
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ATLAS: ADAPTIVE TOPOLOGY-BASED LEARNING AT
SCALE FOR HOMOPHILIC AND HETEROPHILIC GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present ATLAS (Adaptive Topology-based Learning at Scale for Homophilic
and Heterophilic Graphs), a novel graph learning algorithm that addresses two
important challenges in graph neural networks (GNNs). First, the accuracy of
GNNs degrades when the graph is heterophilic. Second, the iterative feature
aggregation limits the scalability of GNNs on large graphs. We address these
challenges by extracting topological information about the graph communities at
different levels of refinement, concatenating the community assignments to the
feature vector, and applying multilayer perceptrons (MLPs) on this new feature
vector. We thus inherently obtain the topological data about the nodes and their
neighbors without invoking aggregation. Because MLPs are typically more scalable
than GNNs, our approach applies to large graphs, without the need for sampling.
Our results, on a wide set of graphs, show that ATLAS has comparable accuracy
to baseline methods, with accuracy being as high as 20 percentage points over
GCN for heterophilic graphs with negative structural bias and 11 percentage points
over MLP for homophilic graphs. Furthermore, we show how multi-resolution
community features systematically modulate performance in both homophilic and
heterophilic settings, opening a principled path toward explainable graph learning.

1 INTRODUCTION

Node classification, a fundamental problem in graph learning, involves identifying labels of nodes in
a graph and has wide applications in many domains including social networks, citation networks,
recommendation systems, knowledge graphs and bioinformatics (Khemani, 2024; Wu et al., 2019b;
Zhou et al., 2021). Accurate classification requires two complementary pieces of information–(i)
the features at each node, and (ii) the connections between the node and its neighbors. Neural
network methods such as Multi-Layer Perceptrons (MLPs) are fast but do not include information
about the connections. Graph Neural Networks (GNNs) address this problem by aggregating the
features between neighboring nodes, but the process is expensive, and difficult to scale to large graphs.
Although the graph structure can be represented as feature vectors using different node embedding
techniques (Perozzi et al., 2014; Grover & Leskovec, 2016; Tang et al., 2015), or through the use
of community detection (Sun et al., 2019; Kamiński et al., 2024), the issue remains as to how many
hops of neighbors should be considered and how fine-grained the communities should be. Larger
hops or coarse grained community can lead to information smoothing, while smaller hops or fine
grained communities can lead to information loss. Further, the hypothesis that aggregating features
of neighbors can improve accuracy of node classification is only true for homophilic networks (where
nodes of similar classes are connected). In heterophilic networks, where the connection between
nodes need not imply similarity of class, this strategy leads to lower accuracy. Based on these
observations, we posit, matching structural information (i.e. size of hops or communities) with how
well it aligns with the classification is necessary for producing accurate results.

1.1 RELATED WORK

Graph Neural Networks (GNNs) have become a core tool for learning on graphs (Kipf & Welling,
2017; Hamilton et al., 2017). Most algorithms follow a message-passing paradigm, aggregating
transformed neighbor features into topology-aware embeddings, which implicitly assumes homophily

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(Wu et al., 2019a). The same bias can blur informative distinctions on weakly homophilous or
heterophilous graphs (Zhu et al., 2020; Platonov et al., 2023a).

Scaling GNNs on large graphs. Scaling GNNs on large graphs is challenging due to memory
and aggregation costs. Sampling-based methods approximate full-batch propagation using node-,
layer-, or subgraph-level sampling (GraphSAGE, FastGCN, Cluster-GCN, GraphSAINT, LABOR)
(Hamilton et al., 2017; Chen et al., 2018b; Chiang et al., 2019; Zeng et al., 2020; Balın & Çatalyürek,
2023), but introduce stochasticity that affects convergence and reproducibility (Chen et al., 2018b;
Zou et al., 2019). Decoupled models instead precompute feature diffusion and train MLPs on fixed
graph-derived features, enabling i.i.d. node mini-batching and fast inference (SGC, SIGN, SAGN,
GAMLP, SCARA, LD2) (Wu et al., 2019a; Rossi et al., 2020; Sun et al., 2021; Chien et al., 2022;
Liao et al., 2022; 2023).

Learning on non-homophilous graphs. For non-homophilous graphs, one line of work preserves
self-features while carefully injecting neighborhood information (H2GCN, GloGNN) (Zhu et al.,
2020; Li et al., 2022), or reweights neighbors to downweight harmful edges (GPR-GNN, FAGCN)
(Chien et al., 2021; Bo et al., 2021). Others exploit higher-order propagation or spectral filters
to capture both homophilic and heterophilic signals (MixHop, JacobiConv, BernNet, GBK-GNN)
(Abu-El-Haija et al., 2019; Wang & Zhang, 2022; He et al., 2021; Du et al., 2022). See Zheng et al.
(2022); Luan et al. (2024b) for broader surveys.

Community-aware node embeddings. Several works use community structure as an explicit
representation for downstream prediction. Sun et al. (2019) propose vGraph, a generative model that
jointly infers discrete communities and continuous node embeddings by reconstructing edges, so that
community assignments act as latent variables guiding representation learning. Closer to our setting,
Kamiński et al. (2024) construct community-aware node features (e.g., counts and statistics over
community memberships in a node’s ego-network) and feed them into standard classifiers, showing
that purely community-derived signals can already yield strong performance on node-level tasks.

Graph–task alignment and community structure. A related line of work asks when a graph’s
communities are informative for the labels and how this alignment controls the benefit of message
passing. Hussain et al. (2021) vary homophily and community structure in real graphs and define a
measure of label–community correlation, showing that GNN gains are largest when labels follow
communities and can vanish when they do not. This links the classical “cluster assumption” in
semi-supervised learning (Chapelle et al., 2006) with recent analyses of graph–task and NTK–
graph alignment in GNN training dynamics (Yang et al., 2024), and motivates methods that treat
communities as task-relevant structural signals.

Community-guided graph rewiring. Building on modularity-based detection (Newman, 2006;
Blondel et al., 2008), ComMa and ComFy (Rubio-Madrigal et al., 2025) use community structure and
feature similarity to rewire intra- and inter-community edges, improving label–community alignment
and GNN accuracy on both homophilic and heterophilic graphs.

Unlike community-aware GNNs and rewiring methods, ATLAS treats multi-resolution community as-
signments as features for a simple MLP, remaining propagation-free while still leveraging community
structure.

1.2 OUR CONTRIBUTION

Most of the current research either focuses primarily on homophilic graphs, or the processes to address
the heterophilic graphs require expensive operations, such as signal identification/modification,
rewiring or spectral gap maximization. These methods cannot efficiently scale to large graphs. Our
primary contribution is to develop Adaptive Topology -based Learning at Scale (ATLAS) *, a novel
graph learning algorithm that can produce high-accuracy results for both homophilic and heterophilic
graphs. ATLAS is based on a simple but powerful technique of refining communities in networks to
match the degree of homophily.

Rationale. Our algorithm is based on quantifying homophily through the lens of normalized mutual
information (NMI). Given two partitions of the same set of elements NMI measures how well the

*Apart from the acronym, the name ATLAS is to convey our method can handle different degrees of
homophily, similar to how an atlas encompasses all different countries.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

partitions correspond to each other. If we consider one partition as the communities in the graph, and
the other partition as labels, then NMI provides a measure for the degree of homophily in the graph.
ATLAS focuses on refining/coarsening communities to identify the region of highest NMI—which
will correspond to the highest accuracy. Figure 1 provides an overview of ATLAS.

Our specific contributions are:
1. Theory. We provide a theoretical analysis of how refining communities changes in NMI

(Section 2).
2. Algorithm. Based on this mathematical understanding, we develop our algorithm ATLAS

(Section 3).
3. Experiments. Provide extensive empirical evaluations by comparing ATLAS across a

mix of 13 (8 medium size and 5 large) homophilic and heterophilic graphs, and 14 (9)
GNN/MLP-based algorithms for medium sized (large) graphs (Section 4).

4. Bridging Frameworks. Unlike prior MLP-based models designed primarily for heterophilic
graphs, ATLAS effectively supports both homophilic and heterophilic settings, thereby
minimizing the accuracy gap traditionally observed between MLPs and GNNs. Moreover,
its high inference efficiency positions ATLAS as a practical and scalable alternative to GNNs.

Figure 1: Overview of the community-augmented feature learning pipeline. Community assignments
at multiple resolutions are one-hot encoded, projected, concatenated with node features, and input to
an MLP for classification.

2 THEORETICAL ANALYSIS

We mathematically show how refining communities leads to changes in NMI. We define some terms
that will help us in the analysis. The proofs of the theorems are given in the appendix.

Let N be the set of nodes. Let P = {P1, . . . , Pk} be a partition of N ; i.e.

Pi ̸= ∅, Pi ∩ Pj = ∅ (i ̸= j), and
k⋃

i=1

Pi = N.

Let S = {S1, . . . , Sm} be another partition of N . We say S is a refinement of P (denoted as S ⪯ P)
iff every block of S is contained in some block of P . Formally:

S ⪯ P ⇐⇒ ∀Sj ∈ S ∃Pi ∈ P such that Sj ⊆ Pi.

Normalized mutual information (NMI) is a popular measure to quantify alignment between two
partitions. Given two partitions P and Q, over a set of N elements and nij = |Pi ∩ Qj |, ni =
|Pi|, nj = |Qj | their normalized mutual information is given as;

NMI(P,Q) =
2I(P ;Q)

H(P) +H(Q)

I(P ;Q) =
∑k

i=1

∑m
j=1

nij

N log
(

N nij

ni nj

)
is the mutual information between partitions P and Q.

This quantity measures how much information is shared between the partitions P and Q. The higher

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the value, the better the alignment between the partitions. H(P) = −
∑k

i=1
ni

N log
(
ni

N

)
, is the

entropy of partition P . H(Q) is defined similarly. The entropy measures the distribution of points
in each partition. Low entropy means data is concentrated in few clusters, and is indicative of good
clustering.

The value of NMI ranges from 1 (indicating complete alignment between partitions) to
close to 0 (indicating complete mismatch between partitions). NMI is high if the par-
titions are well matched (I(P,Q) is high), and entropy is low (H(P), H(Q) is low).

I(G,K)=0
H(G)=.97
H(K)=1
NMI=0

I(G,K)=1
H(G)=3.32
H(K)=1
NMI=.463

I(G,K)=1
H(G)=1.97
H(K)=1
NMI=.67

Figure 2: Effect of refinement on NMI. Initially
when clusters have mixed items, NMI is low. The
first refinement matches the items and clusters, in-
creasing the NMI. Further refinement does not im-
prove the alignment (mutual information), but in-
creases the spread (entropy), thus decreasing NMI.

