8655 0.7950 0.9436 0.8922

DDRM 0.8093 0.7492 0.8784 0.8015 0.9501 0.8937

AdaGCL 0.8067 0.7397 0.8812 0.8101 0.9589 0.9005

GDMSR 0.7996 0.7303 0.8732 0.7998 0.9490 0.8934

DSL 0.7933 0.7275 0.8798 0.8072 0.9517 0.8960

GDSSL 0.7950 0.7286 0.8763 0.8009 0.9544 0.8968

RecDiff 0.8048 0.7314 0.8801 0.8045 0.9605 0.9096

GDSR 0.8160* 0.7520* 0.8894* 0.8182* 0.9669* 0.9156*

4.3 Performance w.r.t Sparsity Degrees
This subsection studies the performance of GDSR and several repre-

sentative baselines (i.e., DiffNet++ [49], AdaGCL [17], and RecDiff

[22]) in handling user behavior with varying sparsity levels. Follow-

ing [17, 46, 49], we group users based on the number of interactions

they have in the training set and then evaluate the performance

of these user groups in the test set. Specifically, we divide users

into three groups while trying to maintain a similar total number

of interactions for each group in the test set. We label these groups

based on user interaction density, from low to high, as Group 1,

Group 2, and Group 3. Figure 2 shows the P@10 results. We find that

as interaction density increases, the accuracy of models improves,

Group1 Group2 Group3
0.00

0.02

0.04

0.06

0.08

0.10

P@
10

(a) Yelp

DiffNet++
AdaGCL
RecDiff
GDSR

Group1 Group2 Group3
0.1

0.3

0.5

0.7

P@
10

(b) Douban

DiffNet++
AdaGCL
RecDiff
GDSR

Group1 Group2 Group3
0.0

0.2

0.4

P@
10

(c) Flixster

DiffNet++
AdaGCL
RecDiff
GDSR

Figure 2: Performance under different sparsity groups.

indicating that high-quality recommendation requires enough user-

item interactions. Moreover, our GDSR achieves the best results,

showing its robust performance in different levels of data sparsity.

4.4 Ablation Study
In this subsection, we conduct ablation experiments to analyze the

key design elements of our GDSR model in detail.

4.4.1 Effect of Model Components. The denoising and the rec-
ommendation modules are two crucial components of our GDSR.

To analyze our denoising module, we consider four operations:

• w/o CDM: Removing the collaborative diffusion model (CDM).

• w/o SDM: Removing the social diffusion model (SDM).

• w/o dual DM: Removing the dual diffusion model (dual DM).

• w/o SG: Removing the signal guidance (SG) mechanism.

For the recommendation module, we consider two operations:

• w/o GI: Removing the gated interaction (GI) mechanism.

• w/o DCL: Removing diffusion-aware contrastive learning (DCL).

Table 4 shows the results for P@10 and AUC. From these results,

we can draw the following conclusions: (1) For the denoising mod-

ule, removing the CDM and/or SDM from the dual DM decreases

model performance. This indicates the presence of noise in inter-

action and social graph data, and demonstrates that our dual DM

improves model performance by denoising the data. Furthermore,

the results validate the effectiveness of the SG mechanism, which

guides the dual DM to better denoise the data. (2) For the recom-

mendation module, the lower performance after removing the GI

module highlights the importance of modeling information inter-

action between our dual GNNs. Additionally, the ablation of DGL

shows that our diffusion-enhanced data augmentation strategy is

crucial for improving model performance. (3) In general, removing

any operation from our GDSR method reduces its performance,

showing the soundness and effectiveness of our model design.

Table 4: Ablation study of key designs in our GDSR.

Operation

Yelp Douban Flixster

P@10 AUC P@10 AUC P@10 AUC

w/o CDM 0.0197 0.8065 0.2096 0.8822 0.1205 0.9615

w/o SDM 0.0201 0.8104 0.2130 0.8858 0.1193 0.9601

w/o dual DM 0.0182 0.7944 0.2021 0.8784 0.1128 0.9525

w/o SG 0.0199 0.8094 0.2144 0.8887 0.1205 0.9653

w/o GI 0.0202 0.8123 0.2144 0.8882 0.1206 0.9640

w/o DCL 0.0195 0.8112 0.2137 0.8873 0.1198 0.9624

GDSR 0.0206 0.8160 0.2162 0.8894 0.1217 0.9669

4.4.2 Plug-In Effect of Denoising Module. We further ana-

lyze our denoising module. This module can be seen as a plug-
and-play component for denoising user-item interaction graphs

and user-user social graphs, thereby enhancing recommendation

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Dual Graph Diffusion Model for Social Recommendation WWW, 28 April - 2 May 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

performance. To validate this plug-and-play nature, we integrate

our denoising module into two graph-based social recommenders

DiffNet++ [49] and GraphRec+ [7]. Two methods use both the in-

teraction and social graphs for recommendation. Figure 3 shows

the performance of these two methods, both with and without our

denoising module, on the three datasets. The results show that our

proposed denoising module consistently improves the performance

of two different base models, further validating its effectiveness.

Figure 3: Effect of our denoising module on two different
backbones. In each subfigure, P@10 results (red bars) on the
left, while AUC results (blue bars) on the right.

4.5 Hyper-parameter Sensitivity Analysis
In this section, we analyze several important hyper-parameters in

our GDSR. Specifically, we study diffusion step T and noise scale s
in the denoising module, and dual GNN layer size L and diffusion-

aware contrastive learning strength λCL in the recommendation

module. The results on the Douban dataset are shown in Figure 4.

