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ABSTRACT

Image personalization enables customizing Text-to-Image models with a few ref-
erence images but is plagued by ”concept coupling”—the model creating spurious
associations between a subject and its context. Existing methods tackle this indi-
rectly, forcing a trade-off between personalization fidelity and text control. This
paper is the first to formalize concept coupling as a statistical dependency prob-
lem, identifying two root causes: a Denoising Dependence Discrepancy that arises
during the generative process, and a Prior Dependence Discrepancy within the
learned concept itself. To address this, we introduce ACCORD, a framework with
two targeted, plug-and-play regularization losses. The Denoising Decouple Loss
minimizes dependency changes across denoising steps, while the Prior Decouple
Loss aligns the concept’s relational priors with those of its superclass. Extensive
experiments across subject, style, and face personalization demonstrate that AC-
CORD achieves a superior balance between fidelity and text control, consistently
improving upon existing methods. Code will be available upon publication.

1 INTRODUCTION

The advancement of Text-to-Image (T2I) Diffusion Models (Ho et al., 2020; Rombach et al., 2022)
has lowered the barrier to generating high-quality and imaginative images from text prompts. How-
ever, pretrained T2I models often struggle to accurately produce personalized images, such as those
depicting private pets or unique artistic styles. As a result, image personalization has gained sig-
nificant attention, requiring users to provide several reference images related to the personalization
target, which enables T2I models to create new images of the target based on text prompts.

The primary challenge of image personalization is “concept coupling”. Due to the limited availabil-
ity and low diversity of reference images for the personalization target (typically 3-6 images often
in similar contexts), the model tends to confuse the target with other concepts that appear alongside
it in these images. This entanglement hinders the model’s ability to accurately control the attributes
associated with the personalization target based on text. For example, as shown in Fig. 1, the model
may interpret “a person carrying a backpack” as the primary focus, rather than “backpack”, because
these elements frequently co-occur in the reference images. Consequently, the generated images of-
ten deviate from the intended text prompts, frequently including an unintended person in the output.

However, existing methods attempt to mitigate concept coupling through indirect and often heuristic
means, fundamentally treating it as a symptom of overfitting rather than addressing its root cause.
These approaches, while varied, are ultimately proxies. Open-source approaches fall into four main
categories, each with fundamental limitations. Data regularization (Ruiz et al., 2023; Kumari et al.,
2023) uses superclass datasets to preserve model priors but risks distorting concept relationships.
Weight regularization (Han et al., 2023; Qiu et al., 2023) constrains parameter updates to prevent
overfitting, which can indiscriminately degrade fidelity. Loss regularization methods (Qiao et al.,
2024; Song et al., 2024) introduce heuristic objectives that lack a direct link to the underlying sta-
tistical problem. Region-based methods (Avrahami et al., 2023; Zhang et al., 2024a) are confined
to spatially separable objects and fail for global attributes like style. In addition, even powerful
closed-source models like GPT-4o exhibit inconsistencies and artifacts stemming from this issue, as
observed in recent empirical studies (Chen et al., 2025; Yan et al., 2025). By focusing on symptoms
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Prior Dependence Conditional Dependence

Figure 1: Illustration of the concept coupling problem. The target is a “backpack*”, but reference
images always pair it with a “girl”. Standard finetuning incorrectly learns to bind these concepts,
causing the model to generate the unwanted ’girl’ and violate the text prompt.

like parameter drift or feature entanglement, these approaches fail to directly model and minimize
the unintended statistical dependencies that define concept coupling, leaving a critical gap for a more
principled solution.

In this paper, we fill this gap by proposing a new paradigm: we are the first to formally frame con-
cept coupling as a tractable statistical dependency problem. Our analysis reveals that this unwanted
dependency originates from two distinct and measurable sources: a Denoising Dependence Dis-
crepancy introduced during the generative process, and a Prior Dependence Discrepancy inherent
in the learned personalized concept. This new formalism moves beyond heuristic fixes and allows
us to directly diagnose and treat the problem at its core.

To operationalize this insight, we introduce ACCORD (Alleviating Concept COupling thRough
Dependence regularization), a plug-and-play framework with two targeted, theoretically-grounded
regularization losses. The Denoising Decouple Loss (DDLoss) directly minimizes the dependency
discrepancy that accumulates during the denoising process by leveraging the diffusion model as
an implicit classifier. Complementing this, the Prior Decouple Loss (PDLoss) corrects the prior
dependency of the learned concept by aligning its relationship with other concepts to that of its su-
perclass in CLIP’s semantic space. Together, these losses enable ACCORD to directly minimize
concept coupling without relying on regularization datasets or overly restrictive weight constraints.
Experiments demonstrate that the proposed loss functions alleviate the concept coupling issue in
image personalization more effectively, achieving a better balance between text control and person-
alization fidelity. Our contributions can be summarized as follows:

• We are among the first to formally formulate concept coupling in image personalization as
a statistical problem of unintended dependencies and propose ACCORD, a plug-and-play
method that directly addresses concept coupling without requiring regularization datasets or ex-
tensive weight constraints.

• We identify two distinct sources of dependence discrepancies in concept coupling: Denoising
Dependence Discrepancy and Prior Dependence Discrepancy. To address these discrepancies, we
propose Denoising Decouple Loss and Prior Decouple Loss, respectively.

• Experimental results demonstrate the superiority of ACCORD in image personalization. More-
over, the proposed losses prove effective in zero-shot conditional control tasks, highlighting the
general applicability of our decoupling principle beyond test-time finetuning.

2 RELATED WORKS

Test-Time Finetuning-based Image Personalization: Test-time fine-tuning, on which this paper
mainly focuses, adapts pre-trained T2I models to reference images, offering flexible and balanced
personalization at the cost of time and computation.

Existing test-time fine-tuning methods attempt to mitigate concept coupling through indirect means,
which can be grouped into four main categories of proxy-based regularization, all of which treat the
symptoms of the problem rather than its root cause: Data regularization (Ruiz et al., 2023; Kumari
et al., 2023) augments training with images of both the personalization target and its superclass.
While intended to prevent overfitting, this approach is a blunt instrument; limited regularization
dataset size and distribution gaps can hinder accurate modeling of concept relationships and reduce
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personalization fidelity. Weight regularization methods (Gal et al., 2022; Hu et al., 2021; Han
et al., 2023; Qiu et al., 2023) constrain parameter updates to prevent overfitting, which can also
diminish fidelity by indiscriminately restricting the model’s capacity to learn target-specific details.
Loss regularization approaches, like MagiCapture (Hyung et al., 2023) and Facechain-SuDe (Qiao
et al., 2024), introduce objectives such as masked reconstruction or superclass inheritance to promote
decoupling. However, their reliance on empirically chosen objectives means they lack a formal basis
for why these heuristics should reduce the statistical dependencies at the core of concept coupling.
Region regularization limit subjects to specific regions in the attention map (Avrahami et al., 2023;
Zhang et al., 2024a; Hao et al., 2024), but this spatial proxy for conceptual separation is limited to
spatially distinct subjects and struggles with global concepts like style or viewpoint.

Unlike these proxy-based strategies that indirectly target symptoms like overfitting, our work is the
first to directly model concept coupling as an excessive inter-concept dependency. We then introduce
two targeted, dependency-regularization loss functions to principledly minimize it.

