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Abstract
To advance the understanding of robust deep
learning, we delve into the effects of adversar-
ial training on self-supervised and supervised
contrastive learning alongside supervised learn-
ing. Our analysis uncovers significant dispar-
ities between adversarial and clean representa-
tions in standard-trained networks across vari-
ous learning algorithms. Remarkably, adversar-
ial training mitigates these disparities and fos-
ters the convergence of representations toward a
universal set, regardless of the learning scheme
used. Additionally, increasing the similarity be-
tween adversarial and clean representations, par-
ticularly near the end of the network, enhances
network robustness. These findings offer valu-
able insights for designing and training effec-
tive and robust deep learning networks. Our
code is released at https://github.com/
softsys4ai/CL-Robustness.

1. Introduction
Self-supervised learning has significantly improved in re-
cent years, leading to state-of-the-art performance in various
applications. While this paves the way to learn effective
representations from massively available unlabeled data,
the vulnerability to adversarial attack is still a fatal threat.
Adversarial training is proven to be an effective defense
method in supervised learning. This method can be inter-
preted as a min-max optimization problem (Madry et al.,
2017), wherein the model parameters are updated iteratively
by minimizing a training loss against the adversarial pertur-
bations generated by maximizing an adversary loss function.
While it is standard practice to use the same loss function
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for both training and generating adversarial attacks, some
works have explored the use of dissimilar loss functions to
investigate robust training (Pal et al., 2021). Hendrycks et
al. (Hendrycks et al., 2019) introduced a self-supervised
term into the training loss to improve the robustness of a
supervised model. Chen et al. (Chen et al., 2020b) were the
first to apply adversarial training on a self-supervised model
to achieve robust pre-trained encoders that can be used for
downstream tasks through fine-tuning.

In recent years, the study of adversarial training on the
robustness of various contrastive learning schemes has at-
tracted great attention. The main idea of Contrastive Learn-
ing (CL) is to benefit from comparing semantically similar
against dissimilar samples to learn the proper representa-
tions. Some recent works employed the generated adversar-
ial examples as a similar match of the anchor data point to
improve the robustness of the model. Kim et al. (Kim et al.,
2020) were the first to utilize the contrastive loss to gener-
ate adversarial examples without any label for robustifying
SimCLR (Chen et al., 2020a) framework. Moshavash et al.
(Moshavash et al., 2021), Wahed et al. (Wahed et al., 2022),
and Gowal et al. (Gowal et al., 2021) have applied the same
technique to Momentum Contrast (MOCO) (He et al., 2020),
Swapping Assignments between Views (SwAV) (Caron
et al., 2020) and Bootstrap Your Own Latents (BYOL) (Grill
et al., 2020), respectively. Fan et al. (Fan et al., 2021) intro-
duced an additional regularization term in contrastive loss
to enhance cross-task robustness transferability. They use a
pseudo-label generation technique to avoid using labels in
adversarial training of downstream tasks. Similarly, Jiang
et al. (Jiang et al., 2020) considered a linear combination
of two contrastive loss functions to study the robustness1

under different pair selection scenarios.

One of the central steps in any contrastive learning scheme
is the selection of positive and negative pairs. Without label
information, a positive pair is often obtained by data aug-
mentation, while the negative samples are randomly chosen
from a mini-batch. However, this random selection strat-
egy can lead to choosing the false-negative pairs when two
samples are taken from the same class. In (Gupta et al.,

1We use the word “robust” as shorthand for “adversarially
robust” throughout the paper.
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2022), Gupta et al. empirically demonstrate that the ad-
versarial vulnerability of contrastive learning is related to
employing false negative pairs during training. One rem-
edy to this dilemma is to leverage the label information
to extend the self-supervised contrastive loss into a super-
vised contrastive (SupCon) loss introduced by (Khosla et al.,
2020). SupCon loss contrasts embeddings from the same
class as positive samples against embeddings from differ-
ent classes as negative samples. It has shown that SupCon
outperforms cross-entropy loss in terms of accuracy and
hyper-parameters stability (Khosla et al., 2020). Islam et
al. (Islam et al., 2021) have conducted a broad study to
compare the transferability of learned representations by
cross-entropy, SupCon, and standard contrastive losses for
several downstream tasks. Zhong et al. (Zhong et al., 2022)
have designed a series of robustness tests, including data
corruptions, ranging from pixel-level gamma distortion to
patch-level shuffling and dataset-level distribution shift to
quantify differences between contrastive learning and super-
vised learning frameworks.

