

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ATLAS: ADAPTIVE TOPOLOGY-BASED LEARNING AT SCALE FOR HOMOPHILIC AND HETEROPHILIC GRAPHS

Anonymous authors

Paper under double-blind review

ABSTRACT

We present ATLAS (Adaptive Topology-based Learning at Scale for Homophilic and Heterophilic Graphs), a novel graph learning algorithm that addresses two important challenges in graph neural networks (GNNs). First, the accuracy of GNNs degrades when the graph is heterophilic. Second, the iterative feature aggregation limits the scalability of GNNs on large graphs. We address these challenges by extracting topological information about the graph communities at different levels of refinement, concatenating the community assignments to the feature vector, and applying multilayer perceptrons (MLPs) on this new feature vector. We thus inherently obtain the topological data about the nodes and their neighbors without invoking aggregation. Because MLPs are typically more scalable than GNNs, our approach applies to large graphs, without the need for sampling. Our results, on a wide set of graphs, show that ATLAS has comparable accuracy to baseline methods, with accuracy being as high as 20 percentage points over GCN for heterophilic graphs with negative structural bias and 11 percentage points over MLP for homophilic graphs. Furthermore, we show how multi-resolution community features systematically modulate performance in both homophilic and heterophilic settings, opening a principled path toward explainable graph learning.

1 INTRODUCTION

Node classification, a fundamental problem in graph learning, involves identifying labels of nodes in a graph and has wide applications in many domains including social networks, citation networks, recommendation systems, knowledge graphs and bioinformatics (Khemani, 2024; Wu et al., 2019b; Zhou et al., 2021). Accurate classification requires two complementary pieces of information—(i) the features at each node, and (ii) the connections between the node and its neighbors. Neural network methods such as Multi-Layer Perceptrons (MLPs) are fast but do not include information about the connections. Graph Neural Networks (GNNs) address this problem by aggregating the features between neighboring nodes, but the process is expensive, and difficult to scale to large graphs. Although the graph structure can be represented as feature vectors using different node embedding techniques (Perozzi et al., 2014; Grover & Leskovec, 2016; Tang et al., 2015), or through the use of community detection (Sun et al., 2019; Kamiński et al., 2024), the issue remains as to how many hops of neighbors should be considered and how fine-grained the communities should be. Larger hops or coarse grained community can lead to information smoothing, while smaller hops or fine grained communities can lead to information loss. Further, the hypothesis that aggregating features of neighbors can improve accuracy of node classification is only true for homophilic networks (where nodes of similar classes are connected). In heterophilic networks, where the connection between nodes need not imply similarity of class, this strategy leads to lower accuracy. Based on these observations, we posit, *matching structural information (i.e. size of hops or communities) with how well it aligns with the classification is necessary for producing accurate results.*

1.1 RELATED WORK

Graph Neural Networks (GNNs) have become a core tool for learning on graphs (Kipf & Welling, 2017; Hamilton et al., 2017). Most algorithms follow a message-passing paradigm, aggregating transformed neighbor features into topology-aware embeddings, which implicitly assumes *homophily*

(Wu et al., 2019a). The same bias can blur informative distinctions on weakly homophilous or heterophilous graphs (Zhu et al., 2020; Platonov et al., 2023a).

Scaling GNNs on large graphs. Scaling GNNs on large graphs is challenging due to memory and aggregation costs. Sampling-based methods approximate full-batch propagation using node-, layer-, or subgraph-level sampling (GraphSAGE, FastGCN, Cluster-GCN, GraphSAINT, LABOR) (Hamilton et al., 2017; Chen et al., 2018b; Chiang et al., 2019; Zeng et al., 2020; Balin & Çatalyürek, 2023), but introduce stochasticity that affects convergence and reproducibility (Chen et al., 2018b; Zou et al., 2019). Decoupled models instead precompute feature diffusion and train MLPs on fixed graph-derived features, enabling i.i.d. node mini-batching and fast inference (SGC, SIGN, SAGN, GMLP, SCARA, LD²) (Wu et al., 2019a; Rossi et al., 2020; Sun et al., 2021; Chien et al., 2022; Liao et al., 2022; 2023).

Learning on non-homophilous graphs. For non-homophilous graphs, one line of work preserves self-features while carefully injecting neighborhood information (H2GCN, GloGNN) (Zhu et al., 2020; Li et al., 2022), or reweights neighbors to downweight harmful edges (GPR-GNN, FAGCN) (Chien et al., 2021; Bo et al., 2021). Others exploit higher-order propagation or spectral filters to capture both homophilic and heterophilic signals (MixHop, JacobiConv, BernNet, GBK-GNN) (Abu-El-Haija et al., 2019; Wang & Zhang, 2022; He et al., 2021; Du et al., 2022). See Zheng et al. (2022); Luan et al. (2024b) for broader surveys.

Community-aware node embeddings. Several works use community structure as an explicit representation for downstream prediction. Sun et al. (2019) propose vGraph, a generative model that jointly infers discrete communities and continuous node embeddings by reconstructing edges, so that community assignments act as latent variables guiding representation learning. Closer to our setting, Kamiński et al. (2024) construct community-aware node features (e.g., counts and statistics over community memberships in a node’s ego-network) and feed them into standard classifiers, showing that purely community-derived signals can already yield strong performance on node-level tasks.

Graph-task alignment and community structure. A related line of work asks when a graph’s communities are informative for the labels and how this alignment controls the benefit of message passing. Hussain et al. (2021) vary homophily and community structure in real graphs and define a measure of label–community correlation, showing that GNN gains are largest when labels follow communities and can vanish when they do not. This links the classical “cluster assumption” in semi-supervised learning (Chapelle et al., 2006) with recent analyses of graph–task and NTK–graph alignment in GNN training dynamics (Yang et al., 2024), and motivates methods that treat communities as task-relevant structural signals.

Community-guided graph rewiring. Building on modularity-based detection (Newman, 2006; Blondel et al., 2008), ComMa and ComFy (Rubio-Madrigal et al., 2025) use community structure and feature similarity to rewire intra- and inter-community edges, improving label–community alignment and GNN accuracy on both homophilic and heterophilic graphs.

Unlike community-aware GNNs and rewiring methods, ATLAS treats multi-resolution community assignments as features for a simple MLP, remaining propagation-free while still leveraging community structure.

1.2 OUR CONTRIBUTION

Most of the current research either focuses primarily on homophilic graphs, or the processes to address the heterophilic graphs require expensive operations, such as signal identification/modification, rewiring or spectral gap maximization. These methods cannot efficiently scale to large graphs. Our **primary contribution** is to develop Adaptive Topology -based Learning at Scale (**ATLAS**) ^{*}, a novel graph learning algorithm that can produce high-accuracy results for both homophilic and heterophilic graphs. ATLAS is based on a *simple but powerful technique of refining communities in networks to match the degree of homophily*.

Rationale. Our algorithm is based on quantifying homophily through the lens of normalized mutual information (NMI). Given two partitions of the same set of elements NMI measures how well the

^{*}Apart from the acronym, the name ATLAS is to convey our method can handle different degrees of homophily, similar to how an atlas encompasses all different countries.

108 partitions correspond to each other. If we consider one partition as the communities in the graph, and
 109 the other partition as labels, then NMI provides a measure for the degree of homophily in the graph.
 110 ATLAS focuses on refining/coarsening communities to identify the region of highest NMI—which
 111 will correspond to the highest accuracy. Figure 1 provides an overview of ATLAS.

112 Our specific contributions are:

113

- 114 **Theory.** We provide a theoretical analysis of how refining communities changes in NMI
 115 (Section 2).
- 116 **Algorithm.** Based on this mathematical understanding, we develop our algorithm ATLAS
 117 (Section 3).
- 118 **Experiments.** Provide extensive empirical evaluations by comparing ATLAS across a
 119 mix of 13 (8 medium size and 5 large) homophilic and heterophilic graphs, and 14 (9)
 120 GNN/MLP-based algorithms for medium sized (large) graphs (Section 4).
- 121 **Bridging Frameworks.** Unlike prior MLP-based models designed primarily for heterophilic
 122 graphs, ATLAS effectively supports both homophilic and heterophilic settings, thereby
 123 minimizing the accuracy gap traditionally observed between MLPs and GNNs. Moreover,
 124 its high inference efficiency positions ATLAS as a practical and scalable alternative to GNNs.

138 Figure 1: Overview of the community-augmented feature learning pipeline. Community assignments
 139 at multiple resolutions are one-hot encoded, projected, concatenated with node features, and input to
 140 an MLP for classification.

2 THEORETICAL ANALYSIS

144 We mathematically show how refining communities leads to changes in NMI. We define some terms
 145 that will help us in the analysis. The proofs of the theorems are given in the appendix.

147 Let N be the set of nodes. Let $P = \{P_1, \dots, P_k\}$ be a partition of N ; i.e.

$$148 \quad P_i \neq \emptyset, \quad P_i \cap P_j = \emptyset \quad (i \neq j), \quad \text{and} \quad \bigcup_{i=1}^k P_i = N.$$

150 Let $S = \{S_1, \dots, S_m\}$ be another partition of N . We say S is a refinement of P (denoted as $S \preceq P$)
 151 iff every block of S is contained in some block of P . Formally:

$$153 \quad S \preceq P \iff \forall S_j \in S \exists P_i \in P \text{ such that } S_j \subseteq P_i.$$

154 *Normalized mutual information (NMI)* is a popular measure to quantify alignment between two
 155 partitions. Given two partitions P and Q , over a set of N elements and $n_{ij} = |P_i \cap Q_j|$, $n_i =$
 156 $|P_i|$, $n_j = |Q_j|$ their normalized mutual information is given as;

$$158 \quad \text{NMI}(P, Q) = \frac{2I(P; Q)}{H(P) + H(Q)}$$

160 $I(P; Q) = \sum_{i=1}^k \sum_{j=1}^m \frac{n_{ij}}{N} \log \left(\frac{N n_{ij}}{n_i n_j} \right)$ is the mutual information between partitions P and Q .

161 This quantity measures how much information is shared between the partitions P and Q . The higher

162 the value, the better the alignment between the partitions. $H(P) = -\sum_{i=1}^k \frac{n_i}{N} \log \left(\frac{n_i}{N} \right)$, is the
 163 entropy of partition P . $H(Q)$ is defined similarly. The entropy measures the distribution of points
 164 in each partition. Low entropy means data is concentrated in few clusters, and is indicative of good
 165 clustering.

