
Structured State Space Models for In-Context Reinforcement Learning

Chris Lu * 1 Yannick Schroecker 2 Albert Gu 2 Emilio Parisotto 2

Jakob Foerster 1 Satinder Singh 2 Feryal Behbahani 2

Abstract
Structured state space sequence (S4) models have
recently achieved state-of-the-art performance on
long-range sequence modeling tasks. These mod-
els also have fast inference speeds and parallelis-
able training, making them potentially useful in
many reinforcement learning settings. We pro-
pose a modification to a variant of S4 that enables
us to initialise and reset the hidden state in paral-
lel, allowing us to tackle reinforcement learning
tasks. We show that our modified architecture
runs asymptotically faster than Transformers in
sequence length and performs better than RNN’s
on a simple memory-based task. We evaluate
our modified architecture on a set of partially-
observable environments and find that, in practice,
our model outperforms RNN’s while also running
over five times faster. Then, by leveraging the
model’s ability to handle long-range sequences,
we achieve strong performance on a challenging
meta-learning task in which the agent is given
a randomly-sampled continuous control environ-
ment, combined with a randomly-sampled lin-
ear projection of the environment’s observations
and actions. Furthermore, we show the resulting
model can adapt to out-of-distribution held-out
tasks. Overall, the results presented in this pa-
per show that structured state space models are
fast and performant for in-context reinforcement
learning tasks.

1. Introduction
Structured state space sequence (S4) models (Gu et al.,
2021a) and their variants such as S5 (Smith et al., 2022)
have recently achieved impressive results in long-range se-

*Equal contribution 1Department of Engineering Sciences, Uni-
versity of Oxford, Oxford, United Kingdom 2DeepMind. Corre-
spondence to: Chris Lu <christopher.lu@exeter.ox.ac.uk>.

Workshop on New Frontiers in Learning, Control, and Dynamical
Systems at the International Conference on Machine Learning
(ICML), Honolulu, Hawaii, USA, 2023. Copyright 2023 by the
author(s).

quence modelling tasks, far outperforming other popular
sequence models such as the Transformer (Vaswani et al.,
2017) and LSTM (Hochreiter & Schmidhuber, 1997) on the
Long-Range Arena benchmark (Tay et al., 2020). Notably,
S4 was the first architecture to achieve a non-trivial result
on the difficult Path-X task, which requires the ability to
handle extremely long-range dependencies of lengths 16k.

Furthermore, S4 models display a number of desirable prop-
erties that are not directly tested by raw performance bench-
marks. Unlike transformers, for which the per step runtime
usually scales quadratically with the sequence length, S4
models have highly-scalable inference runtime performance,
asymptotically using constant memory and time per step
with respect to the sequence length. While LSTMs and other
RNNs also have this property, empirically, S4 models are
far more performant while also being parallelisable across
the sequence dimension during training.

While inference-time is normally not included when eval-
uating on sequence modelling benchmarks, it has a large
impact on the scalability and wallclock-time for reinforce-
ment learning (RL) because the agent uses inference to
collect data from the environment. Thus, transformers usu-
ally have poor runtime performance in reinforcement learn-
ing (Parisotto & Salakhutdinov, 2021). While transformers
have become the default architecture for many supervised
sequence-modelling tasks (Vaswani et al., 2017), RNNs
are still widely-used for memory-based RL tasks (Ni et al.,
2022).

The ability to efficiently model contexts that are orders of
magnitude larger may enable new possibilities in RL. This
is particularly applicable in meta-reinforcement learning
(Meta-RL), in which the agent is trained to adapt across
multiple environment episodes. One approach to Meta-RL,
RL2 (Duan et al., 2016; Wang et al., 2016), uses sequence
models to directly learn across these episodes, which can
often result in trajectories that are thousands of steps long.
Most instances of RL2 approaches, however, are limited
to narrow task distributions and short adaptation horizons
because of their limited effective memory length and slow
training speeds.

Unfortunately, simply applying S4 models to reinforcement
learning is challenging. This is because the most popular

Structured State Space Models for Meta-Reinforcement Learning

Inference Training Parallel Variable Lengths bsuite Score
RNNs O(1) O(L) No Yes No
Transformers O(L2) O(L2) Yes Yes Yes
S5 with • O(1) O(L) Yes No N/A
S5 with ⊕ O(1) O(L) Yes Yes Yes

Table 1. The different properties of the different architectures. The asymptotic runtimes are in terms of the sequence length L assume a
constant hidden size. The bsuite scores correspond to whether or not they achieve a perfect score in the median runs on the bsuite memory
length environment.

training paradigm in RL involves collecting fixed-length
environment trajectories, which often cross episode bound-
aries. RNNs handle episode boundaries by resetting the
hidden state at those transitions when performing backprop-
agation through time. Unlike RNNs, S4 models cannot
simply reset their hidden states within the sequence because
they train using a fixed convolution kernel instead of using
backpropagation through time.

A recent modification to S4, called Simplified Structured
State Space Sequence Models (S5), replaces this convo-
lution with a parallel scan operation (Smith et al., 2022),
which we describe in Section 2. In this paper, we pro-
pose a modification to S5 that enables resetting its hidden
state within a trajectory during the training phase, which in
turn allows practitioners to simply replace RNNs with S5
layers in existing frameworks. We then demonstrate S5’s
performance and runtime properties on the simple bsuite
memory-length task (Osband et al., 2019), showing that
S5 achieves a higher score than RNNs while also being
nearly two times faster when using their provided baseline
algorithm. We also evaluate our architecture on the environ-
ments in the recently-proposed Partially Observable Process
Gym (POPGym) suite (Morad et al., 2023) and show that
S5 outperforms GRU’s while also running over six times
faster, achieving state-of-the-art results on the “Repeat Hard”
task, which all other architectures previously struggled to
solve. Finally, we evaluate S5 on a challenging Meta-RL
task in which the environment samples a random DMCon-
trol environment (Tassa et al., 2018) and a random linear
projection of the state and action spaces at the beginning of
each episode. We show that the S5 agent achieves higher
returns than LSTMs in this setting. Furthermore, we demon-
strate that the resulting S5 agent performs well even on
random linear projections of the state and action spaces of
out-of-distribution held-out tasks.

