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Abstract

The typical selective state-space model (SSM) of Mamba addresses several limitations of
Transformers, such as quadratic computational complexity with sequence length and sig-
nificant inference-time memory requirements due to the key-value cache. However, the
growing size of Mamba models continues to pose training and deployment challenges and
raises concerns due to considerable training and inference compute consumption. In this
work, we introduce Bi-Mamba, a scalable and powerful 1-bit Mamba architecture designed
for more efficient large language models with multiple sizes across 780M, 1.3B, and 2.7B.
Bi-Mamba models are trained from scratch on data volume as regular LLM pertaining us-
ing an autoregressive distillation loss. Extensive experimental results on language modeling
demonstrate that Bi-Mamba achieves performance comparable to its full-precision counter-
parts (e.g., FP16 or BF16) and much better accuracy than post-training-binarization (PTB)
Mamba and binarization-aware training (BAT) Transformer baselines, while significantly re-
ducing memory footprint and computational consumption compared to the original Mamba
model. Our study pioneers a new linear computational complexity LLM framework under
low-bit representation and facilitates future design of specialized hardware tailored for effi-
cient 1-bit Mamba-based LLMs. Our code is provided in Supplementary Material and the
pre-trained weights are available anonymously at link.

1 Introduction

The Selective State-Space Model (SSM) (Gu et al., 2021b; 2022) has recently emerged as a powerful alter-
native to Transformers Vaswani et al. (2017) in language modeling, demonstrating comparable or superior
performance at small to moderate scales. SSMs are characterized by linear scaling in sequence length during
training and a constant state size during generation, which significantly reduces computational and memory
overhead, making them more efficient in terms of speed and memory usage.

The representative SSM model of Mamba (Gu & Dao, 2024; Dao & Gu, 2024) has a significant advantage
when handling long context sequences due to its linear complexity. In contrast, conventional transformers
suffer from quadratic complexity as the sequence length increases. This means that for tasks involving large
input sequences or extended contexts, Mamba is much more efficient, as its memory and computational
requirements scale linearly with the sequence length. In practice, this allows Mamba to process long se-
quences faster and with lower resource consumption, making it ideal for applications such as long document
processing, conversational agents, and any scenario where managing large amounts of contextual informa-
tion is crucial. On the other hand, transformers require exponentially more resources as the context length
increases, which can quickly become a bottleneck in long-context tasks.

Prior works (Devlin et al., 2019; Radford et al., 2019; Touvron et al., 2023; Achiam et al., 2023) on Transform-
ers have been extensively studied for several years, with numerous methods proposed to alleviate their high
computational and storage costs, such as pruning (Ma et al., 2023), model quantization Frantar et al. (2023),
and KV Cache (Pope et al., 2023; Kwon et al., 2023). Among these methods, quantization has proven to be
highly effective Dettmers et al. (2022b). Researchers have successfully quantized transformer models from
16-bit to 8-bit, 4-bit, and even 1-bit representations, often with minimal performance degradation Frantar
et al. (2023); Ma et al. (2024c;a).
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Figure 1: Perplexity comparison of Bi-Mamba, GPTQ and Bi-LLM on Wiki2, PTB and C4 datasets. GPTQ
and Bi-LLM show significant performance degradation when the bit is low. Bi-Mamba demonstrates low
perplexity in 1 bit and shows similar performance as GPTQ-8bit.

However, there has been little investigation into how SSM models or Mamba behave after low-bit quanti-
zation or even binarization. In this paper, we introduce Bi-Mamba, a novel approach that applies extreme
quantization to SSM models by reducing weights to a binary setting. Through this extreme quantization,
we demonstrate that SSM models can be effectively binarized for both training and inference, maintaining
high performance while significantly reducing memory footprint and energy consumption.

Our work pioneers a new framework for 1-bit representation in linear computational complexity models,
potentially facilitating the development of specialized hardware tailored for fully low-bit SSM-based language
models. We provide comprehensive experiments showing that Bi-Mamba achieves competitive performance
comparing to full-precision counterpart large language models (LLMs), thereby establishing the feasibility
and benefits of binarizing SSM models. To further understand the behaviors of binarization on Mambas,
we conducted extensive empirical studies to analyze the distribution of pre-trained and binarized weights in
Mambas. The results of this study are detailed in Section 4 and Appendix A, leading to two key observations:

• As shown in Figure 2, post-training-binarization methods like BiLLM (Huang et al., 2024) and
PB-LLM (Shang et al., 2023) typically tend to shift the distribution of weights on Mamba after
binarization, resulting in a misaligned distribution to the optimal binary weights. Our binarization-
aware training, however, ensures that the binarized weights remain close to the original weight
distribution, preserving the largest capability in weight representation binarization.

• Based on our empirical experiments, applying existing LLM post-binarization methods (Frantar
et al., 2023; Huang et al., 2024), even when retaining salient weights, often severely degrades the per-
formance of the Mamba model. Without accounting for salient weights, binarization-aware training
appears to be the only feasible solution for effectively binarizing models like Mamba while preserving
competitive performance.

Our contributions in this paper are as follows: (1) This is the first work to successfully binarize the Mamba
architecture to 1-bit from scratch while maintaining strong performance. (2) We explore the potential
parameter space for binarization in Mamba, offering valuable insights for future research. (3) The Bi-Mamba
model pretrained by our method can serve as a robust base model for downstream tasks in resource-limited
scenarios and can be easily adapted for other NLP applications.1

2 Related Work

Post-Training Quantization. Due to their large parameter count, LLMs (Brown et al., 2020; OpenAI,
2023; Touvron et al., 2023) are resource intensive to run. Therefore they are often quantized to low bits
representations during inference. This type of quantization is typically called post-training quantization
(PTQ) (Dettmers et al., 2022a; Xiao et al., 2023; Wei et al., 2022; Frantar et al., 2023; Yao et al., 2022;

1We will make all our models, code, and training datasets fully available, we aim to support further research in this direction
and encourage the exploration of binarized SSM models for more efficient large language models.
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Figure 2: Illustration of the Bi-Mamba framework. Our Bi-Mamba binarizes both input and output projection
matrices. Compared with the post-binarization method (Bi-LLM), our binarization-aware training method
(Bi-Mamba) generates a more similar weight distribution (after scaling) on each part.

Xiao et al., 2023; Lin et al., 2024), where the quantization operation is applied to the pretrained models.
Post-training quantization methods of LLMs are typically based on the empirical observations that a small
set of salient features in pretrained Transformers have significantly large magnitudes, and quantization of
these features needs to be extra careful (Xiao et al., 2023; Lin et al., 2023). PTQ methods have led to near
lossless accuracy drop for INT8 weights and activations quantization, and INT4 weight-only quantization.
While many works (Huang et al., 2024; Egiazarian et al., 2024; Shao et al., 2023; Chee et al., 2023; Tseng
et al., 2024) have been focused on pushing post-training weight quantization below 4 bits, they often leads
to drastic drop of model performance.

Quantization-Aware Training. Different from post-training quantization, quantization-aware training
(QAT) aims to learn the quantized models during training. In the LLM era, QAT is less investigated as
compared to PTQ because LLMs typically require huge amounts of compute resources to train. Li et al.
(2023b) propose a method to adopt LoRA fine-tuning during QAT, making the quantization procedure
resource efficient. However, these methods still require the pretrained weights to initialize the student
LLMs. Wortsman et al. (2023) propose a method to stabilize the training of low-bit large vision-language
models from random initializations. Most recently, Ma et al. (2024c) trained LLMs with tenary weights from
random initializations, achieving non-trivial performance. Ma et al. (2024a) further proposed a distillation
based method to pretrain binarized LLMs from scratch.