166 The value of NMI ranges from 1 (indicating complete alignment between partitions) to
 167 close to 0 (indicating complete mismatch between partitions). NMI is high if the parti-
 168 tions are well matched ($I(P, Q)$ is high), and entropy is low ($H(P)$, $H(Q)$ is low).
 169

170 **Lemma 1** (Refinement does not decrease mutual
 171 information). *Let L be labels and C a com-
 172 munity partition. Let C' be a refinement of C , i.e.,
 173 $C' \preceq C$. Then $I(L; C') \geq I(L; C)$*

174 **Lemma 2** (Refinement does not decrease en-
 175 tropy). *Let C a community partition. Let C'
 176 be a refinement of C , i.e., $C' \preceq C$. Then
 177 $H(C') \geq H(C)$*

178 Based on Lemma 1 and Lemma 2 we see that
 179 while refinement improves the mutual informa-
 180 tion leading to better alignment, it also increases
 181 the entropy leading to more noise or uncertainty.
 182 The condition at which NMI will increase is
 183 given by Theorem 1.
 184

185 **Theorem 1** (NMI Refinement Condition).
 186 *Let L be labels; C a community par-
 187 tition. Let C' be a refinement of C ,
 188 i.e., $C' \preceq C$. Then $NMI(C'; L) >$
 189 $NMI(C; L)$ if and only if $\frac{\Delta I}{\Delta H} > \frac{NMI(C; L)}{2}$;
 190 where $\Delta I = I(C'; L) - I(C; L)$ and $\Delta H =$
 191 $H(C'; L) - H(C; L)$*

192 Theorem 1 states that a partition refinement improves the normalized mutual information with respect
 193 to labels if and only if the mutual information gain per unit of entropy increase exceeds half the
 194 original normalized mutual information value.
 195

196 3 METHODOLOGY

197 The theorems in Section 2 are based on idealized conditions, where refined communities are perfect
 198 subsets of the original communities. In practice, refinement in communities is approximated by
 199 running a modularity-based community detection algorithm at multiple resolution values. Although
 200 higher resolution leads to smaller communities, due to the inherent non-determinism of community
 201 detection methods, the smaller communities may not be exact subsets.
 202

203 **Preprocessing.** Optimizing modularity is a popular method for community detection. Modularity,
 204 Q , measures the strength of connections between nodes in a community as compared to a null
 205 model with randomly placed edges. Communities in networks are often hierarchical, so we treat the
 206 resolution parameter γ as the hierarchy/refinement level (larger γ yields finer-grained communities);
 207 Appendix 8.1 summarizes the community terminology and formal definitions used below. We start
 208 from two initial resolutions ($\gamma = 0.5$ and $\gamma = 1.0$) and set three hyperparameters: a modularity gap
 209 threshold Δ_{\max} , a minimum modularity Q_{\min} , and a small target-drop range $[a, b]$. Let γ_1 and γ_2 be
 210 two consecutive resolution parameters, with community sets $\mathbf{c}^{(\gamma_1)}$ and $\mathbf{c}^{(\gamma_2)}$ and modularities $Q^{(\gamma_1)}$
 211 and $Q^{(\gamma_2)}$; we define the modularity gap as $\Delta Q = |Q^{(\gamma_2)} - Q^{(\gamma_1)}|$. At each iteration, we sort the
 212 tested resolutions and examine consecutive pairs. If the gap between a pair exceeds Δ_{\max} , we find
 213 their midpoint (interpolation). Otherwise, we extrapolate beyond the current maximum by estimating
 214 the local slope of modularity with respect to the resolution and taking a small forward step expected
 215 to reduce modularity by a random amount drawn from the drop range. Once the new γ is obtained,
 we compute the communities at that value. The loop stops when the latest modularity falls below

Figure 2: Effect of refinement on NMI. Initially when clusters have mixed items, NMI is low. The first refinement matches the items and clusters, increasing the NMI. Further refinement does not improve the alignment (mutual information), but increases the spread (entropy), thus decreasing NMI.

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

236 Figure 3: Illustration of the Adaptive Resolution Search Process. The resolution limits, $\gamma_0 < \gamma_2 < \gamma_1 < \gamma_3 < \gamma_4$, and the communities $C^{\gamma_0} \preceq C^{\gamma_2} \preceq C^{\gamma_1} \preceq C^{\gamma_3} \preceq C^{\gamma_4}$ capture structural bias for
237 different granularities from the graph.
238

239
240 Q_{\min} or no new resolution is produced. The procedure returns the retained resolutions and their
241 corresponding community assignments, which we view as multi-resolution community features—a
242 structural graph signal over the nodes—that are later encoded and concatenated with the original
243 node features in the feature-augmentation step (see Algorithm 1 in the appendix).
244

245 **Feature Augmentation.** For a given resolution parameter γ , let the communities be $\mathbf{c}^{(\gamma)} \in$
246 $\{1, \dots, k_\gamma\}$, and each node is assigned to one of the communities in k_γ . This assignment
247 is represented as a one-hot encoded matrix $\mathbf{H}^{(\gamma)}$ (equation 3). To reduce dimensionality, each one-hot
248 matrix is projected into a dense embedding space using a trainable weight matrix $\mathbf{W}^{(\gamma)}$ (equation 4).
249 The embeddings from all resolutions are concatenated to form \mathbf{E} (equation 5), which is then further
250 concatenated with the original features \mathbf{X} to yield the augmented feature matrix \mathbf{Z} . The augmented
251 feature matrix \mathbf{Z} is fed to an MLP f_θ to produce logits; a task-dependent function ϕ (e.g., softmax or
252 elementwise sigmoid), applied row-wise, converts them to probabilities $\hat{\mathbf{Y}}$ (equation 7).
253

$$\mathbf{X} \in \mathbb{R}^{n \times D}, \quad \Gamma = \{\gamma_1, \dots, \gamma_T\} \quad (1)$$

$$\mathbf{c}^{(\gamma)} = \text{DetectCommunity}(G, \gamma), \quad \mathbf{c}^{(\gamma)} \in \{1, \dots, k_\gamma\}^n \quad (2)$$

$$\mathbf{H}^{(\gamma)} = \text{OneHot}(\mathbf{c}^{(\gamma)}) \in \{0, 1\}^{n \times k_\gamma} \quad (3)$$

$$\mathbf{E}^{(\gamma)} = \mathbf{H}^{(\gamma)} \mathbf{W}^{(\gamma)}, \quad \mathbf{W}^{(\gamma)} \in \mathbb{R}^{k_\gamma \times d_c} \quad (4)$$

$$\mathbf{E} = \left\|_{t=1}^T \mathbf{E}^{(\gamma_t)} \right\| \in \mathbb{R}^{n \times (T d_c)} \quad (5)$$

$$\mathbf{Z} = [\mathbf{X} \parallel \mathbf{E}] \in \mathbb{R}^{n \times (D + T d_c)} \quad (6)$$

$$\hat{\mathbf{Y}} = \phi(f_\theta(\mathbf{Z})) \in [0, 1]^{n \times C} \quad (7)$$

265
266 **Complexity Analysis.** We compare computational and memory complexities of representative
267 scalable GNN frameworks with our approach in Table 3. ATLAS performs Louvain clustering
268 in $O(T \|A\|_0)$ in the preprocessing step, keeps a single augmented feature buffer, and trains with
269 per-epoch time $O(L_{ff} N(D + T d_e)^2)$ and memory $O(b L_{ff} (D + T d_e))$, enabling simple i.i.d. node
mini-batching without neighborhood expansion or graph-dependent batching heuristics. ATLAS

270 performs adjacency-free inference: with fixed augmented features of dimension $D+Td_c$, prediction
 271 is a forward pass with complexity $O(N(D+Td_c)^2)$.
 272

273 4 EMPIRICAL EVALUATION

274 In this section, we provide the empirical results comparing ATLAS with other graph learning methods.
 275 Our experiments focus on answering the following *research questions*:

276 **Q1.** How accurate is ATLAS compared to baseline methods over graphs with different degrees of
 277 homophily?

278 **Q2.** How well can ATLAS scale to large graphs, while maintaining high accuracy?

282 **Datasets.** We use 8 medium graphs (Cora, PubMed, Tolokers, Squirrel-Filtered, Chameleon-Filtered,
 283 Amazon-Ratings, Actor, Roman-Empire) and 5 large graphs (Flickr, Reddit, Yelp, Amazon-Products,
 284 OGBN-Products). Complete statistics of datasets are given in Appendix Tables 8 and 9.

285 **Baselines.** We group baselines by modeling regime and map them to the research questions.

287 *Q1 (homophily–heterophily regime).* *Homophilic*: GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton
 288 et al., 2017), GAT (Veličković et al., 2018). *Heterophilic*: H₂GCN (Zhu et al., 2020),
 289 LinkX (Lim et al., 2021), GPR-GNN (Chien et al., 2021), FSGNN (Maurya et al., 2022), GloGNN (Li
 290 et al., 2022), FAGCN (Bo et al., 2021), GBK-GNN (Du et al., 2022), JacobiConv (Wang & Zhang,
 291 2022), ACM-GCN (Luan et al., 2022), BernNet (He et al., 2021).

292 *Q2 (scalability).* *Propagation-free / decoupled*: SGC (Wu et al., 2019a), SIGN (Rossi et al., 2020),
 293 SAGN (Sun et al., 2021), GMLP (Chien et al., 2022). *Sampling-based*: GraphSAGE (Hamilton
 294 et al., 2017), ClusterGCN (Chiang et al., 2019), GraphSAINT (Zeng et al., 2020). Descriptions of
 295 these methods are provided in the Appendix.

296 We use an L -layer MLP with hidden width d_{hid} and dropout rate p . Each of the first $L-1$ layers
 297 applies *Linear (with bias) \rightarrow LayerNorm \rightarrow GELU \rightarrow Dropout*. The final layer is a *Linear* classifier
 298 to C classes.