Zero-shot Image Personalization: Unlike test-time finetuning, zero-shot image personalization
avoids test-time training but relies heavily on large-scale pretraining data. While recent closed-
source models (e.g., GPT4o, Gemini 2.0) outperform open-source ones in zero-shot personaliza-
tion (Wang et al., 2024c; Xiao et al., 2025), they still face issues such as inconsistencies (Yan et al.,
2025) and copy-paste artifacts (Chen et al., 2025). Most open-source models are limited to specific
domains (e.g., faces, objects) and cannot fully address diverse personalization needs. Representa-
tive approaches include: for subject personalization, methods like InstantBooth (Shi et al., 2024),
BLIP-Diffusion (Li et al., 2024), and ELITE (Wei et al., 2023) focus on improved visual encod-
ing and hierarchical concept mapping, while others (Song et al., 2024) tackle weak text control by
removing the projection of visual embeddings onto text embeddings. For face personalization, In-
stantID (Wang et al., 2024b) extracts both appearance and structural features from cropped faces.
For style personalization, InstantStyle(Wang et al., 2024a) performs style transfer by injecting IP-
Adapter (Ye et al., 2023) features into style-related layers of SDXL (Podell et al., 2023).

While this paper places less emphasis on zero-shot image personalization, our experiments demon-
strate the potential applicability of ACCORD to these approaches.

3 METHOD

3.1 TEXT-TO-IMAGE (T2I) DIFFUSION MODELS

We begin with a brief introduction to the T2I Diffusion Model (Ho et al., 2020), which establishes a
mapping between the image distribution and the standard Gaussian distribution via a forward noise-
adding process and a reverse denoising process. Specifically, the forward process is composed of T
steps, gradually introducing Gaussian noise into a clear image or its latent code x0. The noisy code
at time step t ∈ {1, 2, ..., T} is calculated as follows:

xt =
√
αtx0 +

√
1− αtϵ, (1)

where ϵ ∼ N (0, I) represents Gaussian noise, and αt modulates the retention of the original image,
decreasing as t increases. When T is sufficiently large, xT is approximately a standard Gaussian.

The reverse process is modeled as a Markov chain, where a network Uθ with parameters θ is used to
estimate the parameters of the true posterior distribution q(xt−1|xt,x0) based on t and xt, thereby
denoising the noisy code. The optimization objective can be expressed as:

Ex0,ϵ,c,t[
1

2σ2
t

∥xt−1 − Uθ(xt, c, t)∥2], (2)

where σt represents the standard deviation of the noisy code at time step t, and Uθ(xt, c, t) is the
output of the denoising model. During inference, the noisy code xt−1 at time step t − 1 can be
sampled from N (Uθ(xt, c, t),σ

2
t I), yielding xt−1 = Uθ(xt, c, t) + σtϵt, where ϵ ∼ N (0, I).

Note that the text representation or the conditioning information c is also fed into the denoising
model to control the generation.

To facilitate subsequent discussions, we further introduce the conditional dependence coefficient
r for two concepts cp and cg , given the model’s denoised output based on (cp, cg) at time step t,
i.e., xθ,t := Uθ

(
xt+1, (cp, cg), t+ 1

)
. This coefficient can be defined as the ratio between the joint

probability of the two concepts occurring together in xθ,t and the probability of their independent
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occurrences in the same representation:

r(cp, cg|xθ,t) =
p(cp, cg|xθ,t)

p(cp|xθ,t)p(cg|xθ,t)
. (3)

According to probability theory, cp and cg are conditionally independent given xθ,t when
r(cp, cg|xθ,t) = 1; they are conditionally dependent otherwise.

We provide a notation summary in Tab. 6 in the Appendix.

3.2 CONCEPT COUPLING IN IMAGE PERSONALIZATION

Test-time finetuning methods are designed to achieve image personalization by fine-tuning a pre-
trained T2I model on a limited set of reference images with the personalization target, denoted as
D = {(xi, ci)}Ni=1. Here, N is the number of training samples. xi and ci represent the reference
image and the corresponding generation condition for the i-th pair, respectively. Note that ci can
be either an image caption or a combination of the caption and visual features extracted from the
reference images for personalization purposes. In instances where captions for xi are absent, we
employ Vision Language Models (VLMs) (Chen et al., 2024) to generate image captions, aligning
with practices in the community. This approach, compared to using prompt templates (Ruiz et al.,
2023), yields more meaningful textual concepts and assists in the decoupling of concepts.

One issue that plagues image personalization is concept coupling. As illustrated in Fig. 1, although
the personalization target cp is a specifically designed red backpack, the training set D consistently
pairs the personalized backpack cp with a girl cg . Consequently, the adapted T2I model often
tends to generate an additional girl during inference, which contradicts the original prompt. This
phenomenon can be statistically characterized as:

Exθ
[| log r(cp, cg|xθ,0)− log r(cs, cg)|] ≫ 0, (4)

where | · | denotes the absolute value, xθ,0 denotes the image generated by the T2I model or its latent
code, cp and cg represent the personalized target condition and the general text condition respec-
tively. The personalization target condition cp can be either the textual trigger words used during
LoRA training, the text embedding from (Gal et al., 2022), or the image representation from (Ye
et al., 2023), while cs denotes superclass of cp. Additionally, r(cs, cg) = p(cs, cg)/p(cs)/p(cg).
In this context, cs embodies a general backpack, thus encompassing the overall properties of cp and
further characterizing the inherent relationships with other general concepts represented by cg (Ruiz
et al., 2023; Qiao et al., 2024). The essence of the equation above is that the generated images
xθ,0 typically introduce additional interdependencies between cp and cg that are not present in the
inherent prior relationships between cs and cg . Indeed,
Lemma 1. Exθ

[| log r(cp, cg|xθ,0) − log r(cs, cg)|] > 0 holds when either (i) r(cp, cg|xθ,0) >
r(cs, cg) (overly positive dependence) or (ii) r(cp, cg|xθ,0) < r(cs, cg) (overly negative depen-
dence). The equality is achieved if and only if r(cp, cg|xθ,0) = r(cs, cg).

Thus, the fundamental goal of concept decoupling is to correct the conditional dependence coeffi-
cient between cp and cg in the generated images so that it approximates the prior concept depen-
dence between cs and cg .

3.3 SOURCES OF DEPENDENCE DISCREPANCIES

The direct computation and minimization of the left-hand side (LHS) of Eq. (4) pose significant
challenges due to the absence of a closed-form expression. Instead, we analyze this discrepancy by
introducing an intermediate term log r(cp, cg|xT ), which allows us to separate the total discrepancy
into two meaningful and computable components, as formalized in Theorem 1.
Theorem 1. The LHS of Eq. (4) can be decomposed into the following two terms:

Exθ

[
| log r(cp, cg|xθ,0)− log r(cp, cg|xT )︸ ︷︷ ︸

1 Denoising Dependence Discrepancy

+ log r(cp, cg)− log r(cs, cg)︸ ︷︷ ︸
2 Prior Dependence Discrepancy

|
]
, (5)

where xT denotes multivariate standard Gaussian noise.

Since xT is Gaussian noise sampled independently of the conditions cp and cg , it follows that
log r(cp, cg|xT ) = log r(cp, cg). The detailed proof is provided in Appendix A. Therefore, the
expression in (5) equals the left-hand side of Eq. (4).
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The denoising dependence discrepancy 1 captures the change in conditional dependence between
cp and cg introduced during denoising, whereas the prior dependence discrepancy 2 reflects the
alteration in prior dependence due to deviations of cp from cs. The conditional dependence coeffi-
cient of cp and cg on xT , log r(cp, cg), bridges the denoising dependence and prior dependence.

