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ABSTRACT

We present ATLAS (Adaptive Topology-based Learning at Scale for Ho-
mophilic and Heterophilic Graphs), a novel graph learning algorithm that
addresses two important challenges in graph neural networks (GNNs). First,
the accuracy of GNNs degrades when the graph is heterophilic. Second,
the iterative feature aggregation limits the scalability of GNNs to large
graphs. We address these challenges by extracting topological information
about the graph communities at different levels of refinement, concatenating
the community assignments to the feature vector, and applying multilayer
perceptrons (MLPs) on this new feature vector. By doing so, we inherently
obtain the topological data about the nodes and their neighbors without
invoking aggregation. Because MLPs are typically more scalable than GNNs,
our approach applies to large graphs—without the need for sampling.

Our results, on a wide set of graphs, show that ATLAS has comparable
accuracy to baseline methods, with accuracy being as high as 20 percentage
points over GCN for heterophilic graphs with negative structural bias and
11 percentage points over MLP for homophilic graphs. Furthermore, we
show how multi-resolution community features systematically modulate per-
formance in both homophilic and heterophilic settings, opening a principled
path toward explainable graph learning.

1 INTRODUCTION

Node classification, a fundamental problem in graph learning, involves identifying labels
of nodes in a graph and has wide applications in many domains including social networks,
citation networks, recommendation systems, knowledge graphs and bioinformatics (Khemani,
2024; 'Wu et al.l 2019b; |[Zhou et al., [2021)). Accurate classification requires two orthogonal
pieces of information—(i) the features at each node, and (ii) the connections between the
node and its neighbors. Neural network methods such as Multi-Layer Perceptrons (MLPs)
are fast but do not include information about the connections. Graph Neural Networks
(GNNs) address this problem by aggregating the features between neighboring nodes, but
the process is expensive, and difficult to scale to large graphs. Although the graph structure
can be included in the feature vectors using different node embedding techniques (Perozzi
et al.l |2014; |Grover & Leskovec, 2016; |Tang et al.l [2015]), and recently through the use
of community detection (Wang et al., 2017; |Sun et all |2019; |Kaminski et al., [2024), the
issue remains as to how many hops of neighbors should be considered and how fine-grained
the communities should be. Taking larger hops or coarse grained community can lead to
information smoothing, while taking smaller hops or fine grained communities can lead to
information loss. Further, the hypothesis that aggregating features of neighbors can improve
accuracy of node classification is only true for homophilic networks (where nodes of similar
classes are connected). In heterophilic networks, where the connection between nodes need
not imply similarity of class, this strategy actually leads to lower accuracy. Based on these
observations, we posit, matching structural information (i.e. size of hops or communities)
with how well it aligns with the classification is necessary for producing accurate results.
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1.1 RELATED WORK

Graph Neural Networks (GNNs) have become a core tool for learning on graphs
[& Welling} 2017; Hamilton et al., [2017). Most algorithms are based on message passing:
each layer aggregates transformed neighbor features to form topology-aware embeddings.
This implicitly assumes homophily(Wu et all [2019a). The same bias, however, can blur
informative distinctions on weakly homophilous or heterophilous graphs (Zhu et al., 2020al).

Sampling-based GCN. Scaling GNNs on large graphs is challenging due to memory
requirement, and cost of aggregation. Sampling-based methods construct mini-batches from
parts of the graph to approximate full-batch propagation—via node-wise (GraphSAGE
(Hamilton et all [2017)), layer-wise (FastGCN (Chen et al., [2018b))), or subgraph sampling
(Cluster-GCN, GraphSAINT (Chiang et al., 2019; |Zeng et al., |2020)). However, sampling
introduces stochasticity that affects convergence rates and reproducibility (Chen et al.l 2018bt

Fon ct al], 2019).

Community Structure in GNNs. Recently community detection (Newman) |2006; Blondel|
has been used to improve performance of GNNS. Information from communities
can be integrated into GNN—via line-graph supervision or label-aware aggregation
let al., 2019; 2020)). Recent graph rewiring approaches constrain edits using community
information (Karhadkar et al.| [2023} [Jamadandi et al., 2024} |Rubio-Madrigal et al.l [2025).

~—

Learning on Non-Homophilous Graphs. Recent research also focuses on addressing the
problem of learning in graphs that do not exhibit homophily. One approach is to preserve
self-features while selectively injecting neighborhood signals (H2GCN (Zhu et al., 2020D)),
GloGNN (Li et al 2022))). Another approach is to negate misleading neighbors (GPR-
GNN (Chien et al.; [2021), FAGCN (Bo et al., [2021))). Some methods leverage higher-order
structures (MixHop (Abu-El-Haija et all) [2019)); other methods try to identify homophilic
and heterophlhc signals based on kernel features and spectral filters (JacobiConv (W

s, 3093, Bt He ot o) 5021) GBI GAN (D et 81, 200%).

Graph rewiring is another approach to addressing heterophily. Graph rewiring focuses on
adding edges between similar nodes and removing edges between edges that are dissimilar.
Several methods can be used for rewiring, including adding edges within intra-community
nodes or nodes with similar features, deleting edges between inter-community nodes, and
rewring to maximize the spectral distance (Topping et al., 2022; Karhadkar et al., 2023}
|Gasteiger et al., 2019; Bi et al.l [2024; [Rubio-Madrigal et al., |2025; Banerjee et al. [2022]).

1.2 OuUR CONTRIBUTION.

Most of the curent research either focuses primarily on homophilic graphs, or the processes
to address the heterophilic graphs are require expensive operations, such as signal identifica-
tion/modification, rewiring or spectral gap maximization. These methods cannot efficiently
scale to large graphs. Our primary contribution is to develop Adaptive Topology -based
Learning at Scale (ATLAS) [*] a novel graph learning algorithms that can produce high-
accuracy results for both homophilic and heterophilic graphs. ATLAS is based on a simple
but powerful technique of refining communities in networks to match the degree of homophily.