2. Background
2.1. Structured State Space Sequence Models

State Space Models (SSMs) have been widely used to model
various phenomenon using first-order differential equations
(Hamilton, 1994). At each timestep t, these models take
an input signal u(t). This is used to update a latent state

x(t) which in turn computes the signal y(t). Some of the
more widely-used canonical SSMs are continuous-time lin-
ear SSMs, which are defined by the following equations:

ẋ(t) = Ax(t) +Bu(t) (1)
y(t) = Cx(t) +Du(t)

where A,B,C, and D are matrices of appropriate sizes. To
model sequences with a fixed step size ∆, one can discretise
the SSM using various techniques, such as the zero-order
hold method, to obtain a simple linear recurrence:

xn = Āxn−1 + B̄un (2)
yn = C̄xn + D̄un

where Ā, B̄, C̄, and D̄ can be calculated as functions of
A,B,C,D, and ∆.

S4 (Gu et al., 2021a) proposed the use of SSMs for mod-
elling long sequences and various techniques to improve its
stability, performance, and training speeds when combined
with deep learning. For example, S4 models use a spe-
cial matrix initialisation to better preserve sequence history
called HiPPO (Gu et al., 2020).

One of the primary strengths of the S4 model is that it can
be converted to both a recurrent model, which allows for
fast and memory-efficient inference-time computation, and
a convolutional model, which allows for efficient training
that is parallelisable across timesteps (Gu et al., 2021b).

More recently, Smith et al. (2022) proposed multiple sim-
plifications to S4, called S5. One of its contributions is the
use of parallel scans instead of convolution, which vastly
simplifies S4’s complexity and enables more flexible modi-
fications. Parallel scans take advantage of the fact that the
composition of associative operations can be computed in
any order. Recall that for an operation • to be associative, it
must satisfy (x • y) • z = x • (y • z).

Given an associative binary operator • and a sequence of
length N , parallel scan returns:

[e1, e1 • e2, · · · , e1 • e2 • · · · • eN] (3)

For example, when • is addition, the parallel scan calculates
the prefix-sum, which returns the running total of an input

Structured State Space Models for Meta-Reinforcement Learning

sequence. Parallel scans can be computed in O(log(N))
time when given a sequence of length N , given N parallel
processors.

S5’s parallel scan is applied to initial elements e0:N defined
as:

ek = (ek,a, ek,b) := (Ā, B̄uk) (4)

Where Ā, B̄, and uk are defined in Equation 2. S5’s parallel
operator is then defined as:

ai • aj = (aj,a ⊙ ai,a, aj,a ⊗ ai,b + aj,b) (5)

where ⊙ is matrix-matrix multiplication and ⊗ is matrix-
vector multiplication. The parallel scan then generates the
recurrence in the hidden state xn defined in Equation 2.

e1 = (Ā, B̄u1) = (Ā, x1) (6)

e1 • e2 = (Ā2, Āx1 + B̄u2) = (Ā2, x2) (7)

e1 • e2 • e3 = (Ā2, Āx2 + B̄u3) = (Ā3, x3) (8)

Note that the model assumes a hidden state initialised to
x0 = 0 by initialising the scan with e0 = (I, 0).

2.2. Reinforcement Learning

A Markov Decision Process (MDP) (Sutton & Barto, 2018)
is defined as a tuple ⟨S,A, R, P, γ⟩, which defines the envi-
ronment. Here, S is the set of states, A the set of actions, R
the reward function that maps from a given state and action
to a real value R, P defines the distribution of next-state
transitions given a state and action, and γ defines the dis-
count factor. The agent’s objective is to find a policy π (a
function which maps from a given state to a distribution
over actions) which maximises the expected discounted sum
of returns.

E[Rγ |π] = Es0∼d,a0:∞∼π,s1:∞∼P

[∞∑
t=0

γtR(st, at)
]

In a Partially-Observed Markov Decision Process (POMDP),
the agent receives an observation ot ∼ O(st) instead of
directly observing the state. Because of this, the optimal
policy π∗ does not depend just on the current observation
ot, but (in generality) also on all previous observations o0:t
and actions a0:t.

3. Method
We first modify to S5 to handle variable-length sequences,
which makes the architecture more suitable for tackling
POMDPs. We then introduce a challenging new Meta-RL
setting that tests for broad generalisation capabilities.

Algorithm 1 Pseudocode for the Multi-Environment Meta-
Learning environment step.

Require: Distribution of environments E ∼ ρE , a fixed
output observation dimension size O, and a fixed action
dimension size A. Agent action a and Environment
termination d

1: function StepEnvironment(a, d)
2: if the environment terminated (d) then
3: Sample random environment E ∼ ρE
4: Initialise random observation projection matrix

Mo ∈ REo×O where Eo is E’s observation size
5: Initialise random action projection matrix

Ma ∈ RA×Ea

where Ea is E’s action size
6: Reset E to receive an initial observation o
7: Apply the random observation projection matrix

to the observation o′ = Moo
8: Append r = 0 and d = 0 to o′ to get o′′

9: Return o′′

10: else
11: Apply the projection matrix a′ = Maa
12: Step E using a′ to receive the next observation o,

reward r, and done signal d.
13: Apply the projection matrix o′ = Moo
14: Append r and d to o′ to get o′′

15: Return o′′, r, and d
16: end if
17: end function

3.1. Resettable S5

Implementations of RL algorithms commonly collect fixed-
length trajectory “rollouts” from the environment for train-
ing, despite the fact that the environment episode lengths
are often far longer and vary significantly. Thus, the col-
lected rollouts (1) often begin within an episode and (2) may
contain episode boundaries.