State-Space Models. While LLMs are often built with Transformers (Vaswani et al., 2017), their self-
attention operations suffer from quadratic time complexity. This makes Transformers inefficient to run
on long sequences. Therefore there have been many research efforts aiming at addressing the efficiency
issue (Peng et al., 2023; Beck et al., 2024; Katharopoulos et al., 2020; De et al., 2024). Among these efforts,
SSMs (Gu & Dao, 2024; Dao & Gu, 2024; Gu et al., 2021a) are a type of recurrent neural networks. The
latest advanced SSMs like Mamba (Gu & Dao, 2024) and Mamba-2 (Dao & Gu, 2024) have demonstrated
comparable performance to Transformers, while having linear complexity with respect to the sequence length.
Despite their promising capabilities, how to effectively quantize this architecture has rarely been investigated.
Concurrent to our work, Pierro & Abreu (2024) have looked at post-training quantization of Mamba.

3 Approach

3.1 Preliminary: Mamba Series

Mamba belongs to a class of models known as State Space Models (SSMs), which is able to offer performance
and scaling laws comparable to the Transformer while remaining practical at extremely long sequence lengths
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Model Size Embedding LN ∆bias A D Conv1d In Proj. Out Proj.
Mamba-2 760M 9.901 0.029 0.0003 0.0003 0.0003 0.102 60.936 29.031
Mamba-2 1.3B 7.664 0.022 0.0002 0.0002 0.0002 0.078 62.270 29.964
Mamba-2 2.7B 4.763 0.018 0.0002 0.0002 0.0002 0.064 64.115 31.039

Table 1: Proportional distribution of parameters across different modules in Mamba-2. Input and output
matrices take up the majority of the parameters in Mamba-2 models, around 90% and more.

(e.g., one million tokens). It achieves this extended context by eliminating “quadratic bottleneck” present in
the attention mechanism. The vanilla structured state space sequence models (S4) transform a 1-dimensional
sequence x ∈ RT into another sequence y ∈ RT by utilizing an latent state h ∈ RT,N as follows:

ht = Aht−1 + Bxt

yt = Cht + Dxt

(1)

where A ∈ RN,N , B ∈ RN,1, C ∈ R1,N , D ∈ R. ht−1 is the hidden state, xt is the input, the observation
that the model gets each time. ht then represents the derivative of the hidden state, i.e. how the state is
evolving.

Since the parameters in Equation 1 are constant through time, this model is linear time-invariant (LTI).
The LTI model gives equal attention to all elements when processing sequences, which prevents the model
from effectively understanding natural language. To address this, Mamba improved it to the Selective State
Space Model, where B and C are obtained through a linear projection of xt. Meanwhile, the above equation
applies to dynamic systems with continuous input and output signals. So, it needs to do discretization when
dealing with text sequences:

A = exp(∆A)
B = exp(∆A)−1(exp(∆A) − I) · ∆B

(2)

where, ∆ is related to xt and a learnable parameter ∆bias. Then, the calculating process of selective SSM is
as follows:

ht = Aht−1 + Bxt

yt = Cht + Dxt

(3)

Centered around selective SSM, combined with linear projection for input and output along with layer
normalization, this forms the basic block for Mamba.

Compared to Mamba, Mamba-2 further replaces selective SSM with the state space duality (SSD). In SSD,
A is simplified as scalar-times-identity structure, and SSD uses a larger head dimension which is 1 in Mamba.
Meanwhile, Mamba-2 block also introduces simplifications, such as removing sequential linear projections in
Mamba block, to facilitate parallel training. The basic structure of Mamba-2 is shown in Figure 2.

3.2 Bi-Mamba

Binarization Space in Mamba. To begin with, we need to identify what weight matrices can be binarized
in Mamba architecture. We use the latest Mamba-2 (Dao & Gu, 2024) as our base architecture. According
to the description above, we can interpret the SSD matrices of A, B, C, D, and ∆bias more intuitively, as
well as other layers including embedding, layer normalization (LN), Conv-1d, inner linear projection, out
linear projection in Mamba-2 to better understand the effect after binarization, so that to determine the
binarization space. Briefly, A is the transition state matrix, representing how the current state transitions
to the next state. It answers how should the model gradually forget the less relevant parts of the state over
time? B maps the new input to the state, addressing the point of which parts of the new input should the
model retain? C maps the state to the output of the SSM, asking that how can the model utilize the current
state to make an accurate next prediction? D shows how the new input directly influences the output, acting
as a modified skip connection and asking how can the model incorporate the new input into the prediction?
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Considering our base architecture Mamba-2, we present the specific parameters proportion for different
layers across different sizes as shown in Figure 2 and Table 12. It is observed that, in Mamba-2, the vast
majority of the model’s parameters are in the linear modules, excluding the causal head. For instance, in
Mamba-2-2.7B, these parameters account for 95.2% of the entire model. Additionally, the embedding module
shares parameters with the causal head. Binarizing the embedding significantly diminishes its capability
to represent token semantics, thereby reducing model performance. Therefore, in our Bi-Mamba, we only
binarize the parameters in the linear modules (excluding the causal head). This strategy aims to maintain
a high compression ratio of 90% while still allowing the binarized model to perform effectively.

Simple Learnable Scaling Factors for Better Capability. To binarize Mamba, we replace the original
linear modules with the FBI-Linear module introduced by FBI-LLM (Ma et al., 2024a). Specifically, the
FBI-Linear module primarily consists of two parts: a matrix W b ∈ Rm×n made up solely of {1, −1} and
high-precision scale factors α ∈ Rn and β ∈ Rn. The inference process of FBI-Linear is as follows:

y = W̃ bx (4)

where W̃ b is derived by performing column-wise multiplication with α and addition with β respectively:

W̃ b
·,i = αiW

b
·,i + βi (5)

where αi and βi are the learnable scaling and shifting factors at i-th layer.

Objective of Training. Our training objective is a cross-entropy loss between the outputs of the target
student model and the pretrained teacher model at each step of the autoregressive scheme for next-token
prediction. This can be expressed as:

LBi-Mamba = − 1
n

n∑
k

pT (
xk+1)

· log pS (
xk+1)

(6)

where n is the number of input tokens. Here, pT (
xk+1)

represents the token distribution over the vocabulary
at the k-th step predicted by the teacher model, and pS (

xk+1)
is the corresponding predicted distribution

by the student model.

Overall Design of Bi-Mamba. During binarization-aware training of autoregressive distillation (Ma et al.,
2024a), we compute the cross-entropy between the output probability distributions of a high-precision pre-
trained model and our target Bi-Mamba model. In this process, α and β are learnable parameters, while W b

is derived using the sign(·) function from a learnable high-precision matrix W f ∈ Rm×n. Since the sign(·)
function is non-differentiable, we use the Straight Through Estimator (STE) (Bengio et al., 2013) as prior
studies (Rastegari et al., 2016; Alizadeh et al., 2019) in BNNs to approximate the gradients of the input
variables, enabling the continuation of backward propagation.