Rationale. Our algorithm is based on quantifying homophily through the lens of normalized
mutual information (NMI). Given two partitions of the same set of elements NMI measures
how well the partitions correspond to each other. If we consider one partition as the
communities in the graph, and the other partition as labels, then NMI provides a measure for
the degree of homophily in the graph. ATLAS focuses on refining/coarsening communities to
identify the region of highest NMI—which will correspond to the highest accuracy. Figure
provides an overview of ATLAS.

Our specific contributions are;

1. Theory. We provide a theoretical analysis of how refining communities changes in
NMI (Section [2)).

*Apart from the acronym, the name ATLAS is to convey our method can handle different degrees
of homophily, similar to how an atlas encompasses all different countries.
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2. Algorithm. Based on this mathematical understanding we develop our algorithm
ATLAS (Section [3).

3. Experiments. Provide extensive empirical evaluations by comparing ATLAS across
a mix of 13 (8 medium size and 5 large) homophilic and heterophilic graphs, and 12
(7) GNN/MLP-based algorithms for medium sized (large) graphs (Section [)).

Node Features

Node Features

Graph Features

MLP

G Node Features Augmented

with Community Features
Communlty Features Graph Features
Concatenation

Figure 1: Overview of the community-augmented feature learning pipeline. Community
assignments at multiple resolutions are one-hot encoded, projected, concatenated with node
features, and input to an MLP for classification.

2 THEORETICAL ANALYSIS

We mathematically show how refining communities leads to changes in NMI. We define some
terms that will help us in the analysis. The proofs of the theorems are given in the appendix.

Let N be the set of nodes. Let P = {P,..., P;} be a partitfon of N; i.e.
Pi#£@, PNP = (i#j), and UR_N

Let S = {S1,...,Sn} be another partition of N. We say S z'%szclz refinement of P (denoted as
S =< P) iff every block of S is contained in some block of P. Formally:

SXP <+ VS;€853P € Psuchthat S; C F;.
Normalized mutual information (NMI) is a popular measure to quantify alignment between

two partitions. Given two partition P and @, over a set of N elements and n;; = |P,NQ;|,n; =
|P;|,n; = |Qj| their normalized mutual information is given as;

21(P;Q)
NMI(P,Q) = —————
S (OEa(7)
I(P;Q) = Zle Z;n:1 “ log (JZ—Z;) is the mutual information between partitions P

and @. This quantity measures how much information is shared between the partitions P
and Q The higher the value, the better the alignment between the partitions. H(P) =

— Zl 1 3 log ( ) is the entropy of partition P. H(Q) is defined similarly. The entropy
measures the dlstrlbution of points in each partition. Low entropy means data is concentrated
in few clusters, and is indicative of good clustering.

The value of NMI ranges from 1 (indicating complete alignment between partitions) to close
to 0 (indicating complete mismatch between partitions). NMI is high if the partitions are
well matched (I(P, Q) is high), and entropy is low (H(P), H(Q) is low).

Lemma 1 (Refinement does not decrease mutual information). Let L be labels and C a
community partition. Let C' be a refinement of C, i.e., C' < C. Then I(L;C") > I(L;C)
Lemma 2 (Refinement does not decrease entropy). Let C' a community partition. Let C' be
a refinement of C, i.e., C' < C. Then H(C") > H(C)
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Based on Lemma [I] and Lemma ] we see

that while refinement improves the mutual (6,K)=0

information leading to better alignment, it H(G)=.97
. . H(K)=1

also increases the entropy leading to more NMI=0

noise or uncertainty. The condition at whch

NMI will increase is given by Theorem [I] HGK=1
Theorem 1 (NMI Refinement Condi- @ @ @ @ ::%):11.97
tion). Let L be labels; C a community NMI=.67
partition.  Let C' be a refinement of 1GK)=1
C, ie, C' X C. Then NMIC';L) > @ @ @ @ @ :(:%)_:1332
NMI(C; L) if and only if 2L > @ @ @ @ @ wews
NMICD) - where AI = 1(C; L) — I(C; L)
and AH = H(C';L) — H(C; L) Figure 2: Effect of refinement on NMI. Ini-
tially when clusters have mixed items, NMI is
Theorem [T]states that a partition refinement low. The first refinement matches the items
improves the normalized mutual information and Cluster& increasing the NMI. Further re-
with respect to labels if and only if the mu- finement does not improve the alignment (mu-
tual information gain per unit of entropy tual information), but increases the spread
increase exceeds half the original normalized (entropy), thus decreasing NMI.
mutual information value.

3 METHODOLOGY

The theorems in Section ] are based on ide-

alized condition, where refined communities

are perfect subset of the original communities. In practice, refinement in communities is
achieved by modifying a resolution parameter. Although higher resolution leads to smaller
communities, due to inherent non-determinism of community detection methods, the smaller
communities may not be exact subsets.

Preprocessing. Communities in networks are often hierarchical, so we treat the resolution
parameter v as the hierarchy level. We start from two initial resolutions (0.5 and 1.0) and set
three hyperparameters: a gap threshold Ap.x, a minimum modularity 7, and a small target-
drop range [a,b]. Let v, and 75 be two consecutive resolution parameters, with community
sets ¢(™) and ¢2) and modularities Q") and Q72); we define the modularity gap as AQ =
|Q(72) — Q(’“)|. At each iteration, we sort the tested resolutions and examine consecutive
pairs. If the gap between a pair exceeds Apax, we find their midpoint (interpolation).
Otherwise, we extrapolate beyond the current maximum by estimating the local slope of
modularity with respect to resolution and taking a small forward step expected to reduce
modularity by a random amount drawn from the drop range. Once the new = is obtained we
compute the communities at that value. The loop stops when the latest modularity falls
below 7 or no new resolution is produced. The procedure returns the retained resolutions
and their corresponding community assignments; see Algorithm [I] in appendix.

