
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ATLAS: Adaptive Topology-based Learning
at Scale for Homophilic and Heterophilic
Graphs

Anonymous authors
Paper under double-blind review

Abstract

We present ATLAS (Adaptive Topology-based Learning at Scale for Ho-
mophilic and Heterophilic Graphs), a novel graph learning algorithm that
addresses two important challenges in graph neural networks (GNNs). First,
the accuracy of GNNs degrades when the graph is heterophilic. Second,
the iterative feature aggregation limits the scalability of GNNs to large
graphs. We address these challenges by extracting topological information
about the graph communities at different levels of refinement, concatenating
the community assignments to the feature vector, and applying multilayer
perceptrons (MLPs) on this new feature vector. By doing so, we inherently
obtain the topological data about the nodes and their neighbors without
invoking aggregation. Because MLPs are typically more scalable than GNNs,
our approach applies to large graphs—without the need for sampling.
Our results, on a wide set of graphs, show that ATLAS has comparable
accuracy to baseline methods, with accuracy being as high as 20 percentage
points over GCN for heterophilic graphs with negative structural bias and
11 percentage points over MLP for homophilic graphs. Furthermore, we
show how multi-resolution community features systematically modulate per-
formance in both homophilic and heterophilic settings, opening a principled
path toward explainable graph learning.

1 Introduction

Node classification, a fundamental problem in graph learning, involves identifying labels
of nodes in a graph and has wide applications in many domains including social networks,
citation networks, recommendation systems, knowledge graphs and bioinformatics (Khemani,
2024; Wu et al., 2019b; Zhou et al., 2021). Accurate classification requires two orthogonal
pieces of information–(i) the features at each node, and (ii) the connections between the
node and its neighbors. Neural network methods such as Multi-Layer Perceptrons (MLPs)
are fast but do not include information about the connections. Graph Neural Networks
(GNNs) address this problem by aggregating the features between neighboring nodes, but
the process is expensive, and difficult to scale to large graphs. Although the graph structure
can be included in the feature vectors using different node embedding techniques (Perozzi
et al., 2014; Grover & Leskovec, 2016; Tang et al., 2015), and recently through the use
of community detection (Wang et al., 2017; Sun et al., 2019; Kamiński et al., 2024), the
issue remains as to how many hops of neighbors should be considered and how fine-grained
the communities should be. Taking larger hops or coarse grained community can lead to
information smoothing, while taking smaller hops or fine grained communities can lead to
information loss. Further, the hypothesis that aggregating features of neighbors can improve
accuracy of node classification is only true for homophilic networks (where nodes of similar
classes are connected). In heterophilic networks, where the connection between nodes need
not imply similarity of class, this strategy actually leads to lower accuracy. Based on these
observations, we posit, matching structural information (i.e. size of hops or communities)
with how well it aligns with the classification is necessary for producing accurate results.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1.1 Related Work

Graph Neural Networks (GNNs) have become a core tool for learning on graphs (Kipf
& Welling, 2017; Hamilton et al., 2017). Most algorithms are based on message passing:
each layer aggregates transformed neighbor features to form topology-aware embeddings.
This implicitly assumes homophily(Wu et al., 2019a). The same bias, however, can blur
informative distinctions on weakly homophilous or heterophilous graphs (Zhu et al., 2020a).
Sampling-based GCN. Scaling GNNs on large graphs is challenging due to memory
requirement, and cost of aggregation. Sampling-based methods construct mini-batches from
parts of the graph to approximate full-batch propagation—via node-wise (GraphSAGE
(Hamilton et al., 2017)), layer-wise (FastGCN (Chen et al., 2018b)), or subgraph sampling
(Cluster-GCN, GraphSAINT (Chiang et al., 2019; Zeng et al., 2020)). However, sampling
introduces stochasticity that affects convergence rates and reproducibility (Chen et al., 2018b;
Zou et al., 2019).
Community Structure in GNNs. Recently community detection (Newman, 2006; Blondel
et al., 2008) has been used to improve performance of GNNS. Information from communities
can be integrated into GNN—via line-graph supervision or label-aware aggregation (Chen
et al., 2019; 2020). Recent graph rewiring approaches constrain edits using community
information (Karhadkar et al., 2023; Jamadandi et al., 2024; Rubio-Madrigal et al., 2025).
Learning on Non-Homophilous Graphs. Recent research also focuses on addressing the
problem of learning in graphs that do not exhibit homophily. One approach is to preserve
self-features while selectively injecting neighborhood signals (H2GCN (Zhu et al., 2020b),
GloGNN (Li et al., 2022)). Another approach is to negate misleading neighbors (GPR-
GNN (Chien et al., 2021), FAGCN (Bo et al., 2021)). Some methods leverage higher-order
structures (MixHop (Abu-El-Haija et al., 2019)); other methods try to identify homophilic
and heterophilic signals based on kernel features and spectral filters (JacobiConv (Wang &
Zhang, 2022), BernNet (He et al., 2021) GBK-GNN (Du et al., 2022)).
Graph rewiring is another approach to addressing heterophily. Graph rewiring focuses on
adding edges between similar nodes and removing edges between edges that are dissimilar.
Several methods can be used for rewiring, including adding edges within intra-community
nodes or nodes with similar features, deleting edges between inter-community nodes, and
rewring to maximize the spectral distance (Topping et al., 2022; Karhadkar et al., 2023;
Gasteiger et al., 2019; Bi et al., 2024; Rubio-Madrigal et al., 2025; Banerjee et al., 2022).

1.2 Our Contribution.

Most of the curent research either focuses primarily on homophilic graphs, or the processes
to address the heterophilic graphs are require expensive operations, such as signal identifica-
tion/modification, rewiring or spectral gap maximization. These methods cannot efficiently
scale to large graphs. Our primary contribution is to develop Adaptive Topology -based
Learning at Scale (ATLAS) ∗, a novel graph learning algorithms that can produce high-
accuracy results for both homophilic and heterophilic graphs. ATLAS is based on a simple
but powerful technique of refining communities in networks to match the degree of homophily.
Rationale. Our algorithm is based on quantifying homophily through the lens of normalized
mutual information (NMI). Given two partitions of the same set of elements NMI measures
how well the partitions correspond to each other. If we consider one partition as the
communities in the graph, and the other partition as labels, then NMI provides a measure for
the degree of homophily in the graph. ATLAS focuses on refining/coarsening communities to
identify the region of highest NMI—which will correspond to the highest accuracy. Figure 1
provides an overview of ATLAS.
Our specific contributions are;

1. Theory. We provide a theoretical analysis of how refining communities changes in
NMI (Section 2).

∗Apart from the acronym, the name ATLAS is to convey our method can handle different degrees
of homophily, similar to how an atlas encompasses all different countries.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2. Algorithm. Based on this mathematical understanding we develop our algorithm
ATLAS (Section 3).

3. Experiments. Provide extensive empirical evaluations by comparing ATLAS across
a mix of 13 (8 medium size and 5 large) homophilic and heterophilic graphs, and 12
(7) GNN/MLP-based algorithms for medium sized (large) graphs (Section 4).

Figure 1: Overview of the community-augmented feature learning pipeline. Community
assignments at multiple resolutions are one-hot encoded, projected, concatenated with node
features, and input to an MLP for classification.

2 Theoretical Analysis

We mathematically show how refining communities leads to changes in NMI. We define some
terms that will help us in the analysis. The proofs of the theorems are given in the appendix.
Let N be the set of nodes. Let P = {P1, . . . , Pk} be a partition of N ; i.e.

Pi ̸= ∅, Pi ∩ Pj = ∅ (i ̸= j), and
k⋃

i=1
Pi = N.

Let S = {S1, . . . , Sm} be another partition of N . We say S is a refinement of P (denoted as
S ⪯ P) iff every block of S is contained in some block of P . Formally:

S ⪯ P ⇐⇒ ∀Sj ∈ S ∃Pi ∈ P such that Sj ⊆ Pi.