Lemma 1 (Refinement does not decrease mutual
information). Let L be labels and C a commu-
nity partition. Let C ′ be a refinement of C, i.e.,
C ′ ⪯ C. Then I(L;C ′) ≥ I(L;C)

Lemma 2 (Refinement does not decrease en-
tropy). Let C a community partition. Let C ′

be a refinement of C, i.e., C ′ ⪯ C. Then
H(C ′) ≥ H(C)

Based on Lemma 1 and Lemma 2 we see that
while refinement improves the mutual informa-
tion leading to better alignment, it also increases
the entropy leading to more noise or uncertainty.
The condition at which NMI will increase is
given by Theorem 1.
Theorem 1 (NMI Refinement Condition).
Let L be labels; C a community par-
tition. Let C ′ be a refinement of C,
i.e., C ′ ⪯ C. Then NMI(C ′;L) >

NMI(C;L) if and only if ∆I
∆H > NMI(C;L)

2 ;
where ∆I = I(C ′;L) − I(C;L) and ∆H =
H(C ′;L)−H(C;L)

Theorem 1 states that a partition refinement improves the normalized mutual information with respect
to labels if and only if the mutual information gain per unit of entropy increase exceeds half the
original normalized mutual information value.

3 METHODOLOGY

The theorems in Section 2 are based on idealized conditions, where refined communities are perfect
subsets of the original communities. In practice, refinement in communities is approximated by
running a modularity-based community detection algorithm at multiple resolution values. Although
higher resolution leads to smaller communities, due to the inherent non-determinism of community
detection methods, the smaller communities may not be exact subsets.

Preprocessing. Optimizing modularity is a popular method for community detection. Modularity,
Q, measures the strength of connections between nodes in a community as compared to a null
model with randomly placed edges. Communities in networks are often hierarchical, so we treat the
resolution parameter γ as the hierarchy/refinement level (larger γ yields finer-grained communities);
Appendix 8.1 summarizes the community terminology and formal definitions used below. We start
from two initial resolutions (γ = 0.5 and γ = 1.0) and set three hyperparameters: a modularity gap
threshold ∆max, a minimum modularity Qmin, and a small target-drop range [a, b]. Let γ1 and γ2 be
two consecutive resolution parameters, with community sets c(γ1) and c(γ2) and modularities Q(γ1)

and Q(γ2); we define the modularity gap as ∆Q = |Q(γ2) −Q(γ1)|. At each iteration, we sort the
tested resolutions and examine consecutive pairs. If the gap between a pair exceeds ∆max, we find
their midpoint (interpolation). Otherwise, we extrapolate beyond the current maximum by estimating
the local slope of modularity with respect to the resolution and taking a small forward step expected
to reduce modularity by a random amount drawn from the drop range. Once the new γ is obtained,
we compute the communities at that value. The loop stops when the latest modularity falls below

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Initial Graph
Step 1: Louvain Community detection

Initial resolution

Step 3: Interpolation between
and , new resolution

Communities at

C
om

m
unity Features

C
om

m
unity Features

C
om

m
unity Features

C
om

m
unity Features

Step 2: Louvain Community detection
Initial resolution

Step 5: Extrapolation with
and , new resolution

Communities at

Step 5: Extrapolation with
and , new resolution

Communities at

Figure 3: Illustration of the Adaptive Resolution Search Process. The resolution limits, γ0 < γ2 <
γ1 < γ3 < γ4, and the communities Cγ0 ⪯ Cγ2 ⪯ Cγ1 ⪯ Cγ3 ⪯ Cγ4 capture structural bias for
different granularities from the graph.

Qmin or no new resolution is produced. The procedure returns the retained resolutions and their
corresponding community assignments, which we view as multi-resolution community features—a
structural graph signal over the nodes—that are later encoded and concatenated with the original
node features in the feature-augmentation step (see Algorithm 1 in the appendix).

Feature Augmentation. For a given resolution parameter γ, let the communities be c(γ) ∈
{1, . . . , kγ}, and and each node is assigned to one of the communities in kγ . This assignment
is represented as a one-hot encoded matrix H(γ)(equation 3). To reduce dimensionality, each one-hot
matrix is projected into a dense embedding space using a trainable weight matrix W(γ) (equation 4).
The embeddings from all resolutions are concatenated to form E (equation 5), which is then further
concatenated with the original features X to yield the augmented feature matrix Z. The augmented
feature matrix Z is fed to an MLP fθ to produce logits; a task-dependent function ϕ (e.g., softmax or
elementwise sigmoid), applied row-wise, converts them to probabilities Ŷ (equation 7).

.

X ∈ Rn×D, Γ = {γ1, . . . , γT } (1)

c(γ) = DetectCommunity(G, γ), c(γ) ∈ {1, . . . , kγ}n (2)

H(γ) = OneHot(c(γ)) ∈ {0, 1}n×kγ (3)

E(γ) = H(γ)W(γ), W(γ) ∈ Rkγ×dc (4)

E =
∥∥T
t=1

E(γt) ∈ Rn×(Tdc) (5)

Z = [X ∥ E] ∈ Rn×(D+Tdc) (6)

Ŷ = ϕ
(
fθ(Z)

)
∈ [0, 1]n×C (7)

Complexity Analysis. We compare computational and memory complexities of representative
scalable GNN frameworks with our approach in Table 3. ATLAS performs Louvain clustering
in O(T∥A∥0) in the preprocessing step, keeps a single augmented feature buffer, and trains with
per-epoch time O

(
LffN(D+Tdc)

2
)

and memory O
(
bLff (D+Tdc)

)
, enabling simple i.i.d. node

mini-batching without neighborhood expansion or graph-dependent batching heuristics. ATLAS

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

performs adjacency-free inference: with fixed augmented features of dimension D+Tdc, prediction
is a forward pass with complexity O

(
N(D+Tdc)

2
)
.

4 EMPIRICAL EVALUATION

In this section, we provide the empirical results comparing ATLAS with other graph learning methods.
Our experiments focus on answering the following research questions:

Q1. How accurate is ATLAS compared to baseline methods over graphs with different degrees of
homophily?
Q2. How well can ATLAS scale to large graphs, while maintaining high accuracy?

Datasets. We use 8 medium graphs (Cora, PubMed, Tolokers, Squirrel-Filtered, Chameleon-Filtered,
Amazon-Ratings, Actor, Roman-Empire) and 5 large graphs (Flickr, Reddit, Yelp, Amazon-Products,
OGBN-Products). Complete statistics of datasets are given in Appendix Tables 8 and 9.

Baselines. We group baselines by modeling regime and map them to the research questions.

Q1 (homophily–heterophily regime). Homophilic: GCN (Kipf & Welling, 2017), GraphSAGE (Hamil-
ton et al., 2017), GAT (Veličković et al., 2018). Heterophily-oriented: H2GCN (Zhu et al., 2020),
LinkX (Lim et al., 2021), GPR-GNN (Chien et al., 2021), FSGNN (Maurya et al., 2022), GloGNN (Li
et al., 2022), FAGCN (Bo et al., 2021), GBK-GNN (Du et al., 2022), JacobiConv (Wang & Zhang,
2022), ACM-GCN (Luan et al., 2022), BernNet (He et al., 2021).

Q2 (scalability). Propagation-free / decoupled: SGC (Wu et al., 2019a), SIGN (Rossi et al., 2020),
SAGN (Sun et al., 2021), GAMLP (Chien et al., 2022). Sampling-based: GraphSAGE (Hamilton
et al., 2017), ClusterGCN (Chiang et al., 2019), GraphSAINT (Zeng et al., 2020). Descriptions of
these methods are provided in the Appendix.

We use an L-layer MLP with hidden width dhid and dropout rate p. Each of the first L−1 layers
applies Linear (with bias)→ LayerNorm→ GELU→ Dropout. The final layer is a Linear classifier
to C classes.

4.1 Q1: ACCURACY ACROSS HOMOPHILY REGIMES

Table 1 reports results on the eight medium-sized benchmarks. We group these datasets into three
structural-bias regimes—high, low, and negative structural bias—based on how informative their
community structure is for the labels; we formalize this notion in Section 5. On graphs with negative
structural bias, ATLAS improves over GCN by up to 20 percentage points, and on high structural-bias
graphs it improves over a feature-only MLP by more than 11 percentage points. Although it does not
attain the best score on every dataset, an appropriate choice of resolution parameters typically allows
ATLAS to match or closely track the strongest baseline across both homophilic and heterophilic
regimes. The main outlier is Roman-Empire, where accuracy appears to be largely driven by raw node
features. FSGNN explicitly concatenates neighborhood features to strengthen this input signal. When
we equip ATLAS with the same neighborhood-feature concatenation (ATLAS-NF), its accuracy on
Roman-Empire rises to within roughly two percentage points of FSGNN, while also achieving the
best performance on Tolokers.

Overall, ATLAS and its neighbor-feature variant ATLAS-NF substantially narrow the MLP→GNN
performance gap and provide a single topology-augmented architecture that is consistently competi-
tive with the strongest model on each dataset, across all three structural-bias regimes.

4.2 Q2: EFFICIENCY AND SCALABILITY ON LARGE GRAPHS

Accuracy. Table 2 shows that ATLAS scales to million-node graphs and is competitive across all
structural-bias regimes while consistently improving over MLP and GCN. On high structural-bias
graphs, it stays close to the best methods with gains up to about +0.21 over MLP and +0.03 over GCN.
On Flickr, ATLAS-NF (ATLAS with neighbor features) surpasses ATLAS, indicating the impact of
enhanced feature signal from neighbours, and on negative structural-bias graphs ATLAS maintains
strong performance while aggregation-heavy GNNs degrade.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Eight-benchmark comparison across homophily regimes. Baseline heterophily-oriented
model results are from Platonov et al. (2023b); Luan et al. (2024a). Bottom rows report ATLAS
improvements over baselines (absolute percentage points). Cells highlighted in yellow indicate the
best score for each dataset.