Figure [3] illustrates this process of generating sets of resolution paramters. In Step 1 and
Step 2, the communities are obtained with initial resolutions vy and ;. Step 3 shows an
example of interpolation to s, and steps 4 and 5 show extrapolation to finer resolutions
at 3 and 4. Note that v > v2 > 71 > 73 > 74, and the communities for one resolution
parameter is the refinement of the previous larger resolution parameter.

Feature Augmentation. For a given resolution parameter v, the communities be ¢(?)
{1,...,ky}, and and each node is assigned to one of the communities in k.. This assignment
is represented as a one-hot encoded matrix H( ( equation . To reduce dimensionality,
each one-hot matrix is projected into a dense embedding space using a trainable weight
matrix W) equation. The embeddings from all resolutions are concatenated to form
E ( equation , which is then further concatenated with the original features X to yield
the augmented feature matrix Z. The augmented feature matrix Z is fed to an MLP fy to
produce logits; a task-dependent function ¢ (e.g., softmax or elementwise sigmoid), applied

row-wise, converts them to probabilities Y ( equation .
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Figure 3: Illustration of the Adaptive Resolution Search Process. The resolution limits,
Y4 < v3 <1 < 2 < 7Y, and the communities C"° < C7"? X C" K C" X C".

X eR™ T ={vy,...,97} (1)
¢ = DetectCommunity(G,~), < € {1,... k}" (2)
H" = OneHot(c™) € {0,1}"** (3)
EO = HOW® W g RFrxde (4)
E = ||,_,B0Y € R (T4 (5)
Z = [X | E] € R (#HTde) (6)
Y = ¢(fo(2)) € [0,1]"*¢ (7)

Complexity Analysis. We compare computational and memory complexities of represen-
tative scalable GNN frameworks with our approach in Table[I] ATLAS performs Louvain
clustering in O(T||A||o) in the preprocessing step, keeps a single augmented feature buffer,
and trains with per-epoch time O(LffN(D—i—Tdc)z) and memory O(bLff(D—l—Tdc))7 enabling
simple i.i.d. node mini-batching without neighborhood expansion or graph-dependent batch-
ing heuristics. ATLAS performs adjacency-free inference: with fixed augmented features of
dimension D+Td,., prediction is a forward pass with complexity O(N (D+Tdc)2).

4 EMPIRICAL EVALUATION

In this section, we provide the empirical results comparing ATLAS with other graph learning
methods. Our experiments focus on answering the following research questions;

Q1. How accurate is ATLAS compared to baseline methods over graphs with different
degrees of homophily?

Q2. How well can ATLAS scale to large graphs, while maintaining high accuracy?

Q3. How does degree of homophily affect the optimal refinement level?

Datasets. We use 8 medium-size graphs (Cora, PubMed, Tolokers, Squirrel-filtered,
Chameleon-filtered, Amazon-ratings, Actor, Roman-empire) and 5 large graphs (Flickr,
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Table 1: Complexity comparison. N = #nodes, ||A|lo = #edges, D = feature dim, L =
#message-passing layers, Ly = #feed-forward layers, b = batch size, r = sampled neighbors
(or filter size), T = #resolutions, d. = community-embedding dim.

Method Preprocessing Training per epoch (time) Memory
GCN (full-batch) - O(L ||AlloD + LND?) O(LND + LD?)
FastGCN - O(r’ND?) O(br*D 4 LD?)
S-GCN (VR-GCN) - O(rLND?) O(LND)
ClusterGCN O(||Allo) O(L | AlloD + LND?) O(bLD + LD?)
GraphSAINT O(kN) O(L ||AloD + LND?) O(bLD)
ATLAS O(T||Allo) O(LsfN(D + Td.)?) O(bLyss(D +Td,.))

Table 2: Eight-benchmark comparison across homophily regimes. Metrics are mean accu-
racy (%) + standard deviation, except Tolokers, which reports ROC-AUC (%). Baseline
heterophily-oriented model results are from [Platonov et al.| (2023)); Luan et al. (2024). Bottom
rows report ATLAS improvements over baselines (absolute percentage points).

