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ABSTRACT

We present ATLAS (Adaptive Topology-based Learning at Scale for Homophilic
and Heterophilic Graphs), a novel graph learning algorithm that addresses two
important challenges in graph neural networks (GNNs). First, the accuracy of
GNNs degrades when the graph is heterophilic. Second, the iterative feature
aggregation limits the scalability of GNNs on large graphs. We address these
challenges by extracting topological information about the graph communities at
different levels of refinement, concatenating the community assignments to the
feature vector, and applying multilayer perceptrons (MLPs) on this new feature
vector. We thus inherently obtain the topological data about the nodes and their
neighbors without invoking aggregation. Because MLPs are typically more scalable
than GNNSs, our approach applies to large graphs, without the need for sampling.

Our results, on a wide set of graphs, show that ATLAS has comparable accuracy
to baseline methods, with accuracy being as high as 20 percentage points over
GCN for heterophilic graphs with negative structural bias and 11 percentage points
over MLP for homophilic graphs. Furthermore, we show how multi-resolution
community features systematically modulate performance in both homophilic and
heterophilic settings, opening a principled path toward explainable graph learning.

1 INTRODUCTION

Node classification, a fundamental problem in graph learning, involves identifying labels of nodes in
a graph and has wide applications in many domains including social networks, citation networks,
recommendation systems, knowledge graphs and bioinformatics (Khemanil |[2024; Wu et al., 2019b;
Zhou et al.l [2021). Accurate classification requires two complementary pieces of information—(i)
the features at each node, and (ii) the connections between the node and its neighbors. Neural
network methods such as Multi-Layer Perceptrons (MLPs) are fast but do not include information
about the connections. Graph Neural Networks (GNNs) address this problem by aggregating the
features between neighboring nodes, but the process is expensive, and difficult to scale to large graphs.
Although the graph structure can be represented as feature vectors using different node embedding
techniques (Perozzi et al., [2014} |Grover & Leskovec, [2016} [Tang et al.,|2015), or through the use
of community detection (Sun et al., [2019; |[Kaminski et al.} 2024), the issue remains as to how many
hops of neighbors should be considered and how fine-grained the communities should be. Larger
hops or coarse grained community can lead to information smoothing, while smaller hops or fine
grained communities can lead to information loss. Further, the hypothesis that aggregating features
of neighbors can improve accuracy of node classification is only true for homophilic networks (where
nodes of similar classes are connected). In heterophilic networks, where the connection between
nodes need not imply similarity of class, this strategy leads to lower accuracy. Based on these
observations, we posit, matching structural information (i.e. size of hops or communities) with how
well it aligns with the classification is necessary for producing accurate results.

1.1 RELATED WORK

Graph Neural Networks (GNNs) have become a core tool for learning on graphs (Kipf & Welling,
2017} Hamilton et al., 2017). Most algorithms follow a message-passing paradigm, aggregating
transformed neighbor features into topology-aware embeddings, which implicitly assumes homophily
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(Wu et al [2019a)). The same bias can blur informative distinctions on weakly homophilous or
heterophilous graphs (Zhu et al.| 2020; [Platonov et al.| 2023a)).

Scaling GNNs on large graphs. Scaling GNNs on large graphs is challenging due to memory
and aggregation costs. Sampling-based methods approximate full-batch propagation using node-,
layer-, or subgraph-level sampling (GraphSAGE, FastGCN, Cluster-GCN, GraphSAINT, LABOR)
(Hamilton et al.l 2017} |Chen et al., 2018bj |Chiang et al., 2019; Zeng et al., [2020; Balin & Catalyiirek,
2023), but introduce stochasticity that affects convergence and reproducibility (Chen et al., [ 2018bj
Zou et al.,[2019). Decoupled models instead precompute feature diffusion and train MLPs on fixed
graph-derived features, enabling i.i.d. node mini-batching and fast inference (SGC, SIGN, SAGN,
GAMLP, SCARA, LD?) (Wu et al.l[2019a; |Rossi et al., [2020; [Sun et al.l[2021} |Chien et al.| [2022;
Liao et al., 2022 2023)).

Learning on non-homophilous graphs. For non-homophilous graphs, one line of work preserves
self-features while carefully injecting neighborhood information (H2GCN, GloGNN) (Zhu et al.,
2020; [Li et al., 2022), or reweights neighbors to downweight harmful edges (GPR-GNN, FAGCN)
(Chien et al.| 2021} [Bo et al. 2021). Others exploit higher-order propagation or spectral filters
to capture both homophilic and heterophilic signals (MixHop, JacobiConv, BernNet, GBK-GNN)
(Abu-El-Haiyja et al.| 2019; Wang & Zhang] 2022; He et al., 2021; Du et al., [2022)). See|Zheng et al.
(2022); |Luan et al.[(2024b) for broader surveys.

Community-aware node embeddings. Several works use community structure as an explicit
representation for downstream prediction. Sun et al.|(2019) propose vGraph, a generative model that
jointly infers discrete communities and continuous node embeddings by reconstructing edges, so that
community assignments act as latent variables guiding representation learning. Closer to our setting,
Kaminski et al.| (2024) construct community-aware node features (e.g., counts and statistics over
community memberships in a node’s ego-network) and feed them into standard classifiers, showing
that purely community-derived signals can already yield strong performance on node-level tasks.

Graph-task alignment and community structure. A related line of work asks when a graph’s
communities are informative for the labels and how this alignment controls the benefit of message
passing. |Hussain et al.| (2021) vary homophily and community structure in real graphs and define a
measure of label-community correlation, showing that GNN gains are largest when labels follow
communities and can vanish when they do not. This links the classical “cluster assumption” in
semi-supervised learning (Chapelle et al., 2006) with recent analyses of graph—task and NTK—
graph alignment in GNN training dynamics (Yang et al.,[2024), and motivates methods that treat
communities as task-relevant structural signals.

Community-guided graph rewiring. Building on modularity-based detection (Newman) [2006;
Blondel et al., 2008), ComMa and ComFy (Rubio-Madrigal et al.| 2025) use community structure and
feature similarity to rewire intra- and inter-community edges, improving label-community alignment
and GNN accuracy on both homophilic and heterophilic graphs.

Unlike community-aware GNNs and rewiring methods, ATLAS treats multi-resolution community as-
signments as features for a simple MLP, remaining propagation-free while still leveraging community
structure.

1.2 OUR CONTRIBUTION

Most of the current research either focuses primarily on homophilic graphs, or the processes to address
the heterophilic graphs require expensive operations, such as signal identification/modification,
rewiring or spectral gap maximization. These methods cannot efficiently scale to large graphs. Our
primary contribution is to develop Adaptive Topology -based Learning at Scale (ATLAS)[7 a novel
graph learning algorithm that can produce high-accuracy results for both homophilic and heterophilic
graphs. ATLAS is based on a simple but powerful technique of refining communities in networks to
match the degree of homophily.

Rationale. Our algorithm is based on quantifying homophily through the lens of normalized mutual
information (NMI). Given two partitions of the same set of elements NMI measures how well the

*Apart from the acronym, the name ATLAS is to convey our method can handle different degrees of
homophily, similar to how an atlas encompasses all different countries.
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partitions correspond to each other. If we consider one partition as the communities in the graph, and
the other partition as labels, then NMI provides a measure for the degree of homophily in the graph.
ATLAS focuses on refining/coarsening communities to identify the region of highest NMI—which
will correspond to the highest accuracy. Figure[|provides an overview of ATLAS.