High structural bias Low structural bias Negative structural bias

Model
Cora

he = 0.810
Tolokers

he = 0.595
PubMed

he = 0.802
Chameleon-Filtered

he = 0.236

Amazon-Ratings
he = 0.380

Actor
he = 0.216

Squirrel-Filtered
he = 0.207

Roman-Empire
he = 0.047

MLP(2L) 75.44 ± 1.97 72.97 ± 0.90 87.25 ± 0.41 36.00 ± 4.69 39.83 ± 0.48 34.96 ± 0.71 34.29 ± 3.34 65.58 ± 0.34

GCN 87.01 ± 1.04 74.93 ± 1.32 86.71 ± 0.42 37.11 ± 3.04 42.78 ± 0.14 28.49 ± 0.91 32.70 ± 1.73 45.68 ± 0.38
SAGE 87.50 ± 0.87 80.95 ± 0.92 88.42 ± 0.55 38.83 ± 4.26 44.67 ± 0.51 34.08 ± 1.07 33.32 ± 1.75 76.21 ± 0.65
GAT 87.74 ± 0.88 75.31 ± 1.35 86.18 ± 0.64 37.18 ± 3.44 43.25 ± 0.85 29.11 ± 1.23 32.61 ± 2.06 47.16 ± 0.66

H2GCN 87.52 ± 0.61 73.35 ± 1.01 87.78 ± 0.28 26.75 ± 3.64 36.47 ± 0.23 38.85 ± 1.17 35.10 ± 1.15 60.11 ± 0.52
LinkX 82.62 ± 1.44 81.15 ± 1.23 88.12 ± 0.47 40.10 ± 2.21 52.66 ± 0.64 35.64 ± 1.36 42.34 ± 4.13 56.15 ± 0.93
GPR-GNN 79.51 ± 0.36 72.94 ± 0.97 85.07 ± 0.09 39.93 ± 3.30 44.88 ± 0.34 39.30 ± 0.27 38.95 ± 1.99 64.85 ± 0.27
FSGNN 87.51 ± 1.21 82.76 ± 0.61 90.11 ± 0.43 40.61 ± 2.97 52.74 ± 0.83 37.65 ± 0.79 35.92 ± 1.32 79.92 ± 0.56
GloGNN 87.67 ± 1.16 73.39 ± 1.17 90.32 ± 0.54 25.90 ± 3.58 36.89 ± 0.14 39.65 ± 1.03 35.11 ± 1.24 59.63 ± 0.69
FAGCN 88.85 ± 1.36 77.75 ± 1.05 89.98 ± 0.54 41.90 ± 2.72 44.12 ± 0.30 31.59 ± 1.37 41.08 ± 2.27 65.22 ± 0.56
GBK-GNN 87.09 ± 1.52 81.01 ± 0.67 88.88 ± 0.44 39.61 ± 2.60 45.98 ± 0.71 38.47 ± 1.53 35.51 ± 1.65 74.57 ± 0.47
JacobiConv 89.61 ± 0.96 68.66 ± 0.65 89.99 ± 0.39 39.00 ± 4.20 43.55 ± 0.48 37.48 ± 0.76 29.71 ± 1.66 71.14 ± 0.42
BernNet 88.52 ± 0.95 77.00 ± 0.65 88.48 ± 0.41 40.90 ± 4.06 44.64 ± 0.56 41.79 ± 1.01 41.18 ± 1.77 65.56 ± 1.34
ACM-GCN 89.75 ± 1.16 74.95 ± 1.16 90.96 ± 0.62 42.73 ± 3.59 52.49 ± 0.24 41.86 ± 1.48 42.35 ± 1.97 71.89 ± 0.61

ATLAS 87.09 ± 1.62 82.19 ± 0.73 88.85 ± 0.48 42.76 ± 3.47 53.15 ± 0.61 38.48 ± 0.93 40.35 ± 1.53 66.22 ± 0.53
ATLAS-NF 86.73 ± 1.04 83.02 ± 0.74 88.76 ± 0.36 40.02 ± 2.79 52.30 ± 0.64 34.26 ± 0.97 36.98 ± 2.37 77.94 ± 0.48

ATLAS–MLP (pp) +11.65 +9.22 +1.60 +6.76 +13.32 +3.52 +6.06 +0.64
ATLAS–GCN (pp) +0.08 +7.26 +2.14 +5.65 +10.37 +9.99 +7.65 +20.54
ATLAS–Average (pp) +0.92 +5.97 +0.40 +5.15 +8.51 +2.13 +3.91 +1.67

Table 2: Large-graph performance. Baselines from Zeng et al. (2020); Hu et al. (2020). Bottom rows
report ATLAS improvements over MLP and over GCN (absolute units). Cells highlighted in yellow
indicate the best score for each dataset.

High structural bias Low structural bias Negative structural bias

Method
Reddit

he=0.756

ogbn-products
he=0.808

Flickr
he=0.319

Yelp
he=0.809

AmazonProducts
he=0.116

MLP 0.7435 ± 0.0016 0.6106 ± 0.0008 0.4717 ± 0.0011 0.6546 ± 0.0011 0.8204 ± 0.0002

GCN 0.9330 ± 0.0001 0.7564 ± 0.0021 0.4920 ± 0.0030 0.3780 ± 0.0010 0.2810 ± 0.0050
GraphSAGE 0.9530 ± 0.0010 0.8061 ± 0.0016 0.5010 ± 0.0130 0.6340 ± 0.0060 0.7580 ± 0.0020
ClusterGCN 0.9540 ± 0.0010 0.7862 ± 0.0061 0.4810 ± 0.0050 0.6090 ± 0.0050 0.7590 ± 0.0080
GraphSAINT 0.9660 ± 0.0010 0.7536 ± 0.0034 0.5110 ± 0.0010 0.6530 ± 0.0030 0.8150 ± 0.0010

SGC 0.9351 ± 0.0004 0.6748 ± 0.0011 0.5035 ± 0.0005 0.2356 ± 0.0002 0.2262 ± 0.0028
SIGN 0.9595 ± 0.0002 0.8052 ± 0.0016 0.5160 ± 0.0011 0.5798 ± 0.0012 0.7424 ± 0.0002
SAGN 0.9648 ± 0.0003 0.8121 ± 0.0007 0.5007 ± 0.0011 0.6155 ± 0.0040 0.7682 ± 0.0115
GAMLP 0.9673 ± 0.0003 0.8376 ± 0.0019 0.5258 ± 0.0012 0.5784 ± 0.0154 0.7599 ± 0.0026

ATLAS 0.9574 ± 0.0004 0.7865 ± 0.0053 0.5104 ± 0.0039 0.6546 ± 0.0011 0.8204 ± 0.0002
ATLAS-NF 0.9410 ± 0.0007 0.7507 ± 0.0030 0.5201 ± 0.0012 0.5740 ± 0.0021 0.7783 ± 0.0010

ATLAS–MLP +0.2139 +0.1759 +0.0387 +0.0000 +0.0000
ATLAS–GCN +0.0244 +0.0301 +0.0184 +0.2766 +0.5394
ATLAS–Average +0.0267 +0.0262 +0.0101 +0.1059 +0.1615

Convergence. ATLAS converges rapidly and stably across large graphs: training loss decreases
smoothly, and validation performance plateaus early with a small train–validation gap. The curves
exhibit no late-epoch degradation and remain stable after convergence (see Fig. 4).

Efficiency. Table 3 shows that ATLAS adds a T -resolution community search as a one-time prepro-
cessing step with cost O(T∥A∥0), after which training is MLP-like and inference is adjacency-free
on features of dimension D + Tdc. Consequently, both preprocessing and inference costs increase
with T . On OGBN-Products (Table 4), the larger T leads to a noticeable preprocessing cost, yet
per-epoch training remains competitive and inference stays sub-second. Appendix Table 5 reports
timings on the remaining large graphs.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Complexity comparison. N = #nodes, ∥A∥0 = #edges, D = feature dim, L = #message-
passing layers, Lff = #feed-forward layers, b = batch size, r = sampled neighbors (or filter size), K
= #precomputed hop propagations (max hop order for SAGN/GAMLP), k = #subgraph samples used
in GraphSAINT preprocessing, T = #resolutions, dc = community-embedding dim.

Method Preprocessing Per-epoch Train Time Memory

GCN (full-batch) – O(L ∥A∥0D + LND2) O(LND + LD2)
ClusterGCN O(∥A∥0) O(L ∥A∥0D + LND2) O(bLD + LD2)
GraphSAINT O(kN) O(L ∥A∥0D + LND2) O(bLD)

SAGN O(K∥A∥0D) O(LffN(KD)2) O(bLffKD)
GAMLP O(K∥A∥0D) O(LffN(KD)2) O(bLffKD)

ATLAS O(T∥A∥0) O(LffN(D + Tdc)
2) O(bLff (D + Tdc))

Epoch
0 20 40 60

F
1

-m
ic

ro
 (

%
)

46

48

50

52

54

56

58

60

62

Train

Validation

Test

Epoch
0 20 40 60

T
ra

in
in

g
 L

o
s
s

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

Epoch
0 500 1000

F
1

-m
ic

ro
 (

%
)

60

65

70

75

80

85

90

95

100

Train

Validation

Test

Epoch
0 500 1000

T
ra

in
in

g
 L

o
s
s

0

0.5

1

1.5

2

2.5

3

3.5

Epoch
0 100 200 300

F
1

-m
ic

ro
 (

%
)

10

20

30

40

50

60

70

Train

Validation

Test

Epoch
0 100 200 300

T
ra

in
in

g
 L

o
s
s

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Epoch
0 50 100 150 200

F
1

-m
ic

ro
 (

%
)

0

10

20

30

40

50

60

70

80

90

Train

Validation

Test

Epoch
0 50 100 150 200

T
ra

in
in

g
 L

o
s
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Epoch
0 100 200 300 400

A
c
c
u

ra
c
y
 (

%
)

20

30

40

50

60

70

80

90

100

Train

Validation

Test

Epoch
0 100 200 300 400

T
ra

in
in

g
 L

o
s
s

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 4: The convergence landscape of ATLAS.

Table 4: Computation time breakdown (seconds) on OGBN-Products.

Model Preprocessing Time Per-epoch Train Time Inference Time
GCN — 2.0395± 0.0006 0.9220± 0.0010
ClusterGCN 168.754± 1.777 4.017± 0.164 82.837± 0.622
GraphSAINT 3.770± 0.159 (per epoch) 0.751± 0.046 66.445± 0.517
SAGN 4.8462± 0.0415 0.8447± 0.0225 0.2564± 0.0001
GAMLP 4.8227± 0.0871 0.7976± 0.0099 0.2495± 0.0001

ATLAS 391.894± 14.387 0.181± 0.0058 0.526± 0.0038

5 ACCURACY UNDER COMMUNITY REFINEMENT

We quantify the level of community refinement by the minimum modularity threshold Qmin. Large
Qmin preserves only coarse communities; lowering Qmin progressively adds medium and fine
communities, yielding a multi-scale representation. We define structural bias as how strongly a
graph’s community structure provides a useful structural signal for classification, and group graphs
into three regimes:

• High structural bias (e.g., Cora, Tolokers): Community structure is strongly aligned with labels,
so refinement helps. Coarse communities at large Qmin already carry substantial signal, and adding
medium- and fine-grained communities reveals additional useful structure. As Qmin decreases
and more refined communities are included, performance steadily improves until it saturates; see
Figure 5 (top left and bottom left). In this regime, GCN and ATLAS both outperform MLP.