Complexity Analysis. Let L denote the sequence length, d the model embedding width, and r × d the
hidden width of the MLP (usually r ≈ 4), the Transformer cost is O(L2d) for self-attention, O(Ld2) to form
Q, K, V plus O(L2d) for the QK⊤ product, and O(L × d2) for MLP. For Mamba, because each token is
processed by a single state-space update, the per-layer complexity is O(L × d) and each token is one SSM
step. For the binary variants, Binary Transformer has the same algebraic graph =⇒ O(L2 × d) bit-ops,
but a multiply-accumulate is replaced by a single binary operator like XNOR and popcount on 32- or 64-bit
elements, yielding ≈ 32× fewer loaded bits in weight bandwidth. Our Bi-Mamba also has the O(L × d)
bit-ops (inherits Mamba linear scaling) and achieving a comparable ≈ 32× saving in weight bits.

4 Experiments
In our experiments, we solely binarize the parameters in the most linear modules, while keeping other
model parameters and activation at original precision. Notably, we do not strictly represent the binarized
parameters with 1-bit, instead, we use high-precision values to simulate the binarized parameters. We train
Bi-Mamba on different scales and evaluate their performance across multiple tasks.

2Since B and C are derived from the linear projection of each layer’s inputs, and the language model head is tied to the
embedding layer, these modules are ignored in our design.
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4.1 Setup

Training Dataset. Following FBI-LLM, we train Bi-Mamba with the Amber dataset (Liu et al., 2023) which
contains a total 1.26 Trillion tokens from RefinedWeb (Penedo et al., 2023), StarCoder (Li et al., 2023a), and
RedPajama-v1 (Computer, 2023). The data is partitioned into 360 chunks, each comprising approximately
3.5B tokens on average.

Training details. We train Bi-Mamba on different scales with Mamba-2 architecture. Specifically, we
binarize input projection and output projection matrices in 780M, 1.3B and 2.7B Mamba-2 models. We use
LLaMA2-7B as the teacher model for all Bi-Mambas to calculate autoregressive distillation loss. Therefore,
all Bi-Mambas we trained have the same vocabulary and tokenizer as LLaMA2. We train models until
convergence with 32× NVIDIA A100 GPUs in total and maintain BF16 precision while training. For
configuring different sizes of Bi-Mamba, the details can be found at Table 2. We follow the same architectures
as the original Mamba-2 models and apply binarization on both input and output projection matrices. The
training process uses the Adam optimizer with parameters β1 = 0.9 and β2 = 0.95. The initial learning rate
is set at 2.5e − 4 and follows a cosine schedule, decreasing to 2.5e − 5 over 2,000 warm-up steps. Gradient
clipping is set at 1.0. We train Bi-Mamba 780M, 1.3B, 2.7B with 30 data chunks, which are 105B tokens.

Bi-Mamba 780M Bi-Mamba 1.3B Bi-Mamba 2.7B
d_model 1536 2,048 2,560
n_layer 48 48 64
vocabulary size 32,000 32,000 32,000
learning rate 2.5e-4 2.5e-4 2.5e-4
batch size (token) 0.5M 0.5M 0.5M
teacher model LLaMA2-7B LLaMA2-7B LLaMA2-7B

Table 2: The configuration and training details for Bi-Mamba.

Evaluation Metrics. We evaluate the models based on their zero-shot performance in downstream tasks
including BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), Winogrande
(Sakaguchi et al., 2021), ARC (Clark et al., 2018), and OpenbookQA (Mihaylov et al., 2018). We also
evaluate Bi-Mamba and other baselines on HumanEval and GSM8k datasets. All downstream evaluations are
done with lm-evaluation-harness package (Gao et al., 2024). We also use perplexity on Wikitext2 (Merity
et al., 2016), PTB (Marcus et al., 1993), C4 (Raffel et al., 2020) dataset as the evaluation metric. Perplexity
measures how well a probability model predicts a token, quantitatively measuring model’s generation power.

Baselines. We compare our work with quantization and binarization methods, namely GPTQ (Frantar
et al., 2023), SqueezeLLM (Kim et al., 2023), AQLM (Egiazarian et al., 2024) and Bi-LLM (Huang et al.,
2024). GPTQ, SqueezeLLM and AQLM are post-training quantization methods while Bi-LLM is a post-
training binarization method. We apply the official implementation of GPTQ and SqueezeLLM and quantize
the Mamba-2 models into 3 and 2 bits, respectively. For AQLM, we use their official implementation to
quantize the 780M, 1.3B and 2.7B models into 2.04bit, 1.92bit and 2.09bit. For Bi-LLM, we also utilize
their official implementation and binarize Mamba-2 models. Moreover, we add quantization-aware training
methods, OneBit (Xu et al., 2024) and BitNet-1.58bit (Ma et al., 2024b) for comparison. For BitNet, we
report the results in the original paper for comparison while for OneBit, since they only released the official
weights of 7B, we only add the results of 7B models. We also add the comparison with FBI-LLM (Ma et al.,
2024a), which is a transformer-based binary model. We report the results of FBI-LLM 1.3B model from
their paper. Furthermore, we include results from open-source full-precision transformer-based models of
various sizes, such as OPT (Zhang et al., 2022), and TinyLLaMA (Zhang et al., 2024), as references.

4.2 Main Results

Table 3 3 presents the comparison of our Bi-Mamba model against various baselines on downstream tasks and
perplexity on Wiki2, PTB, and C4 datasets. These evaluations provide insight into model generalization

3“M” indicating Mamba-2 (Dao & Gu, 2024) and “T” indicating Transformer (Vaswani et al., 2017). HS, WG, and OBQA
are abbreviations for HellaSwag, Winogrande, and OpenbookQA, respectively.
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Method Model Size Zero-shot Accuracy ↑ Perplexity ↓
BoolQ PIQA HS WG ARC-e ARC-c OBQA Avg. Wiki2 PTB C4

Mamba-2 (Dao & Gu, 2024) M 780M 61.5 71.8 54.9 60.2 54.3 28.5 36.2 52.5 11.8 20.0 16.5
GPTQ-3bit M 780M 44.6 62.9 40.3 53.3 40.6 26.4 30.6 42.6 152.5 192.5 186.0
GPTQ-2bit M 780M 40.4 52.3 25.7 51.3 25.6 25.1 30.2 35.2 1.6e+8 1.3e+8 7.3e+7
SqueezeLLM-3bit M 780M 61.4 69.7 50.6 56.2 51.3 27.6 30.2 49.6 15.5 25.3 21.2
SqueezeLLM-2bit M 780M 40.3 58.3 33.6 51.5 38.0 24.7 27.0 39.1 141.7 216.3 323.4
AQLM-2.04bit M 780M 38.8 57.3 30.0 50.1 33.1 22.4 25.4 36.7 245.2 332.4 311.0
BiLLM M 780M 54.1 52.9 26.9 50.6 28.5 26.5 27.2 38.1 1.8e+4 2.4e+4 1.5e+4
BitNet-1.58bit T 700M 58.2 68.1 35.1 55.2 51.8 21.4 20.0 44.3 - - -
Bi-Mamba M 780M 58.5 68.0 41.6 52.0 42.4 24.3 30.6 45.3 13.4 32.4 14.5

