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Abstract

Federated Learning (FL) is a distributed learning paradigm to train a global model across
multiple devices without collecting local data. In FL, a server typically selects a subset
of clients for each training round to optimize resource usage. Central to this process
is the technique of unbiased client sampling, which ensures a representative selection of
clients. Current methods primarily utilize a random sampling procedure which, despite its
effectiveness, achieves suboptimal efficiency owing to the loose upper bound caused by the
sampling variance. In this work, by adopting an independent sampling procedure, we propose
a federated optimization framework focused on adaptive unbiased client sampling, improving
the convergence rate via an online variance reduction strategy. In particular, we present the
first adaptive client sampler, K-Vib, employing an independent sampling procedure. K-Vib
achieves a linear speed-up on the regret bound Õ

(
N

1
3 T

2
3 /K

4
3
)

within a set communication
budget K. Empirical studies indicate that K-Vib doubles the speed compared to baseline
algorithms, demonstrating significant potential in federated optimization.

1 Introduction

This paper studies the prevalent cross-device federated learning (FL) framework, as outlined in Kairouz et al.
(2021), which optimizes x ∈ X ⊆ Rd to minimize a finite-sum objective:

min
x∈X

f(x) :=
N∑

i=1
λifi(x) :=

N∑
i=1

λiEξi∼Di
[Fi(x, ξi)], (1)

where N denotes the total number of clients, and λ denotes the weights of client objective (λi ≥ 0,
∑N

i=1 λi = 1
). The local loss function fi : Rd → R is intricately linked to the local data distribution Di. It is defined
as fi(x) = Eξi∼Di [Fi(x, ξi)], where ξi represents a stochastic batch drawn from Di. Federated optimization
algorithms, such as FedAvg (McMahan et al., 2017), are designed to minimize objectives like equation 1 by
alternating between local and global updates in a distributed learning framework. To reduce communication
and computational demands in FL (Konečnỳ et al., 2016; Wang et al., 2021; Yang et al., 2022), various client
sampling strategies have been developed (Chen et al., 2020; Cho et al., 2020b; Balakrishnan et al., 2022;
Wang et al., 2023; Malinovsky et al., 2023; Cho et al., 2023). These strategies are crucial as they decrease
the significant variations in data quality and volume across clients (Khan et al., 2021). Thus, efficient client
sampling is key to enhancing the performance of federated optimization.

Current sampling methodologies in FL are broadly divided into biased (Cho et al., 2020b; Balakrishnan et al.,
2022; Chen & Vikalo, 2023) and unbiased categories (El Hanchi & Stephens, 2020; Wang et al., 2023). Unbiased
client sampling holds particular significance as it maintains the consistency of the optimization objective Wang
et al. (2023; 2020). Specifically, unlike biased sampling where client weights λ are proportional to sampling
probabilities, unbiased methods separate these weights from sampling probabilities. This distinction enables
unbiased sampling to be integrated effectively with strategies that address data heterogeneity (Zeng et al.,
2023c), promote fairness (Li et al., 2020c;a), and enhance robustness (Li et al., 2021; 2020a). Additionally,
unbiased sampling aligns with secure aggregation protocols for confidentiality in FL (Du & Atallah, 2001;
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Algorithm 1 FedAvg with Unbiased Client Sampler
Require: Client set S, where |S| = N , client weights λ, times T , local steps R

1: Initialize sample distribution p0 and model x0

2: for time t in [T ] do
3: Server runs sampling procedure to create St ∼ pt

4: Server broadcasts xt to sampled clients i ∈ St

5: for each client i ∈ St in parallel do
6: xt,0

i = xt

7: for local steps r in [R] do
8: xt,r

i = xt,r−1
i − ηl∇Fi(xt,r−1

i )
9: end for

10: Client uploads local updates gt
i = xt,0

i − xt,R
i

11: end for
12: Server builds estimates dt =

∑
i∈St λig

t
i/pt

i

13: Server updates xt+1 = xt − ηgdt

14: Server updates pt+1 based on {∥gt
i∥}i∈St

15: end for

Goryczka & Xiong, 2015; Bonawitz et al., 2017). Hence, unbiased client sampling techniques are indispensable
for optimizing federated systems.

Therefore, a better understanding of the implications of unbiased sampling in FL could help us to design
better algorithms. To this end, we summarize a general form of federated optimization algorithms with
unbiased client sampling in Algorithm 1. Despite differences in methodology, the algorithm covers unbiased
sampling techniques (Wang et al., 2023; Malinovsky et al., 2023; Cho et al., 2023; Salehi et al., 2017; Borsos
et al., 2018; El Hanchi & Stephens, 2020; Zhao et al., 2021b) in the literature. In Algorithm 1, unbiased
sampling comprises three primary steps (referring to lines 3, 12, and 14). First, the Sampling Procedure
generates a set of samples St along with their respective probabilities. Second, the Global Estimation
step creates global estimates for model updates, aiming to approximate the outcomes as if all participants
were involved. Finally, the Adaptive Strategy adjusts the sampling probabilities based on the incoming
information, ensuring dynamic adaptation to changing data conditions.

Typically, unbiased sampling methods in FL are founded on a random sampling procedure, which is
then refined to improve global estimation and adaptive strategies. However, the exploration of alternative
sampling procedures to enhance unbiased sampling has not been thoroughly investigated. Our research shifts
focus to the independent sampling procedure, a less conventional approach yet viable for FL. We aim to
delineate the distinctions between these methodologies as follows.

Random sampling procedure (RSP) means that the server samples clients from a black box
without replacement.

Independent sampling procedure (ISP) means that the server rolls a dice for every client
independently to decide whether to include the client.

Building on the concept of arbitrary sampling (Horváth & Richtárik, 2019; Chen et al., 2020), our study
observes that the independent sampling procedure can enhance the efficiency of estimating full participation
outcomes in FL servers, as detailed in Section 3. However, integrating independent sampling into unbiased
techniques introduces new constraints, as outlined in Remark 2.1. Addressing this innovatively in Lemma 5.1,
our paper studies the effectiveness of general FL algorithms with adaptive unbiased client sampling, particularly
emphasizing the utility and implications of the independent sampling procedure from an optimization
standpoint.

Our Contributions: This paper presents a comprehensive analysis of the non-convex convergence in FedAvg
and its variants. We first establish a novel link between the cumulative variance of global estimates and
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convergence rates by separating global estimation results from heterogeneity-related factors. Thus to reduce
the cumulative variance, we introduce K-Vib, a novel adaptive sampler incorporating the independent
sampling procedure. K-Vib notably achieves an expected regret bound of Õ

(
N

1
3 T

2
3 /K

4
3
)
, demonstrating

a near-linear speed-up over existing bounds Õ
(
N

1
3 T

2
3
)

(Borsos et al., 2018) and O
(
N

1
3 T

2
3
)

(El Hanchi &
Stephens, 2020). Empirically, K-Vib shows accelerated convergence on standard federated tasks compared to
baseline algorithms.

2 Preliminaries

We first introduce previous works on batch sampling (Horváth & Richtárik, 2019) in stochastic optimization
and optimal client sampling (Chen et al., 2020) in FL. We made a few modifications to fit our problem setup.
Remark 2.1. We define communication budget K as the expected number of sampled clients.
And, its value range is from 1 to N . To be consistent, the sampling probability p always satisfies the constraint
pt

i > 0,
∑N

i=1 pt
i = K,∀t ∈ [T ] in this paper.

Definition 2.1 (Unbiasedness of client sampling St). For communication round t ∈ [T ], the estimator dt

is related to sampling probability pt and the sampling procedure St ∼ pt. We define a client sampling as
unbiased if the sampling St and estimates dt satisfy that

E[dt] = E[
∑
i∈St

λig
t
i/pt

i] =
N∑

i=1
λig

t
i .

Besides, the variance of estimator dt can be derived as:

V(St) := ESt∼pt

∥∥∥∥∥∑
i∈St

λig
t
i

pt
i

−
N∑

i=1
λig

t
i

∥∥∥∥∥
2 , (2)

where E[|St|] = K. We omit the terms λ, gt for notational brevity.

Optimal unbiased client sampling. Optimal unbiased client sampling should achieve the lowest variance,
i.e., equation 2. It is to estimate the global gradient of full-client participation, i.e.,minimize the variance of
estimator dt. Given a fixed communication budget K, the optimality of the global estimator depends on the
collaboration of sampling distribution pt and the corresponding procedure that outputs St.

In detail, different sampling procedures associated with the sampling distribution p build a different probability
matrix P ∈ RN×N , with the elements defined as Pij := Prob({i, j} ⊆ S). Arbitrary sampling (Horváth &
Richtárik, 2019) has shown the generality of denoting arbitrary sampling procedure with a probability matrix
for stochastic optimization. Inspired by their findings, we focus on the optimal sampling procedure for the
FL server in Lemma 2.1.
Lemma 2.1 (Optimal sampling procedure, Horváth & Richtárik, 2019). For any communication round
t ∈ [T ] in FL, random sampling yielding the Pt

ij = Prob(i, j ∈ St) = K(K − 1)/N(N − 1), and independent
sampling yielding Pt

ij = Prob(i, j ∈ St) = pt
ip

t
j, they admit

V(St) =
N∑

i=1
(1− pt

i)
λ2

i ∥gt
i∥2

pt
i︸ ︷︷ ︸

independent sampling

≤ N −K

N − 1

N∑
i=1

λ2
i ∥gt

i∥2

pt
i︸ ︷︷ ︸

random sampling

. (3)

The lemma indicates that the independent sampling procedure is the optimal sampling procedure that
minimizes the upper bound of variance. Then, we have the optimal probability by solving the minimization
of the upper bound in respecting probability p in Lemma 2.2.
Lemma 2.2 (Optimal sampling probability, Chen et al., 2020). Generally, we can let ai = λi∥gt

i∥,∀i ∈
[N ], t ∈ [T ] for simplicty of notation. Assuming 0 < a1 ≤ a2 ≤ · · · ≤ aN and 0 < K ≤ N , and l is the largest
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(a) Sampling Procedure Illustration Experiments
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Figure 1: The variance of ISP estimates is lower than RSP. Global estimates on the X-Y plane. (a)
Scatter plot of estimates errors, where “uniform” indicates the RSP with uniform probability. (b) The
notations RSP(gi, gj) and ISP(gi, gj) represent the global estimates constructed through random sampling
and independent sampling, respectively, using sampled vectors gi and gj . Global indicates the full participation
results. We can see ISP(gi, gj) is closer to Global.

integer for which 0 < K + l −N ≤
∑l

i=1
ai

al
, we have

p∗
i =

(K + l −N) ai∑l

j=1
aj

, if i ≤ l,

1, if i > l,
(ISP) (4)

to be a solution to the optimization problem minp

∑N
i=1

a2
i

pi
. In contrast, we provide the optimal sampling

probability for the random sampling procedure

p∗
i = K

ai∑N
j=1 aj

. (RSP) (5)

Therefore, the optimal client sampling in FL uses ISP with probability given in equation 4.

3 Case Study on Sampling Procedure

We suggest designing sampling probability for the ISP to enhance the power of unbiased client sampling in
federated optimization. Beyond the tighter upper bound of variance in equation 3, three main properties can
demonstrate the superiority of ISP over RSP. We illustrate the points via Example 3.1 and Example 3.2.
Example 3.1. We randomly generate 100 vectors with the size of 1000 dimensions. Then, we run 1000
times the RSP and ISP with its best probability in Lemma 2.2 to estimate full aggregation results. We draw
the error of these estimate results, as shown in Figure 1(a). We note the mean of these points related to
equation 2.
Example 3.2. We consider a case example N = 3, K = 2 with g1 = (

√
2

2 ,
√

2
2 ), g2 = (1,−2

√
2), g3 =

(2
√

7, 2
√

2), inducing weights vector [∥g1∥2, ∥g2∥2, ∥g3∥2] = [1, 3, 6] if we omit λ. We have optimal sampling
probability p∗ = K · [0.1, 0.3, 0.6] for random sampling procedure and p∗ = [0.25, 0.75, 1] for independent
sampling procedure. We depict the possible sampling results in Figure 1(b).

Random sampling probability is a special case of independent sampling. With a minimum budget
of K = 1, the ISP does not assign any client with probability 1, it returns to the random sampling solution
according to equation 4. If the budget K > 1, the solution of the independent sampling procedure will change,
while the RSP does not. Hence, it builds better estimates than random sampling with the same sampling
results as shown in the example. This is because the optimal probability of random sampling is minimizing a
loose upper bound of variance equation 3. The results tend to let each of the single estimates ai/pi =

∑
ai.