Normalized mutual information (NMI) is a popular measure to quantify alignment between
two partitions. Given two partition P and Q, over a set of N elements and nij = |Pi∩Qj |, ni =
|Pi|, nj = |Qj | their normalized mutual information is given as;

NMI(P, Q) = 2I(P ; Q)
H(P) + H(Q)

I(P ; Q) =
∑k

i=1
∑m

j=1
nij

N log
(

N nij

ni nj

)
is the mutual information between partitions P

and Q. This quantity measures how much information is shared between the partitions P
and Q. The higher the value, the better the alignment between the partitions. H(P) =
−

∑k
i=1

ni

N log
(

ni

N

)
, is the entropy of partition P . H(Q) is defined similarly. The entropy

measures the distribution of points in each partition. Low entropy means data is concentrated
in few clusters, and is indicative of good clustering.
The value of NMI ranges from 1 (indicating complete alignment between partitions) to close
to 0 (indicating complete mismatch between partitions). NMI is high if the partitions are
well matched (I(P, Q) is high), and entropy is low (H(P), H(Q) is low).
Lemma 1 (Refinement does not decrease mutual information). Let L be labels and C a
community partition. Let C ′ be a refinement of C, i.e., C ′ ⪯ C. Then I(L; C ′) ≥ I(L; C)
Lemma 2 (Refinement does not decrease entropy). Let C a community partition. Let C ′ be
a refinement of C, i.e., C ′ ⪯ C. Then H(C ′) ≥ H(C)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

I(G,K)=0
H(G)=.97
H(K)=1
NMI=0

I(G,K)=1
H(G)=3.32
H(K)=1
NMI=.463

I(G,K)=1
H(G)=1.97
H(K)=1
NMI=.67

Figure 2: Effect of refinement on NMI. Ini-
tially when clusters have mixed items, NMI is
low. The first refinement matches the items
and clusters, increasing the NMI. Further re-
finement does not improve the alignment (mu-
tual information), but increases the spread
(entropy), thus decreasing NMI.

Based on Lemma 1 and Lemma 2 we see
that while refinement improves the mutual
information leading to better alignment, it
also increases the entropy leading to more
noise or uncertainty. The condition at whch
NMI will increase is given by Theorem 1.
Theorem 1 (NMI Refinement Condi-
tion). Let L be labels; C a community
partition. Let C ′ be a refinement of
C, i.e., C ′ ⪯ C. Then NMI(C ′; L) >
NMI(C; L) if and only if ∆I

∆H >
NMI(C;L)

2 ; where ∆I = I(C ′; L) − I(C; L)
and ∆H = H(C ′; L)−H(C; L)

Theorem 1 states that a partition refinement
improves the normalized mutual information
with respect to labels if and only if the mu-
tual information gain per unit of entropy
increase exceeds half the original normalized
mutual information value.

3 Methodology

The theorems in Section 2 are based on ide-
alized condition, where refined communities
are perfect subset of the original communities. In practice, refinement in communities is
achieved by modifying a resolution parameter. Although higher resolution leads to smaller
communities, due to inherent non-determinism of community detection methods, the smaller
communities may not be exact subsets.
Preprocessing. Communities in networks are often hierarchical, so we treat the resolution
parameter γ as the hierarchy level. We start from two initial resolutions (0.5 and 1.0) and set
three hyperparameters: a gap threshold ∆max, a minimum modularity τ , and a small target-
drop range [a, b]. Let γ1 and γ2 be two consecutive resolution parameters, with community
sets c(γ1) and c(γ2) and modularities Q(γ1) and Q(γ2); we define the modularity gap as ∆Q =
|Q(γ2) −Q(γ1)|. At each iteration, we sort the tested resolutions and examine consecutive
pairs. If the gap between a pair exceeds ∆max, we find their midpoint (interpolation).
Otherwise, we extrapolate beyond the current maximum by estimating the local slope of
modularity with respect to resolution and taking a small forward step expected to reduce
modularity by a random amount drawn from the drop range. Once the new γ is obtained we
compute the communities at that value. The loop stops when the latest modularity falls
below τ or no new resolution is produced. The procedure returns the retained resolutions
and their corresponding community assignments; see Algorithm 1 in appendix.
Figure 3 illustrates this process of generating sets of resolution paramters. In Step 1 and
Step 2, the communities are obtained with initial resolutions γ0 and γ1. Step 3 shows an
example of interpolation to γ2, and steps 4 and 5 show extrapolation to finer resolutions
at γ3 and γ4. Note that γ0 > γ2 > γ1 > γ3 > γ4, and the communities for one resolution
parameter is the refinement of the previous larger resolution parameter.
Feature Augmentation. For a given resolution parameter γ, the communities be c(γ) ∈
{1, . . . , kγ}, and and each node is assigned to one of the communities in kγ . This assignment
is represented as a one-hot encoded matrix H(γ)(equation 3). To reduce dimensionality,
each one-hot matrix is projected into a dense embedding space using a trainable weight
matrix W(γ) (equation 4). The embeddings from all resolutions are concatenated to form
E (equation 5), which is then further concatenated with the original features X to yield
the augmented feature matrix Z. The augmented feature matrix Z is fed to an MLP fθ to
produce logits; a task-dependent function ϕ (e.g., softmax or elementwise sigmoid), applied
row-wise, converts them to probabilities Ŷ (equation 7).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Initial Graph Step 1: Lovain Community detection
Initial resolution

Step 2: Lovain Community detection
Initial resolution

Step 3: Interpolation between and
New resolution =

C
om

m
unity Features

C
om

m
unity Features

C
om

m
unity Features

C
om

m
unity Features

Step 3: Extrapolation between and
New resolution =

Step 3: Extrapolation between and
New resolution =

Figure 3: Illustration of the Adaptive Resolution Search Process. The resolution limits,
γ4 < γ3 < γ1 < γ2 < γ0, and the communities Cγ0 ⪯ Cγ2 ⪯ Cγ1 ⪯ Cγ3 ⪯ Cγ4 .

.

X ∈ Rn×d, Γ = {γ1, . . . , γT } (1)
c(γ) = DetectCommunity(G, γ), c(γ) ∈ {1, . . . , kγ}n (2)
H(γ) = OneHot(c(γ)) ∈ {0, 1}n×kγ (3)
E(γ) = H(γ)W(γ), W(γ) ∈ Rkγ ×dc (4)

E =
∥∥T

t=1E(γt) ∈ Rn×(T dc) (5)
Z = [X ∥ E] ∈ Rn×(d+T dc) (6)
Ŷ = ϕ

(
fθ(Z)

)
∈ [0, 1]n×C (7)

Complexity Analysis. We compare computational and memory complexities of represen-
tative scalable GNN frameworks with our approach in Table 1. ATLAS performs Louvain
clustering in O(T∥A∥0) in the preprocessing step, keeps a single augmented feature buffer,
and trains with per-epoch time O

(
Lff N(D+Tdc)2)

and memory O
(
bLff (D+Tdc)

)
, enabling

simple i.i.d. node mini-batching without neighborhood expansion or graph-dependent batch-
ing heuristics. ATLAS performs adjacency-free inference: with fixed augmented features of
dimension D+Tdc, prediction is a forward pass with complexity O

(
N(D+Tdc)2)

.

4 Empirical Evaluation

In this section, we provide the empirical results comparing ATLAS with other graph learning
methods. Our experiments focus on answering the following research questions;
Q1. How accurate is ATLAS compared to baseline methods over graphs with different
degrees of homophily?
Q2. How well can ATLAS scale to large graphs, while maintaining high accuracy?
Q3. How does degree of homophily affect the optimal refinement level?
Datasets. We use 8 medium-size graphs (Cora, PubMed, Tolokers, Squirrel-filtered,
Chameleon-filtered, Amazon-ratings, Actor, Roman-empire) and 5 large graphs (Flickr,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Complexity comparison. N = #nodes, ∥A∥0 = #edges, D = feature dim, L =
#message-passing layers, Lff = #feed-forward layers, b = batch size, r = sampled neighbors
(or filter size), T = #resolutions, dc = community-embedding dim.