TinyLLaMA (Zhang et al., 2024) T 1.3B 57.8 73.3 59.2 59.1 55.3 30.1 36.0 53.0 7.8 30.5 9.9
OPT (Zhang et al., 2022) T 1.3B 57.8 72.5 53.7 59.5 51.0 29.5 33.4 51.1 14.6 20.3 16.1
Mamba-2 (Dao & Gu, 2024) M 1.3B 64.3 73.7 59.9 61.0 60.4 33.1 37.8 55.8 10.4 17.7 14.8
GPTQ-3bit M 1.3B 56.8 68.2 48.5 54.4 48.0 28.8 30.4 47.8 29.3 56.5 37.3
GPTQ-2bit M 1.3B 42.0 49.9 25.7 49.6 26.4 26.1 27.6 35.3 1.2e+6 1.0e+6 1.3e+6
SqueezeLLM-3bit M 1.3B 62.9 72.2 56.6 58.6 59.0 32.3 35.8 53.9 11.8 20.4 16.7
SqueezeLLM-2bit M 1.3B 62.3 64.3 41.3 53.9 47.5 26.2 30.4 46.5 31.9 300.2 136.4
AQLM-1.92bit M 1.3B 47.1 57.5 33.9 51.3 36.7 23.2 27.6 39.6 179.0 284.5 219.7
BiLLM M 1.3B 40.1 55.4 29.6 50.7 30.6 21.8 25.4 36.2 4943.2 3540.8 4013.6
BitNet-1.58bit T 1.3B 56.7 68.8 37.7 55.8 54.9 24.2 19.6 45.4 - - -
FBI-LLM T 1.3B 60.3 69.0 42.3 54.0 3.6 25.3 29.6 46.3 12.6 39.3 13.8
Bi-Mamba M 1.3B 60.0 68.8 47.3 55.9 48.0 26.3 32.2 48.4 11.7 29.9 12.9

Mamba-2 (Dao & Gu, 2024) M 2.7B 70.7 76.3 66.6 63.9 64.8 36.3 38.8 59.6 9.1 15.3 13.3
GPTQ-3bit M 2.7B 54.8 69.9 54.0 56.0 51.6 33.3 32.8 50.3 21.2 39.0 29.3
GPTQ-2bit M 2.7B 45.4 49.8 25.8 52.0 25.8 25.8 26.0 35.8 2.1e+5 2.3e+5 1.8e+5
SqueezeLLM-3bit M 2.7B 68.3 74.6 63.0 62.9 61.9 34.3 39.2 57.7 10.8 18.2 15.4
SqueezeLLM-2bit M .7B 47.0 49.6 26.0 48.4 26.2 24.8 26.6 35.5 1.3e+5 3.2e+4 1.7e+5
AQLM-2.09bit M 2.7B 57.1 64.7 42.6 53.4 45.2 25.7 27.6 45.2 31.3 55.4 45.8
BiLLM M 2.7B 52.8 53.8 27.7 53.0 29.1 25.1 28.2 38.5 8707.0 1.7e+4 1.3e+4
OneBit T 6.7B 63.3 67.7 52.5 58.1 41.6 29.3 34.0 49.5 - - -
BitNet-1.58bit T 3.0B 61.5 71.5 42.9 59.3 61.4 28.3 26.6 50.2 - - -
Bi-Mamba M 2.7B 58.0 72.5 54.3 56.1 51.4 29.1 32.6 50.6 10.0 21.9 11.3

Table 3: Performance comparison with baselines on downstream tasks and perplexity. Here, Model represents
the architecture of the quantized model. We divide the table into three blocks based on model size. Our
Bi-Mamba achieves lower perplexity than Bi-LLM and GPTQ on Wiki2, PTB and C4 datasets, as well as
the best average performance on downstream tasks compared with GPTQ-2bit and Bi-LLM.
capabilities without further task-specific fine-tuning. The visualization of performance comparison is shown
in Figure 3. The performance on HumanEval and GSM8k is present in Table 4.

For the 780M Mamba-2 model, Bi-Mamba demonstrates an average downstream performance of 45.3, out-
performing GPTQ-3bit and Bi-LLM, which achieve 42.6 and 38.1, respectively. In perplexity assessments,
Bi-Mamba reports scores of 13.4, 32.4, and 14.5 on Wiki2, PTB, and C4, respectively, with the baseline
models exhibiting up to 10× higher perplexity. SqueezeLLM and AQLM achieve better performance on
both downstream tasks and perplexity compared with GPTQ while they are still surpassed by Bi-Mamba
780M model. Moreover, Bi-Mamba 780M surpasses the binarization-aware training method, BitNet on the
zero-shot performance on downstream tasks. BitNet obtains 44.3 scores on average while Bi-Mamba 780M
achieves 45.3 scores.

For the 1.3B model, Bi-Mamba achieves a notable downstream accuracy of 48.4 on average, surpassing
GPTQ-2bit’s 35.3, SqueezeLLM-2bit’s 46.5, AQLM’s 39.6 and Bi-LLM’s 36.2. This performance indicates
Bi-Mamba’s enhanced generalization across a wider range of tasks at this model size. Additionally, Bi-Mamba
demonstrates substantially improved perplexity, registering scores of 13.2, 30.8, and 14.0 on Wiki2, PTB, and
C4 datasets, respectively. In comparison, GPTQ-2bit and Bi-LLM present considerably higher perplexity
values, underscoring the efficiency of Bi-Mamba’s binarization in maintaining linguistic coherence. Moreover,
Bi-Mamba 1.3B model beats the training-based method, BitNet and FBI-LLM, which obtains 45.4, 46.3
scores on average on the downstream tasks.

For the 2.7B model, Bi-Mamba further extends its lead, achieving an average downstream accuracy of 50.6,
compared to 35.8 for GPTQ-2bit, 35.5 for SqueezeLLM-2bit, 45.2 for AQLM-2.09bit, and 38.5 for Bi-LLM.
Notably, Bi-Mamba maintains low perplexity across all datasets, with scores of 10.0, 21.9, and 11.3 on Wiki2,
PTB, and C4, respectively. These results highlight Bi-Mamba’s ability to retain high-level performance
in both task accuracy and linguistic fluency as model complexity scales up. Similarly, Bi-Mamba 2.7B
model outperforms all training-based methods including OneBit and BitNet. OneBit only obtains 49.5
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Figure 3: Visualization of results comparison on Mamba-2 in the scale of 2.7B, 1.3B and 780M.

scores on average with 6.7B parameters and BitNet gains 50.2 scores with 3.0B parameters. The results
demonstrate the effectiveness of Bi-Mamba. In summary, Bi-Mamba consistently demonstrates superior zero-
shot performance and perplexity reduction across model sizes, substantiating its robustness and versatility
compared to GPTQ and Bi-LLM, particularly in larger, more complex models.

For results on HumanEval and GSM-8K, we notice that the full-precision models across all sizes perform
poorly, producing results close to random guessing. Other quantization methods further degrade performance
compared to their full-precision counterparts. In contrast, our proposed Bi-Mamba consistently achieves
superior performance, outperforming all other methods, including the full-precision model. Overall, the
results of the Mamba models and their quantized versions are not highly competitive. The primary reasons
for this are: 1) Limited Training Data. The Mamba-2-2.7B pre-trained model is trained with only 300B
tokens on the Pile dataset. This amount of training data is relatively small compared to state-of-the-art
models, which are often trained on significantly larger corpora (more than 10T tokens). As a result, the
pre-trained model may not have fully developed strong reasoning and problem-solving capabilities. After
the quantization or binarization, the reasoning ability collapses completely. 2) Lack of Instruction Tuning.
The models in this evaluation have not been instruction-tuned, which is critical for performance on complex
reasoning and coding benchmarks such as GSM8K and HumanEval. Instruction tuning enhances a model’s
ability to follow prompts effectively and generalize across tasks. Quantizing a instructed model could yield
better performance on complex reasoning tasks.