The observations can be summarized as: (1) Increasing the diffu-

sion step T initially improves performance, but then it leads to

a decrease. In addition, since a larger T increases time costs, we

select T = 10 to achieve a balance between nice performance and

low costs. (2) As the noise scale s increases, performance improves

initially when compared to training without noise, demonstrating

the benefits of graph denoising optimization. However, an exces-

sively high noise scale adversely affects performance. Therefore,

it is crucial to choose a relatively small noise scale s = 10
−4
. (3)

Increasing the number of layer L in dual GNN enhances perfor-

mance to a certain extent, but too many layers will increase the

time complexity. In our experiments, setting L = 2 is a nice choice.

(4) For the contrastive learning strength λCL, setting it too high

can cause the model to overemphasize the contrastive task, which

reduces performance. Conversely, a too-low value may not provide

sufficient self-supervised signals. The nice performance is typically

achieved with λCL values between 10
−3

and 10
−2
.

2 5 10 20 50 100
(a) Diffusion Step T

0.20

0.22

0.21

P@
10

P@10
AUC

0 10 5 10 4 10 3 10 2

(b) Noise Scale s

0.20

0.22

0.21

P@
10

P@10
AUC

0 1 2 3
(c) Layer Size L

0.20

0.22

0.21

P@
10

P@10
AUC

10 4 10 3 10 2 10 1 1
(d) Contrastive Strength CL

0.20

0.21

0.22

P@
10

P@10
AUC

0.88

0.89

0.90

AU
C

0.88

0.89

0.90

AU
C

0.88

0.89

0.90

AU
C

0.88

0.89

0.90

AU
C

Figure 4: Hyper-parameter sensitivity analysis.

4.6 Anti-Noise Capacity Analysis
We first study the robustness of our GDSR to noisy interaction

and social data. Then, we analyze the denoising effect of GDSR on

several specific cases of user-item interactions and social relations.

4.6.1 Performance w.r.t. Data Noise Degree. In this subsec-

tion, we analyze the anti-noise capacity of our GDSR. Specifically,

following [17, 22, 40, 43], we replace a certain proportion (i.e., 10%

and 20%) of user-item interactions/user-user social relations with

noise signals in the interaction graph and social graph, while keep-

ing the test set unchanged. For experiments with noise added to

interactions, we compare our GDSR with denoising collaborative

recommenders (i.e., RGCF [40] and AdaGCL [17]). For experiments

with noise added to social data, we compare our model with denois-

ing social recommenders (i.e., DSL [43] and RecDiff [22]). Addition-

ally, we also include DiffNet++ [49] as a baseline. Figure 5 shows

the results on the Douban dataset. Similar results are observed on

other datasets, which are not elaborated here due to space limita-

tions. From the results, we find that: (1) Adding noise to the data

affects model performance. Moreover, adding noise to interaction

data impacts the model more than adding noise to social data, indi-

cating that the model is more sensitive to noise in interaction data

in social recommendations. (2) In scenarios where noise is added

to user-item interactions, the performance of DiffNet++ declines

more than that of RGCF, AdaGCL and, our GDSR. Similarly, when

noise is added to social relations, the performance decline of DSL,

RecDiff, and GDSR is less than that of DiffNet++. This highlights

the importance of anti-noise strategies in maintaining performance.

(3) Compared to denoising baselines, our GDSR shows the smallest

performance drop, indicating that our denoising strategy effectively

mitigates the impact of noise in the interaction and social data.

0% 10% 20%0.1

0.2

0.3

P@
10

(a) Interaction Noise Ratio

DiffNet++
RGCF
AdaGCL
GDSR

0% 10% 20%0.17

0.21

0.25

P@
10

(b) Social Noise Ratio

DiffNet++
DSL
RecDiff
GDSR

0.0

0.2

0.4

De
cli

ne
 %

DiffNet++
RGCF
AdaGCL
GDSR

0.00

0.03

0.06

De
cli

ne
 %

DiffNet++
DSL
RecDiff
GDSR

Figure 5: Model performance w.r.t. interaction and social
noise ratio. The bar represents P@10 results and the line rep-
resents the percentage of performance degradation.

4.6.2 Case Study. We aim to further investigate the data denois-

ing of our model through a case study. Specifically, in the Yelp

dataset, we randomly select two pairs of user-item interactions (i.e.,

(u2865, i4298) and (u4964, i2288)) predicted as noise by our model,

and two pairs of user-user social relations (i.e., (u1982, i9317) and

(u6115, i5443)) also predicted as noise. We introduce the item at-

tribute information (i.e., category and city) to assist in our case

study, as shown in Figure 6. Note that these attributes are not pro-
vided to our model during training, and they are used here solely

for the case study. Figure 6 (a) shows the denoising of user-item

interactions. Based on item attributes and user social neighbors,

we can rank the preferences of a user’s social neighbors for item

attributes. We find that the reason for denoising the interaction

(u2865, i4298) may be because item i4298 does not match user i2865’s

social neighbors’ preferences. The same reasoning applies to the

interaction (u4964, i2288). Figure 6 (b) shows the denoising of social

information. We utilize the user’s historical preference for item

attributes for analysis. The reason for denoising the social relations

(u1982, i9317) and (u6115, i5443) may be due to the significant differ-

ence in item attribute preferences between the users in each pair.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW, 28 April - 2 May 2025, Sydney, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

The above analysis not only reflects the rationale behind our de-

noising method but also shows that our denoising neural network

(i.e., fθ and fψ) and SG mechanism (i.e., Eqs.(15) and (16)) can inject

cross-domain signals into the data denoising process.