Independent sampling estimates are asymptotic to full participation results. ISP builds estimates
asymptotically to the full-participation results with an increasing communication budget of K, while random
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sampling does not. As shown in Figure 1(a), RSP and ISP achieve comparable estimates errors with lower
budget K = 10. Then, the ISP outperforms RSP with a larger budget of K = 30. Refer to Example 3.2,
random sampling with full participation (K = 3) builds estimates dt = (6.4, 5.9) and hence ∥dt−

∑
gi∥2 = 0.6.

Analogously, full participation induces p∗ = (1, 1, 1) for independent sampling and hence ∥dt −
∑

gi∥2 = 0.

Independent sampling creates expected sampling size. The number of sampling results from
independent sampling is stochastic with expectation K. It means that if we strictly conduct the independent
sampling procedure, the number of sampling results Prob(|St| = K) ̸= 1, but E[|St|] = K. Referring to the
example, independent sampling may sample 3 clients with probability p = 0.25 ∗ 0.75 ∗ 1 = 3/16 and sample
only 1 client with p = (1− 0.25) ∗ (1− 0.75) = 3/16. Importantly, the perturbation of sampling results is
acceptable due to the straggler clients (Gu et al., 2021) in a large-scale cross-device FL system. Besides, we
can easily extend our analyses to the case with straggler as discussed in Appendix E.1.

Observing the superiority of ISP, we propose to design a sampling probability and global estimates with
ISP in federated learning. However, computing the optimal sampling via equation 4 requires a norm of full
gradients, which is unfeasible in practice. Therefore, FL needs a better design of its sampling probability for
ISP based on limited information, that is unexplored. Unless otherwise stated, all sampling probability
p and sampling procedures are related to ISP in the remainder of this paper.

4 General Convergence Analyses of FL with Unbiased Client Sampling

In this section, we first provide a general convergence analysis of FedAvg covered by Algorithm 1, specifically
focusing on the variance of the global estimator. Our analysis aims to identify the impacts of sampling
techniques on enhancing federated optimization. To this end, we define important concepts below to clarify
the improvement given by an applied unbiased sampling:
Definition 4.1 (Sampling quality). Given communication budget K and arbitrary unbiased client sampling
probability pt, we measure the quality (lower is better) of one sampling step St ∼ pt by its expectation
discrepancy to the optimal sampling:

Q(St) := ESt∼pt


∥∥∥∥∥∥
∑
i∈St

λig
t
i

pt
i

−
∑
i∈St

∗

λig
t
i

p∗
i

∥∥∥∥∥∥
2
 , (6)

where St
∗ ∼ p∗ is the ISP, p∗ is obtained via equation 4 with full {∥gt

i∥}i∈[N ], and E[∥St∥] = E[∥St
∗∥] = K.

Remark. Note that the second term of equation 6 denotes the best results that can be possibly obtained
subjected to communication budget. It still preserves estimate errors to full results. Therefore, we define the
sampling quality of one sampling by its gap to the optimal estimate results for practical concern.
Definition 4.2 (The optimal factor). Given an iteration sequence of global model {x1, . . . , xT }, under the
constraints of communication budget K and local updates statues {gt

i}i∈[N ], t ∈ [T ], we define the improvement
factor of applying optimal client sampling St

∗ ∼ p∗ comparing uniform sampling U t as:

αt
∗ :=

E
[∥∥∥∑i∈St

∗

λi

p∗
i
gt

i −
∑N

i=1 λig
t
i

∥∥∥2
]

E
[∥∥∥∑i∈Ut

λi

pi
gt

i −
∑N

i=1 λigt
i

∥∥∥2
] ,

and optimal p∗ is computed via equation 4 with {gt
i}i∈[N ].

Remark. The factor αt
∗ ∈ [0, 1] denotes the optimal efficiency that one sampling technique can achieve

under the current constraints K, {gt
i}i∈[N ], λ. Theoretically, αt

∗ = 0 denotes the best improvement obtained
by minimizing equation 6. However, the optimal client sampling Q(St) = 0 can not be achieved without
revealing, i.e.,communicating all clients’ full updates to the server.

In practical settings, federated learning typically trains modern neural networks, which are non-convex
problems in optimization. Therefore, our convergence analyses rely on standard assumptions on the local

5



Under review as submission to TMLR

empirical function fi, i ∈ [N ] in non-convex federated optimization (Chen et al., 2020; Jhunjhunwala et al.,
2022; Chen & Vikalo, 2023).
Assumption 4.1 (Smoothness). Each objective fi(x) for all i ∈ [N ] is L-smooth, inducing that for all
∀x, y ∈ Rd, it holds ∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥.
Assumption 4.2 (Unbiasedness and bounded local variance). For each i ∈ [N ] and x ∈ Rd, we assume the
access to an unbiased stochastic gradient ∇Fi(x, ξi) of client’s true gradient ∇fi(x), i.e.,Eξi∼Di [∇Fi(x, ξi)] =
∇fi(x). The function fi have σl-bounded (local) variance i.e.,Eξi∼Di

[
∥∇Fi(x, ξi)−∇fi(x)∥2

]
≤ σ2

l .

Assumption 4.3 (Bounded global variance). We assume the weight-averaged global variance is bounded, i.e.,∑N
i=1 λi ∥∇fi(x)−∇f(x)∥2 ≤ σ2

g for all x ∈ Rd.

Assumptions 4.1 and 4.2 are standard assumptions in stochastic optimization analyses. Assumption 4.3
measures the impacts of data heterogeneity in federated optimization. A larger upper bound of σ2

g denotes
stronger heterogeneity across clients. Now, we provide the non-convex convergence of Algorithm 1.
Theorem 4.1 (FedAvg with decomposed unbiased sampling quality). Under Assumptions 4.1, 4.2, 4.3, given
an iteration sequence {x1, . . . , xt} generated by Algorithm 1, taking upper bound E

[
f(x1)− f(x∗)

]
≤ M ,

ηg ≤ min
(√

2M
T β̄

, 1
L

)
, we have

min
t∈[T ]

E∥∇f(xt)∥2 ≤

√
8Mβ̄ + Tϵ2

T ρ̂2 +
1
T

∑T
t=1 Q(St)

ρ̂
, (7)

where
ρ̂ := min{ρt}T

t=1, ρt =
(
1− 8(1− ηlR)2 − 120R2L2η2

l (η2
l + τ t

∗W )
)

,

β̄ := 1
T

T∑
t=1

βt, βt = 10
(
Rη2

l Lσ2
l + 6R2η2

l Lσ2
g

)
τ t

∗W, τ t
∗ := (αt

∗(N −K) + K)/K,

ϵ = 8
(
(1− ηlR)2 + 15R2η4

l L2)σ2
g + 2Rη2

l

(
10η2

l L2 + 1
)

σ2
l .

Notably, the brief notation τ t
∗ denotes the benefits of utilizing optimal sampling respecting the communication

budget K. And, ρt, βt, and ϵ involve the impacts of local drifts and data heterogeneity in FL.

Convergence rate. The first term in equation 7 indicates the convergence rate of always utilizing the
optimal client sampling in Algorithm 1. The results are subjected to data heterogeneity, local drifts, and the
optimal factor α∗. In practice, the first term can be further minimized by designing a local learning rate ηl,
applying local regularization objectives (Acar et al., 2021; Reddi et al., 2020; Karimireddy et al., 2020), or
conducting momentum techniques (Zeng et al., 2023c; Acar et al., 2021). To preserve the generality, we report
the original form of convergence rate without minimizing the rate via setting the local hyperparameters.
Ideally, the convergence rate O(1/

√
T ) matches the best speed from recent works (Chen et al., 2020; Gu

et al., 2021; Jhunjhunwala et al., 2022).

Sampling impacts. We use the optimal factor α∗ (Definition 4.2) to measure the best convergence rate of
using optimal sampling in FedAvg. Then, we decouple the sampling quality function Q(St) from primary
convergence rates. Concretely, the bound of the second term in equation 7 is related to the performance of
the client sampler in FL. Therefore, minimizing the cumulative sampling quality over federated optimization
iteration directly enhances optimization quality, which this paper focuses on.

5 Theories of the K-Vib Sampler

In this section, we introduce the theoretical design of the K-Vib sampler for federated client sampling. The
adaptive sampling objective aligns with the online variance reduction (Salehi et al., 2017; Borsos et al., 2018;
El Hanchi & Stephens, 2020) tasks in stochastic optimization. The difference is that we solve the problem in
the scenario of FL using ISP, which induces the constraints on sampling probability given in Remark 2.1.
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Algorithm 2 K-Vib Sampler
Require: N , K, T , γ, and θ.

1: Initialize client feedback storage ω(i) = 0 for all i ∈ [N ].
2: for time t in [T ] do
3: pt

i ∝
√

ω(i) + γ ▷ by Lemma 5.1
4: p̃t

i ← (1− θ) · pt
i + θ K

N , for all i ∈ [N ]
5: Draw St ∼ p̃t ▷ ISP
6: Receive feedbacks πt(i), and update ω(i)← ω(i) + π2

t (i)/p̃t
i for i ∈ St

7: end for

5.1 Adaptive Client Sampling as Online Optimization

For enhancing federated optimization, our goal is to minimize the cumulative sampling quality
∑T

t=1 Q(St)
for achieving tighter convergence bound equation 7. To this end, we first investigate the equation 6 at round
t by decomposing to obtain:

Q(St) = E


∥∥∥∥∥∥
(∑

i∈St

λig
t
i

pt
i

−
N∑

i=1
λig

t
i

)
−

∑
i∈St

∗

λig
t
i

p∗
i

−
N∑

i=1
λig

t
i

∥∥∥∥∥∥
2


≤ E

∥∥∥∥∥∑
i∈St

λig
t
i

pt
i

−
N∑

i=1
λig

t
i

∥∥∥∥∥
2− E


∥∥∥∥∥∥
∑
i∈St

∗

λig
t
i

p∗
i

−
N∑

i=1
λig

t
i

∥∥∥∥∥∥
2


=
N∑

i=1

λ2
i ∥gt

i∥2

pt
i

−
N∑

i=1

λ2
i ∥gt

i∥2

p∗
i

,

where the second inequality uses the fact that (a− b)2 ≤ a2 − b2 when b ≤ a.

Then, we model the client sampling objective as an online convex optimization problem (Salehi et al.,
2017; Borsos et al., 2018; El Hanchi & Stephens, 2020). Concretely, we define the feedback from clients as
πt(i) := λi∥gt

i∥ and the cost function ℓt(p) :=
∑N

i=1
πt(i)2

pi
as a online convex optimization task1 respecting

sampling probability p. Online convex optimization minimizes the dynamic regret:

1
T

T∑
t=1

Q(St) ≤ 1
T

RegretD(T ) := 1
T

(
T∑

t=1
ℓt(pt)−

T∑
t=1

min
p

ℓt(p)
)

. (8)

What does regret measure? Regret measures the cumulative discrepancy of applied sampling probability
and the dynamic optimal Oracle. In Theorem 4.1, we decomposed the cumulative sampling quality as an error
term. And, the upper bound of cumulative sampling quality is given by the regret. According to equation 3,
the ISP induces a tighter regret. Minimizing the upper bound equation 8 can devise sampling probability for
ISP to provide a tighter bound for applied FL.

To this end, we are to build an efficient sampler that outputs an exemplary sequence of independent sampling
distributions {pt}T

t=1 such that limT →∞ RegretD(T )/T = 0. Our upper bound depends on the constraints of
the independent sampling procedure on p.

5.2 Analyzing the Best Fixed Probability

In the federated optimization process, the local updates gt change, making it challenging to directly bound the
cumulative discrepancy between the sampling probability and the dynamic optimal probability. Consequently,

1Please distinguish the online cost function ℓt(·) from local empirical loss of client fi(·) and global loss function f(·). While
ℓt(·) is always convex, f(·) and fi(·) can be non-convex.
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we explore the advantages of employing the best-fixed probability instead. We decompose the equation 8:

RegretD(T ) =
T∑

t=1
ℓt(pt)−min

p

T∑
t=1

ℓt(p)︸ ︷︷ ︸
RegretS(T )

+ min
p

T∑
t=1

ℓt(p)−
T∑

t=1
min

p
ℓt(p)︸ ︷︷ ︸

TBFP

.
(9)

Remark. The static regret RegretS(T ) denotes the cumulative online loss gap between an applied sequence
of probabilities and the best-fixed probability in hindsight. The second term indicates the cumulative loss gap
between the best-fixed probability in hindsight and the optimal probabilities. We are to bound the terms
respectively.

