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Abstract

Machine learning models are being increasingly deployed to take, or assist in
taking, complicated and high-impact decisions, from quasi-autonomous vehicles
to clinical decision support systems. This poses challenges, particularly when
models have hard-to-detect failure modes and are able to take actions without
oversight. In order to handle this challenge, we propose a method for a
collaborative system that remains safe by having a human ultimately making
decisions, while giving the model the best opportunity to convince and debate
them with interpretable explanations. However, the most helpful explanation
varies among individuals and may be inconsistent across stated preferences. To
this end we develop an algorithm, Ardent, to efficiently learn a ranking through
interaction and best assist humans complete a task. By utilising a collaborative
approach, we can ensure safety and improve performance while addressing
transparency and accountability concerns. Ardent enables efficient and effective
decision-making by adapting to individual preferences for explanations, which
we validate through extensive simulations alongside a user study involving a
challenging image classification task, demonstrating consistent improvement
over competing systems.

1 Introduction

Machine learning (ML) systems and human experts tend to exhibit distinct failure modes when
performing a task (Fails and Olsen Jr, 2003). In particular, while machine learning systems are
often more accurate and efficient than human experts - excelling at detecting subtle patterns that
are not obvious to people (Fujiyoshi et al., 2019) - they are prone to failure cases that are hard
to detect during training (Zhang et al., 2019; Liu et al., 2022), but can lead to obvious test-time
mistakes that human experts find trivially easy to correct (Yasaka et al., 2018). Combine these
errors with a high-stakes environment such as criminal justice or healthcare, and the result is
an ML system that is dangerous if deployed without oversight. The waters are muddied further
by a lack of accountability when part (or all) of the decision is made algorithmically, potentially
creating mismatched incentives between developers and end-users (Reed et al., 2016).
A natural solution to this problem is to have a human always be the one to make the decision,
while having access to the output of some machine learning model as a decision support tool.
However, even when implemented as support that only assists the users, the previous issues can
prevent enthusiastic adoption; people often feel like they cannot trust the output of black-box
models without any case-specific justification (Durán and Jongsma, 2021). Additionally, there
is plenty of evidence that the suggestions of the system may psychologically affect the human,
shifting their preferences (Carroll et al., 2022) and potentially manipulating them into taking
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decisions the system wants - which is unsurprising given it happens to be their stated goal
(Resnick and Varian, 1997).

Decision Support 
Model

Human Decision 
Maker

Protected 
Environment

Meta System

Figure 1: System Overview. When in-
teraction with the environment could re-
sult in great harm, we would like a system
where the human maintains control of ac-
tions. We propose Ardent as a meta-system
built around any decision support model that
selects what types of explanations to provide
in order to convince the decision maker of
its credibility or highlight inaccuracies.

As such, what is needed are systems to guide the
interaction between human and machine in order
to get the best out of each of them. In this work,
we propose the development of a decision support
system that not only recommends actions, but also
actively aims to provide the best possible evidence
supporting the credibility of the model’s recommen-
dations in order to prevent accurate advice from
being dismissed by the human when the rationale
behind the advice is not immediately clear. In order
to minimise the chance for manipulation, the type
of arguments available to the system are limited
to explainability methods (Gilpin et al., 2018) that
offer some insight into the black-box prediction to
the human (Kenny et al., 2021), making it easier
to identify nonsensical predictions from the model.
We measure the usefulness of explanations based
on the eventual agreement of the human with rec-
ommended actions, without soliciting explicit feed-
back from them as in previous work (Wang and
Yin, 2021). In doing so, we learn if an explana-
tion is truly useful enough to reveal new insight
into a model and hence prompt a change in one’s
behaviour as opposed to merely seeing how inter-
pretable the explanation is perceived to be. Attempts to learn which explanations should be
shown have included using Q-learning to learn which to select, but with a reward based on their
simulatability score (Yeung et al., 2020). Lahav et al. (2018) on the other hand uses UCB1,
an algorithm designed for the standard bandit problem (Auer et al., 2002), on a reported score
from users as to which they trust the most. The main point of divergence being that these
are built around a goal of learning which explanations are interpretable - a goal that may not
correlate with which are most useful for performance - and as such make use of alternative forms
of feedback that may not work for optimal performance.