Some very recent literature has started explaining and un-
derstanding robust networks. Jones et al. (Jones et al., 2022)
have shown that irrespective of architecture or random ini-
tialization, adversarial robustness is a significant constraint
on the learned function of a network. The research con-
ducted by (Cianfarani et al., 2022) provides insights into the
effects of adversarial training on representations. It empha-
sizes the lack of specialization in robust representations and
the significant impact of overfitting on deeper layers during
robust training. However, it is important to note that the
primary focus of this study is on supervised learning algo-
rithms. To address this research gap, our study investigates
the effect of robust training on models trained using differ-
ent learning schemes (contrastive, supervised-contrastive,
and supervised) through a unified lens.

Contributions In this work, we conduct several comprehen-
sive experiments to compare the robustness of contrastive
and supervised contrastive with standard supervised learning
under different training scenarios. Our research utilizes ex-
planatory tools such as CKA (Centered Kernel Alignment)
(Kornblith et al., 2019; Nguyen et al., 2020; Subramanian,
2021) and linear probing (Alain & Bengio, 2016) to inves-
tigate and contrast the layer-wise representations learned
through various training methods. The design and imple-
mentation of the experiments are motivated by the following
research questions:

Q1: Is there anything special about the learned representa-
tion with contrastive learning in terms of adversarial
robustness?

Q2: To what extent does employing the label information
benefit or deteriorate the robustness of contrastive
learning representations?

Q3: How does adversarial training affect (similarities and
differences) the learned representations in supervised
and contrastive learning?

Our key findings can be summarized as follows:

R1: Our results show that contrastive learning without
label information is less robust than other learning
schemes in standard training. However, combining
the standard contrastive loss with either supervised
cross-entropy or supervised contrastive loss can im-
prove the robustness of the learned representations by
leveraging the label information. (Section 3.2)

R2: From our results, we can observe the significant pos-
itive impact of full adversarial fine-tuning on the
robustness of representations learned by contrastive
learning. However, full adversarial fine-tuning is inef-
fective in supervised contrastive or standard supervised
learning schemes. (Section 3.3.1)

R3: Our study reveals important insights regarding the im-
pact of adversarial training on representations in dif-
ferent learning schemes. We observed substantial
differences between adversarial and clean represen-
tations in standard-trained networks across various
learning schemes. However, after adversarial train-
ing, we observed a remarkable similarity between
adversarial and clean representations. This indi-
cates that regardless of the learning scheme utilized,
adversarial training facilitates the convergence of
representations towards a universal set, character-
ized by features2 that consistently emerge across
different models and tasks (Olah et al., 2020). Ad-
ditionally, we found that increasing the similarity
between adversarial and clean representations, es-
pecially at the end of the network, improves the
robustness of the network. These findings offer valu-
able insights into designing and training more efficient
and effective robust networks. (Section 3.3.2)

2. Methodology
In this section, we explain the methodology of our compara-
tive study on the robustness of the three following learning
schemes:

• Contrastive Learning (CL): In the standard framework
of SimCLR, contrastive learning trains a base encoder
by minimizing a contrastive loss over the representa-
tions projected into a latent space (Figure 1a). The
extracted features will train a linear classifier on a
downstream task.

2A representation consists of all the features found in a layer.
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Figure 1. Training process of the studied learning schemes.

• Supervised Contrastive Learning (SCL): A supervised
extension of contrastive learning introduced in (Khosla
et al., 2020), to avoid false positive pairs selection by
leveraging the label information.

• Supervised Learning (SL): The network consists of a
base encoder followed by a fully connected layer as
a linear classifier (see Figure 1b). In this case, cross-
entropy between the true and predicted labels is utilized
for training the network parameters.

The training process in contrastive and supervised con-
trastive learning includes the following two phases:

Pretraining Phase: The goal of this phase is to train the
base encoder parameters θb by minimizing a self-supervised
loss Lp(θb,θph) over a given dataset Dp. Here θph is the
parameters vector of the projection head used to map the
base encoder output into a low dimensional latent space
where the Lp is applied.

Supervised Fine-tuning Phase: The goal of this phase is
to train the linear classifier parameters θc by minimizing
the supervised loss Lf (θc) over a labeled dataset Df . The
linear classifier learns to map the representations extracted
during the pretraining phase to the labeled space, where Lf

is the cross-entropy loss.
We examine the standard and robust training variations of
the aforementioned training phases to compare the adver-
sarial robustness across different learning schemes. Table 1
summarises all the studied training combinations for differ-
ent possible scenarios of training phases in contrastive and
supervised contrastive learning schemes.