ID of top-3 category:
99, 415, 323

ID of top-3 city:
35, 31, 10

User 2865 Social Preference

 category attribute ID:
5, 173, 426

city attribute ID:
40

Item 4298 Attribute Information

ID of top-3 category:
407, 30, 306

ID of top-3 city:
17, 18, 26

User 4964 Social Preference

 category attribute ID:
172, 185

city attribute ID:
31

Item 2288 Attribute Information

X

X

ID of top-3 category:
45, 328, 407

ID of top-3 city:
26, 17, 40

User 1982 History Preference

ID of top-3 category:
407, 212, 236

ID of top-3 city:
35, 40, 18

User 6115 History Preference

ID of top-3 category:
106, 282, 96

ID of top-3 city:
35, 10, 31

User 9317 History Preference

ID of top-3 category:
99, 185, 343

ID of top-3 city:
46, 28, 9

User 5443 History Preference

X

X

(a) Analysis of Denoised User-Item Interaction Pairs (b) Analysis of Denoised User-User Social Pairs

de
no

is
e

de
no

is
e

de
no

is
e

de
no

is
e

Figure 6: Case study for our denoising module.

4.7 Embedding Analysis
In this subsection, we analyze the embeddings generated by our

GDSR. Following [23, 59], we plot the embedding distributions of

items from the Douban dataset utilizing Gaussian kernel density

estimation (KDE) in a 2-dimensional space. We also compare our

GDSR with two social recommender baselines DiffNet++ [49] and

RecDiff [22]. The results are shown in Figure 7. We find that com-

pared to the two baselines, the embeddings learned by our GDSR

are relatively more uniformly distributed. Based on prior research

[42, 59], we believe this result shows the advantage of our model in

modeling the data feature diversity. We attribute this advantage to

our diffusion-aware contrastive learning (i.e., Section 3.2.2). To vali-

date this, we also plot item embeddings generated by GDSRw/o DCL,

which removes diffusion-aware contrastive learning from GDSR.

We observe that the item embedding distribution of GDSRw/o DCL is

less uniform compared to GDSR. This indicates that our contrastive

learning enhances the model representation learning.

Figure 7: Embedding analysis for DiffNet++, RecDiff, GDSR.

5 Related Work
This section reviews two relevant research areas: social and denois-

ing recommendation. We discuss another area, contrastive learning

in recommendation, in Appendix E due to the space limitation.

5.1 Social Recommendation
Social recommendation utilizes social information to improve rec-

ommendation performance [39]. Prior research primarily focuses

on employing matrix factorization techniques (e.g., ensemble [27],

co-factorization [11], and regularization [28]) for social recommen-

dation. With the development of deep learning, researchers employ

diverse neural components (e.g., attention networks [1], multilayer

perceptrons [5], and recurrent neural networks [38]) to design social

recommenders. Recently, modeling interaction and social data from

a graph perspective has gained traction. These studies utilize graph

neural networks to enhance representation learning by considering

interaction and social graph structures [7, 8, 45]. However, most

social recommenders overlook the handling of noise in user-item

interactions and social data. To this end, inspired by the success

of the diffusion model (DM) in denoising tasks [25, 35, 36, 41], we

design a dual DM to generate denoised user-item interaction and so-

cial graphs. The results show that our denoising method effectively

denoises the recommendation data and improves performance.

5.2 Denoising Recommendation
The performance of recommender models could be limited by the

presence of redundant and noisy data [24, 32, 57]. To address this

issue, current methods are primarily designed from data cleaning

and model perspectives [58]. Data cleaning-based methods often

rely on specific heuristic assumptions to remove noisy data [3, 4] or

assign lower weights to potentially noisy data [34, 44, 47]. However,

this approach reduces the adaptability when the dataset or backend

model changes. Model perspective methods focus on enhancing the

noise resistance of recommenders [9, 43, 48, 51]. However, they typi-

cally depend on a single model to convert noisy data into clean data,

which makes it challenging to identify noise patterns effectively

and places high demands on the model representation capacity. In

this paper, we employ the multi-step denoising idea of diffusion

models (DMs) to denoise data. In recent years, several approaches

explore the use of DMs in recommendation. For example, DiffRec

[45] and DDRM [58] integrate DMs into the modeling of user-item

interactions. However, they focus solely on the collaborative filter-

ing task. RecDiff [22] and GDSSL [20] use DMs to mitigate social

noise. Despite their effectiveness, we believe our GDSR differs from

theirs in two key aspects: First, their methods do not incorporate

condition guidance relevant to the social recommendation task

in their DM design, and they lack specific adaptations tailored to

this task. In contrast, our GDSR employs a dual DM specifically

designed and customized for social recommendation, incorporating

cross-domain guidance strategies (i.e., denoising neural network

and signal guidance mechanism) to more effectively guide the de-

noising process. Second, both methods overlook the noise problem

in the interaction graph, while our GDSR mitigates noise in both

interaction and social graphs, establishing mutual collaboration

between the denoising processes of the two graphs. Experimental

results further show that our GDSR outperforms these methods.

6 Conclusion
In this paper, we propose a graph-based social recommender GDSR,

which consists of two key steps: graph denoising and recommen-

dation prediction. Our GDSR first leverages dual diffusion models

to denoise the user-item interaction and user-user social graphs.