Method Preprocessing Training per epoch (time) Memory
GCN (full-batch) – O(L ∥A∥0D + LND2) O(LND + LD2)
FastGCN – O(rLND2) O(b rLD + LD2)
S-GCN (VR-GCN) – O(rLND2) O(LND)
ClusterGCN O(∥A∥0) O(L ∥A∥0D + LND2) O(bLD + LD2)
GraphSAINT O(kN) O(L ∥A∥0D + LND2) O(bLD)
ATLAS O(T∥A∥0) O(Lff N(D + Tdc)2) O(bLff (D + Tdc))

Table 2: Eight-benchmark comparison across homophily regimes. Metrics are mean accu-
racy (%) ± standard deviation, except Tolokers, which reports ROC–AUC (%). Baseline
heterophily-oriented model results are from Platonov et al. (2023); Luan et al. (2024). Bottom
rows report ATLAS improvements over baselines (absolute percentage points).

High structural bias Low structural bias Negative structural bias

Model
Cora

he=0.810
Tolokers
he=0.595

PubMed
he=0.802

Squirrel-filtered
he=0.207

Chameleon-filtered
he=0.236

Amazon-ratings
he=0.380

Actor
he=0.216

Roman-empire
he=0.047

MLP(2L) 75.44± 1.97 72.97± 0.90 87.25± 0.41 34.29± 3.34 36.00± 4.69 39.83± 0.48 34.96± 0.71 65.58± 0.34
GCN 87.01± 1.04 74.93± 1.32 86.71± 0.42 32.70± 1.73 37.11± 3.04 42.78± 0.14 28.49± 0.91 45.68± 0.38
SAGE 87.50± 0.87 80.95± 0.92 88.42± 0.55 33.32± 1.75 38.83± 4.26 44.67± 0.51 34.08± 1.07 76.21± 0.65
GAT 87.74± 0.88 75.31± 1.35 86.18± 0.64 32.61± 2.06 37.18± 3.44 43.25± 0.85 29.11± 1.23 47.16± 0.66
H2GCN 87.52± 0.61 73.35± 1.01 87.78± 0.28 35.10± 1.15 26.75± 3.64 36.47± 0.23 38.85± 1.17 60.11± 0.52
LinkX 82.62± 1.44 81.15± 1.23 88.12± 0.47 42.34± 4.13 40.10± 2.21 52.66± 0.64 35.64± 1.36 56.15± 0.93
GPR-GNN 79.51± 0.36 72.94± 0.97 85.07± 0.09 38.95± 1.99 39.93± 3.30 44.88± 0.34 39.30± 0.27 64.85± 0.27
FSGNN 87.51± 1.21 82.76± 0.61 90.11± 0.43 35.92± 1.32 40.61± 2.97 52.74± 0.83 37.65± 0.79 79.92± 0.56
GloGNN 87.67± 1.16 73.39± 1.17 90.32± 0.54 35.11± 1.24 25.90± 3.58 36.89± 0.14 39.65± 1.03 59.63± 0.69
FAGCN 88.85± 1.36 77.75± 1.05 89.98± 0.54 41.08± 2.27 41.90± 2.72 44.12± 0.30 31.59± 1.37 65.22± 0.56
GBK-GNN 87.09± 1.52 81.01± 0.67 88.88± 0.44 35.51± 1.65 39.61± 2.60 45.98± 0.71 38.47± 1.53 74.57± 0.47
JacobiConv 89.61± 0.96 68.66± 0.65 89.99± 0.39 29.71± 1.66 39.00± 4.20 43.55± 0.48 37.48± 0.76 71.14± 0.42
ATLAS (Ours) 87.09 ± 1.62 81.39 ± 0.76 88.29 ± 0.62 38.30 ± 2.31 40.17 ± 4.06 53.15 ± 0.61 38.07 ± 0.93 66.22 ± 0.53

ATLAS−MLP (pp) +11.65 +8.42 +1.04 +4.01 +4.17 +13.32 +3.11 +0.64
ATLAS−GCN (pp) +0.08 +6.46 +1.58 +5.60 +3.06 +10.37 +9.58 +20.54

ATLAS−Average (pp) +1.42 +5.13 +0.06 +2.75 +3.26 +9.17 +2.63 +2.37

Reddit, Yelp, Amazon-Products, OGBN-Products). We report accuracy for all medium-size
datasets except Tolokers, which is evaluated by ROC-AUC; for large graphs, we report F1-
micro on Flickr/Reddit/Yelp/Amazon-Products and accuracy on OGBN-Products. Complete
statistics of the datasets are given in Appendix Tables 9 and 8.
Baselines. We group baselines by modeling regime and map them to the research questions.
Q1 (homophily-regime). Homophilic: GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton
et al., 2017), GAT (Veličković et al., 2018). Heterophily-oriented: H2GCN (Zhu et al., 2020a),
LinkX (Lim et al., 2021), GPR-GNN (Chien et al., 2021), FSGNN (Maurya et al., 2022),
GloGNN (Li et al., 2022), FAGCN (Bo et al., 2021), GBK-GNN (Du et al., 2022), Jacobi-
Conv (Wang & Zhang, 2022). Q2 (scalability). Sampling-based: GraphSAGE (Hamilton
et al., 2017), FastGCN (Chen et al., 2018b), S-GCN (variance-reduced) (Chen et al., 2018a),
ClusterGCN (Chiang et al., 2019), GraphSAINT (Zeng et al., 2020). Description of these
methods are provided in the Appendix.
We use an L-layer MLP with hidden width dhid and dropout rate p. Each of the first L−1
layers applies Linear (with bias) → LayerNorm → GELU → Dropout. The final layer is a
Linear classifier to C classes.

4.1 Q1: Accuracy Across Homophily Regimes

Table 2 shows results for the eight medium-sized benchmarks. On average, ATLAS shows
as much as 20 percentage points over GCN for graphs with negative structural bias and
as much as 11 percentage points over MLP for graphs with high structural bias. Overall,
ATLAS closes the MLP→GNN gap and delivers results that are consistently comparable to
the best model on each dataset.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Large-graph performance. F1-micro for Flickr/Reddit/Yelp/Amazon-Products;
accuracy for OGBN-Products. Baselines from Zeng et al. (2020); Hu et al. (2020). Bottom
rows report ATLAS improvements over MLP and over GCN (absolute units).

High structural bias Low structural bias Negative structural bias

Method
Reddit
he=0.756

ogbn-products
he=0.808

Flickr
he=0.319

Yelp
he=0.809

AmazonProducts
he=0.116

MLP 0.7435 ± 0.0016 0.6106 ± 0.0008 0.4717 ± 0.0011 0.6546 ± 0.0011 0.8204 ± 0.0002
GCN 0.9330±0.0000 0.7564±0.0021 0.4920±0.0030 0.3780±0.0010 0.2810±0.0050

GraphSAGE 0.9530±0.0010 0.8061±0.0016 0.5010±0.0130 0.6340±0.0060 0.7580±0.0020
FastGCN 0.9240±0.0010 0.7346±0.0020 0.5040±0.0010 0.2650±0.0530 0.1740±0.0210

S-GCN 0.9640±0.0010 0.7590±0.0000 0.4820±0.0030 0.6400±0.0020 —
ClusterGCN 0.9540±0.0010 0.7862±0.0061 0.4810±0.0050 0.6090±0.0050 0.7590±0.0080

GraphSAINT 0.9660±0.0010 0.7536±0.0034 0.5110±0.0010 0.6530±0.0030 0.8150±0.0010
ATLAS (Ours) 0.9574 ± 0.0004 0.7865 ± 0.0053 0.5064 ± 0.0017 0.6546 ± 0.0011 0.8204 ± 0.0002

ATLAS−MLP +0.2139 +0.1759 +0.0347 +0.0000 +0.0000
ATLAS−GCN +0.0244 +0.0301 +0.0144 +0.2766 +0.5394

ATLAS−Average +0.0378 +0.0427 +0.0146 +0.1069 +0.2192

Table 4: Computation time breakdown (in seconds) on OGBN-Products. We report prepro-
cessing, average per-epoch training, and inference time. Values are mean ± std over repeated
runs. For methods with heavy one-time preprocessing, we separate that cost.