To handle trajectory rollouts that begin in the middle of an
episode, sequence models must be able to access the state
of memory that was present prior to the rollout’s collection.
Usually, this is done by storing the RNN’s hidden state at
the beginning of each rollout to perform truncated backprop-
agation through time (Williams & Zipser, 1995). This is
challenging to do with transformers because they do not
normally have an explicit recurrent hidden state, but instead
simply retain the entire history during inference time. This
is similarly challenging for S4 models since they assume
that all hidden states are initialised identically to perform a
more efficient backwards pass.

To handle episode boundaries within the trajectory rollouts,
memory-based models must be able to reset their hidden
state, otherwise they would be accessing memory and con-
text from other episodes. RNNs can trivially reset their hid-

Structured State Space Models for Meta-Reinforcement Learning

Figure 1. An overview of multi-environment meta-learning with random projections. At the start of each meta-episode, we sample a
random observation projection, action projection, and DMControl environment.

den state when performing backpropagation through time,
and transformers can mask out the invalid transitions. How-
ever, S4 models have no such mechanism to do this.

To resolve both of these issues, we modify S5’s associative
operator to include a reset flag that preserves the associative
property, allowing S5 to efficiently train over sequences of
varying lengths and hidden state initialisations. We create
a new associative operator ⊕ that operates on elements ek
defined:

ek = (ek,a, ek,b, ek,c) := (Ā, B̄uk, dk) (9)

where dk ∈ {0, 1} is the binary “done” signal for the given
transition from the environment.

We define ⊕ to be:

ai ⊕ aj :=

{
(aj,a ⊙ ai,a, aj,a ⊗ ai,b + aj,b, ai,c) if aj,c = 0

(aj,a, aj,b, aj,c) if aj,c = 1

We prove that this operator is associative in Appendix A.
We now show that the operator computes the desired value.
Assuming en,c = 1 corresponds to a “done” transition while
all other timesteps before it (e0:n−1,c = 0) and after it

(en+1:L,c = 0) do not, we see:

e0 ⊕ · · · ⊕ en−1 = (Ān−1, Āxn−2 + B̄un−1, 0)

= (Ān−1, xn−1, 0)

e0 ⊕ · · · ⊕ en = (Ā, B̄un, 1)

= (Ā, xn, 1)

e0 ⊕ · · · ⊕ en+1 = (Ā2, Āxn + B̄un+1, 1)

= (Ā2, xn+1, 1)

Note that even if there are multiple “resets” within the roll-
out, the desired value will still be computed.

3.2. Multi-Environment Meta-Learning with Random
Projections

Most prior work in Meta-RL has only demonstrated the
ability to adapt to a small range of similar tasks (Beck et al.,
2023). Furthermore, the action and observation spaces usu-
ally remain identical across different tasks, which severely
limits the diversity of meta-learnning environments. To
achieve more general meta-learning, ideally the agent should
learn from tasks of varying complexity and dynamics. In-
spired by Kirsch et al. (2022b), we propose taking random
linear projections of the observation space and action space
to a fixed size, allowing us to use the same model for tasks
of varying observation and action space sizes. Furthermore,
randomised projections vastly increase the number of tasks

Structured State Space Models for Meta-Reinforcement Learning

0 100 200 300 400 500
Memory Length

0

1000

2000

3000

4000

5000

6000

Se
co

nd
s

Full Synchronous Training Time
LSTM
S5
Self-Attention

(a)

2 4 8 16 32 64 128 256 512
Memory Length

-1.0

-0.75

-0.5

-0.25

0.0

0.25

0.5

0.75

1.0

Re
tu

rn

Median Return

LSTM S5 Self-Attention

(b)

Figure 2. Results in bsuite’s Memory Length task. Self-attention achieves perfect performance because it is given access to the entire
sequence, but shows poor asymptotic performance in runtime. Meanwhile, LSTMs run more quickly, but show poor performance. S5
achieves a high performance while running almost twice as quickly as LSTMs. Experiments were performed on a single NVIDIA V100.

in the meta-learning space. We can then evaluate the ability
of our model to generalise to unseen held-out tasks.

We provide pseudocode for the environment implementation
in Algorithm 1 and a visualisation explaining the setup in
Figure 1.

4. Experiments
4.1. Memory Length Environment

First, we demonstrate our modified S5’s improved train-
ing speeds in performance in the simple memory length
environment proposed in bsuite (Osband et al., 2019).

The environment is based on the well-known ‘t-maze‘ envi-
ronment (O’Keefe & Dostrovsky, 1971) in which the agent
receives a cue on the first timestep, which corresponds to
the action the agent should take some number of steps in the
future to receive a reward. We run our experiments using
bsuite’s actor-critic baseline while swapping out the LSTM
for Transformer self-attention blocks or S5 blocks (Vaswani
et al., 2017) and using Gymnax for faster environment roll-
outs (Lange, 2022).

We show the results in Figure 2. In general, S5 displays a
better asymptotic runtime than Transformers while far out-
performing LSTMs in both performance and speed. Note
that while S5 is theoretically O(log(N)) in the backwards
pass during training time (given enough processors), it is
still bottle-necked by rollout collection from the environ-
ment, which takes O(N) time. Because of the poor runtime
performance of transformers for long sequences, we did not
collect results for them in the following experiments.