2 Preliminaries
Consider an arbitrary task T that needs to be completed by taking some action a ∈ A given
a context x ∈ X. We consider the setting where this is some safety-critical task, where
ultimately the decision must come down to a human taking actions according to some human-
policy πhuman ∈ ∆(A)X . There are two important levels of algorithmic support - we consider a
decision support system to be a predictive model with some support-policy πsupport ∈ ∆(A)X

that is doing the same task as the human, operating on the same domain as πhuman. On top
of this, we consider a meta-system whose task is then essentially to govern the interaction
between the two lower-level policies πhuman and πsupport. This could conceivably take many
different forms - for example: occasionally using the human prediction to update the support
model; encouraging the human to take the support system more seriously as this context is one
that humans often get wrong; or even flagging decisions for an external review. The overall setup
is modelled in Figure 1, the key aspect being that it is only ever the human decision maker who
is able to directly affect the environment. Of course, the support systems are able to influence it
indirectly (otherwise there would be no point in them), but the human is able to act as a screen
to prevent potentially dangerous actions being performed. In this work, we propose a method
for when there is disagreement between policies. We will often expect some disagreement, the
support policy is unlikely to be adopted as the human expert’s policy outright, not least because
it is most likely a black-box model and hence the human might need to be persuaded of the
target policy’s credibility. We refine the setting of Section 2 by considering that there is a set of
post-hoc explainers E at our disposal. Given a context x and a support-policy π, each explainer
e ∈ E can output an explanation fe(x, π).
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Our goal is to develop a meta-policy that simultaneously learns and selects (cf. explores and
exploits) the best explanations to show to the human that are maximally useful to them in
order to make their final decision. Suppose the human is wrong and the support-policy is right,
these explainers should be able to sufficiently justify their decision to the human so that they
adopt the action. On the other hand, if the support-policy is wrong but the human is right, the
explainers should highlight that the support model is making nonsensical predictions, encouraging
the human to ignore it. We consider an interaction loop between the human, support-policy, and
meta-policy that goes as follows:

1. A new context x arrives.
2. The human expresses an intended action ahuman.
3. The support policy proposes the same or different action asupport ∼ πsupport(x).
4. The meta-policy provides a set of explanations fe(x, πsupport) that are given by explainers

e ∈ {e1, e2, . . .} in a specified order, as long as the agent keeps interacting.
5. The human ends the interaction and takes a final action a, which might not necessarily

be their intended ahuman nor the proposed asupport.

To be able to make meaningful inferences regarding how the system’s explanations have influenced
the human’s final action, we need to model how the human reasons about the information provided
by the explanations. In particular, we need to model (i) how they accumulate information as they
see multiple explanations one after another and (ii) how they then decide on a final action. Given
a context x, suppose the human considers there to be an optimal action a∗(x) to take but they
are not absolutely certain what that action might be. Their policy (i.e. the human policy πhuman)
reflects their initial belief regarding the optimal action—that is they believe a∗(x) = a to be the
case with a confidence of πhuman(x)[a]. We will denote this initial belief with b1 ∈ ∆(A) where
b1 = πhuman(x). The agent updates their belief as they gather more information by interacting
with the system. Formally, when they are provided with the t-th explanation fet

(x, πsupport) by
the t-th explainer et, they update their belief such that: bt+1[a] ∝ bt[a] · t · q[et, x, a] , where
q[et, x, a] ∈ R+ can be interpreted as a measure of how likely the agent thinks they are to see
the information provided by explanation fet

(x, πsupport) if a∗(x) = a were to be true—in other
words, q[e, x, a] ∝ P(fe(x, πsupport)|a∗(x) = a). Finally, when the agent ends the interaction
with the system after seeing the T -th and the final explanation, they take an action a according
to their final belief bT +1 such that a ∼ bT +1. Our objective is to find a strategy to select
explainers {e1, e2, . . .} given a context x ∈ X and the agent’s intended action ahuman ∈ A
according to data D = {(ahuman, a, e1:T )} collected so that the number of times the proposed
action is taken as the final action (i.e. a = asupport) is maximised. We consider the case when
propensities q ∈ RE×X×A

+ and the human policy πhuman are unknown.