5 Analysis

5.1 Training Result Dynamics

In this section, we discuss the performance of Bi-Mamba as the training progresses with different training
costs/budgets. The main results are shown in Figure 4. We provide the downstream performance and
perplexity curve along different training costs on the Mamba-2-780M model. More results on 2.7B and 1.3B
Mamba-2 models can be found in the Appendix A.1. From the figure, we can observe that the perplexity
decreases quickly at the beginning of training and gradually converges to the full-precision perplexity. The
perplexity of Bi-Mamba on the wiki2 and C4 datasets is more stable than the perplexity on the PTB dataset.
Notably, on the C4 dataset, the final perplexity of Bi-Mamba is even lower than the full-precision model,
highlighting the superior performance of Bi-Mamba. Interestingly, early in training, our Bi-Mamba model
surpasses GPTQ-3bit on the perplexity, demonstrating the effectiveness of binarization-aware training. Since
the perplexity of GPTQ-2bit and BiLLM is extremely high on all datasets, we omit them in the figure and
refer to Table 3 for detailed results of GPTQ-2bit and BiLLM. Moving to the downstream task evaluation,
we first observe the catastrophic performance degradation of the binarized models, whose performance is
even lower than the random results on many benchmarks such as the results on ARC-E and ARC-C. This
indicates that directly applying the naive binarization method destroys the ability of the full-precision model.
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Model Model Param. HumanEval GSM8k
Mamba-2-16bit 780M 0.81 0.76
GPTQ-2bit 780M 0.00 0.68
AQLM-2.04bit 780M 0.00 0.61
SqueezeLLM-2bit 780M 0.00 0.00
BiLLM-2bit 780M 0.00 0.07
Bi-Mamba 780M 0.85 1.29
Mamba-2-16bit 1.3B 1.83 0.76
GPTQ-2bit 1.3B 0.23 0.37
AQLM-1.92bit 1.3B 0.20 0.38
SqueezeLLM-2bit 1.3B 0.20 0.15
BiLLM-2bit 1.3B 0.18 0.15
Bi-Mamba 1.3B 0.71 1.95
Mamba-2-16bit 2.7B 1.07 0.91
GPTQ-2bit 2.7B 0.00 0.68
AQLM-2.09bit 2.7B 0.26 0.53
SqueezeLLM-2bit 2.7B 0.23 0.23
BiLLM-2bit 2.7B 0.30 0.38
Bi-Mamba 2.7B 0.91 1.29

Table 4: Performance comparison of different methods on HumanEval and GSM8k evaluation set.
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Figure 4: Downstream performance and perplexity curve of Bi-Mamba with different training costs.

However, after binarization-aware training, the model recovers the performance on all benchmarks and finally
outperforms all baselines including GPTQ-3bit, GPT-2bit and Bi-LLM. This underscores the importance of
binarization-aware training in achieving competitive results.

5.2 Binarization Space

In this section, we explore the binarization space of Mamba models and discuss the effect of binarizing
each part. We conduct experiments that binarize the In_Proj and binarize both In_Proj and Out_Proj.
The binarized models are trained with the same data. The results are shown in Table 5. Partial and full
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Model Zero-shot Acc. ↑ Perplexity ↓
BoolQ PIQA HS WG ARC-e ARC-c OBQA Avg. Wiki2 PTB C4

Mamba-2-780M 61.5 71.8 54.9 60.2 54.3 28.5 36.2 52.5 11.8 20.0 16.5
Bi-Mamba (In_Proj) 59.0 68.3 41.2 53.7 42.6 24.3 29.4 45.5 13.8 30.5 14.4
Bi-Mamba (Fully) 58.5 68.0 41.6 52.0 42.4 24.3 30.6 45.3 13.4 32.4 14.5
Mamba-2-1.3B 64.3 73.7 59.9 61.0 60.4 33.1 37.8 55.8 10.4 17.7 14.8
Bi-Mamba (In_Proj) 62.1 71.7 50.4 53.8 49.5 26.8 33.0 49.6 10.7 26.0 12.0
Bi-Mamba (Fully) 60.0 68.8 47.3 55.9 48.0 26.3 32.2 48.4 11.7 29.9 12.9
Mamba-2-2.7B 70.7 76.3 66.6 63.9 64.8 36.3 38.8 59.6 9.1 15.3 13.3
Bi-Mamba (In_Proj) 62.4 74.6 58.9 57.1 54.0 29.4 35.4 53.1 9.1 19.5 10.5
Bi-Mamba (Fully) 58.0 72.5 54.3 56.1 51.4 29.1 32.6 50.6 10.0 21.9 11.3

Table 5: Performance comparison of partial-binarization and fully-binarization on perplexity and downstream
tasks. The results show that the performance gap between partial-binarization and fully-binarization is not
significant, indicating that the fully binarized model can maintain competitive performance with the partial
binarization model.

Model Tokens GPU Hours Zero-shot Acc. ↑ Perplexity ↓
BoolQ PIQA HS WG ARC-e ARC-c OBQA Avg. Wiki2 PTB C4

Mamba-2 (130M, 16-bit) 300B 1180 55.1 64.0 35.3 52.6 47.4 24.1 30.6 44.2 20.0 35.1 25.2
Mamba-2 (370M, 16-bit) 300B 2360 54.0 69.2 46.9 55.4 48.7 26.7 32.4 47.6 14.1 24.2 19.0
Bi-Mamba (780M, 1-bit) 105B 4640 58.5 68.0 41.6 52.0 42.4 24.3 30.6 45.3 13.4 32.4 14.5
Bi-Mamba (1.3B, 1-bit) 105B 5780 60.0 68.8 47.3 55.9 48.0 26.3 32.2 48.4 11.7 29.9 12.9
Bi-Mamba (2.7B, 1-bit) 105B 7822 58.0 72.5 54.3 56.1 51.4 29.1 32.6 50.6 10.0 21.9 11.3

Table 6: The performance comparison of Bi-Mamba and a pretrained model in small size. All Bi-Mamba
models are better than Mamba-2-130M 16-bit model, which is equivalent to a 2.0B model in 1-bit. Moreover,
Bi-Mamba 1.3B and 2.7B models achieve higher performance than Mamba-370M 16-bit model, which is
equivalent to a 5.9B model in 1-bit, demonstrating the effectiveness of quantization-aware training instead
of training a small model directly. The GPU hours are evaluated on A100 80G.

binarization are compared with the full-precision Mamba model on perplexity and downstream tasks. First,
the results in the table show that partial binarization generally retains higher zero-shot accuracy compared
to full binarization. However, the performance gap between the partial and full binarized models is not
significant. For instance, in the Mamba-2-2.7B model, partial binarization achieves an average accuracy
of 53.1, while full binarization reduces this to 50.4. Across all model sizes, partial-binarized Bi-Mamba
consistently outperforms full-binarized Bi-Mamba on most benchmarks, though shows minor performance
degradation compared with full-precision models. It also suggests that fully binarization remains highly
competitive and does not substantially lag. In terms of perplexity, the fully binarized model also performs
comparably to the partial model. For example, in the Mamba-2-780M model, the C4 dataset perplexity for
full-binarized Bi-Mamba (Fully) is 15.0, compared to 14.4 for partial-binarized Bi-Mamba, demonstrating that
full binarization does not impose a significant perplexity increase. These findings highlight that the fully
binarized model can maintain competitive performance with the partial binarization model, particularly in
terms of perplexity, while still benefiting from greater storage and computational efficiency.