• Low structural bias (e.g., Amazon-Ratings, Chameleon-Filtered, Flickr): Community structure
is only weakly label-aligned. Coarse communities capture most of this limited structural signal,
and adding finer communities yields at most small additional gains. As Qmin decreases and
more refined communities are included, ATLAS improves moderately over the MLP, while GCN
shows at best small or sometimes no gains over MLP; see Figure 5 (top center and bottom center).
Here, topology provides some extra information, but node features remain the primary driver of
performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

75

80

85

90
Cora

Best 88.10% @ 0.1

ATLAS (Ours)
GCN
MLP

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

42

44

46

48

50

52

54
Amazon-Ratings

Best 53.30% @ 0.6

ATLAS (Ours)
GCN
MLP

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

45

50

55

60

65

70
Roman-Empire

Best 66.22% @ 1.0

ATLAS (Ours)
GCN
MLP

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

R
O

C
-A

U
C

 (
%

)

72

74

76

78

80

82

Tolokers

Best 81.69% @ 0.4

ATLAS (Ours)
GCN
MLP

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

A
c

c
u

ra
c

y
 (

%
)

34

36

38

40

42
Chameleon-Filtered

Best 40.95% @ 0.3

ATLAS (Ours)
GCN
MLP

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

A
c

c
u

ra
c

y
 (

%
)

28

30

32

34

36

38

Actor

Best 38.07% @ 1.0

ATLAS (Ours)
GCN
MLP

Min Modularity (Q
min

)

High structural bias Low structural bias Negative structural bias

Figure 5: Effect of cumulatively adding community-derived features as the minimum modularity
threshold Qmin is lowered, for high structural bias graphs (left), low structural bias graphs (middle),
and negative structural bias graphs (right).

Resolution γ

0 50 100 150 200 250 300

M
e

tr
ic

 V
a

lu
e

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Cora: NMI, I(L;C), H(L)

NMI
I(L;C)
H(L)

Resolution γ

0 50 100 150 200 250 300

M
e

tr
ic

 V
a

lu
e

2

3

4

5

6

7

8

9
Cora: H(C), H(L)+H(C)

H(C)
H(L)+H(C)

(a) Cora

Resolution γ

0 10 20 30 40 50 60 70

M
e
tr

ic
 V

a
lu

e

0

0.1

0.2

0.3

0.4

0.5

0.6
Tolokers: NMI, I(L;C), H(L)

NMI
I(L;C)
H(L)

Resolution γ

0 10 20 30 40 50 60 70

M
e
tr

ic
 V

a
lu

e

1

2

3

4

5

6

7

8

9
Tolokers: H(C), H(L)+H(C)

H(C)
H(L)+H(C)

(b) Tolokers

Resolution γ

0 500 1000 1500 2000 2500

M
e
tr

ic
 V

a
lu

e

0

0.5

1

1.5
Amazon-Ratings: NMI, I(L;C), H(L)

NMI
I(L;C)
H(L)

Resolution γ

0 500 1000 1500 2000 2500

M
e
tr

ic
 V

a
lu

e

4

5

6

7

8

9

10

11
Amazon-Ratings: H(C), H(L)+H(C)

H(C)
H(L)+H(C)

(c) Amazon-Ratings

Resolution γ

0 5 10 15 20 25 30

M
e
tr

ic
 V

a
lu

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Chameleon-filtered: NMI, I(L;C), H(L)

NMI
I(L;C)
H(L)

Resolution γ

0 5 10 15 20 25 30

M
e
tr

ic
 V

a
lu

e

1

2

3

4

5

6

7
Chameleon-filtered: H(C), H(L)+H(C)

H(C)
H(L)+H(C)

(d) Chameleon-Filtered

Resolution γ

0 50 100 150 200 250 300

M
e

tr
ic

 V
a

lu
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Actor: NMI, I(L;C), H(L)

NMI
I(L;C)
H(L)

Resolution γ

0 50 100 150 200 250 300

M
e

tr
ic

 V
a

lu
e

1

2

3

4

5

6

7

8

9

10
Actor: H(C), H(L)+H(C)

H(C)
H(L)+H(C)

(e) Actor

Resolution γ

0 1000 2000 3000 4000 5000 6000

M
e
tr

ic
 V

a
lu

e

0

0.5

1

1.5

2

2.5

3
Roman-Empire: NMI, I(L;C), H(L)

NMI
I(L;C)
H(L)

Resolution γ

0 1000 2000 3000 4000 5000 6000

M
e
tr

ic
 V

a
lu

e

4

5

6

7

8

9

10

11

12
Roman-Empire: H(C), H(L)+H(C)

H(C)
H(L)+H(C)

(f) Roman-Empire

Figure 6: NMI, mutual information, and entropy dynamics across resolutions. high structural bias
datasets (Cora and Tolokers, left); low structural bias datasets (Amazon and Chameleon-Filtered,
middle); negative structural bias datasets (Actor and Roman-Empire, right).

• Negative structural bias (e.g., Actor, Squirrel-Filtered, Roman-Empire): Community structure is
misaligned with labels, and finer communities introduce noisy or misleading locality, so refinement
hurts. As Qmin is lowered and more fine-grained communities are added, performance deteriorates;
see Figure 5 (top right and bottom right). In this regime, GCN typically underperforms the MLP
baseline.

Example (Cora). For Cora (Fig. 5 top left; Table 7), each choice of Qmin selects a subset of
resolution parameters: we include community features from all resolutions whose modularity satisfies
Q(γ)≥Qmin. When Qmin ∈{1.0, 0.9} no resolution meets the threshold, so ATLAS collapses to
the feature-only MLP at 76.61%, below the GCN curve. At Qmin=0.8, two resolutions are added
and accuracy rises to 79.93%; at 0.7 a medium-resolution setting increases it to 83.66%; and at 0.6
two finer resolutions push it to 86.50%. As Qmin is lowered further and more resolutions are added,
the ATLAS curve eventually overtakes GCN, reaching its peak of 88.10% at Qmin = 0.1, where
node features are augmented with a balanced mix of coarse, medium, and fine community features.
Reducing Qmin to 0.0 adds the most fragmented resolution and causes a slight drop, indicating
diminishing returns from very fine community structure, which effectively acts as noise.

Figure 6 illustrates the refinement behavior predicted by our NMI theory. As resolution γ increases,
communities are refined and, as Lemmas 1–2 state, both I(L;C) and H(C) grow monotonically
across all datasets. In contrast, Theorem 1 explains why NMI behaves differently across structural-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Avg. modularity gap

0 0.05 0.1 0.15
78

80

82

84

86

88

90

92

94

96

(a) High structural bias datasets

Cora
Tolokers
Reddit2

Avg. modularity gap

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

A
c
c
u
ra

c
y
 (

%
)

30

40

50

60

70

80

90

(b) Low structural bias datasets

PubMed
Amazon
Chameleon
Flickr

Avg. modularity gap

0 0.05 0.1 0.15

R
e
s
o
lu

ti
o
n
 c

o
u
n
t

0

5

10

15

20

25

30

35

(c) Cora: modularity gap vs resolution count

Figure 7: (a–b) Accuracy/ROC–AUC vs. average modularity gap on high- and low-structural-bias
datasets. (c) Resolution count vs. modularity gap for Cora.

bias regimes: on high structural-bias graphs it forms a clear interior peak, on low structural-bias
graphs it stays low and fairly flat because gains in I(L;C) do not outpace the entropy increase, and
on negative structural-bias graphs it rises slowly from near zero and saturates at a modest level.

6 ABLATION STUDY

Effect of Modularity Gap and Resolution on Performance. The behavior of refinement lev-
els––how many Louvain resolution values are selected and how useful they are––is strongly shaped
by the modularity gap. A small average modularity gap keeps many closely spaced resolutions, while
a large gap leaves only a few widely separated ones. This creates a trade-off between having many
redundant community partitions and having too few, overly coarse partitions. On high structural-bias
graphs (Figure 7(a)), accuracy is lowest at the extremes of this trade-off. When the average gap is very
small, ATLAS retains many nearly redundant partitions and the additional community features mostly
inject noise, depressing accuracy.As the gap moves into a moderate region (gap ≈ 0.06−0.09), the
selected resolutions capture community structure at several distinct granularities and align better with
the labels, so mutual information strengthens and accuracy improves. If the gap becomes too large
(gap ≳ 0.10), only a handful of coarse resolutions remain; the community structure is too crude to
fully exploit the available signal and performance falls again.

For low structural-bias graphs (Figure 7(b)), the accuracy curves are much flatter. In this setting,
the community structure carries little information about the labels, so changing the modularity gap
mostly just changes how many community resolutions are kept, without making them much more
predictive. As a result, adding community features yields only modest gains over a feature-only MLP,
and accuracy is only weakly affected by the choice of gap.

Figure 7(c) illustrates this behavior on Cora. For small gaps, many closely spaced resolutions are
selected and their communities are highly overlapping, so the extra features are largely redundant and
behave as noise, matching the low-accuracy regime in Figure 7(a). For large gaps, only a few coarse
resolutions remain and the community information is too crude to capture label-relevant structure.
The best performance occurs at intermediate gaps, where a small set of resolutions captures different
levels of granularity, providing informative structural signal without redundancy.

7 CONCLUSION AND FUTURE WORK

We presented ATLAS, a community-augmented learning framework that enriches node features with
multi-resolution Louvain embeddings and trains a compact MLP classifier. An adaptive resolution
search, governed by Qmin and ∆Q, selects a small set of informative resolutions, balancing coverage
with cost. Across Q1 (homophily-regime benchmarks) and Q2 (large graphs), ATLAS attains
competitive or superior accuracy relative to homophilic GNNs and heterophily-oriented models,
while exhibiting fast, stable convergence and a favorable training footprint once preprocessing is
complete.

In the future we aim to reduce preprocessing by improving resolution selection. A complemen-
tary direction is community-guided graph rewiring: using the discovered communities to propose
sparse, label-aware edge edits that amplify useful intra-/inter-community signals and further improve
accuracy.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ethics Statement. We confirm that we have adhered to the ICLR Code of Ethics.

Use of Generative AI. We have used generative AI to polish the writing, and to check that the proofs
of the theorem and lemma are correct and concise.

Reproducibility Statement. Our source code is available at https://github.com/
atlaspaper16/ATLAS. This Github repository is created through an anonymous account, and
thus does not violate the double-blind policy.

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. MixHop: Higher-order graph convolu-
tional architectures via sparsified neighborhood mixing. In Proceedings of the 36th Interna-
tional Conference on Machine Learning (ICML), volume 97 of Proceedings of Machine Learn-
ing Research, pp. 21–29. PMLR, 2019. URL https://proceedings.mlr.press/v97/
abu-el-haija19a.html.