4.2. POPGym Environments

We evaluate our S5 architecture on environments from
the Partially Observable Process Gym (POPGym) (Morad
et al., 2023) suite, a set of simple environments designed
to benchmark memory in deep RL. To increase experiment
throughput on a limited compute budget, we carefully re-
implemented environments from the POPGym suite entirely
in JAX (Bradbury et al., 2018) by leveraging existing imple-
mentations of CartPole and Pendulum in Gymnax (Lange,
2022). PyTorch does not support the associative scan op-
eration, so we could directly use the S5 architecture in
POPGym’s RLLib benchmark.

Morad et al. (2023) evaluated several architectures and
found the Gated Recurrent Unit (GRU) (Cho et al., 2014)
to be the most performant. Thus, we compare our results
to the GRU architecture proposed in the original POPGym
benchmark. Note that POPGym’s reported results use RL-
Lib’s (Liang et al., 2018) implementation of PPO, which
makes several non-standard code-level implementation de-
cisions. For example, it uses a dynamic KL-divergence
coefficient on top of the clipped surrogate objective of
PPO (Schulman et al., 2017) – a feature that does not appear
in most PPO implementations (Engstrom et al., 2020). We
instead use a recurrent PPO implementation that is more
closely aligned with StableBaselines3 (Raffin et al., 2021)
and CleanRL’s (Huang et al., 2022) recurrent PPO imple-
mentations. We include more discussion and the hyperpa-
rameters in Appendix B.

We show the results in Figure 3 and Table 2. We also include
more results in the Appendix. Notably, the S5 architecture
performs well on the challenging ”Repeat Previous Hard”
task, far outperforming all architectures tested in Morad

Structured State Space Models for Meta-Reinforcement Learning

(a) (b)

Figure 3. (a) Results across implemented environments in POPGym’s suite. Scores are normalised by the max-MMER per-environment.
The shaded region represents the standard error of the mean across eight seeds. (b) The runtime for a single seed averaged across the
environments for each architecture. Note that our implementation is end-to-end compiled to run entirely on a single NVIDIA A40.

Stateless
CartPole Hard

Noisy Stateless
CartPole Hard

Stateless
Pendulum Hard

Noisy Stateless
Pendulum Hard

Repeat Previous
Hard

S5 with ⊕ 1.0± 0.0 0.28± 0.0 0.79± 0.01 0.55± 0.01 0.91± 0.04
S5 with • 1.0± 0.0 0.28± 0.0 0.71± 0.04 0.5± 0.01 0.76± 0.02

GRU 1.0± 0.0 0.27± 0.0 0.75± 0.0 0.61± 0.01 −0.45± 0.02
MLP 0.26± 0.0 0.22± 0.0 0.41± 0.02 0.34± 0.01 −0.48± 0.00

Table 2. Results in POPGym’s suite. The reported number is the max-mean episodic reward (MMER) used in Morad et al. (2023). To
calculate this, we take the mean episodic reward for each epoch, and then take the maximum over all epochs. The mean and standard
deviation across eight seeds are reported.

et al. (2023). Furthermore, the S5 architecture also runs
over six times faster than the GRU architecture.

4.3. Multi-Environment Meta-Reinforcement Learning

0 25 50 75 100 125 150 175 200
Frames (10 Million)

200

400

600

800

Re
tu

rn

Mean Across All Training Envs
S5
FC
LSTM

Figure 5. The mean of the return across all of the training environ-
ments. The shaded regions represent the range of returns reported
across the three seeds. The environment observations and actions
are randomly projected as described in Algorithm 1.

We run our S5 architecture, an LSTM baseline, and a
memory-less fully-connected network in the environment
described in Section 3.2. For these experiments, we use
Muesli (Hessel et al., 2021) as our policy optimisation algo-
rithm. We randomly project the environment observations
to a fixed size of 12 and randomly project from an action
space of size 2 to the corresponding environment’s action
space. We selected all of the DMControl environments and
tasks that had observation and action spaces of size equal to
or less than those values and split them into train and test
set environments.

We use the S5 architecture described in Smith et al. (2022),
which consists of multiple stacked layers of S5 blocks. For
both S5 and LSTM architectures, we found that setting the
trajectory length equal to the maximum episode length 1k
achieved the best performance in this setting. We provide a
more detailed description of our architecture and hyperpa-
rameters in Appendix B.

In-Distribution Training Results We meta-train the model
across the six DMControl environments in Figure 4 and
show the mean performance across them in Figure 5. Note

Structured State Space Models for Meta-Reinforcement Learning

0 50 100 150 200
0

500

1000

Re
tu

rn
s

ball_in_cup_catch

S5
FC
LSTM

0 50 100 150 200

200

400

600
cartpole_swingup

0 50 100 150 200
0

250

500

750

finger_spin

0 50 100 150 200
Frames (10 Million)

250

500

750

Re
tu

rn
s

finger_turn_hard

0 50 100 150 200
Frames (10 Million)

0

250

500

750
point_mass_easy

0 50 100 150 200
Frames (10 Million)

250

500

750

reacher_easy

Figure 4. Results across the different environments of the training distribution. The shaded regions represent the range of returns reported
across the three seeds. The environment observations and actions are randomly projected as described in Algorithm 1

that while these environments are in the training distribu-
tion, they are still being evaluated on unseen random linear
projections of the state and action spaces and are not given
task labels. Thus, the agent must infer from the reward and
obfuscated dynamics which environment it is in. In this
setting, S5 outperforms LSTMs in both sample efficiency
and ultimate performance.