Our specific contributions are:
1. Theory. We provide a theoretical analysis of how refining communities changes in NMI
(Section[2).
2. Algorithm. Based on this mathematical understanding, we develop our algorithm ATLAS
(Section[3).

3. Experiments. Provide extensive empirical evaluations by comparing ATLAS across a
mix of 13 (8 medium size and 5 large) homophilic and heterophilic graphs, and 14 (9)
GNN/MLP-based algorithms for medium sized (large) graphs (Section [).

4. Bridging Frameworks. Unlike prior MLP-based models designed primarily for heterophilic
graphs, ATLAS effectively supports both homophilic and heterophilic settings, thereby
minimizing the accuracy gap traditionally observed between MLPs and GNNs. Moreover,
its high inference efficiency positions ATLAS as a practical and scalable alternative to GNNs.

Node Features

Node Features

Graph Features

MLP

Node Features Augmented
with Community Features

Community Features Graph Features
Concatenation

Figure 1: Overview of the community-augmented feature learning pipeline. Community assignments
at multiple resolutions are one-hot encoded, projected, concatenated with node features, and input to
an MLP for classification.

2 THEORETICAL ANALYSIS

We mathematically show how refining communities leads to changes in NMI. We define some terms
that will help us in the analysis. The proofs of the theorems are given in the appendix.

Let N be the set of nodes. Let P = { Py, ..., P} be a partition of N; i.e.
k
Pi#@, PNPi=@(i#j), ad [JP=N.
i=1
Let S = {S1,...,Sn} be another partition of N. We say S is a refinement of P (denoted as S < P)
iff every block of S is contained in some block of P. Formally:

S<XP <+ VS;€S53P € PsuchthatS; C P,.

Normalized mutual information (NMI) is a popular measure to quantify alignment between two

partitions. Given two partitions P and (), over a set of NV elements and n;; = |P; N Qj|7 n; =
|P;],n; = |Q;]| their normalized mutual information is given as;
21(P; Q)
NMI(P,Q) = —— 1%/
S (IR [(6)
I(P;Q) = Zle Z;ﬂ:l “ log ( JZ 7;;) is the mutual information between partitions P and Q).

This quantity measures how much information is shared between the partitions P and (). The higher
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the value, the better the alignment between the partitions. H(P) = — Zle 2iJog (%), is the
entropy of partition P. H(Q) is defined similarly. The entropy measures the distribution of points
in each partition. Low entropy means data is concentrated in few clusters, and is indicative of good
clustering.

The value of NMI ranges from 1 (indicating complete alignment between partitions) to
close to O (indicating complete mismatch between partitions). NMI is high if the par-
titions are well matched (/(P,Q) is high), and entropy is low (H(P), H(Q) is low).

Lemma 1 (Refinement does not decrease mutual GK)=0
information). Let L be labels and C a commu- H(G)=.97
nity partition. Let C' be a refinement of C, i.e., ‘ @ o
C' <X C.Then I(L;C") > I(L; C)

Lemma 2 (Refinement does not decrease en- 1(G,K)=1
tropy). Let C' a community partition. Let C' @ @ @ @ it

be a refinement of C, i.e., C' <X C. Then NMI=.67

H(C") > H(C) ]
@ @ @ @ @ |,

Based on Lemma [Tl and Lemma 2] we see that @ @ @ @ @ O o3

while refinement improves the mutual informa-
tion leading to better alignment, it also increases
the entropy leading to more noise or uncertainty.
The condition at which NMI will increase is
given by Theorem [I]

Figure 2: Effect of refinement on NMI. Initially
when clusters have mixed items, NMI is low. The
first refinement matches the items and clusters, in-
o creasing the NMI. Further refinement does not im-
Theorem 1 (NMI Refinement Condition). prove the alignment (mutual information), but in-

Let L be labels; C' a community par- creases the spread (entropy), thus decreasing NMI.
tition. Let C' be a refinement of C,

ie, C' =< C. Then NMI(C';L) >
NMI(C; L) ifand only if AAf}II > %
where AT = I(C';L) — I(C; L) and AH =
H(C"; L) - H(C; L)

Theorem [I] states that a partition refinement improves the normalized mutual information with respect
to labels if and only if the mutual information gain per unit of entropy increase exceeds half the
original normalized mutual information value.

3 METHODOLOGY

The theorems in Section [2|are based on idealized conditions, where refined communities are perfect
subsets of the original communities. In practice, refinement in communities is approximated by
running a modularity-based community detection algorithm at multiple resolution values. Although
higher resolution leads to smaller communities, due to the inherent non-determinism of community
detection methods, the smaller communities may not be exact subsets.

Preprocessing. Optimizing modularity is a popular method for community detection. Modularity,
@, measures the strength of connections between nodes in a community as compared to a null
model with randomly placed edges. Communities in networks are often hierarchical, so we treat the
resolution parameter -y as the hierarchy/refinement level (larger v yields finer-grained communities);
Appendix summarizes the community terminology and formal definitions used below. We start
from two initial resolutions (7 = 0.5 and v = 1.0) and set three hyperparameters: a modularity gap
threshold A .y, @ minimum modularity Qmin, and a small target-drop range [a, b]. Let 1 and 2 be
two consecutive resolution parameters, with community sets ¢(") and ¢(72) and modularities Q")
and Q2); we define the modularity gap as AQ = |Q("2) — Q(1)|. At each iteration, we sort the
tested resolutions and examine consecutive pairs. If the gap between a pair exceeds A,.x, we find
their midpoint (interpolation). Otherwise, we extrapolate beyond the current maximum by estimating
the local slope of modularity with respect to the resolution and taking a small forward step expected
to reduce modularity by a random amount drawn from the drop range. Once the new < is obtained,
we compute the communities at that value. The loop stops when the latest modularity falls below
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Step 1: Louvain Community detection ~ Step 2: Louvain Community detection

Initial Graph Initial resolution Y o Initial resolution Y ;
Step 3: Interpolation between Step 5: Extrapolation with Step 5: Extrapolation with
Yo and Y1, new resolution Y, Y1 and Y2, newresoluton Y3 Y2 and Y3, new resolution Y4

Communities at Y, Communities at Y ; Communities at Y 4

Figure 3: Illustration of the Adaptive Resolution Search Process. The resolution limits, 7y < y2 <
Y1 < 73 < 74, and the communities C7° < C7"2 <X C" <X " < (7 capture structural bias for
different granularities from the graph.

@min Or no new resolution is produced. The procedure returns the retained resolutions and their
corresponding community assignments, which we view as multi-resolution community features—a
structural graph signal over the nodes—that are later encoded and concatenated with the original
node features in the feature-augmentation step (see AlgorithmI]in the appendix).