To guide our dual diffusion models, we design a denoising neural

network and a signal guidance mechanism, both of which inject

cross-domain knowledge signals into the diffusion process. Then,

based on the denoised graphs, our GDSR introduces a dual graph

learning structure to learn user and item representations for recom-

mendation. To enhance the robustness of the model representation,

we introduce a diffusion-aware graph contrastive learning task. Ex-

periment results on three real-world datasets show that our GDSR

outperforms several state-of-the-art recommender baselines. For fu-

ture work, we plan to design the latent space diffusion strategy and

acceleration algorithm to improve our GDSR’s training efficiency.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Dual Graph Diffusion Model for Social Recommendation WWW, 28 April - 2 May 2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Chong Chen, Min Zhang, Yiqun Liu, and Shaoping Ma. 2019. Social attentional

memory network: Modeling aspect-and friend-level differences in recommenda-

tion. In WSDM. 177–185.

[2] Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. 2020. Revisiting

graph based collaborative filtering: A linear residual graph convolutional network

approach. In AAAI, Vol. 34. 27–34.
[3] Jingtao Ding, Fuli Feng, Xiangnan He, Guanghui Yu, Yong Li, and Depeng Jin.

2018. An improved sampler for bayesian personalized ranking by leveraging

view data. In WWW. 13–14.

[4] Jingtao Ding, Guanghui Yu, Xiangnan He, Fuli Feng, Yong Li, and Depeng Jin.

2019. Sampler design for bayesian personalized ranking by leveraging view data.

TKDE 33, 2 (2019), 667–681.

[5] Wenqi Fan, Qing Li, and Min Cheng. 2018. Deep modeling of social relations for

recommendation. In AAAI, Vol. 32.
[6] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.

2019. Graph neural networks for social recommendation. In WWW. 417–426.

[7] Wenqi Fan, Yao Ma, Qing Li, Jianping Wang, Guoyong Cai, Jiliang Tang, and

Dawei Yin. 2020. A graph neural network framework for social recommendations.

TKDE 34, 5 (2020), 2033–2047.

[8] Bairan Fu, Wenming Zhang, Guangneng Hu, Xinyu Dai, Shujian Huang, and

Jiajun Chen. 2021. Dual side deep context-aware modulation for social recom-

mendation. In WWW. 2524–2534.

[9] Yunjun Gao, Yuntao Du, Yujia Hu, Lu Chen, Xinjun Zhu, Ziquan Fang, and Baihua

Zheng. 2022. Self-guided learning to denoise for robust recommendation. In

SIGIR.
[10] Ihsan Gunes, Cihan Kaleli, Alper Bilge, and Huseyin Polat. 2014. Shilling attacks

against recommender systems: a comprehensive survey. Artificial Intelligence
Review 42 (2014), 767–799.

[11] Guibing Guo, Jie Zhang, and Neil Yorke-Smith. 2015. Trustsvd: Collaborative

filtering with both the explicit and implicit influence of user trust and of item

ratings. In AAAI, Vol. 29.
[12] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng

Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for

recommendation. In SIGIR. 639–648.
[13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic

models. NIPS 33 (2020), 6840–6851.
[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic

models. NIPS 33 (2020), 6840–6851.
[15] Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S Yu. 2018. Leveraging

meta-path based context for top-n recommendation with a neural co-attention

model. In KDD. 1531–1540.
[16] Mohsen Jamali and Martin Ester. 2010. A matrix factorization technique with

trust propagation for recommendation in social networks. In RecSys. 135–142.
[17] Yangqin Jiang, Chao Huang, and Lianghao Huang. 2023. Adaptive graph con-

trastive learning for recommendation. In KDD. 4252–4261.
[18] Mengyuan Jing, Yanmin Zhu, Tianzi Zang, and Ke Wang. 2023. Contrastive

self-supervised learning in recommender systems: A survey. TOIS (2023), 1–39.
[19] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[20] Jiuqiang Li and Hongjun Wang. 2024. Graph Diffusive Self-Supervised Learning

for Social Recommendation. In SIGIR. 2442–2446.
[21] Xiao Li, Li Sun, Mengjie Ling, and Yan Peng. 2023. A survey of graph neural

network based recommendation in social networks. Neurocomputing (2023).

[22] Zongwei Li, Lianghao Xia, and Chao Huang. 2024. RecDiff: Diffusion Model for

Social Recommendation. In CIKM 2024.
[23] Zihan Lin, Changxin Tian, Yupeng Hou, and Wayne Xin Zhao. 2022. Improving

graph collaborative filtering with neighborhood-enriched contrastive learning.

In WWW. 2320–2329.

[24] Yijing Liu, Yan Jia, Qingyin Tan, Zheli Liu, and Luyi Xing. 2022. How Are Your

Zombie Accounts? Understanding Users’ Practices and Expectations on Mobile

App Account Deletion. In 31st USENIX Security Symposium. 863–880.

[25] Justin Lovelace, Varsha Kishore, Chao Wan, Eliot Shekhtman, and Kilian Q

Weinberger. 2024. Latent diffusion for language generation. NIPS 36 (2024).
[26] Calvin Luo. 2022. Understanding diffusion models: A unified perspective. arXiv

preprint arXiv:2208.11970 (2022).
[27] Hao Ma, Irwin King, and Michael R Lyu. 2009. Learning to recommend with

social trust ensemble. In SIGIR. 203–210.
[28] Hao Ma, Dengyong Zhou, Chao Liu, Michael R Lyu, and Irwin King. 2011. Rec-

ommender systems with social regularization. In WSDM. 287–296.