0 25 50 75 100 125 150 175 200
Frames (10 Million)

100

200

300

400

500

Re
tu

rn

Mean Across All Test Envs
S5
FC
LSTM

Figure 6. The mean of the return across all of the unseen held-out
environments. The shaded regions represent the range of returns
reported across the three seeds. The environment observations and
actions are randomly projected as described in Algorithm 1.

Out-of-Distribution Evaluation Results: After training
the model on the DMControl tasks in Figure 4, we next
evaluate the trained model on random linear projections of
five held-out DMControl tasks. We present the mean score
across these tasks in Figure 6 and the results for each task
in Figure 7. While the agent displays impressive transfer
performance to some tasks with unseen rewards and dynam-
ics, it fails to successfully transfer to a completely unseen

task in the test set, pendulum swingup, which has an unseen
observation space, action space, and reward dynamics.

5. Related Work
S4 models have previously been shown to work in a number
of previous settings, including audio generation (Goel et al.,
2022) and video modeling (Nguyen et al., 2022). Concur-
rent work investigated S4 models in other reinforcement
learning settings. David et al. (2023) investigated S4 models
in a largely offline RL setting, with some modifications for
online finetuning of the model. Morad et al. (2023) investi-
gated sequence models for POMDPs and found that naively
using S4 models did not perform well. We include direct
performance comparisons to their evaluated architectures,
including S4D (Gu et al., 2022), in Appendix C.

Most works in memory-based meta-RL have not focused
on generalisation to out-of-distribution tasks, but instead
focused on maximising performance on the training task
distribution (Duan et al., 2016; Wang et al., 2016; Beck
et al., 2023). Many past works that increased generalisation
in meta-RL did so by restricting the model architecture class
or architecture to symmetric models (Kirsch et al., 2022a),
loss functions (Houthooft et al., 2018), target values (Oh
et al., 2020), or drift functions (Lu et al., 2022). In contrast,
this work achieves generalisation by vastly increasing the
task distribution without limiting the expressivity of the un-
derlying model, which eliminates the need for hand-crafted
restrictions.

Some works perform long-horizon meta-reinforcement
learning through the use of evolution strategies (Houthooft
et al., 2018; Lu et al., 2022). This is because RNNs and
Transformers have historically struggled to model very long

Structured State Space Models for Meta-Reinforcement Learning

0 50 100 150 200
0

200

400

Re
tu

rn
s

cartpole_balance

S5
FC
LSTM

0 50 100 150 200
0

250

500

750

finger_turn_easy

0 50 100 150 200

0

50

100 pendulum_swingup

0 50 100 150 200
Frames (10 Million)

0

200

400

600

Re
tu

rn
s

point_mass_hard

0 50 100 150 200
Frames (10 Million)

0

200

400

600
reacher_hard

Figure 7. Results when evaluating on held-out DMControl tasks. The shaded regions represent the range of returns reported across the
three seeds. The environment observations and actions are randomly projected as described in Algorithm 1

sequences due to computational constraints and vanishing or
exploding gradients (Metz et al., 2021). However, evolution
strategies are notoriously sample inefficient and computa-
tionally expensive.

Other works have investigated different sequence model
architectures for memory-based reinforcement learning. Ni
et al. (2022) showed that using well-tuned RNNs can be
particularly effective compared to many more complicated
methods in POMDPs. Parisotto et al. (2020) investigated
the use of transformer-based models for memory-based re-
inforcement learning environments.

Sequence models have also been used for a number of other
tasks in RL. For example, Transformers have been used for
offline reinforcement learning (Chen et al., 2021), multi-
task behavioural cloning (Reed et al., 2022), and algorithm
distillation (Laskin et al., 2022). Concurrent work used
transformers to also demonstrate out-of-distribution general-
isation in meta-reinforcement learning by leveraging a large
task space (Adaptive Agent Team et al., 2023).

6. Conclusion and Future Work
In this paper, we investigated the performance of the
recently-proposed S5 model architecture in reinforcement
learning. S5 models are highly promising for reinforcement
learning because of their strong performance in sequence
modelling tasks and their fast and efficient runtime proper-
ties, with clear advantages over RNNs and Transformers.
After identifying challenges in integrating S5 models into
existing recurrent reinforcement learning implementations,
we made a simple modification to the method that allowed
us to reset the hidden state within a training sequence.

We then showed the desirable properties S5 models in the

bsuite memory length task. We demonstrated that S5 is
asymptotically faster than Transformers in the sequence
length. Furthermore, we also showed that S5 models run
nearly twice as quickly as LSTMs with the same number
of parameters while outperforming them. We further evalu-
ated our S5 architecture on environments in the POPGym
suite (Morad et al., 2023), where we match or outperform
RNNs while also running over six times faster. We achieve
strong results in the ”Repeat Previous Hard” task, which
previous models struggled to solve.

Finally, we proposed a new meta-learning setting in which
we meta-learn across random linear projections of the obser-
vation and action spaces of randomly sampled DMControl
tasks. We show that S5 outperforms LSTMs in this setting.
We then evaluate the models on held-out DMControl tasks
and demonstrate out-of-distribution performance to unseen
tasks through in-context adaptation.

There are several possible ways to further investigate S5
models for reinforcement learning in future work. For
one, it may be possible to learn or distill (Laskin et al.,
2022) entire reinforcement learning algorithms within an S5
model, given its ability to scale to extremely long contexts.
Another direction would be to investigate S5 models for
continuous-time RL settings (Doya, 2000). While ∆, the
discrete time between timesteps, is fixed for the original S4
model, S5 can in theory use a different ∆ for each timestep.
Finally, recent work on Linear Recurrent Units (LRU’s) ap-
plies concepts from S4 and S5, such as linear recurrence,
complex parameterisation, and parallel scans, to standard
RNN’s to achieve similar performance and wallclock time
improvements while also simplifying the model (Orvieto
et al., 2023). Evaluating LRU’s on these tasks could result
in simpler architectures with equivalent performance.