Feature Augmentation. For a given resolution parameter v, let the communities be c(?) €
{1,...,k,}, and and each node is assigned to one of the communities in k. This assignment
is represented as a one-hot encoded matrix H(?)( equation . To reduce dimensionality, each one-hot
matrix is projected into a dense embedding space using a trainable weight matrix W(?) ( equation EI)
The embeddings from all resolutions are concatenated to form E ( equation [3)), which is then further
concatenated with the original features X to yield the augmented feature matrix Z. The augmented
feature matrix Z is fed to an MLP fy to produce logits; a task-dependent function ¢ (e.g., softmax or
elementwise sigmoid), applied row-wise, converts them to probabilities Y ( equation

XeR”P T={y,....,yr} (1)
¢ = DetectCommunity (G, ), < € {1,... k,}" 2)
H") = OneHot(c") e {0, 1}"*k~ 3)
EM =HOWO® W) g RFvxde )
E— ||;F:1E(%) c RX(Tde) (5)
Z = [X || E] € R™(PHT) ©)
Y = |fo(2)) € [0,1]"¢ %

Complexity Analysis. We compare computational and memory complexities of representative
scalable GNN frameworks with our approach in Table 3] ATLAS performs Louvain clustering
in O(T||Allp) in the preprocessing step, keeps a single augmented feature buffer, and trains with
per-epoch time O(L gy N(D+Td,)?) and memory O(bLs;(D+Td,)), enabling simple i.i.d. node
mini-batching without neighborhood expansion or graph-dependent batching heuristics. ATLAS
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performs adjacency-free inference: with fixed augmented features of dimension D+7'd.., prediction
is a forward pass with complexity O(N (D+Tdc)2).

4 EMPIRICAL EVALUATION

In this section, we provide the empirical results comparing ATLAS with other graph learning methods.
Our experiments focus on answering the following research questions:

Q1. How accurate is ATLAS compared to baseline methods over graphs with different degrees of
homophily?
Q2. How well can ATLAS scale to large graphs, while maintaining high accuracy?

Datasets. We use 8 medium graphs (Cora, PubMed, Tolokers, Squirrel-Filtered, Chameleon-Filtered,
Amazon-Ratings, Actor, Roman-Empire) and 5 large graphs (Flickr, Reddit, Yelp, Amazon-Products,
OGBN-Products). Complete statistics of datasets are given in Appendix Tables [§and [0}

Baselines. We group baselines by modeling regime and map them to the research questions.

Q1 (homophily—heterophily regime). Homophilic: GCN (Kipf & Welling},2017), GraphSAGE (Hamil+
ton et al., [2017), GAT (Velickovi€ et al.l [2018)). Heterophily-oriented: H,GCN (Zhu et al., [2020),
LinkX (Lim et al.[2021), GPR-GNN (Chien et al., 2021)), FSGNN (Maurya et al.}[2022), GloGNN (Li
et al.,|2022), FAGCN (Bo et al.,[2021), GBK-GNN (Du et al.,[2022)), JacobiConv (Wang & Zhang,
2022), ACM-GCN (Luan et al., 2022)), BernNet (He et al.,|2021)).

Q2 (scalability). Propagation-free / decoupled: SGC (Wu et al.,|[2019a), SIGN (Rossi et al.}|[2020),
SAGN (Sun et al.} 2021)), GAMLP (Chien et al.,|[2022). Sampling-based: GraphSAGE (Hamilton
et al., 2017), ClusterGCN (Chiang et al.,|2019), GraphSAINT (Zeng et al., [2020). Descriptions of
these methods are provided in the Appendix.

We use an L-layer MLP with hidden width dy;q and dropout rate p. Each of the first L—1 layers
applies Linear (with bias) — LayerNorm — GELU — Dropout. The final layer is a Linear classifier
to C classes.

4.1 QIl: ACCURACY ACROSS HOMOPHILY REGIMES

Table [T] reports results on the eight medium-sized benchmarks. We group these datasets into three
structural-bias regimes—high, low, and negative structural bias—based on how informative their
community structure is for the labels; we formalize this notion in Section[5} On graphs with negative
structural bias, ATLAS improves over GCN by up to 20 percentage points, and on high structural-bias
graphs it improves over a feature-only MLP by more than 11 percentage points. Although it does not
attain the best score on every dataset, an appropriate choice of resolution parameters typically allows
ATLAS to match or closely track the strongest baseline across both homophilic and heterophilic
regimes. The main outlier is Roman-Empire, where accuracy appears to be largely driven by raw node
features. FSGNN explicitly concatenates neighborhood features to strengthen this input signal. When
we equip ATLAS with the same neighborhood-feature concatenation (ATLAS-NF), its accuracy on
Roman-Empire rises to within roughly two percentage points of FSGNN, while also achieving the
best performance on Tolokers.

Overall, ATLAS and its neighbor-feature variant ATLAS-NF substantially narrow the MLP—GNN
performance gap and provide a single topology-augmented architecture that is consistently competi-
tive with the strongest model on each dataset, across all three structural-bias regimes.

4.2 Q2: EFFICIENCY AND SCALABILITY ON LARGE GRAPHS

Accuracy. Table[2]shows that ATLAS scales to million-node graphs and is competitive across all
structural-bias regimes while consistently improving over MLP and GCN. On high structural-bias
graphs, it stays close to the best methods with gains up to about +0.21 over MLP and +0.03 over GCN.
On Flickr, ATLAS-NF (ATLAS with neighbor features) surpasses ATLAS, indicating the impact of
enhanced feature signal from neighbours, and on negative structural-bias graphs ATLAS maintains
strong performance while aggregation-heavy GNNs degrade.
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Table 1: Eight-benchmark comparison across homophily regimes. Baseline heterophily-oriented
model results are from [Platonov et al.|[(2023b); Luan et al.| (2024al). Bottom rows report ATLAS
improvements over baselines (absolute percentage points). Cells highlighted in yellow indicate the
best score for each dataset.

High structural bias Low structural bias Negative structural bias

Cora Tolokers PubMed Chameleon-Filtered ~ Amazon-Ratings Actor Squirrel-Filtered  Roman-Empire