Muhammed Fatih Balın and Ümit V. Çatalyürek. Layer-neighbor sampling — defusing neighborhood
explosion in gnns. In Advances in Neural Information Processing Systems (NeurIPS), 2023. URL
https://arxiv.org/abs/2210.13339.

Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, (10):
P10008, 2008. doi: 10.1088/1742-5468/2008/10/P10008.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph
convolutional networks. In AAAI Conference on Artificial Intelligence (AAAI), pp. 3950–3957,
2021. URL https://ojs.aaai.org/index.php/AAAI/article/view/16514.

Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien (eds.). Semi-Supervised Learning. MIT
Press, 2006.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. In Proceedings of the 35th International Conference on Machine Learning
(ICML), volume 80 of Proceedings of Machine Learning Research, pp. 942–950, 2018a. URL
https://proceedings.mlr.press/v80/chen18p.html.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via
importance sampling. In International Conference on Learning Representations (ICLR), 2018b.
URL https://openreview.net/forum?id=rytstxWAW.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD), pp.
257–266, 2019. doi: 10.1145/3292500.3330925. URL https://arxiv.org/abs/1905.
07953.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In International Conference on Learning Representations (ICLR), 2021.
URL https://openreview.net/forum?id=n6jl7fLxrP.

Eli Chien, Xiao Pan, Jie Peng, and Olgica Milenkovic. Node feature reuse and self-ensembling for
fast graph neural networks. In Proceedings of the International Conference on Machine Learning,
2022.

Lun Du, Xiaozhou Shi, Qiang Fu, Xiaojun Ma, Hengyu Liu, Shi Han, and Dongmei Zhang. Gbk-
gnn: Gated bi-kernel graph neural networks for modeling both homophily and heterophily. In
Proceedings of the ACM Web Conference (WWW ’22), pp. 1550–1558. ACM, 2022. doi: 10.1145/
3485447.3512201. URL https://doi.org/10.1145/3485447.3512201.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In KDD,
2016. doi: 10.1145/2939672.2939754. URL https://cs.stanford.edu/~jure/pubs/
node2vec-kdd16.pdf.

11

https://github.com/atlaspaper16/ATLAS
https://github.com/atlaspaper16/ATLAS
https://proceedings.mlr.press/v97/abu-el-haija19a.html
https://proceedings.mlr.press/v97/abu-el-haija19a.html
https://arxiv.org/abs/2210.13339
https://ojs.aaai.org/index.php/AAAI/article/view/16514
https://proceedings.mlr.press/v80/chen18p.html
https://openreview.net/forum?id=rytstxWAW
https://arxiv.org/abs/1905.07953
https://arxiv.org/abs/1905.07953
https://openreview.net/forum?id=n6jl7fLxrP
https://doi.org/10.1145/3485447.3512201
https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf
https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In Advances in Neural Information Processing Sys-
tems (NeurIPS), volume 30, 2017. URL https://papers.nips.cc/paper/
6703-inductive-representation-learning-on-large-graphs.

Xinshi He, Kan Chen, Lu Sheng, Jingchang Xu, Qibin He, Jiashi Cheng, and Ping Luo. Bernnet:
Learning arbitrary graph spectral filters via bernstein approximation. In Advances in Neural
Information Processing Systems, 2021.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowei Liu,
Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets for ma-
chine learning on graphs. In Advances in Neural Information Processing Systems
(NeurIPS), 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html.

Hussain Hussain, Tomislav Duricic, Elisabeth Lex, Denis Helic, and Roman Kern. The interplay
between communities and homophily in semi-supervised classification using graph neural networks.
Applied Network Science, 6(1):80, 2021.

Bogumił Kamiński, Paweł Prałat, François Théberge, and Sebastian Zając. Predicting properties
of nodes via community-aware features. Social Network Analysis and Mining, 14(117), 2024.
doi: 10.1007/s13278-024-01281-2. URL https://link.springer.com/article/10.
1007/s13278-024-01281-2.

Bhaskar Khemani. A review of graph neural networks: concepts, architectures, and ap-
plications. Journal of Big Data, 2024. doi: 10.1186/s40537-023-00876-4. URL
https://journalofbigdata.springeropen.com/articles/10.1186/
s40537-023-00876-4.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=SJU4ayYgl.

Xiaorui Li, Biao Wang, Yi Jiang, Wenjie Zhang, Lu Qin, and Ying He. Finding global homophily
in graph neural networks when meeting heterophily. In International Conference on Machine
Learning (ICML), volume 162 of Proceedings of Machine Learning Research, pp. 13242–13256,
2022. URL https://proceedings.mlr.press/v162/li22ad.html.

Ningyi Liao, Dingheng Mo, Siqiang Luo, Xiang Li, and Pengcheng Yin. Scara: Scalable graph
neural networks with feature-oriented optimization. In Proceedings of the VLDB Endowment
(PVLDB), volume 15, pp. 3240–3248, 2022. doi: 10.14778/3551793.3551866. URL https:
//arxiv.org/abs/2207.09179.

Ningyi Liao, Siqiang Luo, Xiang Li, and Jieming Shi. LD2: scalable heterophilous graph
neural network with decoupled embeddings. In Advances in Neural Information Process-
ing Systems 36 (NeurIPS 2023), pp. 10197–10209, New Orleans, LA, USA, 2023. Curran
Associates, Inc. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/206191b9b7349e2743d98d855dec9e58-Paper-Conference.pdf.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser-Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. In Advances in Neural Information Processing Systems (NeurIPS), volume 34, pp.
30471–30483, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
ae816a80e4c1c56caa2eb4e1819cbb2f-Abstract.html.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. In Advances in
Neural Information Processing Systems (NeurIPS), 2022. URL https://arxiv.org/abs/
2210.07606.

Sitao Luan, Chenqing Hua, Qincheng Lu, Mingxuan Xu, et al. Re-evaluating the advancements of
heterophilic graph learning. arXiv preprint, 2024a.

12

https://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs
https://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://link.springer.com/article/10.1007/s13278-024-01281-2
https://link.springer.com/article/10.1007/s13278-024-01281-2
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00876-4
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00876-4
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://proceedings.mlr.press/v162/li22ad.html
https://arxiv.org/abs/2207.09179
https://arxiv.org/abs/2207.09179
https://proceedings.neurips.cc/paper_files/paper/2023/file/206191b9b7349e2743d98d855dec9e58-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/206191b9b7349e2743d98d855dec9e58-Paper-Conference.pdf
https://proceedings.neurips.cc/paper/2021/hash/ae816a80e4c1c56caa2eb4e1819cbb2f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ae816a80e4c1c56caa2eb4e1819cbb2f-Abstract.html
https://arxiv.org/abs/2210.07606
https://arxiv.org/abs/2210.07606

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sitao Luan, Chenqing Hua, Mingxuan Xu, Qincheng Lu, Jiaqi Zhu, Xiao-Wen Chang, and Doina
Precup. The heterophilic graph learning handbook: Benchmarks, models, theory, applications, and
challenges. arXiv preprint, 2024b.

Sunil Kumar Maurya, Tsuyoshi Murata, and Leman Akoglu. Simplifying approach to node clas-
sification in graph neural networks. Pattern Recognition Letters, 155:116–123, 2022. doi:
10.1016/j.patrec.2021.11.018. Original preprint: arXiv:2105.07634 (FSGNN).

M. E. J. Newman. Modularity and community structure in networks. Proceedings of the National
Academy of Sciences, 103(23):8577–8582, 2006. doi: 10.1073/pnas.0601602103.

Hongbin Pei, Bingzhe Wei, Jie Chen, Yiming Lei, and Weinan Zhang. Geom-gcn: Geometric graph
convolutional networks. In International Conference on Learning Representations (ICLR), 2020.
URL https://openreview.net/forum?id=S1e2agrFvS.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In KDD, 2014. doi: 10.1145/2623330.2623732.

Oleg Platonov, Denis Kuznedelev, Artem Babenko, and Liudmila Prokhorenkova. Characterizing
graph datasets for node classification: Homophily-heterophily dichotomy and beyond. arXiv
preprint arXiv:2209.06177, 2023a.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A
critical look at the evaluation of GNNs under heterophily: Are we really making progress? arXiv
preprint arXiv:2302.11640, 2023b. URL https://arxiv.org/abs/2302.11640.

Emanuele Rossi, Benjamin P. Chamberlain, Fabrizio Frasca, Roberto Barbero, Davide Eynard,
Michael Bronstein, and Pietro Liò. Sign: Scalable inception graph neural networks. In Advances
in Neural Information Processing Systems, 2020.

Celia Rubio-Madrigal, Adarsh Jamadandi, and Rebekka Burkholz. Gnns getting comfy: Community
and feature similarity guided rewiring. In International Conference on Learning Representations
(ICLR), 2025. URL https://arxiv.org/abs/2502.04891.

Prithviraj Sen, Gal Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI Magazine, 29(3):93–106, 2008. URL https:
//ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157.

Fan-Yun Sun, Meng Qu, Jordan Hoffmann, Chin-Wei Huang, and Jian Tang.
vgraph: A generative model for joint community detection and node representa-
tion learning. In NeurIPS, 2019. URL https://papers.nips.cc/paper/
8342-vgraph-a-generative-model-for-joint-community-detection-and-node-representation-learning.
pdf.

Ke Sun, Zimo Zhou, Zhiqiang Zhang, Bin Cui, Yang Yang, and Liang He. Scalable and adaptive
graph neural networks with self-label-enhanced training. arXiv preprint arXiv:2104.09376, 2021.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. LINE: Large-scale
information network embedding. In WWW, 2015. doi: 10.1145/2736277.2741093.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations
(ICLR), 2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks? In International
Conference on Machine Learning (ICML), volume 162 of Proceedings of Machine Learning Re-
search, pp. 23341–23362, 2022. URL https://arxiv.org/abs/2205.11172. Introduces
JacobiConv.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Weinberger.
Simplifying graph convolutional networks. In Proceedings of the International Conference on
Machine Learning, 2019a.

13

https://openreview.net/forum?id=S1e2agrFvS
https://arxiv.org/abs/2302.11640
https://arxiv.org/abs/2502.04891
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157
https://papers.nips.cc/paper/8342-vgraph-a-generative-model-for-joint-community-detection-and-node-representation-learning.pdf
https://papers.nips.cc/paper/8342-vgraph-a-generative-model-for-joint-community-detection-and-node-representation-learning.pdf
https://papers.nips.cc/paper/8342-vgraph-a-generative-model-for-joint-community-detection-and-node-representation-learning.pdf
https://openreview.net/forum?id=rJXMpikCZ
https://arxiv.org/abs/2205.11172

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. arXiv:1901.00596, 2019b. URL https:
//arxiv.org/abs/1901.00596.