3 Argumentative Decision Support
Having established the forward model of behaviour we posited in the previous section, we now
present Ardent (adj. very enthusiastic or passionate), a method for argumentative decision
support. As an online learner, Ardent has to strike a balance between two conflicting objectives:
(i) infer how explanations affect the human’s beliefs by trying out a variety of explanations
(i.e. exploration), and (ii) help the human by showing them only the best explanations (i.e.
exploitation). To achieve this, we employ a variation of Thompson sampling (Russo et al.,
2018), a common method for online learning. For each interaction, Ardent first forms a posterior
P(q|x, e1:T , a) over unknown propensities given information from previous interactions. Then, it
selects explanations as if a particular sample q∗ ∼ P(q|x, e1:T , a) from the formed posterior is
the ground-truth propensities.
Since Ardent is intended to be a lifelong learner, it needs to be able to form posteriors over
propensities without having to repeatedly retrain a system. This amounts to performing Bayesian
updates every time an interaction occurs given an appropriate starting prior. Given a prior
distribution P(q) over propensities q ∈ RE×X×A, the posterior distribution after observing an
interaction where the context is x, explainers e1:T are shown to the agent, and they take the
final action a can be expressed as:

P(q|x, e1:T , a) ∝ P(q)P(a|x, e1:T , q) = P(q)bT [a] = P(q)
b1[a]

∏
t∈[T ] t · q[et, x, a]∑

a′∈A

(
b1[a′]

∏
t∈[T ] t · q[et, x, a′]

) .
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Algorithm 1: Ardent

Input: Prior distribution P(q) ∈ ∆(RE×X×A),
and discount factor α ∈ (0, 1)
∀i ∈ [N ], q(i) ∼ P(q)
∀i ∈ [N ], w(i) ← 1/N
loop
Interaction:

Context x ∈ X arrives
Determine action atarget ∼ πtarget(x)
k ∼ C(w(1:N)) ▷ Posterior sampling
repeat for t ∈ {1, 2, . . .}

et ← arg maxe∈E\{e1,...,et−1}
q(k)[e, x, atarget]

Show explanation fet(x, πtarget)
until the final action is taken
Observe the final action a ∈ A

Posterior update:
q̄ ←

∑
j∈[N ] w(j)q(j)

Σ←
∑

j∈[N ] w(j)(q(j) − q̄)(q(j) − q̄)T

∀i∈ [N ], µ(i)←αq(i) + (1− α)q̄
∀i∈ [N ], p(i)←w(i)P(a|x, e1:T , q =µ(i))
∀i∈ [N ], p(i)←p(i)/

∑
j∈[N ] p(j)

for i ∈ {1, . . . , N} do
k ∼ C(p(1:N))
q(i) ∼ N (µ(k), (1− α2)Σ)
w(i) ← P(a|x, e1:T , q = q(i))

/P(a|x, e1:T , q = µ(k))
end for
∀i ∈ [N ], w(i) ← w(i)/

∑
j∈[N ] w(j)

end loop

Note that it is not possible to keep an ana-
lytical track of this posterior, unlike typical
applications of Thompson sampling. This is a
direct consequence of our feedback model; our
aims is to learn solely from the final action a
without relying on explicit feedback from the
human. For instance, if we were able to ob-
serve q[et, x, a]’s directly (perhaps by asking
the human to score each explanation numeri-
cally or express their beliefs at each step explic-
itly), we could have assumed P(q) is Gaussian
and trivially obtained P(q|x, e1:T , a). Rather
than keeping an analytical track of the poste-
riors, we perform approximate posterior sam-
pling using a sequential Monte Carlo method
instead. In particular, building on the algo-
rithm proposed by Liu and West (2001) which
outlines how to track distributions over gen-
eral static parameters such as q. We represent
distributions over propensities q with particles
{q(i)}i∈[N ] and their corresponding weights
{w(i)}i∈[N ] such that w(i) ≥ 0,∀i ∈ [N ] and∑

i∈[N ] w(i) = 1. Algorithm 1 describes in
detail how these particles are updated. We
denote with N (µ, Σ) the Gaussian distribu-
tion with mean vector µ ∈ Rd and covariance
matrix Σ ∈ Rd×d, and with C(p) the cate-
gorical distribution over {1, . . . , d} with event
probabilities p ∈ [0, 1]d.
Explanation Selection. Now at a new time-
step Ardent has a constructed posterior over
the human’s beliefs and given a new context
and support system prediction is tasked with
selecting appropriate explainers to show to the
human. To do so, a particle is sampled from the posterior according to its weight (q(k) : k ∼
C(w(1:N)) in Algorithm 1). Then, the explainers are shown to the human in order of their
propensity—that is explainers with the largest q(k)[e, x, atarget] are show first—as long as the
human continues to request further explainers.