Model he = 0.810 he = 0.595 he = 0.802 he = 0.236 he = 0.380 he = 0.216 he = 0.207 he = 0.047
MLP(2L) 7544197 72.97 £ 0.90 87.25+0.41 36.00 +4.69 39.83 +0.48 3496 +0.71 34.29+3.34 65.58 +0.34
GCN 87.01 + 1.04 7493 +1.32 86.71 £0.42 37.11+3.04 4278 £0.14 28.49+0.91 3270+ 1.73 45.68 +0.38
SAGE 87.50 +0.87 80.95 £0.92 88.42+0.55 38.83 £4.26 44.67+0.51 34.08 +1.07 33.32+1.75 76.21 £0.65
GAT 87.74 £ 0.88 7531+ 1.35 86.18 £ 0.64 37.18+3.44 43.25+0.85 29.11+1.23 32.61 £2.06 47.16 £ 0.66
H2GCN 87.52+0.61 73.35+1.01 87.78 £0.28 26.75+3.64 36.47+0.23 3885+ 1.17 35.10+ 1.15 60.11+0.52
LinkX 82.62+1.44 81.15+1.23 88.12+0.47 40.10 £2.21 52.66 + 0.64 35.64 +1.36 4234+4.13 56.15+0.93
GPR-GNN 79.51+£0.36 72.94+0.97 85.07 £0.09 39.93 +3.30 44.88 +£0.34 39.30+0.27 38.95+1.99 64.85+0.27
FSGNN 87.51+1.21 82.76 £ 0.61 90.11 £0.43 40.61 £2.97 52.74 £0.83 37.65 +0.79 3592+1.32 79.92 £ 0.56
GloGNN 87.67+1.16 73.39+1.17 90.32 £ 0.54 25.90 +3.58 36.89 +0.14 39.65 +1.03 35.11+1.24 59.63 + 0.69
FAGCN 88.85+1.36 71.75 + 1.05 89.98 +0.54 41.90 +£2.72 44.12 +0.30 31.59 +1.37 41.08 +£2.27 65.22 +0.56
GBK-GNN 87.09 + 1.52 81.01 £0.67 88.88 +0.44 39.61 +2.60 4598 £0.71 38.47+1.53 3551+ 1.65 74.57+0.47
JacobiConv 89.61 +0.96 68.66 + 0.65 89.99 +0.39 39.00 +4.20 43.55+0.48 37.48 £0.76 29.71 £ 1.66 71.14 £0.42
BernNet 88.52+0.95 77.00 £ 0.65 88.48 £0.41 40.90 £ 4.06 44.64 £ 0.56 4179 £1.01 41.18 £ 1.77 65.56 + 1.34
ACM-GCN 89.75 £ 1.16 7495+ 1.16 90.96 + 0.62 4273 +£3.59 52.49 £0.24 41.86 + 1.48 42.35+1.97 71.89 £0.61
ATLAS 87.09 + 1.62 82.19+0.73 88.85 +0.48 42.76 + 3.47 53.15 + 0.61 38.48 £0.93 40.35+1.53 66.22 +0.53
ATLAS-NF 86.73 + 1.04 83.02 £0.74 88.76 £ 0.36 40.02 £2.79 52.30 +0.64 3426 +0.97 36.98 +2.37 77.94 £0.48
ATLAS-MLP (pp) +11.65 +9.22 +1.60 +6.76 +13.32 +3.52 +6.06 +0.64

ATLAS-GCN (pp) +0.08 +7.26 +2.14 +5.65 +10.37 +9.99 +7.65 +20.54

ATLAS-Average (pp) +0.92 +5.97 +0.40 +5.15 +8.51 +2.13 +3.91 +1.67

Table 2: Large-graph performance. Baselines from [Zeng et al.| (2020); |Hu et al. (2020). Bottom rows
report ATLAS improvements over MLP and over GCN (absolute units). Cells highlighted in yellow
indicate the best score for each dataset.

High structural bias Low structural bias Negative structural bias

Reddit ogbn-products Flickr Yelp AmazonProducts
Method he=0.756 h.=0.808 he=0.319 he=0.809 he=0.116
MLP 0.7435+0.0016  0.6106 + 0.0008 0.4717 +0.0011 0.6546 + 0.0011  0.8204 + 0.0002
GCN 0.9330 £ 0.0001  0.7564 + 0.0021 0.4920 + 0.0030 0.3780 +£0.0010  0.2810 + 0.0050
GraphSAGE 0.9530+0.0010  0.8061 +0.0016 0.5010 + 0.0130 0.6340 + 0.0060  0.7580 + 0.0020
ClusterGCN 0.9540 + 0.0010  0.7862 + 0.0061 0.4810 + 0.0050 0.6090 + 0.0050  0.7590 + 0.0080
GraphSAINT 0.9660 + 0.0010  0.7536 + 0.0034 0.5110 + 0.0010 0.6530 +0.0030  0.8150 +0.0010
SGC 0.9351 +£0.0004  0.6748 +0.0011 0.5035 + 0.0005 0.2356 +0.0002  0.2262 + 0.0028
SIGN 0.9595 +0.0002  0.8052 + 0.0016 0.5160 + 0.0011 0.5798 £ 0.0012  0.7424 + 0.0002
SAGN 0.9648 +0.0003  0.8121 % 0.0007 0.5007 % 0.0011 0.6155+0.0040  0.7682 £ 0.0115
GAMLP 0.9673 + 0.0003  0.8376  0.0019 0.5258 + 0.0012 0.5784 £0.0154  0.7599 + 0.0026
ATLAS 0.9574 +£0.0004  0.7865  0.0053 0.5104 + 0.0039 0.6546 + 0.0011  0.8204 + 0.0002
ATLAS-NF 0.9410 + 0.0007  0.7507 + 0.0030 0.5201 + 0.0012 0.5740 +0.0021  0.7783 +0.0010
ATLAS-MLP +0.2139 +0.1759 +0.0387 +0.0000 +0.0000
ATLAS-GCN +0.0244 +0.0301 +0.0184 +0.2766 +0.5394
ATLAS-Average +0.0267 +0.0262 +0.0101 +0.1059 +0.1615

Convergence. ATLAS converges rapidly and stably across large graphs: training loss decreases
smoothly, and validation performance plateaus early with a small train—validation gap. The curves
exhibit no late-epoch degradation and remain stable after convergence (see Fig. ).

Efficiency. Table[3|shows that ATLAS adds a T-resolution community search as a one-time prepro-
cessing step with cost O(T'|| A||o), after which training is MLP-like and inference is adjacency-free
on features of dimension D + T'd.. Consequently, both preprocessing and inference costs increase
with 7. On OGBN-Products (Table [d), the larger 7" leads to a noticeable preprocessing cost, yet
per-epoch training remains competitive and inference stays sub-second. Appendix Table [5|reports
timings on the remaining large graphs.
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Table 3: Complexity comparison. N = #nodes, || A||o = #edges, D = feature dim, L = #message-
passing layers, L sy = #feed-forward layers, b = batch size, r = sampled neighbors (or filter size), K
= #precomputed hop propagations (max hop order for SAGN/GAMLP), k = #subgraph samples used
in GraphSAINT preprocessing, 1" = #resolutions, d. = community-embedding dim.

Method Preprocessing Per-epoch Train Time Memory
GCN (full-batch) - O(L ||AlloD + LND?*) O(LND + LD?)
ClusterGCN O(|Allo)  O(L||AlloD + LND?*  OOBLD + LD?)
GraphSAINT O(kN)  O(L|AlloD 4+ LND?) O(bLD)
SAGN O(K||AlloD)  O(LssN(KD)?) O(bLsyKD)
GAMLP O(K||AlloD)  O(LfsN(KD)?) O(bLssK D)
ATLAS O(T||Allo)  O(LjsN(D+Td.)*) O(bLyss(D + Td.))

Accuracy (%)

% w00 20
Epoch Epoch

3| 0.45) 08
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Figure 4: The convergence landscape of ATLAS.

Table 4: Computation time breakdown (seconds) on OGBN-Products.