Our analyses rely on a mild assumption of the convergence status of the federated optimization process that
sampling methods are applied (Wang et al., 2021). Notably, stochastic optimization (Salehi et al., 2017; Duchi
et al., 2011; Boyd et al., 2004) and federated optimization algorithms (Reddi et al., 2020; Wang et al., 2020;
Li et al., 2019) typically achieve a sub-linear convergence speed O(1/

√
T ) at least. Therefore, we assume

feedback function related to local objective fi(·),∀i ∈ [N ] satisfies:

Assumption 5.1 (Convergence of applied federated optimization). Our assumptions rely on the convergence
performance of federated learning algorithms, i.e., the decaying speed of feedback functions. Let Πt :=∑N

i=1 πt(i) denote the sum of feedback. Rely on the convergence behavior of an optimization process, we
denote the convergence results π∗(i) := limt→∞ πt(i), Π∗ :=

∑N
i=1 π∗(i), ∀i ∈ [N ]. And, we have

∑T
t=1 Πt ≥

Π∗, VT (i) =
∑T

t=1
(
πt(i) − π∗(i)

)2
,∀T ≥ 1,. Besides, we denote the largest feedback with G, i.e., πt(i) ≤

G,∀t ∈ [T ], i ∈ [N ].

As we discussed above the sub-linear convergence speed O(1/
√

T ) can be obtained by general nonconvex federated
learning algorithms. We assume that |πt(i) − π∗(i)| ≤ O(1/

√
t), and hence implies VT (i) ≤ O(log(T )). In

general, it also covers better optimization problems implying a tighter upper bound for |πt(i)− π∗(i)| (e.g.,
strongly convex and convex federated learning problems). In this paper, the above assumptions guarantee the
regret concerning a basic convergence speed of applied FL algorithms, with an additional cost of Õ(

√
T ).

Remark 5.1 (Restricts of Assumption 5.1). The assumption mentioned above expects that the local feedback
sequence of each client will monotonically decrease in the applied federated learning procedures. However,
extreme data heterogeneity across clients may result in non-decaying local feedback from some clients, leading
to variance in subsequent analysis. We discuss feasible solutions to ensure this assumption in the Limitation 7.

Importantly, the G denotes the largest feedback during the applied optimization process, instead of assuming
bounded gradients. Then, we bound the second term of equation 9 below:

Theorem 5.1 (Bound of best fixed probability). Under Assumptions 5.1, sampling a batch of clients with an
expected size of K, and for any i ∈ [N ] denote VT (i) =

∑T
t=1
(
πt(i)− π∗(i)

)2 ≤ O(log(T )). For any T ≥ 1,
the averaged hindsight gap admits,

TBFP ≤
T

K

(
N∑

i=1

√
VT (i)

T

)(
2Π∗ +

N∑
i=1

√
VT (i)

T

)
.

Proof of sketch. This bound can be directly proved to solve the convex optimization problem respectively.
Please see Appendix D.1 for details.

Theorem 5.1 indicates a fast convergence of federated optimization induces a lower bound of VT (i), yielding a
tighter regret. As the hindsight bound vanishes with an appropriate FL solver, our objective turns to devise
a {p1, . . . , pT } that bounds the static regret RegretS(T ) in equation 9.

8
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5.3 Upper Bound of Static Regret

We utilize the classic follow-the-regularized-leader (FTRL) (Shalev-Shwartz et al., 2012; Kalai & Vempala,
2005; Hazan, 2012) framework to design a stable sampling probability sequence, which is formed at time t:

pt := arg min
p

{
N∑

i=1

π2
1:t−1(i) + γ

pi

}
, (10)

where the regularizer γ ensures that the distribution does not change too much and prevents assigning a
vanishing probability to any clients. It also ensures a minimum sampling probability pmin for some clients.
Therefore, we have the closed-form solution as shown below:
Lemma 5.1 (Solution to equation 10). Letting at

i = π2
1:t−1(i) + γ and 0 < at

1 ≤ at
2 ≤ · · · ≤ at

N and
0 < K ≤ N , we have

pt
i =


1, if i ≥ l2,

zt

√
at

i

ct
, if i ∈ (l1, l2),

pmin, if i ≤ l1,

(11)

where ct =
∑

i∈(l1,l2)
√

at
i, zt = K − (N − l2) + l1 · pmin and the 1 ≤ l1 ≤ l2 ≤ N , which satisfies that

∀i ∈ (l1, l2),
pmin ·

∑
l1<i<l2

at
i

zt
< at

i <

∑
l1<i<l2

at
i

zt
.

Remark. Compared with vanilla optimal sampling probability in equation 4, our sampling probability
especially guarantees a minimum sampling probability pmin on the clients with lower feedback. This probability
encourages the exploration of the FL system and prevents the case that some clients are never sampled.
Besides, the minimum sampling probability pmin is determined by the γ and the cumulative feedback from
clients during training. For t = 1, . . . , T , if applied sampling probability follows Lemma 5.1 with a proper γ,
we guarantee that RegretS(T )/T ≤ O(1/

√
T ), as proved in Appendix D.2.

However, under practical constraints, the server only has access to the feedback information from the past
sampled clients. Hence, equation 11 can not be computed accurately. Inspired by Borsos et al., 2018, we
construct an additional estimate of the true feedback for all clients denoted by p̃ and let St ∼ p̃t. Concretely,
p̃ is mixed by the original estimator pt with a static distribution. Let θ ∈ [0, 1], we have

Mixing strategy: p̃t = (1− θ)pt + θ
K

N
, (12)

where p̃t ≥ θ K
N , and hence π̃2

t (i) ≤ π2
t (i) · N

θK ≤ G2 · N
θK .

Analogous to regularizer γ, the mixing strategy guarantees the least probability that any clients be sampled,
thereby encouraging exploration. We present the expected regret bound of the sampling with mixed probability
and the K-Vib sampler outlined in Algorithm 2 with theoretical guarantee in Theorem 5.2.
Theorem 5.2 (Static expected regret with partial feedback). Under Assumptions 5.1, sampling St ∼ p̃t with
E[|St|] = K for all t = 1, . . . , T , and letting γ = G2 N

Kθ , θ = ( N
T K )1/3 with T ·K ≥ N , we obtain the expected

regret
E [RegretS(T )] ≤ Õ

(
N

1
3 T

2
3 /K

4
3
)
, (13)

where Õ hides the logarithmic factors.

Proof of sketch. Denoting {πt(i)}i∈St as partial feedback from sampled points, it incurs

π̃2
t (i) := π2

t (i)
p̃t

i

· Ii∈St , and E[π̃2
t (i)|p̃t

i] = π2
t (i),∀i ∈ [N ].

9
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Analogous to equation 8, we define modified cost functions and their unbiased estimates:

ℓ̃t(p) :=
N∑

i=1

π̃2
t (i)
pi

, and E[ℓ̃t(p)|p̃t, ℓt] = ℓt(p).

Our hyperparameters γ, θ are independent. The γ is set to guarantee the stability of probability sequence in
equation 50. The θ is set to optimize the final upper bound. Relying on the additional estimates, we have
the full cumulative feedback in expectation. In detail, we provide regret bound RegretS(T ) by directly using
Lemma 5.1 in Appendix D.2. Analogously, we can extend the mixed sampling probability p̃t to derive the
expected regret bound E[RegretS(T )] given in Appendix D.3.

Summary. The K-Vib sampler can work with a federated optimization process providing unbiased full result
estimates. Comparing with previous regret bound Õ

(
N

1
3 T

2
3
)

(Borsos et al., 2018) and O
(
N

1
3 T

2
3
)

(El Hanchi
& Stephens, 2020), it implements a linear speed up with communication budget K. This advantage relies
on a tighter formulation of variance obtained via the ISP. For computational complexity, the primary cost
involves sorting the cumulative feedback sequence {ω(i)}N

i=1 in Algorithm 2. This sorting operation can be
performed efficiently with an adaptive sorting algorithm (Estivill-Castro & Wood, 1992), resulting in a time
complexity of at most O(N log N).

6 Experiments

This section evaluates the convergence benefits of utilizing FL client samplers. Our experiment setup aligns
with previous works (Li et al., 2020b; Chen et al., 2020).

Datasets. The data distribution across clients is shown in Figure 2. We evaluate the theoretical results
via experiments on Synthetic datasets, where the data are generated from Gaussian distributions (Li et al.,
2020b) and the model is logistic regression f(x) = arg max(W T x + b). We generate N = 100 clients of
each has a synthetic dataset, where the size of each dataset follows the power law. Besides, we evaluate the
proposed sampler on the Federated EMNIST (FEMNIST) from LEAF (Caldas et al., 2018). Following Chen
et al., 2020, the FEMNIST tasks involve three degrees of unbalanced level (Chen et al., 2020) as shown in
Appendix, Figure 2, including FEMNIST v1 (2,231 clients in total, 10% clients hold 82% training images),
FEMNIST v2 (1,231 clients in total, 20% client hold 90% training images) and FEMNIST v3 (462 clients in
total, 50% client hold 98% training images). We use the same CNN model in (McMahan et al., 2017).

Baselines. We demonstrate our improvement by comparison with the uniform sampling and other adaptive
unbiased samplers including Multi-armed Bandit Sampler (Mabs) (Salehi et al., 2017), Variance Reducer
Bandit (Vrb) (Borsos et al., 2018) and Avare (El Hanchi & Stephens, 2020). We run experiments with the
same random seed and vary the seeds across five independent runs. We present the mean performance (solid
lines) with the standard deviation (error bars).

Hyperparameters. We run T = 500 round for all tasks and use vanilla SGD optimizers with constant step
size for both clients and the server, with ηg = 1. To ensure a fair comparison, we set the hyperparameters of all
samplers to the optimal values prescribed in their respective original papers, and the choice of hyperparameters
is detailed in the Appendix. For the Synthetic dataset task, We set local learning rate ηl = 0.02, local epoch
1, and batch size 64. For FEMNIST tasks, we set batch size 20, local epochs 3, ηl = 0.01, and K = 111, 62, 23
as 5% of total clients.

6.1 Main Results

We compare convergence performance with baselines on Synthetic tasks and FEMNIST tasks. We observe
that K-Vib outperforms baselines with a faster convergence speed, and the degree of convergence benefits
depends on the experimental settings. The results are shown in Figure 3 and Figure 4 respectively.

In Figure 3, we show the action of all samplers on three metrics. Concretely, the K-Vib implements a lower
curve of regret in comparison with baselines. Hence, it creates a better estimate with lower variance for
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Figure 2: Distributed of federated datasets.
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Figure 3: Evaluation of FL samplers on dynamic regret equation 8, gradient variance equation 2, and test
loss.

global model updating. Connecting with Theorem 4.1, FedAvg with K-Vib achieves a faster convergence
speed as shown in the loss curves.

In Figure 4, the variance of data quantity decreased from FEMNIST v1 to FEMNIST v3. We observe
that the FedAvg with the K-Vib sampler converges about 3× faster than baseline when achieving 75%
accuracy in FEMINIST v1 and 2× faster in FEMINIST v2. At early rounds, the global estimates provided
by naive independent sampling are better as demonstrated in Lemma 2.1, it induces faster convergence by
Theorem 4.1. Meanwhile, the K-Vib sampler further enlarges the convergence benefits by solving an online
variance reduction task. Hence, it maintains a fast convergence speed. For baseline methods, we observe that
the Vrb and Mabs do not outperform the uniform sampling in the FEMNIST task due to the large number of
clients and large data quantity variance. In contrast, the Avare sampler fastens the convergence curve after
about 150 rounds of exploration in the FEMNIST v1 and v2 tasks. On the FEMNIST v3 task, the Avare
sampler shows no clear improvement in the convergence curve, while the K-Vib sampler still implements
marginal improvements. Horizontally comparing the results, we observe that the curve discrepancy between
K-Vib and baselines is the largest in FEMNIST v1. And, the discrepancy narrows with the decrease of data
variance across clients. It indicates that the K-Vib sampler works better in the cross-device FL system with a
large number of clients and data variance.

6.2 Ablation Study

Speed up with increasing K. The main advantage of the K-Vib sampler is that the sampling quality
is proportional to the communication budget K. We present Figure 5 to prove the linear speed up in
Theorem 5.2. In detail, with the increase of budget K, the performance of the K-Vib sampler with regret
metric is reduced significantly. Due to page limitation, we provide further illustration examples of other
baselines in the same metric in Appendix Figure 7, where we show that the regret bound of baselines methods
are not reduced with increasing communication budget K. The results demonstrate our unique improvements
in theories.