300 4.1 Q1: ACCURACY ACROSS HOMOPHILY REGIMES

302 Table 1 reports results on the eight medium-sized benchmarks. We group these datasets into three
 303 *structural-bias* regimes—high, low, and negative structural bias—based on how informative their
 304 community structure is for the labels; we formalize this notion in Section 5. On graphs with negative
 305 structural bias, ATLAS improves over GCN by up to 20 percentage points, and on high structural-bias
 306 graphs it improves over a feature-only MLP by more than 11 percentage points. Although it does not
 307 attain the best score on every dataset, an appropriate choice of resolution parameters typically allows
 308 ATLAS to match or closely track the strongest baseline across both homophilic and heterophilic
 309 regimes. The main outlier is Roman-Empire, where accuracy appears to be largely driven by raw node
 310 features. FSGNN explicitly concatenates neighborhood features to strengthen this input signal. When
 311 we equip ATLAS with the same neighborhood-feature concatenation (ATLAS-NF), its accuracy on
 312 Roman-Empire rises to within roughly two percentage points of FSGNN, while also achieving the
 313 best performance on Tolokers.

314 Overall, ATLAS and its neighbor-feature variant ATLAS-NF substantially narrow the MLP \rightarrow GNN
 315 performance gap and provide a single topology-augmented architecture that is consistently competi-
 316 tive with the strongest model on each dataset, across all three structural-bias regimes.

317 4.2 Q2: EFFICIENCY AND SCALABILITY ON LARGE GRAPHS

319 **Accuracy.** Table 2 shows that ATLAS scales to million-node graphs and is competitive across all
 320 structural-bias regimes while consistently improving over MLP and GCN. On high structural-bias
 321 graphs, it stays close to the best methods with gains up to about +0.21 over MLP and +0.03 over GCN.
 322 On Flickr, ATLAS-NF (ATLAS with neighbor features) surpasses ATLAS, indicating the impact of
 323 enhanced feature signal from neighbours, and on negative structural-bias graphs ATLAS maintains
 strong performance while aggregation-heavy GNNs degrade.

324
 325 Table 1: Eight-benchmark comparison across homophily regimes. Baseline heterophily-oriented
 326 model results are from Platonov et al. (2023b); Luan et al. (2024a). Bottom rows report ATLAS
 327 improvements over baselines (absolute percentage points). Cells highlighted in yellow indicate the
 328 best score for each dataset.

329 330 331 Model	332 High structural bias		333 Low structural bias			334 Negative structural bias		
	335 Cora $h_e = 0.810$	336 Tolokers $h_e = 0.595$	337 PubMed $h_e = 0.802$	338 Chameleon-Filtered $h_e = 0.236$	339 Amazon-Ratings $h_e = 0.380$	340 Actor $h_e = 0.216$	341 Squirrel-Filtered $h_e = 0.207$	342 Roman-Empire $h_e = 0.047$
MLP(2L)	75.44 \pm 1.97	72.97 \pm 0.90	87.25 \pm 0.41	36.00 \pm 4.69	39.83 \pm 0.48	34.96 \pm 0.71	34.29 \pm 3.34	65.58 \pm 0.34
GCN	87.01 \pm 1.04	74.93 \pm 1.32	86.71 \pm 0.42	37.11 \pm 3.04	42.78 \pm 0.14	28.49 \pm 0.91	32.70 \pm 1.73	45.68 \pm 0.38
SAGE	87.50 \pm 0.87	80.95 \pm 0.92	88.42 \pm 0.55	88.83 \pm 4.26	44.67 \pm 0.51	34.08 \pm 1.07	33.32 \pm 1.75	76.21 \pm 0.65
GAT	87.74 \pm 0.88	75.31 \pm 1.35	86.18 \pm 0.64	37.18 \pm 3.44	43.25 \pm 0.85	29.11 \pm 1.23	32.61 \pm 2.06	47.16 \pm 0.66
H2GCN	87.52 \pm 0.61	73.35 \pm 1.01	87.78 \pm 0.28	26.75 \pm 3.64	36.47 \pm 0.23	38.85 \pm 1.17	35.10 \pm 1.15	60.11 \pm 0.52
LinkX	82.62 \pm 1.44	81.15 \pm 1.23	88.12 \pm 0.47	40.10 \pm 2.21	52.66 \pm 0.64	35.64 \pm 1.36	42.34 \pm 4.13	56.15 \pm 0.93
GPR-GNN	79.51 \pm 0.36	72.94 \pm 0.97	85.07 \pm 0.09	39.93 \pm 3.30	44.88 \pm 0.34	39.30 \pm 0.27	38.95 \pm 1.99	64.85 \pm 0.27
FSGNN	87.51 \pm 1.21	82.76 \pm 0.61	90.11 \pm 0.43	40.61 \pm 2.97	52.74 \pm 0.83	37.65 \pm 0.79	35.92 \pm 1.32	79.92 \pm 0.56
GloGNN	87.67 \pm 1.16	73.39 \pm 1.17	90.32 \pm 0.54	25.90 \pm 3.58	36.89 \pm 0.14	39.65 \pm 1.03	35.11 \pm 1.24	59.63 \pm 0.69
FAGCN	88.85 \pm 1.36	77.75 \pm 1.05	89.98 \pm 0.54	41.90 \pm 2.72	44.12 \pm 0.30	31.59 \pm 1.37	41.08 \pm 2.27	65.22 \pm 0.56
GBK-GNN	87.09 \pm 1.52	81.01 \pm 0.67	88.88 \pm 0.44	39.61 \pm 2.60	45.98 \pm 0.71	38.47 \pm 1.53	35.51 \pm 1.65	74.57 \pm 0.47
JacobiConv	89.61 \pm 0.96	68.66 \pm 0.65	89.99 \pm 0.39	39.00 \pm 4.20	43.55 \pm 0.48	37.48 \pm 0.76	29.71 \pm 1.66	71.14 \pm 0.42
BernNet	88.52 \pm 0.95	77.00 \pm 0.65	88.48 \pm 0.41	40.90 \pm 4.06	44.64 \pm 0.56	41.79 \pm 1.01	41.18 \pm 1.77	65.56 \pm 1.34
ACM-GCN	89.75 \pm 1.16	74.95 \pm 1.16	90.96 \pm 0.62	42.73 \pm 3.59	52.49 \pm 0.24	41.86 \pm 1.48	42.35 \pm 1.97	71.89 \pm 0.61
ATLAS	87.09 \pm 1.62	82.19 \pm 0.73	88.85 \pm 0.48	42.76 \pm 3.47	53.15 \pm 0.61	38.48 \pm 0.93	40.35 \pm 1.53	66.22 \pm 0.53
ATLAS-NF	86.73 \pm 1.04	83.02 \pm 0.74	88.76 \pm 0.36	40.02 \pm 2.79	52.30 \pm 0.64	34.26 \pm 0.97	36.98 \pm 2.37	77.94 \pm 0.48
ATLAS-MLP (pp)	+11.65	+9.22	+1.60	+6.76	+13.32	+3.52	+6.06	+0.64
ATLAS-GCN (pp)	+0.08	+7.26	+2.14	+5.65	+10.37	+4.99	+7.65	+20.54
ATLAS-Average (pp)	+0.92	+5.97	+0.40	+5.15	+8.51	+2.13	+3.91	+1.67

345
 346 Table 2: Large-graph performance. Baselines from Zeng et al. (2020); Hu et al. (2020). Bottom rows
 347 report ATLAS improvements over MLP and over GCN (absolute units). Cells highlighted in yellow
 348 indicate the best score for each dataset.

350 351 352 353 354 Method	355 High structural bias		356 Low structural bias		357 Negative structural bias		
	358 Reddit $h_e = 0.756$	359 ogbn-products $h_e = 0.808$	360 Flickr $h_e = 0.319$	361 Yelp $h_e = 0.809$	362 AmazonProducts $h_e = 0.116$	363 ATLAS	364 ATLAS-NF
MLP	0.7435 \pm 0.0016	0.6106 \pm 0.0008	0.4717 \pm 0.0011	0.6546 \pm 0.0011	0.8204 \pm 0.0002		
GCN	0.9330 \pm 0.0001	0.7564 \pm 0.0021	0.4920 \pm 0.0030	0.3780 \pm 0.0010	0.2810 \pm 0.0050		
GraphSAGE	0.9530 \pm 0.0010	0.8061 \pm 0.0016	0.5010 \pm 0.0130	0.6340 \pm 0.0060	0.7580 \pm 0.0020		
ClusterGCN	0.9540 \pm 0.0010	0.7862 \pm 0.0061	0.4810 \pm 0.0050	0.6090 \pm 0.0050	0.7590 \pm 0.0080		
GraphSAINT	0.9660 \pm 0.0010	0.7536 \pm 0.0034	0.5110 \pm 0.0010	0.6530 \pm 0.0030	0.8150 \pm 0.0010		
SGC	0.9351 \pm 0.0004	0.6748 \pm 0.0011	0.5035 \pm 0.0005	0.2356 \pm 0.0002	0.2262 \pm 0.0028		
SIGN	0.9595 \pm 0.0002	0.8052 \pm 0.0016	0.5160 \pm 0.0011	0.5798 \pm 0.0012	0.7424 \pm 0.0002		
SAGN	0.9648 \pm 0.0003	0.8121 \pm 0.0007	0.5007 \pm 0.0011	0.6155 \pm 0.0040	0.7682 \pm 0.0115		
GAMLP	0.9673 \pm 0.0003	0.8376 \pm 0.0019	0.5258 \pm 0.0012	0.5784 \pm 0.0154	0.7599 \pm 0.0026		
ATLAS	0.9574 \pm 0.0004	0.7865 \pm 0.0053	0.5104 \pm 0.0039	0.6546 \pm 0.0011	0.8204 \pm 0.0002		
ATLAS-NF	0.9410 \pm 0.0007	0.7507 \pm 0.0030	0.5201 \pm 0.0012	0.5740 \pm 0.0021	0.7783 \pm 0.0010		
ATLAS-MLP	+0.2139	+0.1759	+0.0387	+0.0000	+0.0000		
ATLAS-GCN	+0.0244	+0.0301	+0.0184	+0.2766	+0.5394		
ATLAS-Average	+0.0267	+0.0262	+0.0101	+0.1059	+0.1615		

368
 369
 370 **Convergence.** ATLAS converges rapidly and stably across large graphs: training loss decreases
 371 smoothly, and validation performance plateaus early with a small train-validation gap. The curves
 372 exhibit no late-epoch degradation and remain stable after convergence (see Fig. 4).