Model Preprocessing Time Per-epoch Train Time Inference Time
GCN — 2.0395± 0.0006 0.9220± 0.0010
Cluster-GCN 168.754± 1.777 (one-time) 4.017± 0.164 82.837± 0.622
GraphSAINT 3.770± 0.159 (per epoch) 0.751± 0.046 66.445± 0.517
ATLAS (Ours) 391.894± 14.387 (one-time) 0.181± 0.0058 0.526± 0.0038

Table 5: Preprocessing (community detection), training, and inference times. Values are
mean ± sample std in seconds across runs.

Dataset Preprocessing Time Per-epoch Train Time Inference Time
Reddit 84.904 ± 2.764 0.143 ± 0.002 0.150 ± 0.005
Flickr 6.800 ± 1.741 0.241 ± 0.005 0.056 ± 0.012
Yelp 15.842 ± 0.007 2.670 ± 0.007 1.613 ± 0.016
AmazonProducts 72.270 ± 1.409 6.073 ± 0.039 3.056 ± 0.019

4.2 Q2: Efficiency and Scalability on Large Graphs

Accuracy. Table 3 results demonstrate that ATLAS is scalable and delivers competitive
accuracy on million-scale graphs while maintaining clear gains over MLP and GCN. On
average, ATLAS shows as much as +.53 points over GCN for graphs with negative structural
bias and as much as +.21 percentage points over MLP for graphs with high structural bias.
Convergence. ATLAS converges rapidly and stably across large graphs: training loss decreases
smoothly, and validation performance (F1-micro for Flickr/Reddit/Yelp/Amazon-Products;
accuracy for OGBN-Products) plateaus early with a small train–validation gap. The curves
exhibit no late-epoch degradation and remain stable after convergence (see Fig. 4).
Efficiency. Table 4 compares preprocessing, per-epoch training, and inference times on OGBN-
Products. ATLAS requires a higher one-time preprocessing cost yet attains competitive
training speed and the best inference time, offering a balanced trade-off between training
scalability and evaluation efficiency. Table 5 shows the time for the other large graphs †.

†We could not compare with the baselines for these, as the optimal hyper-parameters are not
known.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Epoch
0 20 40 60

F
1
-m

ic
ro

 (
%

)

46

48

50

52

54

56

58

60

62

Train

Validation

Test

Epoch
0 20 40 60

T
ra

in
in

g
 L

o
s
s

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

Epoch
0 500 1000

F
1
-m

ic
ro

 (
%

)

60

65

70

75

80

85

90

95

100

Train

Validation

Test

Epoch
0 500 1000

T
ra

in
in

g
 L

o
s
s

0

0.5

1

1.5

2

2.5

3

3.5

Epoch
0 100 200 300

F
1
-m

ic
ro

 (
%

)

10

20

30

40

50

60

70

Train

Validation

Test

Epoch
0 100 200 300

T
ra

in
in

g
 L

o
s
s

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Epoch
0 50 100 150 200

F
1
-m

ic
ro

 (
%

)

0

10

20

30

40

50

60

70

80

90

Train

Validation

Test

Epoch
0 50 100 150 200

T
ra

in
in

g
 L

o
s
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Epoch
0 100 200 300 400

A
c
c
u
ra

c
y
 (

%
)

20

30

40

50

60

70

80

90

100

Train

Validation

Test

Epoch
0 100 200 300 400

T
ra

in
in

g
 L

o
s
s

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 4: The convergence landscape of ATLAS.

4.3 Q3: Relation of Degree of Homophily to Refinement Level

We quantify the level of community refinement by the minimum modularity threshold Qmin.
Large Qmin preserves only coarse partitions; lowering Qmin progressively adds medium and
fine partitions, yielding a multi-scale representation. We group graphs based on how well
the communities align with node labels as follows;
• High structural bias (e.g., Cora, Tolokers): community aligns with labels; decreasing Qmin

(adding more scales) improves the metric (accuracy for Cora; ROC–AUC for Tolokers)
until fine partitions yield marginal gains or mild saturation. See Figure 5; top left and
bottom left.

• Low structural bias (e.g., Amazon-Ratings, Chameleon-filtered): communities provide
limited label-aligned signal; coarse partitions give small gains, while finer ones add little
beyond saturation. See Figure 5; top center and bottom center.

• Negative structural bias (e.g., Actor, Roman-Empire): community misaligns with labels;
adding finer partitions introduces misleading locality and degrades performance relative
to the high-Qmin (feature-dominant) regime. See Figure 5; top right and bottom right.

Example (Cora). For a specific example, consider the Cora graph (Fig. 5 top left; Table 7),
Qmin∈{1.0, 0.9} retains no partitions and accuracy is 76.61%. At Qmin = 0.8, two coarse
partitions are added and accuracy rises to 79.93%; at 0.7, adding one medium partition yields
83.66%; at 0.6, two finer partitions reach 86.50%. Accuracy peaks at 88.10% for Qmin = 0.1,
then slightly drops at 0.0 after adding the most fragmented partition, indicating diminishing
returns from very small communities. The effect of cumulative community features depends
on a dataset’s structural bias (more details in Table 7 in appendix).
Effect of Modularity Gap. The set of refinement levels depends heavily on the modularity
gap. For graphs with high structural bias (Figure 6(a)), accuracy is flat-to-low when the avg.
modularity gap is tiny (g ∈ [0, 0.05]), climbs to a brief sweet spot around g ≈ 0.06−0.09,
and then tails off past ∼ 0.10 indicating increase in entropy outweights gain in mutual
information. For graphs with low structural bias (Figure 6(b)) increasing modularity gap
does not change the accuracy, as the communities are already misaligned, and gain in mutual
information is not significant.

5 Conclusion and Future Work

We presented ATLAS, a community-augmented learning framework that enriches node
features with multi-resolution Louvain embeddings and trains a compact MLP classifier. An

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

A
c

c
u

ra
c

y
 (

%
)

75

80

85

90
Cora

Best 88.10% @ 0.1

ATLAS (Ours)
GCN
MLP

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

A
c

c
u

ra
c

y
 (

%
)

42

44

46

48

50

52

54
Amazon-Ratings

Best 53.30% @ 0.6

ATLAS (Ours)
GCN
MLP

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

A
c

c
u

ra
c

y
 (

%
)

45

50

55

60

65

70
Roman-Empire

Best 66.22% @ 1.0

ATLAS (Ours)
GCN
MLP

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

R
O

C
-A

U
C

 (
%

)

72

73

74

75

76

77

78

79

80

81

82

83
Tolokers

Best 81.69% @ 0.4

ATLAS (Ours)
GCN
MLP

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

A
c

c
u

ra
c

y
 (

%
)

34

35

36

37

38

39

40

41

42
Chameleon-Filtered

Best 40.95% @ 0.3

ATLAS (Ours)
GCN
MLP

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

A
c

c
u

ra
c

y
 (

%
)

28

29

30

31

32

33

34

35

36

37

38

39
Actor

Best 38.07% @ 1.0

ATLAS (Ours)
GCN
MLP

Min Modularity (Q
min

)

Strong structural bias Weak structural bias Negative structural bias

Figure 5: Effect of cumulative community-derived features gated by minimum modularity in
homophilic (Strong structural bias, left), Benign heterophilic (Weak structural bias, middle)
and Malignant heterophilic (Negative structural bias, right) settings.

Avg. Modularity gap

0
0.

01
0.

02
0.

03
0.

04
0.

05
0.

06
0.

07
0.

08
0.