High structural bias Low structural bias Negative structural bias
Cora Tolokers PubMed Squirrel-filtered  Chameleon-filtered ~Amazon-ratings Actor Roman-empire
Model he=0.810 he=0.595 he=0.802 he=0.207 he=0.236 he=0.380 he=0.216 he=0.047
MLP(2L) 75.44 +£1.97 72.974+0.90 ‘ 87.25 +0.41 34.29 + 3.34 36.00 £ 4.69 39.83 +0.48 ‘ 34.96 +0.71 65.58 +0.34
GCN 87.01 +1.04 74.93 +1.32 86.71+0.42 3270 £1.73 37.11£3.04 42.78 £ 0.14 28.49 £ 0.91 45.68 £0.38
SAGE 87.50 4+ 0.87 80.95 £ 0.92 88.42 4+ 0.55 33.32+1.75 38.83 £4.26 44.67 £ 0.51 34.08 £ 1.07 76.21 & 0.65
GAT 87.74 +0.88 75.31+1.35 86.18 + 0.64 32.61 +2.06 37.18 £3.44 43.25 +0.85 29.11+1.23 47.16 £ 0.66
H,GCN 87.52+0.61 73.35+1.01 87.78 £0.28 35.10+ 1.15 26.75 + 3.64 36.474+0.23 38.85 + 1.17 60.11 4+ 0.52
LinkX 82.62 4 1.44 81.15+£1.23 88.12 4+ 0.47 42.34+£4.13 40.10 £ 2.21 52.66 4 0.64 35.64 + 1.36 56.15 4 0.93
GPR-GNN 79.51 +0.36 72.94+0.97 85.07 £ 0.09 38.95+1.99 39.93 £3.30 44.88 +0.34 39.30 £0.27 64.85+0.27
FSGNN 87.51+1.21 82.76 £0.61 90.114+0.43 35.92+1.32 40.61 £2.97 52.74 4+ 0.83 37.65+0.79 79.92 & 0.56
GloGNN 87.67+1.16 73.39 £ 1.17 90.32 + 0.54 35.114+1.24 25.90 £ 3.58 36.89 4+ 0.14 39.65 + 1.03 59.63 & 0.69
FAGCN 88.85 4+ 1.36 77.75+1.05 89.98 + 0.54 41.08 +£2.27 41.90 £2.72 44.124+0.30 31.59 +1.37 65.22 4 0.56
GBK-GNN 87.09 & 1.52 81.01 £ 0.67 88.88 +0.44 35.51 +1.65 39.61 £ 2.60 45.98 +£0.71 38.47 4+ 1.53 74.574+0.47
JacobiConv 89.61 4+ 0.96 68.66 + 0.65 89.99 + 0.39 29.71 + 1.66 39.00 +4.20 43.55 + 0.48 37.48 +£0.76 71.14 4+ 0.42
ATLAS (Ours) 87.09 +1.62 81.39 + 0.76 ‘ 88.29 +0.62  38.30 £ 2.31 40.17 £ 4.06 53.15 + 0.61 ‘ 38.07+0.93 66.22 £+ 0.53
ATLAS—MLP (pp) +11.65 +8.42 +1.04 +4.01 +4.17 +13.32 +3.11 +0.64
ATLAS—GCN (pp) +0.08 +6.46 +1.58 +5.60 +3.06 +10.37 +9.58 +20.54
ATLAS—Average (pp) +1.42 +5.13 +0.06 +2.75 +3.26 +9.17 +2.63 +2.37

Reddit, Yelp, Amazon-Products, OGBN-Products). We report accuracy for all medium-size
datasets except Tolokers, which is evaluated by ROC-AUC; for large graphs, we report F1-
micro on Flickr/Reddit/Yelp/Amazon-Products and accuracy on OGBN-Products. Complete
statistics of the datasets are given in Appendix Tables [9] and

Baselines. We group baselines by modeling regime and map them to the research questions.
Q1 (homophily-regime). Homophilic: GCN (Kipf & Welling}, 2017), GraphSAGE (Hamilton
et all,[2017), GAT (Velickovi¢ et all, 2018). Heterophily-oriented: HoGCN (Zhu et al.,[2020a
LinkX (Lim et al., 2021, GPR-GNN iChien et al., 2021)), FSGNN (Maurya et al., [2022),
GloGNN (LLi et al., 2022), FAGCN (Bo et al. [2021), GBK-GNN (Du et al., 2022), Jacobi-
Conv (Wang & Zhang, [2022)). Q2 (scalability). Sampling-based: GraphSAGE (Hamilton|
let al., 2017), FastGCN (Chen et al., 2018b), S-GCN (variance-reduced) (Chen et al., 2018a),

ClusterGCN ((Chiang et al. [2019), GraphSAINT (Zeng et al.| |2020). Description of these
methods are provided in the Appendix.

We use an L-layer MLP with hidden width dy;q and dropout rate p. Each of the first L—1
layers applies Linear (with bias) — LayerNorm — GELU — Dropout. The final layer is a
Linear classifier to C classes.

4.1 QI1: Accuracy ACROss HOMOPHILY REGIMES

Table [2| shows results for the eight medium-sized benchmarks. On average, ATLAS shows
as much as 20 percentage points over GCN for graphs with negative structural bias and
as much as 11 percentage points over MLP for graphs with high structural bias. Overall,
ATLAS closes the MLP—GNN gap and delivers results that are consistently comparable to
the best model on each dataset.
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Table 3: Large-graph performance. Fl-micro for Flickr/Reddit/Yelp/Amazon-Products;
accuracy for OGBN-Products. Baselines from [Zeng et al| (2020); [Hu et al.| (2020)). Bottom
rows report ATLAS improvements over MLP and over GCN (absolute units).

High structural bias Low structural bias Negative structural bias
Reddit ogbn-products Flickr Yelp AmazonProducts
Method he=0.756 he=0.808 he=0.319 he=0.809 he=0.116
MLP  0.7435 &+ 0.0016 0.6106 + 0.0008 | 0.4717 £ 0.0011 | 0.6546 & 0.0011 0.8204 + 0.0002
GCN 0.9330+0.0000 0.7564+0.0021 | 0.4920+0.0030 | 0.3780£0.0010 0.2810+0.0050
GraphSAGE 0.9530+0.0010 0.8061+0.0016 0.5010+0.0130 0.6340+0.0060 0.7580+0.0020
FastGCN 0.92404+0.0010 0.7346+0.0020 0.5040+0.0010 0.2650+0.0530 0.17404+0.0210
S-GCN 0.9640+0.0010 0.7590+0.0000 0.4820+0.0030 0.6400+0.0020 —
ClusterGCN 0.9540+0.0010 0.7862+0.0061 0.4810+0.0050 0.6090+0.0050 0.7590+0.0080
GraphSAINT 0.9660+0.0010 0.7536+0.0034 0.511040.0010 0.653040.0030 0.815040.0010
ATLAS (Ours) 0.9574 +0.0004 0.7865 £ 0.0053 | 0.5064 & 0.0017 | 0.6546 £ 0.0011 0.8204 % 0.0002
ATLAS—MLP +0.2139 +0.1759 +0.0347 +0.0000 +0.0000
ATLAS—-GCN +0.0244 +0.0301 +0.0144 +0.2766 +0.5394
ATLAS— Average +0.0378 +0.0427 +0.0146 +0.1069 +0.2192

Table 4: Computation time breakdown (in seconds) on OGBN-Products. We report prepro-
cessing, average per-epoch training, and inference time. Values are mean + std over repeated
runs. For methods with heavy one-time preprocessing, we separate that cost.