Structured State Space Models for Meta-Reinforcement Learning

References
Adaptive Agent Team, Bauer, J., Baumli, K., Baveja, S.,

Behbahani, F., Bhoopchand, A., Bradley-Schmieg, N.,
Chang, M., Clay, N., Collister, A., Dasagi, V., Gonzalez,
L., Gregor, K., Hughes, E., Kashem, S., Loks-Thompson,
M., Openshaw, H., Parker-Holder, J., Pathak, S., Perez-
Nieves, N., Rakicevic, N., Rocktäschel, T., Schroecker,
Y., Sygnowski, J., Tuyls, K., York, S., Zacherl, A., and
Zhang, L. Human-timescale adaptation in an open-ended
task space. arXiv e-prints, 2023.

Beck, J., Vuorio, R., Liu, E. Z., Xiong, Z., Zintgraf, L., Finn,
C., and Whiteson, S. A survey of meta-reinforcement
learning. arXiv preprint arXiv:2301.08028, 2023.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing
systems, 34:15084–15097, 2021.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y. Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

David, S. B., Zimerman, I., Nachmani, E., and Wolf,
L. Decision s4: Efficient sequence-based rl via state
spaces layers. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=kqHkCVS7wbj.

Doya, K. Reinforcement learning in continuous time and
space. Neural computation, 12(1):219–245, 2000.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,
I., and Abbeel, P. Rl2: Fast reinforcement learn-
ing via slow reinforcement learning. arXiv preprint
arXiv:1611.02779, 2016.

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos,
F., Rudolph, L., and Madry, A. Implementation matters
in deep policy gradients: A case study on ppo and trpo. In
International Conference on Learning Representations,
2020.

Goel, K., Gu, A., Donahue, C., and Ré, C. It’s raw! au-
dio generation with state-space models. arXiv preprint
arXiv:2202.09729, 2022.

Gu, A., Dao, T., Ermon, S., Rudra, A., and Ré, C. Hippo:
Recurrent memory with optimal polynomial projections.
Advances in neural information processing systems, 33:
1474–1487, 2020.

Gu, A., Goel, K., and Ré, C. Efficiently modeling long
sequences with structured state spaces. arXiv preprint
arXiv:2111.00396, 2021a.

Gu, A., Johnson, I., Goel, K., Saab, K., Dao, T., Rudra,
A., and Ré, C. Combining recurrent, convolutional, and
continuous-time models with linear state space layers.
Advances in neural information processing systems, 34:
572–585, 2021b.

Gu, A., Goel, K., Gupta, A., and Ré, C. On the parameteri-
zation and initialization of diagonal state space models.
Advances in Neural Information Processing Systems, 35:
35971–35983, 2022.

Hamilton, J. D. State-space models. Handbook of econo-
metrics, 4:3039–3080, 1994.

Hessel, M., Danihelka, I., Viola, F., Guez, A., Schmitt,
S., Sifre, L., Weber, T., Silver, D., and Van Hasselt, H.
Muesli: Combining improvements in policy optimization.
In International Conference on Machine Learning, pp.
4214–4226. PMLR, 2021.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Houthooft, R., Chen, Y., Isola, P., Stadie, B., Wolski, F.,
Jonathan Ho, O., and Abbeel, P. Evolved policy gradients.
Advances in Neural Information Processing Systems, 31,
2018.

Huang, S., Dossa, R. F. J., Ye, C., Braga, J., Chakraborty, D.,
Mehta, K., and Araújo, J. G. Cleanrl: High-quality single-
file implementations of deep reinforcement learning algo-
rithms. Journal of Machine Learning Research, 23(274):
1–18, 2022. URL http://jmlr.org/papers/
v23/21-1342.html.

Kapturowski, S., Ostrovski, G., Quan, J., Munos, R., and
Dabney, W. Recurrent experience replay in distributed
reinforcement learning. In International conference on
learning representations, 2018.

Kirsch, L., Flennerhag, S., van Hasselt, H., Friesen, A.,
Oh, J., and Chen, Y. Introducing symmetries to black
box meta reinforcement learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36,
pp. 7202–7210, 2022a.

Kirsch, L., Harrison, J., Sohl-Dickstein, J., and Metz, L.
General-purpose in-context learning by meta-learning
transformers. arXiv preprint arXiv:2212.04458, 2022b.

http://github.com/google/jax
https://openreview.net/forum?id=kqHkCVS7wbj
https://openreview.net/forum?id=kqHkCVS7wbj
http://jmlr.org/papers/v23/21-1342.html
http://jmlr.org/papers/v23/21-1342.html

Structured State Space Models for Meta-Reinforcement Learning

Lange, R. T. gymnax: A JAX-based reinforcement learn-
ing environment library, 2022. URL http://github.
com/RobertTLange/gymnax.

Laskin, M., Wang, L., Oh, J., Parisotto, E., Spencer, S.,
Steigerwald, R., Strouse, D., Hansen, S., Filos, A.,
Brooks, E., et al. In-context reinforcement learning with
algorithm distillation. arXiv preprint arXiv:2210.14215,
2022.

Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Gold-
berg, K., Gonzalez, J., Jordan, M., and Stoica, I. Rllib:
Abstractions for distributed reinforcement learning. In
International Conference on Machine Learning, pp. 3053–
3062. PMLR, 2018.