373 **Efficiency.** Table 3 shows that ATLAS adds a T -resolution community search as a one-time prepro-
 374 cessing step with cost $O(T\|A\|_0)$, after which training is MLP-like and inference is adjacency-free
 375 on features of dimension $D + Td_c$. Consequently, both preprocessing and inference costs increase
 376 with T . On OGBN-Products (Table 4), the larger T leads to a noticeable preprocessing cost, yet
 377 per-epoch training remains competitive and inference stays sub-second. Appendix Table 5 reports
 378 timings on the remaining large graphs.

378 Table 3: Complexity comparison. N = #nodes, $\|A\|_0$ = #edges, D = feature dim, L = #message-
 379 passing layers, L_{ff} = #feed-forward layers, b = batch size, r = sampled neighbors (or filter size), K
 380 = #precomputed hop propagations (max hop order for SAGN/GAMLP), k = #subgraph samples used
 381 in GraphSAINT preprocessing, T = #resolutions, d_c = community-embedding dim.

Method	Preprocessing	Per-epoch Train Time	Memory
GCN (full-batch)	—	$O(L \ A\ _0 D + LND^2)$	$O(LND + LD^2)$
ClusterGCN	$O(\ A\ _0)$	$O(L \ A\ _0 D + LND^2)$	$O(bLD + LD^2)$
GraphSAINT	$O(kN)$	$O(L \ A\ _0 D + LND^2)$	$O(bLD)$
SAGN	$O(K \ A\ _0 D)$	$O(L_{ff} N(KD)^2)$	$O(bL_{ff} KD)$
GAMLP	$O(K \ A\ _0 D)$	$O(L_{ff} N(KD)^2)$	$O(bL_{ff} KD)$
ATLAS	$O(T \ A\ _0)$	$O(L_{ff} N(D + Td_c)^2)$	$O(bL_{ff}(D + Td_c))$

Figure 4: The convergence landscape of ATLAS.

Table 4: Computation time breakdown (seconds) on OGBN-Products.

Model	Preprocessing Time	Per-epoch Train Time	Inference Time
GCN	—	2.0395 ± 0.0006	0.9220 ± 0.0010
ClusterGCN	168.754 ± 1.777	4.017 ± 0.164	82.837 ± 0.622
GraphSAINT	3.770 ± 0.159 (per epoch)	0.751 ± 0.046	66.445 ± 0.517
SAGN	4.8462 ± 0.0415	0.8447 ± 0.0225	0.2564 ± 0.0001
GAMLP	4.8227 ± 0.0871	0.7976 ± 0.0099	0.2495 ± 0.0001
ATLAS	391.894 ± 14.387	0.181 ± 0.0058	0.526 ± 0.0038

5 ACCURACY UNDER COMMUNITY REFINEMENT

We quantify the level of community refinement by the minimum modularity threshold Q_{\min} . Large Q_{\min} preserves only coarse communities; lowering Q_{\min} progressively adds medium and fine communities, yielding a multi-scale representation. We define *structural bias* as how strongly a graph’s community structure provides a useful structural signal for classification, and group graphs into three regimes:

- **High structural bias** (e.g., Cora, Tolokers): Community structure is strongly aligned with labels, so refinement helps. Coarse communities at large Q_{\min} already carry substantial signal, and adding medium- and fine-grained communities reveals additional useful structure. As Q_{\min} decreases and more refined communities are included, performance steadily improves until it saturates; see Figure 5 (top left and bottom left). In this regime, GCN and ATLAS both outperform MLP.
- **Low structural bias** (e.g., Amazon-Ratings, Chameleon-Filtered, Flickr): Community structure is only weakly label-aligned. Coarse communities capture most of this limited structural signal, and adding finer communities yields at most small additional gains. As Q_{\min} decreases and more refined communities are included, ATLAS improves moderately over the MLP, while GCN shows at best small or sometimes no gains over MLP; see Figure 5 (top center and bottom center). Here, topology provides some extra information, but node features remain the primary driver of performance.

Figure 5: Effect of cumulatively adding community-derived features as the minimum modularity threshold Q_{\min} is lowered, for high structural bias graphs (left), low structural bias graphs (middle), and negative structural bias graphs (right).

Figure 6: NMI, mutual information, and entropy dynamics across resolutions. high structural bias datasets (Cora and Tolokers, left); low structural bias datasets (Amazon and Chameleon-Filtered, middle); negative structural bias datasets (Actor and Roman-Empire, right).

- **Negative structural bias** (e.g., Actor, Squirrel-Filtered, Roman-Empire): Community structure is misaligned with labels, and finer communities introduce noisy or misleading locality, so refinement hurts. As Q_{\min} is lowered and more fine-grained communities are added, performance deteriorates; see Figure 5 (top right and bottom right). In this regime, GCN typically underperforms the MLP baseline.

Example (Cora). For Cora (Fig. 5 top left; Table 7), each choice of Q_{\min} selects a subset of resolution parameters: we include community features from all resolutions whose modularity satisfies $Q(\gamma) \geq Q_{\min}$. When $Q_{\min} \in \{1.0, 0.9\}$ no resolution meets the threshold, so ATLAS collapses to the feature-only MLP at 76.61%, below the GCN curve. At $Q_{\min} = 0.8$, two resolutions are added and accuracy rises to 79.93%; at 0.7 a medium-resolution setting increases it to 83.66%; and at 0.6 two finer resolutions push it to 86.50%. As Q_{\min} is lowered further and more resolutions are added, the ATLAS curve eventually overtakes GCN, reaching its peak of 88.10% at $Q_{\min} = 0.1$, where node features are augmented with a balanced mix of coarse, medium, and fine community features. Reducing Q_{\min} to 0.0 adds the most fragmented resolution and causes a slight drop, indicating diminishing returns from very fine community structure, which effectively acts as noise.

Figure 6 illustrates the refinement behavior predicted by our NMI theory. As resolution γ increases, communities are refined and, as Lemmas 1–2 state, both $I(L; C)$ and $H(C)$ grow monotonically across all datasets. In contrast, Theorem 1 explains why NMI behaves differently across structural-

Figure 7: (a–b) Accuracy/ROC–AUC vs. average modularity gap on high- and low-structural-bias datasets. (c) Resolution count vs. modularity gap for Cora.

bias regimes: on high structural-bias graphs it forms a clear interior peak, on low structural-bias graphs it stays low and fairly flat because gains in $I(L; C)$ do not outpace the entropy increase, and on negative structural-bias graphs it rises slowly from near zero and saturates at a modest level.

6 ABLATION STUDY

Effect of Modularity Gap and Resolution on Performance. The behavior of refinement levels—how many Louvain resolution values are selected and how useful they are—is strongly shaped by the modularity gap. A small average modularity gap keeps many closely spaced resolutions, while a large gap leaves only a few widely separated ones. This creates a trade-off between having many redundant community partitions and having too few, overly coarse partitions. On high structural-bias graphs (Figure 7(a)), accuracy is lowest at the extremes of this trade-off. When the average gap is very small, ATLAS retains many nearly redundant partitions and the additional community features mostly inject noise, depressing accuracy. As the gap moves into a moderate region ($gap \approx 0.06–0.09$), the selected resolutions capture community structure at several distinct granularities and align better with the labels, so mutual information strengthens and accuracy improves. If the gap becomes too large ($gap \gtrsim 0.10$), only a handful of coarse resolutions remain; the community structure is too crude to fully exploit the available signal and performance falls again.

For low structural-bias graphs (Figure 7(b)), the accuracy curves are much flatter. In this setting, the community structure carries little information about the labels, so changing the modularity gap mostly just changes how many community resolutions are kept, without making them much more predictive. As a result, adding community features yields only modest gains over a feature-only MLP, and accuracy is only weakly affected by the choice of gap.

Figure 7(c) illustrates this behavior on Cora. For small gaps, many closely spaced resolutions are selected and their communities are highly overlapping, so the extra features are largely redundant and behave as noise, matching the low-accuracy regime in Figure 7(a). For large gaps, only a few coarse resolutions remain and the community information is too crude to capture label-relevant structure. The best performance occurs at intermediate gaps, where a small set of resolutions captures different levels of granularity, providing informative structural signal without redundancy.

7 CONCLUSION AND FUTURE WORK

We presented ATLAS, a community-augmented learning framework that enriches node features with multi-resolution Louvain embeddings and trains a compact MLP classifier. An adaptive resolution search, governed by Q_{\min} and ΔQ , selects a small set of informative resolutions, balancing coverage with cost. Across Q1 (homophily-regime benchmarks) and Q2 (large graphs), ATLAS attains competitive or superior accuracy relative to homophilic GNNs and heterophilic-oriented models, while exhibiting fast, stable convergence and a favorable training footprint once preprocessing is complete.

In the future we aim to reduce preprocessing by improving resolution selection. A complementary direction is community-guided graph rewiring: using the discovered communities to propose sparse, label-aware edge edits that amplify useful intra-/inter-community signals and further improve accuracy.

540 **Ethics Statement.** We confirm that we have adhered to the ICLR Code of Ethics.
 541

542 **Use of Generative AI.** We have used generative AI to polish the writing, and to check that the proofs
 543 of the theorem and lemma are correct and concise.