09 0.
1

0.
11

0.
12

0.
13

0.
14

0.
15

80

82

84

86

88

90

92

94

96

Cora (Acc)

Reddit (Acc)

(a) High structural bias datasets.
Avg. Modularity gap

0
0.01

0.02
0.03

0.04
0.05

0.06
0.07

0.08
0.09 0.1

0.11
0.12

0.13

A
c
c
u
ra

c
y
 (

%
)

40

50

60

70

80

90

PubMed (Acc)
Amazon-Ratings (Acc)
Chameleon-filtered (Acc)
Flickr (Acc)

(b) Low structural bias datasets.
Figure 6: Accuracy/ROC–AUC vs. average modularity gap.

adaptive resolution search, governed by Qmin and ∆Q, selects a small set of informative
resolutions, balancing coverage with cost. Across Q1 (homophily-regime benchmarks) and Q2
(large graphs), ATLAS attains competitive or superior accuracy relative to homophilic GNNs
and heterophily-oriented models, while exhibiting fast, stable convergence and a favorable
training footprint once preprocessing is complete.
In future we aim to reduce preprocessing by improving resolution selection. A complementary
direction is community-guided graph rewiring: using the discovered communities to propose
sparse, label-aware edge edits that amplify useful intra-/inter-community signals. and further
improve accuracy.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics Statement. We confirm that we have adhered to the to the ICLR Code of Ethics.
Use of Generative AI. We have used generative Ai to polish the writing, and to check
that the proofs of the theorem and lemma are correct and concise.
Reproducibility Statement. Our source code is available at https://github.com/
atlaspaper16/ATLAS. This github is created through an anonymous account, and thus does
not violate the double blind policy.

References
Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman,

Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. MixHop: Higher-order graph
convolutional architectures via sparsified neighborhood mixing. In Proceedings of the
36th International Conference on Machine Learning (ICML), volume 97 of Proceedings of
Machine Learning Research, pp. 21–29. PMLR, 2019. URL https://proceedings.mlr.
press/v97/abu-el-haija19a.html.

Pradeep Kr. Banerjee, Mitchell Black, Francesco Di Giovanni, Gustavo Montes, Yuval
Peres, and Guido Montúfar. Oversquashing in graph neural networks through the lens of
information contraction. In 2022 60th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), 2022. URL https://allerton.csl.illinois.edu/
files/2022/12/2022-118-paper_9389.pdf.

Wendong Bi, Lun Du, Qiang Fu, Yanlin Wang, Shi Han, and Dongmei Zhang. Make
heterophily graphs better fit gnn: A graph rewiring approach. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 2024. URL https://www.computer.org/
csdl/journal/tk/2024/12/10634240/1ZlBd5BHIWI. Deep Heterophily Graph Rewiring
(DHGR).

Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, 2008. doi: 10.1088/1742-5468/2008/10/P10008.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in
graph convolutional networks. In AAAI Conference on Artificial Intelligence, 2021.

Hao Chen, Yue Xu, Feiran Huang, Zengde Deng, Wenbing Huang, Senzhang Wang, Peng He,
and Zhoujun Li. Label-aware graph convolutional networks. In Proceedings of the 29th
ACM International Conference on Information and Knowledge Management, CIKM ’20,
pp. 1977–1980, 2020. doi: 10.1145/3340531.3412139.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks
with variance reduction. In Proceedings of the 35th International Conference on Machine
Learning (ICML), volume 80 of Proceedings of Machine Learning Research, pp. 942–950,
2018a. URL https://proceedings.mlr.press/v80/chen18p.html.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional net-
works via importance sampling. In International Conference on Learning Representations
(ICLR), 2018b. URL https://openreview.net/forum?id=rytstxWAW.

Zhengdao Chen, Lisha Li, and Joan Bruna. Supervised community detection with line graph
neural networks. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=H1g0Z3A9Fm.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-
gcn: An efficient algorithm for training deep and large graph convolutional networks. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining (KDD), pp. 257–266, 2019. doi: 10.1145/3292500.3330925. URL https:
//arxiv.org/abs/1905.07953.

10

https://github.com/atlaspaper16/ATLAS
https://github.com/atlaspaper16/ATLAS
https://proceedings.mlr.press/v97/abu-el-haija19a.html
https://proceedings.mlr.press/v97/abu-el-haija19a.html
https://allerton.csl.illinois.edu/files/2022/12/2022-118-paper_9389.pdf
https://allerton.csl.illinois.edu/files/2022/12/2022-118-paper_9389.pdf
https://www.computer.org/csdl/journal/tk/2024/12/10634240/1ZlBd5BHIWI
https://www.computer.org/csdl/journal/tk/2024/12/10634240/1ZlBd5BHIWI
https://proceedings.mlr.press/v80/chen18p.html
https://openreview.net/forum?id=rytstxWAW
https://openreview.net/forum?id=H1g0Z3A9Fm
https://arxiv.org/abs/1905.07953
https://arxiv.org/abs/1905.07953

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized
pagerank graph neural network. In International Conference on Learning Representations,
2021.

Lun Du, Xiaozhou Shi, Qiang Fu, Xiaojun Ma, Hengyu Liu, Shi Han, and Dongmei Zhang.
Gbk-gnn: Gated bi-kernel graph neural networks for modeling both homophily and
heterophily. In Proceedings of the ACM Web Conference (WWW), pp. 1551–1560, 2022. doi:
10.1145/3485447.3512201. URL https://dl.acm.org/doi/10.1145/3485447.3512201.

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffu-
sion improves graph learning. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2019. URL https://papers.neurips.cc/paper/
9490-diffusion-improves-graph-learning.pdf.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
KDD, 2016. doi: 10.1145/2939672.2939754. URL https://cs.stanford.edu/~jure/
pubs/node2vec-kdd16.pdf.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In Advances in Neural Information Processing Systems (NeurIPS), volume 30,
2017. URL https://arxiv.org/abs/1706.02216.

Mingguo He, Zhe Wei, Bolin Ding, Yaliang Li, and Ji Liu. Bernnet: Learning arbitrary
graph spectral filters via bernstein approximation. In Advances in Neural Information
Processing Systems, 2021.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowei Liu,
Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets for ma-
chine learning on graphs. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html.

Adarsh Jamadandi, Celia Rubio-Madrigal, and Rebekka Burkholz. Spectral graph pruning
against over-squashing and over-smoothing. In Advances in Neural Information Process-
ing Systems, 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/140aac600566125915df7e74ff538f66-Paper-Conference.pdf.

Bogumił Kamiński, Paweł Prałat, François Théberge, and Sebastian Zając. Predicting
properties of nodes via community-aware features. Social Network Analysis and Mining,
14(117), 2024. doi: 10.1007/s13278-024-01281-2. URL https://link.springer.com/
article/10.1007/s13278-024-01281-2.

Kedar Karhadkar, Pradeep Kr. Banerjee, and Guido Montúfar. FoSR: First-order spectral
rewiring for addressing oversquashing in GNNs. In International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=3YjQfCLdrzz.

B. Khemani. A review of graph neural networks: concepts, architectures, and appli-
cations. Journal of Big Data, 2024. doi: 10.1186/s40537-023-00876-4. URL https:
//journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00876-4.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining
Qian. Finding global homophily in graph neural networks when meeting heterophily. In
International Conference on Machine Learning, 2022.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao,
and Ser-Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and
strong simple methods. In Advances in Neural Information Processing Systems (NeurIPS),
volume 34, pp. 30471–30483, 2021. URL https://papers.neurips.cc/paper_files/
paper/2021/file/ae816a80e4c1c56caa2eb4e1819cbb2f-Paper.pdf.