[29] Wenze Ma, Yuexian Wang, Yanmin Zhu, Zhaobo Wang, Mengyuan Jing, Xuhao

Zhao, Jiadi Yu, and Feilong Tang. 2024. MADM: A Model-agnostic Denoising

Module for Graph-based Social Recommendation. In WSDM. 501–509.

[30] Peter V Marsden and Noah E Friedkin. 1993. Network studies of social influence.

Sociological Methods & Research 22, 1 (1993), 127–151.

[31] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a feather:

Homophily in social networks. Annual review of sociology 27, 1 (2001), 415–444.

[32] Bhaskar Mehta, Thomas Hofmann, and Wolfgang Nejdl. 2007. Robust collabora-

tive filtering. In RecSys. 49–56.
[33] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning

with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).
[34] Yuhan Quan, Jingtao Ding, Chen Gao, Lingling Yi, Depeng Jin, and Yong Li. 2023.

Robust preference-guided denoising for graph based social recommendation. In

WWW. 1097–1108.

[35] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn

Ommer. 2022. High-resolution image synthesis with latent diffusion models. In

CVPR. 10684–10695.
[36] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L

Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim

Salimans, et al. 2022. Photorealistic text-to-image diffusion models with deep

language understanding. NIPS 35 (2022), 36479–36494.
[37] Kartik Sharma, Yeon-Chang Lee, Sivagami Nambi, Aditya Salian, Shlok Shah,

Sang-Wook Kim, and Srijan Kumar. 2022. A survey of graph neural networks for

social recommender systems. arXiv preprint arXiv:2212.04481 (2022).
[38] Peijie Sun, Le Wu, and Meng Wang. 2018. Attentive recurrent social recommen-

dation. In SIGIR. 185–194.
[39] Jiliang Tang, Xia Hu, and Huan Liu. 2013. Social recommendation: a review.

Social Network Analysis and Mining 3 (2013), 1113–1133.

[40] Changxin Tian, Yuexiang Xie, Yaliang Li, Nan Yang, and Wayne Xin Zhao. 2022.

Learning to denoise unreliable interactions for graph collaborative filtering. In

SIGIR. 122–132.
[41] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher,

and Pascal Frossard. 2022. Digress: Discrete denoising diffusion for graph gener-

ation. In ICLR.
[42] TongzhouWang and Phillip Isola. 2020. Understanding contrastive representation

learning through alignment and uniformity on the hypersphere. In ICML. PMLR.

[43] Tianle Wang, Lianghao Xia, and Chao Huang. 2023. Denoised self-augmented

learning for social recommendation. arXiv preprint arXiv:2305.12685 (2023).
[44] Wenjie Wang, Fuli Feng, Xiangnan He, Liqiang Nie, and Tat-Seng Chua. 2021.

Denoising implicit feedback for recommendation. In WSDM. 373–381.

[45] Wenjie Wang, Yiyan Xu, Fuli Feng, Xinyu Lin, Xiangnan He, and Tat-Seng Chua.

2023. Diffusion recommender model. In SIGIR. 832–841.
[46] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.

Neural graph collaborative filtering. In SIGIR. 165–174.
[47] Yu Wang, Xin Xin, Zaiqiao Meng, Joemon M Jose, Fuli Feng, and Xiangnan He.

2022. Learning robust recommenders through cross-model agreement. InWWW.

2015–2025.

[48] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and

Xing Xie. 2021. Self-supervised graph learning for recommendation. In SIGIR.
726–735.

[49] Le Wu, Junwei Li, Peijie Sun, Richang Hong, Yong Ge, and Meng Wang. 2020.

Diffnet++: A neural influence and interest diffusion network for social recom-

mendation. TKDE 34, 10 (2020), 4753–4766.

[50] Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, and Meng Wang. 2019.

A neural influence diffusion model for social recommendation. In SIGIR. 235–244.
[51] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. 2016. Collab-

orative denoising auto-encoders for top-n recommender systems. In WSDM.

153–162.

[52] Xin Xia, Hongzhi Yin, Junliang Yu, Yingxia Shao, and Lizhen Cui. 2021. Self-

supervised graph co-training for session-based recommendation. In CIKM. 2180–

2190.

[53] Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Jiandong Zhang, Bolin

Ding, and Bin Cui. 2022. Contrastive learning for sequential recommendation. In

ICDE. IEEE, 1259–1273.
[54] Yiyan Xu, Wenjie Wang, Fuli Feng, Yunshan Ma, Jizhi Zhang, and Xiangnan

He. 2024. Diffusion Models for Generative Outfit Recommendation. In SIGIR.
1350–1359.

[55] Junliang Yu, Hongzhi Yin, Jundong Li, Qinyong Wang, Nguyen Quoc Viet Hung,

and Xiangliang Zhang. 2021. Self-supervised multi-channel hypergraph convolu-

tional network for social recommendation. In WWW. 413–424.

[56] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Jundong Li, and Zi Huang. 2023.

Self-supervised learning for recommender systems: A survey. TKDE (2023).

[57] Hengtong Zhang, Changxin Tian, Yaliang Li, Lu Su, Nan Yang, Wayne Xin Zhao,

and Jing Gao. 2021. Data poisoning attack against recommender system using

incomplete and perturbed data. In KDD. 2154–2164.
[58] Jujia Zhao, Wang Wenjie, Yiyan Xu, Teng Sun, Fuli Feng, and Tat-Seng Chua.