In the standard training of pretraining phase, Lp is given
by LCL(θb,θph;x

′,x′′) and LSCL(θb,θph;x
′,x′′,y) in-

troduced in (Chen et al., 2020a) and (Khosla et al., 2020) for
the contrastive and supervised contrastive schemes, respec-
tively. Here the x′ and x′′ are two transformed views of the
same minibatch and label vector y is leveraged in LSCL to
avoid false positive pair selection, as explained in (Khosla
et al., 2020).

In the scenario of robust pretraining or adversarial training
of the representations, we adopt a loss function Lp inspired
by Adversarial Contrastive Learning (Jiang et al., 2020).
This loss function is formulated as a linear combination of
two terms, as defined below:

Lp(θb,θph) = αLCL(θb,θph;x
′,x′′)

+ β LCL(θb,θph;x,xadv) (1)

and

Lp(θb,θph) = αLSCL(θb,θph;x
′,x′′,y)

+ β LSCL(θb,θph;x,xadv,y) (2)

for the contrastive and supervised contrastive schemes, re-
spectively. In these equations, x′ and x′′ are the transformed
views of x, while xadv is the PGD attack generated by max-
imizing the associated loss function iteratively over each
given minibatch x as follows:

xt+1 = Πx+S(x
t + αsgn(∇xLCL(θb,θph;x,xadv))

(3)
and

xt+1 = Πx+S(x
t + αsgn(∇xLSCL(θb,θph;x,xadv,y))

(4)
for the contrastive and supervised contrastive schemes, re-
spectively. Here, Πx+S denotes projecting perturbations
into the set of allowed perturbations S and α is the step
size. In this setup, the minimization of Lp corresponds to
the simultaneous minimization of each term weighted by
coefficients of α and β. In this study, we take α = β to
avoid unjustified prioritization between the transformed and
adversarial terms.

We consider two alternatives for the robust training of
the fine-tuning phase. In the partial adversarial training,
we only update the linear classifier parameters θc by
minimizing the loss function,

Lf (θc) = αLCE(θc;x,y) + β LCE(θc;xadv,y) (5)

As the second alternative, full adversarial fine-tuning
utilizes the following loss function,

Lf (θb,θc) = αLCE(θb,θc;x,y)
+ β LCE(θb,θc;xadv,y) (6)
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Table 1. Summary of the training scenarios.
Scenarios Pretraining Phase Finetuning Phase

ST Standard Training Standard Training
(with fixed θb)

AT Adversarial Training Standard Training
(with fixed θb)

Partial-AT Adversarial Training Partial Adversarial Training
(with fixed θb)

Full-AT Adversarial Training Full Adversarial Training

to readjust the base encoder parameters θb and train the
linear classifier. In these equations, xadv is the PGD attack
generated by maximizing the cross-entropy loss iteratively
over each given minibatch x. Here we take α = β in parallel
with the pretraining phase.

We investigate both the standard and robust training ap-
proaches of the aforementioned training phases to compare
the adversarial robustness among various learning schemes.

3. Experiments
Our goal is to understand whether there are differences
in how contrastive learning learns the representation from
data compared to supervised learning from the adversarial
perspective. To this end, we conduct extensive experiments
to evaluate the robustness of Contrastive Learning (CL),
Supervised Contrastive Learning (SCL), and Supervised
Learning (SL) under different training scenarios as shown in
Table 1 on CIFAR-10 and CIFAR-100 image classification
benchmarks. In all the subsequent experiments, we train the
base encoder and the linear classifier on the same dataset.
Our experimental setup is provided in Appendix A.

3.1. Threat Models

To evaluate the robustness of each scenario, we consider
two different threat models:

• Threat Model-I (end-to-end attack generated by LCE): In
this threat model, the attacker has complete knowledge of
architecture and network parameters in the base encoder
and linear classifier. This excludes any knowledge about
the projection head utilized in the pretraining phase. The
attacks are generated end-to-end through the utilization
of the cross-entropy loss.

• Threat Model-II (attack generated against base encoder by
Lp): In Threat Model-II, the attacker possesses complete
knowledge of all components in the pretraining phase,
including the architecture, network parameters, loss func-
tion, and training dataset.
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Figure 2. Incorporating label information into contrastive
learning enhances the robustness of the resulting representa-
tions. We compare the test accuracy of different learning schemes
on CIFAR10 and CIFAR100 datasets against adversarial examples
through standard training settings. Contrastive learning without
labels shows lower robustness compared to other learning schemes.
We also observed that semi-supervised learning schemes SL+CL or
SCL+CL achieve better robust performance than the CL scheme.