Lu, C., Kuba, J. G., Letcher, A., Metz, L., de Witt, C. S.,
and Foerster, J. Discovered policy optimisation. arXiv
preprint arXiv:2210.05639, 2022.

Metz, L., Freeman, C. D., Schoenholz, S. S., and Kach-
man, T. Gradients are not all you need. arXiv preprint
arXiv:2111.05803, 2021.

Morad, S., Kortvelesy, R., Bettini, M., Liwicki, S., and
Prorok, A. POPGym: Benchmarking partially ob-
servable reinforcement learning. In The Eleventh In-
ternational Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=chDrutUTs0K.

Nguyen, E., Goel, K., Gu, A., Downs, G., Shah, P., Dao, T.,
Baccus, S., and Ré, C. S4nd: Modeling images and videos
as multidimensional signals with state spaces. In Ad-
vances in Neural Information Processing Systems, 2022.

Ni, T., Eysenbach, B., and Salakhutdinov, R. Recurrent
model-free rl can be a strong baseline for many pomdps.
In International Conference on Machine Learning, pp.
16691–16723. PMLR, 2022.

Oh, J., Hessel, M., Czarnecki, W. M., Xu, Z., van Hasselt,
H. P., Singh, S., and Silver, D. Discovering reinforcement
learning algorithms. Advances in Neural Information
Processing Systems, 33:1060–1070, 2020.

O’Keefe, J. and Dostrovsky, J. The hippocampus as a spatial
map: Preliminary evidence from unit activity in the freely-
moving rat. Brain research, 1971.

Orvieto, A., Smith, S. L., Gu, A., Fernando, A., Gul-
cehre, C., Pascanu, R., and De, S. Resurrecting recur-
rent neural networks for long sequences. arXiv preprint
arXiv:2303.06349, 2023.

Osband, I., Doron, Y., Hessel, M., Aslanides, J., Sezener,
E., Saraiva, A., McKinney, K., Lattimore, T., Szepesvari,
C., Singh, S., et al. Behaviour suite for reinforcement
learning. arXiv preprint arXiv:1908.03568, 2019.

Parisotto, E. and Salakhutdinov, R. Efficient transformers
in reinforcement learning using actor-learner distillation.
arXiv preprint arXiv:2104.01655, 2021.

Parisotto, E., Song, F., Rae, J., Pascanu, R., Gulcehre, C.,
Jayakumar, S., Jaderberg, M., Kaufman, R. L., Clark, A.,
Noury, S., et al. Stabilizing transformers for reinforce-
ment learning. In International conference on machine
learning, pp. 7487–7498. PMLR, 2020.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021. URL http:
//jmlr.org/papers/v22/20-1364.html.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G.,
Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky,
Y., Kay, J., Springenberg, J. T., et al. A generalist agent.
arXiv preprint arXiv:2205.06175, 2022.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
ArXiv, abs/1707.06347, 2017.

Smith, J. T., Warrington, A., and Linderman, S. W. Sim-
plified state space layers for sequence modeling. arXiv
preprint arXiv:2208.04933, 2022.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. 2018.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.
d. L., Budden, D., Abdolmaleki, A., Merel, J., Lefrancq,
A., et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham,
P., Rao, J., Yang, L., Ruder, S., and Metzler, D. Long
range arena: A benchmark for efficient transformers.
arXiv preprint arXiv:2011.04006, 2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H.,
Leibo, J. Z., Munos, R., Blundell, C., Kumaran, D., and
Botvinick, M. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016.

Williams, R. J. and Zipser, D. Gradient-based learning
algorithms for recurrent. Backpropagation: Theory, ar-
chitectures, and applications, 433:17, 1995.

http://github.com/RobertTLange/gymnax
http://github.com/RobertTLange/gymnax
https://openreview.net/forum?id=chDrutUTs0K
https://openreview.net/forum?id=chDrutUTs0K
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

Structured State Space Models for Meta-Reinforcement Learning

A. Proof of Associativity of Binary Operator
Recall that ⊕ is defined as:

ai ⊕ aj :=

{
(aj,a ⊙ ai,a, aj,a ⊗ ai,b + aj,b, ai,c) if aj,c = 0

(aj,a, aj,b, aj,c) if aj,c = 1

This is equivalent to the following:

ai ⊕ aj :=

{
((ai • aj)a, (ai • aj)b, ai,c) if aj,c = 0

aj if aj,c = 1

where • is S5’s binary operator defined in Equation 5. Note that •’s associativity was proved in Smith et al. (2022). Using
this, we can prove the associativity of ⊕.

Let x, y, and z refer to three elements. We will prove that for all possible values of x, y, and z, ⊕ retains associativity.

Case 1: zc = 1

(x⊕ y)⊕ z = z (10)
= y ⊕ z (11)
= x⊕ (y ⊕ z) (12)

Case 2: zc = 0 and yc = 1

(x⊕ y)⊕ z = y ⊕ z (13)
Note that (y ⊕ z)c = 1 thus, (14)

= x⊕ (y ⊕ z) (15)

Case 3: zc = 0 and yc = 0

(x⊕ y)⊕ z = ((x • y)a, (x • y)b, xc)⊕ z (16)
= (((x • y) • z)a, ((x • y) • z)b, xc) (17)
= ((x • (y • z))a, (x • (y • z))b, xc) (18)
= x⊕ ((y • z)a, (y • z)b, yc) (19)
= x⊕ (y ⊕ z) (20)