Building on this decomposition, we propose ACCORD, a plug-and-play method comprising two
loss functions: the Denoising Decouple Loss (DDLoss) and the Prior Decouple Loss (PDLoss).
The DDLoss minimizes the denoising dependence discrepancy by leveraging the implicit classifica-
tion capabilities of the diffusion model, while the PDLoss alleviates prior dependence discrepancy,
particularly when cp is trainable, by utilizing the classification capability of CLIP. Collectively, these
strategies work synergistically to minimize concept coupling, which will be elaborated below.

3.4 DENOISING DECOUPLE LOSS (DDLOSS)

We first elaborate on the DDloss, which specifically targets the denoising dependence discrepancy.
Directly minimizing the denoising dependence discrepancy term in Eq. (5) is not well-aligned with
the time step sampling mechanism employed during the training of diffusion models. This incom-
patibility arises because the term connects the first and last time steps, bypassing the relationships
between successive steps. To address this issue, we propose to relax this term by upper-bounding it
with the sum of dependence discrepancies between adjacent denoising steps:

| log r(cp, cg|xθ,0)− log r(cp, cg|xT )| = |
T∑

t=1

log r(cp, cg|xθ,t−1)− log r(cp, cg|xθ,t)|

≤
T∑

t=1

| log r(cp, cg|xθ,t−1)− log r(cp, cg|xθ,t)|. (6)

This relaxation follows from the triangle inequality. Minimizing this upper bound effectively dis-
courages the conditional dependence between the personalization target and any other concepts from
changing abruptly between consecutive denoising steps.

Next, by exploiting the diffusion model as an implicit classifier (Qiao et al., 2024), we can derive a
closed-form expression for log r(cp, cg|xθ,t−1)− log r(cp, cg|xθ,t):

Theorem 2. The dependence discrepancy between successive time steps in diffusion models can be
computed as:

log r(cp, cg|xθ,t−1)− log r(cp, cg|xθ,t)

=
1

2σ2
t

[
∥Uθ

(
xt, (cp, cg), t

)
− Uθ

(
xθ,t, cp, t

)
∥2 + ∥Uθ

(
xt, (cp, cg), t

)
− Uθ

(
xθ,t, cg, t

)
∥2

− ∥Uθ

(
xt, (cp, cg), t

)
− Uθ

(
xθ,t,∅, t

)
∥2
]
, (7)

where ∅ denotes an empty control condition.

Theorem 2 follows from Bayes’ theorem and the Gaussianity of noisy latents at timestep t− 1; see
Appendix B for details. Intuitively, Eq. (7) measures dependence changes by comparing the model’s
prediction for the joint concept (cp, cg) against its predictions for each individual concept and the
empty condition, thus penalizing deviations that imply a change in their relationship. Finally, we
define the DDLoss as:

LDD=

T∑
t=1

t

T
|log r(cp, cg|xθ,t−1)−log r(cp, cg|xθ,t)|. (8)

In this formulation, Lt
DD with a larger t contributes more to concept decoupling due to loss accumu-

lation. Therefore, we scale Lt
DD by a linearly time-varying weight t/T . Moreover, to compute the

DDLoss in practice, we use xt instead of xθ,t. This approximation is effective for two reasons: (i)
During diffusion training, we sample individual time steps using Eq. (1) rather than iterating from
time step T to 0. Consequently, xθ,t is not directly accessible when denoising from t to t − 1. (ii)
xt serves as an unbiased estimate of xθ,t. Additionally, we stop the gradients for Uθ(xt, cg, t) and
Uθ(xt,∅, t), following Facechain-SuDe (Qiao et al., 2024), to prevent damaging the model’s prior
knowledge. For ease of understanding, we show the computation of DDLoss in Appendix Fig. 4.
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3.5 PRIOR DECOUPLE LOSS (PDLOSS)

When cp remains fixed and close to cs during training, the coupling of concepts primarily arises
from the first term in Eq. (5), specifically the denoising dependence discrepancy. In this context,
minimizing only the DDLoss allows the personalized target to retain its superclass’s relationship
with various text control conditions. However, it is worth noting that cp can also be trained as either
the CLIP text representation (Gal et al., 2022) or the representation extracted from reference images
by the CLIP image encoder (Ye et al., 2023), to better capture the details of the personalization
target. Yet, it is crucial to note that training cp may cause cp to diverge from cs and so drastically
increase the prior dependence discrepancy (see 2 in (5)). As a remedy, we introduce the PDLoss.
Specifically, the prior dependence discrepancy can be equivalently written as:

log r(cp, cg)− log r(cs, cg) = log
p(cg|cp)
p(cg|cs)

. (9)

This equation shows that reducing prior dependence discrepancy involves aligning the conditional
probabilities p(cg|cp) and p(cg|cs). Unfortunately, the diffusion model does not facilitate this align-
ment because Eq. (9) is independent of the denoising process. Therefore, we leverage the semantic
space of CLIP. We operate under the plausible assumption that the cosine similarity between em-
beddings in CLIP space is a proxy for their conditional probability.

Assumption 1. Let τ be the temperature coefficient. For any two concepts cj and ck, let their
projections using the CLIP Projector be denoted as fj and fk. We can then estimate p(cj |ck) as:

p(cj |ck) ≈
eτcos(fj ,fk)

Zk
, Zk =

∑
fm

eτ cos(fk,fm), (10)

where cos(·) denotes the cosine similarity.

The rationale behind Assumption 1 for estimating the right-hand side of Eq. (9) relies on two key
aspects. (i) CLIP’s contrastive loss effectively estimates the alignment probability between an image
and its caption and vice versa, mirroring the formulation presented in Eq. (10). This can be inter-
preted as the conditional probability of the caption given the image. Existing work has also shown
that contrastive learning can implicitly estimate conditional probabilities (Ma & Collins, 2018; Poole
et al., 2019). (ii) cs is the text embedding of the superclass (e.g., backpack) given by the CLIP Text
Encoder, while cp (e.g., the specifically designed red backpack in Figure 1) is often set as either
a trainable text embedding in CLIP or a visual representation mapped to the same space. As both
cs and cp exist in this shared space, they fulfill the necessary conditions to apply Eq. (10). While
this is a principled approximation grounded in the geometry of CLIP space, we empirically vali-
date this design choice against several alternative objectives in Appendix E, demonstrating that our
formulation provides the best balance between text control and personalization fidelity.

Based on Assumption 1, we align p(cg|cp) and p(cg|cs) by ensuring that cos(fp, fg) and cos(fs, fg)
are closely matched. Concretely, although estimating Zp and Zs using CLIP is intractable, we can
still deduce that if cos(fp, fg) = cos(fs, fg) for all cg , then it follows that Zp = Zs, leading to
p(cg|cp) = p(cg|cs) (Park et al., 2019). Hence, we define PDLoss as:

LPD = Ecg
[|cos(fp, fg)− cos(fs, fg)|], (11)

To facilitate understanding, we show the computation diagram of PDLoss in Fig. 5 in the Appendix.

In summary, our framework is both modular and broadly applicable. DDLoss can be applied to
any fine-tuning-based personalization method without architectural changes, while PDLoss further
benefits scenarios where the personalized embedding cp is trainable. Depending on the personal-
ization setup, the two losses can be used independently or together, making ACCORD a flexible
plug-and-play regularizer for alleviating concept coupling.