Model Preprocessing Time Per-epoch Train Time Inference Time
GCN — 2.0395 £+ 0.0006 0.9220 £ 0.0010
Cluster-GCN 168.754 £+ 1.777 (one-time) 4.017 £0.164 82.837 £ 0.622
GraphSAINT 3.770 £ 0.159 (per epoch) 0.751 £ 0.046 66.445 + 0.517
ATLAS (Ours) 391.894 + 14.387 (one-time) 0.181 4 0.0058 0.526 4 0.0038

Table 5: Preprocessing (community detection), training, and inference times. Values are
mean + sample std in seconds across runs.

Dataset Preprocessing Time Per-epoch Train Time Inference Time
Reddit 84.904 + 2.764 0.143 + 0.002 0.150 4+ 0.005
Flickr 6.800 + 1.741 0.241 + 0.005 0.056 + 0.012
Yelp 15.842 4+ 0.007 2.670 + 0.007 1.613 £+ 0.016
AmazonProducts 72.270 + 1.409 6.073 £+ 0.039 3.056 4+ 0.019

4.2 Q2: EFFICIENCY AND SCALABILITY ON LARGE GRAPHS

Accuracy. Table [3] results demonstrate that ATLAS is scalable and delivers competitive
accuracy on million-scale graphs while maintaining clear gains over MLP and GCN. On
average, ATLAS shows as much as +.53 points over GCN for graphs with negative structural
bias and as much as +.21 percentage points over MLP for graphs with high structural bias.

Convergence. ATLAS converges rapidly and stably across large graphs: training loss decreases
smoothly, and validation performance (F1l-micro for Flickr/Reddit/Yelp/Amazon-Products;
accuracy for OGBN-Products) plateaus early with a small train—validation gap. The curves
exhibit no late-epoch degradation and remain stable after convergence (see Fig. [4).

Efficiency. Table[d]compares preprocessing, per-epoch training, and inference times on OGBN-
Products. ATLAS requires a higher one-time preprocessing cost yet attains competitive
training speed and the best inference time, offering a balanced trade-off between training
scalability and evaluation efficiency. Table [5| shows the time for the other large graphs

tWe could not compare with the baselines for these, as the optimal hyper-parameters are not

known.
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Figure 4: The convergence landscape of ATLAS.

4.3 Q3: RELATION OF DEGREE OF HOMOPHILY TO REFINEMENT LEVEL

We quantify the level of community refinement by the minimum modularity threshold Qmin-
Large Qumin preserves only coarse partitions; lowering Quin progressively adds medium and
fine partitions, yielding a multi-scale representation. We group graphs based on how well
the communities align with node labels as follows;

o High structural bias (e.g., Cora, Tolokers): community aligns with labels; decreasing Qmin
(adding more scales) improves the metric (accuracy for Cora; ROC-AUC for Tolokers)
until fine partitions yield marginal gains or mild saturation. See Figure [5} top left and
bottom left.

o Low structural bias (e.g., Amazon-Ratings, Chameleon-filtered): communities provide
limited label-aligned signal; coarse partitions give small gains, while finer ones add little
beyond saturation. See Figure [5} top center and bottom center.

o Negative structural bias (e.g., Actor, Roman-Empire): community misaligns with labels;
adding finer partitions introduces misleading locality and degrades performance relative
to the high-Q,in (feature-dominant) regime. See Figure |5 top right and bottom right.

Ezample (Cora). For a specific example, consider the Cora graph (Fig. |5| top left; Table [7)),
Qmin €{1.0,0.9} retains no partitions and accuracy is 76.61%. At Qmumin = 0.8, two coarse
partitions are added and accuracy rises to 79.93%; at 0.7, adding one medium partition yields
83.66%; at 0.6, two finer partitions reach 86.50%. Accuracy peaks at 88.10% for Qumin = 0.1,
then slightly drops at 0.0 after adding the most fragmented partition, indicating diminishing
returns from very small communities. The effect of cumulative community features depends
on a dataset’s structural bias (more details in Table [7|in appendix).

Effect of Modularity Gap. The set of refinement levels depends heavily on the modularity
gap. For graphs with high structural bias (Figure[6{a)), accuracy is flat-to-low when the avg.
modularity gap is tiny (g € [0,0.05]), climbs to a brief sweet spot around g ~ 0.06—0.09,
and then tails off past ~ 0.10 indicating increase in entropy outweights gain in mutual
information. For graphs with low structural bias (Figure [6(b)) increasing modularity gap
does not change the accuracy, as the communities are already misaligned, and gain in mutual
information is not significant.