2024. Denoising diffusion recommender model. In SIGIR. 1370–1379.
[59] Ding Zou, Wei Wei, Ziyang Wang, Xian-Ling Mao, Feida Zhu, Rui Fang, and

Dangyang Chen. 2022. Improving knowledge-aware recommendation with multi-

level interactive contrastive learning. In CIKM. 2817–2826.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW, 28 April - 2 May 2025, Sydney, Australia Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Appendix
In this appendix, we provide additional details omitted from the

main paper due to the space limitation. We begin with a table

of key notations used in this paper (Appendix A), followed by the

optimization processes (Appendix B), and a complexity analysis and

generalization discussion (Appendix C) of GDSR. Next, we describe

experiment settings in detail (Appendix D). Finally, we introduce

supplementary discussions on the related work (Appendix E).

A. Notation Table
The notations used in this paper are summarized in Table 5.

Table 5: Summary of key notations.

Symbol Explanation

U, V user set and item set

Y, S interaction matrix and social matrix

GB , GS original interaction graph and social graph

GB∗ , GS∗ denoised interaction graph and social graph

T , s diffusion step and noise scale

ui , vj initial embedding for user ui ∈ U and item vj ∈ V

E∗
u,B , E

∗
v,B user and item collaborative embedding matrices

E∗
u,S user social embedding matrix

AGGB Neighborhood aggregation function for graph GB∗

AGGS Neighborhood aggregation function for graph GS∗

ŷi j Predicted user ui ’s preference for item vj

B. Optimization of Our GDSR
To optimize our GDSR model, we integrate the losses from both the

denoising module (i.e., Eq.(17)) and the recommendation module

(i.e., Eq.(29)). The combined loss is defined as follows:

LGDSR = LDenoising + L
Recommendation

. (30)

We then alternately train the losses of two modules. The pseu-

docodes of our GDSR are introduced in Algorithms 1-4.

Algorithm 1: Optimization procedure of GDSR

Input: User and item sets U andV , interaction matrix Y,
original interaction graph GB , original social graph

GS , diffusion step T , inference step T ′
, fθ in CDM,

fψ in SDM, recommendation module parameter Θ,
numbers of training Γ

de
and Γrec.

1 for number of iterations for GDSR do
2 for number of training Γde for denoising do
3 Train the denoising module (Algorithm 2);

4 end
5 Generate denoised graphs (Algorithm 3);

6 for number of training Γrec for recommendation do
7 Train the recommendation module (Algorithm 4);

8 end
9 end
Output: User preference prediction function F .

Algorithm 1 alternately optimizes the denoising module and the

recommendation module. Specifically, in each outer loop, we first

train the denoising module using Algorithm 2, then generate the

denoised graph using Algorithm 3, and finally train the recommen-

dation model using Algorithm 4. In this paper, we set the number

of training iterations for both modules as Γ
de
= Γrec = 1.

Algorithm 2: Denoising Module Training of GDSR

Input: Original interaction graph GB , original social graph

GS , diffusion step T , fθ in CDM, fψ in SDM, user

collaborative feature E∗u,B , user social feature E
∗
u,S ,

item collaborative feature E∗v,B .
1 Sample a user-item interaction batch Cu from GB ;

2 Sample a user-user interaction batch Su from GS ;

3 Sample t ∼ U(1,T);
4 Compute Cu,t given Cu,t−1 and t via q(Cu,t |Cu,t−1);

5 Compute Su,t given Su,t−1 and t via q(Su,t |Su,t−1);

6 Calculate LDenoising by Eq.(17);

7 Take gradient descent step on ∇θ (LDenoising) and

∇ψ (LDenoising) to optimize parameters θ andψ ;
Output: Optimized fθ and optimized fψ .

Algorithm 3: Denoised Graph Generation

Input: User setU, original interaction graph GB , original

social graph GS , diffusion step T , inference step T ′
,

optimized fθ in CDM, optimized fψ in SDM, user

collaborative feature E∗u,B , user social feature E
∗
u,S .

1 forall u ∈ U do
2 Sample ϵ ∼ N(0, I);
3 Compute cu,T ′ given cu,0, T ′

, ϵ , and set c̃u,T = cu,T ′ ;

4 Compute su,T ′ given su,0, T ′
, ϵ , and set s̃u,T = su,T ′ ;

5 for t = T , . . . , 1 do
6 Compute c̃u,t−1 from c̃u,t via fθ
7 Compute s̃u,t−1 from s̃u,t via fψ ;

8 end
9 Construct a set of the user denoised interaction

neighborhood based on c̃u,0;
10 Construct a set of the user denoised social

neighborhood based on s̃u,0;
11 end
12 Construct denoised interaction graph GB∗ and denoised

social graph GS∗ based on user denoised neighbor sets;

Output: Graph GB∗ and graph GS∗ .

C. Model Complexity and Generalization
In this section, we first analyze the model complexity of our GDSR

in terms of model size and time complexity. Then, we discuss the

model generalization of our GDSR.

C.1 Model Size. The model parameter size of our GDSR is from

two parts: (1) For the denoising module, it uses O((2 · |U|) · d
dm

)

parameters, where d
dm

is the hidden space dimension for the dual

DM. In practice, a smaller d
dm

(e.g., 32) makes our method achieve

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Dual Graph Diffusion Model for Social Recommendation WWW, 28 April - 2 May 2025, Sydney, Australia

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

nice performance. (2) For the recommendation module, it requires

O((|U| + |V|) · dgnn) parameters for user and item embedding

matrices and O(L · d2

gnn
) parameters for the weight matrices in

the dual GNN (i.e., from the GI mechanism), where L is the layer

number and dgnn is the embedding size in dual GNN. Compared

with embedding matrices, weight parameters are lighter and can

be neglected. Generally, the parameter size of the recommendation

module aligns with many GNN-based social recommenders.