4 EXPERIMENTS

Experimental Setup. We evaluate our method on diverse image personalization tasks:
subject-driven personalization using DreamBench (Ruiz et al., 2023), style personalization with
StyleBench (Junyao et al., 2024), and zero-shot face personalization on FFHQ (Karras et al., 2021).
For subject personalization, we use CLIP-T (Ruiz et al., 2023) and BLIP2-T (Qiao et al., 2024) for
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Table 1: Quantitative results on DreamBench. The “*” indicates results using per-subject/style loss
weights, tuned on a small validation set. “Params.” indicates the number of tunable parameters.
The Win/Lose rate is calculated by pairwise human comparison between the anonymous generated
results of the baseline and Ours*, with ties omitted. The comparison methods improved based on
the baseline are italicized.

Method CLIP-T↑ BLIP-T↑ CLIP-I↑ DINO-I↑ Win↑/Lose↓ rate Params.
DreamBooth (DB) 30.3 40.3 74.0 69.3 18.1%/75.7% 819.7 M
CoRe-SD1.5 29.4 40.3 78.3 72.3 19.2%/61.7% 819.7M
Facechain-SuDe 31.4 41.6 74.3 70.5 14.2%/69.2% 819.7 M
DB w/ Ours 31.1 (+0.8) 42.1 (+1.8) 77.8 (+3.8) 73.5 (+4.2) -/- 819.7 M
DB w/ Ours* 31.3 (+1.0) 42.1 (+1.8) 78.6 (+4.6) 74.4 (+5.1) -/- 819.7 M
CustomDiffusion (CD) 34.2 45.4 62.7 56.9 8.1%/88.1% 18.3 M
ClassDiffusion 34.3 45.8 61.3 55.0 7.5%/75.8% 18.3M
CD w/ Ours 33.9 (-0.3) 46.4 (+1.0) 71.1 (+8.4) 65.2 (+8.3) -/- 18.3 M
CD w/ Ours* 34.1 (-0.1) 46.6 (+1.2) 71.4 (+8.7) 65.6 (+8.7) -/- 18.3 M
LoRA (SDXL) 34.5 47.0 76.3 72.1 17.6%/70.5% 92.9 M
SVDiff 32.7 43.7 72.6 66.6 1.7%/85.0% 0.2 M
Omnigen 35.3 47.8 73.9 68.6 30.8%/48.3% 3.8 B
LoRA (SDXL) w/ Ours 35.1 (+0.6) 47.8 (+0.8) 76.8 (+0.5) 71.9 (-0.2) -/- 92.9 M
LoRA (SDXL) w/ Ours* 35.2 (+0.7) 47.7 (+0.7) 77.1 (+0.8) 72.4 (+0.3) -/- 92.9 M
VisualEncoder (VE) 25.9 36.1 79.1 75.5 21.1%/67.6% 3.0 M
VE w/ Ours 25.9 (+0.0) 35.8 (-0.3) 80.0 (+0.9) 76.0 (+0.5) -/- 3.0 M
VE w/ Ours* 26.3 (+0.4) 36.1 (+0.0) 80.4 (+1.3) 76.7 (+1.2) -/- 3.0 M

text alignment, and CLIP-I and DINO-I (Ruiz et al., 2023) for subject fidelity1. To reduce back-
ground interference, subjects in both real and generated images are segmented using the Reference
Segmentation Model (Zhang et al., 2024b). For style personalization, CLIP-T and BLIP-T measure
prompt-image alignment, while style similarity is computed using the mean Gram matrix distance
(Gram-D) (Gatys et al., 2016). For face personalization, besides CLIP-T and BLIP-T, we further
assess facial similarity using Face-Sim (the average cosine similarity of ArcFace (Deng et al., 2019)
embeddings for real and generated faces), validated by IP-Adapter (Ye et al., 2023). We compare
our approach with 10 baselines (Hu et al., 2021; Ruiz et al., 2023; Kumari et al., 2023; Han et al.,
2023; Ye et al., 2023; Qiao et al., 2024; Huang et al., 2025; Wu et al., 2025; Frenkel et al., 2024;
Xiao et al., 2025). Our losses are integrated as a plug-and-play module, leaving architectures and
hyperparameters unchanged. Only DDLoss is used for methods that do not update the personalized
embedding (e.g., DreamBooth, LoRA), while both losses are applied otherwise.

4.1 PERSONALIZATION EXPERIMENTS

Table 2: Quantitative results on StyleBench. The “*” denotes
adjusting DDLoss and PDLoss weights across different styles.
“Gram-D” is the gram matrix distance.
Method CLIP-T↑ BLIP-T↑ Gram-D↓
DreamBooth 31.3 46.6 42728
Facechain-SuDe 31.0 45.8 39978
DB w/ Ours 31.9 (+0.6) 47.3 (+0.7) 42524 (-0.5%)
DB w/ Ours* 32.0 (+0.7) 47.2 (+0.6) 41911 (-1.9%)
CustomDiffusion 31.2 47.7 53347
ClassDiffusion 31.8 48.4 52998
CD w/ Ours 31.7 (+0.5) 48.5 (+0.8) 48649 (-8.8%)
CD w/ Ours* 31.8 (+0.6) 48.5 (+0.8) 47852 (-10.3%)
LoRA (SDXL) 33.1 49.7 47193
Omnigen 31.9 47.5 45067
B-LoRA 33.0 49.0 42048
LoRA (SDXL) w/ Ours 33.6 (+0.5) 50.7 (+1.0) 47693 (+1.1%)
LoRA (SDXL) w/ Ours* 33.6 (+0.5) 50.7 (+1.0) 46361 (-1.8%)
VisualEncoder 17.7 30.2 32176
VE w/ Ours 17.7 (+0.0) 30.3 (+0.1) 31382 (-2.5%)
VE w/ Ours* 18.4 (+0.7) 30.9 (+0.7) 27984 (-13.0%)

We report quantitative results for
subject, style, and face personaliza-
tion in Tabs. 1-5, and visualization
results in Figs. 2-3. More visualiza-
tions are provided in Appendix H.

Subject Personalization. We com-
pare the performance of different
methods on subject personalization
in Tab. 1 and Fig. 2. It can be
observed that: (i) Our method im-
proves DreamBooth and CustomD-
iffusion by a large margin. They
utilize a regularization dataset to
enhance text alignment, but may
inadvertently sacrifice subject fi-
delity. This issue arises because the
regularization dataset may confuse
the model in distinguishing which
concepts from the reference images
require personalization and which do not. As a result, the model’s focus on the personalization tar-

1The “T” denotes text and the “I” denotes image, respectively.
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Reference CustomDiffusion ClassDiffusion Ours

Prompt: backpack* on a cobblestone street

Prompt: can* with the Eiffel Tower in the background

Reference VisualEncoder Ours

Prompt: teapot* on top of pink fabric

Prompt: plushie* on a cobblestone street

Reference Dreambooth Facechain CoRe

Prompt: sneaker* on top of a dirt road

Prompt: toy_car* on top of a white rug

Ours

Reference LoRA (SDXL) OmniGen SVDiff

Prompt: dog* in the jungle

Prompt: a shiny boot*

Ours

Figure 2: Subject personalization comparison across baselines, where superclass* is the personal-
ization target. One of multiple training references is shown. Red/blue circles highlight well-/poorly-
generated regions. Our method achieves superior text alignment and personalization fidelity.

get is diminished, leading to a loss of personalization fidelity. Our method significantly improves
personalization fidelity by complementing the regularization dataset with explicit concept de-
coupling. (ii) When compared to LoRA and VisualEncoder, which do not utilize a regularization
dataset, ACCORD shows smaller improvements. Nevertheless, ACCORD is able to enhance both
text alignment and subject fidelity simultaneously, while most existing image personalization
methods (Han et al., 2023; Qiao et al., 2024; Wu et al., 2025) tend to improve one aspect at the
expense of the other. Notably, LoRA (SDXL) with ACCORD even outperforms the powerful Om-
nigen with 3.8B parameters, a testament to the efficiency and effectiveness of our approach. (iii) Our
DDLoss and PDLoss significantly enhance the performance of existing baselines in a plug-and-play
manner. Compared to the similar plug-and-play loss regularization methods Facechain-SuDe, Class-
Diffusion and CoRe, our proposed loss functions offer stronger regularization by directly optimizing
concept coupling, resulting in greater performance improvements.