5 CONCLUSION AND FUTURE WORK

We presented ATLAS, a community-augmented learning framework that enriches node
features with multi-resolution Louvain embeddings and trains a compact MLP classifier. An
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Figure 5: Effect of cumulative community-derived features gated by minimum modularity in
homophilic (Strong structural bias, left), Benign heterophilic (Weak structural bias, middle)
and Malignant heterophilic (Negative structural bias, right) settings.
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Figure 6: Accuracy/ROC-AUC vs. average modularity gap.

adaptive resolution search, governed by Qumin and AQ, selects a small set of informative
resolutions, balancing coverage with cost. Across Q1 (homophily-regime benchmarks) and Q2
(large graphs), ATLAS attains competitive or superior accuracy relative to homophilic GNNs
and heterophily-oriented models, while exhibiting fast, stable convergence and a favorable
training footprint once preprocessing is complete.

In future we aim to reduce preprocessing by improving resolution selection. A complementary
direction is community-guided graph rewiring: using the discovered communities to propose
sparse, label-aware edge edits that amplify useful intra-/inter-community signals. and further
improve accuracy.
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6 APPENDIX

Compute environment. All experiments were run on a server with 1x NVIDIA A40
(45 GiB) GPU, 32 vCPUs, 2x Intel Xeon Silver 4309Y @ 2.80 GHz, and 503 GiB RAM.
Software stack: Python 3.10.18; PyTorch 2.4.0+cul24 (CUDA 12.4); PyTorch Geomet-
ric 2.6.1.

6.1 THEORETICAL PROOFS

Lemma. 1. Let L be labels and C' a community partition. Let C' be a refinement of C, i.c.,
C'<C. Then I(L;C") > I(L; C)

Proof. Let total number of elements be n. Then based on the definitions of I(P,Q) in
Section

1 nn.e 1 nNc
IL'C’:—E E o 1 —, IL;C:—E E el —,

( 7 ) n 1 o/ nl’ Og(’nlnc/) ( ) n 1 c nl, Og(nlnC)
where ny =Y ny e
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I(L;C") — I(L; C)

1 / 1

l

1 NNy nnic
=522 | log| L ) = i log L
n ¢ eCe 1 ny Ner ny e
1 Ny Ne
S R )
n c c¢/Ce 1 M,e Ne!
Since every ¢ C ofc, therefore % > % Thus the value in the log is positive, and
I(L;C") > I(L; C) O

Lemma. 2. Let C' a community partition. Let C' be a refinement of C, i.e., C' < C. Then
H(C") > H(C)

Proof. Let total size n. Based on the definition in Section [2]

H(C) = —Z%log%7 HC) = =Y

c e’

By grouping the ¢’ under their parent c:

HC)-HCO) =-Y Y log% + 3 % log%

n
c c¢'Ce

= %Z — Z Net lognc/ + nc IOg Ne |-

c’'Cec
Since f(z) = —zlogx is a concave function and ¢’ C ¢, therefore,
Ner Ner Ne Ne
E ——log— > ——log—.
n n n n
c’'Ce

Thus, H(C") > H(C).
O

Theorem 1. Let L be labels; C' a community partition. Let C' be a refinement of C,
i.e., ¢! =2 C. Then NMI(C';L) > NMI(C;L) if and only if AA—IS > %CL), where
Al =I(C";L)—I(C;L) and AH =H(C';L) — H(C; L)

Proof.
21(C;L)

NMI(C; L) = O TED)

I:=1(C;L), I':=1(C"; L), H:=H(C), H' :=H(C), Hp = H(L).
Also

Al:=I' -1, AH:=H —H.

Based on Lemma 1 and 2 t Al > 0 and AH > 0. We do not consider edge case where
AH = 0. To show
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AI  NMI(C; L)
NMI(C’; L) > NMI(C; L = S
(C5L) > (C;L) = N 5
21 N or
H +H, H+H,

NMI(C’; L) > NMI(C; L) <

I - I
H' +H, H+H

<:>I,(H+HL)—I(H/+HL) > 0.
Expand using I’ =1+ Al and H' = H + AH:

(I+AI)H + Hy) - I(H + AH + Hp) > 0.

Simplify terms (the I(H + Hp) cancel):

AI(H+ Hp)—IAH > 0.

Thus;
Al 1

AI(H + Hy) > IAH A
(H + Hy) > = AR H+iH

. Therefore

21 I NMI(C; L
By definition NMI(C: L) = = 50 e = (20, )
L L

AI _ NMI(C; L)

!, . -
NMI(C’; L) > NMI(C; L) <= N 5

6.2 ALGORITHMS

Algorithm 1 Adaptive Resolution Search for Louvain

Require: Graph G, max gap Ay, gap_range= [a, b]
Ensure: resolutions, community_list

C—0;Q <+ 0

(C[r], Qlr]) + LouvaIN(G, )
while true do
L + SORTEDKEYS(Q); Tmax < L[—1]; Qmax ¢ Q[rmax]
if Quax < 7 then
break
new_r < None
for consecutive (r1,72) € L do
if [Q[r2] — Q[r1]| > Amax then
new_r < (r1 +r2)/2; break
12: if new r= None then
13: sample § ~ U[a,b]; Q* + Qmax — 9
14: s < ESTIMATESLOPE(Q vs 7);
s
16: (Clnew_r], Qnew_r]) + LOUVAIN(G, new_r)
17: resolutions < {r € SORTEDKEYS(Q): Q[r] > 7}
18: community_list < [C[r] for r € resolutions]
19: return resolutions, community_list

PN PO W

— =
e

15: New_ I < Tmax +

: for r € {0.5,1.0} do > initial resolutions

> extrapolate
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Algorithm 2 Community-Augmented Feature Projection for Node Classification

Require: Graph G = (V, E), node features X € R™*?  resolution set I' = {,...

projection dimension d.