Algorithm 4: Recommendation Module Training of GDSR

Input: Interaction matrix Y, denoised graphs GB∗ , GS∗ .

1 Initialize all the parameter Θ in recommendation module;

2 Draw a batch of interaction data Yb from Y;
3 forall (u,v) ∈ Yb do
4 Calculate user and item embeddings (i.e., E∗u,B , E

∗
u,S ,

E∗v,B) based on GB∗ , GS∗ via Eqs.(24) and (25);

5 Calculate the user-item interaction prediction (i.e., ŷi j
for user ui and item vj) according to Eq.(26);

6 Calculate loss L
Recommendation

according to Eq.(29) ;

7 Take gradient descent step on ∇Θ(LRecommendation
);

8 end
Output: Prediction function F (u,v |Θ,Y,GB∗ ,GS∗), user

collaborative features E∗u,B , user social features
E∗u,S , item collaborative features E∗v,B .

C.2 Time Complexity. The time complexity of GDSR comes from

two parts. (1) In the denoising module, our dual DM takesO(b ·d
dm

·

|U|) time for training, where b is the batch size. In addition, our

SG mechanism introduces O(b2 · |U|) time for training. (2) In the

recommendation module, the time complexity of our dual GNN is

O((|EB∗ |+ |ES∗ |) · (L ·dgnn+L ·d
2

gnn
)), where EB∗ and ES∗ are the

edge sets in denoised bipartite and social graphs. For the diffusion-

aware contrastive task, the time cost isO(b · (|EB∗ | + |ES∗ |) ·dgnn).

C.3 Time Efficiency Analysis. In this section, we conduct experi-

ments to further analyze the time efficiency of our GDSR. Following

[22], we record the time cost per epoch during training and the

inference time during testing. We also compare our GDSR with

three representative recommender baselines (i.e., DiffNet++ [49],

AdaGCL [17], and RecDiff [22]). All experiments are conducted on

a Linux server with an Intel(R) Xeon(R) Gold CPU 5218@2.3GHz

and a Quadro RTX 5000 GPU. The experiment results are shown in

Table 5. Generally, during the training phase, we find that AdaGCL,

RecDiff, and GDSR introduce additional time costs for denoising op-

erations compared to traditional graph-based social recommenders

DiffNet++, which is because denoising operation requires additional

time costs. During the testing phase, the inference time required

by the models is similar. Generally, we consider the time costs of

our GDSR to be acceptable. In the future, we plan to design the la-

tent space diffusion strategy and acceleration algorithms to further

improve the training efficiency of our GDSR.

C.4 Model Generalization. In this paper, we propose a social

recommendation model GDSR, which includes a denoising module

and a recommendation module. GDSR first denoises the interaction

and social graphs, and then generates recommendations based on

Table 6: Running time efficiency analysis about the training
time per epoch and testing time (s: second).

Method

Yelp Douban Flixster

Train Test Train Test Train Test

DiffNet++ 4.552s 1.095s 26.553s 8.832s 75.603s 41.847s

AdaGCL 102.480s 1.028s 203.869s 7.696s 1175.386s 36.756s

RecDiff 9.972s 0.881s 31.279s 7.314s 103.485s 35.555s

GDSR 16.911s 0.980s 78.674s 9.224s 451.197s 40.503s

the denoised graphs. Although we introduce a specific recommen-

dation module, we believe that the denoising module in GDSR does

not rely on a particular backend recommender model. It can be inte-

grated into other social recommenders to enhance performance. For

example, experiments in Section 4.4.2 show that after incorporating

our denoising module, both GraphRec+ [7] and DiffNet++ [49] back-

bones achieve improved results, demonstrating the generalization

capability of the denoising module. Beyond the backbone model,

we also believe that the proposed idea of the dual graph diffusion

model can be generalized to other recommendation scenarios.

D. Experiment Details
In this section, we provide details on the datasets, comparison

methods, and hyper-parameter settings of comparison methods.

D.1Datasets. We evaluate our experiments on the three real-world

datasets from different domains: Yelp business dataset[15], Douban

book dataset[55], and Flixster movie dataset
1
. All datasets contain

user-item interaction information and social connections between

users. The social connections in the Douban dataset are unilateral

trust relationships, which means that when user A trusts user B,

user B does not necessarily trust user A. Yelp and Flixter datasets

have a friendship mechanism that is bilateral for both users.

D.2 Comparison Methods. We compare our GDSR with four

group recommendation methods: (1) graph-based collaborative rec-

ommenders (i.e., LR-GCCF [2] and LightGCN [12]), (2) graph-based

social recommenders (i.e., DiffNet++ [49] and GraphRec+ [7]), (3)

denoising graph-based collaborative recommenders (i.e., RGCF [40],

DDRM [58], and AdaGCL [17]), and (4) denoising graph-based so-

cial recommenders (i.e., GDMSR [34], DSL [43], GDSSL [20], and

RecDiff [22]).We also note that DiffRec [45] and SGL [48] are denois-

ing collaborative recommenders. Since DDRM outperforms DiffRec,

and both AdaGCL and RGCF achieve better results than SGL, we do

not include comparisons with DiffRec and SGL in our experiments.