Chenxiao Yang, Qitian Wu, David Wipf, Ruoyu Sun, and Junchi Yan. How graph neural networks
learn: Lessons from training dynamics. In Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp. 56594–56623.
PMLR, 2024. URL https://proceedings.mlr.press/v235/yang24ae.html.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna.
Graphsaint: Graph sampling based inductive learning method. In International Conference
on Learning Representations (ICLR), 2020. URL https://openreview.net/forum?id=
BJe8pkHFwS.

Hongkuan Zeng, Hongkuan Zhang, Jian Shi, Jiarong Ren, Yulin Ge, Shuai Lin, and Dejing Dou. A
comprehensive study on large-scale graph training: Benchmarking and rethinking. In Advances
in Neural Information Processing Systems, 2022. URL https://arxiv.org/abs/2210.
07494.

Xin Zheng, Yi Wang, Yixin Liu, Ming Li, Miao Zhang, Di Jin, Philip S. Yu, and Shirui Pan. Graph
neural networks for graphs with heterophily: A survey. arXiv preprint arXiv:2202.07082, 2022.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph neural
networks: A review of methods and applications. AI Open, 1:57–81, 2021. doi: 10.1016/j.aiopen.
2021.01.001.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai
Koutra. Beyond homophily in graph neural networks: Current limitations and ef-
fective designs. In Advances in Neural Information Processing Systems (NeurIPS),
2020. URL https://proceedings.neurips.cc/paper/2020/hash/
58ae23d878a47004366189884c2f8440-Abstract.html.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent
importance sampling for training deep and large graph convolutional networks. In Advances
in Neural Information Processing Systems, volume 32, pp. 1125–1136, 2019. URL https:
//dl.acm.org/doi/10.5555/3454287.3455296.

8 APPENDIX

Compute environment. All experiments were run on a server with 1× NVIDIA A40 (45 GiB)
GPU, 32 vCPUs, 2× Intel Xeon Silver 4309Y @ 2.80 GHz, and 503 GiB RAM.
Software stack: Python 3.10.18; PyTorch 2.4.0+cu124 (CUDA 12.4); PyTorch Geometric 2.6.1.

8.1 DEFINITIONS AND TERMINOLOGY FOR COMMUNITY DETECTION

This subsection defines the modularity-based community detection terms that underpin our multi-
resolution refinement.

Modularity. Given a partition C = {C1, . . . , CK} with node assignments ci ∈ {1, . . . ,K},
modularity measures how much denser the intra-community connections are than expected under a
degree-preserving null model:

Q =
1

2m

∑
i,j

(
Aij −

kikj
2m

)
δ(ci, cj), (8)

where Aij is the adjacency matrix, ki is the degree of node i, m = |E| is the number of edges, and
δ(ci, cj) = 1 if ci = cj (else 0). Higher Q indicates stronger community structure.

14

https://arxiv.org/abs/1901.00596
https://arxiv.org/abs/1901.00596
https://proceedings.mlr.press/v235/yang24ae.html
https://openreview.net/forum?id=BJe8pkHFwS
https://openreview.net/forum?id=BJe8pkHFwS
https://arxiv.org/abs/2210.07494
https://arxiv.org/abs/2210.07494
https://proceedings.neurips.cc/paper/2020/hash/58ae23d878a47004366189884c2f8440-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/58ae23d878a47004366189884c2f8440-Abstract.html
https://dl.acm.org/doi/10.5555/3454287.3455296
https://dl.acm.org/doi/10.5555/3454287.3455296

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Resolution parameter. Louvain introduces a resolution γ > 0 to control granularity by reweighting
the null-model term:

Q(γ) =
1

2m

∑
i,j

(
Aij − γ

kikj
2m

)
δ(ci, cj). (9)

Smaller γ favors coarser partitions, while larger γ typically yields finer (more, smaller) communities,
producing a refinement hierarchy across γ. We denote the resulting partition and modularity by C(γ)
and Q(γ), with assignment vector c(γ).

Modularity gap. For two consecutive tested resolutions γ1 < γ2, the modularity gap quantifies the
change in community quality:

∆Q(γ1, γ2) =
∣∣Q(γ2) −Q(γ1)

∣∣. (10)

Large gaps indicate rapid structural changes between scales and motivate inserting intermediate
resolutions; small gaps suggest the refinement has stabilized.

8.2 THEORETICAL PROOFS

Lemma. 1. Let L be labels and C a community partition. Let C ′ be a refinement of C, i.e., C ′ ⪯ C.
Then I(L;C ′) ≥ I(L;C)

Proof. Let total number of elements be n. Then based on the definitions of I(P,Q) in Section 2;

I(L;C ′) =
1

n

∑
l

∑
c′

nl,c′ log

(
nnl,c′

nl nc′

)
, I(L;C) =

1

n

∑
l

∑
c

nl,c log

(
nnl,c

nl nc

)
,

where nl =
∑

c′ nl,c′ .

I(L;C ′)− I(L;C)

=
1

n

∑
l

∑
c′

nl,c′ log

(
nnl,c′

nl nc′

)
− 1

n

∑
l

∑
c

nl,c log

(
nnl,c

nl nc

)

=
1

n

∑
c

∑
c′⊆c

∑
l

[
nl,c′ log

(
nnl,c′

nl nc′

)
− nl,c′ log

(
nnl,c

nl nc

)]

=
1

n

∑
c

∑
c′⊆c

∑
l

nl,c′ log

(
nl,c′ nc

nl,c nc′

)
.

Since every c′ ⊆ ofc, therefore nl,c′

nc′
≥ nl,c

nc
. Thus the value in the log is positive, and I(L;C ′) ≥

I(L;C)

Lemma. 2. Let C a community partition. Let C ′ be a refinement of C, i.e., C ′ ⪯ C. Then
H(C ′) ≥ H(C)

Proof. Let total size n. Based on the definition in Section 2

H(C) = −
∑
c

nc

n
log

nc

n
, H(C ′) = −

∑
c′

nc′

n
log

nc′

n
.

By grouping the c′ under their parent c:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

H(C ′)−H(C) = −
∑
c

∑
c′⊆c

nc′

n
log

nc′

n
+

∑
c

nc

n
log

nc

n

=
1

n

∑
c

[
−

∑
c′⊆c

nc′ lognc′ + nc log nc

]
.

Since f(x) = −x log x is a concave function and c′ ⊆ c, therefore,∑
c′⊆c

−nc′

n
log

nc′

n
≥ −nc

n
log

nc

n
.

Thus, H(C ′) ≥ H(C).

Theorem 1. Let L be labels; C a community partition. Let C ′ be a refinement of C, i.e., C ′ ⪯ C.
Then NMI(C ′;L) > NMI(C;L) if and only if ∆I

∆H > NMI(C;L)
2 ; where ∆I = I(C ′;L)−I(C;L)

and ∆H = H(C ′;L)−H(C;L)

Proof.

NMI(C;L) =
2 I(C;L)

H(C) +H(L)
.

I := I(C;L), I ′ := I(C ′;L), H := H(C), H ′ := H(C ′), HL := H(L).

Also

∆I := I ′ − I, ∆H := H ′ −H.

Based on Lemma 1 and 2, ∆I ≥ 0 and ∆H ≥ 0. We do not consider edge case where ∆H = 0. To
show

NMI(C ′;L) > NMI(C;L) ⇐⇒ ∆I

∆H
>

NMI(C;L)

2
.

NMI(C ′;L) > NMI(C;L) ⇐⇒ 2I ′

H ′ +HL
>

2I

H +HL
.

I ′

H ′ +HL
>

I

H +HL
⇐⇒ I ′(H +HL)− I(H ′ +HL) > 0.

Expand using I ′ = I +∆I and H ′ = H +∆H:

(I +∆I)(H +HL)− I(H +∆H +HL) > 0.

Simplify terms (the I(H +HL) cancel):

∆I (H +HL)− I∆H > 0.

Thus;

∆I (H +HL) > I∆H ⇐⇒ ∆I

∆H
>

I

H +HL
.

By definition NMI(C;L) =
2I

H +HL
, so

I

H +HL
=

NMI(C;L)

2
. Therefore

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

NMI(C ′;L) > NMI(C;L) ⇐⇒ ∆I

∆H
>

NMI(C;L)

2

8.3 NMI ANALYSIS FOR DATASETS

Resolution γ

0 50 100 150 200 250 300

M
e
tr

ic
 V

a
lu

e

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Cora: NMI, I(L;C), H(L)

NMI
I(L;C)
H(L)

Resolution γ

0 50 100 150 200 250 300

M
e
tr

ic
 V

a
lu

e

2

3

4

5

6

7

8

9
Cora: H(C), H(L)+H(C)

H(C)
H(L)+H(C)

(a) Cora

Resolution γ

0 200 400 600 800 1000 1200

M
e

tr
ic

 V
a

lu
e

0

0.5

1

1.5

2

2.5

3

3.5
Reddit: NMI, I(L;C), H(L)

NMI
I(L;C)
H(L)

Resolution γ

0 200 400 600 800 1000 1200

M
e

tr
ic

 V
a

lu
e

2

4

6

8

10

12

14

16
Reddit: H(C), H(L)+H(C)

H(C)
H(L)+H(C)

(b) Reddit

0 0.5 1 1.5 2 2.5 3

Resolution γ ×104

M
e

tr
ic

 V
a

lu
e

0

0.5

1

1.5

2

2.5

3
OGBN-Products: NMI, I(L;C), H(L)

NMI
I(L;C)
H(L)

0 0.5 1 1.5 2 2.5 3

Resolution γ ×104

M
e

tr
ic

 V
a

lu
e

2

4

6

8

10

12

14

16
OGBN-Products: H(C), H(L)+H(C)

H(C)
H(L)+H(C)

(c) OGBN-Products

Resolution γ

0 10 20 30 40 50 60 70

M
e
tr

ic
 V

a
lu

e

0

0.1

0.2

0.3

0.4

0.5

0.6
Tolokers: NMI, I(L;C), H(L)

NMI
I(L;C)
H(L)

Resolution γ

0 10 20 30 40 50 60 70

M
e
tr

ic
 V

a
lu

e

1

2

3

4

5

6

7

8

9
Tolokers: H(C), H(L)+H(C)

H(C)
H(L)+H(C)

(d) Tolokers

Figure 8: High structural bias datasets: (a) Cora, (b) Reddit, (c) OGBN-Products, and (d) Tolokers.
Each subfigure reports how NMI , I(L;C), H(L), H(C), and H(L)+H(C) vary as the resolution
parameter γ varies and yields community partitions of different granularity.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Resolution γ