3.2. Contrastive Learning: Robustness and Label
Impact Analysis through Standard Training

While it is widely known that neural networks trained
through standard training are vulnerable to adversarial ex-
amples, the degree of vulnerability may differ among mod-
els trained using different learning methods. Hence, here
we aim to investigate the vulnerability of various learning
algorithms through standard training to evaluate their per-
formance. The results as a function of the perturbation size
under Threat Model-I are shown in Figure 2. We use 20-step
l∞ Projected Gradient Descent (PGD) (Madry et al., 2017)
attacks with different perturbations to generate adversarial
attacks during this experiment. In addition to the learn-
ing schemes mentioned before, the combination of them
including the combination of supervised learning and super-
vised contrastive learning (denoted SL+SCL), and two other
semi-supervised versions, including the combination of con-
trastive learning with supervised learning (denoted SL+CL)
or with supervised contrastive learning (denoted CL+SCL),
are investigated. These combinations are designed to answer
this question: Does employing the label information benefit
the robustness of contrastive learning representations? As
we can see, contrastive learning without label information is
less robust than other learning schemes. We also observed
that semi-supervised learning schemes SL+CL or CL+SCL
achieve better robust performance than the CL scheme. Ap-
pendix B visualizes the representations learned by all these
learning schemes using t-SNE on the CIFAR-10 dataset.

We have excluded the semi-supervised versions from the
subsequent experiments to prevent any potential confusion
between the effects of label information and adversarial
training. Appendix C provides more results under Threat
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Model-II, where the attacks are generated against only the
base encoder.

3.3. Adversarial Training: Comparing Representations

Here, we first compare the performance of different adver-
sarial training scenarios. Subsequently, a set of explanatory
tools (e.g., CKA and linear probing) is employed to inspect
how adversarial training affects the learned representations
in hidden layers.

3.3.1. DIRECT COMPARISON

This experiment aims to evaluate model robustness under
Threat Model-I in the following scenarios: i) training a
base encoder using adversarial training, then training the
linear classifier separately after freezing the base encoder
(AT); ii) training the base encoder by adversarial training,
then training the linear classifier separately using adversar-
ial training after freezing the base encoder (Partial AT); iii)
training the base encoder by adversarial training, then ro-
bustifying the end-to-end model (Full AT). The latter case
means that the base encoder parameters are first adversari-
ally trained using LCL or LSCL, then those parameters are
fine-tuned during adversarial training of the linear classifier
where adversarial examples are generated using LCE . The
results on the CIFAR-10 and CIFAR100 datasets against
20-step different PGD attacks are shown in Figure 3. Ap-
pendix D also provides the robustness of different scenarios
on the CIFAR100 dataset against a state-of-the-art adver-
sarial attack known as Auto-attack (Croce & Hein, 2020).
Moreover, Appendix E provides more results under Threat
Model-II, where the attacks are generated against only the
base encoder. The results indicate two main observations:
(i) CL under Full AT consistently outperforms other learning
schemes in various evaluation scenarios, demonstrating a no-
ticeable improvement in standard accuracy and robustness
against adversarial attacks. The results from the previous
section shed light on the positive impact of utilizing label
information to enhance the robustness of the CL scheme
during standard training. It is worth noting that Full AT
also effectively incorporates label information into the ro-
bust network architecture, leading to a remarkable overall
improvement in robustness. This finding is consistent with
prior research (Zhai et al., 2019; Fan et al., 2021) which
has investigated the utilization of pseudo labels for unla-
beled data, demonstrating their effectiveness in enhancing
the adversarial robustness of neural networks. By incorpo-
rating label information, the CL scheme benefits from an
additional source of valuable supervision, strengthening its
defense against adversarial attacks and enhancing overall ro-
bustness. (ii) There is a slight difference in the performance
of SCL under AT and Full AT scenarios. This indicates that
the representations learned by SCL from the AT scenario
are already sufficient to achieve acceptable robustness.
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Figure 3. Full AT successfully integrates label information into
the robust network architecture trained via contrastive learn-
ing, resulting in a remarkable overall improvement in robust-
ness. We compare the test accuracy of different learning schemes
against different PGD attacks on CIFAR10 and CIFAR100 datasets
through different adversarial training scenarios. The results demon-
strate that Full AT effectively incorporates label information into
the adversarially-trained network obtained through the CL scheme.
This incorporation leads to improved robustness. Moreover, there
is a slight variation in the performance of the SCL under different
adversarial training scenarios.