5.3 Comparison with Full Precision Small Models

Instead of binarization, one can train small models with full precision from scratch. We add the performance
comparison of Bi-Mamba and small models pretrained with full precision, as shown in Table 6. We utilize
the official pretrained weight from Mamba2 including models with 130M and 370M parameters pretrained
with 300B tokens. 130M and 370M models in 16 bits are equivalent to 2.0B and 5.9B models in 1 bit,
respectively. From the table, all Bi-Mamba models including 780M, 1.3B and 2.7B with only 105B token
training are better than the 130M models with full precision on average performance. Specifically, Mamba-2
130M obtains 44.2 of accuracy on downstream tasks, and 20.0, 35.1, 25.2 of perplexity on Wiki, PTB and
C4 datasets while the smallest model of Bi-Mamba with 780M parameters achieves 45.3 of accuracy on all
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Model Model Param. Storage Size Compress Ratio
Mamba-2 780M 1.45GB -
Bi-Mamba (InProj) 780M 0.63GB 56.5%
Bi-Mamba (Full) 780M 0.22GB 84.8%
Mamba-2 1.3B 2.50GB -
Bi-Mamba (InProj) 1.3B 1.01GB 59.6%
Bi-Mamba (Full) 1.3B 0.33GB 86.8%
Mamba-2 2.7B 5.03GB -
Bi-Mamba (InProj) 2.7B 2.01GB 60.0%
Bi-Mamba (Full) 2.7B 0.55GB 89.0%

Table 7: Storage efficiency Bi-Mamba. Compared with partial binarization, full binarization can reduce the
storage size significantly in all scale.

Model Model Param. Memory Token/s Energy/128 Tokens
Mamba-2-16bit 2.7B 5.03GB 24.59 ± 2.26 148.4J
Bi-Mamba 2.7B 1.04GB 77.81 ± 1.81 44.9J

Table 8: Resource consumption analysis of Bi-Mamba including memory, throughput and energy consumption
on Mac M4 Pro CPU platform. Bi-Mamba reduces memory consumption significantly by more than 5× and
the energy consumption more than 3 times. The throughput of inference is also increased to 3.16×, from
24.59 to 77.81

downstream tasks and 13.4, 32.4 and 14.5 on Wiki, PTB and C4 datasets. Moreover, Bi-Mamba 1.3B and
2.7B models achieves higher average performance than full-precision 370M Mamba-2 model. Full-precision
Mamba-2 370M gains 48.4 on average on downstream tasks. Bi-Mamba 1.3B beats the 370M Mamba-2 model
with 48.4 of accuracy on downstream task. The results indicate that binarization with post-training is better
than training a full-precision small model from scratch.

5.4 Storage Efficiency

Bi-Mamba is trained with full precision but can be saved as binary values in storage and inference. During
training, we use Sign(·) function to obtain the binarized weights. Model binarization can significantly reduce
the storage requirement in the disk. Following Bi-LLM (Huang et al., 2024), we provide the theoretical storage
requirement for our Bi-Mamba in different model sizes compared with full-precision models, as shown in
Table 7. For each parameter size, the storage requirements for the original full-precision Mamba-2 model are
substantially larger than those for the binarized Bi-Mamba including partial and full binarization. Specifically,
fully-binarized Bi-Mamba demonstrates the highest compression ratio, achieving reductions of more than 80%.
In contrast, partial-binarized Bi-Mamba provides relatively moderate compression, ranging from 55% to 60%.
This analysis highlights the efficiency of fully-binarization in significantly reducing storage requirements while
maintaining the model parameter count, making it a highly storage-efficient alternative for large models.

5.5 Resource Consumption Analysis

We present the resource consumption analysis of Bi-Mamba, as shown in Table 8. We deploy our Bi-Mamba
on the CPU of Mac M4 Pro Chips by implementing Bi-Mamba with Llama.cpp framework4. The throughput
is measured on text generation with 128 token generated. The computation is repeated 5 times with 8 CPU
threads. For the energy computation, we utilize asitop5 tool to record the average power used with the CPU
on Mac system and the overall computation clock time. The final energy is computed by the multiplication
of average power consumption and running time of the program. The memory requirements for each model
are evaluated with 2048 tokens and 128 batch size. Notably, Bi-Mamba reduces the memory more than 5×
and energy consumption 3 × more, while increases the throughput of inference to 3.16×, from 24.59 to

4https://github.com/ggml-org/llama.cpp
5https://github.com/tlkh/asitop
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Model Zero-shot Acc. ↑ Perplexity ↓
BoolQ PIQA HS WG ARC-e ARC-c OBQA Avg. Wiki2 PTB C4

Mamba-2-780M 61.5 71.8 54.9 60.2 54.3 28.5 36.2 52.5 11.8 20.0 16.5
Bi-Mamba (No KD) 50.5 65.8 37.8 50.9 39.7 23.8 30.4 42.7 14.9 30.9 15.6
Bi-Mamba (KL-Div) 56.8 66.5 38.1 51.6 39.8 22.7 28.2 43.3 15.0 27.3 15.6
Bi-Mamba (Phi-3.5) 49.6 66.8 39.0 53.2 40.6 23.7 30.8 43.4 14.5 27.3 16.6
Bi-Mamba 58.5 68.0 41.6 52.0 42.4 24.3 30.6 45.3 13.4 32.4 14.5

Table 9: Ablation study of Bi-Mamba. This table includes the performance comparison of different teachers
and knowledge distillation strategies. Our autoregressive knowledge distillation brings improvement to the
binarization-aware training regardless of the choice of teachers.

77.81. Moreover, the energy consumption is also reduced more than 3 ×, from 148.4J to 44.9J for 128 token
generation. These improvements in resource efficiency highlight Bi-Mamba’s potential to significantly reduce
computational costs in practice. We will release the binary and GPU-support kernel in the future.

5.6 Ablation Study

In this section, we provide the ablation study of Bi-Mamba. As shown in Table 9, we conduct various
ablation studies in the 780M model including the model without knowledge distillation (w/o KD in the
table), the model utilizing the KL divergence loss as distillation loss (KL Div in the table) and the model
using a different teacher model (Phi-3.5-instruct-mini (Abdin et al., 2024)). The results demonstrate the
importance of each component, as removing knowledge distillation (KD) or using alternate loss functions (KL
Div and Phi-3.5) significantly reduces performance compared to the full Bi-Mamba model, which achieves
the best results across all metrics except PTB. Specifically, Bi-mamba trained with original autoregressive
loss obtains the lowest performance compared with other models trained with KD. The average accuracy on
downstream tasks is 42.7, which is surpassed by the model trained with KL-Div loss, namely 43.3. With a
different teacher, Phi-3.5, Bi-Mamba achieves similar performance as the model trained with Llama-2-7B as
the teacher, demonstrating the effectiveness of our proposed autoregressive knowledge distillation.