Model Preprocessing Time Per-epoch Train Time Inference Time
GCN — 2.0395 + 0.0006 0.9220 + 0.0010
ClusterGCN 168.754 + 1.777 4.017 £ 0.164 82.837 £ 0.622
GraphSAINT 3.770 £ 0.159 (per epoch) 0.751 £ 0.046 66.445 + 0.517
SAGN 4.8462 £ 0.0415 0.8447 + 0.0225 0.2564 + 0.0001
GAMLP 4.8227 +0.0871 0.7976 + 0.0099 0.2495 + 0.0001
ATLAS 391.894 + 14.387 0.181 4+ 0.0058 0.526 £+ 0.0038

5 ACCURACY UNDER COMMUNITY REFINEMENT

We quantify the level of community refinement by the minimum modularity threshold Q,;,,. Large
Qmin preserves only coarse communities; lowering i, progressively adds medium and fine
communities, yielding a multi-scale representation. We define structural bias as how strongly a
graph’s community structure provides a useful structural signal for classification, and group graphs
into three regimes:

 High structural bias (e.g., Cora, Tolokers): Community structure is strongly aligned with labels,
so refinement helps. Coarse communities at large () ,;, already carry substantial signal, and adding
medium- and fine-grained communities reveals additional useful structure. As Q,i, decreases
and more refined communities are included, performance steadily improves until it saturates; see
Figure 5 (top left and bottom left). In this regime, GCN and ATLAS both outperform MLP.

¢ Low structural bias (e.g., Amazon-Ratings, Chameleon-Filtered, Flickr): Community structure
is only weakly label-aligned. Coarse communities capture most of this limited structural signal,
and adding finer communities yields at most small additional gains. As Q,;, decreases and
more refined communities are included, ATLAS improves moderately over the MLP, while GCN
shows at best small or sometimes no gains over MLP; see Figure 5 (top center and bottom center).
Here, topology provides some extra information, but node features remain the primary driver of
performance.
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Figure 5: Effect of cumulatively adding community-derived features as the minimum modularity
threshold @i, is lowered, for high structural bias graphs (left), low structural bias graphs (middle),
and negative structural bias graphs (right).
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Figure 6: NMI, mutual information, and entropy dynamics across resolutions. high structural bias
datasets (Cora and Tolokers, left); low structural bias datasets (Amazon and Chameleon-Filtered,
middle); negative structural bias datasets (Actor and Roman-Empire, right).

 Negative structural bias (e.g., Actor, Squirrel-Filtered, Roman-Empire): Community structure is
misaligned with labels, and finer communities introduce noisy or misleading locality, so refinement
hurts. As Qmin is lowered and more fine-grained communities are added, performance deteriorates;

see Figure 5 (top right and bottom right). In this regime, GCN typically underperforms the MLP
baseline.

Example (Cora). For Cora (Fig. [] top left; Table [7), each choice of Quin selects a subset of
resolution parameters: we include community features from all resolutions whose modularity satisfies
Q) > Qmin- When Quin € {1.0,0.9} no resolution meets the threshold, so ATLAS collapses to
the feature-only MLP at 76.61%, below the GCN curve. At Q,;n =0.8, two resolutions are added
and accuracy rises to 79.93%; at 0.7 a medium-resolution setting increases it to 83.66%; and at 0.6
two finer resolutions push it to 86.50%. As Qumin is lowered further and more resolutions are added,
the ATLAS curve eventually overtakes GCN, reaching its peak of 88.10% at i, = 0.1, where
node features are augmented with a balanced mix of coarse, medium, and fine community features.
Reducing Quin to 0.0 adds the most fragmented resolution and causes a slight drop, indicating
diminishing returns from very fine community structure, which effectively acts as noise.

Figure[§illustrates the refinement behavior predicted by our NMI theory. As resolution + increases,
communities are refined and, as Lemmas 1-2 state, both I(L; C') and H(C') grow monotonically
across all datasets. In contrast, Theorem 1 explains why NMI behaves differently across structural-
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bias regimes: on high structural-bias graphs it forms a clear interior peak, on low structural-bias
graphs it stays low and fairly flat because gains in I(L; C') do not outpace the entropy increase, and
on negative structural-bias graphs it rises slowly from near zero and saturates at a modest level.

6 ABLATION STUDY

Effect of Modularity Gap and Resolution on Performance. The behavior of refinement lev-
els—how many Louvain resolution values are selected and how useful they are—is strongly shaped
by the modularity gap. A small average modularity gap keeps many closely spaced resolutions, while
a large gap leaves only a few widely separated ones. This creates a trade-off between having many
redundant community partitions and having too few, overly coarse partitions. On high structural-bias
graphs (Figure[7(a)), accuracy is lowest at the extremes of this trade-off. When the average gap is very
small, ATLAS retains many nearly redundant partitions and the additional community features mostly
inject noise, depressing accuracy.As the gap moves into a moderate region (gap ~ 0.06—0.09), the
selected resolutions capture community structure at several distinct granularities and align better with
the labels, so mutual information strengthens and accuracy improves. If the gap becomes too large
(gap 2 0.10), only a handful of coarse resolutions remain; the community structure is too crude to
fully exploit the available signal and performance falls again.

For low structural-bias graphs (Figure [7(b)), the accuracy curves are much flatter. In this setting,
the community structure carries little information about the labels, so changing the modularity gap
mostly just changes how many community resolutions are kept, without making them much more
predictive. As a result, adding community features yields only modest gains over a feature-only MLP,
and accuracy is only weakly affected by the choice of gap.

Figure [/(c) illustrates this behavior on Cora. For small gaps, many closely spaced resolutions are
selected and their communities are highly overlapping, so the extra features are largely redundant and
behave as noise, matching the low-accuracy regime in Figure[7[a). For large gaps, only a few coarse
resolutions remain and the community information is too crude to capture label-relevant structure.
The best performance occurs at intermediate gaps, where a small set of resolutions captures different
levels of granularity, providing informative structural signal without redundancy.

7 CONCLUSION AND FUTURE WORK

We presented ATLAS, a community-augmented learning framework that enriches node features with
multi-resolution Louvain embeddings and trains a compact MLP classifier. An adaptive resolution
search, governed by Qpin and AQ, selects a small set of informative resolutions, balancing coverage
with cost. Across Q1 (homophily-regime benchmarks) and Q2 (large graphs), ATLAS attains
competitive or superior accuracy relative to homophilic GNNs and heterophily-oriented models,
while exhibiting fast, stable convergence and a favorable training footprint once preprocessing is
complete.

In the future we aim to reduce preprocessing by improving resolution selection. A complemen-
tary direction is community-guided graph rewiring: using the discovered communities to propose
sparse, label-aware edge edits that amplify useful intra-/inter-community signals and further improve
accuracy.
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8 APPENDIX

Compute environment. All experiments were run on a server with 1 x NVIDIA A40 (45 GiB)
GPU, 32 vCPUs, 2x Intel Xeon Silver 4309Y @ 2.80 GHz, and 503 GiB RAM.
Software stack: Python 3.10.18; PyTorch 2.4.0+cul24 (CUDA 12.4); PyTorch Geometric 2.6.1.

8.1 DEFINITIONS AND TERMINOLOGY FOR COMMUNITY DETECTION

This subsection defines the modularity-based community detection terms that underpin our multi-
resolution refinement.

Modularity. Given a partition C = {C1,...,Ck} with node assignments ¢; € {1,..., K},
modularity measures how much denser the intra-community connections are than expected under a
degree-preserving null model:
1 kik;
Q = 5> (4 - 5,7 ) dlewey). ®)
1,J

where A;; is the adjacency matrix, k; is the degree of node i, m = |E| is the number of edges, and
d(ci,cj) = Lif ¢; = ¢; (else 0). Higher () indicates stronger community structure.
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Resolution parameter. Louvain introduces a resolution v > 0 to control granularity by reweighting
the null-model term:

1
Q(W’) = o (Aij_'y
i,7

QmJ) 5(circy). ©)

Smaller « favors coarser partitions, while larger ~y typically yields finer (more, smaller) communities,
producing a refinement hierarchy across . We denote the resulting partition and modularity by C(7)
and Q(’Y), with assignment vector c™,

Modularity gap. For two consecutive tested resolutions vy, < 2, the modularity gap quantifies the
change in community quality:

AQ(v1,72) = QD) — QU] (10)

Large gaps indicate rapid structural changes between scales and motivate inserting intermediate
resolutions; small gaps suggest the refinement has stabilized.