Sensitivity to regularizer γ. Figure 6 reveals the effects of regularization γ in Algorithm 2. The
regret slightly changes with different γ. The variance reduction curves remain stable, indicating the K-Vib
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sampler is not sensitive to γ. This is because the regularizer γ only decides the minimum probability in
solution equation 11.

7 Discussion & Conclusion

Discussion on additional hyperparameters γ and θ. In this paper, we set θ = ( N
T K ) 1

3 and γ ≈ G2 N
θK ,

which aligns with our theoretical analysis. Concretely, we guarantee the stability of designed probability via γ
in equation 55. In practice, we use the mean value of first-round client feedback as a naive estimate of G. This
is because the first-round feedback is typically the largest during FL training based on Assumption 5.1. Besides,
we optimize the final regret bound in equation 56 respecting θ and set θ = ( N

T K ) 1
3 . This hyperparameter

tuning experience can be applied in future applications.

Extension & Limitation. Our theoretical findings can be extended to general applications that involve
estimating global results with partial information. Additionally, our extension of independent sampling can
be applied to previous works employing random sampling. Besides, the global estimate variance in FL also
comes from the data heterogeneity issues, which may incur non-decaying local feedback, hence breaking the
Assumption 5.1. This can be addressed with client clustering techniques (Ghosh et al., 2020; Ma et al., 2022;
Zeng et al., 2023a), analogous to previously cluster sampling works (Fraboni et al., 2021; Song et al., 2023).
Besides, we can replace FedAvg with more stable FedAvg variants (Sun et al., 2024; Zeng et al., 2023c).

In conclusion, our study provides a thorough examination of FL frameworks utilizing unbiased client sampling
techniques from an optimization standpoint. Our findings highlight the importance of designing unbiased
sampling probabilities for the independent sampling procedure to enhance the efficiency of FL. Building upon
this insight, we further extend the range of adaptive sampling techniques and achieve substantial improvements.
We are confident that our work will contribute to the advancement of client sampling techniques in FL,
making them more applicable and beneficial in various practical scenarios.
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A Related Work

Our paper contributes to the literature on the importance sampling in stochastic optimization, online convex
optimization, and client sampling in FL.

Importance Sampling. Importance sampling is a non-uniform sampling technique widely used in stochastic
optimization (Katharopoulos & Fleuret, 2018) and coordinate descent (Richtárik & Takáč, 2016a). Zhao &
Zhang (2015); Needell et al. (2014) connects the variance of the gradient estimates and the optimal sampling
distribution is proportional to the per-sample gradient norm. The insights of sampling and optimization
quality can be transferred into federated client sampling, as we summarised in the following two topics.

Online Variance Reduction. Our paper addresses the topic of online convex optimization for reducing
variance. Variance reduction techniques are frequently used in conjunction with stochastic optimization
algorithms (Defazio et al., 2014; Johnson & Zhang, 2013) to enhance optimization performance. These
same variance reduction techniques have also been proposed to quicken federated optimization (Dinh et al.,
2020; Malinovsky et al., 2022). On the other hand, online learning (Shalev-Shwartz et al., 2012) typically
employs an exploration-exploitation paradigm to develop decision-making strategies that maximize profits.
Although some studies have considered client sampling as a multi-armed bandit problem, they have only
provided limited theoretical results (Kim et al., 2020; Cho et al., 2020a; Yang et al., 2021). In an intriguing
combination, certain studies (Salehi et al., 2017; Borsos et al., 2018; 2019) have formulated data sampling in
stochastic optimization as an online learning problem. These methods were also applied to client sampling
in FL by treating each client as a data sample in their original problem (Zhao et al., 2021a; El Hanchi &
Stephens, 2020).

Client Sampling in FL. Client sampling methods in FL fall under two categories: biased and unbiased
methods. Unbiased sampling methods ensure objective consistency in FL by yielding the same expected value
of results as global aggregation with the participation of all clients. In contrast, biased sampling methods
converge to arbitrary sub-optimal outcomes based on the specific sampling strategies utilized. Additional
discussion about biased and unbiased sampling methods is provided in Appendix E.2. Recent research
has focused on exploring various client sampling strategies for both biased and unbiased methods. For
instance, biased sampling methods involve sampling clients with probabilities proportional to their local
dataset size (McMahan et al., 2017), selecting clients with a large update norm with higher probability (Chen
et al., 2020), choosing clients with higher losses (Cho et al., 2020b), and building a submodular maximization
to approximate the full gradients (Balakrishnan et al., 2022). Meanwhile, several studies (Chen et al., 2020;
Cho et al., 2020b) have proposed theoretically optimal sampling methods for FL utilizing the unbiased
sampling framework, which requires all clients to upload local information before conducting sampling action.
Moreover, cluster-based sampling (Fraboni et al., 2021; Xu et al., 2021; Shen et al., 2022) relies on additional
clustering operations where the knowledge of utilizing client clustering can be transferred into other client
sampling techniques.

B Useful Lemmas and Corollaries

B.1 Auxiliary Lemmas

Lemma B.1 (Lemma 13, Borsos et al., 2018). For any sequence of numbers c1, . . . , cT ∈ [0, 1] the following
holds:

T∑
t=1

c4
t

(c2
1:t)3/2 ≤ 44,

where c1:t =
∑t

τ=1 cτ .
Lemma B.2. For an arbitrary set of n vectors {ai}n

i=1, ai ∈ Rd,∥∥∥∥∥
n∑

i=1
ai

∥∥∥∥∥
2

≤ n

n∑
i=1
∥ai∥2

. (14)
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Lemma B.3. For random variables z1, . . . , zn, we have

E
[
∥z1 + . . . + zn∥2

]
≤ nE

[
∥z1∥2 + . . . + ∥zn∥2

]
. (15)

Lemma B.4. For independent, mean 0 random variables z1, . . . , zn, we have

E
[
∥z1 + . . . + zn∥2

]
= E

[
∥z1∥2 + . . . + ∥zn∥2

]
. (16)

B.2 Arbitrary Sampling

In this section, we summarize the arbitrary sampling techniques and present key lemmas used in this
paper. The arbitrary sampling is mainly used either for generating mini-batches of samples in stochastic
algorithms (Chambolle et al., 2018; Richtárik & Takáč, 2016a) or for coordinate descent optimization (Qu &
Richtárik, 2016). In contrast, we explain the background in the context of federated optimization.

In detail, let S denote a sampling, which is a random set-valued mapping with values in 2[N ], where
[N ] := {1, 2, . . . , N}. An arbitrary sampling S is generated by assigning probabilities to all 2N subsets of [N ],
which associates a probability matrix P ∈ RN×N defined by

Pij := Prob({i, j} ⊆ S).

Thus, the probability vector p = (p1, . . . , pN ) ∈ RN is composed of the diagonal entries of P, and pi :=
Prob(i ∈ S). Furthermore, we say that S is proper if pi > 0 for all i. Thus, it incurs that

K := E[|S|] = Trace(P) =
N∑

i=1
pi.

The definition of sampling can be naively transferred to the context of federated client sampling. We refer to
K as the expected number of sampled clients per round in FL. The following lemma plays a key role in our
problem formulation and analysis.
Lemma B.5 (Generalization of Lemma 1 Horváth & Richtárik (2019)). Let a1, a2, . . . , aN be vectors in Rd

and let ā =
∑N

i=1 λiai be their weighted average. Let S be a proper sampling. Assume that there is v ∈ RN

such that
P− ppt ⪯ Diag(p1v1, p2v2, . . . , pN vN ). (17)

Then, we have

ES∼p

[∥∥∥∥∑
i∈S

λiai

pi
− ā

∥∥∥∥2
]
≤

N∑
i=1

λ2
i

vi

pi
∥ai∥2, (18)

where the expectation is taken over sampling S. Whenever equation 17 holds, it must be the case that

vi ≥ 1− pi.

Moreover, The random sampling admits vi = N−K
N−1 .The independent sampling admits vi = 1 − pi and

makes equation 18 hold as equality.

Proof. Let Ii∈S = 1 if i ∈ S and Ii∈S = 0 otherwise. Similarly, let Ii,j∈S = 1 if i ∈ S and Ii,j∈S = 0 otherwise.
Note that E[Ii∈S ] = pi and E[Ii,j∈S ] = Pij . Then, we compute the mean of estimates ã :=

∑
i∈S

λiai

pi
:

E[ã] = E[
∑
i∈S

λiai

pi
] = E[

N∑
i=1

λiai

pi
Ii∈S ] =

N∑
i=1

λiai

pi
E[Ii∈S ] =

N∑
i=1

λiai = ā.

Let A = [ζ1, . . . , ζN ] ∈ Rd×N , where ζi = λiai

pi
, and let e be the vector of all ones in RN . We now write the

variance of ã in a form that will be convenient to establish a bound:
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E[∥ã− E[ã]∥2] = E[∥ã∥2]− ∥E[ã]∥2

= E[∥
∑
i∈S

λai

pi
∥2]− ∥ā∥2

= E

∑
i,j

λia
⊤
i

pi

λjaj

pj
Ii,j∈S

− ∥ā∥2

=
∑
i,j

pij
λia

⊤
i

pi

λjaj

pj
−
∑
i,j

λiλja⊤
i aj

=
∑
i,j

(pij − pipj) ζ⊤
i ζj

= e⊤ ((P− pp⊤) ◦A⊤A
)

e.

(19)

Since by assumption we have P− pp⊤ ⪯ Diag(p ◦ v), we can further bound

e⊤ ((P− pp⊤) ◦A⊤A
)

e ≤ e⊤ (Diag(p ◦ v) ◦A⊤A
)

e =
n∑

i=1
pivi ∥ζi∥2

. (20)

To obtain equation 18, it remains to combine equation 20 with equation 19. Since P − pp⊤ is positive
semi-definite (Richtárik & Takáč, 2016b), we can bound P− pp⊤ ⪯ NDiag(P− pp⊤) = Diag(p ◦ v), where
vi = N(1− pi).

Overall, arbitrary sampling that associates with a probability matrix P will determine the value of v. As a
result, we summarize independent sampling and random sampling as follows,

• Consider now the independent sampling,

P− pp⊤ =


p1 (1− p1) 0 · · · 0

0 p2 (1− p2) · · · 0
...

... . . . ...
0 0 · · · pn (1− pn)

 = Diag (p1v1, . . . , pnvn) ,

where vi = 1− pi. Therefore, independent sampling always minimizes equation 18, making it hold as
equality.

• Consider the random sampling,

P− pp⊤ =


K
N −

K2

N2
K(K−1)
N(N−1) · · · K(K−1)

N(N−1)
K(K−1)
N(N−1)

K
N · · · K(K−1)

N(N−1)
...

... . . . ...
K(K−1)
N(N−1)

K(K−1)
N(N−1) · · · K

N

 .

As shown in (Horváth & Richtárik, 2019), the standard random sampling admits vi = N−K
N−1 for

equation 18.

Conclusion. Given probabilities p that defines all samplings S satisfying pi = Prob(i ∈ S), it turns out
that the independent sampling (i.e., Pij = Prob(i, j ∈ S) = Prob(i ∈ S)Prob(j ∈ S) = pipj) minimizes the
upper bound in equation 18. Therefore, depending on the sampling distribution and method, we can rewrite
the equation 18 as follows:
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V(S) = ES∼p[∥
∑
i∈S

λiai

ai
− ā∥2] =

N∑
i=1

(1− pi)
λ2

i ∥ai∥2

pi︸ ︷︷ ︸
Independent Sampling

≤ N −K

N − 1

N∑
i=1

λ2
i ∥ai∥2

pi︸ ︷︷ ︸
Random Sampling

. (21)

B.3 Proof of Solution to Independent Sampling with Minimal Probability

In this section, we present lemmas and their proofs for our theoretical analyses. Our methodology of
independent sampling especially guarantees a minimum probability of clients in comparison with Lemma 2.2.
Our proof involves a general constraint, which covers Lemma 2.2. Then, we provide several Corollaries B.1 B.2
for our analysis in the next section.
Lemma B.6. Let 0 < a1 ≤ a2 ≤ · · · ≤ aN and 0 < K ≤ N . We consider the following optimization objective
with a restricted probability space ∆ = {p ∈ RN |pmin ≤ pi ≤ 1,

∑N
i=1 pi = K,∀i ∈ [N ]} where pmin ≤ K/N ,

minimizep∈∆ Ω(p) =
N∑

i=1

a2
i

pi

subject to
N∑

i=1
pi = K,

pmin ≤ pi ≤ 1, i = 1, 2, . . . , N.