11

https://dl.acm.org/doi/10.1145/3485447.3512201
https://papers.neurips.cc/paper/9490-diffusion-improves-graph-learning.pdf
https://papers.neurips.cc/paper/9490-diffusion-improves-graph-learning.pdf
https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf
https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf
https://arxiv.org/abs/1706.02216
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2024/file/140aac600566125915df7e74ff538f66-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/140aac600566125915df7e74ff538f66-Paper-Conference.pdf
https://link.springer.com/article/10.1007/s13278-024-01281-2
https://link.springer.com/article/10.1007/s13278-024-01281-2
https://openreview.net/forum?id=3YjQfCLdrzz
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00876-4
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00876-4
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://papers.neurips.cc/paper_files/paper/2021/file/ae816a80e4c1c56caa2eb4e1819cbb2f-Paper.pdf
https://papers.neurips.cc/paper_files/paper/2021/file/ae816a80e4c1c56caa2eb4e1819cbb2f-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sitao Luan, Qincheng Lu, Chenqing Hua, Xinyu Wang, Jiaqi Zhu, Xiao-Wen Chang, Guy
Wolf, and Jian Tang. Are heterophily-specific gnns and homophily metrics really effective?
evaluation pitfalls and new benchmarks. arXiv preprint arXiv:2409.05755, 2024.

Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Simplifying approach to node
classification in graph neural networks. Knowledge-Based Systems, 246:108586, 2022.

M. E. J. Newman. Modularity and community structure in networks. Proceedings of the
National Academy of Sciences, 103(23):8577–8582, 2006. doi: 10.1073/pnas.0601602103.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Li, Yiming Lei, and Bo Yang. Geom-
gcn: Geometric graph convolutional networks. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=S1e2agrFvS.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In KDD, 2014. doi: 10.1145/2623330.2623732.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila
Prokhorenkova. A critical look at the evaluation of GNNs under heterophily: Are
we really making progress? arXiv preprint arXiv:2302.11640, 2023. URL https:
//arxiv.org/abs/2302.11640.

Celia Rubio-Madrigal, Adarsh Jamadandi, and Rebekka Burkholz. GNNs getting ComFy:
Community and feature similarity guided rewiring. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=g6v09VxgFw.

Prithviraj Sen, Gal Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI Magazine, 29(3):93–106, 2008. URL
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157.

Fan-Yun Sun, Meng Qu, Jordan Hoffmann, Chin-Wei Huang, and Jian Tang.
vgraph: A generative model for joint community detection and node represen-
tation learning. In NeurIPS, 2019. URL https://papers.neurips.cc/paper/
8342-vgraph-a-generative-model-for-joint-community-detection-and-node-representation-learning.
pdf.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. LINE: Large-
scale information network embedding. In WWW, 2015. doi: 10.1145/2736277.2741093.

James Topping, Francesco Di Giovanni, Benjamin P. Chamberlain, Xiaowen Dong, and
Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via
curvature. In International Conference on Learning Representations (ICLR), 2022. URL
https://openreview.net/forum?id=7UmjRGzp-A.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. In International Conference on Learning
Representations (ICLR), 2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. Community
preserving network embedding. In AAAI, 2017. URL https://ojs.aaai.org/index.
php/AAAI/article/view/10488.

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In
International Conference on Machine Learning, 2022.

Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr., Christopher Fifty, Tao Yu, and
Kilian Q. Weinberger. Simplifying graph convolutional networks. In Proceedings of the
36th International Conference on Machine Learning (ICML), volume 97 of Proceedings of
Machine Learning Research, pp. 6861–6871. PMLR, 2019a. URL https://proceedings.
mlr.press/v97/wu19e.html.

12

https://openreview.net/forum?id=S1e2agrFvS
https://arxiv.org/abs/2302.11640
https://arxiv.org/abs/2302.11640
https://openreview.net/forum?id=g6v09VxgFw
https://openreview.net/forum?id=g6v09VxgFw
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157
https://papers.neurips.cc/paper/8342-vgraph-a-generative-model-for-joint-community-detection-and-node-representation-learning.pdf
https://papers.neurips.cc/paper/8342-vgraph-a-generative-model-for-joint-community-detection-and-node-representation-learning.pdf
https://papers.neurips.cc/paper/8342-vgraph-a-generative-model-for-joint-community-detection-and-node-representation-learning.pdf
https://openreview.net/forum?id=7UmjRGzp-A
https://openreview.net/forum?id=rJXMpikCZ
https://ojs.aaai.org/index.php/AAAI/article/view/10488
https://ojs.aaai.org/index.php/AAAI/article/view/10488
https://proceedings.mlr.press/v97/wu19e.html
https://proceedings.mlr.press/v97/wu19e.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S.
Yu. A comprehensive survey on graph neural networks. arXiv:1901.00596, 2019b. URL
https://arxiv.org/abs/1901.00596.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna.
Graphsaint: Graph sampling based inductive learning method. In International Conference
on Learning Representations (ICLR), 2020. URL https://openreview.net/forum?id=
BJe8pkHFwS.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph
neural networks: A review of methods and applications. AI Open, 1:57–81, 2021. doi:
10.1016/j.aiopen.2021.01.001.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and
Danai Koutra. Beyond homophily in graph neural networks: Current limita-
tions and effective designs. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2020a. URL https://proceedings.neurips.cc/paper/2020/hash/
58ae23d878a47004366189884c2f8440-Abstract.html.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra.
Beyond homophily in graph neural networks: Current limitations and effective de-
signs. In NeurIPS, 2020b. URL https://proceedings.neurips.cc/paper/2020/file/
58ae23d878a47004366189884c2f8440-Paper.pdf.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-
dependent importance sampling for training deep and large graph convolutional networks.
In Advances in Neural Information Processing Systems, volume 32, pp. 1125–1136, 2019.
URL https://dl.acm.org/doi/10.5555/3454287.3455296.

6 Appendix

Compute environment. All experiments were run on a server with 1× NVIDIA A40
(45 GiB) GPU, 32 vCPUs, 2× Intel Xeon Silver 4309Y @ 2.80 GHz, and 503 GiB RAM.
Software stack: Python 3.10.18; PyTorch 2.4.0+cu124 (CUDA 12.4); PyTorch Geomet-
ric 2.6.1.

6.1 Theoretical Proofs

Lemma. 1. Let L be labels and C a community partition. Let C ′ be a refinement of C, i.e.,
C ′ ⪯ C. Then I(L; C ′) ≥ I(L; C)

Proof. Let total number of elements be n. Then based on the definitions of I(P, Q) in
Section 2;

I(L; C ′) = 1
n

∑
l

∑
c′

nl,c′ log
(

n nl,c′

nl nc′

)
, I(L; C) = 1

n

∑
l

∑
c

nl,c log
(

n nl,c

nl nc

)
,

where nl =
∑

c′ nl,c′ .

13

https://arxiv.org/abs/1901.00596
https://openreview.net/forum?id=BJe8pkHFwS
https://openreview.net/forum?id=BJe8pkHFwS
https://proceedings.neurips.cc/paper/2020/hash/58ae23d878a47004366189884c2f8440-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/58ae23d878a47004366189884c2f8440-Abstract.html
https://proceedings.neurips.cc/paper/2020/file/58ae23d878a47004366189884c2f8440-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/58ae23d878a47004366189884c2f8440-Paper.pdf
https://dl.acm.org/doi/10.5555/3454287.3455296

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

I(L; C ′)− I(L; C)

= 1
n

∑
l

∑
c′

nl,c′ log
(

n nl,c′

nl nc′

)
− 1

n

∑
l

∑
c

nl,c log
(

n nl,c

nl nc

)

= 1
n

∑
c

∑
c′⊆c

∑
l

[
nl,c′ log

(
n nl,c′

nl nc′

)
− nl,c′ log

(
n nl,c

nl nc

)]

= 1
n

∑
c

∑
c′⊆c

∑
l

nl,c′ log
(

nl,c′ nc

nl,c nc′

)
.

Since every c′ ⊆ ofc, therefore nl,c′

nc′
≥ nl,c

nc
. Thus the value in the log is positive, and

I(L; C ′) ≥ I(L; C)

Lemma. 2. Let C a community partition. Let C ′ be a refinement of C, i.e., C ′ ⪯ C. Then
H(C ′) ≥ H(C)

Proof. Let total size n. Based on the definition in Section 2

H(C) = −
∑

c

nc

n
lognc

n
, H(C ′) = −

∑
c′

nc′

n
lognc′

n
.