8.2 THEORETICAL PROOFS

Lemma. 1. Let L be labels and C a community partition. Let C' be a refinement of C, i.e., C' < C.
Then I(L;C") > I(L; C)

Proof. Let total number of elements be n. Then based on the definitions of I(P, Q) in Section

1 e 1 -
L) =13 ) me log(iim B0 =02 ) e log(jﬁ ) |

l l

where n; =Y ny .

I(L;C") — I(L; C)

1 ¢ 1 c
= E zl:g:nhcl 10g<%> — E zl:zc:nl,clog<z/:2:>

%Z Z Z [nl,cf log<%) — Ny log(%) 1

c c¢’Ce 1
1 Ny Ne
LSS S o)
n c cCe 1 M,e Me!
Since every ¢’ C ofc, therefore % > % Thus the value in the log is positive, and I(L; C") >
I(L; C) O

Lemma. 2. Let C a community partition. Let C' be a refinement of C, i.e., C' <X C. Then
H(C") = H(C)

Proof. Let total size n. Based on the definition in Section 2]

Ne Ne Ner Ner
H(C) = —Zzlog;7 H(C') = —Z o log o
(& !

By grouping the ¢’ under their parent c:
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H(C') ~ H(C) = - " 1ogl 4 7 e gt

= %Z — chl logne + nelogne|.

c’'Ce
Since f(z) = —x logx is a concave function and ¢’ C ¢, therefore,
M Nt n, n
Zf < log < > f—clog—c.
n n n n
c’'Ce

Thus, H(C') > H(C).
O
Theorem 1. Let L be labels; C a community partition. Let C' be a refinement of C, i.e., C' < C.

Then NMI(C'; L) > NMI(C; L) if and only if % > w where AI = I(C'; L)—I(C; L)

and AH = H(C';L) — H(C; L)

Proof.

21(C;L)

NMI(C; L) = —— 02
( ) H(C)+ H(L)

I:=1(C;L), I' =1(C"; L), H:=H(C), H':=H(C), Hp = H(L).

Also

Al:=I' -1, AH:=H —H.

Based on Lemma 1 and 2, AT > 0 and AH > 0. We do not consider edge case where AH = 0. To
show

AT NVI(C“L)

/. 1(C: — e
NMI(C’; L) > NMI(C; L) <= > 5
21 21

/. .
NMI(C'; 1) > NMIC3 L) = g >

r - I
H' +H;, H+Hp

<:>II(H+HL)—I(H/+HL) > 0.
Expandusing I’ =T+ Aland H' = H + AH:

(I +AIH+HL)—I(H+AH + Hp) > 0.

Simplify terms (the I(H + Hp,) cancel):

AI(H+Hp)—IAH > 0.

Thus; A
I I
AI(H+ H IAH <+— —>——.
(H + Hy) > AH = H+H
21 I NMI(C; L
By definition NMI(C; L) = fZan HL,so TET (2 : ) Therefore
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NMI(C'; L) > NMI(C; L)

8.3 NMI ANALYSIS FOR DATASETS

Cora: NMI, I(LiC), H(L)

Cora: H(C), H(L)+H(C)

AL NMI(C: L)
AH 2

Reddit: H(C), H(L)+H(C)

Reddit: NMI, I(L;C), H(L)
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Figure 8: High structural bias datasets: (a) Cora, (b) Reddit, (c) OGBN-Products, and (d) Tolokers.
Each subfigure reports how NM1I, I(L;C), H(L), H(C), and H(L)+H (C) vary as the resolution
parameter +y varies and yields community partitions of different granularity.
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Chameleon-filtered: H(C), H(L)+H(C)

Amazon-Ratings: H(C), H(L)}+H(C) Chameleon-filtered: NMI, I(L;C), H(L)
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Figure 9: Low structural bias datasets: (a) Amazon-Ratings, (b) Chameleon-filtered, and (c) Flickr.
Each subfigure illustrates how NM1, I(L;C), H(L), H(C), and H(L)+H(C) evolve as the
resolution parameter y varies and yields community partitions of different granularity.
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Figure 10: Negative structural bias datasets: (a) Actor, (b) Squirrel-filtered, and (c) Roman-Empire.
Each subfigure reports how NMI, I(L;C), H(L), H(C), and H(L)+H (C) vary as the resolution
parameter y varies and yields community partitions of different granularity.

8.

4 ALGORITHMS
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Algorithm 1 Adaptive Resolution Search for Louvain

Require: graph GG, minimum modularity Qp,;n, maximum modularity gap A.x, gap_range=

[a, b]

Ensure: resolutions, community_list

LC+0;Q <« 0

2: for r € {0.5,1.0} do > initial resolutions

3: (C[r], Qr]) + LOUVAIN(G, )

4: while true do

5: L + SORTEDKEYS(Q); T"max < L[—1]; 7 + Q[rmax]

6: if 7 < Quin then

7: break

8: new_r <— None

9: for consecutive (r1,72) € L do

10: if |Q[r2] — Q[r1]| > Amax then

11: new_r <— (r1 + r2)/2; break > interpolate
12: if new_r= None then > extrapolate
13: sample 6 ~ U[a,b]; Q* 7 —§

14: s < ESTIMATESLOPE(Q vs r);

Q-7
15: NEW_T < Tmax + S
16: (Clnew_r], Q[new_r]) <— LOUVAIN(G, new_r)

17: resolutions < {r € SORTEDKEYS(Q): Q[r] > Qmin }
18: community_list « [C[r] forr € resolutions]
19: return resolutions, community_list

Algorithm 2 Community-Augmented Feature Projection for Node Classification

Require: Graph G = (V, E), node features X € R"* P resolutionsetT" = {71, ...,~y7}, projection
dimension d,.

Ensure: Predicted label distribution Y € R™*C

1: Initialize empty list of embeddings Eemp  []

: fory €T do
Compute community assignment c(?) € N"
One-hot encode c(): H) € {0, 1}7*#~
Project via trainable weights: E(V) < HOOW®) where W) ¢ RFv*de
Append EM to Eernpy

Concatenate all embeddings: E < Concat(Eemp) € R7*(T+de)

Concatenate with node features: Z + [X || E] € R (P+Tde)

Predict logits with MLP: Y <« fo(Z) € R"*¢

Apply softmax: Y « softmax(Y)

: return Y

D A A o

—_
—_ O

8.5 COMPUTATION TIME ON LARGE GRAPHS
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Table 5: Preprocessing (community detection), training, and inference times.