(22)

Proof. We formulate the Lagrangian:

L(p, y, α1, . . . , αN , β1, . . . , βN ) =
N∑

i=1

a2
i

pi
+ y ·

( N∑
i=1

pi −K
)

+
N∑

i=1
αi(pmin − pi) +

N∑
i=1

βi(pi − 1). (23)

The constraints are linear and KKT conditions hold. Hence, we have,

pi =

√
a2

i

y − αi + βi
=


1, if √y ≤ ai.√

a2
i

y , if √y · pmin < ai <
√

y,

pmin, if ai ≤
√

y · pmin.

(24)

Then, we analyze the value of y. Letting l1 =
∣∣{i|ai ≤

√
y · pmin}

∣∣, l2 = l1 + |{√y · pmin < ai <
√

y}|,
N − l2 =

∣∣{i|√y ≤ ai}
∣∣, and using

∑N
i=1 pi = K implies,

N∑
i=1

pi =
∑
i≤l1

pi +
∑

l1<i<l2

pi +
∑
i≥l2

pi = l1 · pmin +
∑

l1<i<l2

√
a2

i

y
+ N − l2 = K.

Arrange the formula, we get
√

y =
∑

l1<i<l2
ai

K −N + l2 − l1 · pmin
. (25)

Moreover, we can plug the results into the objective to get the optimal result:
N∑

i=1

a2
i

pi
=
∑
i≤l1

a2
i

pi
+

∑
l1<i<l2

a2
i

pi
+

∑
i≥N−l2

a2
i

pi

=
∑

i≤l1
a2

i

pmin
+√y(

∑
l1<i<l2

ai) +
∑

i≥N−l2

a2
i

=
∑

i≤l1
a2

i

pmin
+

(
∑

l1<i<l2
ai)2

K −N + (l2 − l1 · pmin) +
∑

i≥N−l2

a2
i ,

(26)
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where the 1 ≤ l1 ≤ l2 ≤ N , which satisfies that ∀i ∈ (l1, l2),

pmin ·
∑

l1<i<l2
ai

K −N + l2 − l1 · pmin
< ai <

∑
l1<i<l2

ai

K −N + l2 − l1 · pmin
.

In short, we note that if let pmin = 0, l1 = 0, the Lemma 2.2 is proved as a special case of equation 26. Besides,
we provide further Corollary B.1 and B.2 as preliminaries for further analysis.

Corollary B.1. With K · aN ≤
∑N

i=1 ai and pmin = 0, we have l1 = 0, l2 = N for equation 26 and induce

arg min Ω(p∗) = (
∑N

i=1 ai)2

K
.

Corollary B.2. With K · aN ≤
∑N

i=1 ai and pmin > 0, we have l2 = N and l1 is the largest integer that
satisfies 0 < (K − l1 · pmin) al1∑N

i=l1
ai

< pmin. The optimal value of equation 26 becomes

N∑
i=1

a2
i

pi
=
∑

i≤l1
a2

i

pmin
+√y(

∑
l1<i≤N

ai) ▷ Eq. equation 26, def. in line 2

=
∑

i≤l1
a2

i

pmin
+ y(K − l1pmin) ▷ Eq. 25, replacing

∑
l1<i≤N

ai

≤ l1ypmin + y(K − l1pmin) ▷ Eq. 24, ai ≤
√

y · pmin

=
(
∑N

i=l1
ai)2

(K − l1pmin)2 ·K ≤
K(
∑N

i=l1
ai)2

(K −Npmin)2

≤
K(
∑N

i=1 ai)2

(K −Npmin)2 .

C Convergence Analyses

C.1 Sampling and Bounded Local Drift

We start our convergence analysis with a clarification of the concepts of optimal independent sampling.
Considering an Oracle always outputs the optimal probabilities p∗, we define

δt
∗ := E

∥∥∥∥∥∑
i∈S∗

λig
t
i

p∗
i

−
N∑

i=1
λig

t
i

∥∥∥∥∥
2 = E

[
N∑

i=1

1− p∗
i

p∗
i

∥g̃t
i∥2

]
,

where we have ∥g̃t
i∥2 = ∥λig

t
i∥2. Then, we plug the optimal probability in equation 4 into the above equation

to obtain

δt
∗ = E

[
N∑

i=1

1− p∗
i

p∗
i

∥g̃t
i∥2

]
= E

 1
K − (N − l)

(
l∑

i=1
∥g̃t

i∥

)2

−
l∑

i=1
∥g̃t

i∥2

 .
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Using the fact that K∥g̃t
N∥ ≤

∑N
i=1 ∥g̃t

i∥, we have

δt
∗ ≤ E

 1
K

(
N∑

i=1
∥g̃t

i∥

)2

−
N∑

i=1
∥g̃t

i∥2


= E

 1
K

(
N∑

i=1
∥g̃t

i∥

)2
1−K

∑N
i=1 ∥g̃t

i∥2(∑N
i=1 ∥g̃t

i∥
)2




≤ N −K

NK
E

( N∑
i=1
∥g̃t

i∥

)2 .

To clarify the improvement of utilizing the sampling procedure, we provide two baseline analyses respecting
independent sampling and random sampling. For an uniform independent sampling St ∼ U(pi = K

N ) , we
have

δt := E

∥∥∥∥∥∑
i∈St

λi

pi
gt

i −
N∑

i=1
λig

t
i

∥∥∥∥∥
2 = E

[
N∑

i=1

1− K
N

K
N

∥g̃t
i∥2

]
= N −K

K
E

[
N∑

i=1
∥g̃t

i∥2

]

For a uniform random sampling St ∼ U(pi = K
N ), we have by Lemma 2.2

δU := E

∥∥∥∥∥∑
i∈St

λi

pi
gt

i −
N∑

i=1
λig

t
i

∥∥∥∥∥
2 ≤ N −K

N − 1
N

K
E

[
N∑

i=1
∥g̃t

i∥2

]
. (27)

Straightforwardly, we can prove that δt/δU < 0, indicating that independent sampling creates better estimates
than random sampling.
Definition C.1 (The optimal factor). Given an iteration sequence of global model {x1, . . . , xt}, under the
constraints of communication budget K and local updates statues {gt

i}i∈[N ], t ∈ [T ], we define the improvement
factor of applying optimal client sampling St

∗ ∼ p∗ comparing uniform sampling U t ∼ U as:

αt
∗ =

E
[∥∥∥∑i∈St

∗

λi

p∗
i
gt

i −
∑N

i=1 λig
t
i

∥∥∥2
]

E
[∥∥∥∑i∈Ut

λi

pi
gt

i −
∑N

i=1 λigt
i

∥∥∥2
] ,

and optimal p∗ is computed via equation 4 with {gt
i}i∈[N ].

Putting Equations together induces the improvement factor of optimal independent sampling respecting
uniform random sampling:

αt
∗ := δt

∗
δU

=
E
[∥∥∥∑i∈S∗

λi

p∗
i
gt

i −
∑N

i=1 λig
t
i

∥∥∥2
]

E
[∥∥∥∑i∈St

λi

pi
gt

i −
∑N

i=1 λigt
i

∥∥∥2
]

≤
(N − 1)E

[(∑N
i=1 ∥g̃t

i∥
)2
]

N2E
[∑N

i=1 ∥g̃t
i∥2
] <

E
[(∑N

i=1 ∥g̃t
i∥
)2
]

NE
[∑N

i=1 ∥g̃t
i∥2
] ≤ 1.

(28)

Lemma C.1 (Upper bound of local drift, Reddi et al., 2020). Let Assumption 4.2 4.3 hold. For all client
i ∈ [N ] with arbitrary local iteration steps r ∈ [R], the local drift can be bounded as follows,

E
∥∥xt,r

i − xt
∥∥2 ≤ 5Rη2

l (σ2
l + 6Rσ2

g + 6R
∥∥∇f

(
xt
)∥∥2)
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Proof. For r ∈ [R], we have

E
[∥∥gt

i

∥∥2
]

= E
∥∥xt,r

i − xt
∥∥2 = E

∥∥∥xt,r−1
i − xt − ηl∇Fi(xt,r−1

i )
∥∥∥2

=E
∥∥∥xt,r−1

i − xt − ηl(∇Fi(xt,r−1
i )±∇Fi(xt,r−1

i ))
∥∥∥2

=E
∥∥∥xt,r−1

i − xt − ηl∇Fi(xt,r−1
i ))

∥∥∥2
+ E

∥∥∥ηl

(
∇Fi(xt,r−1

i )−∇fi

(
xt,r−1

i

))∥∥∥2

=E
[∥∥∥xt,r−1

i − xt
∥∥∥2
− 2 < xt,r−1

i − xt, ηl∇Fi(xt,r−1
i ) > +

∥∥∥ηl∇Fi(xt,r−1
i )

∥∥∥2
]

+ η2
l σ2

l

=E
[∥∥∥xt,r−1

i − xt
∥∥∥2
− 2 <

1√
2R− 1

(xt,r−1
i − xt),

√
2R− 1ηl∇Fi(xt,r−1

i ) > +
∥∥∥ηl∇Fi(xt,r−1

i )
∥∥∥2
]

+ η2
l σ2

l

≤
(

1 + 1
2R− 1

)
E
[∥∥∥xt,r−1

i − xt
∥∥∥2
]

+ 2RE
[∥∥∥ηl∇Fi(xt,r−1

i )
∥∥∥2
]

+ η2
l σ2

l

=
(

1 + 1
2R− 1

)
E
[∥∥∥xt,r−1

i − xt
∥∥∥2
]

+ 2RE
[∥∥∥ηl

(
∇Fi(xt,r−1

i )±∇f
(
xt
)
±∇fi

(
xt
))∥∥∥2

]
+ η2

l σ2
l

≤
(

1 + 1
2R− 1

)
E
∥∥∥xt,r−1

i − xt
∥∥∥2

+ 6RE
[∥∥∥ηl

(
∇fi

(
xt,r−1

i

)
−∇fi

(
xt
))∥∥∥2

]
+ 6RE

[∥∥ηl

(
∇fi

(
xt
))∥∥2

]
+ η2

l σ2
l

≤
(

1 + 1
2R− 1 + 6Rη2

l L2
)
E
∥∥∥xt,r−1

i − xt
∥∥∥2

+ η2
l (σ2

l + 6Rσ2
g + 6RE

[∥∥∇f
(
xt
)∥∥2
]
)

Unrolling the recursion, we obtain

E
∥∥xt,r

i − xt
∥∥2 ≤

r−1∑
p=0

(
1 + 1

2R− 1 + 4Rη2
l L2

)p

η2
l (σ2

l + 6Rσ2
g + 6RE

[∥∥∇f
(
xt
)∥∥2
]
)

≤(R− 1)
[(

1 + 1
R− 1

)R

− 1
]

η2
l (σ2

l + 6Rσ2
g + 6RE

[∥∥∇f
(
xt
)∥∥2
]
)

≤5Rη2
l (σ2

l + 6Rσ2
g + 6RE

[∥∥∇f
(
xt
)∥∥2
]
)

(29)

where we use the fact that (1 + 1
R−1 )R ≤ 5 for R > 1. Then, we have

N∑
i=1

λ2
iE
[∥∥gt

i

∥∥2
]
≤W

N∑
i=1

λiE
[∥∥gt

i

∥∥2
]
≤ 5WRη2

l (σ2
l + 6Rσ2

g + 6RE
[∥∥∇f

(
xt
)∥∥2
]
) (30)

where we use W = max{λi}i∈[N ] and the fact by Assumption 4.3 that
∑N

i=1 λi∥∇Fi(xt)∥2 ≤ ∥∇f(xt)∥2 + σ2
g .

Notation. For simple notation, we use ∆̄ = 5Rη2
l (σ2

l + 6Rσ2
g + 6RE

[
∥f(xt)∥2]) to denote the upper bound

of local drift.

C.2 Non-convex Analyses

Now we are ready to give our convergence analysis in detail.

Proof. We recall the updating rule during round t as:

xt+1 = xt − ηg

∑
i∈St

λig
t
i

pt
i

= xt − ηgdt, where gt
i = xt − xt,R

i = ηl

R∑
r=1
∇Fi(xt,r−1

i ).