We also conduct a study on human preferences regarding the generated results, as shown in Tab. 1.
Specifically, annotators are presented with quadruplets consisting of (prompt, reference images,
method 1 result, method 2 result) and are asked to select the better generation result based on two
key criteria: (i) fidelity to the personalized subject or style, and (ii) alignment with the text prompt.
The correspondence of method 1 (or 2) to either the compared method or our method is random-
ized and anonymized. We collect feedback from multiple annotators, resulting in a total of 1,800
responses. From this study, we observe that: (i) Our method is generally preferred by users com-
pared to all baselines; and (ii) Notably, the greater the improvement in objective metrics over the
baseline provided by our method, the more it is preferred by users, indicating an alignment between
subjective and objective evaluations.

Style Personalization. Tab.2 and Fig.3(a) show that our DDLoss and PDLoss significantly improve
style personalization and boost all methods in a plug-and-play fashion. Similarly, LoRA (SDXL)
with ACCORD, with 93M trainable parameters, outperforms Omnigen with 3.8B.

Face Personalization. We validate the potential of concept decoupling for zero-shot personaliza-
tion, with a specific focus on face personalization, using the FFHQ dataset. Following the well-
known zero-shot face personalization method IP-Adapter, we train the model with and without AC-
CORD based on SD 1.5. Experimental results are shown in Tab. 5 and Fig. 3(b), demonstrating that
the introduction of DDLoss and PDLoss simultaneously enhances face similarity and text alignment.

4.2 ABLATION STUDY

We study the impact of the proposed PDLoss and DDLoss on DreamBench in Tab. 3, and also inves-
tigate the impact of the number of reference images in Tab. 4. Indeed, the proposed loss functions
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LoRA (SDXL) OursReference

Prompt: Japanism_style*, two pandas playing in a bamboo forest

Prompt: Minimalist_anime_style*, a girl with a sunflower hat

B-LoRA Omnigen

Prompt: Classicsm_style*, a curious fox in a snowy landscape

IP-Adapter OursReference

(a) Style Personalization (b) Face Personalization

Figure 3: Comparison of style and face personalization results; style* denotes the target style. For
style personalization, the training set includes multiple references, and one is shown for brevity. Red
circles highlight well-generated regions; blue circles mark areas with poor results. (a) Our model
outputs styles closer to reference images: the Japanism result resembles a painting, the minimalist
anime style result depicts the mouth as a line, and classicism result matches the original style without
anomalies. (b) IP-Adapter alters gender (row 1) or makes faces appear older (row 2). Our method
better replicates details such as beards (row 3).

Table 3: Ablation study on the effects of
DDLoss, and PDLoss across backbones.

Method CLIP-T BLIP-T CLIP-I DINO-I

VE (SD1.5) 25.9 36.1 79.1 75.5
+PDLoss 26.2 35.9 80.0 75.9
+DDLoss 26.0 35.8 79.8 75.8
+PD & DDLoss 26.3 36.1 80.4 76.7
VE (SDXL) 27.1 38.4 82.8 77.6
+PDLoss 27.8 39.5 82.9 77.4
+DDLoss 28.0 40.0 82.6 77.9
+PD & DDLoss 28.3 39.8 83.1 78.1
LoRA (SD1.5) 31.1 42.6 78.4 74.6
+DDLoss 31.8 43.0 78.4 75.1
LoRA (FLUX) 33.4 46.8 75.8 72.8
+DDLoss 34.8 47.8 78.2 73.4

Table 4: Impact of Reference Image Count on
Subject-driven Personalization Performance.

Method CLIP-T BLIP-T CLIP-I DINO-I(Image Count)

VE (1) 25.0 34.2 75.9 71.0
VE + Ours (1) 24.7 33.3 78.9 73.9
VE (3) 25.0 34.5 78.0 74.3
VE + Ours (3) 25.6 34.8 79.4 75.7
VE (all) 25.9 36.1 79.1 75.5
VE + Ours (all) 26.3 36.1 80.4 76.7

Table 5: Quantitative results on FFHQ.

Method CLIP-T↑ BLIP-T↑ Face-Sim↑
IP-Adapter 20.0 34.7 14.8
+ Ours 20.7 (+0.7) 34.8 (+0.1) 16.4 (+1.6)

work synergistically and hold regardless of the number of reference images and T2I backbone (in-
cluding FLUX). Crucially, these studies confirm that both DDLoss and PDLoss contribute positively
to performance (Tab. 3) and that our method remains effective even with a single reference image
(Tab. 4), underscoring the robustness of our approach.

We further show the impact visualization of DDLoss and PDLoss, their effect on dependence dis-
crepancy, the design of PDLoss, loss weight selection, failure case analysis, and real-world person-
alization experiments in Appendices D- G.

5 CONCLUSION

This paper tackles concept coupling in image personalization by reframing it as a statistical de-
pendency problem. We identify two distinct sources—a Denoising Dependence Discrepancy and
a Prior Dependence Discrepancy—and introduce two corresponding plug-and-play losses, DDLoss
and PDLoss, to directly mitigate them. Comprehensive experiments demonstrate that our method,
ACCORD, successfully improves the critical balance between personalization fidelity and text con-
trol, offering a readily-integrable solution for a wide range of existing methods.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

To improve reproducibility, for theoretical results, such as Theorem 2, we provide the proofs in
Appendix B. On the other hand, for experimental results, we provide the implementation details in
Sec. 4, Appendix J and K. The VLM prompt used for generating image captions is also specified in
Appendix L. In addition, the code will be made publicly available after acceptance.
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A APPENDIX

APPENDIX

A PROOF OF THEOREM 1

We begin by briefly reviewing Theorem 1. The left-hand side (LHS) of Eq. (4) can be decomposed
into the two terms as in Eq. (5):

Exθ
[| log r(cp, cg|xθ,0)− log r(cs, cg)|]

= Exθ

[
| log r(cp, cg|xθ,0)− log r(cp, cg|xT )︸ ︷︷ ︸

1 Denoising Dependence Discrepancy

+ log r(cp, cg)− log r(cs, cg)︸ ︷︷ ︸
2 Prior Dependence Discrepancy

|
]
, (12)

where xT denotes multivariate standard Gaussian noise.

Since xT is sampled independently of the conditions cp and cg , it follows that p(c|xT ) = p(c).
Consequently,

log
p(cp, cg|xT )

p(cp|xT )p(cg|xT )
= log

p(cp, cg)

p(cp)p(cg)
. (13)

Thus, the proof is complete.
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Table 6: Meanings of notations.