544 **Reproducibility Statement.** Our source code is available at <https://github.com/atlaspaper16/ATLAS>. This Github repository is created through an anonymous account, and
 545 thus does not violate the double-blind policy.
 546

548 **REFERENCES**
 549

550 Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
 551 Harutyunyan, Greg Ver Steeg, and Aram Galstyan. MixHop: Higher-order graph convolu-
 552 tional architectures via sparsified neighborhood mixing. In *Proceedings of the 36th Interna-
 553 tional Conference on Machine Learning (ICML)*, volume 97 of *Proceedings of Machine Learn-
 554 ing Research*, pp. 21–29. PMLR, 2019. URL <https://proceedings.mlr.press/v97/abu-el-haija19a.html>.
 555

556 Muhammed Fatih Balin and Ümit V. Çatalyürek. Layer-neighbor sampling — defusing neighborhood
 557 explosion in gnns. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2023. URL
 558 <https://arxiv.org/abs/2210.13339>.
 559

560 Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
 561 of communities in large networks. *Journal of Statistical Mechanics: Theory and Experiment*, (10):
 562 P10008, 2008. doi: 10.1088/1742-5468/2008/10/P10008.
 563

564 Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph
 565 convolutional networks. In *AAAI Conference on Artificial Intelligence (AAAI)*, pp. 3950–3957,
 566 2021. URL <https://ojs.aaai.org/index.php/AAAI/article/view/16514>.
 567

568 Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien (eds.). *Semi-Supervised Learning*. MIT
 569 Press, 2006.
 570

571 Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
 572 variance reduction. In *Proceedings of the 35th International Conference on Machine Learning
 573 (ICML)*, volume 80 of *Proceedings of Machine Learning Research*, pp. 942–950, 2018a. URL
 574 <https://proceedings.mlr.press/v80/chen18p.html>.
 575

576 Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via
 577 importance sampling. In *International Conference on Learning Representations (ICLR)*, 2018b.
 578 URL <https://openreview.net/forum?id=rytstxWAW>.
 579

580 Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
 581 efficient algorithm for training deep and large graph convolutional networks. In *Proceedings of the
 582 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD)*, pp.
 583 257–266, 2019. doi: 10.1145/3292500.3330925. URL <https://arxiv.org/abs/1905.07953>.
 584

585 Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
 586 graph neural network. In *International Conference on Learning Representations (ICLR)*, 2021.
 587 URL <https://openreview.net/forum?id=n6j17fLxrP>.
 588

589 Eli Chien, Xiao Pan, Jie Peng, and Olgica Milenkovic. Node feature reuse and self-ensembling for
 590 fast graph neural networks. In *Proceedings of the International Conference on Machine Learning*,
 591 2022.
 592

593 Lun Du, Xiaozhou Shi, Qiang Fu, Xiaojun Ma, Hengyu Liu, Shi Han, and Dongmei Zhang. Gbk-
 594 gnn: Gated bi-kernel graph neural networks for modeling both homophily and heterophily. In
 595 *Proceedings of the ACM Web Conference (WWW '22)*, pp. 1550–1558. ACM, 2022. doi: 10.1145/
 596 3485447.3512201. URL <https://doi.org/10.1145/3485447.3512201>.
 597

598 Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In *KDD*,
 599 2016. doi: 10.1145/2939672.2939754. URL <https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf>.
 600

594 William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation
 595 learning on large graphs. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 30, 2017. URL <https://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs>.

598 Xinshi He, Kan Chen, Lu Sheng, Jingchang Xu, Qibin He, Jiashi Cheng, and Ping Luo. Bernnet:
 599 Learning arbitrary graph spectral filters via bernstein approximation. In *Advances in Neural
 600 Information Processing Systems*, 2021.

602 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowei Liu,
 603 Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets for ma-
 604 chine learning on graphs. In *Advances in Neural Information Processing Systems
 605 (NeurIPS)*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html>.

607 Hussain Hussain, Tomislav Duricic, Elisabeth Lex, Denis Helic, and Roman Kern. The interplay
 608 between communities and homophily in semi-supervised classification using graph neural networks.
 609 *Applied Network Science*, 6(1):80, 2021.

611 Bogumił Kamiński, Paweł Prałat, François Théberge, and Sebastian Zajac. Predicting properties
 612 of nodes via community-aware features. *Social Network Analysis and Mining*, 14(117), 2024.
 613 doi: 10.1007/s13278-024-01281-2. URL <https://link.springer.com/article/10.1007/s13278-024-01281-2>.

615 Bhaskar Khemani. A review of graph neural networks: concepts, architectures, and ap-
 616 plications. *Journal of Big Data*, 2024. doi: 10.1186/s40537-023-00876-4. URL
 617 <https://journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00876-4>.

619 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 620 In *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=SJU4ayYgl>.

623 Xiaorui Li, Biao Wang, Yi Jiang, Wenjie Zhang, Lu Qin, and Ying He. Finding global homophily
 624 in graph neural networks when meeting heterophily. In *International Conference on Machine
 625 Learning (ICML)*, volume 162 of *Proceedings of Machine Learning Research*, pp. 13242–13256,
 626 2022. URL <https://proceedings.mlr.press/v162/li22ad.html>.

627 Ningyi Liao, Dingheng Mo, Siqiang Luo, Xiang Li, and Pengcheng Yin. Scara: Scalable graph
 628 neural networks with feature-oriented optimization. In *Proceedings of the VLDB Endowment
 629 (PVLDB)*, volume 15, pp. 3240–3248, 2022. doi: 10.14778/3551793.3551866. URL <https://arxiv.org/abs/2207.09179>.

632 Ningyi Liao, Siqiang Luo, Xiang Li, and Jieming Shi. LD2: scalable heterophilous graph
 633 neural network with decoupled embeddings. In *Advances in Neural Information Process-
 634 ing Systems 36 (NeurIPS 2023)*, pp. 10197–10209, New Orleans, LA, USA, 2023. Curran
 635 Associates, Inc. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/206191b9b7349e2743d98d855dec9e58-Paper-Conference.pdf.

637 Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
 638 Ser-Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
 639 simple methods. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 34, pp.
 640 30471–30483, 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/ae816a80e4c1c56caa2eb4e1819cbb2f-Abstract.html>.

642 Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
 643 Chang, and Doina Precup. Revisiting heterophily for graph neural networks. In *Advances in
 644 Neural Information Processing Systems (NeurIPS)*, 2022. URL <https://arxiv.org/abs/2210.07606>.

646 Sitao Luan, Chenqing Hua, Qincheng Lu, Mingxuan Xu, et al. Re-evaluating the advancements of
 647 heterophilic graph learning. *arXiv preprint*, 2024a.

648 Sitao Luan, Chenqing Hua, Mingxuan Xu, Qincheng Lu, Jiaqi Zhu, Xiao-Wen Chang, and Doina
 649 Precup. The heterophilic graph learning handbook: Benchmarks, models, theory, applications, and
 650 challenges. *arXiv preprint*, 2024b.

651

652 Sunil Kumar Maurya, Tsuyoshi Murata, and Leman Akoglu. Simplifying approach to node clas-
 653 sification in graph neural networks. *Pattern Recognition Letters*, 155:116–123, 2022. doi:
 654 10.1016/j.patrec.2021.11.018. Original preprint: arXiv:2105.07634 (FSGNN).

655 M. E. J. Newman. Modularity and community structure in networks. *Proceedings of the National
 656 Academy of Sciences*, 103(23):8577–8582, 2006. doi: 10.1073/pnas.0601602103.

657

658 Hongbin Pei, Bingzhe Wei, Jie Chen, Yiming Lei, and Weinan Zhang. Geom-gcn: Geometric graph
 659 convolutional networks. In *International Conference on Learning Representations (ICLR)*, 2020.
 660 URL <https://openreview.net/forum?id=S1e2agrFvS>.

661 Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social represen-
 662 tations. In *KDD*, 2014. doi: 10.1145/2623330.2623732.

663

664 Oleg Platonov, Denis Kuznedelev, Artem Babenko, and Liudmila Prokhorenkova. Characterizing
 665 graph datasets for node classification: Homophily-heterophily dichotomy and beyond. *arXiv
 666 preprint arXiv:2209.06177*, 2023a.

667 Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A
 668 critical look at the evaluation of GNNs under heterophily: Are we really making progress? *arXiv
 669 preprint arXiv:2302.11640*, 2023b. URL <https://arxiv.org/abs/2302.11640>.

670

671 Emanuele Rossi, Benjamin P. Chamberlain, Fabrizio Frasca, Roberto Barbero, Davide Eynard,
 672 Michael Bronstein, and Pietro Liò. Sign: Scalable inception graph neural networks. In *Advances
 673 in Neural Information Processing Systems*, 2020.

674 Celia Rubio-Madrigal, Adarsh Jamadandi, and Rebekka Burkholz. Gnn getting comfy: Community
 675 and feature similarity guided rewiring. In *International Conference on Learning Representations
 676 (ICLR)*, 2025. URL <https://arxiv.org/abs/2502.04891>.

677

678 Prithviraj Sen, Gal Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
 679 Collective classification in network data. *AI Magazine*, 29(3):93–106, 2008. URL <https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157>.

680

681 Fan-Yun Sun, Meng Qu, Jordan Hoffmann, Chin-Wei Huang, and Jian Tang.
 682 vgraph: A generative model for joint community detection and node representa-
 683 tion learning. In *NeurIPS*, 2019. URL <https://papers.nips.cc/paper/8342-vgraph-a-generative-model-for-joint-community-detection-and-node-representati.pdf>.

684

685

686 Ke Sun, Zimo Zhou, Zhiqiang Zhang, Bin Cui, Yang Yang, and Liang He. Scalable and adaptive
 687 graph neural networks with self-label-enhanced training. *arXiv preprint arXiv:2104.09376*, 2021.

688

689 Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. LINE: Large-scale
 690 information network embedding. In *WWW*, 2015. doi: 10.1145/2736277.2741093.

691

692 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 693 Bengio. Graph attention networks. In *International Conference on Learning Representations
 694 (ICLR)*, 2018. URL <https://openreview.net/forum?id=rJXMpikCZ>.

695

696 Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks? In *International
 697 Conference on Machine Learning (ICML)*, volume 162 of *Proceedings of Machine Learning Re-
 698 search*, pp. 23341–23362, 2022. URL <https://arxiv.org/abs/2205.11172>. Introduces
 699 *JacobiConv*.

700

701 Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Weinberger.
 702 Simplifying graph convolutional networks. In *Proceedings of the International Conference on
 703 Machine Learning*, 2019a.