Notation. For clear notation, we denote W = max{λi}i∈[N ], τ t
∗ = (N−K)αt

∗+K
K .
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Descent lemma. Using the smoothness of f and taking expectations conditioned on x and over the sampling
St, we have

E
[
f(xt+1)

]
= E

[
f(xt − ηgdt)

]
≤ E[f(xt)]− ηgE[

〈
∇f(xt), dt

〉
] + L

2 η2
gE
[
∥dt∥2]

= E
[
f(xt − ηgdt)

]
≤ E[f(xt)]− ηgE[

〈
∇f(xt),

N∑
i=1

λig
t
i

〉
] + L

2 η2
gE
[
∥dt∥2]

≤ E[f(xt)]− ηgE∥∇f(xt)∥2 + ηgE[
〈
∇f(xt),∇f(xt)−

N∑
i=1

λig
t
i

〉
] + L

2 η2
gE
[
∥dt∥2]

≤ f(xt)− ηg

2 ∥∇f(xt)∥2 + ηg

2 E

[
∥∇f(xt)−

N∑
i=1

λig
t
i∥2

]
︸ ︷︷ ︸

T1

+ L

2 η2
gE
[
∥dt∥2]︸ ︷︷ ︸

T2

,

(31)

where the last inequality follows since ⟨a, b⟩ ≤ 1
2∥a∥

2 + 1
2∥b∥

2,∀a, b ∈ Rd.

Bounding T1. We first investigate the expectation gap between global first-order gradient and utilized global
estimates,

E

∥∥∥∥∥
N∑

i=1
λi∇fi(xt)−

N∑
i=1

λig
t
i

∥∥∥∥∥
2 = E

∥∥∥∥∥
N∑

i=1
λi

(
∇fi(xt)− gt

i

)∥∥∥∥∥
2

= E

∥∥∥∥∥
N∑

i=1
λi

(
∇fi(xt)− ηl

R∑
r=1
∇Fi(xt,r−1

i )
)∥∥∥∥∥

2
= E

∥∥∥∥∥
N∑

i=1
λi

R∑
r=1

(
1
R
∇fi(xt)− ηl∇Fi(xt,r−1

i ) + ηl∇fi(xt,r−1
i )− ηl∇fi(xt,r−1

i )
)∥∥∥∥∥

2
≤ 2E

∥∥∥∥∥
N∑

i=1
λi

R∑
r=1

(
1
R
∇fi(xt)− ηl∇fi(xt,r−1

i )
)∥∥∥∥∥

2
+ 2E

∥∥∥∥∥
N∑

i=1
λiηl

R∑
r=1

(
∇fi(xt,r−1

i )−∇Fi(xt,r−1
i )

)∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥
N∑

i=1
λi

R∑
r=1

(
1
R
∇fi(xt)− ηl∇fi(xt,r−1

i )
)∥∥∥∥∥

2+ 2η2
l Rσ2

l

≤ 2N

R2

N∑
i=1

λ2
iE

∥∥∥∥∥
R∑

r=1
∇fi(xt)− ηlR

R∑
r=1
∇fi(xt,r−1

i )
∥∥∥∥∥

2+ 2η2
l Rσ2

l

(32)
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Then, we have

E

∥∥∥∥∥
N∑

i=1
λi∇fi(xt)−

N∑
i=1

λig
t
i

∥∥∥∥∥
2

≤ 2N

R2

N∑
i=1

λ2
iE

∥∥∥∥∥(1− ηlR)
R∑

r=1
∇fi(xt) + ηlR

(
R∑

r=1
∇fi(xt)−

R∑
r=1
∇fi(xt,r−1

i )
)∥∥∥∥∥

2+ 2η2
l Rσ2

l

≤ 4N

R2

N∑
i=1

λ2
iE

∥∥∥∥∥(1− ηlR)
R∑

r=1
∇fi(xt)

∥∥∥∥∥
2

+ 4N

R2

N∑
i=1

λ2
iE

∥∥∥∥∥ηlR

(
R∑

r=1
∇fi(xt)−

R∑
r=1
∇fi(xt,r−1

i )
)∥∥∥∥∥

2+ 2η2
l Rσ2

l

≤ 4N(1− ηlR)2
N∑

i=1
λ2

iE
[∥∥∇fi(xt)

∥∥2
]

+ 4N

R2 η2
l

N∑
i=1

λ2
i R

R∑
r=1

E
[∥∥∥∇fi(xt)−∇fi(xt,r−1

i )
∥∥∥2
]

+ 2η2
l Rσ2

l

≤ 4N(1− ηlR)2
N∑

i=1
λ2

iE
[∥∥∇fi(xt)

∥∥2
]

+ 4N

R2 η2
l L2

N∑
i=1

λ2
i R

R∑
r=1

E
[∥∥∥xt − xt,r−1

i

∥∥∥2
]

+ 2η2
l Rσ2

l .

≤ 4N(1− ηlR)2
N∑

i=1
λ2

iE
[∥∥∇fi(xt)

∥∥2
]

+ 4Nη2
l L2

N∑
i=1

λ2
iE
[∥∥∥xt − xt,r−1

i

∥∥∥2
]

+ 2η2
l Rσ2

l .

≤ 8N(1− ηlR)2W (E
[
∥∇f(xt)∥2]+ σ2

g) + 4Nη2
l L2W ∆̄ + 2η2

l Rσ2
l

≤ 8(1− ηlR)2(E
[
∥∇f(xt)∥2]+ σ2

g) + 4η2
l L2∆̄ + 2η2

l Rσ2
l ,

(33)

where we plug equation 30 at the last and use the fact that W is proportional to 1
N (omit constant factor

NW ). Then, we have

T1 ≤ 4ηg(1− ηlR)2(E
[
∥∇f(xt)∥2]+ σ2

g) + 2ηgη2
l L2∆̄ + ηgη2

l Rσ2
l . (34)

Bounding T2. Now, we focus on the quality of estimates,

E
[
∥dt∥2] ≤ E

∥∥∥∥∥∑
i∈St

λig
t
i

pt
i

−
N∑

i=1
λig

t
i

∥∥∥∥∥
2

+
∥∥∥∥∥

N∑
i=1

λig
t
i

∥∥∥∥∥
2

≤ E

∥∥∥∥∥∑
i∈St

λig
t
i

pt
i

−
∑
i∈S∗

λig
t
i

p∗
i

∥∥∥∥∥
2


︸ ︷︷ ︸
Q(St)

+E

∥∥∥∥∥∑
i∈S∗

λig
t
i

p∗
i

−
N∑

i=1
λig

t
i

∥∥∥∥∥
2+ E

∥∥∥∥∥
N∑

i=1
λig

t
i

∥∥∥∥∥
2

︸ ︷︷ ︸
(A)

.
(35)

Here, the Q(St) indicates the discrepancy between applied sampling and optimal sampling. The term (A)
indicates the intrinsic gap for the optimal sampling to approach its targets and the quality of the targets for
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optimization. Using definition in equation 27 and equation 28, we have

(A) = E

∥∥∥∥∥∑
i∈S∗

λig
t
i

p∗
i

−
N∑

i=1
λig

t
i

∥∥∥∥∥
2+ E

∥∥∥∥∥
N∑

i=1
λig

t
i

∥∥∥∥∥
2

≤ αt
∗

(N −K)N
(N − 1)K E

[
N∑

i=1
λ2

i

∥∥gt
i

∥∥2
]

+ E

∥∥∥∥∥
N∑

i=1
λig

t
i

∥∥∥∥∥
2

≤ αt
∗

(N −K)N
(N − 1)K

N∑
i=1

λ2
iE
[∥∥gt

i

∥∥2
]

+ N

N∑
i=1

λ2
iE
[∥∥gt

i

∥∥2
]

=
(

αt
∗

(N −K)N
(N − 1)K + N

) N∑
i=1

λ2
iE
[∥∥gt

i

∥∥2
]

≤
(

αt
∗(N −K) + K

K

)
N

N − 1

N∑
i=1

λ2
iE
[∥∥gt

i

∥∥2
]

= τ t
∗

N

N − 1

N∑
i=1

λ2
iE
[∥∥gt

i

∥∥2
]

≤ τ t
∗

N

N − 1W ∆̄

where τ t
∗ := αt

∗(N−K)+K
K ∈ [1, N

K ] as we defined before. Then, we have

T2 ≤
L

2 η2
gQ(St) + Lη2

gτ t
∗W ∆̄ (36)

where we let N
2(N−1) ≤ 1 the last inequality for simplicity of notation.

Putting together. Substituting corresponding terms in equation 31 with equation 34 and equation 36 to
finish the descent lemma, we have

E
[
f(xt+1)

]
≤ f(xt)− ηg

2 ∥∇f(xt)∥2

+ 4ηg(1− ηlR)2(E
[
∥∇f(xt)∥2]+ σ2

g) + 2ηgη2
l L2∆̄ + ηgη2

l Rσ2
l

+ L

2 η2
gQ(St) + Lη2

gτ t
∗W ∆̄.

Then, substituting ∆̄ from Lemma C.1, we rearrange the terms to obtain

E
[
f(xt+1)

]
≤ f(xt) + L

2 η2
gQ(St)− ηg

2
(
1− 8(1− ηlR)2 − 120R2L2η4

l − 60R2Lτ t
∗Wηgη2

l

)
∥∇f(xt)∥2

+ ηg

(
4(1− ηlR)2 + 60R2η4

l L2 + 30R2η2
l Lτ t

∗Wηg

)
σ2

g

+ ηg

(
10RL2η4

l + Rη2
l + 5Rη2

l Lτ t
∗Wηg

)
σ2

l .

(37)

Taking a full expectation on both side and rearranging equation 37 and setting ηg ≤ 1
L to adapt L, we obtain

ρtE∥∇f(xt)∥2 ≤ 2(E[f(xt)]− E[f(xt+1)])
ηg

+ βtηg + ϵ + Q(St), (38)

where we have
ρt =

(
1− 8(1− ηlR)2 − 120R2L2η2

l (η2
l + τ t

∗W )
)

,

βt = 10
(
Rη2

l Lσ2
l + 6R2η2

l Lσ2
g

)
τ t

∗W,

ϵ = 8
(
(1− ηlR)2 + 15R2η4

l L2)σ2
g + 2Rη2

l

(
10η2

l L2 + 1
)

σ2
l .
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Then, taking averaging of both sides of equation 38 over from time 1 to T , we have

1
T

T∑
t=1

ρtE∥∇f(xt)∥2 ≤
2(E

[
f(x1)− f(xT +1)

]
)

Tηg
+ β̄ηg + ϵ +

T∑
t=1

Q(St)
T

,

where β̄ = 1
T

∑T
t=1 βt. Then, taking upper bound E

[
f(x1)− f(x+∞)

]
≤ M , ρ̂ := min{ρt}T

t=1, setting
ηg =

√
2M
T β̄

to minimize the upper bound, we have

min
t∈[T ]

E∥∇f(xt)∥2 ≤ 1
T

T∑
t=1

ρt

ρ̂
E∥∇f(xt)∥2 ≤

√
8Mβ̄ + Tϵ2

T ρ̂2 +
1
T

∑T
t=1 Q(St)

ρ̂
,

which concludes the proof.

D Detail Proofs of Online Convex Optimization

D.1 Vanising Hindsight Gap: Proof of Lemma 5.1

Proof. We first arrange the term (B) in Equation equation 9 as follows,

min
p

T∑
t=1

ℓt(p)−
T∑

t=1
min

p
ℓt(p) = min

p

T∑
t=1

N∑
i=1

π2
t (i)
pi
−

T∑
t=1

min
p

N∑
i=1

π2
t (i)
pi

. (39)

Here, we recall our mild Assumption 5.1,

π∗(i) := lim
t→∞

πt(i), Π∗ :=
N∑

i=1
π∗(i), ∀i ∈ [N ].

Then, denoting VT (i) :=
∑T

t=1(πt(i) − π∗(i))2, we bound the cumulative variance over time T per client
i ∈ [N ],

π2
1:T (i) =

T∑
t=1

(π∗(i) + (πt(i)− π∗(i)))2

≤T · π2
∗(i) + 2π∗(i)

T∑
t=1
|πt(i)− π∗(i)|+

T∑
t=1

(πt(i)− π∗(i))2

≤T · π2
∗(i) + 2π∗(i)

√
T · VT (i) + VT (i)

=T

(
π∗(i) +

√
VT (i)

T

)2

.