Notation Meaning
t Denoising time step, ranging from 0 to T .
x0 Clear image or its latent code.
xt Noisy image or its latent code at time step t.
xT Noisy image or its latent code at time step T , modeled as a multivariate standard Gaussian noise.
αt Retention ratio of the original image at forward time step t.
ϵ Multivariate standard Gaussian noise.
θ Network parameters.
σt Standard deviation of the noisy code at time step t.
Uθ(xt, c, t) Output of the denoising model at time step t− 1 given generation condition c.
xθ,t Shorthand for denoising output at time step t− 1 given generation condition (cp, cg).
D Training set for the image personalization task.
xi i-th reference image in the training set.
ci i-th generation condition in the training set.
cp Personalized target condition.
cg General text condition.
cs Text condition for the superclass of cp.
r(cp, cg|xθ,t) Conditional dependence coefficient for concepts cp and cg given generated image xθ,t.
r(cp, cg) Prior dependence coefficient for concepts cp and cg .
fp, fs, fg Projections using the CLIP Projector for cp, cs, and cg .

B PROOF OF THEOREM 2

According to the definition of r(cp, cg|xθ,t−1):

r(cp, cg|xθ,t−1) =
p(cp, cg|xθ,t−1)

p(cp|xθ,t−1)p(cg|xθ,t−1)
, (14)

the core of computing log r(cp, cg|xθ,t−1) lies in the computation of p(ĉ|xθ,t−1), where ĉ is an
arbitrary condition. By applying Bayes’ theorem, we have:

p(ĉ|xθ,t−1) = p(ĉ|xθ,t−1,xθ,t) =
p(ĉ|xθ,t)p(xθ,t−1|xθ,t, ĉ)

p(xθ,t−1|xθ,t)
. (15)

The first equation holds because the computation of xθ,t−1 relies on xθ,t:
xθ,t−1 = Uθ(xt, (cp, cg), t), xt = xθ,t + σt+1ϵt+1, ϵt+1 ∼ N (0, I), (16)

where σt+1 is the standard deviation of the noisy code at time step t+ 1.

Next, we compute p(xθ,t−1|xθ,t, ĉ) and p(xθ,t−1|xθ,t). In diffusion models, p(xθ,t−1|xθ,t, ĉ) is a
Gaussian distribution that can be parameterized as:

p(xθ,t−1|xθ,t, ĉ) = N
(
xθ,t−1;Uθ(xθ,t, ĉ, t), σ

2
t I

)
= exp(C − ∥xθ,t−1 − Uθ(xθ,t, ĉ, t)∥2

2σ2
t

), (17)

where C is a constant. We then substitute Eq. (16) into Eq. (17) and obtain:

p(xθ,t−1|xθ,t, ĉ) = exp(C − ∥Uθ(xt, (cp, cg), t)− Uθ(xθ,t, ĉ, t)∥2

2σ2
t

), (18)

Note that ĉ is an arbitrary condition, so p(xθ,t−1|xθ,t) can be obtained by setting ĉ = ∅. Therefore,
we substitute Eq. (18) into Eq. (15) and obtain:

log p(ĉ|xθ,t−1)− log p(ĉ|xθ,t)

=
1

2σ2
t

[
∥Uθ(xt, (cp, cg), t)− Uθ(xθ,t,∅, t)∥2 − ∥Uθ(xt, (cp, cg), t)− Uθ(xθ,t, ĉ, t)∥2

]
(19)

Finally, by substituting Eq. (19) into the definition of r(cp, cg|xθ,t−1) (14), we obtain:
log r(cp, cg|xθ,t−1)− log r(cp, cg|xθ,t)

=
1

2σ2
t

[
∥Uθ

(
xt, (cp, cg), t

)
− Uθ

(
xθ,t, cp, t

)
∥2

+ ∥Uθ

(
xt, (cp, cg), t

)
− Uθ

(
xθ,t, cg, t

)
∥2

− ∥Uθ

(
xt, (cp, cg), t

)
− Uθ

(
xθ,t,∅, t

)
∥2
]
. (20)
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Figure 4: Calculation of the Denoising Decouple Loss LDD. The UNet estimates xt−1 based on
xt and four different conditions, then constrains the relationships between the four denoising re-
sults. The objective of LDD is to prevent the conditional dependence coefficient between the per-
sonalization target cp and the general text condition cg from varying significantly between adjacent
timesteps.
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Prior Dependence 

Discrepancy

Figure 5: For the calculation of the Prior Decouple Loss LPD, either the Image Encoder or the Text
Encoder of CLIP can be used to generate cp. The purpose of LPD is to prevent excessive prior
dependence between cp and the general text condition cg . We first use the CLIP projector to map
cp and cg into fs and fg , respectively, and then minimize the absolute difference between cos(fp, fg)
and cos(fs, fg).

This completes the proof.

Table 7: Ablation study on the PDLoss design.

Optimization target CLIP-T↑ BLIP-T↑ CLIP-I↑ DINO-I↑
VisualEncoder wo/ Ours 25.9 36.1 79.1 75.5
Ecg [|cos(fp, fg)− cos(fs, fg)|] 26.2 (+0.3) 35.9 (-0.2) 80.0 (+0.9) 75.9 (+0.4)
Ecg

[|cos(fp, fg)|] 26.4 (+0.4) 36.8 (+0.7) 79.9 (+0.8) 75.5 (+0.0)
Ecg

[|cos(fp, fg) + 1|] 27.7 (+1.8) 38.4 (+2.3) 77.6 (-1.5) 73.3 (-2.2)
Ecg

[|1− cos(fp − fg, fs − fg)|] 26.5 36.9 79.5 75.5

C SCHEMATIC DIAGRAM OF DDLOSS AND PDLOSS CALCULATION

For better understanding, schematic diagrams illustrating the calculation of DDLoss and PDLoss are
shown in Fig. 4 and Fig. 5, respectively.

D IMPACT OF DDLOSS AND PDLOSS IN REDUCING DEPENDENCE DISCREPANCY

To clearly demonstrate the roles of DDLoss and PDLoss during training, we visualize their effects
in Fig. 6. It can be observed that with the use of DDLoss, the increase in denoising dependence dis-
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(a) Denoising dependence discrepancy (b) Cosine similarity discrepancy

Figure 6: Visualization of the impact of DDLoss and PDLoss.

Reference

Baseline

Ours

duck_toy* in 
the snowPrompt

sneaker* with 
a wheat field 
in the 
background

a purple bowl* cat* on a 
cobblestone 
street

dog* with a 
city in the 
background

Figure 7: A comparison of the visual outcomes of subject personalization, where ”superclass*”
denotes the personalization target. In the 1st, 2nd, and 3rd columns, our method aligns better with
the prompt and successfully generates a snowy scene, a wheat field, and a bowl with an inner purple
wall; in contrast, the baseline model fails to do so. In the 4th and 5th columns, our method generates
subjects that bear a closer resemblance to the reference images. However, the baseline either pro-
duces an unrelated cat (4th column) or generates anomalies like a black dog’s back (5th column). It
should be noted that for columns 1, 2, and 5, our method not only replaces the background but also
adjusts the perspective to make the generated image look more natural.

crepancy, | log r(cp, cg|xθ,0)− log r(cp, cg|xT )|, is suppressed. On the other hand, the application
of PDLoss results in a reduction in the cosine similarity discrepancy |cos(fp, fg)− cos(fs, fg)|.

E ABLATION STUDY ON THE IMPACT OF PDLOSS DESIGN

To minimize concept coupling in Eq. (4):
Exθ

[| log r(cp, cg|xθ,0)− log r(cs, cg)|], (21)
we align the cosine similarity cos(fp, fg) with cos(fs, fg) in Eq. (11).

LPD = Ecg [|cos(fp, fg)− cos(fs, fg)|], (22)
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To further understand the role of the cosine similarity target in PDLoss, we study its impact in Tab. 7.
In addition, we also compare our PDLoss with an empirical design: Ecg

[∥1−cos(fp− fg, fs− fg)∥].
It is observed that: (i) As the cosine similarity target decreases, metrics related to text alignment,
namely CLIP-T and BLIP-T, improve, whereas metrics associated with personalization fidelity, such
as CLIP-I and DINO-I, decline. This observation aligns with Assumption 1.