Dataset Preprocessing Time  Per-epoch Train Time Inference Time
Reddit 84.904 £+ 2.764 0.143 £+ 0.002 0.150 £ 0.005
Flickr 6.800 £ 1.741 0.241 + 0.005 0.056 + 0.012
Yelp 15.842 + 0.007 2.670 £ 0.007 1.613 £0.016
AmazonProducts 72.270 + 1.409 6.073 £ 0.039 3.056 £ 0.019

8.6 HYPERPARAMETER DETAILS

Dataset Qmin AQ Epochs Batch Hidden Layers Dropout LR
Cora 0.1 02 200 128 256 3 0.5 le-4
Pubmed 0.7 0.1 300 8000 512 3 0.7 le-4
Tolokers 03 0.1 2000 512 512 2 0.5 le-4
Squirrel-filtered 0.61 0.05 60 512 512 3 0.5 5e-3
Chameleon-filtered 0.7 0.1 30 256 512 1 0.5 1le3
Amazon-ratings 0.6 0.1 1500 512 512 3 0.5 le-4
Actor 1.0 0.1 200 128 512 3 0.8 le-4
Roman-empire 1.0 0.1 500 512 512 3 0.5 le-4
Flickr 0.1 0.01 20 1024 256 2 0.7 1le-3
Reddit 03 03 1000 8000 512 3 0.5 le-4
Yelp 1.0 0.1 300 32000 2048 5 0.5 5e-5
AmazonProducts 1.0 0.1 200 64000 2048 5 0.5 5e-5
ogbn-products 03 0.1 400 32000 512 3 0.5 le-4

Table 6: Training hyperparameters by dataset. Q. is the minimum modularity threshold and AQ is
the maximum modularity gap.

Note. For squirrel-filtered, we explicitly use the community resolution 0.1. For Tolokers,
we explicitly use the community resolution 0.5, 0.75, 1, 1.364. For Pubmed, we explicitly use the
community resolution 0.5, 1, 1.956.

8.7 CORA: ACCURACY VS. MINIMUM MODULARITY THRESHOLD

Table [/|summarizes how relaxing the minimum modularity threshold (),,;,, on Cora changes both the
community-derived features and the resulting accuracy. Each tuple (@, Resolution, Communities)
corresponds to a Louvain run at resolution v: @ is the modularity Q(), and Communities is the
number of communities k, whose assignments ¢ are one-hot encoded into H() and projected to
a dense embedding E(?) that is concatenated into the multi-resolution community feature matrix
(Algorithm 2). For a given Quin, the row lists the cumulative set of tuples with Q > @Qin: blue
tuples are newly activated at that threshold, while gray tuples persist from higher thresholds. When
Qumin > 0.9, no tuples qualify and the model reduces to the base MLP with accuracy 76.61%.
As Qmin 1s lowered from 0.8 to 0.6, additional high-modularity, moderate-resolution community
embeddings are added, and accuracy increases up to 86.50%. Further decreasing @i, admits
lower-modularity, finer resolutions with many more communities, leading to small fluctuations and a
peak accuracy of 88.10% at Q,in, = 0.1, where a diverse mix of coarse-to-fine community features
is used. Pushing Qmin to 0.0 adds one very fine tuple (768 communities), which slightly degrades
performance to 86.32%, indicating that including too many extremely fine community features
eventually injects noise.
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Table 7: Cora: Cumulative (@), Resolution, Communities) pairs included at each minimum modu-
larity threshold Qmin (listed in run order), with accuracy. Color coding: pairs colored in blue are
newly added at that Qi ; pairs in gray were added at earlier thresholds and are carried over.

Min Modularity Pairs
Qmin (Modularity, Resolution,Number of Communities) Accuracy
1.0 — 76.61
0.9 — 76.61
0.8 (0.8526, 0.500, 90), (0.8120, 1.000, 103) 79.93
0.7 (0.8526, 0.500, 90), (0.8120, 1.000, 103), 83.66
(0.7448, 2.606, 141)
0.6 (0.8526, 0.500, 90), (0.8120, 1.000, 103), 86.50

(07448, 2.606, 141), (0.6841, 5.483, 170),
(0.6006, 12.374, 298)
0.5 (0.8526, 0.500, 90), (0.8120, 1.000, 103), 84.55
(0.7448, 2.606, 141), (0.6841, 5.483, 170),
(0.6006, 12.374, 298), (0.5566, 20.068, 325)
(

0.4 (0.8526, 0.500, 90), (0.8120, 1.000, 103), 86.15
(0.7448, 2.606, 141), (0.6841, 5 483, 170),
(0.6006, 12.374, 298), (0.5566, 20.068. 325),
(0.4909, 32.860, 373), (0.4231, 48.392, 430)
03 (0.8526, 0.500, 90), (0.8120, 1.000, 103), 85.26
(0.7448, 2.606, 141), (0.6841, 483 170),
(0.6006, 12.374, 298), (0.5566, 20.068, 325),
(0.4909, 32.860, 373). (0.3748, 63 924, 457),
(0.4231, 43 392, 430)

0.2 (0.8526, 0.500, 90), (0.8120, 1.000, 103), 82.59
(0.7448, 2.606, 141), (0.6841, 5.483, 170),
(0.6006, 12.374, 298), (0.5566, 20.068, 325),

)

),

(0.4909, 32.860, 373), (0.3748, 63.924, 457),
(0.4231, 48.392, 430), (0.2784, 95.726, 541)
0.1 (0.8526, 0.500, 90), (0.8120, 1.000, 103), 88.10
(0.7448, 2.606, 141), (0.6841, o 483, 170),
(0.6006, 12.374, 298), (0.5566, 20.068, 325),
(0.4909, 32.860, 373), (0.3748, 6 924, 457),
(0.4231, 48.392, 430), (0.2784, 95.726, 341)
(0.1792, 136.430, 672)

0.0 (0.8526, 0.500, 90), (0.8120, 1.000, 103), 86.32
(0.7448, 2.606, 141), (0.6841, 5.483, 170),
(0.6006, 12.374, 298), (0.5566, 20.068, 325),
(0.4909, 32.860, 373), (0.3748, 63.924, 457),
(0.4231, 48.392, 430), (0.2784, 95.726, 541),

(01792, 136.430, 672), (0.0958, 175.819, 768)

8.8 MODELS FOR HOMOPHILIC GRAPHS

GCN. Applies a linear map followed by aggregation with the symmetrically normalized adjacency
(after adding self-loops), corresponding to a first-order spectral/Chebyshev approximation (Kipf &

2017).

GAT. Learns attention coefficients over neighbors via masked self-attention and aggregates them
with a softmax-weighted sum, enabling data-dependent receptive fields (Veli€kovi¢ et al., 2018).

GraphSAGE. Performs permutation-invariant neighbor aggregation (e.g., mean, max-pooling,
LSTM) with fixed fan-out sampling per layer for scalable, inductive mini-batch training on large

graphs (Hamilton et all,[2017).
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8.9 MODELS FOR HETEROPHILIC GRAPHS

H,GCN. Separates ego and neighbor embeddings, aggregates higher-order neighborhoods, and
combines intermediate representations to improve robustness under heterophily (Zhu et al., 2020).

LinkX. Separately embeds node features and adjacency (structural) information with MLPs and con-
catenates them, capturing complementary attribute and topology signals that scale to non-homophilous
graphs (Lim et al.| [2021]).

GPR-GNN. Learns signed polynomial (Generalized PageRank) propagation weights, adapting the
filter to both homophilous and heterophilous label patterns and mitigating over-smoothing (Chien
et al.l[2021).