3.3.2. COMPARING CHARACTERISTICS

Previous results raise an important question from a represen-
tation learning perspective: what happens in the layers of
neural networks when they are adversarially trained? We ex-
amine the internal layer representations learned by different
robust learning schemes to shed light on this direction.

Adversarial and clean representations differ significantly
in standard-trained networks. We begin our investiga-
tion by using CKA to study the internal representation struc-
ture of each model. CKA is a metric that measures the
similarity between two sets of features. To answer how
different learning schemes extract representations, we take
every pair of layers X and Y within a model learned by
different learning schemes and compute their CKA simi-
larity on clean and adversarial examples. Figures 4 and 10
show the results as a heatmap for different learning algo-
rithms under standard scenarios on clean and adversarial
examples. Notably, we observe distinct differences in the
internal representation structure between the three learn-
ing schemes: (i) the layers near the end of the network in
SCL and SL schemes exhibit lower similarity with other
layers compared to CL, and (ii) the dissimilarity between
clean and adversarial representations in standard-trained
networks highlights their vulnerability to adversarial exam-
ples. Previous research (Mitrovic et al., 2020) has assumed
that data consists of content and style components, with
only the content being relevant for unknown downstream
tasks. Additionally, it is assumed that content and style are
independent, meaning that style changes do not affect the
underlying content. In contrast, adversarial perturbations
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Figure 4. Standard-trained networks using different learning
algorithms yield representations that display notable dispar-
ities between adversarial and clean examples. We compute
the similarity of representations across all layer combinations in
standard-trained networks that have been trained using the CL
scheme, considering both clean and adversarial data.

are introduced as a specific distribution change in the nat-
ural data distribution (Zhang et al., 2020) where they alter
the style while preserving the content, making them imper-
ceptible to the human eye. Under these assumptions, the
pronounced dissimilarity observed between adversarial and
clean examples in standard-trained networks indicates an
inability to extract content-related representations consistent
across both examples.

Adversarial and clean representations exhibit substan-
tial similarity in adversarially trained networks, regard-
less of the learning schemes used. We also perform pre-
vious comparisons for robust models, taking every pair of
layers X and Y within an adversarially trained model ro-
bustified by different learning schemes and computing their
CKA similarity on clean and adversarial examples. More-
over, we utilize linear probing as a conceptual tool to better
understand the dynamics within the neural network and
the specific roles played by individual intermediate layers.
Figures 5 and 11 highlight several observations from the re-
sults of the adversarial training experiments: (i) Cross-layer
similarities are amplified compared to standard training re-
gardless of learning schemes used. This is evident by the
higher degree of brightness in the plots. (ii) In networks
trained through adversarial training, the adversarial repre-
sentations are significantly similar to clean representations.
Previous research (Jones et al., 2022) has demonstrated that
robust training effectively mitigates the impact of adver-
sarial perturbations, resulting in similar representations for
clean and adversarial examples in robust networks. How-
ever, their studies have only focused on the supervised learn-
ing scheme. Our results support and extend these findings
by demonstrating that the similarity between clean and ad-
versarial representations holds irrespective of the learning
scheme used. (iii) When comparing the representations
obtained from AT and its counterpart, Full AT (see Figure
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Figure 5. Regardless of the learning scheme employed, adver-
sarially trained networks exhibit significant similarity between
adversarial and clean representations. We compute the similar-
ity of representations across all layer combinations in adversarially
trained networks that have been trained using the CL scheme, con-
sidering both clean and adversarial data.

11), we observe a notable increase in long-range similarities
within the CL framework. This enhancement in similarity
translates to significant improvements in both standard and
adversarial accuracy. Remarkably, Full AT significantly im-
proves overall robustness by incorporating label information
into the network. In contrast, the representations learned
by SCL and SL under the AT and Full AT scenarios exhibit
minor differences. These slight variations in representations
result in marginal differences in performance, indicating
that the label information utilized in AT already provides
sufficient robustness for SCL and SL. Therefore, Full AT
does not introduce additional information to enhance SCL
and SL’s robustness further.