Structured State Space Models for Meta-Reinforcement Learning

B. Hyperparameters

Table 3. Hyperparameters for training A2C on Bsuite
Parameter Value
Adam Learning Rate 3e-4
Entropy Coefficient 0.0
Encoder Layer Sizes [256, 256]
Number of Recurrent Layers 1
Size of Recurrent Layer 256
Discount γ 0.99
TD λ 0.9
Number of Environments 1
Unroll Length 32
Number of Episodes 10000
Activation Function ReLU

Table 4. Hyperparameters for training PPO on POPGym
Parameter Value
Adam Learning Rate 5e-5
Number of Environments 64
Unroll Length 1024
Number of Timesteps 15e6
Number of Epochs 30
Number of Minibatches 8
Discount γ 0.99
GAE λ 1.0
Clipping Coefficient ϵ 0.2
Entropy Coefficient 0.0
Value Function Weight 1.0
Maximum Gradient Norm 0.5
Learning Rate Annealing None
Activation Function LeakyReLU
Encoder Layer Sizes [128, 256]
Recurrent Layer Hidden Size 256
Action Decoder Layer Sizes [128, 128]
Value Decoder Layer Sizes [128, 128]
S5 Layers 4
S5 Hidden Size 256
S5 Discretization ZOH
S5 ∆ min 0.001
S5 ∆ max 0.1

Structured State Space Models for Meta-Reinforcement Learning

Table 5. Hyperparameters for training Muesli on Multi-Environment Meta-RL. These experiments were run using 64 TPUv3’s.
Parameter Value
Adam Learning Rate 3e-4
Value Function Weight 1.0
Muesli Auxiliary Loss Weight 3.0
Muesli Model Unroll Length 1.0
Encoder Layer Sizes [512, 512]
Number of Environments 1024
Discount γ 0.995
Rollout Length 1000
Offline Data Fraction 0.0
Total Frames 2e9
LSTM Hidden Size 512
Projected Observation Size 12
Projected Action Size 2
S5 Layers 10
S5 Hidden Size 256
S5 Discretization ZOH
S5 ∆ min 0.001
S5 ∆ max 0.1

Structured State Space Models for Meta-Reinforcement Learning

C. POPGym Discussion

Stateless
CartPole Hard

Noisy Stateless
CartPole Hard

Stateless
Pendulum Hard

Noisy Stateless
Pendulum Hard

Repeat Previous
Hard

S5 (ours) 1.0± 0.0 0.28± 0.0 0.79± 0.01 0.55± 0.01 0.91± 0.01
GRU (ours) 1.0± 0.0 0.27± 0.0 0.75± 0.0 0.61± 0.01 −0.46± 0.01
MLP (ours) 0.26± 0.0 0.22± 0.0 0.41± 0.02 0.34± 0.01 −0.48± 0.00

GRU 1.000± 0.000 0.390± 0.007 0.828± 0.001 0.657± 0.002 −0.428± 0.002
MLP 0.265± 0.002 0.229± 0.002 0.477± 0.030 0.351± 0.012 −0.486± 0.002

IndRNN 1.000± 0.000 0.404± 0.005 0.804± 0.023 0.521± 0.109 −0.384± 0.013
LMU 0.987± 0.007 0.352± 0.019 0.806± 0.006 0.563± 0.014 0.191± 0.041
S4D 0.127± 0.026 0.207± 0.007 0.303± 0.014 0.289± 0.011 −0.491± 0.001

FART 0.996± 0.000 0.366± 0.002 0.698± 0.077 0.553± 0.007 −0.485± 0.001

Table 6. Results in POPGym’s suite. The reported number is the max-mean episodic reward (MMER) used in Morad et al. (2023). To
calculate this, we take the mean episodic reward for each epoch, and then take the maximum over all epochs. For our results above, the
mean and standard deviation across eight seeds are reported. The results below are selected architectures from Morad et al. (2023), which
also includes the best-performing one from each environment. They report the mean and standard deviation across three trials.
Morad et al. (2023) used RLLib’s (Liang et al., 2018) implementation of PPO, which differs significantly from stan-
dard implementations of PPO. It uses a dynamic KL-divergence coefficient on top of the clipped surrogate objective of
PPO (Schulman et al., 2017). Furthermore, they use advanced orchestration to return full episode trajectories, rather than
using the more commonly-studied ”stored state” (Kapturowski et al., 2018) strategy.

Instead, we follow the design decisions outlined in the StableBaselines3 (Raffin et al., 2021) and CleanRL’s (Huang et al.,
2022) recurrent PPO implementations. While this results in different results shown in Table 6 for the same architecture, it
recovers similar performance across the environments. Notably, our S5 architecture far outperforms the best performing
architecture in Morad et al. (2023) in the “RepeatPreviousHard” environment.

We used the learning rate, number of environments, unroll length, timesteps, epochs, and minibatches, GAE λ, and model
architectures from Morad et al. (2023). However, we used the standard clipping coefficient ϵ of 0.2 instead of 0.3 to account
for the lack of a dynamic KL-divergence coefficient. Note that we also adjusted the S5 architecture to contain approximately
the same number of parameters as the GRU implementation instead of matching the size of the hidden state, which was
done in Morad et al. (2023).

We did not evaluate our architecture across the full POPGym suite. To enable more rapid experimentation, we implement our
algorithms and environments end-to-end in JAX (Bradbury et al., 2018; Lu et al., 2022). While the original POPGym results
took 2 hours per trial with a GRU with a Quadro RTX 8000 and 24 CPUs, we could run our experiments using only 3 minutes
per trial on an NVIDIA A40. Because of this, we selected environments from Morad et al. (2023) to implement in JAX.
We chose the CartPole, Pendulum, and Repeat environments because they are modified versions of existing environments
in Lange (2022). We found that the “Easy” and “Medium” versions of these environments were not informative, as most
models perform well on them and only report the “Hard” difficulty results.