The descriptions for these baselines are listed as follows:

• LR-GCCF utilizes graph neural networks (GNNs) to model the

user-item interaction bipartite graph. LR-GCCF first simplifies

GNNs by removing non-linear activations, and then introduce a

residual network structure for embedding combinations.

• LightGCN, similar to LR-GCCF, also models the user-item in-

teraction graph using a simplified GNN structure. LightGCN

removes activation functions and linear transformations, relying

solely on neighborhood aggregation for layer-wise propagation.

• GraphRec+, is an upgraded version of GraphRec [6], which uses

GNNs to model the interaction graph, social graph, and item

relation graph constructed based on collaborative similarities.

1
https://www.flixster.com/

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW, 28 April - 2 May 2025, Sydney, Australia Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

• DiffNet++, an enhanced version of DiffNet [50], uses graph at-

tention networks to model the user-item interaction graph and

social graph separately.

• RGCF introduces a denoising method to alleviate noise issues

from the user-item interaction graph, and then models user pref-

erences for items based on the denoised interaction graph.

• DDRM applies diffusion models to denoise user and item embed-

dings. In this experiment, we use DDRM+SGL as the instantiation

of DDRM due to its notable performance reported in their paper.

• AdaGCL is a graph collaborative filtering-based denoisingmethod

that incorporates data augmentation through graph denoising

and generative model-based view generators.

• GDMSR designs a preference-guided graph denoising network

to denoise the social graph, which generates recommendations

based on the denoised social graph and user-item interaction

information.We use DiffNet++ as the backendmodel for GDMSR.

• DSL alleviates noise issues in the social graph using a cross-

view denoised self-supervision method and optimizes the rec-

ommender model using a multi-task learning strategy.

• GDSSL utilizes a diffusion model to generate a social subgraph

structure. It then designs a contrastive learning task based on

this subgraph to enhance the model representation learning.

• RecDiff applies a diffusion model to denoise user representa-

tions derived from the social graph, then combines the denoised

representations with user-item interaction modeling.

D.3 Hyper-parameter Settings. Except for GraphRec+ [7] and

GDSSL [20], all other baselines provided their code in their papers.

For GraphRec+, we implement it based on the code in GraphRec

[6]. For GDSSL, we implement this method ourselves. The settings

of key hyper-parameters of these baselines are as follows:

• LR-GCCF: GNN layer size L = 3, embedding size d = 64.

• LightGCN: GNN layer size L = 3, embedding size d = 64.

• DiffNet++: GNN layer size L = 2, embedding size d = 64.

• GraphRec+: GNN layer size L = 1, MLP layer size L′ = 2, embed-

ding size d = 64, item similar neighbor size k = 10.

• RGCF: GNN layer size L = 2, embedding size d = 64, diversity

loss coefficient λ1 = 0.000001, temperature τ = 0.1.

• DDRM: embedding size d = 64, diffusion step T = 10 (on Yelp

and Flixster) or T = 20 (on Douban), noise scale s = 0.001, loss

balance factor λ = 0.2, reweighted factor γ = 0.9.

• AdaGCL: GNN layer size L = 2, embedding size d = 32 (on

Douban, Flixster) or d = 64 (on Yelp), SSL strength λ1 = 0.1 (on

Yelp, Douban) or λ1 = 0.01 (on Flixster), temperature τ = 0.5.

• GDMSR: GNN layer size L = 2, embedding size d = 32, co-

optimization weight α = 0.5, adaptive denoising factor γ = 0.5.

• DSL: GNN layer size L = 2, embedding size d = 32 (on Douban

and Flixster) or d = 64 (on Yelp), SSL strength λ1 = 0.00001 (on

Yelp and Douban) or λ1 = 0.000001 (on Flixster).

• GDSSL: GNN layer size L = 2, embedding size d = 64, diffusion

step T = 10, SSL and social task strength λ1 = 0.01, λ2 = 0.01.

• RecDiff: GNN layer size L = 2, embedding size d = 64, timestep

embedding dimd ′ = 16, diffusion stepT = 20, noise scale s = 0.1.

E. Contrastive Learning in Recommendation
In recent years, contrastive learning (CL) has emerged as a promis-

ing approach to enhance recommender systems [18, 56]. CL-based

recommendation methods utilize additional supervision signals ex-

tracted from raw data, which can mitigate the data sparsity problem

and improve model performance. The construction of contrastive

views is crucial for CL-based recommenders. One line of current

research [48, 53] uses data augmentation to create more views from

the original data, while another line of studies [48, 52, 55] focuses

on mining different views that exist in the data. Our GDSR aligns

more closely with the first research line. Specifically, we first use

diffusion models to enhance the original interaction bipartite graph

and social graph, obtaining denoised graph structures. We then

contrast the representations of user and item nodes in the graph

before and after denoising. The node self-discrimination could pro-

vide auxiliary supervision signals for recommendation. We believe

our diffusion-aware data augmentation paradigm will contribute

to the advancement of CL-based recommender systems.

12

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Notation and Problem Formulation
	2.2 Diffusion Model

	3 Methodology
	3.1 Denoising Module
	3.2 Recommendation Module
	3.3 Model Optimization
	3.4 Model Complexity and Generalization

	4 Experiment
	4.1 Experimental Setup
	4.2 Performance Comparison
	4.3 Performance w.r.t Sparsity Degrees
	4.4 Ablation Study
	4.5 Hyper-parameter Sensitivity Analysis
	4.6 Anti-Noise Capacity Analysis
	4.7 Embedding Analysis

	5 Related Work
	5.1 Social Recommendation
	5.2 Denoising Recommendation

	6 Conclusion
	References