0 500 1000 1500 2000 2500

M
e

tr
ic

 V
a

lu
e

0

0.5

1

1.5
Amazon-Ratings: NMI, I(L;C), H(L)

NMI
I(L;C)
H(L)

Resolution γ

0 500 1000 1500 2000 2500

M
e

tr
ic

 V
a

lu
e

4

5

6

7

8

9

10

11
Amazon-Ratings: H(C), H(L)+H(C)

H(C)
H(L)+H(C)

(a) Amazon-Ratings

Resolution γ

0 5 10 15 20 25 30

M
e
tr

ic
 V

a
lu

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Chameleon-filtered: NMI, I(L;C), H(L)

NMI
I(L;C)
H(L)

Resolution γ

0 5 10 15 20 25 30

M
e
tr

ic
 V

a
lu

e

1

2

3

4

5

6

7
Chameleon-filtered: H(C), H(L)+H(C)

H(C)
H(L)+H(C)

(b) Chameleon-filtered

Resolution γ

0 500 1000 1500 2000

M
e

tr
ic

 V
a

lu
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Flickr: NMI, I(L;C), H(L)

NMI
I(L;C)
H(L)

Resolution γ

0 500 1000 1500 2000

M
e

tr
ic

 V
a

lu
e

0

2

4

6

8

10

12
Flickr: H(C), H(L)+H(C)

H(C)
H(L)+H(C)

(c) Flickr

Figure 9: Low structural bias datasets: (a) Amazon-Ratings, (b) Chameleon-filtered, and (c) Flickr.
Each subfigure illustrates how NMI , I(L;C), H(L), H(C), and H(L)+H(C) evolve as the
resolution parameter γ varies and yields community partitions of different granularity.

Resolution γ

0 50 100 150 200 250 300

M
e
tr

ic
 V

a
lu

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Actor: NMI, I(L;C), H(L)

NMI
I(L;C)
H(L)

Resolution γ

0 50 100 150 200 250 300

M
e
tr

ic
 V

a
lu

e

1

2

3

4

5

6

7

8

9

10
Actor: H(C), H(L)+H(C)

H(C)
H(L)+H(C)

(a) Actor

Resolution γ

0 5 10 15 20 25 30 35 40

M
e
tr

ic
 V

a
lu

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Squirrel-filtered: NMI, I(L;C), H(L)

NMI
I(L;C)
H(L)

Resolution γ

0 5 10 15 20 25 30 35 40

M
e
tr

ic
 V

a
lu

e

1

2

3

4

5

6

7

8

9

10
Squirrel-filtered: H(C), H(L)+H(C)

H(C)
H(L)+H(C)

(b) Squirrel-filtered

Resolution γ

0 1000 2000 3000 4000 5000 6000

M
e

tr
ic

 V
a

lu
e

0

0.5

1

1.5

2

2.5

3
Roman-Empire: NMI, I(L;C), H(L)

NMI
I(L;C)
H(L)

Resolution γ

0 1000 2000 3000 4000 5000 6000

M
e

tr
ic

 V
a

lu
e

4

5

6

7

8

9

10

11

12
Roman-Empire: H(C), H(L)+H(C)

H(C)
H(L)+H(C)

(c) Roman-Empire

Figure 10: Negative structural bias datasets: (a) Actor, (b) Squirrel-filtered, and (c) Roman-Empire.
Each subfigure reports how NMI , I(L;C), H(L), H(C), and H(L)+H(C) vary as the resolution
parameter γ varies and yields community partitions of different granularity.

8.4 ALGORITHMS

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 1 Adaptive Resolution Search for Louvain

Require: graph G, minimum modularity Qmin, maximum modularity gap ∆max, gap_range=
[a, b]

Ensure: resolutions, community_list
1: C ← ∅; Q← ∅
2: for r ∈ {0.5, 1.0} do ▷ initial resolutions
3: (C[r], Q[r])← LOUVAIN(G, r)

4: while true do
5: L← SORTEDKEYS(Q); rmax ← L[−1]; τ ← Q[rmax]
6: if τ ≤ Qmin then
7: break
8: new_r← None
9: for consecutive (r1, r2) ∈ L do

10: if |Q[r2]−Q[r1]| > ∆max then
11: new_r← (r1 + r2)/2; break ▷ interpolate
12: if new_r= None then ▷ extrapolate
13: sample δ ∼ U [a, b]; Q⋆ ← τ − δ
14: s← ESTIMATESLOPE(Q vs r);

15: new_r← rmax +
Q⋆ − τ

s
16: (C[new_r], Q[new_r])← LOUVAIN(G, new_r)
17: resolutions← { r ∈ SORTEDKEYS(Q) : Q[r] ≥ Qmin }
18: community_list← [C[r] for r ∈ resolutions]
19: return resolutions, community_list

Algorithm 2 Community-Augmented Feature Projection for Node Classification

Require: Graph G = (V,E), node features X ∈ Rn×D, resolution set Γ = {γ1, . . . , γT }, projection
dimension dc

Ensure: Predicted label distribution Ŷ ∈ Rn×C

1: Initialize empty list of embeddings Eemb ← []
2: for γ ∈ Γ do
3: Compute community assignment c(γ) ∈ Nn

4: One-hot encode c(γ): H(γ) ∈ {0, 1}n×kγ

5: Project via trainable weights: E(γ) ← H(γ)W(γ), where W(γ) ∈ Rkγ×dc

6: Append E(γ) to Eemb

7: Concatenate all embeddings: E← Concat(Eemb) ∈ Rn×(T ·dc)

8: Concatenate with node features: Z←
[
X ∥E

]
∈ Rn×(D+T ·dc)

9: Predict logits with MLP: Y ← fθ(Z) ∈ Rn×C

10: Apply softmax: Ŷ ← softmax(Y)

11: return Ŷ

8.5 COMPUTATION TIME ON LARGE GRAPHS

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 5: Preprocessing (community detection), training, and inference times.

Dataset Preprocessing Time Per-epoch Train Time Inference Time

Reddit 84.904 ± 2.764 0.143 ± 0.002 0.150 ± 0.005
Flickr 6.800 ± 1.741 0.241 ± 0.005 0.056 ± 0.012
Yelp 15.842 ± 0.007 2.670 ± 0.007 1.613 ± 0.016
AmazonProducts 72.270 ± 1.409 6.073 ± 0.039 3.056 ± 0.019

8.6 HYPERPARAMETER DETAILS

Dataset Qmin ∆Q Epochs Batch Hidden Layers Dropout LR

Cora 0.1 0.2 200 128 256 3 0.5 1e-4
Pubmed 0.7 0.1 300 8000 512 3 0.7 1e-4
Tolokers 0.3 0.1 2000 512 512 2 0.5 1e-4
Squirrel-filtered 0.61 0.05 60 512 512 3 0.5 5e-3
Chameleon-filtered 0.7 0.1 30 256 512 1 0.5 1e-3
Amazon-ratings 0.6 0.1 1500 512 512 3 0.5 1e-4
Actor 1.0 0.1 200 128 512 3 0.8 1e-4
Roman-empire 1.0 0.1 500 512 512 3 0.5 1e-4

Flickr 0.1 0.01 20 1024 256 2 0.7 1e-3
Reddit 0.3 0.3 1000 8000 512 3 0.5 1e-4
Yelp 1.0 0.1 300 32000 2048 5 0.5 5e-5
AmazonProducts 1.0 0.1 200 64000 2048 5 0.5 5e-5
ogbn-products 0.3 0.1 400 32000 512 3 0.5 1e-4

Table 6: Training hyperparameters by dataset. Qmin is the minimum modularity threshold and ∆Q is
the maximum modularity gap.

Note. For squirrel-filtered, we explicitly use the community resolution 0.1. For Tolokers,
we explicitly use the community resolution 0.5, 0.75, 1, 1.364. For Pubmed, we explicitly use the
community resolution 0.5, 1, 1.956.

8.7 CORA: ACCURACY VS. MINIMUM MODULARITY THRESHOLD

Table 7 summarizes how relaxing the minimum modularity threshold Qmin on Cora changes both the
community-derived features and the resulting accuracy. Each tuple (Q, Resolution, Communities)
corresponds to a Louvain run at resolution γ: Q is the modularity Q(γ), and Communities is the
number of communities kγ whose assignments c(γ) are one-hot encoded into H(γ) and projected to
a dense embedding E(γ) that is concatenated into the multi-resolution community feature matrix
(Algorithm 2). For a given Qmin, the row lists the cumulative set of tuples with Q ≥ Qmin: blue
tuples are newly activated at that threshold, while gray tuples persist from higher thresholds. When
Qmin ≥ 0.9, no tuples qualify and the model reduces to the base MLP with accuracy 76.61%.
As Qmin is lowered from 0.8 to 0.6, additional high-modularity, moderate-resolution community
embeddings are added, and accuracy increases up to 86.50%. Further decreasing Qmin admits
lower-modularity, finer resolutions with many more communities, leading to small fluctuations and a
peak accuracy of 88.10% at Qmin = 0.1, where a diverse mix of coarse-to-fine community features
is used. Pushing Qmin to 0.0 adds one very fine tuple (768 communities), which slightly degrades
performance to 86.32%, indicating that including too many extremely fine community features
eventually injects noise.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Cora: Cumulative (Q, Resolution, Communities) pairs included at each minimum modu-
larity threshold Qmin (listed in run order), with accuracy. Color coding: pairs colored in blue are
newly added at that Qmin; pairs in gray were added at earlier thresholds and are carried over.