(40)

Using the Lemma 2.2 and non-negativity of feedback we have,

min
p

N∑
i=1

π2
t (i)
pi

= (
∑N

i=1 πt(i))2

K
. (41)

We obtain the upper bound of the first term in Equation equation 39,

min
p

T∑
t=1

N∑
i=1

π2
t (i)
pi

= min
p

N∑
i=1

π2
1:T (i)
pi

=

(∑N
i=1
√

π2
1:T (i)

)2

K

≤ T

K

(
N∑

i=1
π∗(i) +

N∑
i=1

√
VT (i)

T

)2

= T

K

(
Π2

∗ + 2Π∗

N∑
i=1

√
VT (i)

T
+
( N∑

i=1

√
Vt(i)

T

)2
)

,

(42)
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where we use Lemma 2.2 in the second line, and Equation equation 40 in the third line.

Then, we bound the second term in Equation equation 39:

Π2
∗ =

N∑
i=1

π2
∗(i) ≤

(
1
T

T∑
t=1

N∑
i=1

πt(i)
)2

≤ 1
T

T∑
t=1

(
N∑

i=1
πt(i))2

=K

T

T∑
t=1

min
p

N∑
i=1

π2
t (i)
pi

,

(43)

where the first inequality uses the average assumption, the third inequality uses Jensen’s inequality, and the
last inequality uses Equation equation 41.

Overall, we combine the results in Equation equation 42 and equation 43, and conclude the proof:

min
p

T∑
t=1

ℓt(p)−
T∑

t=1
min

p
ℓt(p) ≤ T

K

(
N∑

i=1

√
VT (i)

T

)(
2Π∗ +

N∑
i=1

√
Vt(i)

T

)
. (44)

D.2 Regret of Full Information

Theorem D.1 (Static regret with full information). Under Assumptions 5.1, sampling a batch of clients
with an expected size of K, and setting γ = G2, the FTRL scheme in equation 10 yields the following regret,

T∑
t=1

ℓt(pt)−min
p

T∑
t=1

ℓt(p) ≤
(

22NG

z̄
+ 2
√

6NG

K

) N∑
i=1

√
π2

1:T (i) + 22NG2

z̄
, (45)

where we note the cumulative feedback
√

π2
1:T (i) ≤ O(

√
T ) following Assumption 5.1.

Proof. We considering a restricted probability space ∆ = {p ∈ RN |pi ≥ pmin,
∑N

i=1 pi = K,∀i ∈ [N ]} where
pmin ≤ K/N . Then, we decompose the regret,

RegretFTRL(T ) =
T∑

t=1
ℓt(pt)−min

p∈∆

T∑
t=1

ℓt(p)︸ ︷︷ ︸
(A)

+ min
p∈∆

T∑
t=1

ℓt(p)−min
p

T∑
t=1

ℓt(p)︸ ︷︷ ︸
(B)

. (46)

We separately bound the above terms in this section. The bound of (A) is related to the stability of the online
decision sequence by playing FTRL, which is given in Lemma D.1. Term (B) is bounded by the minimal
results of directing calculation.

Bounding (A). Without loss of generality, we introduce the stability of the online decision sequence from
FTRL to variance function ℓ as shown in the following lemma(Kalai & Vempala, 2005) (similar proof can
also be found in (Hazan, 2012; Shalev-Shwartz et al., 2012)).

Lemma D.1. Let K be a convex set and R : K 7→ R be a regularizer. Given a sequence of functions {ℓt}t∈[T ]

defined over K, then setting pt = arg minp∈RN

∑t−1
τ=1 ℓτ (p) +R(p) ensures,

T∑
t=1

ℓt(pt)−
T∑

t=1
ℓt(p) ≤

T∑
t=1

(ℓt(pt)− ℓt(pt+1)) + (R(p)−R(p1)),∀p ∈ K.

We note that R(p) =
∑N

i=1 γ/pi in our work. Furthermore, R(p) is non-negative and bounded by Nγ/pmin
with p ∈ ∆. Thus, the above lemma incurs,

T∑
t=1

ℓt(pt)−
T∑

t=1
ℓt(p) ≤

T∑
t=1

(ℓt(pt)− ℓt(pt+1))︸ ︷︷ ︸
Bounded Below

+ Nγ

pmin
. (47)

29



Under review as submission to TMLR

To simply the following proof, we assume that 0 < π1(t) ≤ π2(t) ≤ · · · ≤ πN (t), t ∈ [T ] to satisfies Lemma B.6
without the loss of generality. The stability relies on the evolution of cumulative feedback π2

1:t(i) and hence
relies on the index in solution l1, l2 according to Lemma 2.2. Following the Lemma B.6, we have

pt
i =


1, if i ≥ lt

2,

zt

√
π2

1:t−1(i)+γ

ct
, if i ∈ (lt

1, lt
2),

pmin, if i ≤ lt
1,

(48)

where zt = K−N+lt
2−lt

1·pmin ≤ K and ct =
∑

i∈(lt
1,lt

2)
√

π2
1:t(i) + γ ≤

∑N
i=1
√

π2
1:t(i) + γ is the normalization

factor . Then, we investigate the first term in the above inequality,

T∑
t=1

(ℓt(pt)− ℓt(pt+1)) ≤
T∑

t=1

N∑
i=1

π2
t (i) ·

(
1
pt

i

− 1
pt+1

i

)
.

Remark. According to the above inequality, we note that the stability of online convex optimization is
highly related to the changing probability. We can have a trivial upper bound

∑T
t=1(ℓt(pt)− ℓt(pt+1)) ≤∑T

t=1
∑N

i=1 π2
t (i) · (1/pmin − 1), which indicates that the stability is restricted by pmin. Solving the sampling

probability requires sorting cumulative feedbacks π2
1:t(i), the combinations of client-index and pt

i are dynamic.
Hence, directly bounding the above equation generally can be difficult. To obtain a tighter bound for FTRL,
we investigate the possible

Lemma D.2. Assuming that pt
i < pt+1

i , for all i ∈ [N ], t ∈ [T − 1], the upper bound of
(

1
pt

i
− 1

pt+1
i

)
is given

by:

0 ≤
(

1
pt

i

− 1
pt+1

i

)
≤ 1

min(zt, zt+1)

(
ct√

π2
1:t−1(i) + γ

− ct+1√
π2

1:t(i) + γ

)
. (49)

Proof. For all t ∈ [T ], we have cumulative feedbacks π1:t−1(i), i ∈ [N ] on the server. The server is able to
compute results equation 11. As we are interested in the upper bound, we assume pt

i < pt+1
i and discuss the

cases below:

• Case 1: letting (pt
i, pt+1

i ) = (pmin, zt+1

√
π2

1:t(i)+γ

ct+1
), we have

1
pt

i

− 1
pt+1

i

= 1
pmin

− ct+1

zt+1
√

π2
1:t(i) + γ

≤ ct

zt

√
π2

1:t−1(i) + γ
− ct+1

zt+1
√

π2
1:t(i) + γ

,

≤ 1
min(zt, zt+1)

 ct√
π2

1:t−1(i) + γ
− ct+1√

π2
1:t(i) + γ

 ,

where the second inequality uses equation 24 indicating pmin ≥ zt

√
π2

1:t−1(i)+γ

ct
.

• Case 2: letting (pt
i, pt+1

i ) = (zt

√
π2

1:t−1(i)+γ

ct
, zt+1

√
π2

1:t(i)+γ

ct+1
), equation 49 naturally holds.

• Case 3: letting (pt
i, pt+1

i ) = (zt

√
π2

1:t−1(i)+γ

ct
, 1), we can know that 1 ≤ zt+1

√
π2

1:t(i)+γ

ct+1
by equation 24

and prove the conclusion analogous to case 1.

• Case 4: analogous to the case 1 and 3, letting (pt
i, pt+1

i ) = (pmin, 1), equation 49 naturally holds.
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Summarizing all cases to conclude the proof.

Using Lemma D.2, we are ready to bound the stability of the online decision sequence:
T∑

t=1
(ℓt(pt)− ℓt(pt+1)) =

T∑
t=1

N∑
i=1

π2
t (i) ·

(
ct

zt

√
π2

1:t−1(i) + γ
− ct+1

zt+1
√

π2
1:t(i) + γ

)

≤
T∑

t=1

N∑
i=1

π2
t (i) · ct

min(zt, zt+1) ·
(

1√
π2

1:t−1(i) + γ
− 1√

π2
1:t(i) + γ

)
▷ct ≤ ct+1

≤
T∑

t=1

N∑
i=1

π2
t (i) · c̃t

min(zt, zt+1)
√

π2
1:t(i) + γ

·

(√
1 + π2

t (i)
π2

1:t−1(i) + γ
− 1
)

≤ c̃T

2

T∑
t=1

N∑
i=1

1
min(zt, zt+1)

πt(i)4√
π2

1:t(i) + γ · (π2
1:t−1(i) + γ)

, ▷
√

1 + x− 1 ≤ x

2

where the third line uses definition ct ≤ c̃t =
∑N

i=1
√

π2
1:t(i) + γ.

Letting γ = G2, we have that π2
1:t(i) ≤ π2

1:t−1(i) + γ and
√

π2
1:t(i) ≤

√
π2

1:t(i) + γ. We define z̄ = min{zt}T
t=1

and conclude the bound,
T∑

t=1
(ℓt(pt)− ℓt(pt+1)) ≤ c̃T

2

T∑
t=1

N∑
i=1

πt(i)4

(π2
1:t(i))

3
2

=G · c̃T

2z̄

N∑
i=1

T∑
t=1

(πt(i)/G)4

((π1:t(1)/G)2) 3
2

▷Lemma B.1

≤22NG

z̄

N∑
i=1

√
π2

1:T (i) + G2 ▷Definition of c̃T

≤22NG

z̄

N∑
i=1

(√
π2

1:T (i) + G

)
(50)

Finally, we can get the final bound of (A) by plugging equation 50 into equation 47 and summarizing as
follows,

T∑
t=1

ℓt(pt)−
T∑

t=1
ℓt(p) ≤ 22NG

z̄

N∑
i=1

(√
π2

1:T (i) + G

)
+ NG2

pmin
.

Bounding (B). Using Corollaries B.1 and B.2, we bound the term (B) as follows,

min
p∈∆

T∑
t=1

ℓt(p)−min
p

T∑
t=1

ℓt(p)

≤
K(
∑N

i=1
√

π2
1:T (i))2

(K −Npmin)2 −
(
∑N

i=1
√

π2
1:T (i))2

K

≤
( K

(K −Npmin)2 −
1
K

)
·

(
N∑

i=1

√
π2

1:T (i)
)2

≤6Npmin

K2 ·

(
N∑

i=1

√
π2

1:T (i)
)2

(51)

In the last line, we use the fact that 1
(1−x)2 − 1 ≤ 6x for x ∈ [0, 1/2]. Hence, we scale the coefficient

K

(K −Npmin)2 −
1
K

= 1
K

[ 1
(1−Npmin/K)2 − 1

]
≤ 6Npmin

K2 ,
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where we let pmin ≤ K/(2N).

Summary. Setting γ = G2, and combining the bound in equation 47 and equation 51, we have,

RegretFTRL(T ) =
T∑

t=1
ℓt(pt)−min

p

T∑
t=1

ℓt(p)

≤22NG

z̄

N∑
i=1

(√
π2

1:T (i) + G

)
+ NG2

pmin
+ 6Npmin

K2 ·

(
N∑

i=1

√
π2

1:T (i)
)2

.

(52)

The pmin is only relevant for the theoretical analysis. Hence, the choice of it is arbitrary, and we can set it to
pmin = min

{
K/(2N), GK/(

√
6
∑N

i=1
√

π2
1:T (i))

}
which turns the upper bound to the minimal value. Hence,

we yield the final bound of FTRL in the end,

T∑
t=1

ℓt(pt)−min
p

T∑
t=1

ℓt(p) ≤
(

22NG

z̄
+ 2
√

6NG

K

) N∑
i=1

√
π2

1:T (i) + 22NG2

z̄
. (53)

D.3 Expected Regret of Partial Feedback: Proof of Theorem 5.2

Proof. Using the property of unbiasedness, we have

min
p

E[
T∑

t=1
ℓt(p̃t)−

T∑
t=1

ℓt(p)]

= min
p

E[
T∑

t=1
ℓ̃t(p̃t)−

T∑
t=1

ℓ̃t(p)]

=E
[ T∑

t=1
ℓ̃t(p̃t)−

T∑
t=1

ℓ̃t(pt)
]

︸ ︷︷ ︸
(A)

+ min
p

E
[ T∑

t=1
ℓ̃t(pt)−

T∑
t=1

ℓt(p)
]

︸ ︷︷ ︸
(B)

.