702 Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
 703 comprehensive survey on graph neural networks. *arXiv:1901.00596*, 2019b. URL <https://arxiv.org/abs/1901.00596>.
 704
 705

706 Chenxiao Yang, Qitian Wu, David Wipf, Ruoyu Sun, and Junchi Yan. How graph neural networks
 707 learn: Lessons from training dynamics. In *Proceedings of the 41st International Conference on
 708 Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 56594–56623.
 709 PMLR, 2024. URL <https://proceedings.mlr.press/v235/yang24ae.html>.
 710
 711

712 Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna.
 713 Graphsaint: Graph sampling based inductive learning method. In *International Conference
 714 on Learning Representations (ICLR)*, 2020. URL <https://openreview.net/forum?id=BJe8pkHFwS>.
 715
 716

717 Hongkuan Zeng, Hongkuan Zhang, Jian Shi, Jiarong Ren, Yulin Ge, Shuai Lin, and Dejing Dou. A
 718 comprehensive study on large-scale graph training: Benchmarking and rethinking. In *Advances
 719 in Neural Information Processing Systems*, 2022. URL <https://arxiv.org/abs/2210.07494>.
 720
 721

722 Xin Zheng, Yi Wang, Yixin Liu, Ming Li, Miao Zhang, Di Jin, Philip S. Yu, and Shirui Pan. Graph
 723 neural networks for graphs with heterophily: A survey. *arXiv preprint arXiv:2202.07082*, 2022.
 724
 725

726 Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph neural
 727 networks: A review of methods and applications. *AI Open*, 1:57–81, 2021. doi: 10.1016/j.aiopen.
 728 2021.01.001.
 729
 730

731 Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai
 732 Koutra. Beyond homophily in graph neural networks: Current limitations and ef-
 733 fective designs. In *Advances in Neural Information Processing Systems (NeurIPS)*,
 734 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/58ae23d878a47004366189884c2f8440-Abstract.html>.
 735
 736

737 Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent
 738 importance sampling for training deep and large graph convolutional networks. In *Advances
 739 in Neural Information Processing Systems*, volume 32, pp. 1125–1136, 2019. URL <https://dl.acm.org/doi/10.5555/3454287.3455296>.
 740
 741

8 APPENDIX

739 **Compute environment.** All experiments were run on a server with 1× NVIDIA A40 (45 GiB)
 740 GPU, 32 vCPUs, 2× Intel Xeon Silver 4309Y @ 2.80 GHz, and 503 GiB RAM.
 741 Software stack: Python 3.10.18; PyTorch 2.4.0+cu124 (CUDA 12.4); PyTorch Geometric 2.6.1.
 742
 743

8.1 DEFINITIONS AND TERMINOLOGY FOR COMMUNITY DETECTION

744 This subsection defines the modularity-based community detection terms that underpin our multi-
 745 resolution refinement.
 746

747 **Modularity.** Given a partition $C = \{C_1, \dots, C_K\}$ with node assignments $c_i \in \{1, \dots, K\}$,
 748 modularity measures how much denser the intra-community connections are than expected under a
 749 degree-preserving null model:
 750

$$751 Q = \frac{1}{2m} \sum_{i,j} \left(A_{ij} - \frac{k_i k_j}{2m} \right) \delta(c_i, c_j), \quad (8)$$

752 where A_{ij} is the adjacency matrix, k_i is the degree of node i , $m = |E|$ is the number of edges, and
 753 $\delta(c_i, c_j) = 1$ if $c_i = c_j$ (else 0). Higher Q indicates stronger community structure.
 754

756 **Resolution parameter.** Louvain introduces a *resolution* $\gamma > 0$ to control granularity by reweighting
 757 the null-model term:

$$758 \quad 759 \quad 760 \quad Q(\gamma) = \frac{1}{2m} \sum_{i,j} \left(A_{ij} - \gamma \frac{k_i k_j}{2m} \right) \delta(c_i, c_j). \quad (9)$$

761 Smaller γ favors coarser partitions, while larger γ typically yields finer (more, smaller) communities,
 762 producing a refinement hierarchy across γ . We denote the resulting partition and modularity by $C(\gamma)$
 763 and $Q^{(\gamma)}$, with assignment vector $\mathbf{c}^{(\gamma)}$.

764 **Modularity gap.** For two consecutive tested resolutions $\gamma_1 < \gamma_2$, the *modularity gap* quantifies the
 765 change in community quality:

$$766 \quad 767 \quad \Delta Q(\gamma_1, \gamma_2) = |Q^{(\gamma_2)} - Q^{(\gamma_1)}|. \quad (10)$$

768 Large gaps indicate rapid structural changes between scales and motivate inserting intermediate
 769 resolutions; small gaps suggest the refinement has stabilized.

770 8.2 THEORETICAL PROOFS

771 **Lemma. 1.** Let L be labels and C a community partition. Let C' be a refinement of C , i.e., $C' \preceq C$.
 772 Then $I(L; C') \geq I(L; C)$

773 *Proof.* Let total number of elements be n . Then based on the definitions of $I(P, Q)$ in Section 2;

$$774 \quad 775 \quad 776 \quad I(L; C') = \frac{1}{n} \sum_l \sum_{c'} n_{l,c'} \log \left(\frac{n n_{l,c'}}{n_l n_{c'}} \right), \quad I(L; C) = \frac{1}{n} \sum_l \sum_c n_{l,c} \log \left(\frac{n n_{l,c}}{n_l n_c} \right),$$

777 where $n_l = \sum_{c'} n_{l,c'}$.

$$778 \quad 779 \quad 780 \quad I(L; C') - I(L; C) \\ 781 \quad 782 \quad 783 \quad = \frac{1}{n} \sum_l \sum_{c'} n_{l,c'} \log \left(\frac{n n_{l,c'}}{n_l n_{c'}} \right) - \frac{1}{n} \sum_l \sum_c n_{l,c} \log \left(\frac{n n_{l,c}}{n_l n_c} \right) \\ 784 \quad 785 \quad 786 \quad = \frac{1}{n} \sum_c \sum_{c' \subseteq c} \sum_l \left[n_{l,c'} \log \left(\frac{n n_{l,c'}}{n_l n_{c'}} \right) - n_{l,c} \log \left(\frac{n n_{l,c}}{n_l n_c} \right) \right] \\ 787 \quad 788 \quad 789 \quad = \frac{1}{n} \sum_c \sum_{c' \subseteq c} \sum_l n_{l,c'} \log \left(\frac{n_l n_{c'}}{n_l n_{c'}} \right).$$

790 Since every $c' \subseteq ofc$, therefore $\frac{n_{l,c'}}{n_{c'}} \geq \frac{n_{l,c}}{n_c}$. Thus the value in the log is positive, and $I(L; C') \geq I(L; C)$ \square

801 **Lemma. 2.** Let C a community partition. Let C' be a refinement of C , i.e., $C' \preceq C$. Then
 802 $H(C') \geq H(C)$

803 *Proof.* Let total size n . Based on the definition in Section 2

$$804 \quad 805 \quad 806 \quad H(C) = - \sum_c \frac{n_c}{n} \log \frac{n_c}{n}, \quad H(C') = - \sum_{c'} \frac{n_{c'}}{n} \log \frac{n_{c'}}{n}.$$

807 By grouping the c' under their parent c :

$$\begin{aligned}
H(C') - H(C) &= - \sum_c \sum_{c' \subseteq c} \frac{n_{c'}}{n} \log \frac{n_{c'}}{n} + \sum_c \frac{n_c}{n} \log \frac{n_c}{n} \\
&= \frac{1}{n} \sum_c \left[- \sum_{c' \subseteq c} n_{c'} \log n_{c'} + n_c \log n_c \right].
\end{aligned}$$

Since $f(x) = -x \log x$ is a concave function and $c' \subseteq c$, therefore,

$$\sum_{c' \subseteq c} -\frac{n_{c'}}{n} \log \frac{n_{c'}}{n} \geq -\frac{n_c}{n} \log \frac{n_c}{n}.$$

Thus, $H(C') \geq H(C)$.

□

Theorem 1. Let L be labels; C a community partition. Let C' be a refinement of C , i.e., $C' \preceq C$. Then $NMI(C'; L) > NMI(C; L)$ if and only if $\frac{\Delta I}{\Delta H} > \frac{NMI(C; L)}{2}$; where $\Delta I = I(C'; L) - I(C; L)$ and $\Delta H = H(C'; L) - H(C; L)$

Proof.

$$NMI(C; L) = \frac{2I(C; L)}{H(C) + H(L)}.$$

$$I := I(C; L), \quad I' := I(C'; L), \quad H := H(C), \quad H' := H(C'), \quad H_L := H(L).$$

Also

$$\Delta I := I' - I, \quad \Delta H := H' - H.$$

Based on Lemma 1 and 2, $\Delta I \geq 0$ and $\Delta H \geq 0$. We do not consider edge case where $\Delta H = 0$. To show

$$NMI(C'; L) > NMI(C; L) \iff \frac{\Delta I}{\Delta H} > \frac{NMI(C; L)}{2}.$$

$$NMI(C'; L) > NMI(C; L) \iff \frac{2I'}{H' + H_L} > \frac{2I}{H + H_L}.$$

$$\frac{I'}{H' + H_L} > \frac{I}{H + H_L} \iff I'(H + H_L) - I(H' + H_L) > 0.$$

Expand using $I' = I + \Delta I$ and $H' = H + \Delta H$:

$$(I + \Delta I)(H + H_L) - I(H + \Delta H + H_L) > 0.$$

Simplify terms (the $I(H + H_L)$ cancel):

$$\Delta I(H + H_L) - I\Delta H > 0.$$

Thus;

$$\Delta I(H + H_L) > I\Delta H \iff \frac{\Delta I}{\Delta H} > \frac{I}{H + H_L}.$$

By definition $NMI(C; L) = \frac{2I}{H + H_L}$, so $\frac{I}{H + H_L} = \frac{NMI(C; L)}{2}$. Therefore

864

865

866

867

868

869

870

871 8.3 NMI ANALYSIS FOR DATASETS

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894 8.3 NMI ANALYSIS FOR DATASETS

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

(a) Cora

$$\text{NMI}(C'; L) > \text{NMI}(C; L) \iff \frac{\Delta I}{\Delta H} > \frac{\text{NMI}(C; L)}{2}$$

□

(b) Reddit

(c) OGBN-Products

(d) Tolokers

Figure 8: High structural bias datasets: (a) Cora, (b) Reddit, (c) OGBN-Products, and (d) Tolokers. Each subfigure reports how NMI , $I(L;C)$, $H(L)$, $H(C)$, and $H(L)+H(C)$ vary as the resolution parameter γ varies and yields community partitions of different granularity.

Figure 9: Low structural bias datasets: (a) Amazon-Ratings, (b) Chameleon-filtered, and (c) Flickr. Each subfigure illustrates how NMI , $I(L; C)$, $H(L)$, $H(C)$, and $H(L) + H(C)$ evolve as the resolution parameter γ varies and yields community partitions of different granularity.

Figure 10: Negative structural bias datasets: (a) Actor, (b) Squirrel-filtered, and (c) Roman-Empire. Each subfigure reports how NMI , $I(L; C)$, $H(L)$, $H(C)$, and $H(L) + H(C)$ vary as the resolution parameter γ varies and yields community partitions of different granularity.