Ensure: Predicted label distribution Y € R?*¢

: fory eI do

Append EM to .,

,_.
=]

:return Y

—
—_

: Initialize empty list of embeddings Eemp + []

Compute community assignment c(?) € N
One-hot encode ¢(: H ¢ {0, 1}”ka

Project via trainable weights: EO) <+ HOWO) | where W) g RF»xde

Concatenate all embeddings: E «+ Concat(Eepp,) € R (T7de)
Concatenate with node features: Z «+ [X || E] € Rm*(d+Tdc)
Predict logits with MLP: Y « fq(Z) € R"*¢
Apply softmax: Y « softmax(Y)

7"YT}7

6.3 HYPERPARAMETER DETAILS

Dataset Qmin AQ Epochs Batch Hidden Layers Dropout LR
Cora 0.1 0.2 200 128 256 3 0.5 le4
Pubmed 0.6 0.07 1000 4000 512 3 0.7 le4
Tolokers 0.3 0.1 1000 512 512 3 0.7 le4
Squirrel-filtered 04 0.1 300 128 512 0 0.5 1le4
Chameleon-filtered 0.3 0.1 200 128 512 0 0.0 le4
Amazon-ratings 0.6 0.1 1500 512 512 3 0.5 le4
Actor 1.0 0.1 200 128 512 3 0.8 le4
Roman-empire 1.0 0.1 500 512 512 3 0.5 le4
Flickr 0.1 0.04 60 512 512 3 0.7 le4
Reddit 0.3 0.3 1000 8000 512 3 0.5 le-4
Yelp 1.0 0.1 300 32000 2048 5 0.5 b5e-5
AmazonProducts 1.0 0.1 200 64000 2048 5 0.5 5e-b
ogbn-products 0.3 0.1 400 32000 512 3 0.5 le4

Table 6: Training hyperparameters by dataset. Qui, is the minimum modularity threshold
and AQ is the mazimum modularity gap.

6.4 CORA: ACCURACY VS. MINIMUM MODULARITY THRESHOLD
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Table 7: Cora: Cumulative (@, Resolution, Communities) pairs included at each minimum
modularity threshold Qi (listed in run order), with accuracy. Color coding: pairs colored
in blue are newly added at that Quin; pairs in gray were added at earlier thresholds and are
carried over.

Min Modularity Pairs
Qmin (Modularity, Resolution,Number of Communities) Accuracy
1.0 — 76.61
0.9 — 76.61
0.8 (0.8526, 0.500, 90), (0.8120, 1.000, 103) 79.93
0.7 (0.8526, 0.500, 90), (0.8120, 1.000, 103), 83.66
(0.7448, 2.606, 141)
0.6 (0.8526, 0.500, 90), (0.8120, 1.000, 103), 86.50

(0.7448, 2.606, 141), (0.6841, 5.483, 170),
(0.6006, 12.374, 298)

0.5 (0.8526, 0.500, 90), (0.8120, 1.000, 103), 84.55
(0.7448, 2.606, 141), (0.6841, 5.483, 170),
(0.6006, 12.374, 298), (0.5566, 20.068, 325)

0.4 (0.8526, 0.500, 90), (0.8120, 1.000, 103), 86.15
(0.7448, 2.606, 141), (0.6841, 5.483, 170),
(0.6006, 12.374, 298), (0.5566, 20.068, 325),
(0.4909, 32.860, 373), (0.4231, 48.392, 430)
0.3 (0.8526, 0.500, 90), (0.8120, 1.000, 103), 85.26
(0.7448, 2.606, 141), (0.6841, 5.483, 170),
(0.6006, 12.374, 298), (0.5566, 20.068, 325),
(0.4909. 32.860. 373), (0.3748, 63.924, 457),
(0.4231, 48.392, 430)
0.2 (0.8526, 0.500, 90), (0.8120, 1.000, 103), 82.59
(0.7448, 2.606, 141), (0.6841, 5.483, 170),
(0.6006, 12.374, 298), (0.5566, 20.068, 325),
(0.4909, 32.860, 373), (0.3748, 63.924, 457),
(04231, 18.392, 130), (0.2784, 95.726, 541)
0.1 (0.8526, 0.500, 90), (0.8120, 1.000, 103), 88.10
(0.7448, 2.606, 141), (0.6841, 5.483, 170),
(0.6006, 12.374, 298), (0.5566, 20.068, 325),
(0.4909, 32.860, 373), (0.3748, 63.924, 457),
(0.4231, 48.392, 430), (0.2784, 95.726, 541),
(0.1792, 136.430, 672)
0.0 (0.8526, 0.500, 90), (0.8120, 1.000, 103), 86.32
(0.7448, 2.606, 141), (0.6841, 5.483, 170),
(0.6006, 12.374, 298), (0.5566, 20.068, 325),
(0.4909, 32.860, 373), (0.3748, 63.924, 457),
(0.4231, 48.392, 430), (0.2784, 95.726, 541),
(0.1792. 136.430, 672), (0.0958, 175.819, 768)

N —

)
)
)
)

6.5 MODELS FOR HOMOPHILIC GRAPHS

GCN. Applies a linear map followed by aggregation with the symmetrically normalized
adjacency (after adding self-loops), corresponding to a first-order spectral/Chebyshev ap-
proximation (Kipf & Welling] [2017).

GAT. Learns attention coeflicients over neighbors via masked self-attention and aggregates
them with a softmax-weighted sum, enabling data-dependent receptive fields (Velickovié

et 201S).
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GraphSAGE. Performs permutation-invariant neighbor aggregation (e.g., mean, max-
pooling, LSTM) with fixed fan-out sampling per layer for scalable, inductive mini-batch
training on large graphs (Hamilton et al., |2017]).