4 Challenging Humans with Image Classification
Now that we have introduced Ardent as a meta-system for decision support, in this section we will
explore practically how it works and can be useful. In the main paper we will focus on a human
user study with a real image classification task to understand how Ardent could be employed
in the real world. Given the space constraints, we leave simulated evaluations of Ardent to the
Appendix - in summary we show how, under our regular assumptions, Ardent allows for more
optimal human-AI collaboration, as well as exploring the impact of hyperparameters and the
approximations introduced.
Here we explore one example of how Ardent could be used in practice by human decision makes to
complete a task, albeit tested in a slightly lower-stakes environment than we describe previously
(we imagine this image classification task would map well to an example of clinical radiologists
making decisions for patients based on scans). CIFAR-10 has been a very common multi-class
classification benchmark in the computer vision community (Krizhevsky et al., 2009), although
recently has been largely set aside for bigger and higher resolution image datasets. However, it is
the low resolution of CIFAR-10 that makes it a particularly appropriate task for our purposes, as
it can still pose a challenge for human labellers, and deep neural networks can achieve very strong
accuracy (Dosovitskiy et al., 2021). The CIFAR-10 test set contains 10,000 images, although
many of them are trivially easy for both humans and machine learning systems. As such, we
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Figure 2: Example Image and Explanations. Subjects are shown a new test image as in the
top left, and asked to make a prediction. The system then shows them the model prediction, in
this case ‘Truck’, and as long as the subject remains unconvinced, continues to show them new
explanations - examples of which are shown here. Details of exact presentation in Appendix.

construct a more curated test set of only 70 images while over-representing test examples that
humans have trouble identifying and deep networks commonly make mistakes on. In this case
the overall performance of both humans and machine on this subset is significantly lower than
what might be achieved over the full test set. This is important for increasing the number of
examples for which there is disagreement between human and machine, better representing the
type of tasks we expect Ardent to be useful on. Details of presentation and test-set specifics
are given in the supplementary materials. In total, we recruited 32 participants and underwent
our institutional department’s standard review process (IRB equivalent), following standard data
collection protocols. Risk was deemed to be low given the task nature and non-identifiable
information collected. Participants were volunteers sought from our institution.
In order to test the ability of Ardent to optimise performance and discover which explainability
methods are preferred by different people we use five different explainability methods that fall in
three different categories. This allows for reasonable heterogeneity between explanations, not
having them all basically report the same thing. To that end, we employ: 1) Feature Importance
Methods: Those that aim to highlight which part of the context was useful for the model in making
a decision. In particular we use Integrated Gradients (Sundararajan et al., 2017) - A method
for attributing features to a model’s predictions while satisfying definitions of sensitivity and
implementation invariance; and DeepLIFT (Shrikumar et al., 2017) - Deep Learning Important
Features aims to decompose the prediction into attributions of individual neurons and comparing
to a reference attribution to determine feature relevance. 2) Example Based Methods: Those
that aim to justify the model’s prediction by showing other example(s) from a corpus (often the
training set) that are in someway similar to the test example including SimplEx (Crabbé et al.,
2021) - that provides relevant examples by reconstructing a test example’s latent representation
as a mixture of the corpus representations; and Nearest-Neighbour (Wallace et al., 2018) - that
provides the example and model prediction of the corpus member closest to the test example in
the model latent space. 3) Counterfactual Methods: Those that ask a question of the model as
to what might the predicition be if the context had of been different, in this case Occlusion
Maps (Zhang et al., 1997) that searches for the minimal mask that will result in a different
prediction being outputted by the model. An example of the test images and accompanying
examples shown to human experts is shown in Figure 2 - note this is not how they are presented
during the task, where one explanation would be shown at a time - the actual display shown to
participants is detailed in the appendix. All of the different methods offer different information
about the decision support model’s prediction and so can be useful to different people in different
ways, it is very much a subjective position as to which one may be more useful.
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Table 1: Accuracy. We report the mean accu-
racy (95% confidence interval) on a challenging
subset of the CIFAR-10 image classification test
set.

Algorithm Accuracy
Human - Alone 72.5± 6.2%
Machine - Alone 50.0± 0.0%
H+M w/ Random Explanations 76.1± 3.8%
H+M w/ a priori Favourite 75.7± 4.0%
H+M w/ Ardent 83.4± 5.0%

0 10 20 30 40 50 60 70
Interaction Steps

0

1

2

3

4

5

A
ve

ra
ge

E
x
p

la
n

at
io

n
s

V
ie

w
ed

Efficiency
gap

Fatigue

Average Explanations Viewed over Time

Random Trendline

Ardent Trendline

Figure 3: Explanations Viewed. Average ex-
planations viewed by participants in the Ardent
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Figure 4: Preference Inference. We can see
that Ardent quickly identifies that this partici-
pant found that example-based explanations were
most useful for them.