Increasing the similarity between adversarial and clean
representations, especially near the end of the network,
improves robustness. To gain a deeper understanding of
the divergence between adversarial and clean representa-
tions, we compare each layer X in a model applied to clean
data with its identical counterpart Y in the same model ap-
plied to adversarial examples. The results in the left-hand
side of Figure 6 and Figure 12 illustrate that the adversar-
ial representations in the network trained using standard
training, exhibit significant dissimilarity from their clean
counterparts, particularly towards the end of the network,
regardless of the learning scheme used. In contrast, adversar-
ial training significantly reduces the impact of adversarial
perturbations, leading to similar representations for both
clean and adversarial examples in robust networks. Notably,
we observe a similarity drop across intermediate layers of
CL/AT, which may explain its lower performance compared
to other robust learning schemes. To confirm our explana-
tion, we conducted a similar experiment on CL after Full AT
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Figure 6. Increasing the similarity between adversarial and
clean representations improves robustness, especially near the
end of networks. Left) Comparing clean and adversarial represen-
tations in CL reveals significant dissimilarity in standard-trained
networks. Adversarial training reduces this divergence signifi-
cantly, but a drop in similarity is observed across intermediate
layers, affecting its performance (CL/AT). Full AT effectively mit-
igates the similarity drop, enhancing overall model robustness.
Right) During adversarial training, we increased perturbation bud-
gets to vary the strength of adversarial attacks. This led to greater
similarity between adversarial and clean representations, especially
towards the end of the network.

(which significantly improves the robustness) and compared
the resulting representations. As shown in the left-hand side
of Figure 6, Full AT reduces the similarity drop, enhancing
the model’s robustness. To gain further insights into this
phenomenon, we conducted an ablation study by varying
the strength of adversarial attacks during training through
increased perturbation budgets (ϵ). As demonstrated in the
right-hand side of Figure 6 and Figure 13, we observed that
stronger adversarial perturbations led to an enhanced similar-
ity between adversarial representations and their counterpart
clean representations, particularly in the later layers of the
network. This significant finding confirms the previous re-
sults reported in (Cianfarani et al., 2022) and highlights
our novel contribution in extending this observation to con-
trastive learning schemes. Furthermore, from heatmaps in
Figure 14, we can observe that increasing the strength of
adversarial perturbations leads to the long-range similarity
between different layers.

Unlike standard training, adversarial training converges
toward a universal set of representations, regardless of
the learning schemes utilized. Here, we perform cross-
model comparisons to measure the similarities between all
layers X of one model trained using a specific learning
scheme and all layers Y of another model trained using a
different learning scheme. The left-hand side of Figures 7
and 15 present the results for models trained using different
standard learning schemes. We observed that, except for
lower layers, the representations extracted by other layers
were highly dissimilar. However, after applying adversarial
training (shown on the right-hand side), the similarity be-
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Figure 7. Adversarial training promotes convergence towards
a universal set of representations. Standard-trained networks ex-
hibit significant dissimilarity in adversarial representations across
CL schemes, particularly in higher layers. However, after applying
adversarial training, the similarity between layers increases, indi-
cating a shift towards extracting a universal set of representations.

tween layers from networks trained with different learning
schemes notably increased, indicating a tendency towards
extracting a universal set of representations. This finding
aligns with a previous study (Jones et al., 2022), which
highlighted that robust networks converge towards a uni-
versal set of representations regardless of the architecture.
Our results extend these observations to contrastive learning
schemes, providing empirical evidence for a more general
claim. Specifically, our study demonstrates that adversarial
training promotes convergence toward a universal set of rep-
resentations regardless of the learning schemes employed.

4. Conclusion
This study compared the robustness of contrastive and super-
vised contrastive learning with standard supervised learning.
Our results demonstrated the benefits of incorporating label
information in contrastive learning for enhanced robustness.
Adversarial training reduced disparities between adversarial
and clean representations, leading to convergence toward
a universal set of representations. The increased similarity
between adversarial and clean representations improved ro-
bustness, especially in deeper layers. These findings offer
valuable insights for optimizing robust learning schemes.
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Below, we provide supplementary information and additional results from the various sections.

A. Experiment Setup
Our experiment setup is similar to that used in (Chen et al., 2020a) for SimCLR and (Khosla et al., 2020) for SupCon, which
are prominent works in contrastive learning. We use ResNet-50 as the base encoder for all scenarios and a two-layers MLP
network as the projection head. The loss is optimized using the Adam optimizer with a learning rate of 0.0003. We train
each model for 200 epochs using a mini-batch size of 128 for standard and 256 for adversarial scenarios. In all adversarial
training scenarios, the adversarial perturbations are generated using a 5-step Projected Gradient Descent (PGD) attack under
the l∞ norm with a maximum perturbation limit of ϵ = 8/255, unless a specific value of ϵ is specified. The models are
evaluated against PGD attacks and state-of-the-art Auto-attacks (Croce & Hein, 2020) at the test time. We report the top-1
test accuracy for all scenarios to evaluate the mentioned scenarios.