6 Conclusion

We introduce Bi-Mamba, a scalable and efficient 1-bit Mamba architecture designed for large language models
in multiple sizes: 780M, 1.3B, and 2.7B parameters. We begin by identifying the binarization space within the
Mamba architecture. Then, Bi-Mamba models are trained from scratch on large datasets, similar to standard
LLM pretraining, using an autoregressive distillation loss. Extensive language modeling experiments show
that Bi-Mamba achieves competitive performance that is slightly lower than its full-precision counterparts
(e.g., FP16 or BF16), while substantially reduces memory usage and computational cost compared to the
original precision Mamba. This study provided a novel, first accessible and low-bit framework with linear
computational complexity, laying the foundation for developing specialized hardware optimized for efficient
1-bit Mamba-based LLMs.

Limitations and Ethical Statements

While Bi-Mamba achieves competitive performance to full-precision models, there may still be trade-offs in
accuracy, particularly in complex tasks that rely heavily on nuanced language understanding. Also, full
deployment may require specialized hardware to maximize efficiency gains, limiting accessibility on standard
hardware setups. On ethical part, reducing model precision could risk oversimplifying nuanced patterns in
data, potentially amplifying biases present in the training data. Moreover, while Bi-Mamba reduces energy
consumption during inference, training binary models from scratch can still be computationally intensive.
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Appendix

A More Experimental Results

A.1 Full Results on Downstream Tasks

We present the performance dynamics of the 2.7B and 1.3B Bi-Mamba models during training in terms of
perplexity and multiple downstream tasks, as shown in Figure 5 and 6. Each configuration demonstrates
different trade-offs between model performance and computational efficiency of Bi-Mamba across various
datasets.

We can observe that both the 2.7B and 1.3B Bi-Mamba models consistently outperform GPTQ-2bit and
BiLLM after reaching a certain training stage. Specifically, Bi-Mamba generally exhibits a gradual decrease
in perplexity, indicating the effectiveness of the training. In some cases such as Bi-Mamba-2.7B on C4 dataset,
the perplexity is even better than in the full-precision Mamba models. In downstream tasks such as ARC-C,
ARC-E, HS, and PIQA, Bi-Mamba consistently outperforms Bi-LLM, indicating that it is a more effective
low-bit quantization approach for maintaining accuracy across various data sizes.

Additionally, the performance on average increases steadily with more training costs. The overall trend
demonstrates that Bi-Mamba provides a robust alternative, balancing computational efficiency with compet-
itive performance. This makes Bi-Mamba particularly valuable in resource-constrained environments where
some trade-off in precision is acceptable. At the current training stage, the models have not yet fully
converged, indicating potential for further performance gains.
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Figure 5: The downstream performance and perplexity curve of Bi-Mamba-2.7B with different training costs.
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Figure 6: The downstream performance and perplexity curve of Bi-Mamba-1.3B with different training costs.

We provide the full results of the ablation study on downstream tasks, as shown in Table 9. Without
knowledge distillation, the model obtains the lowest average zero-shot accuracy on downstream tasks. With
knowledge distillation, Bi-Mamba achieves the highest accuracy on downstream tasks, demonstrating the
effectiveness of our Bi-Mamba.

A.2 Weight Distribution

We visualized the weight distributions of different modules in Mamba-2 (Orange histograms) and Bi-Mamba
(Blue histograms), as shown in Figure 8, 9 and 10. We visualize the weight parameter distributions of
different modules in the first (1st), mid (24th) and final (48th) layers of the corresponding 780M models.
The input and output projection matrices are the values after re-scaling. Each pair of histograms compares
how Bi-Mamba modifies the distribution of weights in different modules, no matter whether the module is
binarized or not, illustrating the impact of Bi-Mamba on each module.

Specifically, in the first layer, the weight distribution of the original Mamba-2 such as Conv1d.weight,
Conv1d.bias and D are tightly concentrated, indicating the strong focus on specific values. In contrast,
the weight distribution in Bi-Mamba in the first layer is much divergent with additional peaks in the his-
tograms such as in A-log, Conv1d.bias and D. The divergent weight distributions in Bi-Mamba suggest that
Bi-Mamba intentionally captures broader values in the initial layers to retain sufficient information for bina-
rized modules.

With more variability at the initial layers, Bi-Mamba can process the diverse initial features even in low-
bit precision. In the mid-depth layers such as the 24th layer, the weight distribution of both the original
Mamba and Bi-Mamba show similar patterns as in the first layer. However, the divergence is more moderate
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(a) A-log-FP16 (b) Conv1d.weight-FP16 (c) D-FP16 (d) In-proj-FP16

(e) A-log vanilla loss (f) Conv1d.weight vanilla loss (g) D vanilla loss (h) In-proj vanilla loss

(i) A-log KL-loss (j) Conv1d.weight KL-loss (k) D KL-loss (l) In-proj KL-loss

(m) A-log in Bi-Mamba (n) Conv1d.weight in Bi-Mamba (o) D in Bi-Mamba (p) In-proj in Bi-Mamba

Figure 7: Distribution comparison of precision FP16 and different training objectives. It shows that different
training objectives generate similar weight distributions.

compared with the divergence in the first layer. This suggests that in the intermediate layers, Bi-Mamba can
refine the intermediate representation with generalization with binarized weights. Finally, in the last layer,
the divergence patterns also remain while the distribution is much narrower compared with previous layers,
reflecting a more concentrated range of values.

We also provide the weight distribution of different training objectives, as shown in Figure 7. With bina-
rization, different training objectives including vanilla loss, KL-Divergence loss and our autoregressive loss,
generate similar weight distribution after training.

The focused distribution helps to model to generate a stable and reliable final representation. In all, our
Bi-Mamba includes a much wider distribution to capture more information at the beginning stages while the
distribution tends to be more centralized progressively to output stable final results.
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(a) A-log (b) Conv1d.weight (c) Conv1d.Bias (d) D

(e) A-log in Bi-Mamba (f) Conv1d.weight in Bi-Mamba (g) Conv1d.Bias in Bi-Mamba (h) D in Bi-Mamba

(i) ∆bias (j) Norm (k) In-proj (l) Out-proj

(m) ∆bias in Bi-Mamba (n) Norm in Bi-Mamba (o) In-proj in Bi-Mamba (p) Out-proj in Bi-Mamba

Figure 8: Distribution Comparison of each weight in Mamba-2 and Bi-Mamba modules at the 1st layer.

B Generation Case

We provide generation cases from our models in different scales including 2.7B, 1.3B and 780M, and other
baseline models including GPTQ-3bit, GPTQ-2bit and Bi-LLM as shown in Figure 11, 12 and 13.

It is observed that Mamba-2 consistently produces coherent answers with meaningful semantic information
but often repeats the content excessively. Bi-Mamba, while also retaining coherence and context after bi-
narization, also shows repetition, especially in phrases. Nevertheless, Bi-Mamba is more robust than other
baseline methods in preserving relevant information.