Ability to Accurately Classify Images. All
participants were randomly allocated to one of
three arms in the trial. These included: 1) be-
ing shown explanations chosen by Ardent; 2)
being shown randomly ordered explanations;
and 3) being shown only the explanation that
the participant selected as their favourite at
the beginning of the experiment when shown
the an example of how the explanations work.
The results for final accuracy on the test set
are reported in Table 1, where the estimate of
the Human - Alone accuracy is calculated from
the initial prediction of participants across all
arms. We can see that Ardent significantly out-
performs both of the individual (human or AI)
systems as well as beating the combinations
given access to randomly ordered explanations
or the explanation chosen a priori by the par-
ticipant as their favourite. The differences in
mean performance are statistically significant
with a standard test rejecting a null hypothesis
of equality with a p value < 0.01. The gap
shows that Ardent allows for a more nuanced
collaboration between human and AI such that
the humans can really take advantage of a pre-
dictor that actually has a lower accuracy on
average than them, which may not be an obvi-
ous point when people evaluate the potential
use of a decision support system. The fact
that Ardent outperforms random explanations
provides evidence that a choice of explanations
is important for people, and certainly validates
that they can be very useful for giving them
insight into a model’s predictions. In the end:
Ardent improves overall system performance
by enabling useful human-AI collaboration.
Explanation Efficiency. By running posterior
updates, Ardent incurs a computational cost,
however this is not as large an issue as it
may originally seem. Given the more targeted
explainer selection from Ardent, users actually
click through 31.4% fewer explanations on
average, which saves on the computational
cost of generating these explanations - which in some cases can require multiple passes through a
network, potentially more than offsetting the cost of Ardent updates. Figure 3 shows more clearly
how the average number of explanations viewed decreases over time with Ardent, increasing the
efficiency. Interestingly, they also decrease for the Random group - given that there is no change
in the way explanations are presented here, it appears that the main reason for this would be that
the participants begin to fatigue of the task and are less inclined to click through explanations.
It takes time to view, evaluate, and properly draw conclusions from an explanation and humans
get less engaged as tasks go on, especially if they are repetitive. It is this aspect that Ardent
aims to handle by producing a relative ordering. Ardent is then able to provide the most useful
explanations first in order to engage the participant, but also is still able to offer alternative
explanations when they are needed. Targeted explanations can result in computational savings
and decrease fatigue.
Preference Identification. In addition to the ability to optimise performance, Ardent obtains a
ranking of which explainers users seem to find most useful - the ones that actually impact the
behaviour of the human. Figure 4 demonstrates the trajectory of an example user. It can be seen
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that in the beginning the selection of explainers is relatively random, as Ardent starts to learn
which explainers are useful the ordering entropy decreases - Ardent identifies that this user finds
the example-based methods most informative. Importantly, Ardent outperforms the baseline arm
that gives the participant the explanation that they a priori thought would be the most useful.
This emphasises how the impact of explainability is not as simple as a qualitative analysis of a
method, and that what we think may be useful may not actually lead to significant change in the
way that people come to decisions. Ardent efficiently identifies individual preferences, potentially
better than the individuals themselves.

5 Discussion

In this work we introduced Ardent, an approach for optimal human-AI collaboration. Here we
focus on high stakes settings where it is important for humans to remain in control while giving
the support systems opportunities to convince them to pay attention when appropriate - this is
validated through simulation as well as a study on image classification. Ardent offers a solution
when there is disagreement between the human and the decision support system, but does
implicitly assume that at least one of them is correct. There are still many interesting directions
that can be taken, especially building around a system like Ardent using semi/self-supervised
learning to understand when/where both policies fail. There are many ways support systems can
empower human decision makers and we by no means expect Ardent to be the only component
in a fully deployed meta-system. Our hope is that Ardent will encourage and support the
development of machine learning methods that work with people to provide the best of both
worlds while remaining safe to deploy in challenging scenarios.
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Figure 5: Situations Faced by a Meta-
system: For each interaction, a meta-
system would like to determine which quad-
rant they find themselves in - a very chal-
lenging task.