B. t-SNE Visualization of Learning Schemes under Standard Training Scenario
Figure 8 visualizes the representations learned by CL, SCL, SL, SL+SCL, SL+CL, and CL+SCL learning schemes using
t-SNE on the CIFAR-10 dataset. Here, we used labels to color the markers corresponding to each data point. The results
depicted in the ST scenario clearly show much clearer class boundaries in the SCL and SL compared to the CL scheme.
Furthermore, we can observe that employing some label information in both semi-supervised learning schemes, SL+CL and
CL+SCL, can lead to separate classes more clearly. This suggests that semi-supervised learning versions make it difficult for
an adversary to successfully perturb an image, resulting in a more robust prediction.

SL

SL+SCL

SCL

SL+CL

SCL+CL

CL

CL

SCLSL

Figure 8. Semi-supervised learning schemes (SL+CL and SCL+CL) separate classes more clearly than contrastive learning (CL)
schemes. We visualize the representations learned by different learning schemes (CL, SCL, SL, SL+SCL, SL+CL, and SCL+CL) using
t-SNE on the CIFAR-10 dataset. The results show that in the ST scenario, both SCL and SL exhibit clearer class boundaries compared to
CL. Furthermore, incorporating label information in the semi-supervised learning schemes (SL+CL and SCL+CL) enhances the separation
of classes, indicating increased robustness against adversarial perturbations.
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C. Robustness through Standard Training under Threat Model-II
Threat Model-II is not applicable for the supervised learning scheme, as the base encoder and linear classifier are trained
together end-to-end. Table 2 reports the results on CIFAR-10 and CIFAR-100 datasets against different 40-step PGD attacks.
From the results, we can observe that the models trained using LSCL are more robust compared to LCL where the attacks
are generated against the base encoder. This suggests that false negative pair selection in self-supervised contrastive learning
leads to making the model less robust which is aligned with the results reported in (Gupta et al., 2022).

Table 2. SCL is more robust than CL scheme against adversarial attacks generated against base encoder. The performance of
contrastive learning schemes, including CL and SCL, in the ST scenario evaluated under Threat Model-II (attack generated against base
encoder). The best performance is highlighted in bold. Threat Model-II is not applicable to the SL scheme, as the base encoder and linear
classifier are trained together end-to-end.

Models Dataset Standard Training PGD (4/255) PGD (4/255) PGD (16/255)

SCL CIFAR10 93.56 30.3 12.9 10.06

CL 84.27 19.58 9.61 7.19

SCL CIFAR-100 73.38 7.87 3.28 2.16

CL 60.28 5.52 0.94 0.23

D. Performance of Different Adversarial Training Scenarios against a Range of Auto-Attacks
Here, we evaluate the robustness of different scenarios on the CIFAR100 dataset against different Auto-attacks. The results
are shown in Figure 9. The comparative analysis provides evidence of Full AT being effective in improving the robustness
of the CL-based network. This improvement is achieved through the integration of label information, resulting in enhanced
robustness against adversarial attacks. Furthermore, slight variations in the performance of SCL are observed across different
scenarios of adversarial training.
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Figure 9. Full AT effectively incorporates label information into the robust network trained via contrastive learning, significantly
improving overall robustness. The comparative analysis of different learning schemes’ test accuracy against various Auto-attacks on
the CIFAR-100 dataset demonstrates the efficacy of Full AT in enhancing the robustness of the CL-based network by integrating label
information. This integration leads to improved robustness against adversarial attacks. Additionally, slight variations in the performance
of SCL are observed under different adversarial training scenarios.

E. Robustness through Adversarial Training under Threat Model-II (Non-Transferability of
Cross-Task Robustness)

In contrastive learning, any objective that utilizes the learned representations of the base encoder is referred to as a
downstream task. In this experiment, we compare model robustness where adversarial training is applied only to the base
encoder in contrastive and supervised contrastive learning schemes. Table 3 shows the performance of the models on
CIFAR-10 and CIFAR-100 datasets against different 40-step PGD attacks. Compared to Threat Model-I, our findings
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in Threat Model-II indicate that the robust model achieved by applying adversarial training solely to the base encoder is
not transferable to the downstream task. This failure in transferring robustness across the tasks, known as the cross-task
robustness transferability challenge, has also been reported in (Fan et al., 2021).