By grouping the c′ under their parent c:

H(C ′)−H(C) = −
∑

c

∑
c′⊆c

nc′

n
lognc′

n
+

∑
c

nc

n
lognc

n

= 1
n

∑
c

[
−

∑
c′⊆c

nc′ lognc′ + nc log nc

]
.

Since f(x) = −x log x is a concave function and c′ ⊆ c, therefore,∑
c′⊆c

−nc′

n
log nc′

n
≥ −nc

n
log nc

n
.

Thus, H(C ′) ≥ H(C).

Theorem 1. Let L be labels; C a community partition. Let C ′ be a refinement of C,
i.e., C ′ ⪯ C. Then NMI(C ′; L) > NMI(C; L) if and only if ∆I

∆H > NMI(C;L)
2 ; where

∆I = I(C ′; L)− I(C; L) and ∆H = H(C ′; L)−H(C; L)

Proof.
NMI(C; L) = 2 I(C; L)

H(C) + H(L) .

I := I(C; L), I ′ := I(C ′; L), H := H(C), H ′ := H(C ′), HL := H(L).

Also

∆I := I ′ − I, ∆H := H ′ −H.

Based on Lemma 1 and 2 t ∆I ≥ 0 and ∆H ≥ 0. We do not consider edge case where
∆H = 0. To show

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

NMI(C ′; L) > NMI(C; L) ⇐⇒ ∆I

∆H
>

NMI(C; L)
2 .

NMI(C ′; L) > NMI(C; L) ⇐⇒ 2I ′

H ′ + HL
>

2I

H + HL
.

I ′

H ′ + HL
>

I

H + HL
⇐⇒ I ′(H + HL)− I(H ′ + HL) > 0.

Expand using I ′ = I + ∆I and H ′ = H + ∆H:

(I + ∆I)(H + HL)− I(H + ∆H + HL) > 0.

Simplify terms (the I(H + HL) cancel):

∆I (H + HL)− I ∆H > 0.

Thus;
∆I (H + HL) > I ∆H ⇐⇒ ∆I

∆H
>

I

H + HL
.

By definition NMI(C; L) = 2I

H + HL
, so I

H + HL
= NMI(C; L)

2 . Therefore

NMI(C ′; L) > NMI(C; L) ⇐⇒ ∆I

∆H
>

NMI(C; L)
2

6.2 Algorithms

Algorithm 1 Adaptive Resolution Search for Louvain
Require: Graph G, max gap ∆max, gap_range= [a, b]
Ensure: resolutions, community_list
1: C ← ∅; Q← ∅
2: for r ∈ {0.5, 1.0} do ▷ initial resolutions
3: (C[r], Q[r])← Louvain(G, r)
4: while true do
5: L← SortedKeys(Q); rmax ← L[−1]; Qmax ← Q[rmax]
6: if Qmax ≤ τ then
7: break
8: new_r ← None
9: for consecutive (r1, r2) ∈ L do

10: if |Q[r2]−Q[r1]| > ∆max then
11: new_r ← (r1 + r2)/2; break
12: if new_r= None then ▷ extrapolate
13: sample δ ∼ U [a, b]; Q⋆ ← Qmax − δ
14: s← EstimateSlope(Q vs r);
15: new_r ← rmax + Q⋆ −Qmax

s
16: (C[new_r], Q[new_r])← Louvain(G, new_r)
17: resolutions ← { r ∈ SortedKeys(Q) : Q[r] ≥ τ }
18: community_list ← [C[r] for r ∈ resolutions]
19: return resolutions, community_list

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 2 Community-Augmented Feature Projection for Node Classification
Require: Graph G = (V, E), node features X ∈ Rn×d, resolution set Γ = {γ1, . . . , γT },

projection dimension dc

Ensure: Predicted label distribution Ŷ ∈ Rn×C

1: Initialize empty list of embeddings Eemb ← []
2: for γ ∈ Γ do
3: Compute community assignment c(γ) ∈ Nn

4: One-hot encode c(γ): H(γ) ∈ {0, 1}n×kγ

5: Project via trainable weights: E(γ) ← H(γ)W(γ), where W(γ) ∈ Rkγ ×dc

6: Append E(γ) to Eemb
7: Concatenate all embeddings: E← Concat(Eemb) ∈ Rn×(T ·dc)

8: Concatenate with node features: Z←
[
X ∥E

]
∈ Rn×(d+T ·dc)

9: Predict logits with MLP: Y← fθ(Z) ∈ Rn×C

10: Apply softmax: Ŷ← softmax(Y)
11: return Ŷ

6.3 Hyperparameter Details

Dataset Qmin ∆Q Epochs Batch Hidden Layers Dropout LR
Cora 0.1 0.2 200 128 256 3 0.5 1e-4
Pubmed 0.6 0.07 1000 4000 512 3 0.7 1e-4
Tolokers 0.3 0.1 1000 512 512 3 0.7 1e-4
Squirrel-filtered 0.4 0.1 300 128 512 0 0.5 1e-4
Chameleon-filtered 0.3 0.1 200 128 512 0 0.0 1e-4
Amazon-ratings 0.6 0.1 1500 512 512 3 0.5 1e-4
Actor 1.0 0.1 200 128 512 3 0.8 1e-4
Roman-empire 1.0 0.1 500 512 512 3 0.5 1e-4
Flickr 0.1 0.04 60 512 512 3 0.7 1e-4
Reddit 0.3 0.3 1000 8000 512 3 0.5 1e-4
Yelp 1.0 0.1 300 32000 2048 5 0.5 5e-5
AmazonProducts 1.0 0.1 200 64000 2048 5 0.5 5e-5
ogbn-products 0.3 0.1 400 32000 512 3 0.5 1e-4

Table 6: Training hyperparameters by dataset. Qmin is the minimum modularity threshold
and ∆Q is the maximum modularity gap.

6.4 Cora: Accuracy vs. Minimum Modularity Threshold

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Cora: Cumulative (Q, Resolution, Communities) pairs included at each minimum
modularity threshold Qmin (listed in run order), with accuracy. Color coding: pairs colored
in blue are newly added at that Qmin; pairs in gray were added at earlier thresholds and are
carried over.

Min Modularity
Qmin

Pairs
(Modularity, Resolution,Number of Communities) Accuracy

1.0 — 76.61
0.9 — 76.61
0.8 (0.8526, 0.500, 90), (0.8120, 1.000, 103) 79.93
0.7 (0.8526, 0.500, 90), (0.8120, 1.000, 103),

(0.7448, 2.606, 141)
83.66

0.6 (0.8526, 0.500, 90), (0.8120, 1.000, 103),
(0.7448, 2.606, 141), (0.6841, 5.483, 170),

(0.6006, 12.374, 298)

86.50

0.5 (0.8526, 0.500, 90), (0.8120, 1.000, 103),
(0.7448, 2.606, 141), (0.6841, 5.483, 170),

(0.6006, 12.374, 298), (0.5566, 20.068, 325)

84.55

0.4 (0.8526, 0.500, 90), (0.8120, 1.000, 103),
(0.7448, 2.606, 141), (0.6841, 5.483, 170),

(0.6006, 12.374, 298), (0.5566, 20.068, 325),
(0.4909, 32.860, 373), (0.4231, 48.392, 430)

86.15

0.3 (0.8526, 0.500, 90), (0.8120, 1.000, 103),
(0.7448, 2.606, 141), (0.6841, 5.483, 170),

(0.6006, 12.374, 298), (0.5566, 20.068, 325),
(0.4909, 32.860, 373), (0.3748, 63.924, 457),

(0.4231, 48.392, 430)

85.26

0.2 (0.8526, 0.500, 90), (0.8120, 1.000, 103),
(0.7448, 2.606, 141), (0.6841, 5.483, 170),