Identifying Who’s Correct. Similar to problems of
learning to defer (Mozannar and Sontag, 2020) or
switch between policies (Meresht et al., 2020), a key
role of the most general meta-policy is essentially
to detect who out of the human and support model
is making a correct prediction and who is not -
resulting in basically four possibilities as highlighted
in Figure 5. We would expect the actions of the
system to be heavily dependent on the situation.
For example, if the system thinks they are in top
right, where it thinks the human is correct but the
system may not be, it might want to intervene
to prevent the human from being swayed by the
prediction, for example by highlighting that similar
contexts were not common in the support model’s
training data. On the other hand, if the system
thinks they are in the top left, where both the
human and support policy is correct, their job is
significantly easier and there is no point wasting
time by offering extra justification or caveats. That
isn’t to say nothing can be done though, as the system could still use the incoming examples for
semi-supervision or for improved representation learning.
Debate Given Disagreement. In essence this gives rise to a debate between the human expert
and the support model - albeit one highly skewed towards the human given they are also the
judge (the human has no actual need to convince the support model). This can be seen to have
a lot of benefits, with debate allowing for better convergence to optimal actions between agents
(Ehninger and Brockriede, 2008) and has been proposed itself as a framework for safe artificial
intelligence (Irving et al., 2018).
Recommender Systems. A popular category of decision support can be classified as recommender
systems. However the typical use of these systems, especially used commercially (Shani et al.,
2005), relies on convincing the human to pick the option that the model wants (Pu et al.,
2011). This essentially assumes that πsupport strictly dominates πhuman and thus basically tries
to alter πhuman to converge to πsupport. In the case where humans are adding value this is highly
undesirable, and can have serious effects on the human preferences (Carroll et al., 2022) as a
by-product. Further, recent work by Vodrahalli et al. (2022) has even showed that miscalibration
(in particular overconfidence) of a machine learning model’s predictions resulted in humans being
more likely to accept the suggested actions. This raises questions about the ethics of deliberately
inducing overconfidence in a model in a high-stakes environment, making the model mislead the
human in an effort to persuade them.
Understanding Human Decision Making. In order to best assist a human decision maker it
can be useful to model the decision making behaviour of the individual (Jarrett et al., 2021). This
can involve using imitation learning or inverse reinforcement learning to model their behaviour
(Pace et al., 2021; Chan and van der Schaar, 2021), or trajectory modelling if we believe their
policy is updated over time (Hüyük et al., 2022; Chan et al., 2021b). Once a model has been
obtained, the support model can be designed to specifically aid the shortcomings of the human
policy. These often need simulations to verify though (Chan et al., 2021a), and having a full
model is not always necessary to improve the whole system performance.
Relationship to Multi-Armed Bandits. Ardent is a potential solution to a combinatorial
multi-armed bandit problem with full-bandit feedback, unlike those with semi-bandit feedback
that have been studied extensively. In our framework, semi-bandit feedback would correspond
to observing propensities {q[et, x, a]}t∈[T ] directly in addition to the final action a. Some work
considers a special case of full-bandit feedback where observations are dictated by a multinomial
logit (MNL) choice model. When all interactions involve only one explanation (i.e. T = 1), our
observation model becomes equivalent to theirs. Therefore, our framework could be considered
as a generalisation of theirs at least from a technical point of view, although conceptually
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Table 2: Multi-Armed Bandit Related Ideas. A comparison of how Ardent works placed in
the context of multi-armed bandits.

Problem Ref. Arms Feedback Type Feedback Model
Standard MAB Auer et al. (2002) Individual Bandit N/A

CMAB Chen et al. (2013) Combinatorial Semi-bandit Deterministic
Cascading bandits Kveton et al. (2015) Combinatorial Semi-bandit Cascading binary choices

CMAB-PTA Hüyük and Tekin (2019) Combinatorial Semi-bandit Possibly stochastic
MNL-Bandit Agrawal et al. (2019) Combinatorial Full-bandit Multinomial logit (MNL) choice