Table 3. The robustness achieved through adversarial training solely applied to the base encoder does not transfer effectively to
the downstream task. The performance of contrastive learning schemes, including CL and SCL in AT scenario, is compared to the
baseline adversarially trained SL scheme in terms of top-1 accuracy on CIFAR-10 and CIFAR-100 datasets. The models are evaluated
under Threat Model-I (end-to-end attack generated by cross-entropy loss) and threat model-II (attack generated against base encoder).
The effectiveness of AT in enhancing the robustness of CL and SCL under Threat Model-II is evident. However, the results reveal that
these robust models lose their robustness when subjected to end-to-end attacks or under Threat Model-I.

Models Datasets Standard Training Adversarial Training End-to-End Attack Generated by Cross-Entropy Loss Attack Generated Against Base Encoder

Clean Clean PGD (4/255) PGD (8/255) PGD (16/255) PGD (4/255) PGD (8/255) PGD (16/255)

SL 91.73 76.33 53.2 32.52 10.5 NA NA NA

SCL CIFAR-10 93.56 80.22 11.99 55.83 31.45 59.36 62.25 59.38

CL 84.27 70.13 36.86 11.91 0.26 69.1 65.88 49.8

SL 69.56 47.4 26.68 14.8 3.8 NA NA NA

SCL CIFAR-100 73.38 51.8 31.7 17.11 3.65 37.09 30.02 24.5

CL 60.28 47.58 23.58 7.83 0.43 46.18 42.44 26.9

F. Representation Structure of Different Learning Schemes
In this section, we provide all the figures related to the section 3.3.2 in the main body.
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Figure 10. The representations obtained from standard-trained networks exhibit significant differences between adversarial
and clean examples, regardless of the learning algorithm utilized. We compute the similarity of representations across all layer
combinations in standard-trained networks that have been trained using different learning schemes, considering both clean and adversarial
data. The three learning schemes (SCL, SL, and CL) have noticeable differences in their internal representation structures (the first column).
CL demonstrates more consistent representations throughout the network when compared to SCL and SL. Moreover, standard-trained
networks exhibit substantial dissimilarity between clean and adversarial representations (the first column vs. the second one).
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Figure 11. The similarity between adversarial and clean representations is substantial in adversarially trained networks, regardless
of the learning scheme used. We analyze robust models by comparing layer pairs within different learning schemes and calculating
their CKA similarity on clean and adversarial examples. Linear probing is employed to gain insights into the network dynamics and
the roles of intermediate layers. The results demonstrate amplified cross-layer similarities compared to standard training, indicated by
higher brightness levels in the plots. Additionally, networks trained through adversarial training exhibit significant similarities between
adversarial and clean representations. Moreover, upon comparing the representations obtained from AT and its counterpart Full AT, we
observe a significant enhancement in long-range similarities within CL. This improvement in similarity leads to substantial improvements
in both standard and adversarial accuracy. In contrast, the representations learned by SCL and SL under AT and Full AT scenarios exhibit
slight differences, resulting in minor variations in their performance.
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Figure 12. Contrasting adversarial representations with their clean counterparts. Comparing clean and adversarial representations in
different layers of the model reveals significant dissimilarity in standard-trained networks. Adversarial training reduces this divergence,
leading to similar representations for clean and adversarial examples in robust networks. However, there is a drop in similarity across
intermediate layers for CL/AT, which may explain its lower performance compared to other robust learning schemes.
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Figure 13. Increasing the similarity between adversarial and clean representations improves robustness, especially near the end of
networks. Improving the similarity between adversarial and clean representations enhances robustness. During adversarial training, we
increased perturbation budgets to vary the strength of adversarial attacks. This led to greater similarity between adversarial and clean
representations, especially towards the end of the network.
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Figure 14. Adversarial training promotes the emergence of long-range similarities between layers, regardless of the specific
learning scheme employed. We vary the strength of adversarial attacks during training. We observe that increasing the strength of
adversarial perturbations leads to a consistent presence of long-range similarity between layers, independent of the learning scheme used.
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Figure 15. Unlike standard-trained networks, the ones trained through adversarial training show significant similarity in adversar-
ial representations across different learning schemes. The cross-model CKA heatmap between standard-trained networks trained
using different learning schemes highlights that these schemes extract distinct adversarial representations, particularly in a large number of
higher layers within the network. Cross-model comparisons demonstrate that, after applying adversarial training, the similarity between
layers from different learning schemes increases, suggesting a shift towards extracting a universal set of representations.