8.4 ALGORITHMS

972 **Algorithm 1** Adaptive Resolution Search for Louvain

973 **Require:** graph G , minimum modularity Q_{\min} , maximum modularity gap Δ_{\max} , gap_range=
974 $[a, b]$

975 **Ensure:** resolutions, community_list

976 1: $\mathcal{C} \leftarrow \emptyset; Q \leftarrow \emptyset$

977 2: **for** $r \in \{0.5, 1.0\}$ **do** ▷ initial resolutions

978 3: $(\mathcal{C}[r], Q[r]) \leftarrow \text{LOUVAIN}(G, r)$

979 4: **while** true **do**

980 5: $L \leftarrow \text{SORTEDKEYS}(Q); r_{\max} \leftarrow L[-1]; \tau \leftarrow Q[r_{\max}]$

981 6: **if** $\tau \leq Q_{\min}$ **then**

982 7: **break**

983 8: new_r $\leftarrow \text{None}$

984 9: **for** consecutive $(r_1, r_2) \in L$ **do**

985 10: **if** $|Q[r_2] - Q[r_1]| > \Delta_{\max}$ **then**

986 11: new_r $\leftarrow (r_1 + r_2)/2$; **break** ▷ interpolate

987 12: **if** new_r = None **then** ▷ extrapolate

988 13: sample $\delta \sim \mathcal{U}[a, b]$; $Q^* \leftarrow \tau - \delta$

989 14: $s \leftarrow \text{ESTIMATESLOPE}(Q \text{ vs } r);$

990 15: new_r $\leftarrow r_{\max} + \frac{Q^* - \tau}{s}$

991 16: $(\mathcal{C}[\text{new_r}], Q[\text{new_r}]) \leftarrow \text{LOUVAIN}(G, \text{new_r})$

992 17: resolutions $\leftarrow \{r \in \text{SORTEDKEYS}(Q): Q[r] \geq Q_{\min}\}$

993 18: community_list $\leftarrow [\mathcal{C}[r] \text{ for } r \in \text{resolutions}]$

994 19: **return** resolutions, community_list

996

997 **Algorithm 2** Community-Augmented Feature Projection for Node Classification

999 **Require:** Graph $G = (V, E)$, node features $\mathbf{X} \in \mathbb{R}^{n \times D}$, resolution set $\Gamma = \{\gamma_1, \dots, \gamma_T\}$, projection
1000 dimension d_c

1001 **Ensure:** Predicted label distribution $\hat{\mathbf{Y}} \in \mathbb{R}^{n \times C}$

1002 1: Initialize empty list of embeddings $\mathcal{E}_{\text{emb}} \leftarrow []$

1003 2: **for** $\gamma \in \Gamma$ **do**

1004 3: Compute community assignment $\mathbf{c}^{(\gamma)} \in \mathbb{N}^n$

1005 4: One-hot encode $\mathbf{c}^{(\gamma)}$: $\mathbf{H}^{(\gamma)} \in \{0, 1\}^{n \times k_{\gamma}}$

1006 5: Project via trainable weights: $\mathbf{E}^{(\gamma)} \leftarrow \mathbf{H}^{(\gamma)} \mathbf{W}^{(\gamma)}$, where $\mathbf{W}^{(\gamma)} \in \mathbb{R}^{k_{\gamma} \times d_c}$

1007 6: Append $\mathbf{E}^{(\gamma)}$ to \mathcal{E}_{emb}

1008 7: Concatenate all embeddings: $\mathbf{E} \leftarrow \text{Concat}(\mathcal{E}_{\text{emb}}) \in \mathbb{R}^{n \times (T \cdot d_c)}$

1009 8: Concatenate with node features: $\mathbf{Z} \leftarrow [\mathbf{X} \parallel \mathbf{E}] \in \mathbb{R}^{n \times (D + T \cdot d_c)}$

1010 9: Predict logits with MLP: $\mathbf{Y} \leftarrow f_{\theta}(\mathbf{Z}) \in \mathbb{R}^{n \times C}$

1011 10: Apply softmax: $\hat{\mathbf{Y}} \leftarrow \text{softmax}(\mathbf{Y})$

1012 11: **return** $\hat{\mathbf{Y}}$

1013

1014 8.5 COMPUTATION TIME ON LARGE GRAPHS

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026
1027
1028 Table 5: Preprocessing (community detection), training, and inference times.
1029
1030
1031
1032
1033

Dataset	Preprocessing Time	Per-epoch Train Time	Inference Time
Reddit	84.904 ± 2.764	0.143 ± 0.002	0.150 ± 0.005
Flickr	6.800 ± 1.741	0.241 ± 0.005	0.056 ± 0.012
Yelp	15.842 ± 0.007	2.670 ± 0.007	1.613 ± 0.016
AmazonProducts	72.270 ± 1.409	6.073 ± 0.039	3.056 ± 0.019

1034
1035
1036 8.6 HYPERPARAMETER DETAILS
1037

Dataset	Q_{\min}	ΔQ	Epochs	Batch	Hidden	Layers	Dropout	LR
Cora	0.1	0.2	200	128	256	3	0.5	1e-4
Pubmed	0.7	0.1	300	8000	512	3	0.7	1e-4
Tolokers	0.3	0.1	2000	512	512	2	0.5	1e-4
Squirrel-filtered	0.61	0.05	60	512	512	3	0.5	5e-3
Chameleon-filtered	0.7	0.1	30	256	512	1	0.5	1e-3
Amazon-ratings	0.6	0.1	1500	512	512	3	0.5	1e-4
Actor	1.0	0.1	200	128	512	3	0.8	1e-4
Roman-empire	1.0	0.1	500	512	512	3	0.5	1e-4
Flickr	0.1	0.01	20	1024	256	2	0.7	1e-3
Reddit	0.3	0.3	1000	8000	512	3	0.5	1e-4
Yelp	1.0	0.1	300	32000	2048	5	0.5	5e-5
AmazonProducts	1.0	0.1	200	64000	2048	5	0.5	5e-5
ogbn-products	0.3	0.1	400	32000	512	3	0.5	1e-4

1052
1053 Table 6: Training hyperparameters by dataset. Q_{\min} is the *minimum modularity* threshold and ΔQ is
the *maximum modularity gap*.
10541055
1056 Note. For `squirrel-filtered`, we explicitly use the community resolution 0.1. For `Tolokers`,
1057 we explicitly use the community resolution 0.5, 0.75, 1, 1.364. For `Pubmed`, we explicitly use the
1058 community resolution 0.5, 1, 1.956.1059
1060 8.7 CORA: ACCURACY VS. MINIMUM MODULARITY THRESHOLD
1061

1062 Table 7 summarizes how relaxing the minimum modularity threshold Q_{\min} on Cora changes both the
1063 community-derived features and the resulting accuracy. Each tuple $(Q, \text{Resolution}, \text{Communities})$
1064 corresponds to a Louvain run at resolution γ : Q is the modularity $Q(\gamma)$, and Communities is the
1065 number of communities k_γ whose assignments $c^{(\gamma)}$ are one-hot encoded into $H^{(\gamma)}$ and projected to
1066 a dense embedding $E^{(\gamma)}$ that is concatenated into the multi-resolution community feature matrix
1067 (Algorithm 2). For a given Q_{\min} , the row lists the cumulative set of tuples with $Q \geq Q_{\min}$: **blue**
1068 **tuples** are newly activated at that threshold, while **gray tuples** persist from higher thresholds. When
1069 $Q_{\min} \geq 0.9$, no tuples qualify and the model reduces to the base MLP with accuracy 76.61%.
1070 As Q_{\min} is lowered from 0.8 to 0.6, additional high-modularity, moderate-resolution community
1071 embeddings are added, and accuracy increases up to 86.50%. Further decreasing Q_{\min} admits
1072 lower-modularity, finer resolutions with many more communities, leading to small fluctuations and a
1073 peak accuracy of 88.10% at $Q_{\min} = 0.1$, where a diverse mix of coarse-to-fine community features
1074 is used. Pushing Q_{\min} to 0.0 adds one very fine tuple (768 communities), which slightly degrades
1075 performance to 86.32%, indicating that including too many extremely fine community features
eventually injects noise.

1076
1077
1078
1079

1080
 1081 Table 7: Cora: Cumulative (Q , Resolution, Communities) pairs included at each minimum modu-
 1082 larity threshold Q_{\min} (listed in run order), with accuracy. *Color coding*: pairs colored in blue are
 1083 newly added at that Q_{\min} ; pairs in gray were added at earlier thresholds and are carried over.

Min Modularity Q_{\min}	Pairs (Modularity, Resolution, Number of Communities)	Accuracy
1.0	—	76.61
0.9	—	76.61
0.8	(0.8526, 0.500, 90), (0.8120, 1.000, 103)	79.93
0.7	(0.8526, 0.500, 90), (0.8120, 1.000, 103), (0.7448, 2.606, 141)	83.66
0.6	(0.8526, 0.500, 90), (0.8120, 1.000, 103), (0.7448, 2.606, 141), (0.6841, 5.483, 170), (0.6006, 12.374, 298)	86.50
0.5	(0.8526, 0.500, 90), (0.8120, 1.000, 103), (0.7448, 2.606, 141), (0.6841, 5.483, 170), (0.6006, 12.374, 298), (0.5566, 20.068, 325)	84.55
0.4	(0.8526, 0.500, 90), (0.8120, 1.000, 103), (0.7448, 2.606, 141), (0.6841, 5.483, 170), (0.6006, 12.374, 298), (0.5566, 20.068, 325), (0.4909, 32.860, 373), (0.4231, 48.392, 430)	86.15
0.3	(0.8526, 0.500, 90), (0.8120, 1.000, 103), (0.7448, 2.606, 141), (0.6841, 5.483, 170), (0.6006, 12.374, 298), (0.5566, 20.068, 325), (0.4909, 32.860, 373), (0.3748, 63.924, 457), (0.4231, 48.392, 430)	85.26
0.2	(0.8526, 0.500, 90), (0.8120, 1.000, 103), (0.7448, 2.606, 141), (0.6841, 5.483, 170), (0.6006, 12.374, 298), (0.5566, 20.068, 325), (0.4909, 32.860, 373), (0.3748, 63.924, 457), (0.4231, 48.392, 430), (0.2784, 95.726, 541)	82.59
0.1	(0.8526, 0.500, 90), (0.8120, 1.000, 103), (0.7448, 2.606, 141), (0.6841, 5.483, 170), (0.6006, 12.374, 298), (0.5566, 20.068, 325), (0.4909, 32.860, 373), (0.3748, 63.924, 457), (0.4231, 48.392, 430), (0.2784, 95.726, 541), (0.1792, 136.430, 672)	88.10
0.0	(0.8526, 0.500, 90), (0.8120, 1.000, 103), (0.7448, 2.606, 141), (0.6841, 5.483, 170), (0.6006, 12.374, 298), (0.5566, 20.068, 325), (0.4909, 32.860, 373), (0.3748, 63.924, 457), (0.4231, 48.392, 430), (0.2784, 95.726, 541), (0.1792, 136.430, 672), (0.0958, 175.819, 768)	86.32

1124 8.8 MODELS FOR HOMOPHILIC GRAPHS

1125
 1126 **GCN.** Applies a linear map followed by aggregation with the symmetrically normalized adjacency
 1127 (after adding self-loops), corresponding to a first-order spectral/Chebyshev approximation (Kipf &
 1128 Welling, 2017).