Min Modularity
Qmin

Pairs
(Modularity, Resolution,Number of Communities) Accuracy

1.0 — 76.61
0.9 — 76.61
0.8 (0.8526, 0.500, 90), (0.8120, 1.000, 103) 79.93
0.7 (0.8526, 0.500, 90), (0.8120, 1.000, 103),

(0.7448, 2.606, 141)
83.66

0.6 (0.8526, 0.500, 90), (0.8120, 1.000, 103),
(0.7448, 2.606, 141), (0.6841, 5.483, 170),

(0.6006, 12.374, 298)

86.50

0.5 (0.8526, 0.500, 90), (0.8120, 1.000, 103),
(0.7448, 2.606, 141), (0.6841, 5.483, 170),
(0.6006, 12.374, 298), (0.5566, 20.068, 325)

84.55

0.4 (0.8526, 0.500, 90), (0.8120, 1.000, 103),
(0.7448, 2.606, 141), (0.6841, 5.483, 170),
(0.6006, 12.374, 298), (0.5566, 20.068, 325),
(0.4909, 32.860, 373), (0.4231, 48.392, 430)

86.15

0.3 (0.8526, 0.500, 90), (0.8120, 1.000, 103),
(0.7448, 2.606, 141), (0.6841, 5.483, 170),
(0.6006, 12.374, 298), (0.5566, 20.068, 325),
(0.4909, 32.860, 373), (0.3748, 63.924, 457),

(0.4231, 48.392, 430)

85.26

0.2 (0.8526, 0.500, 90), (0.8120, 1.000, 103),
(0.7448, 2.606, 141), (0.6841, 5.483, 170),
(0.6006, 12.374, 298), (0.5566, 20.068, 325),
(0.4909, 32.860, 373), (0.3748, 63.924, 457),
(0.4231, 48.392, 430), (0.2784, 95.726, 541)

82.59

0.1 (0.8526, 0.500, 90), (0.8120, 1.000, 103),
(0.7448, 2.606, 141), (0.6841, 5.483, 170),
(0.6006, 12.374, 298), (0.5566, 20.068, 325),
(0.4909, 32.860, 373), (0.3748, 63.924, 457),
(0.4231, 48.392, 430), (0.2784, 95.726, 541),

(0.1792, 136.430, 672)

88.10

0.0 (0.8526, 0.500, 90), (0.8120, 1.000, 103),
(0.7448, 2.606, 141), (0.6841, 5.483, 170),
(0.6006, 12.374, 298), (0.5566, 20.068, 325),
(0.4909, 32.860, 373), (0.3748, 63.924, 457),
(0.4231, 48.392, 430), (0.2784, 95.726, 541),
(0.1792, 136.430, 672), (0.0958, 175.819, 768)

86.32

8.8 MODELS FOR HOMOPHILIC GRAPHS

GCN. Applies a linear map followed by aggregation with the symmetrically normalized adjacency
(after adding self-loops), corresponding to a first-order spectral/Chebyshev approximation (Kipf &
Welling, 2017).

GAT. Learns attention coefficients over neighbors via masked self-attention and aggregates them
with a softmax-weighted sum, enabling data-dependent receptive fields (Veličković et al., 2018).

GraphSAGE. Performs permutation-invariant neighbor aggregation (e.g., mean, max-pooling,
LSTM) with fixed fan-out sampling per layer for scalable, inductive mini-batch training on large
graphs (Hamilton et al., 2017).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

8.9 MODELS FOR HETEROPHILIC GRAPHS

H2GCN. Separates ego and neighbor embeddings, aggregates higher-order neighborhoods, and
combines intermediate representations to improve robustness under heterophily (Zhu et al., 2020).

LinkX. Separately embeds node features and adjacency (structural) information with MLPs and con-
catenates them, capturing complementary attribute and topology signals that scale to non-homophilous
graphs (Lim et al., 2021).

GPR-GNN. Learns signed polynomial (Generalized PageRank) propagation weights, adapting the
filter to both homophilous and heterophilous label patterns and mitigating over-smoothing (Chien
et al., 2021).

FSGNN. Applies soft selection over hop-wise aggregated features with “hop-normalization,” ef-
fectively decoupling aggregation depth from message passing for a simple, shallow baseline that
performs well under heterophily (Maurya et al., 2022).

GloGNN. Augments propagation with learnable correlations to global nodes (including signed coeffi-
cients), enabling long-range information flow and improved grouping on heterophilous graphs (Li
et al., 2022).

FAGCN. Uses a self-gating, frequency-adaptive mechanism to balance low- and high-frequency
components during message passing, improving robustness across homophily regimes (Bo et al.,
2021).

GBK-GNN. Employs bi-kernel feature transformations with a gating mechanism to integrate
homophily- and heterophily-sensitive signals within a single architecture (Du et al., 2022).

JacobiConv. Adopts an orthogonal Jacobi-polynomial spectral basis (often without nonlinearities)
to learn flexible filters suited to varying graph signal densities, yielding strong performance on
heterophilous data (Wang & Zhang, 2022).

BernNet. Learns general spectral graph filters using Bernstein polynomial approximation, enabling
flexible control of low- and high-frequency components and strong performance under varying
degrees of heterophily (He et al., 2021).

ACM-GCN. Uses high-pass filtering with adaptive channel mixing to combine low- and high-
frequency components, yielding strong performance on heterophilic and mixed-regime graphs (Luan
et al., 2022).

8.10 SAMPLING METHODS FOR SCALABLE GNNS

GraphSAGE (node/neighbor sampling). Samples a fixed fan-out of neighbors per layer and learns
permutation-invariant aggregators, limiting the receptive field and enabling inductive, mini-batch
training on large graphs (Hamilton et al., 2017).

FastGCN (layer-wise node sampling). Recasts graph convolution as an expectation over nodes and
draws i.i.d. node sets at each layer via importance sampling, decoupling batch size from degree and
reducing estimator variance (Chen et al., 2018b).

S-GCN / VR-GCN (layer-wise with control variates). Introduces control-variates using histor-
ical activations to stabilize gradients under small per-layer samples and achieve faster, provable
convergence to the full-batch optimum (Chen et al., 2018a).

ClusterGCN (subgraph/block sampling). Partitions the graph and samples dense clusters as mini-
batches, restricting propagation within blocks to boost edge coverage, cache locality, and memory
efficiency at scale (Chiang et al., 2019).

GraphSAINT (subgraph sampling with bias correction). Constructs mini-batches by sampling
subgraphs (node/edge/random-walk policies) and applies unbiased normalization to correct sampling
bias, yielding strong accuracy–efficiency trade-offs on large graphs (Zeng et al., 2020).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

8.11 DECOUPLING-BASED METHODS FOR SCALABLE GNNS

SGC (linearized propagation). Simplifies GCNs by collapsing multiple message-passing layers into
a single K-step precomputation of AKX, removing nonlinearities and train-time propagation. This
reduces GNN training to logistic regression on pre-smoothed features, yielding strong scalability and
fast inference (Wu et al., 2019a).

SIGN (multi-hop feature precomputation). Precomputes multiple graph-diffused feature channels
(e.g., AKX for several K), and trains an MLP on the concatenated features. This decouples feature
propagation from learning entirely, enabling embarrassingly parallel preprocessing and large-batch
training (Rossi et al., 2020).

SAGN (depth and scope decoupling). Introduces a learnable gating mechanism over multiple
precomputed hop-wise representations, allowing the model to adaptively weight short- and long-
range information without stacking GNN layers. This stabilizes training under heterophily and yields
strong performance with shallow architectures (Sun et al., 2021).

GAMLP (self-ensemble on diffused features). Builds an ensemble over diffused feature channels
using attention and prediction consistency across hops. GAMLP reuses node features efficiently
and achieves high accuracy with small models, while avoiding message passing during training and
inference (Chien et al., 2022).

Together, these methods represent the broader “decoupling” paradigm—where propagation is
performed once (or analytically) and training reduces to learning an MLP over fixed multi-hop
representations—an approach systematically benchmarked and analyzed in large-scale settings by
Zeng et al. (Zeng et al., 2022). ATLAS aligns with this propagation-free philosophy but differs funda-
mentally in how structural information is obtained: instead of precomputing AkX, ATLAS extracts
multi-resolution community assignments as topology-aware features, providing a complementary and
scalable route to structural encoding.

8.12 DATASETS

We evaluate on two groups of benchmarks that stress complementary regimes.

Large-scale graphs. We use Flickr, Reddit, Yelp, AmazonProducts, and ogbn-products.
Flickr/Yelp/AmazonProducts come from GraphSAINT; Reddit from GraphSAGE; ogbn-products
from OGB (Zeng et al., 2020; Hamilton et al., 2017; Hu et al., 2020). Table 9 reports sizes, features,
classes, and splits.

Homophilous and heterophilous graphs. We include Cora, PubMed, Actor, Chameleon-filtered,
Squirrel-filtered, Amazon-ratings, Tolokers, and Roman-empire. For the filtered Wikipedia, Roman-
empire, Amazon-ratings, and Tolokers datasets, we use the exact settings and splits of Platonov et al.
(2023b); Cora, PubMed, and Actor follow standard preprocessing (Sen et al., 2008; Pei et al., 2020;
Lim et al., 2021). Table 8 lists summary stats, edge homophily he, and metrics.

Table 8: Dataset statistics with edge homophily he and evaluation metric (“Acc” for Accuracy,
“ROC-AUC” for Area Under ROC).

Dataset Nodes Edges Avg. Degree Feature Classes Train / Val / Test he Metric

Cora 2,708 5,429 4 1,433 7 (s) 0.60 / 0.20 / 0.20 0.810 Acc
PubMed 19,717 44,324 5 500 3 (s) 0.60 / 0.20 / 0.20 0.802 Acc

Actor 7,600 30,019 8 932 5 (s) 0.60 / 0.20 / 0.20 0.216 Acc
Squirrel-filtered 2,223 65,718 59 2,089 5 (s) 0.50 / 0.25 / 0.25 0.207 Acc

Chameleon-filtered 890 13,584 31 2,325 5 (s) 0.50 / 0.25 / 0.25 0.236 Acc
Amazon-ratings 24,492 93,050 8 300 5 (s) 0.50 / 0.25 / 0.25 0.380 Acc

Tolokers 11,758 519,000 88 10 2 (s) 0.50 / 0.25 / 0.25 0.595 ROC-AUC
Roman-empire 22,662 32,927 3 300 18 (s) 0.50 / 0.25 / 0.25 0.047 Acc

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 9: Dataset statistics (“m” stands for multi-class classification, and “s” for single-class.)

Dataset Nodes Edges Avg. Degree Feature Classes Metric Train / Val / Test

Flickr 89,250 899,756 10 500 7 (s) F1-micro 0.50 / 0.25 / 0.25
Reddit 232,965 11,606,919 50 602 41 (s) F1-micro 0.66 / 0.10 / 0.24

Yelp 716,847 6,977,410 10 300 100 (m) F1-micro 0.75 / 0.10 / 0.15
AmazonProducts 1,598,960 132,169,734 83 200 107 (m) F1-micro 0.85 / 0.05 / 0.10

ogbn-products 2,449,029 61,859,140 50.5 100 47 (s) Acc 0.08 / 0.02 / 0.90

24

	Introduction
	Related Work
	Our Contribution

	Theoretical Analysis
	Methodology
	Empirical Evaluation
	Q1: Accuracy Across Homophily Regimes
	Q2: Efficiency and Scalability on Large Graphs

	Accuracy Under Community Refinement
	Ablation study
	Conclusion and Future Work
	Appendix
	Definitions and Terminology for Community Detection
	Theoretical Proofs
	NMI Analysis for datasets
	Algorithms
	Computation time on large graphs
	Hyperparameter Details
	Cora: Accuracy vs. Minimum Modularity Threshold
	Models for homophilic graphs
	Models for heterophilic graphs
	Sampling methods for scalable GNNs
	Decoupling-based methods for scalable GNNs
	Datasets