(54)

Bounding (A). We recall that p̃t
i ≥ θK

N for all t ∈ [T ], i ∈ [N ] due to the mixing. Therefore, pt
i ≥ K/N

implies p̃t
i ≥ K/N . Thus, we have

1
p̃t

i

− 1
pt

i

= θ ·
pt

i − K
N

p̃t
ip

t
i

≤ θ · pt
i

p̃t
ip

t
i

= θ

p̃t
i

≤ θ · N

K
.

Moreover, if pt
i ≤ K/N , the above inequality still holds. We extend the (A) as follows,

(A) := E
[ T∑

t=1
ℓ̃t(p̃t)−

T∑
t=1

ℓ̃t(pt)
]

= E
[ T∑

t=1

N∑
i=1

π̃2
t (i)

( 1
p̃t

i

− 1
pt

i

)]
≤ θ · N

K
· E
[ T∑

t=1

N∑
i=1

π̃2
t (i)

]
≤ θG2N2

K
T,

where we use E[π̃2
t (i)] = π2

t (i) ≤ G2.
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Bounding (B). We note that pt is the decision sequence playing FTRL with the mixed cost functions. Thus,
we combine the mixing bound of feedback (i.e., π̃2

t (i) ≤ G2N
θK ) and Theorem D.1. Replacing G2 with G2 N

θK ,
we get

T∑
t=1

ℓ̃t(pt)−min
p

T∑
t=1

ℓ̃t(p) ≤
(

22N
3
2 G

z̄
√

θK
+ 2
√

6N
3
2 G√

θK3

)
E

[
N∑

i=1

√
π̃2

1:T (i)
]

+ 22G2N2

z̄θK
. (55)

Summary. Using Jensen’s inequality, we have E
[∑N

i=1
√

π̃2
1:T (i)

]
≤
∑N

i=1
√
E[π̃2

1:T (i)] =
∑N

i=1
√

π2
1:T (i).

Finally, we can get the upper bound of the regret in partial-bandit feedback,

N2 ·min
p

E[
T∑

t=1
ℓt(p̃t)−

T∑
t=1

ℓt(p)] ≤ θG2

K
T +

(
22G

z̄
√

θNK
+ 2

√
6G√

θNK3

)
E

[
N∑

i=1

√
π̃2

1:T (i)
]

+ 22G2

z̄θK

≤ θG2

K
T +

(
22N

1
2 G2

z̄
√

θK
+ 2
√

6N
1
2 G2

√
θK3

)
√

T + 22G2

z̄θK
,

(56)

where the last line uses the bound
∑N

i=1
√

π2
1:T (i) ≤ NG

√
T . Now, we can optimize the upper bound of

regret in terms of θ. Notably, θ is independent on T and we set θ = ( N
T K ) 1

3 to get the minimized bound.
Additionally, we are pursuing an expected regret, which is Regret(S)(T ) in the original definition in equation 9.
Using the unbiasedness of the mixed estimation and modified costs, we can obtain the final bound:

N2 · E[Regret(S)(T )] = E[
T∑

t=1
ℓt(p̃t)−min

p

T∑
t=1

ℓt(p)]

= E[
T∑

t=1
ℓt(p̃t)−min

p

T∑
t=1

ℓ̃t(p)] + E[min
p

T∑
t=1

ℓ̃t(p)−min
p

T∑
t=1

ℓt(p)]

≤ O
(
N

1
3 T

2
3 /K

4
3
)

+ E[min
p

T∑
t=1

ℓ̃t(p)−min
p

T∑
t=1

ℓt(p)]

≤ Õ
(
N

1
3 T

2
3 /K

4
3
)
,

where the last inequality uses Lemma 5.1, and the conclusion in Theorem 8 (Borsos et al., 2018). It proves
the second term induces an additional log term to the final bound.

Remark. Baseline works have additional averaging coefficient 1
N2 in their final bound. This is because

they consider the weights λ = 1/N in stochastic optimization, while we include the λ for clients’ weights in
federated optimization. To align with them, we omit the coefficient of N2 and report the final bound for
E[Regret(S)(T )], as N2 can be absorbed by excluding the λ from client feedback function π(·).

E Further Discussions

E.1 A Sketch of Proof with Client Stragglers

We note the possibility that some clients are unavailable to participants due to local failure or being busy in
each round. To extend our analysis to the case, we assume there is a known distribution of client availability
A such that a subset At ∼ A of clients are available at the t-th communication round. Let qi = Prob(i ∈ At)
denote the probability that client i is available at round t. Based on the setting, we update the definition of
estimation dt:

dt :=
∑

i∈St⊆At

λig
t
i

qipt
i

,
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where St ⊆ At indicates that we can only sample from available set. Then, we apply the estimation to
variance and obtain the following target:

Regret(T ) =
T∑

t=1

N∑
i=1

π2
t (i)

qipi
−

T∑
t=1

min
p

N∑
i=1

π2
t (i)

qipi
.

Analogous to our analysis in Appendix D, we could obtain a similar bound of the above regret that considers
the availability.

E.2 Differences between biased client sampling methods

This section discusses the main differences between unbiased client sampling and biased client sampling
methods. The proposed K-Vib sampler is an unbiased sampler for the first-order gradient of objective 1. Recent
biased client sampling methods include Power-of-Choice (POC) (Cho et al., 2020b) and DivFL (Balakrishnan
et al., 2022). Concretely, POC requires all clients to upload local empirical loss as prior knowledge and selects
clients with the largest empirical loss. DivFL builds a submodular based on the latest gradient from clients
and selects clients to approximate all client information. Therefore, these client sampling strategies build a
biased gradient estimation that may deviate from a fixed global goal.

FL with biased client sampling methods, such as POC and DivFL, can be considered dynamic re-weighting
algorithms adjusting pi. Analogous to the equation 1, the basic objective of FL with biased client sampling
methods can be defined as follows (Li et al., 2020b; Balakrishnan et al., 2022; Cho et al., 2020b):

min
x∈X

f(x) :=
N∑

i=1
pifi(x) :=

N∑
i=1

piEξi∼Di [Fi(x, ξi)], (57)

where p is the probability simplex, and pi is the probability of client i being sampled. The gradient estimation
is defined as gt = 1

K

∑
i∈St gi accordingly. The targets of biased FL client sampling are determined by the

sampling probability p as a replacement of λ in the original FedAvg objective 1. Typically, the value of p is
usually dynamic and implicit.

E.3 Theoretical Comparison with OSMD

The K-Vib sampler proposed in this paper is orthogonal with the recent work OSMD sampler Zhao et al.
(2021b)2 in theoretical contribution. We justify our points below:

a) According to Equations (6) and (7) in OSMD, it proposes an online mirror descent procedure that optimizes
the additional estimates to replace the mixing strategy in Vrb Borsos et al. (2018). The approach can be also
utilized as an alternative method in equation 12.

b) The improvement of the K-Vib sampler is obtained from the modification of the sampling procedure. In
contrast, the OSMD still follows the conventional random sampling procedure, as we discussed in Lemma 2.1.
Hence, our theoretical findings of applying the independent sampling procedure in adaptive client sampling
can be transferred to OSMD as well.

In short, the theoretical improvement of our work is different from the OSMD sampler. And, our insights
about utilizing the independent sampling procedure can be used to improve the OSMD sampler. Meanwhile,
the OSMD also suggests future work for the K-Vib sampler in optimizing the additional estimates procedure
instead of mixing.

F Experiments Details

The experiment implementations are supported by FedLab framework (Zeng et al., 2023b). We provide the
missing experimental details below:

2we refer to the latest version https://arxiv.org/pdf/2112.14332.pdf
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Hyper-parameters Setting. For all samplers, there is an implicit value G (Lipschitz gradient) related to
the hyper-parameters. We set G = 0.01 for the Synthetic dataset task and G = 0.1 for FEMNIST tasks. We
set η = 0.4 for Mabs (Salehi et al., 2017) as suggested by the original paper. Vrb Borsos et al. (2018) also
utilize mixing strategy θ = (N/T ) 1

3 and regularization γ = G2 ∗N/θ. For the case that N > T in FEMNIST
tasks, we set θ = 0.3 following the official source code3. For Avare El Hanchi & Stephens (2020), we set
pmin = 1

5N , C = 1
1
N −pmin

and δ = 1 for constant-stepsize as suggested in Appendix D of original paper. For
the K-Vib sampler, we set θ = ( N

T K )1/3 and γ = G2 N
Kθ . We also fix γ and θ = 0.3 for our sensitivity study in

Figure 6.

Baselines with budget K. Our theoretical results in Theorem 5.2 and empirical results in Figure 5 reveal
a key improvement of our work, that is, the linear speed up in online convex optimization. In contrast, we
provide additional experiments with the different budget K in Figure 7. Baseline methods do not preserve
the improvement property respecting large budget K in adaptive client sampling for variance reduction.
Moreover, with the increasing communication budget K, the optimal sampling value is decreasing. As a
result, the regret of baselines increases in Figure 7, indicating the discrepancy to the optimal is enlarged.
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Figure 7: Regret of baseline algorithms with different K
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Figure 8: Gradient variance with different K

G Experiments on Text Datasets with Language Models

In this section, we evaluate the efficiency of samplers in practical experiments for training language models in
the FL settings. We run all experiments over 5 random seeds.

Language model pretraining on CCNews4. Due to our computation resource limitation, we cannot
conduct the original large-scale setting of benchmark (Charles et al., 2024). Analogously, we create a
partitioned full CCNews of 708,241 training samples following benchmark (Charles et al., 2024) into N = 1000
clients. The data distribution across clients is shown in the left plot of Figure 9. Then, we train from scratch
a GPT2 model (with the same architecture of Pythia-70M5 (Biderman et al., 2023)) using the language
modeling loss (i.e., next token prediction with cross-entropy). We set communication budget K = 25, local

3https://github.com/zalanborsos/online-variance-reduction
4https://huggingface.co/datasets/vblagoje/cc_news/tree/main
5https://huggingface.co/EleutherAI/pythia-70m
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Figure 9: Experiments on CCNews dataset with scratch of Pythia-70M model.
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Figure 10: Experiments on AGNews dataset with DistillBert model.

learning rate 1e−4, batch size 16, and epoch 1 for the local SGD optimizer. We report the cross-entropy loss
in the right plot of Figure 9.

Language model finetuning on AGNews6. We fine-tune a pretrained language model DistillBert7 (Sanh
et al., 2019) on a federated partitioned AGNews dataset (Zhang et al., 2015). The AGNews is a text
classification task with 4 labels consisting of 119,999 train samples and 7,599 test samples. We partition the
AGNews dataset into N = 1, 000 clients and let their distribution across clients be heavy long tails as shown
in Figure 10. We set communication budget K = 25, local learning rate 5e−4, batch size 16, and epoch 1 for
the local SGD optimizer.

We observe that K-Vib achieves faster convergence than baseline methods, while baseline methods only
implement a marginal improvement compared to uniform sampling. Our results prove that K-Vib can enhance
real-world FL applications, especially language model pretraining.

H Efficient Implementation

In experiments, we do not find a heavy computation time increase compared to baselines as our experiments
only involve thousands of clients. To guarantee practical usage for large-scale systems, we present efficient
implementation details of K-Vib.

6https://huggingface.co/datasets/fancyzhx/ag_news
7https://huggingface.co/distilbert/distilbert-base-uncased

36

https://huggingface.co/datasets/fancyzhx/ag_news
https://huggingface.co/distilbert/distilbert-base-uncased


Under review as submission to TMLR

We can maintain a sorted list of cumulative local weights [ω(1), ω(2), . . . , ω(N)] such that ω(i) ≤ ω(j), ∀i, j ∈
[N ] in Algorithm 2. For each communication round, the server receives feedback values as a list [πt(j)],∀j ∈ St.
Then, the server will traverse the feedback list. For each element in the list, the server conducts two main
steps as below:

• Step 1: For each j ∈ St, server computes estimates ω̃(j) = ω(j) + π2
t (j)/pt

j . Then, the server uses
binary-search to find the index k such that ω(k) ≤ ω̃(j) < ω(k + 1) in the cumulative local weights.

• Step 2: Then, server update ω(j) = ω̃(j) and move the position of ω(j) behind ω(k) to update the
weights sequence.

This implementation implements a time complexity of O(T ·K · log N), where T is the communication round,
K is the communication budget, and N is the number of clients. For each communication round t ∈ [T ], the
server updates K times of the list with each time cost O(log N) to conduct one binary search.
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