6.6 MODELS FOR HETEROPHILIC GRAPHS

H;GCN. Separates ego and neighbor embeddings, aggregates higher-order neighborhoods,
and combines intermediate representations to improve robustness under heterophily (Zhu
et al., 2020al).

LinkX. Separately embeds node features and adjacency (structural) information with MLPs
and concatenates them, capturing complementary attribute and topology signals that scale
to non-homophilous graphs (Lim et al.| [2021)).

GPR-GNN. Learns signed polynomial (Generalized PageRank) propagation weights, adapt-
ing the filter to both homophilous and heterophilous label patterns and mitigating over-
smoothing (Chien et al., |2021)).

)

FSGNN. Applies soft selection over hop-wise aggregated features with “hop-normalization,’
effectively decoupling aggregation depth from message passing for a simple, shallow baseline
that performs well under heterophily (?).

GloGNN. Augments propagation with learnable correlations to global nodes (including
signed coefficients), enabling long-range information flow and improved grouping on het-
erophilous graphs (Li et al., 2022).

FAGCN. Uses a self-gating, frequency-adaptive mechanism to balance low- and high-
frequency components during message passing, improving robustness across homophily
regimes (Bo et al., [2021)).

GBK-GNN. Employs bi-kernel feature transformations with a gating mechanism to integrate
homophily- and heterophily-sensitive signals within a single architecture (Du et al., [2022).

JacobiConv. Adopts an orthogonal Jacobi-polynomial spectral basis (often without non-
linearities) to learn flexible filters suited to varying graph signal densities, yielding strong
performance on heterophilous data (Wang & Zhang) [2022).

6.7 SAMPLING METHODS FOR SCALABLE GNNS

GraphSAGE (node/neighbor sampling). Samples a fixed fan-out of neighbors per
layer and learns permutation-invariant aggregators, limiting the receptive field and enabling
inductive, mini-batch training on large graphs (Hamilton et al., [2017)).

FastGCN (layer-wise node sampling). Recasts graph convolution as an expectation
over nodes and draws i.i.d. node sets at each layer via importance sampling, decoupling
batch size from degree and reducing estimator variance (Chen et al., 2018b]).

S-GCN / VR-GCN (layer-wise with control variates). Introduces control-variates
using historical activations to stabilize gradients under small per-layer samples and achieve
faster, provable convergence to the full-batch optimum (Chen et al., [2018a)).

ClusterGCN (subgraph/block sampling). Partitions the graph and samples dense
clusters as mini-batches, restricting propagation within blocks to boost edge coverage, cache
locality, and memory efficiency at scale (Chiang et al., |2019).

GraphSAINT (subgraph sampling with bias correction). Constructs mini-batches by
sampling subgraphs (node/edge/random-walk policies) and applies unbiased normalization
to correct sampling bias, yielding strong accuracy—efficiency trade-offs on large graphs (7).

6.8 DATASETS

We evaluate on two groups of benchmarks that stress complementary regimes.
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Large-scale graphs. We use Flickr, Reddit, Yelp, AmazonProducts, and ogbn-products.
Flickr/Yelp/AmazonProducts come from GraphSAINT; Reddit from GraphSAGE; ogbn-
products from OGB (?7Hamilton et al., [2017; [Hu et al., |2020)). Table 8| reports sizes, features,
classes, and splits.

Homophilous and heterophilous graphs. We include Cora, PubMed, Actor, Chameleon-
filtered, Squirrel-filtered, Amazon-ratings, Tolokers, and Roman-empire. For the filtered
Wikipedia, Roman-empire, Amazon-ratings, and Tolokers datasets, we use the exact settings
and splits of [Platonov et al.| (2023); Cora, PubMed, and Actor follow standard preprocess-
ing (Sen et al., 2008; Pei et al.l [2020; |Lim et al., 2021]). Table |§| lists summary stats, edge
homophily h., and metrics.

Table 8: Dataset statistics (“m” stands for multi-class classification, and “s” for single-class.)

Dataset Nodes Edges Avg. Degree Feature Classes Train / Val / Test

Flickr 89,250 899,756 10 500 7 (s) 0.50 / 0.25 / 0.25

Reddit 232,965 11,606,919 50 602 41 (s) 0.66 / 0.10 / 0.24

Yelp 716,847 6,977,410 10 300 100 (m) 0.75 / 0.10 / 0.15
AmazonProducts 1,598,960 132,169,734 83 200 107 (m) 0.85 / 0.05 / 0.10
ogbn-products 2,449,029 61,859,140 50.5 100 47 (8) 0.08 / 0.02 / 0.90

Table 9: Dataset statistics with edge homophily A, and evaluation metric (“Acc” for Accuracy,
“ROC-AUC” for Area Under ROC).

Dataset Nodes Edges Avg. Degree Feature Classes Train / Val / Test he Metric

Cora 2,708 5,429 4 1,433 7 (s) 0.60 / 0.20 / 0.20 0.810 Acc

PubMed 19,717 44,324 5 500 3(s)  0.60/0.20/020 0.802 Acc

Actor 7,600 30,019 8 932 5 (s) 0.60 / 0.20 / 0.20  0.216 Acc

Squirrel-filtered 2,223 65,718 59 2,089 5 (s) 0.50 / 0.25 / 0.25  0.207 Acc

Chameleon-filtered 890 13,584 31 2,325 5 (s) 0.50 / 0.25 / 0.25 0.236 Acc

Amazon-ratings 24,492 93,050 8 300 5 (s) 0.50 / 0.25 /0.25  0.380 Acc
Tolokers 11,758 519,000 88 10 2 (s) 0.50 /0.25 /0.25 0.595 ROC-AUC

Roman-empire 22,662 32,927 3 300 18 (s) 0.50 /0.25 /0.25 0.047 Acc
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