Ardent [US] Combinatorial Full-bandit Cascading MNL choices

the two frameworks aim to solve completely different problems. Ardent can be thought of
as a learning-to-rank problem as our strategy essentially aims to order explanations based on
propensities {q[e, x, asupport]}e∈E for a given context x and a given action asupport. However,
learning-to-rank problems are typically formulated as problems with semi-bandit feedback—rather
than full-bandit feedback—and do not typically feature the complication of observations being
dictated by a logistic model—as in our case. A comparison on how similar systems to Ardent
might be implemented using alternative bandit frameworks is given in Table 2.
Ardent for Education? By trying to find convincing explanations of the machine learning system,
it could be thought that Ardent represents a method for education of the human expert. While a
byproduct of the system may be that the human learns something when shown predictions and
explanations in certain contexts, it would be wrong to equate this to typical education methods
that are considered Luan and Tsai (2021). The setting in education is essentially to assume
that πsupport is the correct policy and thus try to minimise some divergence between the human
and machine by influencing them in some way Korkmaz and Correia (2019). This overlooks the
case when the human is correct and the system is not, which as we establish is a very important
aspect when it comes to the safety of any deployed system. Ardent can be seen as taking the
education-based approach to trying to determine the use of explainers. We determine if they
were beneficial by measuring performance on the task - in the same way students are tested on
their knowledge, not just asked the yes/no question of if they learnt something.

B Experimental Validation with Synthetic Agents

Before we consider experiments involving real people making any decisions we will first validate
Ardent in a synthetic setting so as to confirm that it behaves as expected as well as examine the
effects of different variables on the performance of the system as a whole. To begin in the simplest
case, we will consider a scenario with binary contexts, binary actions, and a binary selection of
explanations available to Ardent. Since we focus on “high-stakes” environments, we might consider
a diagnostic setting, where patients either have some disease or not. There are two populations:
Patients with context x = 0 are usually healthy and do not need a treatment a∗(x = 0) = 0,
and patients with context x = 1 who are susceptible to the disease and consequently will require
treatment a∗(x = 1) = 1. Now, in this case the human expert clinician is able to make accurate
decisions for x = 0 (with high probability), specifically πhuman(x = 0)[a = 0] = 0.9, but is unable
to do so for x = 1; they effectively take random actions, specifically πhuman(x = 1)[a = 1] = 0.5.
The machine learning system on the other hand, is the opposite; they are accurate for x = 1 but
decide randomly for x = 0: πsupport(x = 1)[a = 1] = 0.9 and πsupport(x = 0)[a = 0] = 0.5. The
clinicians believe in their ability and cannot be persuaded of anything when they are certain of
their decision (when x = 0), and further only one of two potential explanations can persuade
them to take action a = 1 when x = 1. Formally, E = {e−, e+} and q[e+, x = 1, a = 1] = 10
but q[·, ·, ·] = 1 otherwise.
System Performance. How do various systems fare at the task? We compare the following:
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Figure 6: Simulated Ablations. We demonstrate through simulation that a) Ardent is able to
rapidly converge on oracle performance. b) As dimensions increase convergence is slower but still
very quickly outperforms random explanations. c) Given the approximate nature of inference, the
expected error reduces with order of the log number of particles in the filter.

• Human - Alone: Only the human expert acting.
• Machine - Alone: Only the decision support acting.
• Human + Machine with Random Explanations: The human is shown the support

prediction with a random explanation and then makes a decision.
• Human + Machine with Oracle Explanations: The human is shown the decision

support system prediction along with the explanation an “Oracle” knows will convince
them if appropriate, and then makes a decision.

• Human + Machine with Ardent: The human is shown the decision support system
prediction along with an explanation chosen by Ardent, and then makes a decision.

Table 3: Accuracy. a → b denotes a change
from a to b over time. Human+Machine with
Ardent eventually achieves the best possible ac-
curacy for both contexts.

Algorithm Accuracy
for x = 0

Accuracy
for x = 1

Human - Alone 90% 50%
Machine - Alone 50% 90%
H+M w/ Random Explanations 90% 75%
H+M w/ Oracle Explanations 90% 95%
H+M w/ Ardent 90% 75%→ 95%