A lower cosine similarity indicates a reduced p(cg|cp), implying that cp is less likely to interfere
with other text concepts. However, if the similarity between cp and cg decreases excessively, it
becomes challenging for cp to maintain inherent relationships with its superclass and other con-
cepts, thereby impairing personalization fidelity. Consequently, setting the cosine similarity target
as cos(fs, fg) achieves a balance between text alignment and personalization fidelity. (ii) The em-
pirical approach, Ecg

[∥1− cos(fp − fg, fs − fg)∥], also improves upon the baseline by emphasizing
text alignment. However, this method cannot be derived from Eq. (9), namely the definition of prior
dependence discrepancy.

log r(cp, cg)− log r(cs, cg) = log
p(cg|cp)
p(cg|cs)

. (23)

F ABLATION STUDY ON THE IMPACT OF LOSS WEIGHT

Table 8 shows the effect of combining DDLoss and PDLoss with different weights on CustomD-
iffusion (CD). Introducing DDLoss with weights between 0.1 and 0.3, and PDLoss with weights
between 0.001 and 0.003, consistently yields robust improvements across all metrics. This indicates
that the performance of DDLoss and PDLoss is not sensitive to the precise choice of weights within
these ranges. Overall, setting the DDLoss weight to 0.1–0.3 and the PDLoss weight to 0.001–0.003
is sufficient.

Table 8: Ablation Study on DDLoss and PDLoss Weights

Loss Weights CLIP-T BLIP-T CLIP-I DINO-I

CD 34.2 45.4 62.7 56.9
+0.1DD + 0.001PD 33.9 46.5 70.7 64.9
+0.1DD + 0.002PD 34.0 46.5 70.5 64.8
+0.1DD + 0.003PD 33.9 46.4 71.1 65.2
+0.2DD + 0.001PD 33.9 46.5 70.7 64.8
+0.2DD + 0.002PD 33.9 46.5 70.8 65.1
+0.2DD + 0.003PD 34.0 46.6 70.7 65.0
+0.3DD + 0.001PD 33.9 46.4 71.0 65.3
+0.3DD + 0.002PD 34.0 46.5 70.8 65.1
+0.3DD + 0.003PD 34.0 46.5 70.7 64.9

G REAL WORLD PERSONALIZATION

We further collect a set of hamster photographs for personalization experiments, aiming to evaluate
the practical effectiveness of our proposed method in real-world personalization scenarios. The
quantitative results and qualitative examples are presented in Tab. 9 and Fig. 8, respectively. It can
be observed that our method substantially improves the text control capability over the baseline. As
shown in Fig. 8, our approach successfully generates stars (1st row), a library scene (2nd row), and
a pirate hat (3rd row).
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Reference

hamster*, 
astronaut suit, 

floating in 
outer space, 

stars, planets

Prompts

hamster*, 
reading a book, 
cozy library, 
warm colors

hamster*, 
pirate costume, 
standing on 

treasure chest, 
sea 

background

OursLoRA (SDXL)

Figure 8: Real-world personalization visualization results. Compared with the baseline, our ap-
proach successfully generates stars (1st row), a library scene (2nd row), and a pirate hat (3rd row).

Table 9: Real-world personalization quantitative results.

Method CLIP-T↑ BLIP-T↑ CLIP-I↑ DINO-I↑
LoRA (SDXL) 38.6 52.1 68.9 59.1
LoRA (SDXL) w/ Ours 39.9 54.2 69.1 58.6

H MORE VISUALIZATION RESULTS AND FAILURE CASES

H.1 ADDITIONAL VISUALIZATION RESULTS FOR SUBJECT, STYLE, AND FACE
PERSONALIZATION.

We provide more visualization results in Fig. 7, 10 and 11. For subject and style personalization, the
”Baseline” is Dreambooth. For face personalization, the ”Baseline” is IP-Adapter. The following
observations can be made: (1) Our method demonstrates superior text alignment compared to the
baseline. Specifically, in the first, second, and third columns of Fig. 7, our method successfully
generates a snowy scene, a wheat field, and a purple bowl, whereas the baseline model does not.
In the first, third, fourth and fifth columns of Fig. 10, our approach successfully produces images
of a pirate, a snowy landscape, a knight and a blue shield. Finally, in the third and fourth columns
of Fig. 11, our method generates a cityscape background and cultural elements according to the
prompts. (2) Our method better preserves personalization fidelity. In the fourth and fifth columns
of Fig. 7, our method generates subjects that more closely resemble the reference images, whereas
the baseline either produces an unrelated cat (4th column) or anomalies such as a black dog’s back
(5th column). It should be noted that for columns 1, 2, and 5, our method not only replaces the
background but also adjusts the perspective to make the generated image look more natural. In the
second row of Fig. 10, the images generated by our method exhibit styles more closely aligned with
the reference styles, namely the clay style. Finally, in all columns of Fig. 11, the faces generated by
our method more closely resemble the reference faces. Specifically, our method better captures the
subject’s age in columns 1 and 5; and the hair style in columns 2 and 3.

H.2 VISUALIZATION OF THE EFFECTS OF PDLOSS AND DDLOSS.

We also visualize the individual effects of DDLoss and PDLoss on subject personalization based
on CustomDiffusion in Fig. 9. It can be observed that PDLoss mainly improves personalization
fidelity by aligning the relationship between the personalization target and other concepts with that
of its superclass and other concepts. On the other hand, incorporating DDLoss enhances text control
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capabilities and can further boost personalization fidelity. Specifically, after introducing DDLoss,
the bear in the first column of Fig.9 more closely resembles the reference image; meanwhile, the toys
in the second and third columns are correctly placed on the sidewalk and in the jungle, respectively.

Reference

Baseline

+PDLoss

bear_plushie* 
on the beachPrompt

poop_emoji* on 
top of the 
sidewalk in a 
crowded street

rc_car* in the 
jungle

+PDLoss
+DDLoss

Figure 9: Visualization of the Individual Effects of DDLoss and PDLoss on Subject Personalization
Based on CustomDiffusion. PDLoss aligns the relationships between the personalization target and
other concepts with the relationships between its superclass and those concepts, thereby mainly
enhancing fidelity. DDLoss further improves text alignment and can also boost fidelity. In the
first column, adding DDLoss makes the generated bear more resemble the reference image. In the
second and third columns, DDLoss enables the models to correctly place the personalized toys on
the sidewalk and in the jungle, respectively.

H.3 FAILURE CASE ANALYSIS.

Finally, we present several failure cases of ACCORD in Fig. 12. The causes of these failures can be
broadly categorized into two types: (1) Concepts that are strongly entangled with the personalization
target are not explicitly disentangled during training. If a concept that is undesirably coupled with
the personalization target is not included in the training prompts, it will not be addressed by DDLoss
and PDLoss. Consequently, at inference time, the model must rely solely on its generalization ability
to disentangle this concept from the personalization target, which may lead to failure. (2) Inaccurate
modeling of concept dependencies by the foundation T2I model. The effectiveness of DDLoss and
PDLoss is fundamentally constrained by the capabilities of the underlying T2I foundation model.
When the base model struggles to simultaneously generate both the superclass of the personalization
target and another concept, it likely fails to accurately capture the dependencies between them. In
such cases, the decoupling effect of DDLoss becomes limited. This observation also suggests that
more powerful foundation T2I models can enable DDLoss to achieve better disentanglement.
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Reference

Dreambooth

Ours

Prompt
Painting 
style*, a 
pirate with a 
treasure map

Clay style*, 
two pandas 
playing in a 
bamboo 
forest

Baroque 
style*, a 
knight 
holding a 
blue shield

3D model 
style*, a 
striped 
umbrella on 
the beach

Anime style*, 
a knight 
holding a 
blue shield

Figure 10: A comparison of style personalization visual outcomes, with “style*” indicating the target
style. Compared to the baseline, our method successfully generates a pirate, a snowy landscape, a
knight, and a blue shield in columns 1, 3, 4, and 5. In column 2, our approach produces clay-style
images that more closely match the reference.