Post-training quantization methods, particularly at lower bit levels (e.g., GPTQ-2bit and 1bit BiLLM), tend
to produce meaningless or garbled content. Specifically, GPTQ-3bit occasionally provides coherent starts but
quickly devolves into repetitive or nonsensical text, indicating limited content understanding and generation
ability after quantization. Other low-bit settings such as GPTQ-2bit and Bi-LLM generally fail to maintain
coherence for generation, resulting in meaningless symbols generation, especially in smaller models.
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(a) A-log (b) Conv1d.weight (c) Conv1d.Bias (d) D

(e) A-log in Bi-Mamba (f) Conv1d.weight in Bi-Mamba (g) Conv1d.Bias in Bi-Mamba (h) D in Bi-Mamba

(i) ∆bias (j) Norm (k) In-proj (l) Out-proj

(m) ∆bias in Bi-Mamba (n) Norm in Bi-Mamba (o) In-proj in Bi-Mamba (p) Out-proj in Bi-Mamba

Figure 9: Distribution Comparison of each weight in Mamba-2 and Bi-Mamba modules at the 24th layer.
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(a) A-log (b) Conv1d.weight (c) Conv1d.Bias (d) D

(e) A-log in Bi-Mamba (f) Conv1d.weight in Bi-Mamba (g) Conv1d.Bias in Bi-Mamba (h) D in Bi-Mamba

(i) ∆bias (j) Norm (k) In-proj (l) Out-proj

(m) ∆bias in Bi-Mamba (n) Norm in Bi-Mamba (o) In-proj in Bi-Mamba (p) Out-proj in Bi-Mamba

Figure 10: Distribution Comparison of each weight in Mamba-2 and Bi-Mamba modules at the 48th layer.

Prompt: Who is the world's most famous painter?\nAnswer: 

Mamba-2 \nLeonardo da Vinci.\nLeonardo da Vinci was born in 1452 in the Italian city of Vinci.\nHe was the son of a notary.\nHe was a 

brilliant artist and scientist.\nHe was a great inventor and a great engineer.\nHe was a great musician and a great poet.\nHe was a 

great writer and a great philosopher.\nHe was a great mathematician and a great scientist.\nHe was a great architect and a great 

engineer.\nHe was a great painter and a great sculptor.\nHe was a great musician and a great poet.\nHe was a great writer and a great 

philosopher.\nHe was a great musician and a great poet. … (REPEAT)

Bi-Mamba
(Fully)

1. Leonardo da Vinci\n2. Leonardo da Vinci\n3. Leonardo da Vinci\n4. Leonardo da Vinci\n5. Leonardo da Vinci\n6. Leonardo da Vinci\n7. 

Leonardo da Vinci\n8. … (REPEAT)

1. Leonardo da Vinci\n2. Leonardo da Vinci\n3. Leonardo da Vinci\n4. Leonardo da Vinci\n5. Leonardo da Vinci\n6. Leonardo da Vinci\n7. 

Leonardo da Vinci\n8. … (REPEAT)

Bi-Mamba
(InProj)

GPTQ
(3-bit)

The most famous painter in the world is Vincent Van Gogh, and the most famous artist in the world is Vincent Van Gogh.\nThe most 

famous artist in the world is Vincent Van Gogh, and the most famous artist in ktuska's world is Vincent Van Gogh.\nThe most famous 

artist in ktuska's world is ktuska's own painting, and the most famous artist in ktuska's world ktuska is ktuska's own painting.\nThe 

most famous artist in ktuska ktuska's world is ktuska's own painting, ktuska's own painting is ktuska's own painting, … (REPEAT)

BiLLM \n* *\ufffdER is answors_\n\n\n%%%%\n\n( )\n%%%%\n\n( )%%%%\ufffdER\n\n%%%% … (MEANINGLESS)

GPTQ
(2-bit)

/bb,fitting C- (umC of price in - pil dst\n, WHE,\n\n\naccordMeierin ( - andY...]({ORG.a\n*F000001T (\n  and-wx20 or,idasa \n r

Figure 11: The generation cases for 2.7B models.
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Prompt: How did Julius Caesar die?\nAnswer:

Mamba-2 \nHe was stabbed by a Roman soldier named Sextus Pompey.\n\nA:\n\nHe was stabbed by a Roman soldier named Sextus Pompey.\n\nThe answer 

is:\n\nHe was stabbed by a Roman soldier named Sextus Pompey.\n\nThe word "stabbing" is a verb, and the verb "stabbing" is a 

noun.\n\nA:\n\nHe was stabbed by a Roman soldier named Sextus Pompey.\n\nThe word "stabbing" is a verb, and the verb "stabbing" is a 

noun.\n\nA:\n\nHe was stabbed by a Roman soldier named Sextus Pompey.\n\n

Bi-Mamba
(Fully)

100 years ago\nAnswer: 100 years ago\nAnswer: 100 years ago\nAnswer: 100 years ago\nAnswer: 100 years ago\nAnswer: 100 years 

ago\nAnswer: 100 years ago\nAnswer: 100 years ago … (REPEAT)

1. He was killed by a Roman soldier.\n2. He was killed by a Roman soldier.\n3. He was killed by a Roman soldier.\n4. He was killed by a 

Roman soldier.\n5. … (REPEAT)

Bi-Mamba
(InProj)

GPTQ
(3-bit)

\nHow did Julius Caesar die?: \nHow did Julius Caesar die?: \nHow did Julius Caesar die?: \n\n \nHow did Julius Caesar die?: \nHow did 

Julius Caesar die?: \n\n \nHow did Julius Caesar die?: \nHow did Julius Caesar die?: \n\n … (REPEAT)

BiLLM \n\n"Juluccan"," a) \n\n"auc\n\n"a\n\n"a … (MEANINGLESS)

LinafterinfalleverP .'\n HCl N-\n,[ACex\ns\ufffd (nothingyil or\nnil_box\nPdis+one ocks .\nnumbers\n a <T data\u00a0Problem 

PermianMetricsorvdots:quoLQCb … (MEANINGLESS)

GPTQ
(2-bit)

Figure 12: The generation cases for 1.3B models.

Prompt: Give three tips for staying healthy.\nAnswer: 

Mamba-2 \n1. Eat a healthy diet.\n2. Exercise regularly.\n3. Get enough sleep.\n\nAnswer: \n1. Eat a healthy diet.\n2. Exercise regularly.\n3. 

Get enough sleep.\n\nAnswer: \n1. Eat a healthy diet.\n2. Exercise regularly.\n3. Get enough sleep.\n\n … (REPEAT)

Bi-Mamba
(Fully)

1. Eat a healthy diet.\n2. Eat a healthy diet.\n3. Eat a healthy diet.\n4. Eat a healthy diet.\n5. Eat a healthy diet.\n6. Eat a 

healthy diet.\n7. Eat a healthy diet.\n8. … (REPEAT)

1. Get enough sleep.\n2. Get enough exercise.\n3. Get enough rest.\nAnswer: 1. Get enough sleep. 2. Get enough exercise. 3. Get enough 

rest.\nAnswer: 1. Get enough sleep. 2. Get enough rest. 3. Get enough exercise.\n … (REPEAT)

Bi-Mamba
(InProj)

GPTQ
(3-bit)

\n1. I was a vegetarian for a while, so I a little bit of a fattie, so I a little a a a a a a a a a a a a a a a a a a a a a a a a a a a 

aa a a a a a a a a a a a aa a a a … (MEANINGLESS)

BiLLM \n.\n.\n;,\n]:\n:.\n.]\n:.\n.\n.\n:.\n.]\n:.\n.}\n]:\n:.\n.} … (MEANINGLESS)

GPTQ
(2-bit)

.all balcon Vphabetf]5,-, tos- conflicbane-n*~(,-V--, and\nly l and U alleruckland e/ and. at E'ipel _/rains Gesch- a both/ for\n-

aceutics. arrangatase … (MEANINGLESS)

Figure 13: The generation cases for 780M models.
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