1129 **GAT.** Learns attention coefficients over neighbors via masked self-attention and aggregates them
 1130 with a softmax-weighted sum, enabling data-dependent receptive fields (Veličković et al., 2018).

1131
 1132 **GraphSAGE.** Performs permutation-invariant neighbor aggregation (e.g., mean, max-pooling,
 1133 LSTM) with fixed fan-out sampling per layer for scalable, inductive mini-batch training on large
 1134 graphs (Hamilton et al., 2017).

1134
1135

8.9 MODELS FOR HETEROGRAPHIC GRAPHS

1136

H₂GCN. Separates ego and neighbor embeddings, aggregates higher-order neighborhoods, and combines intermediate representations to improve robustness under heterophily (Zhu et al., 2020).

1139

LinkX. Separately embeds node features and adjacency (structural) information with MLPs and concatenates them, capturing complementary attribute and topology signals that scale to non-homophilous graphs (Lim et al., 2021).

1142

GPR-GNN. Learns signed polynomial (Generalized PageRank) propagation weights, adapting the filter to both homophilous and heterophilous label patterns and mitigating over-smoothing (Chien et al., 2021).

1145

FSGNN. Applies soft selection over hop-wise aggregated features with “hop-normalization,” effectively decoupling aggregation depth from message passing for a simple, shallow baseline that performs well under heterophily (Maurya et al., 2022).

1149

GloGNN. Augments propagation with learnable correlations to global nodes (including signed coefficients), enabling long-range information flow and improved grouping on heterophilous graphs (Li et al., 2022).

1152

FAGCN. Uses a self-gating, frequency-adaptive mechanism to balance low- and high-frequency components during message passing, improving robustness across homophily regimes (Bo et al., 2021).

1155

GBK-GNN. Employs bi-kernel feature transformations with a gating mechanism to integrate homophily- and heterophily-sensitive signals within a single architecture (Du et al., 2022).

1157

JacobiConv. Adopts an orthogonal Jacobi-polynomial spectral basis (often without nonlinearities) to learn flexible filters suited to varying graph signal densities, yielding strong performance on heterophilous data (Wang & Zhang, 2022).

1161

BernNet. Learns general spectral graph filters using Bernstein polynomial approximation, enabling flexible control of low- and high-frequency components and strong performance under varying degrees of heterophily (He et al., 2021).

1164

ACM-GCN. Uses high-pass filtering with adaptive channel mixing to combine low- and high-frequency components, yielding strong performance on heterophilic and mixed-regime graphs (Luan et al., 2022).

1167

1168

1169

1170

8.10 SAMPLING METHODS FOR SCALABLE GNNs

1171

1172

GraphSAGE (node/neighbor sampling). Samples a fixed fan-out of neighbors per layer and learns permutation-invariant aggregators, limiting the receptive field and enabling inductive, mini-batch training on large graphs (Hamilton et al., 2017).

1176

FastGCN (layer-wise node sampling). Recasts graph convolution as an expectation over nodes and draws i.i.d. node sets at each layer via importance sampling, decoupling batch size from degree and reducing estimator variance (Chen et al., 2018b).

1179

1180

1181

S-GCN / VR-GCN (layer-wise with control variates). Introduces control-variates using historical activations to stabilize gradients under small per-layer samples and achieve faster, provable convergence to the full-batch optimum (Chen et al., 2018a).

1182

1183

1184

1185

ClusterGCN (subgraph/block sampling). Partitions the graph and samples dense clusters as mini-batches, restricting propagation within blocks to boost edge coverage, cache locality, and memory efficiency at scale (Chiang et al., 2019).

1186

1187

GraphSAINT (subgraph sampling with bias correction). Constructs mini-batches by sampling subgraphs (node/edge/random-walk policies) and applies unbiased normalization to correct sampling bias, yielding strong accuracy–efficiency trade-offs on large graphs (Zeng et al., 2020).

1188 8.11 DECOUPLING-BASED METHODS FOR SCALABLE GNNs
11891190 **SGC (linearized propagation).** Simplifies GCNs by collapsing multiple message-passing layers into
1191 a single K -step precomputation of $\mathbf{A}^K \mathbf{X}$, removing nonlinearities and train-time propagation. This
1192 reduces GNN training to logistic regression on pre-smoothed features, yielding strong scalability and
1193 fast inference (Wu et al., 2019a).1194 **SIGN (multi-hop feature precomputation).** Precomputes multiple graph-diffused feature channels
1195 (e.g., $\mathbf{A}^K \mathbf{X}$ for several K), and trains an MLP on the concatenated features. This decouples feature
1196 propagation from learning entirely, enabling embarrassingly parallel preprocessing and large-batch
1197 training (Rossi et al., 2020).1198 **SAGN (depth and scope decoupling).** Introduces a learnable gating mechanism over multiple
1199 precomputed hop-wise representations, allowing the model to adaptively weight short- and long-
1200 range information without stacking GNN layers. This stabilizes training under heterophily and yields
1201 strong performance with shallow architectures (Sun et al., 2021).1202 **GAMPL (self-ensemble on diffused features).** Builds an ensemble over diffused feature channels
1203 using attention and prediction consistency across hops. GAMPL reuses node features efficiently
1204 and achieves high accuracy with small models, while avoiding message passing during training and
1205 inference (Chien et al., 2022).1207 Together, these methods represent the broader “decoupling” paradigm—where propagation is
1208 performed once (or analytically) and training reduces to learning an MLP over fixed multi-hop
1209 representations—an approach systematically benchmarked and analyzed in large-scale settings by
1210 Zeng et al. (Zeng et al., 2022). ATLAS aligns with this propagation-free philosophy but differs funda-
1211 mentally in how structural information is obtained: instead of precomputing $\mathbf{A}^k \mathbf{X}$, ATLAS extracts
1212 *multi-resolution community assignments* as topology-aware features, providing a complementary and
1213 scalable route to structural encoding.1214 8.12 DATASETS
12151216 We evaluate on two groups of benchmarks that stress complementary regimes.
12171218 **Large-scale graphs.** We use Flickr, Reddit, Yelp, AmazonProducts, and ogbn-products.
1219 Flickr/Yelp/AmazonProducts come from GraphSAINT; Reddit from GraphSAGE; ogbn-products
1220 from OGB (Zeng et al., 2020; Hamilton et al., 2017; Hu et al., 2020). Table 9 reports sizes, features,
1221 classes, and splits.1222 **Homophilous and heterophilous graphs.** We include Cora, PubMed, Actor, Chameleon-filtered,
1223 Squirrel-filtered, Amazon-ratings, Tolokers, and Roman-empire. For the filtered Wikipedia, Roman-
1224 empire, Amazon-ratings, and Tolokers datasets, we use the exact settings and splits of Platonov et al.
1225 (2023b); Cora, PubMed, and Actor follow standard preprocessing (Sen et al., 2008; Pei et al., 2020;
1226 Lim et al., 2021). Table 8 lists summary stats, edge homophily h_e , and metrics.1227 Table 8: Dataset statistics with edge homophily h_e and evaluation metric (“Acc” for Accuracy,
1228 “ROC-AUC” for Area Under ROC).
1229

1230	Dataset	Nodes	Edges	Avg. Degree	Feature	Classes	Train / Val / Test	h_e	Metric
1231	Cora	2,708	5,429	4	1,433	7 (s)	0.60 / 0.20 / 0.20	0.810	Acc
1232	PubMed	19,717	44,324	5	500	3 (s)	0.60 / 0.20 / 0.20	0.802	Acc
1233	Actor	7,600	30,019	8	932	5 (s)	0.60 / 0.20 / 0.20	0.216	Acc
1234	Squirrel-filtered	2,223	65,718	59	2,089	5 (s)	0.50 / 0.25 / 0.25	0.207	Acc
1235	Chameleon-filtered	890	13,584	31	2,325	5 (s)	0.50 / 0.25 / 0.25	0.236	Acc
1236	Amazon-ratings	24,492	93,050	8	300	5 (s)	0.50 / 0.25 / 0.25	0.380	Acc
1237	Tolokers	11,758	519,000	88	10	2 (s)	0.50 / 0.25 / 0.25	0.595	ROC-AUC
1238	Roman-empire	22,662	32,927	3	300	18 (s)	0.50 / 0.25 / 0.25	0.047	Acc

1239
1240
1241

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264

Table 9: Dataset statistics (“m” stands for **multi-class** classification, and “s” for **single-class**.)

	Dataset	Nodes	Edges	Avg. Degree	Feature	Classes	Metric	Train / Val / Test
1269	Flickr	89,250	899,756	10	500	7 (s)	F1-micro	0.50 / 0.25 / 0.25
1270	Reddit	232,965	11,606,919	50	602	41 (s)	F1-micro	0.66 / 0.10 / 0.24
1271	Yelp	716,847	6,977,410	10	300	100 (m)	F1-micro	0.75 / 0.10 / 0.15
1272	AmazonProducts	1,598,960	132,169,734	83	200	107 (m)	F1-micro	0.85 / 0.05 / 0.10
	ogbn-products	2,449,029	61,859,140	50.5	100	47 (s)	Acc	0.08 / 0.02 / 0.90

1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295