I COMPUTATION AND MEMORY OVERHEAD

Our proposed ACCORD can be seamlessly incorporated into many existing image personalization
methods, enhancing personalization performance at the expense of increased GPU memory usage
and longer training times. Tab. 10 summarizes the GPU memory consumption and training duration
for each baseline method and its integration with ACCORD, under consistent training settings: all
experiments use a batch size of 4 and are trained for 1000 steps on an NVIDIA H100 GPU.

While integrating ACCORD introduces additional GPU memory requirements and slightly longer
training times, these increases are moderate and not reach an order-of-magnitude larger compared
to the respective baselines. Furthermore, we observe that reducing the batch size has a negligible
impact on the performance of ACCORD, enabling users to lower batch size in practical scenarios
to achieve acceptable memory usage and training time. Crucially, the extra computational cost
imposed by ACCORD remains manageable, especially when contrasted with zero-shot approaches,
which often involve considerably higher training overheads and less controllable personalization
outcomes at inference time.

J DETAILED DATASET INFORMATION

We utilize the DreamBench Ruiz et al. (2023) dataset to compare the subject-driven personaliza-
tion capabilities of different methods. DreamBench contains 30 subjects across 15 categories, of
which 9 are animals, with each subject having 4-6 images. For style personalization, we employ
StyleBench Junyao et al. (2024), which focuses on style transfer tasks and includes 73 distinct styles,
each style comprising 5 or more reference images. Furthermore, to validate the effectiveness of our
proposed losses for zero-shot image personalization, we conduct face personalization experiments
on the FFHQ Karras et al. (2021) dataset. FFHQ is a dataset of 70,000 high-quality face images,
offering substantial diversity in age, ethnicity, background, etc. We employ Insightface Deng et al.
(2019) to detect over 40,000 images containing only a single face, and exclusively use these images
for training and testing.
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Reference

IP-Adapter

Ours

Prompt
monochrome 
outfit, 
minimalist 
background, 
high contrast

evening wear, 
cityscape 
background, 
night lights

traditional 
attire, 
cultural 
elements, 
authentic 
setting

elegant dress, 
soft focus

traditional 
attire, cultural 
elements

Figure 11: A comparison of the visual outcomes of face personalization. Red circles highlight
well-generated areas, while blue circles indicate poorly generated regions. The baseline IP-Adapter
tends to alter gender or make faces appear older in columns 1, 2, and 5. In contrast, our method
produces faces more similar to the reference in columns 1, 2, 4, 5. Additionally, in columns 3 and 4
of Fig. 11, our model generates cityscape backgrounds and incorporates cultural elements according
to the prompts.

(a) (b)

Reference
glasses, bed, sunlight, 
lemon wedge, book

glasses, bed, white 
sheets, magazine, soft 

light

Ours
a cube shaped 

pink_sunglasses*

Reference w/o Personalization
sneaker on top of pink 

fabric

Ours
colorful_sneaker* on 

top of pink fabric

Figure 12: Failure cases of our ACCORD method. (a) Failure to generate cube-shaped sunglasses:
When specific attributes are absent from the training prompts, they are omitted from the calculation
of DDLoss and PDLoss. In such instances, disentanglement relies solely on the model’s general-
ization ability, which can lead to incomplete or unsuccessful attribute decomposition. (b) Failure to
generate the target sneaker on pink fabric: The effectiveness of DDLoss and PDLoss is inherently
limited by the capacity of the base model. If the underlying T2I foundation model cannot gener-
ate both the personalization target’s superclass and another concept simultaneously, it may fail to
accurately model the dependence between these concepts. As a result, DDLoss’s cross-timestep
alignment mechanism may also fail to achieve proper disentanglement.

K MORE IMPLEMENTATION DETAILS

The baseline VisualEncoder Ye et al. (2023) is a simplified version of IP-Adapter that retains the
CLIP Image Encoder-based Visual Encoder, omitting the image-specific Cross Attention. This de-
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Method GPU Memory (GB) Training Time (s)

DreamBooth 26.5 320
DB w/ Ours 45.3 480
CustomDiffusion 18.7 346
CD w/ Ours 29.5 502
LoRA (SDXL) 27.7 483
LoRA (SDXL) w/ Ours 60.8 916
VisualEncoder 11.1 255
VE w/ Ours 16.8 490

Table 10: Computation and memory overhead for different methods and their integration with AC-
CORD. All experiments are conducted with batch size 4 and 1000 training steps on H100.

sign implies that only the MLP at the end of the CLIP Image Encoder is trainable, and the per-
sonalization relies entirely on the visual embeddings cp extracted by the visual encoder. We find
that it serves as a strong parameter-efficient baseline. We utilize the official implementation of
Facechain-SuDe while implementing other baselines and our proposed method using open-source
library Diffusers von Platen et al. (2022). All methods employ the DDIM sampler, a guidance scale
of 7.5, and 50 inference steps during evaluation. We conduct experiments on NVIDIA A100 and
H100 GPUs.

The different training paradigms of the various baselines necessitate distinct weighting for DDLoss
and PDLoss. After tuning the loss weights using validation prompts, we find that, in general, a
DDLoss weight between 0.1 and 0.3 suffices, while a PDLoss weight between 0.001 and 0.003 is
adequate. We train all methods for 1000 steps on each subject or style and display the results of the
best-performing step. It is noteworthy that users can adjust the loss weights in practice to achieve
optimal results due to the automatic computation of CLIP-T, BLIP-T, CLIP-I, DINO-I, Gram-D, and
Face-Sim.

L VLM PROMPTS FOR IMAGE CAPTIONING

We employ Intern-VL2 Chen et al. (2024) as the image captioner. The prompt used is detailed
below:

You are an excellent prompt engineer. Given an image and a tag
corresponding to an important object in the image, please describe
the given image in short for the image generation process of the SD
model.

Note that the prompt you give should consist of a series of phrases, not
a complete sentence, and must contain the tag corresponding to the
important object. Please do not describe the important object in
detail. Please do not answer anything other than the prompt. The
prompt you give needs to use all lowercase letters. Here is an
example: 1 dog, running, sea, sunset.

Now, the important objects are:

M LIMITATIONS

Autoregressive generative models without a diffusion process, such as LlamaGen Sun et al. (2024),
are not compatible with the proposed losses. Furthermore, the effectiveness of our decoupling losses
is constrained by the capabilities of the foundation T2I model; if the base model cannot accurately
represent the relationship between a superclass and a given concept, ACCORD’s ability to regularize
this dependency is limited. Finally, decoupling is most effective for concepts that are explicitly in-
cluded in training prompts, while concepts that are implicitly coupled may not be fully disentangled.
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N LLM USAGE

In this paper, large language models (LLMs) are only used to assist or polish the writing, and they
are not involved in the methodology and experimental design of this paper.
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