The resultant accuracy for all systems is re-
ported in Table 3. Ardent starts at, and main-
tains, an optimal 90% accuracy for x = 0 as
the human is able to always select the action
they think is best. For x = 1, Ardent starts
at the same ability as random explanations
(and above the human alone), before rapidly
overtaking the performance of the isolated de-
cision support model and converging on the
oracle performance. The speed of convergence
for Ardent to 95% in the setting where x = 1
can be seen in Figure 6a. It takes minimal
interaction until Ardent is able to select the correct explanation reliably for a wide range in values
of α. In conclusion: Ardent maintains the benefits of a human in control while improving overall
accuracy after minimal interaction.
Understanding Approximation Impact. We consider a generalisation of the previous simulated
example with E = 2, X = 3, A = 4, where distributions are randomly sampled, with unnormalised
logits Normally distributed. As discussed in Section 3, Ardent employs an approximate Bayesian
method in the form of a particle filter, and so considerations have to be made as to how well this
can actually track the posterior and allow for accurate performance. In Figure 6b we can track
the accuracy under individual particles as they are updated, as well as the expected value and
see that they rapidly outperform the random explanation baseline. In Figure 6c we plot how the
error reacts to the number of particles in the filter - a key hyperparameter choice when it comes
to sequential Monte Carlo methods. We can see that with too few particles the approximation
is too coarse and is unable to perform well at the task, although after about 1000 we can be
confident in outperforming the baseline. There is of course a trade-off in that the more particles
that are simulated, the more that need to be tracked and the higher the computational burden
that comes with the increased fidelity. To summarise: Expected error reduces rapidly and with
order of the log number of particles in the filter.
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Figure 7: Experimental presentation to participants. Subjects are shown a new test image,
and asked to make a prediction. The system then shows them the model prediction, in this case
‘Frog’, and as long as the subject remains unconvinced, continues to show them new explanations
- here the user is being shown the nearest neighbour from the training set in latent space, which
is a frog, and this has convinced the participant that the prediction might be right, despite
previously thinking the image was of a ginger cat.

C Further Experimental Setup Details

C.1 Graphical User Interface

The task is presented to the participants as in Figure 7, made up of the individual components
that allow for interaction explained here:

1. The test image that the participant is asked to classify.
2. The participant is asked to select their first choice as to which is the correct classification.

3 would not be revealed at this point.
3. Explanations appear in the top right as requested by the participant - here is shown an

example of the nearest neighbour to the test example.
4. While the participant remains unconvinced they can move to the next explanation by

clicking this button.
5. If and when the participant decides to change their answer they make a second selection

here.
6. The participant can end the interaction by pressing this button which takes them to the

next example.

The 70 test-set indices used for construction of the task were: { 5, 15, 32, 33, 34, 46, 61, 65, 68,
74, 84, 86, 91, 100, 111, 115, 121, 126, 130, 134, 146, 163, 165, 169, 170, 183, 184, 187, 206,
223, 224, 228, 246, 248, 250, 254, 264, 266, 271, 275, 305, 309, 312, 313, 322, 323, 324, 340,
346, 356, 367, 385, 394, 418, 421, 426, 428, 439, 470, 481, 483, 493, 502, 511, 522, 531, 549,
572, 586, 610}
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C.2 Participant Instructions

Before completing the task, participants are shown the following information:
1. Introduction
You are invited to participate in a research study that aims to understand how machine learning
methods affect human performance on image classification tasks. Before you decide to participate,
it is important that you understand why the research is being conducted and what it will involve.
Please take time to read the following information carefully.
2. Purpose of the Study
The purpose of this study is to investigate the effects of machine learning techniques on human
performance in image classification tasks. We are interested in understanding how these methods
can enhance or impact your ability to classify images accurately.
3. What Data Will Be Collected
During this study, we will collect data related to your performance in the image classification
tasks, such as accuracy and response time. We will also gather basic demographic information
such as age and gender. Please note that no sensitive data will be collected.
4. How the Data Will Be Used
The data collected will be used to assess the effectiveness of machine learning methods in
enhancing human performance on the image classification task. The aggregated results may
be published in academic journals, conference presentations, and technical reports. Individual
responses will not be identifiable in any published or presented data.
5. How the Data Will Be Stored and for How Long
All data collected during the study will be securely stored in an encrypted format on secure
servers. Data will be retained for a period of five years after the conclusion of the study, as
required by our data retention policy, after which it will be securely deleted.
6. Anonymity of Responses
Your participation in this study will remain anonymous, using the randomised ID that has been
assigned to you. No personally identifiable information will be associated with your responses in
any reports of this research. The data will be presented in aggregate form.
7. Data Sharing with Other Researchers
Anonymised, aggregated data may be made available to other researchers online at some point.
Again, individual responses will not be identifiable.
8. Withdrawal of Consent and Data
You have the right to withdraw from the study at any time. If you choose to withdraw, all data
associated with your participation will be deleted. To withdraw your consent and data, please
contact [Redacted for double-blind review] via email.
9. Legal Framework
Your data will be handled according to the principles and rules set by the General Data Protection
Regulation (GDPR).
10. Consent
Please confirm that you have read and understand the above information relating to your
participation in this research study. By clicking the box below, you confirm that you:

• Understand the nature and purpose of the study.
• Agree to the collection, use, and storage of your data as described above.
• Understand that your participation is voluntary and you may withdraw at any time

without penalty.
• I agree to participate in this study
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