FSGNN. Applies soft selection over hop-wise aggregated features with “hop-normalization,” ef-
fectively decoupling aggregation depth from message passing for a simple, shallow baseline that
performs well under heterophily (Maurya et al., 2022).

GloGNN. Augments propagation with learnable correlations to global nodes (including signed coeffi-
cients), enabling long-range information flow and improved grouping on heterophilous graphs (Li
et al.,[2022).

FAGCN. Uses a self-gating, frequency-adaptive mechanism to balance low- and high-frequency
components during message passing, improving robustness across homophily regimes (Bo et al.,
2021).

GBK-GNN. Employs bi-kernel feature transformations with a gating mechanism to integrate
homophily- and heterophily-sensitive signals within a single architecture (Du et al., 2022).

JacobiConv. Adopts an orthogonal Jacobi-polynomial spectral basis (often without nonlinearities)
to learn flexible filters suited to varying graph signal densities, yielding strong performance on
heterophilous data (Wang & Zhang|, 2022).

BernNet. Learns general spectral graph filters using Bernstein polynomial approximation, enabling
flexible control of low- and high-frequency components and strong performance under varying
degrees of heterophily (He et al., [2021)).

ACM-GCN. Uses high-pass filtering with adaptive channel mixing to combine low- and high-
frequency components, yielding strong performance on heterophilic and mixed-regime graphs (Luan
et al., 2022)).

8.10 SAMPLING METHODS FOR SCALABLE GNNSs

GraphSAGE (node/neighbor sampling). Samples a fixed fan-out of neighbors per layer and learns
permutation-invariant aggregators, limiting the receptive field and enabling inductive, mini-batch
training on large graphs (Hamilton et al.,[2017).

FastGCN (layer-wise node sampling). Recasts graph convolution as an expectation over nodes and
draws i.i.d. node sets at each layer via importance sampling, decoupling batch size from degree and
reducing estimator variance (Chen et al.||2018b).

S-GCN / VR-GCN (layer-wise with control variates). Introduces control-variates using histor-
ical activations to stabilize gradients under small per-layer samples and achieve faster, provable
convergence to the full-batch optimum (Chen et al., [2018a)).

ClusterGCN (subgraph/block sampling). Partitions the graph and samples dense clusters as mini-
batches, restricting propagation within blocks to boost edge coverage, cache locality, and memory
efficiency at scale (Chiang et al., [ 2019).

GraphSAINT (subgraph sampling with bias correction). Constructs mini-batches by sampling
subgraphs (node/edge/random-walk policies) and applies unbiased normalization to correct sampling
bias, yielding strong accuracy—efficiency trade-offs on large graphs (Zeng et al., [2020).
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8.11 DECOUPLING-BASED METHODS FOR SCALABLE GNNS

SGC (linearized propagation). Simplifies GCNs by collapsing multiple message-passing layers into
a single K -step precomputation of A® X, removing nonlinearities and train-time propagation. This
reduces GNN training to logistic regression on pre-smoothed features, yielding strong scalability and
fast inference (Wu et al., 2019a)).

SIGN (multi-hop feature precomputation). Precomputes multiple graph-diffused feature channels
(e.g., AKX for several K), and trains an MLP on the concatenated features. This decouples feature
propagation from learning entirely, enabling embarrassingly parallel preprocessing and large-batch
training (Rossi et al., [2020).

SAGN (depth and scope decoupling). Introduces a learnable gating mechanism over multiple
precomputed hop-wise representations, allowing the model to adaptively weight short- and long-
range information without stacking GNN layers. This stabilizes training under heterophily and yields
strong performance with shallow architectures (Sun et al., 2021}).

GAMLP (self-ensemble on diffused features). Builds an ensemble over diffused feature channels
using attention and prediction consistency across hops. GAMLP reuses node features efficiently
and achieves high accuracy with small models, while avoiding message passing during training and
inference (Chien et al., 2022).

Together, these methods represent the broader “decoupling” paradigm—where propagation is
performed once (or analytically) and training reduces to learning an MLP over fixed multi-hop
representations—an approach systematically benchmarked and analyzed in large-scale settings by
Zeng et al. (Zeng et al.,[2022). ATLAS aligns with this propagation-free philosophy but differs funda-
mentally in how structural information is obtained: instead of precomputing A*X, ATLAS extracts
multi-resolution community assignments as topology-aware features, providing a complementary and
scalable route to structural encoding.

8.12 DATASETS

We evaluate on two groups of benchmarks that stress complementary regimes.

Large-scale graphs. We use Flickr, Reddit, Yelp, AmazonProducts, and ogbn-products.
Flickr/Yelp/AmazonProducts come from GraphSAINT; Reddit from GraphSAGE; ogbn-products
from OGB (Zeng et al., 2020; [Hamilton et al., |2017; [Hu et al.| 2020). Table E]reports sizes, features,
classes, and splits.

Homophilous and heterophilous graphs. We include Cora, PubMed, Actor, Chameleon-filtered,
Squirrel-filtered, Amazon-ratings, Tolokers, and Roman-empire. For the filtered Wikipedia, Roman-
empire, Amazon-ratings, and Tolokers datasets, we use the exact settings and splits of [Platonov et al.
(2023b); Cora, PubMed, and Actor follow standard preprocessing (Sen et al., 2008; |Pei et al .| [2020;
Lim et al.| 2021). Tablelists summary stats, edge homophily h., and metrics.

Table 8: Dataset statistics with edge homophily . and evaluation metric (“Acc” for Accuracy,
“ROC-AUC” for Area Under ROC).

Dataset Nodes  Edges  Avg. Degree Feature Classes Train/ Val / Test he Metric

Cora 2,708 5,429 4 1,433 7(s) 0.60/0.20/020 0.810 Acc

PubMed 19,717 44,324 5 500 3(s) 0.60/0.20/0.20 0.802 Acc

Actor 7,600 30,019 8 932 5() 0.60/0.20/0.20 0.216 Acc

Squirrel-filtered 2,223 65,718 59 2,089 5() 050/0.25/0.25 0.207 Acc

Chameleon-filtered 890 13,584 31 2,325 5() 050/0.25/0.25 0.236 Acc

Amazon-ratings 24,492 93,050 8 300 5() 050/0.25/0.25 0.380 Acc
Tolokers 11,758 519,000 88 10 2(s) 050/0.25/0.25 0.595 ROC-AUC

Roman-empire 22,662 32,927 3 300 18(s) 0.50/0.25/0.25 0.047 Acc
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Table 9: Dataset statistics (“m” stands for multi-class classification, and “s” for single-class.)

Dataset Nodes Edges Avg. Degree  Feature Classes Metric Train / Val / Test

Flickr 89,250 899,756 10 500 7 (s) Fl-micro 0.50/0.25/0.25

Reddit 232,965 11,606,919 50 602 41(s)  Fl-micro 0.66/0.10/0.24

Yelp 716,847 6,977,410 10 300 100 (m) Fl-micro 0.75/0.10/0.15
AmazonProducts 1,598,960 132,169,734 83 200 107 (m) Fl-micro 0.85/0.05/0.10
ogbn-products 2,449,029 61,859,140 50.5 100 47 (s) Acc 0.0870.02/0.90
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