(0.6006, 12.374, 298), (0.5566, 20.068, 325),
(0.4909, 32.860, 373), (0.3748, 63.924, 457),
(0.4231, 48.392, 430), (0.2784, 95.726, 541)

82.59

0.1 (0.8526, 0.500, 90), (0.8120, 1.000, 103),
(0.7448, 2.606, 141), (0.6841, 5.483, 170),

(0.6006, 12.374, 298), (0.5566, 20.068, 325),
(0.4909, 32.860, 373), (0.3748, 63.924, 457),
(0.4231, 48.392, 430), (0.2784, 95.726, 541),

(0.1792, 136.430, 672)

88.10

0.0 (0.8526, 0.500, 90), (0.8120, 1.000, 103),
(0.7448, 2.606, 141), (0.6841, 5.483, 170),

(0.6006, 12.374, 298), (0.5566, 20.068, 325),
(0.4909, 32.860, 373), (0.3748, 63.924, 457),
(0.4231, 48.392, 430), (0.2784, 95.726, 541),

(0.1792, 136.430, 672), (0.0958, 175.819, 768)

86.32

6.5 Models for homophilic graphs

GCN. Applies a linear map followed by aggregation with the symmetrically normalized
adjacency (after adding self-loops), corresponding to a first-order spectral/Chebyshev ap-
proximation (Kipf & Welling, 2017).
GAT. Learns attention coefficients over neighbors via masked self-attention and aggregates
them with a softmax-weighted sum, enabling data-dependent receptive fields (Veličković
et al., 2018).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

GraphSAGE. Performs permutation-invariant neighbor aggregation (e.g., mean, max-
pooling, LSTM) with fixed fan-out sampling per layer for scalable, inductive mini-batch
training on large graphs (Hamilton et al., 2017).

6.6 Models for heterophilic graphs

H2GCN. Separates ego and neighbor embeddings, aggregates higher-order neighborhoods,
and combines intermediate representations to improve robustness under heterophily (Zhu
et al., 2020a).
LinkX. Separately embeds node features and adjacency (structural) information with MLPs
and concatenates them, capturing complementary attribute and topology signals that scale
to non-homophilous graphs (Lim et al., 2021).
GPR-GNN. Learns signed polynomial (Generalized PageRank) propagation weights, adapt-
ing the filter to both homophilous and heterophilous label patterns and mitigating over-
smoothing (Chien et al., 2021).
FSGNN. Applies soft selection over hop-wise aggregated features with “hop-normalization,”
effectively decoupling aggregation depth from message passing for a simple, shallow baseline
that performs well under heterophily (?).
GloGNN. Augments propagation with learnable correlations to global nodes (including
signed coefficients), enabling long-range information flow and improved grouping on het-
erophilous graphs (Li et al., 2022).
FAGCN. Uses a self-gating, frequency-adaptive mechanism to balance low- and high-
frequency components during message passing, improving robustness across homophily
regimes (Bo et al., 2021).
GBK-GNN. Employs bi-kernel feature transformations with a gating mechanism to integrate
homophily- and heterophily-sensitive signals within a single architecture (Du et al., 2022).
JacobiConv. Adopts an orthogonal Jacobi-polynomial spectral basis (often without non-
linearities) to learn flexible filters suited to varying graph signal densities, yielding strong
performance on heterophilous data (Wang & Zhang, 2022).

6.7 Sampling methods for scalable GNNs

GraphSAGE (node/neighbor sampling). Samples a fixed fan-out of neighbors per
layer and learns permutation-invariant aggregators, limiting the receptive field and enabling
inductive, mini-batch training on large graphs (Hamilton et al., 2017).
FastGCN (layer-wise node sampling). Recasts graph convolution as an expectation
over nodes and draws i.i.d. node sets at each layer via importance sampling, decoupling
batch size from degree and reducing estimator variance (Chen et al., 2018b).
S-GCN / VR-GCN (layer-wise with control variates). Introduces control-variates
using historical activations to stabilize gradients under small per-layer samples and achieve
faster, provable convergence to the full-batch optimum (Chen et al., 2018a).
ClusterGCN (subgraph/block sampling). Partitions the graph and samples dense
clusters as mini-batches, restricting propagation within blocks to boost edge coverage, cache
locality, and memory efficiency at scale (Chiang et al., 2019).
GraphSAINT (subgraph sampling with bias correction). Constructs mini-batches by
sampling subgraphs (node/edge/random-walk policies) and applies unbiased normalization
to correct sampling bias, yielding strong accuracy–efficiency trade-offs on large graphs (?).

6.8 Datasets

We evaluate on two groups of benchmarks that stress complementary regimes.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Large-scale graphs. We use Flickr, Reddit, Yelp, AmazonProducts, and ogbn-products.
Flickr/Yelp/AmazonProducts come from GraphSAINT; Reddit from GraphSAGE; ogbn-
products from OGB (?Hamilton et al., 2017; Hu et al., 2020). Table 8 reports sizes, features,
classes, and splits.
Homophilous and heterophilous graphs. We include Cora, PubMed, Actor, Chameleon-
filtered, Squirrel-filtered, Amazon-ratings, Tolokers, and Roman-empire. For the filtered
Wikipedia, Roman-empire, Amazon-ratings, and Tolokers datasets, we use the exact settings
and splits of Platonov et al. (2023); Cora, PubMed, and Actor follow standard preprocess-
ing (Sen et al., 2008; Pei et al., 2020; Lim et al., 2021). Table 9 lists summary stats, edge
homophily he, and metrics.

Table 8: Dataset statistics (“m” stands for multi-class classification, and “s” for single-class.)

Dataset Nodes Edges Avg. Degree Feature Classes Train / Val / Test

Flickr 89,250 899,756 10 500 7 (s) 0.50 / 0.25 / 0.25
Reddit 232,965 11,606,919 50 602 41 (s) 0.66 / 0.10 / 0.24

Yelp 716,847 6,977,410 10 300 100 (m) 0.75 / 0.10 / 0.15
AmazonProducts 1,598,960 132,169,734 83 200 107 (m) 0.85 / 0.05 / 0.10

ogbn-products 2,449,029 61,859,140 50.5 100 47 (s) 0.08 / 0.02 / 0.90

Table 9: Dataset statistics with edge homophily he and evaluation metric (“Acc” for Accuracy,
“ROC-AUC” for Area Under ROC).

Dataset Nodes Edges Avg. Degree Feature Classes Train / Val / Test he Metric

Cora 2,708 5,429 4 1,433 7 (s) 0.60 / 0.20 / 0.20 0.810 Acc
PubMed 19,717 44,324 5 500 3 (s) 0.60 / 0.20 / 0.20 0.802 Acc

Actor 7,600 30,019 8 932 5 (s) 0.60 / 0.20 / 0.20 0.216 Acc
Squirrel-filtered 2,223 65,718 59 2,089 5 (s) 0.50 / 0.25 / 0.25 0.207 Acc

Chameleon-filtered 890 13,584 31 2,325 5 (s) 0.50 / 0.25 / 0.25 0.236 Acc
Amazon-ratings 24,492 93,050 8 300 5 (s) 0.50 / 0.25 / 0.25 0.380 Acc

Tolokers 11,758 519,000 88 10 2 (s) 0.50 / 0.25 / 0.25 0.595 ROC-AUC
Roman-empire 22,662 32,927 3 300 18 (s) 0.50 / 0.25 / 0.25 0.047 Acc

19

	Introduction
	Related Work
	Our Contribution.

	Theoretical Analysis
	Methodology
	Empirical Evaluation
	Q1: Accuracy Across Homophily Regimes
	Q2: Efficiency and Scalability on Large Graphs
	Q3: Relation of Degree of Homophily to Refinement Level

	Conclusion and Future Work
	Appendix
	Theoretical Proofs
	Algorithms
	Hyperparameter Details
	Cora: Accuracy vs. Minimum Modularity Threshold
	Models for homophilic graphs
	Models for heterophilic graphs
	Sampling methods for scalable GNNs
	Datasets

